Sample records for linear system solution

  1. The consistency of positive fully fuzzy linear system

    NASA Astrophysics Data System (ADS)

    Malkawi, Ghassan O.; Alfifi, Hassan Y.

    2017-11-01

    In this paper, the consistency of fuzziness of positive solution of the n × n fully fuzzy linear system (P - FFLS) is studied based on its associated linear system (P - ALS). That can consist of the whole entries of triangular fuzzy numbers in a linear system without fuzzy operations. The nature of solution is differentiated in case of fuzzy solution, non-fuzzy solution and fuzzy non-positive solution. Moreover, the analysis reveals that the P - ALS is applicable to provide the set of infinite number of solutions. Numerical examples are presented to illustrate the proposed analysis.

  2. Conditions for Stabilizability of Linear Switched Systems

    NASA Astrophysics Data System (ADS)

    Minh, Vu Trieu

    2011-06-01

    This paper investigates some conditions that can provide stabilizability for linear switched systems with polytopic uncertainties via their closed loop linear quadratic state feedback regulator. The closed loop switched systems can stabilize unstable open loop systems or stable open loop systems but in which there is no solution for a common Lyapunov matrix. For continuous time switched linear systems, we show that if there exists solution in an associated Riccati equation for the closed loop systems sharing one common Lyapunov matrix, the switched linear systems are stable. For the discrete time switched systems, we derive a Linear Matrix Inequality (LMI) to calculate a common Lyapunov matrix and solution for the stable closed loop feedback systems. These closed loop linear quadratic state feedback regulators guarantee the global asymptotical stability for any switched linear systems with any switching signal sequence.

  3. Polynomial compensation, inversion, and approximation of discrete time linear systems

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1987-01-01

    The least-squares transformation of a discrete-time multivariable linear system into a desired one by convolving the first with a polynomial system yields optimal polynomial solutions to the problems of system compensation, inversion, and approximation. The polynomial coefficients are obtained from the solution to a so-called normal linear matrix equation, whose coefficients are shown to be the weighting patterns of certain linear systems. These, in turn, can be used in the recursive solution of the normal equation.

  4. Solution of linear systems by a singular perturbation technique

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1976-01-01

    An approximate solution is obtained for a singularly perturbed system of initial valued, time invariant, linear differential equations with multiple boundary layers. Conditions are stated under which the approximate solution converges uniformly to the exact solution as the perturbation parameter tends to zero. The solution is obtained by the method of matched asymptotic expansions. Use of the results for obtaining approximate solutions of general linear systems is discussed. An example is considered to illustrate the method and it is shown that the formulas derived give a readily computed uniform approximation.

  5. Linear-time reconstruction of zero-recombinant Mendelian inheritance on pedigrees without mating loops.

    PubMed

    Liu, Lan; Jiang, Tao

    2007-01-01

    With the launch of the international HapMap project, the haplotype inference problem has attracted a great deal of attention in the computational biology community recently. In this paper, we study the question of how to efficiently infer haplotypes from genotypes of individuals related by a pedigree without mating loops, assuming that the hereditary process was free of mutations (i.e. the Mendelian law of inheritance) and recombinants. We model the haplotype inference problem as a system of linear equations as in [10] and present an (optimal) linear-time (i.e. O(mn) time) algorithm to generate a particular solution (A particular solution of any linear system is an assignment of numerical values to the variables in the system which satisfies the equations in the system.) to the haplotype inference problem, where m is the number of loci (or markers) in a genotype and n is the number of individuals in the pedigree. Moreover, the algorithm also provides a general solution (A general solution of any linear system is denoted by the span of a basis in the solution space to its associated homogeneous system, offset from the origin by a vector, namely by any particular solution. A general solution for ZRHC is very useful in practice because it allows the end user to efficiently enumerate all solutions for ZRHC and performs tasks such as random sampling.) in O(mn2) time, which is optimal because the size of a general solution could be as large as Theta(mn2). The key ingredients of our construction are (i) a fast consistency checking procedure for the system of linear equations introduced in [10] based on a careful investigation of the relationship between the equations (ii) a novel linear-time method for solving linear equations without invoking the Gaussian elimination method. Although such a fast method for solving equations is not known for general systems of linear equations, we take advantage of the underlying loop-free pedigree graph and some special properties of the linear equations.

  6. Application of Nearly Linear Solvers to Electric Power System Computation

    NASA Astrophysics Data System (ADS)

    Grant, Lisa L.

    To meet the future needs of the electric power system, improvements need to be made in the areas of power system algorithms, simulation, and modeling, specifically to achieve a time frame that is useful to industry. If power system time-domain simulations could run in real-time, then system operators would have situational awareness to implement online control and avoid cascading failures, significantly improving power system reliability. Several power system applications rely on the solution of a very large linear system. As the demands on power systems continue to grow, there is a greater computational complexity involved in solving these large linear systems within reasonable time. This project expands on the current work in fast linear solvers, developed for solving symmetric and diagonally dominant linear systems, in order to produce power system specific methods that can be solved in nearly-linear run times. The work explores a new theoretical method that is based on ideas in graph theory and combinatorics. The technique builds a chain of progressively smaller approximate systems with preconditioners based on the system's low stretch spanning tree. The method is compared to traditional linear solvers and shown to reduce the time and iterations required for an accurate solution, especially as the system size increases. A simulation validation is performed, comparing the solution capabilities of the chain method to LU factorization, which is the standard linear solver for power flow. The chain method was successfully demonstrated to produce accurate solutions for power flow simulation on a number of IEEE test cases, and a discussion on how to further improve the method's speed and accuracy is included.

  7. Anomaly General Circulation Models.

    NASA Astrophysics Data System (ADS)

    Navarra, Antonio

    The feasibility of the anomaly model is assessed using barotropic and baroclinic models. In the barotropic case, both a stationary and a time-dependent model has been formulated and constructed, whereas only the stationary, linear case is considered in the baroclinic case. Results from the barotropic model indicate that a relation between the stationary solution and the time-averaged non-linear solution exists. The stationary linear baroclinic solution can therefore be considered with some confidence. The linear baroclinic anomaly model poses a formidable mathematical problem because it is necessary to solve a gigantic linear system to obtain the solution. A new method to find solution of large linear system, based on a projection on the Krylov subspace is shown to be successful when applied to the linearized baroclinic anomaly model. The scheme consists of projecting the original linear system on the Krylov subspace, thereby reducing the dimensionality of the matrix to be inverted to obtain the solution. With an appropriate setting of the damping parameters, the iterative Krylov method reaches a solution even using a Krylov subspace ten times smaller than the original space of the problem. This generality allows the treatment of the important problem of linear waves in the atmosphere. A larger class (nonzonally symmetric) of basic states can now be treated for the baroclinic primitive equations. These problem leads to large unsymmetrical linear systems of order 10000 and more which can now be successfully tackled by the Krylov method. The (R7) linear anomaly model is used to investigate extensively the linear response to equatorial and mid-latitude prescribed heating. The results indicate that the solution is deeply affected by the presence of the stationary waves in the basic state. The instability of the asymmetric flows, first pointed out by Simmons et al. (1983), is active also in the baroclinic case. However, the presence of baroclinic processes modifies the dominant response. The most sensitive areas are identified; they correspond to north Japan, the Pole and Greenland regions. A limited set of higher resolution (R15) experiments indicate that this situation is still present and enhanced at higher resolution. The linear anomaly model is also applied to a realistic case. (Abstract shortened with permission of author.).

  8. Multiple solution of linear algebraic systems by an iterative method with recomputed preconditioner in the analysis of microstrip structures

    NASA Astrophysics Data System (ADS)

    Ahunov, Roman R.; Kuksenko, Sergey P.; Gazizov, Talgat R.

    2016-06-01

    A multiple solution of linear algebraic systems with dense matrix by iterative methods is considered. To accelerate the process, the recomputing of the preconditioning matrix is used. A priory condition of the recomputing based on change of the arithmetic mean of the current solution time during the multiple solution is proposed. To confirm the effectiveness of the proposed approach, the numerical experiments using iterative methods BiCGStab and CGS for four different sets of matrices on two examples of microstrip structures are carried out. For solution of 100 linear systems the acceleration up to 1.6 times, compared to the approach without recomputing, is obtained.

  9. Linear systems on balancing chemical reaction problem

    NASA Astrophysics Data System (ADS)

    Kafi, R. A.; Abdillah, B.

    2018-01-01

    The concept of linear systems appears in a variety of applications. This paper presents a small sample of the wide variety of real-world problems regarding our study of linear systems. We show that the problem in balancing chemical reaction can be described by homogeneous linear systems. The solution of the systems is obtained by performing elementary row operations. The obtained solution represents the finding coefficients of chemical reaction. In addition, we present a computational calculation to show that mathematical software such as Matlab can be used to simplify completion of the systems, instead of manually using row operations.

  10. Stability analysis of the Peregrine solution via squared eigenfunctions

    NASA Astrophysics Data System (ADS)

    Schober, C. M.; Strawn, M.

    2017-10-01

    A preliminary numerical investigation involving ensembles of perturbed initial data for the Peregrine soliton (the lowest order rational solution of the nonlinear Schrödinger equation) indicates that it is unstable [16]. In this paper we analytically investigate the linear stability of the Peregrine soliton, appealing to the fact that the Peregrine solution can be viewed as the singular limit of a single mode spatially periodic breathers (SPB). The "squared eigenfunction" connection between the Zakharov-Shabat (Z-S) system and the linearized NLS equation is employed in the stability analysis. Specifically, we determine the eigenfunctions of the Z-S system associated with the Peregrine soliton and construct a family of solutions of the associated linearized NLS (about the Peregrine) in terms of quadratic products of components of the eigenfunctions (i.e., the squared eigenfunction). We find there exist solutions of the linearization that grow exponentially in time, thus showing the Peregrine soliton is linearly unstable.

  11. Perfect commuting-operator strategies for linear system games

    NASA Astrophysics Data System (ADS)

    Cleve, Richard; Liu, Li; Slofstra, William

    2017-01-01

    Linear system games are a generalization of Mermin's magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solutions of a certain set of non-commutative equations. We investigate linear system games in the commuting-operator model of entanglement, where Alice and Bob's measurement operators act on a joint Hilbert space, and Alice's operators must commute with Bob's operators. We show that perfect strategies in this model correspond to possibly infinite-dimensional operator solutions of the non-commutative equations. The proof is based around a finitely presented group associated with the linear system which arises from the non-commutative equations.

  12. Conjugate gradient type methods for linear systems with complex symmetric coefficient matrices

    NASA Technical Reports Server (NTRS)

    Freund, Roland

    1989-01-01

    We consider conjugate gradient type methods for the solution of large sparse linear system Ax equals b with complex symmetric coefficient matrices A equals A(T). Such linear systems arise in important applications, such as the numerical solution of the complex Helmholtz equation. Furthermore, most complex non-Hermitian linear systems which occur in practice are actually complex symmetric. We investigate conjugate gradient type iterations which are based on a variant of the nonsymmetric Lanczos algorithm for complex symmetric matrices. We propose a new approach with iterates defined by a quasi-minimal residual property. The resulting algorithm presents several advantages over the standard biconjugate gradient method. We also include some remarks on the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  13. Preprocessing Inconsistent Linear System for a Meaningful Least Squares Solution

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    Mathematical models of many physical/statistical problems are systems of linear equations. Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.

  14. Preprocessing in Matlab Inconsistent Linear System for a Meaningful Least Squares Solution

    NASA Technical Reports Server (NTRS)

    Sen, Symal K.; Shaykhian, Gholam Ali

    2011-01-01

    Mathematical models of many physical/statistical problems are systems of linear equations Due to measurement and possible human errors/mistakes in modeling/data, as well as due to certain assumptions to reduce complexity, inconsistency (contradiction) is injected into the model, viz. the linear system. While any inconsistent system irrespective of the degree of inconsistency has always a least-squares solution, one needs to check whether an equation is too much inconsistent or, equivalently too much contradictory. Such an equation will affect/distort the least-squares solution to such an extent that renders it unacceptable/unfit to be used in a real-world application. We propose an algorithm which (i) prunes numerically redundant linear equations from the system as these do not add any new information to the model, (ii) detects contradictory linear equations along with their degree of contradiction (inconsistency index), (iii) removes those equations presumed to be too contradictory, and then (iv) obtain the . minimum norm least-squares solution of the acceptably inconsistent reduced linear system. The algorithm presented in Matlab reduces the computational and storage complexities and also improves the accuracy of the solution. It also provides the necessary warning about the existence of too much contradiction in the model. In addition, we suggest a thorough relook into the mathematical modeling to determine the reason why unacceptable contradiction has occurred thus prompting us to make necessary corrections/modifications to the models - both mathematical and, if necessary, physical.

  15. Krylov Subspace Methods for Complex Non-Hermitian Linear Systems. Thesis

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.

    1991-01-01

    We consider Krylov subspace methods for the solution of large sparse linear systems Ax = b with complex non-Hermitian coefficient matrices. Such linear systems arise in important applications, such as inverse scattering, numerical solution of time-dependent Schrodinger equations, underwater acoustics, eddy current computations, numerical computations in quantum chromodynamics, and numerical conformal mapping. Typically, the resulting coefficient matrices A exhibit special structures, such as complex symmetry, or they are shifted Hermitian matrices. In this paper, we first describe a Krylov subspace approach with iterates defined by a quasi-minimal residual property, the QMR method, for solving general complex non-Hermitian linear systems. Then, we study special Krylov subspace methods designed for the two families of complex symmetric respectively shifted Hermitian linear systems. We also include some results concerning the obvious approach to general complex linear systems by solving equivalent real linear systems for the real and imaginary parts of x. Finally, numerical experiments for linear systems arising from the complex Helmholtz equation are reported.

  16. Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, FaMAF, Universidad Nacional de Cordoba, Instituto de Fisica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria

    2010-02-15

    For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, thoughmore » the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.« less

  17. A numerical method for solving systems of linear ordinary differential equations with rapidly oscillating solutions

    NASA Technical Reports Server (NTRS)

    Bernstein, Ira B.; Brookshaw, Leigh; Fox, Peter A.

    1992-01-01

    The present numerical method for accurate and efficient solution of systems of linear equations proceeds by numerically developing a set of basis solutions characterized by slowly varying dependent variables. The solutions thus obtained are shown to have a computational overhead largely independent of the small size of the scale length which characterizes the solutions; in many cases, the technique obviates series solutions near singular points, and its known sources of error can be easily controlled without a substantial increase in computational time.

  18. Analytical Studies on the Synchronization of a Network of Linearly-Coupled Simple Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Sivaganesh, G.; Arulgnanam, A.; Seethalakshmi, A. N.; Selvaraj, S.

    2018-05-01

    We present explicit generalized analytical solutions for a network of linearly-coupled simple chaotic systems. Analytical solutions are obtained for the normalized state equations of a network of linearly-coupled systems driven by a common chaotic drive system. Two parameter bifurcation diagrams revealing the various hidden synchronization regions, such as complete, phase and phase-lag synchronization are identified using the analytical results. The synchronization dynamics and their stability are studied using phase portraits and the master stability function, respectively. Further, experimental results for linearly-coupled simple chaotic systems are presented to confirm the analytical results. The synchronization dynamics of a network of chaotic systems studied analytically is reported for the first time.

  19. Direct linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations.

    PubMed

    Fu, Wei; Nijhoff, Frank W

    2017-07-01

    A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtained.

  20. A nearly-linear computational-cost scheme for the forward dynamics of an N-body pendulum

    NASA Technical Reports Server (NTRS)

    Chou, Jack C. K.

    1989-01-01

    The dynamic equations of motion of an n-body pendulum with spherical joints are derived to be a mixed system of differential and algebraic equations (DAE's). The DAE's are kept in implicit form to save arithmetic and preserve the sparsity of the system and are solved by the robust implicit integration method. At each solution point, the predicted solution is corrected to its exact solution within given tolerance using Newton's iterative method. For each iteration, a linear system of the form J delta X = E has to be solved. The computational cost for solving this linear system directly by LU factorization is O(n exp 3), and it can be reduced significantly by exploring the structure of J. It is shown that by recognizing the recursive patterns and exploiting the sparsity of the system the multiplicative and additive computational costs for solving J delta X = E are O(n) and O(n exp 2), respectively. The formulation and solution method for an n-body pendulum is presented. The computational cost is shown to be nearly linearly proportional to the number of bodies.

  1. A Solution Space for a System of Null-State Partial Differential Equations: Part 3

    NASA Astrophysics Data System (ADS)

    Flores, Steven M.; Kleban, Peter

    2015-01-01

    This article is the third of four that completely and rigorously characterize a solution space for a homogeneous system of 2 N + 3 linear partial differential equations (PDEs) in 2 N variables that arises in conformal field theory (CFT) and multiple Schramm-Löwner evolution (SLE κ ). The system comprises 2 N null-state equations and three conformal Ward identities that govern CFT correlation functions of 2 N one-leg boundary operators. In the first two articles (Flores and Kleban, in Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014), we use methods of analysis and linear algebra to prove that dim , with C N the Nth Catalan number. Extending these results, we prove in this article that dim and entirely consists of (real-valued) solutions constructed with the CFT Coulomb gas (contour integral) formalism. In order to prove this claim, we show that a certain set of C N such solutions is linearly independent. Because the formulas for these solutions are complicated, we prove linear independence indirectly. We use the linear injective map of Lemma 15 in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012) to send each solution of the mentioned set to a vector in , whose components we find as inner products of elements in a Temperley-Lieb algebra. We gather these vectors together as columns of a symmetric matrix, with the form of a meander matrix. If the determinant of this matrix does not vanish, then the set of C N Coulomb gas solutions is linearly independent. And if this determinant does vanish, then we construct an alternative set of C N Coulomb gas solutions and follow a similar procedure to show that this set is linearly independent. The latter situation is closely related to CFT minimal models. We emphasize that, although the system of PDEs arises in CFT in away that is typically non-rigorous, our treatment of this system here and in Flores and Kleban (Commun Math Phys, arXiv:1212.2301, 2012; Commun Math Phys, arXiv:1404.0035, 2014; Commun Math Phys, arXiv:1405.2747, 2014) is completely rigorous.

  2. Analysis of periodically excited non-linear systems by a parametric continuation technique

    NASA Astrophysics Data System (ADS)

    Padmanabhan, C.; Singh, R.

    1995-07-01

    The dynamic behavior and frequency response of harmonically excited piecewise linear and/or non-linear systems has been the subject of several recent investigations. Most of the prior studies employed harmonic balance or Galerkin schemes, piecewise linear techniques, analog simulation and/or direct numerical integration (digital simulation). Such techniques are somewhat limited in their ability to predict all of the dynamic characteristics, including bifurcations leading to the occurrence of unstable, subharmonic, quasi-periodic and/or chaotic solutions. To overcome this problem, a parametric continuation scheme, based on the shooting method, is applied specifically to a periodically excited piecewise linear/non-linear system, in order to improve understanding as well as to obtain the complete dynamic response. Parameter regions exhibiting bifurcations to harmonic, subharmonic or quasi-periodic solutions are obtained quite efficiently and systematically. Unlike other techniques, the proposed scheme can follow period-doubling bifurcations, and with some modifications obtain stable quasi-periodic solutions and their bifurcations. This knowledge is essential in establishing conditions for the occurrence of chaotic oscillations in any non-linear system. The method is first validated through the Duffing oscillator example, the solutions to which are also obtained by conventional one-term harmonic balance and perturbation methods. The second example deals with a clearance non-linearity problem for both harmonic and periodic excitations. Predictions from the proposed scheme match well with available analog simulation data as well as with multi-term harmonic balance results. Potential savings in computational time over direct numerical integration is demonstrated for some of the example cases. Also, this work has filled in some of the solution regimes for an impact pair, which were missed previously in the literature. Finally, one main limitation associated with the proposed procedure is discussed.

  3. Computer programs for the solution of systems of linear algebraic equations

    NASA Technical Reports Server (NTRS)

    Sequi, W. T.

    1973-01-01

    FORTRAN subprograms for the solution of systems of linear algebraic equations are described, listed, and evaluated in this report. Procedures considered are direct solution, iteration, and matrix inversion. Both incore methods and those which utilize auxiliary data storage devices are considered. Some of the subroutines evaluated require the entire coefficient matrix to be in core, whereas others account for banding or sparceness of the system. General recommendations relative to equation solving are made, and on the basis of tests, specific subprograms are recommended.

  4. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R.

    1985-01-01

    The existence of Chandrasekhar equations for linear time-invariant systems defined on Hilbert spaces is investigated. An important consequence is that the solution to the evolutional Riccati equation is strongly differentiable in time, and that a strong solution of the Riccati differential equation can be defined. A discussion of the linear-quadratic optimal-control problem for hereditary differential systems is also included.

  5. Focal points and principal solutions of linear Hamiltonian systems revisited

    NASA Astrophysics Data System (ADS)

    Šepitka, Peter; Šimon Hilscher, Roman

    2018-05-01

    In this paper we present a novel view on the principal (and antiprincipal) solutions of linear Hamiltonian systems, as well as on the focal points of their conjoined bases. We present a new and unified theory of principal (and antiprincipal) solutions at a finite point and at infinity, and apply it to obtain new representation of the multiplicities of right and left proper focal points of conjoined bases. We show that these multiplicities can be characterized by the abnormality of the system in a neighborhood of the given point and by the rank of the associated T-matrix from the theory of principal (and antiprincipal) solutions. We also derive some additional important results concerning the representation of T-matrices and associated normalized conjoined bases. The results in this paper are new even for completely controllable linear Hamiltonian systems. We also discuss other potential applications of our main results, in particular in the singular Sturmian theory.

  6. Multigrid Methods for Fully Implicit Oil Reservoir Simulation

    NASA Technical Reports Server (NTRS)

    Molenaar, J.

    1996-01-01

    In this paper we consider the simultaneous flow of oil and water in reservoir rock. This displacement process is modeled by two basic equations: the material balance or continuity equations and the equation of motion (Darcy's law). For the numerical solution of this system of nonlinear partial differential equations there are two approaches: the fully implicit or simultaneous solution method and the sequential solution method. In the sequential solution method the system of partial differential equations is manipulated to give an elliptic pressure equation and a hyperbolic (or parabolic) saturation equation. In the IMPES approach the pressure equation is first solved, using values for the saturation from the previous time level. Next the saturations are updated by some explicit time stepping method; this implies that the method is only conditionally stable. For the numerical solution of the linear, elliptic pressure equation multigrid methods have become an accepted technique. On the other hand, the fully implicit method is unconditionally stable, but it has the disadvantage that in every time step a large system of nonlinear algebraic equations has to be solved. The most time-consuming part of any fully implicit reservoir simulator is the solution of this large system of equations. Usually this is done by Newton's method. The resulting systems of linear equations are then either solved by a direct method or by some conjugate gradient type method. In this paper we consider the possibility of applying multigrid methods for the iterative solution of the systems of nonlinear equations. There are two ways of using multigrid for this job: either we use a nonlinear multigrid method or we use a linear multigrid method to deal with the linear systems that arise in Newton's method. So far only a few authors have reported on the use of multigrid methods for fully implicit simulations. Two-level FAS algorithm is presented for the black-oil equations, and linear multigrid for two-phase flow problems with strong heterogeneities and anisotropies is studied. Here we consider both possibilities. Moreover we present a novel way for constructing the coarse grid correction operator in linear multigrid algorithms. This approach has the advantage in that it preserves the sparsity pattern of the fine grid matrix and it can be extended to systems of equations in a straightforward manner. We compare the linear and nonlinear multigrid algorithms by means of a numerical experiment.

  7. Whitham modulation theory for the Kadomtsev- Petviashvili equation.

    PubMed

    Ablowitz, Mark J; Biondini, Gino; Wang, Qiao

    2017-08-01

    The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.

  8. Whitham modulation theory for the Kadomtsev- Petviashvili equation

    NASA Astrophysics Data System (ADS)

    Ablowitz, Mark J.; Biondini, Gino; Wang, Qiao

    2017-08-01

    The genus-1 Kadomtsev-Petviashvili (KP)-Whitham system is derived for both variants of the KP equation; namely the KPI and KPII equations. The basic properties of the KP-Whitham system, including symmetries, exact reductions and its possible complete integrability, together with the appropriate generalization of the one-dimensional Riemann problem for the Korteweg-de Vries equation are discussed. Finally, the KP-Whitham system is used to study the linear stability properties of the genus-1 solutions of the KPI and KPII equations; it is shown that all genus-1 solutions of KPI are linearly unstable, while all genus-1 solutions of KPII are linearly stable within the context of Whitham theory.

  9. A preconditioner for the finite element computation of incompressible, nonlinear elastic deformations

    NASA Astrophysics Data System (ADS)

    Whiteley, J. P.

    2017-10-01

    Large, incompressible elastic deformations are governed by a system of nonlinear partial differential equations. The finite element discretisation of these partial differential equations yields a system of nonlinear algebraic equations that are usually solved using Newton's method. On each iteration of Newton's method, a linear system must be solved. We exploit the structure of the Jacobian matrix to propose a preconditioner, comprising two steps. The first step is the solution of a relatively small, symmetric, positive definite linear system using the preconditioned conjugate gradient method. This is followed by a small number of multigrid V-cycles for a larger linear system. Through the use of exemplar elastic deformations, the preconditioner is demonstrated to facilitate the iterative solution of the linear systems arising. The number of GMRES iterations required has only a very weak dependence on the number of degrees of freedom of the linear systems.

  10. Closed-form solutions for linear regulator-design of mechanical systems including optimal weighting matrix selection

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    This paper addresses the restriction of Linear Quadratic Regulator (LQR) solutions to the algebraic Riccati Equation to design spaces which can be implemented as passive structural members and/or dampers. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical systems. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist. Some examples of simple spring mass systems are shown to illustrate key points.

  11. Lines of Eigenvectors and Solutions to Systems of Linear Differential Equations

    ERIC Educational Resources Information Center

    Rasmussen, Chris; Keynes, Michael

    2003-01-01

    The purpose of this paper is to describe an instructional sequence where students invent a method for locating lines of eigenvectors and corresponding solutions to systems of two first order linear ordinary differential equations with constant coefficients. The significance of this paper is two-fold. First, it represents an innovative alternative…

  12. Exploring inductive linearization for pharmacokinetic-pharmacodynamic systems of nonlinear ordinary differential equations.

    PubMed

    Hasegawa, Chihiro; Duffull, Stephen B

    2018-02-01

    Pharmacokinetic-pharmacodynamic systems are often expressed with nonlinear ordinary differential equations (ODEs). While there are numerous methods to solve such ODEs these methods generally rely on time-stepping solutions (e.g. Runge-Kutta) which need to be matched to the characteristics of the problem at hand. The primary aim of this study was to explore the performance of an inductive approximation which iteratively converts nonlinear ODEs to linear time-varying systems which can then be solved algebraically or numerically. The inductive approximation is applied to three examples, a simple nonlinear pharmacokinetic model with Michaelis-Menten elimination (E1), an integrated glucose-insulin model and an HIV viral load model with recursive feedback systems (E2 and E3, respectively). The secondary aim of this study was to explore the potential advantages of analytically solving linearized ODEs with two examples, again E3 with stiff differential equations and a turnover model of luteinizing hormone with a surge function (E4). The inductive linearization coupled with a matrix exponential solution provided accurate predictions for all examples with comparable solution time to the matched time-stepping solutions for nonlinear ODEs. The time-stepping solutions however did not perform well for E4, particularly when the surge was approximated by a square wave. In circumstances when either a linear ODE is particularly desirable or the uncertainty in matching the integrator to the ODE system is of potential risk, then the inductive approximation method coupled with an analytical integration method would be an appropriate alternative.

  13. Analytic wave solution with helicon and Trivelpiece-Gould modes in an annular plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlsson, Johan; Pavarin, Daniele; Walker, Mitchell

    2009-11-26

    Helicon sources in an annular configuration have applications for plasma thrusters. The theory of Klozenberg et al.[J. P. Klozenberg B. McNamara and P. C. Thonemann, J. Fluid Mech. 21(1965) 545-563] for the propagation and absorption of helicon and Trivelpiece-Gould modes in a cylindrical plasma has been generalized for annular plasmas. Analytic solutions are found also in the annular case, but in the presence of both helicon and Trivelpiece-Gould modes, a heterogeneous linear system of equations must be solved to match the plasma and inner and outer vacuum solutions. The linear system can be ill-conditioned or even exactly singular, leading tomore » a dispersion relation with a discrete set of discontinuities. The coefficients for the analytic solution are calculated by solving the linear system with singular-value decomposition.« less

  14. Controllable excitation of higher-order rogue waves in nonautonomous systems with both varying linear and harmonic external potentials

    NASA Astrophysics Data System (ADS)

    Jia, Heping; Yang, Rongcao; Tian, Jinping; Zhang, Wenmei

    2018-05-01

    The nonautonomous nonlinear Schrödinger (NLS) equation with both varying linear and harmonic external potentials is investigated and the semirational rogue wave (RW) solution is presented by similarity transformation. Based on the solution, the interactions between Peregrine soliton and breathers, and the controllability of the semirational RWs in periodic distribution and exponential decreasing nonautonomous systems with both linear and harmonic potentials are studied. It is found that the harmonic potential only influences the constraint condition of the semirational solution, the linear potential is related to the trajectory of the semirational RWs, while dispersion and nonlinearity determine the excitation position of the higher-order RWs. The higher-order RWs can be partly, completely and biperiodically excited in periodic distribution system and the diverse excited patterns can be generated for different parameter relations in exponential decreasing system. The results reveal that the excitation of the higher-order RWs can be controlled in the nonautonomous system by choosing dispersion, nonlinearity and external potentials.

  15. Parallel Dynamics Simulation Using a Krylov-Schwarz Linear Solution Scheme

    DOE PAGES

    Abhyankar, Shrirang; Constantinescu, Emil M.; Smith, Barry F.; ...

    2016-11-07

    Fast dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations at every time step. The main bottleneck in dynamic simulations is the solution of a linear system during each nonlinear iteration of Newton’s method. In this paper, we present a parallel Krylov- Schwarz linear solution scheme that uses the Krylov subspacebased iterative linear solver GMRES with an overlapping restricted additive Schwarz preconditioner. As a result, performance tests of the proposed Krylov-Schwarz scheme for several large test cases ranging from 2,000 to 20,000 buses, including amore » real utility network, show good scalability on different computing architectures.« less

  16. Parallel Dynamics Simulation Using a Krylov-Schwarz Linear Solution Scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abhyankar, Shrirang; Constantinescu, Emil M.; Smith, Barry F.

    Fast dynamics simulation of large-scale power systems is a computational challenge because of the need to solve a large set of stiff, nonlinear differential-algebraic equations at every time step. The main bottleneck in dynamic simulations is the solution of a linear system during each nonlinear iteration of Newton’s method. In this paper, we present a parallel Krylov- Schwarz linear solution scheme that uses the Krylov subspacebased iterative linear solver GMRES with an overlapping restricted additive Schwarz preconditioner. As a result, performance tests of the proposed Krylov-Schwarz scheme for several large test cases ranging from 2,000 to 20,000 buses, including amore » real utility network, show good scalability on different computing architectures.« less

  17. Chandrasekhar equations for infinite dimensional systems

    NASA Technical Reports Server (NTRS)

    Ito, K.; Powers, R. K.

    1985-01-01

    Chandrasekhar equations are derived for linear time invariant systems defined on Hilbert spaces using a functional analytic technique. An important consequence of this is that the solution to the evolutional Riccati equation is strongly differentiable in time and one can define a strong solution of the Riccati differential equation. A detailed discussion on the linear quadratic optimal control problem for hereditary differential systems is also included.

  18. An approximation theory for the identification of linear thermoelastic systems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Su, Chien-Hua Frank

    1990-01-01

    An abstract approximation framework and convergence theory for the identification of thermoelastic systems is developed. Starting from an abstract operator formulation consisting of a coupled second order hyperbolic equation of elasticity and first order parabolic equation for heat conduction, well-posedness is established using linear semigroup theory in Hilbert space, and a class of parameter estimation problems is then defined involving mild solutions. The approximation framework is based upon generic Galerkin approximation of the mild solutions, and convergence of solutions of the resulting sequence of approximating finite dimensional parameter identification problems to a solution of the original infinite dimensional inverse problem is established using approximation results for operator semigroups. An example involving the basic equations of one dimensional linear thermoelasticity and a linear spline based scheme are discussed. Numerical results indicate how the approach might be used in a study of damping mechanisms in flexible structures.

  19. Dual solutions of three-dimensional flow and heat transfer over a non-linearly stretching/shrinking sheet

    NASA Astrophysics Data System (ADS)

    Naganthran, Kohilavani; Nazar, Roslinda; Pop, Ioan

    2018-05-01

    This study investigated the influence of the non-linearly stretching/shrinking sheet on the boundary layer flow and heat transfer. A proper similarity transformation simplified the system of partial differential equations into a system of ordinary differential equations. This system of similarity equations is then solved numerically by using the bvp4c function in the MATLAB software. The generated numerical results presented graphically and discussed in the relevance of the governing parameters. Dual solutions found as the sheet stretched and shrunk in the horizontal direction. Stability analysis showed that the first solution is physically realizable whereas the second solution is not practicable.

  20. Linear solver performance in elastoplastic problem solution on GPU cluster

    NASA Astrophysics Data System (ADS)

    Khalevitsky, Yu. V.; Konovalov, A. V.; Burmasheva, N. V.; Partin, A. S.

    2017-12-01

    Applying the finite element method to severe plastic deformation problems involves solving linear equation systems. While the solution procedure is relatively hard to parallelize and computationally intensive by itself, a long series of large scale systems need to be solved for each problem. When dealing with fine computational meshes, such as in the simulations of three-dimensional metal matrix composite microvolume deformation, tens and hundreds of hours may be needed to complete the whole solution procedure, even using modern supercomputers. In general, one of the preconditioned Krylov subspace methods is used in a linear solver for such problems. The method convergence highly depends on the operator spectrum of a problem stiffness matrix. In order to choose the appropriate method, a series of computational experiments is used. Different methods may be preferable for different computational systems for the same problem. In this paper we present experimental data obtained by solving linear equation systems from an elastoplastic problem on a GPU cluster. The data can be used to substantiate the choice of the appropriate method for a linear solver to use in severe plastic deformation simulations.

  1. Application of a stochastic inverse to the geophysical inverse problem

    NASA Technical Reports Server (NTRS)

    Jordan, T. H.; Minster, J. B.

    1972-01-01

    The inverse problem for gross earth data can be reduced to an undertermined linear system of integral equations of the first kind. A theory is discussed for computing particular solutions to this linear system based on the stochastic inverse theory presented by Franklin. The stochastic inverse is derived and related to the generalized inverse of Penrose and Moore. A Backus-Gilbert type tradeoff curve is constructed for the problem of estimating the solution to the linear system in the presence of noise. It is shown that the stochastic inverse represents an optimal point on this tradeoff curve. A useful form of the solution autocorrelation operator as a member of a one-parameter family of smoothing operators is derived.

  2. ORACLS: A system for linear-quadratic-Gaussian control law design

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1978-01-01

    A modern control theory design package (ORACLS) for constructing controllers and optimal filters for systems modeled by linear time-invariant differential or difference equations is described. Numerical linear-algebra procedures are used to implement the linear-quadratic-Gaussian (LQG) methodology of modern control theory. Algorithms are included for computing eigensystems of real matrices, the relative stability of a matrix, factored forms for nonnegative definite matrices, the solutions and least squares approximations to the solutions of certain linear matrix algebraic equations, the controllability properties of a linear time-invariant system, and the steady state covariance matrix of an open-loop stable system forced by white noise. Subroutines are provided for solving both the continuous and discrete optimal linear regulator problems with noise free measurements and the sampled-data optimal linear regulator problem. For measurement noise, duality theory and the optimal regulator algorithms are used to solve the continuous and discrete Kalman-Bucy filter problems. Subroutines are also included which give control laws causing the output of a system to track the output of a prescribed model.

  3. Stochastic Least-Squares Petrov--Galerkin Method for Parameterized Linear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kookjin; Carlberg, Kevin; Elman, Howard C.

    Here, we consider the numerical solution of parameterized linear systems where the system matrix, the solution, and the right-hand side are parameterized by a set of uncertain input parameters. We explore spectral methods in which the solutions are approximated in a chosen finite-dimensional subspace. It has been shown that the stochastic Galerkin projection technique fails to minimize any measure of the solution error. As a remedy for this, we propose a novel stochatic least-squares Petrov--Galerkin (LSPG) method. The proposed method is optimal in the sense that it produces the solution that minimizes a weightedmore » $$\\ell^2$$-norm of the residual over all solutions in a given finite-dimensional subspace. Moreover, the method can be adapted to minimize the solution error in different weighted $$\\ell^2$$-norms by simply applying a weighting function within the least-squares formulation. In addition, a goal-oriented seminorm induced by an output quantity of interest can be minimized by defining a weighting function as a linear functional of the solution. We establish optimality and error bounds for the proposed method, and extensive numerical experiments show that the weighted LSPG method outperforms other spectral methods in minimizing corresponding target weighted norms.« less

  4. Solution of underdetermined systems of equations with gridded a priori constraints.

    PubMed

    Stiros, Stathis C; Saltogianni, Vasso

    2014-01-01

    The TOPINV, Topological Inversion algorithm (or TGS, Topological Grid Search) initially developed for the inversion of highly non-linear redundant systems of equations, can solve a wide range of underdetermined systems of non-linear equations. This approach is a generalization of a previous conclusion that this algorithm can be used for the solution of certain integer ambiguity problems in Geodesy. The overall approach is based on additional (a priori) information for the unknown variables. In the past, such information was used either to linearize equations around approximate solutions, or to expand systems of observation equations solved on the basis of generalized inverses. In the proposed algorithm, the a priori additional information is used in a third way, as topological constraints to the unknown n variables, leading to an R(n) grid containing an approximation of the real solution. The TOPINV algorithm does not focus on point-solutions, but exploits the structural and topological constraints in each system of underdetermined equations in order to identify an optimal closed space in the R(n) containing the real solution. The centre of gravity of the grid points defining this space corresponds to global, minimum-norm solutions. The rationale and validity of the overall approach are demonstrated on the basis of examples and case studies, including fault modelling, in comparison with SVD solutions and true (reference) values, in an accuracy-oriented approach.

  5. Nodal-line dynamics via exact polynomial solutions for coherent waves traversing aberrated imaging systems.

    PubMed

    Paganin, David M; Beltran, Mario A; Petersen, Timothy C

    2018-03-01

    We obtain exact polynomial solutions for two-dimensional coherent complex scalar fields propagating through arbitrary aberrated shift-invariant linear imaging systems. These solutions are used to model nodal-line dynamics of coherent fields output by such systems.

  6. The method of perturbation-harmonic balance for analysing nonlinear free vibration of MDOF systems and structures

    NASA Astrophysics Data System (ADS)

    Tang, Qiangang; Sun, Shixian

    1992-03-01

    In this paper, the perturbation technique is introduced into the method of harmonic balance. A new method used for analyzing nonlinear free vibration of multidegree-of-freedom systems and structures is obtained. The form of solution is expanded into a series of small parameters and harmonics, so no term will be lost in the solution and the algebraic equations are linear. With the linear transformations, the matrices of the equations become diagonal. As soon as the modes related to linear vibration are found, the solution can be obtained. This method is superior to the method of linearized iteration. The examples show that the method has high accuracy for small-amplitude problems and the results for rather large amplitudes are satisfactory.

  7. Determination of Nonlinear Stiffness Coefficients for Finite Element Models with Application to the Random Vibration Problem

    NASA Technical Reports Server (NTRS)

    Muravyov, Alexander A.

    1999-01-01

    In this paper, a method for obtaining nonlinear stiffness coefficients in modal coordinates for geometrically nonlinear finite-element models is developed. The method requires application of a finite-element program with a geometrically non- linear static capability. The MSC/NASTRAN code is employed for this purpose. The equations of motion of a MDOF system are formulated in modal coordinates. A set of linear eigenvectors is used to approximate the solution of the nonlinear problem. The random vibration problem of the MDOF nonlinear system is then considered. The solutions obtained by application of two different versions of a stochastic linearization technique are compared with linear and exact (analytical) solutions in terms of root-mean-square (RMS) displacements and strains for a beam structure.

  8. Adaptive Identification by Systolic Arrays.

    DTIC Science & Technology

    1987-12-01

    BIBLIOGRIAPHY Anton , Howard, Elementary Linear Algebra , John Wiley & Sons, 19S4. Cristi, Roberto, A Parallel Structure Jor Adaptive Pole Placement...10 11. SYSTEM IDENTIFICATION M*YETHODS ....................... 12 A. LINEAR SYSTEM MODELING ......................... 12 B. SOLUTION OF SYSTEMS OF... LINEAR EQUATIONS ......... 13 C. QR DECOMPOSITION ................................ 14 D. RECURSIVE LEAST SQUARES ......................... 16 E. BLOCK

  9. Approximate Solution to the Angular Speeds of a Nearly-Symmetric Mass-Varying Cylindrical Body

    NASA Astrophysics Data System (ADS)

    Nanjangud, Angadh; Eke, Fidelis

    2017-06-01

    This paper examines the rotational motion of a nearly axisymmetric rocket type system with uniform burn of its propellant. The asymmetry comes from a slight difference in the transverse principal moments of inertia of the system, which then results in a set of nonlinear equations of motion even when no external torque is applied to the system. It is often difficult, or even impossible, to generate analytic solutions for such equations; closed form solutions are even more difficult to obtain. In this paper, a perturbation-based approach is employed to linearize the equations of motion and generate analytic solutions. The solutions for the variables of transverse motion are analytic and a closed-form solution to the spin rate is suggested. The solutions are presented in a compact form that permits rapid computation. The approximate solutions are then applied to the torque-free motion of a typical solid rocket system and the results are found to agree with those obtained from the numerical solution of the full non-linear equations of motion of the mass varying system.

  10. On the boundedness and integration of non-oscillatory solutions of certain linear differential equations of second order.

    PubMed

    Tunç, Cemil; Tunç, Osman

    2016-01-01

    In this paper, certain system of linear homogeneous differential equations of second-order is considered. By using integral inequalities, some new criteria for bounded and [Formula: see text]-solutions, upper bounds for values of improper integrals of the solutions and their derivatives are established to the considered system. The obtained results in this paper are considered as extension to the results obtained by Kroopnick (2014) [1]. An example is given to illustrate the obtained results.

  11. Linear Augmentation for Stabilizing Stationary Solutions: Potential Pitfalls and Their Application

    PubMed Central

    Karnatak, Rajat

    2015-01-01

    Linear augmentation has recently been shown to be effective in targeting desired stationary solutions, suppressing bistablity, in regulating the dynamics of drive response systems and in controlling the dynamics of hidden attractors. The simplicity of the procedure is the main highlight of this scheme but questions related to its general applicability still need to be addressed. Focusing on the issue of targeting stationary solutions, this work demonstrates instances where the scheme fails to stabilize the required solutions and leads to other complicated dynamical scenarios. Examples from conservative as well as dissipative systems are presented in this regard and important applications in dissipative predator—prey systems are discussed, which include preventative measures to avoid potentially catastrophic dynamical transitions in these systems. PMID:26544879

  12. Numerical Technology for Large-Scale Computational Electromagnetics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharpe, R; Champagne, N; White, D

    The key bottleneck of implicit computational electromagnetics tools for large complex geometries is the solution of the resulting linear system of equations. The goal of this effort was to research and develop critical numerical technology that alleviates this bottleneck for large-scale computational electromagnetics (CEM). The mathematical operators and numerical formulations used in this arena of CEM yield linear equations that are complex valued, unstructured, and indefinite. Also, simultaneously applying multiple mathematical modeling formulations to different portions of a complex problem (hybrid formulations) results in a mixed structure linear system, further increasing the computational difficulty. Typically, these hybrid linear systems aremore » solved using a direct solution method, which was acceptable for Cray-class machines but does not scale adequately for ASCI-class machines. Additionally, LLNL's previously existing linear solvers were not well suited for the linear systems that are created by hybrid implicit CEM codes. Hence, a new approach was required to make effective use of ASCI-class computing platforms and to enable the next generation design capabilities. Multiple approaches were investigated, including the latest sparse-direct methods developed by our ASCI collaborators. In addition, approaches that combine domain decomposition (or matrix partitioning) with general-purpose iterative methods and special purpose pre-conditioners were investigated. Special-purpose pre-conditioners that take advantage of the structure of the matrix were adapted and developed based on intimate knowledge of the matrix properties. Finally, new operator formulations were developed that radically improve the conditioning of the resulting linear systems thus greatly reducing solution time. The goal was to enable the solution of CEM problems that are 10 to 100 times larger than our previous capability.« less

  13. An improved conjugate gradient scheme to the solution of least squares SVM.

    PubMed

    Chu, Wei; Ong, Chong Jin; Keerthi, S Sathiya

    2005-03-01

    The least square support vector machines (LS-SVM) formulation corresponds to the solution of a linear system of equations. Several approaches to its numerical solutions have been proposed in the literature. In this letter, we propose an improved method to the numerical solution of LS-SVM and show that the problem can be solved using one reduced system of linear equations. Compared with the existing algorithm for LS-SVM, the approach used in this letter is about twice as efficient. Numerical results using the proposed method are provided for comparisons with other existing algorithms.

  14. Discrete Applied Mathematics

    DTIC Science & Technology

    1993-05-31

    program. In paper [28], we give a brief and elementary proof of a result of Hoffman [1952) about approximate solutions to systems, of linear inequalities...UCLA, Vestvood, CA, February 1993. " Linear Problems: Formulation and Solution," International Linear Algebra Society, Pensacola, FL, May 1993. Denise S...thresAold If there is a number h and a linear k-separator w assigning a real number to each vertex so that for any subset S of vertices, the sum of w

  15. Calculation of open and closed system elastic coefficients for multicomponent solids

    NASA Astrophysics Data System (ADS)

    Mishin, Y.

    2015-06-01

    Thermodynamic equilibrium in multicomponent solids subject to mechanical stresses is a complex nonlinear problem whose exact solution requires extensive computations. A few decades ago, Larché and Cahn proposed a linearized solution of the mechanochemical equilibrium problem by introducing the concept of open system elastic coefficients [Acta Metall. 21, 1051 (1973), 10.1016/0001-6160(73)90021-7]. Using the Ni-Al solid solution as a model system, we demonstrate that open system elastic coefficients can be readily computed by semigrand canonical Monte Carlo simulations in conjunction with the shape fluctuation approach. Such coefficients can be derived from a single simulation run, together with other thermodynamic properties needed for prediction of compositional fields in solid solutions containing defects. The proposed calculation approach enables streamlined solutions of mechanochemical equilibrium problems in complex alloys. Second order corrections to the linear theory are extended to multicomponent systems.

  16. Symmetry groups of integro-differential equations for linear thermoviscoelastic materials with memory

    NASA Astrophysics Data System (ADS)

    Zhou, L.-Q.; Meleshko, S. V.

    2017-07-01

    The group analysis method is applied to a system of integro-differential equations corresponding to a linear thermoviscoelastic model. A recently developed approach for calculating the symmetry groups of such equations is used. The general solution of the determining equations for the system is obtained. Using subalgebras of the admitted Lie algebra, two classes of partially invariant solutions of the considered system of integro-differential equations are studied.

  17. Stability of Linear Equations--Algebraic Approach

    ERIC Educational Resources Information Center

    Cherif, Chokri; Goldstein, Avraham; Prado, Lucio M. G.

    2012-01-01

    This article could be of interest to teachers of applied mathematics as well as to people who are interested in applications of linear algebra. We give a comprehensive study of linear systems from an application point of view. Specifically, we give an overview of linear systems and problems that can occur with the computed solution when the…

  18. Non-linear dynamic analysis of geared systems, part 2

    NASA Technical Reports Server (NTRS)

    Singh, Rajendra; Houser, Donald R.; Kahraman, Ahmet

    1990-01-01

    A good understanding of the steady state dynamic behavior of a geared system is required in order to design reliable and quiet transmissions. This study focuses on a system containing a spur gear pair with backlash and periodically time-varying mesh stiffness, and rolling element bearings with clearance type non-linearities. A dynamic finite element model of the linear time-invariant (LTI) system is developed. Effects of several system parameters, such as torsional and transverse flexibilities of the shafts and prime mover/load inertias, on free and force vibration characteristics are investigated. Several reduced order LTI models are developed and validated by comparing their eigen solution with the finite element model results. Several key system parameters such as mean load and damping ratio are identified and their effects on the non-linear frequency response are evaluated quantitatively. Other fundamental issues such as the dynamic coupling between non-linear modes, dynamic interactions between component non-linearities and time-varying mesh stiffness, and the existence of subharmonic and chaotic solutions including routes to chaos have also been examined in depth.

  19. A new preconditioner update strategy for the solution of sequences of linear systems in structural mechanics: application to saddle point problems in elasticity

    NASA Astrophysics Data System (ADS)

    Mercier, Sylvain; Gratton, Serge; Tardieu, Nicolas; Vasseur, Xavier

    2017-12-01

    Many applications in structural mechanics require the numerical solution of sequences of linear systems typically issued from a finite element discretization of the governing equations on fine meshes. The method of Lagrange multipliers is often used to take into account mechanical constraints. The resulting matrices then exhibit a saddle point structure and the iterative solution of such preconditioned linear systems is considered as challenging. A popular strategy is then to combine preconditioning and deflation to yield an efficient method. We propose an alternative that is applicable to the general case and not only to matrices with a saddle point structure. In this approach, we consider to update an existing algebraic or application-based preconditioner, using specific available information exploiting the knowledge of an approximate invariant subspace or of matrix-vector products. The resulting preconditioner has the form of a limited memory quasi-Newton matrix and requires a small number of linearly independent vectors. Numerical experiments performed on three large-scale applications in elasticity highlight the relevance of the new approach. We show that the proposed method outperforms the deflation method when considering sequences of linear systems with varying matrices.

  20. Numerical solution of system of boundary value problems using B-spline with free parameter

    NASA Astrophysics Data System (ADS)

    Gupta, Yogesh

    2017-01-01

    This paper deals with method of B-spline solution for a system of boundary value problems. The differential equations are useful in various fields of science and engineering. Some interesting real life problems involve more than one unknown function. These result in system of simultaneous differential equations. Such systems have been applied to many problems in mathematics, physics, engineering etc. In present paper, B-spline and B-spline with free parameter methods for the solution of a linear system of second-order boundary value problems are presented. The methods utilize the values of cubic B-spline and its derivatives at nodal points together with the equations of the given system and boundary conditions, ensuing into the linear matrix equation.

  1. The method of Ritz applied to the equation of Hamilton. [for pendulum systems

    NASA Technical Reports Server (NTRS)

    Bailey, C. D.

    1976-01-01

    Without any reference to the theory of differential equations, the initial value problem of the nonlinear, nonconservative double pendulum system is solved by the application of the method of Ritz to the equation of Hamilton. Also shown is an example of the reduction of the traditional eigenvalue problem of linear, homogeneous, differential equations of motion to the solution of a set of nonhomogeneous algebraic equations. No theory of differential equations is used. Solution of the time-space path of the linear oscillator is demonstrated and compared to the exact solution.

  2. A Study of Convergence of the PMARC Matrices Applicable to WICS Calculations

    NASA Technical Reports Server (NTRS)

    Ghosh, Amitabha

    1997-01-01

    This report discusses some analytical procedures to enhance the real time solutions of PMARC matrices applicable to the Wall Interference Correction Scheme (WICS) currently being implemented at the 12 foot Pressure Tunnel. WICS calculations involve solving large linear systems in a reasonably speedy manner necessitating exploring further improvement in solution time. This paper therefore presents some of the associated theory of the solution of linear systems. Then it discusses a geometrical interpretation of the residual correction schemes. Finally some results of the current investigation are presented.

  3. A Study of Convergence of the PMARC Matrices Applicable to WICS Calculations

    NASA Technical Reports Server (NTRS)

    Ghosh, Amitabha

    1997-01-01

    This report discusses some analytical procedures to enhance the real time solutions of PMARC matrices applicable to the Wall Interference Correction Scheme (WICS) currently being implemented at the 12 foot Pressure Tunell. WICS calculations involve solving large linear systems in a reasonably speedy manner necessitating exploring further improvement in solution time. This paper therefore presents some of the associated theory of the solution of linear systems. Then it discusses a geometrical interpretation of the residual correction schemes. Finally, some results of the current investigation are presented.

  4. A new modal superposition method for nonlinear vibration analysis of structures using hybrid mode shapes

    NASA Astrophysics Data System (ADS)

    Ferhatoglu, Erhan; Cigeroglu, Ender; Özgüven, H. Nevzat

    2018-07-01

    In this paper, a new modal superposition method based on a hybrid mode shape concept is developed for the determination of steady state vibration response of nonlinear structures. The method is developed specifically for systems having nonlinearities where the stiffness of the system may take different limiting values. Stiffness variation of these nonlinear systems enables one to define different linear systems corresponding to each value of the limiting equivalent stiffness. Moreover, the response of the nonlinear system is bounded by the confinement of these linear systems. In this study, a modal superposition method utilizing novel hybrid mode shapes which are defined as linear combinations of the modal vectors of the limiting linear systems is proposed to determine periodic response of nonlinear systems. In this method the response of the nonlinear system is written in terms of hybrid modes instead of the modes of the underlying linear system. This provides decrease of the number of modes that should be retained for an accurate solution, which in turn reduces the number of nonlinear equations to be solved. In this way, computational time for response calculation is directly curtailed. In the solution, the equations of motion are converted to a set of nonlinear algebraic equations by using describing function approach, and the numerical solution is obtained by using Newton's method with arc-length continuation. The method developed is applied on two different systems: a lumped parameter model and a finite element model. Several case studies are performed and the accuracy and computational efficiency of the proposed modal superposition method with hybrid mode shapes are compared with those of the classical modal superposition method which utilizes the mode shapes of the underlying linear system.

  5. Multicriterion problem of allocation of resources in the heterogeneous distributed information processing systems

    NASA Astrophysics Data System (ADS)

    Antamoshkin, O. A.; Kilochitskaya, T. R.; Ontuzheva, G. A.; Stupina, A. A.; Tynchenko, V. S.

    2018-05-01

    This study reviews the problem of allocation of resources in the heterogeneous distributed information processing systems, which may be formalized in the form of a multicriterion multi-index problem with the linear constraints of the transport type. The algorithms for solution of this problem suggest a search for the entire set of Pareto-optimal solutions. For some classes of hierarchical systems, it is possible to significantly speed up the procedure of verification of a system of linear algebraic inequalities for consistency due to the reducibility of them to the stream models or the application of other solution schemes (for strongly connected structures) that take into account the specifics of the hierarchies under consideration.

  6. The Vertical Linear Fractional Initialization Problem

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.; Hartley, Tom T.

    1999-01-01

    This paper presents a solution to the initialization problem for a system of linear fractional-order differential equations. The scalar problem is considered first, and solutions are obtained both generally and for a specific initialization. Next the vector fractional order differential equation is considered. In this case, the solution is obtained in the form of matrix F-functions. Some control implications of the vector case are discussed. The suggested method of problem solution is shown via an example.

  7. Linear discrete systems with memory: a generalization of the Langmuir model

    NASA Astrophysics Data System (ADS)

    Băleanu, Dumitru; Nigmatullin, Raoul R.

    2013-10-01

    In this manuscript we analyzed a general solution of the linear nonlocal Langmuir model within time scale calculus. Several generalizations of the Langmuir model are presented together with their exact corresponding solutions. The physical meaning of the proposed models are investigated and their corresponding geometries are reported.

  8. Boundary Korn Inequality and Neumann Problems in Homogenization of Systems of Elasticity

    NASA Astrophysics Data System (ADS)

    Geng, Jun; Shen, Zhongwei; Song, Liang

    2017-06-01

    This paper is concerned with a family of elliptic systems of linear elasticity with rapidly oscillating periodic coefficients, arising in the theory of homogenization. We establish uniform optimal regularity estimates for solutions of Neumann problems in a bounded Lipschitz domain with L 2 boundary data. The proof relies on a boundary Korn inequality for solutions of systems of linear elasticity and uses a large-scale Rellich estimate obtained in Shen (Anal PDE, arXiv:1505.00694v2).

  9. Local existence of solutions to the Euler-Poisson system, including densities without compact support

    NASA Astrophysics Data System (ADS)

    Brauer, Uwe; Karp, Lavi

    2018-01-01

    Local existence and well posedness for a class of solutions for the Euler Poisson system is shown. These solutions have a density ρ which either falls off at infinity or has compact support. The solutions have finite mass, finite energy functional and include the static spherical solutions for γ = 6/5. The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate which allows to estimate the physical density by the regularised non-linear matter variable. Gamblin also has studied this setting but using very different functional spaces. However we believe that the functional setting we use is more appropriate to describe a physical isolated body and more suitable to study the Newtonian limit.

  10. Should Pruning be a Pre-Processor of any Linear System?

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Shaykhian, Gholam Ali

    2011-01-01

    There are many real-world problems whose mathematical models turn out to be linear systems Ax = b , where A is an m by x n matrix. Each equation of the linear system is an information. An information, in a physical problem, such as 4 mangoes, 6 bananas, and 5 oranges cost $10, is mathematically modeled as 4x(sub 1) + 6x(sub 2) + 5x (sub 3) = 10, where x(sub 1), x(sub 2), x(sub 3) are each cost of one mango, that of one banana, and that of one orange, respectively. All the information put together in a specified context, constitutes the physical problem and need not be all distinct. Some of these could be redundant, which cannot be readily identified by inspection. The resulting mathematical model will thus have equations corresponding to this redundant information and hence are linearly dependent and thus superfluous. Consequently, these equations once identified should be better pruned in the process of solving the system. The benefits are (i) less computation and hence less error and consequently a better quality of solution and (ii) reduced storage requirements. In literature, the pruning concept is not in vogue so far although it is most desirable. In a numerical linear system, the system could be slightly inconsistent or inconsistent of varying degree. If the system is too inconsistent, then we should fall back on to the physical problem (PP), check the correctness of the PP derived from the material universe, modify it, if necessary, and then check the corresponding mathematical model (MM) and correct it. In nature/material universe, inconsistency is completely nonexistent. If the MM becomes inconsistent, it could be due to error introduced by the concerned measuring device and/or due to assumptions made on the PP to obtain an MM which is relatively easily solvable or simply due to human error. No measuring device can usually measure a quantity with an accuracy greater that 0.005% or, equivalently with a relative error less than 0.005%. Hence measurement error is unavoidable in a numerical linear system when the quantities are continuous (or even discrete with extremely large number). Assumptions, though not desirable, are usually made when we find the problem sufficiently difficult to be solved within the available means/tools/resources and hence distort the PP and the corresponding MM. The error thus introduced in the system could (not always necessarily though) make the system somewhat inconsistent. If the inconsistency (contradiction) is too much then one should definitely not proceed to solve the system in terms of getting a least-squares solution or a minimum norm solution or the minimum-norm least-squares solution. All these solutions will be invariably of no real-world use. If, on the other hand, inconsistency is reasonably low, i.e. the system is near-consistent or, equivalently, has near-linearly-dependent rows, then the foregoing solutions are useful. Pruning in such a near-consistent system should be performed based on the desired accuracy and on the definition of near-linear dependence. In this article, we discuss pruning over various kinds of linear systems and strongly suggest its use as a pre-processor or as a part of an algorithm. Ideally pruning should (i) be a part of the solution process (algorithm) of the system, (ii) reduce both computational error and complexity of the process, and (iii) take into account the numerical zero defined in the context. These are precisely what we achieve through our proposed O(mn2) algorithm presented in Matlab, that uses a subprogram of solving a single linear equation and that has embedded in it the pruning.

  11. The numerical solution of linear multi-term fractional differential equations: systems of equations

    NASA Astrophysics Data System (ADS)

    Edwards, John T.; Ford, Neville J.; Simpson, A. Charles

    2002-11-01

    In this paper, we show how the numerical approximation of the solution of a linear multi-term fractional differential equation can be calculated by reduction of the problem to a system of ordinary and fractional differential equations each of order at most unity. We begin by showing how our method applies to a simple class of problems and we give a convergence result. We solve the Bagley Torvik equation as an example. We show how the method can be applied to a general linear multi-term equation and give two further examples.

  12. An efficient parallel algorithm for the solution of a tridiagonal linear system of equations

    NASA Technical Reports Server (NTRS)

    Stone, H. S.

    1971-01-01

    Tridiagonal linear systems of equations are solved on conventional serial machines in a time proportional to N, where N is the number of equations. The conventional algorithms do not lend themselves directly to parallel computations on computers of the ILLIAC IV class, in the sense that they appear to be inherently serial. An efficient parallel algorithm is presented in which computation time grows as log sub 2 N. The algorithm is based on recursive doubling solutions of linear recurrence relations, and can be used to solve recurrence relations of all orders.

  13. Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals: Silica and alumina

    USGS Publications Warehouse

    Su, Y.-H.; Zhu, Y.-G.; Sheng, G.; Chiou, C.T.

    2006-01-01

    To characterize the linear adsorption phenomena in aqueous nonionic organic solute-mineral systems, the adsorption isotherms of some low-molecular- weightnonpolar nonionic solutes (1,2,3-trichlorobenzene, lindane, phenanthrene, and pyrene) and polar nonionic solutes (1,3-dinitrobenzene and 2,4-dinitrotoluene) from single-and binary-solute solutions on hydrophilic silica and alumina were established. Toward this objective, the influences of temperature, ionic strength, and pH on adsorption were also determined. It is found that linear adsorption exhibits low exothermic heats and practically no adsorptive competition. The solute-solid configuration and the adsorptive force consistent with these effects were hypothesized. For nonpolar solutes, the adsorption occurs presumably by London (dispersion) forces onto a water film above the mineral surface. For polar solutes, the adsorption is also assisted by polar-group interactions. The reduced adsorptive forces of solutes with hydrophilic minerals due to physical separation by the water film and the low fractions of the water-film surface covered by solutes offer a theoretical basis for linear solute adsorption, low exothermic heats, and no adsorptive competition. The postulated adsorptive forces are supported by observations that ionic strength or pH poses no effect on the adsorption of nonpolar solutes while it exhibits a significant effect on the uptake of polar solutes. ?? 2006 American Chemical Society.

  14. A time-domain decomposition iterative method for the solution of distributed linear quadratic optimal control problems

    NASA Astrophysics Data System (ADS)

    Heinkenschloss, Matthias

    2005-01-01

    We study a class of time-domain decomposition-based methods for the numerical solution of large-scale linear quadratic optimal control problems. Our methods are based on a multiple shooting reformulation of the linear quadratic optimal control problem as a discrete-time optimal control (DTOC) problem. The optimality conditions for this DTOC problem lead to a linear block tridiagonal system. The diagonal blocks are invertible and are related to the original linear quadratic optimal control problem restricted to smaller time-subintervals. This motivates the application of block Gauss-Seidel (GS)-type methods for the solution of the block tridiagonal systems. Numerical experiments show that the spectral radii of the block GS iteration matrices are larger than one for typical applications, but that the eigenvalues of the iteration matrices decay to zero fast. Hence, while the GS method is not expected to convergence for typical applications, it can be effective as a preconditioner for Krylov-subspace methods. This is confirmed by our numerical tests.A byproduct of this research is the insight that certain instantaneous control techniques can be viewed as the application of one step of the forward block GS method applied to the DTOC optimality system.

  15. The principle of superposition and its application in ground-water hydraulics

    USGS Publications Warehouse

    Reilly, Thomas E.; Franke, O. Lehn; Bennett, Gordon D.

    1987-01-01

    The principle of superposition, a powerful mathematical technique for analyzing certain types of complex problems in many areas of science and technology, has important applications in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that problem solutions can be added together to obtain composite solutions. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to ground-water hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader.

  16. The principle of superposition and its application in ground-water hydraulics

    USGS Publications Warehouse

    Reilly, T.E.; Franke, O.L.; Bennett, G.D.

    1984-01-01

    The principle of superposition, a powerful methematical technique for analyzing certain types of complex problems in many areas of science and technology, has important application in ground-water hydraulics and modeling of ground-water systems. The principle of superposition states that solutions to individual problems can be added together to obtain solutions to complex problems. This principle applies to linear systems governed by linear differential equations. This report introduces the principle of superposition as it applies to groundwater hydrology and provides background information, discussion, illustrative problems with solutions, and problems to be solved by the reader. (USGS)

  17. A model for managing sources of groundwater pollution

    USGS Publications Warehouse

    Gorelick, Steven M.

    1982-01-01

    The waste disposal capacity of a groundwater system can be maximized while maintaining water quality at specified locations by using a groundwater pollutant source management model that is based upon linear programing and numerical simulation. The decision variables of the management model are solute waste disposal rates at various facilities distributed over space. A concentration response matrix is used in the management model to describe transient solute transport and is developed using the U.S. Geological Survey solute transport simulation model. The management model was applied to a complex hypothetical groundwater system. Large-scale management models were formulated as dual linear programing problems to reduce numerical difficulties and computation time. Linear programing problems were solved using a numerically stable, available code. Optimal solutions to problems with successively longer management time horizons indicated that disposal schedules at some sites are relatively independent of the number of disposal periods. Optimal waste disposal schedules exhibited pulsing rather than constant disposal rates. Sensitivity analysis using parametric linear programing showed that a sharp reduction in total waste disposal potential occurs if disposal rates at any site are increased beyond their optimal values.

  18. Analytical Solution of Steady State Equations for Chemical Reaction Networks with Bilinear Rate Laws

    PubMed Central

    Halász, Ádám M.; Lai, Hong-Jian; McCabe, Meghan M.; Radhakrishnan, Krishnan; Edwards, Jeremy S.

    2014-01-01

    True steady states are a rare occurrence in living organisms, yet their knowledge is essential for quasi-steady state approximations, multistability analysis, and other important tools in the investigation of chemical reaction networks (CRN) used to describe molecular processes on the cellular level. Here we present an approach that can provide closed form steady-state solutions to complex systems, resulting from CRN with binary reactions and mass-action rate laws. We map the nonlinear algebraic problem of finding steady states onto a linear problem in a higher dimensional space. We show that the linearized version of the steady state equations obeys the linear conservation laws of the original CRN. We identify two classes of problems for which complete, minimally parameterized solutions may be obtained using only the machinery of linear systems and a judicious choice of the variables used as free parameters. We exemplify our method, providing explicit formulae, on CRN describing signal initiation of two important types of RTK receptor-ligand systems, VEGF and EGF-ErbB1. PMID:24334389

  19. Optimal Artificial Boundary Condition Configurations for Sensitivity-Based Model Updating and Damage Detection

    DTIC Science & Technology

    2010-09-01

    matrix is used in many methods, like Jacobi or Gauss Seidel , for solving linear systems. Also, no partial pivoting is necessary for a strictly column...problems that arise during the procedure, which in general, converges to the solving of a linear system. The most common issue with the solution is the... iterative procedure to find an appropriate subset of parameters that produce an optimal solution commonly known as forward selection. Then, the

  20. On the use of finite difference matrix-vector products in Newton-Krylov solvers for implicit climate dynamics with spectral elements

    DOE PAGES

    Woodward, Carol S.; Gardner, David J.; Evans, Katherine J.

    2015-01-01

    Efficient solutions of global climate models require effectively handling disparate length and time scales. Implicit solution approaches allow time integration of the physical system with a step size governed by accuracy of the processes of interest rather than by stability of the fastest time scales present. Implicit approaches, however, require the solution of nonlinear systems within each time step. Usually, a Newton's method is applied to solve these systems. Each iteration of the Newton's method, in turn, requires the solution of a linear model of the nonlinear system. This model employs the Jacobian of the problem-defining nonlinear residual, but thismore » Jacobian can be costly to form. If a Krylov linear solver is used for the solution of the linear system, the action of the Jacobian matrix on a given vector is required. In the case of spectral element methods, the Jacobian is not calculated but only implemented through matrix-vector products. The matrix-vector multiply can also be approximated by a finite difference approximation which may introduce inaccuracy in the overall nonlinear solver. In this paper, we review the advantages and disadvantages of finite difference approximations of these matrix-vector products for climate dynamics within the spectral element shallow water dynamical core of the Community Atmosphere Model.« less

  1. SLFP: a stochastic linear fractional programming approach for sustainable waste management.

    PubMed

    Zhu, H; Huang, G H

    2011-12-01

    A stochastic linear fractional programming (SLFP) approach is developed for supporting sustainable municipal solid waste management under uncertainty. The SLFP method can solve ratio optimization problems associated with random information, where chance-constrained programming is integrated into a linear fractional programming framework. It has advantages in: (1) comparing objectives of two aspects, (2) reflecting system efficiency, (3) dealing with uncertainty expressed as probability distributions, and (4) providing optimal-ratio solutions under different system-reliability conditions. The method is applied to a case study of waste flow allocation within a municipal solid waste (MSW) management system. The obtained solutions are useful for identifying sustainable MSW management schemes with maximized system efficiency under various constraint-violation risks. The results indicate that SLFP can support in-depth analysis of the interrelationships among system efficiency, system cost and system-failure risk. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Viscoelastic-coupling model for the earthquake cycle driven from below

    USGS Publications Warehouse

    Savage, J.C.

    2000-01-01

    In a linear system the earthquake cycle can be represented as the sum of a solution which reproduces the earthquake cycle itself (viscoelastic-coupling model) and a solution that provides the driving force. We consider two cases, one in which the earthquake cycle is driven by stresses transmitted along the schizosphere and a second in which the cycle is driven from below by stresses transmitted along the upper mantle (i.e., the schizosphere and upper mantle, respectively, act as stress guides in the lithosphere). In both cases the driving stress is attributed to steady motion of the stress guide, and the upper crust is assumed to be elastic. The surface deformation that accumulates during the interseismic interval depends solely upon the earthquake-cycle solution (viscoelastic-coupling model) not upon the driving source solution. Thus geodetic observations of interseismic deformation are insensitive to the source of the driving forces in a linear system. In particular, the suggestion of Bourne et al. [1998] that the deformation that accumulates across a transform fault system in the interseismic interval is a replica of the deformation that accumulates in the upper mantle during the same interval does not appear to be correct for linear systems.

  3. Aircraft adaptive learning control

    NASA Technical Reports Server (NTRS)

    Lee, P. S. T.; Vanlandingham, H. F.

    1979-01-01

    The optimal control theory of stochastic linear systems is discussed in terms of the advantages of distributed-control systems, and the control of randomly-sampled systems. An optimal solution to longitudinal control is derived and applied to the F-8 DFBW aircraft. A randomly-sampled linear process model with additive process and noise is developed.

  4. FSILP: fuzzy-stochastic-interval linear programming for supporting municipal solid waste management.

    PubMed

    Li, Pu; Chen, Bing

    2011-04-01

    Although many studies on municipal solid waste management (MSW management) were conducted under uncertain conditions of fuzzy, stochastic, and interval coexistence, the solution to the conventional linear programming problems of integrating fuzzy method with the other two was inefficient. In this study, a fuzzy-stochastic-interval linear programming (FSILP) method is developed by integrating Nguyen's method with conventional linear programming for supporting municipal solid waste management. The Nguyen's method was used to convert the fuzzy and fuzzy-stochastic linear programming problems into the conventional linear programs, by measuring the attainment values of fuzzy numbers and/or fuzzy random variables, as well as superiority and inferiority between triangular fuzzy numbers/triangular fuzzy-stochastic variables. The developed method can effectively tackle uncertainties described in terms of probability density functions, fuzzy membership functions, and discrete intervals. Moreover, the method can also improve upon the conventional interval fuzzy programming and two-stage stochastic programming approaches, with advantageous capabilities that are easily achieved with fewer constraints and significantly reduces consumption time. The developed model was applied to a case study of municipal solid waste management system in a city. The results indicated that reasonable solutions had been generated. The solution can help quantify the relationship between the change of system cost and the uncertainties, which could support further analysis of tradeoffs between the waste management cost and the system failure risk. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. Wronskian solutions of the T-, Q- and Y-systems related to infinite dimensional unitarizable modules of the general linear superalgebra gl (M | N)

    NASA Astrophysics Data System (ADS)

    Tsuboi, Zengo

    2013-05-01

    In [1] (Z. Tsuboi, Nucl. Phys. B 826 (2010) 399, arxiv:arXiv:0906.2039), we proposed Wronskian-like solutions of the T-system for [ M , N ]-hook of the general linear superalgebra gl (M | N). We have generalized these Wronskian-like solutions to the ones for the general T-hook, which is a union of [M1 ,N1 ]-hook and [M2 ,N2 ]-hook (M =M1 +M2, N =N1 +N2). These solutions are related to Weyl-type supercharacter formulas of infinite dimensional unitarizable modules of gl (M | N). Our solutions also include a Wronskian-like solution discussed in [2] (N. Gromov, V. Kazakov, S. Leurent, Z. Tsuboi, JHEP 1101 (2011) 155, arxiv:arXiv:1010.2720) in relation to the AdS5 /CFT4 spectral problem.

  6. Closed-form solutions for linear regulator design of mechanical systems including optimal weighting matrix selection

    NASA Technical Reports Server (NTRS)

    Hanks, Brantley R.; Skelton, Robert E.

    1991-01-01

    Vibration in modern structural and mechanical systems can be reduced in amplitude by increasing stiffness, redistributing stiffness and mass, and/or adding damping if design techniques are available to do so. Linear Quadratic Regulator (LQR) theory in modern multivariable control design, attacks the general dissipative elastic system design problem in a global formulation. The optimal design, however, allows electronic connections and phase relations which are not physically practical or possible in passive structural-mechanical devices. The restriction of LQR solutions (to the Algebraic Riccati Equation) to design spaces which can be implemented as passive structural members and/or dampers is addressed. A general closed-form solution to the optimal free-decay control problem is presented which is tailored for structural-mechanical system. The solution includes, as subsets, special cases such as the Rayleigh Dissipation Function and total energy. Weighting matrix selection is a constrained choice among several parameters to obtain desired physical relationships. The closed-form solution is also applicable to active control design for systems where perfect, collocated actuator-sensor pairs exist.

  7. Constructing Current Singularity in a 3D Line-tied Plasma

    DOE PAGES

    Zhou, Yao; Huang, Yi-Min; Qin, Hong; ...

    2017-12-27

    We revisit Parker's conjecture of current singularity formation in 3D line-tied plasmas using a recently developed numerical method, variational integration for ideal magnetohydrodynamics in Lagrangian labeling. With the frozen-in equation built-in, the method is free of artificial reconnection, and hence it is arguably an optimal tool for studying current singularity formation. Using this method, the formation of current singularity has previously been confirmed in the Hahm–Kulsrud–Taylor problem in 2D. In this paper, we extend this problem to 3D line-tied geometry. The linear solution, which is singular in 2D, is found to be smooth for arbitrary system length. However, with finitemore » amplitude, the linear solution can become pathological when the system is sufficiently long. The nonlinear solutions turn out to be smooth for short systems. Nonetheless, the scaling of peak current density versus system length suggests that the nonlinear solution may become singular at finite length. Finally, with the results in hand, we can neither confirm nor rule out this possibility conclusively, since we cannot obtain solutions with system length near the extrapolated critical value.« less

  8. On conforming mixed finite element methods for incompressible viscous flow problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D; Nicolaides, R. A.; Peterson, J. S.

    1982-01-01

    The application of conforming mixed finite element methods to obtain approximate solutions of linearized Navier-Stokes equations is examined. Attention is given to the convergence rates of various finite element approximations of the pressure and the velocity field. The optimality of the convergence rates are addressed in terms of comparisons of the approximation convergence to a smooth solution in relation to the best approximation available for the finite element space used. Consideration is also devoted to techniques for efficient use of a Gaussian elimination algorithm to obtain a solution to a system of linear algebraic equations derived by finite element discretizations of linear partial differential equations.

  9. Should Pruning be a Pre-Processor of any Linear System?

    NASA Technical Reports Server (NTRS)

    Sen, Syamal K.; Ramakrishnan, Suja; Agarwal, Ravi P.; Shaykhian, Gholam Ali

    2011-01-01

    There are many real-world problems whose mathematical models turn out to be linear systems Ax = b, where A is an m x n matrix. Each equation of the linear system is an information. An information, in a physical problem, such as 4 mangoes, 6 bananas, and 5 oranges cost $10, is mathematically modeled as an equation 4x(sub 1) + 6x(sub 2) + 5x(sub 3) = 10 , where x(sub 1), x(sub 2), x(sub 3) are each cost of one mango, that of one banana, and that of one orange, respectively. All the information put together in a specified context, constitutes the physical problem and need not be all distinct. Some of these could be redundant, which cannot be readily identified by inspection. The resulting mathematical model will thus have equations corresponding to this redundant information and hence are linearly dependent and thus superfluous. Consequently, these equations once identified should be better pruned in the process of solving the system. The benefits are (i) less computation and hence less error and consequently a better quality of solution and (ii) reduced storage requirements. In literature, the pruning concept is not in vogue so far although it is most desirable. It is assumed that at least one information, i.e. one equation is known to be correct and which will be our first equation. In a numerical linear system, the system could be slightly inconsistent or inconsistent of varying degree. If the system is too inconsistent, then we should fall back on to the physical problem (PP), check the correctness of the PP derived from the material universe, modify it, if necessary, and then check the corresponding mathematical model (MM) and correct it. In nature/material universe, inconsistency is completely nonexistent. If the MM becomes inconsistent, it could be due to error introduced by the concerned measuring device and/or due to assumptions made on the PP to obtain an MM which is relatively easily solvable or simply due to human error. No measuring device can usually measure a quantity with an accuracy greater that 0.005% or, equivalently with a relative error less than 0.005%. Hence measurement error is unavoidable in a numerical linear system when the quantities are continuous (or even discrete with extremely large number). Assumptions, though not desirable, are usually made when we find the problem sufficiently difficult to be solved within the available means/tools/resources and hence distort the PP and the corresponding MM. The . error thus introduced in the system could (not always necessarily though) make the system somewhat inconsistent. If the inconsistency (contradiction) is too much then one should definitely not proceed to solve the system in terms of getting a least-squares solution or the minimum-norm least-squares solution. All these solutions will be invariably of no real-world use. If, on the other hand, inconsistency is reasonably low, i.e. the system is near-consistent or, equivalently, has near-linearly-dependent rows, then the foregoing solutions are useful. Pruning in such a near-consistent system should be performed based on the desired accuracy and on the definition of near-linear dependence. In this article, we discuss pruning over various kinds of linear systems and strongly suggest its use as a pre-processor or as a part of an algorithm. Ideally pruning should (i) be a part of the solution process (algorithm) of the system, (ii) reduce both computational error and complexity of the process, and (iii) take into account the numerical zero defined in the context. These are precisely what we achieve through our proposed O(mn2) algorithm presented in Matlab, that uses a subprogram of solving a single linear equation and that has embedded in it the pruning.

  10. Rapid solution of large-scale systems of equations

    NASA Technical Reports Server (NTRS)

    Storaasli, Olaf O.

    1994-01-01

    The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.

  11. CFORM- LINEAR CONTROL SYSTEM DESIGN AND ANALYSIS: CLOSED FORM SOLUTION AND TRANSIENT RESPONSE OF THE LINEAR DIFFERENTIAL EQUATION

    NASA Technical Reports Server (NTRS)

    Jamison, J. W.

    1994-01-01

    CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.

  12. Reconfigurable all-dielectric metasurface based on tunable chemical systems in aqueous solution.

    PubMed

    Yang, Xiaoqing; Zhang, Di; Wu, Shiyue; Yin, Yang; Li, Lanshuo; Cao, Kaiyuan; Huang, Kama

    2017-06-09

    Dynamic control transmission and polarization properties of electromagnetic (EM) wave propagation is investigated using chemical reconfigurable all-dielectric metasurface. The metasurface is composed of cross-shaped periodical teflon tubes and inner filled chemical systems (i.e., mixtures and chemical reaction) in aqueous solution. By tuning the complex permittivity of chemical systems, the reconfigurable metasurface can be easily achieved. The transmission properties of different incident polarized waves (i.e., linear and circular polarization) were simulated and experimentally measured for static ethanol solution as volume ratio changed. Both results indicated this metasurface can serve as either tunable FSS (Frequency Selective Surface) or tunable linear-to-circular/cross Polarization Converter at required frequency range. Based on the reconfigurable laws obtained from static solutions, we developed a dynamic dielectric system and researched a typical chemical reaction with time-varying permittivity filled in the tubes experimentally. It provides new ways for realizing automatic reconfiguration of metasurface by chemical reaction system with given variation laws of permittivity.

  13. Asymptotic Linearity of Optimal Control Modification Adaptive Law with Analytical Stability Margins

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2010-01-01

    Optimal control modification has been developed to improve robustness to model-reference adaptive control. For systems with linear matched uncertainty, optimal control modification adaptive law can be shown by a singular perturbation argument to possess an outer solution that exhibits a linear asymptotic property. Analytical expressions of phase and time delay margins for the outer solution can be obtained. Using the gradient projection operator, a free design parameter of the adaptive law can be selected to satisfy stability margins.

  14. Exploring the Phase Space of a System of Differential Equations: Different Mathematical Registers

    ERIC Educational Resources Information Center

    Dana-Picard, Thierry; Kidron, Ivy

    2008-01-01

    We describe and analyze a situation involving symbolic representation and graphical visualization of the solution of a system of two linear differential equations, using a computer algebra system. Symbolic solution and graphical representation complement each other. Graphical representation helps to understand the behavior of the symbolic…

  15. ODE/IM correspondence for modified B2(1) affine Toda field equation

    NASA Astrophysics Data System (ADS)

    Ito, Katsushi; Shu, Hongfei

    2017-03-01

    We study the massive ODE/IM correspondence for modified B2(1) affine Toda field equation. Based on the ψ-system for the solutions of the associated linear problem, we obtain the Bethe ansatz equations. We also discuss the T-Q relations, the T-system and the Y-system, which are shown to be related to those of the A3 /Z2 integrable system. We consider the case that the solution of the linear problem has a monodromy around the origin, which imposes nontrivial boundary conditions for the T-/Y-system. The high-temperature limit of the T- and Y-system and their monodromy dependence are studied numerically.

  16. Technology of Synergy Manifestation in the Research of Solution's Stability of Differential Equations System

    ERIC Educational Resources Information Center

    Dvoryatkina, Svetlana N.; Melnikov, Roman A. M.; Smirnov, Eugeny I.

    2017-01-01

    Effectiveness of mathematical education as non-linear, composite and open system, formation and development of cognitive abilities of the trainee are wholly defined in the solution of complex tasks by means of modern achievements in science to high school practice adaptation. The possibility of complex tasks solution arises at identification of…

  17. A Linear Programming Approach to Routing Control in Networks of Constrained Nonlinear Positive Systems with Concave Flow Rates

    NASA Technical Reports Server (NTRS)

    Arneson, Heather M.; Dousse, Nicholas; Langbort, Cedric

    2014-01-01

    We consider control design for positive compartmental systems in which each compartment's outflow rate is described by a concave function of the amount of material in the compartment.We address the problem of determining the routing of material between compartments to satisfy time-varying state constraints while ensuring that material reaches its intended destination over a finite time horizon. We give sufficient conditions for the existence of a time-varying state-dependent routing strategy which ensures that the closed-loop system satisfies basic network properties of positivity, conservation and interconnection while ensuring that capacity constraints are satisfied, when possible, or adjusted if a solution cannot be found. These conditions are formulated as a linear programming problem. Instances of this linear programming problem can be solved iteratively to generate a solution to the finite horizon routing problem. Results are given for the application of this control design method to an example problem. Key words: linear programming; control of networks; positive systems; controller constraints and structure.

  18. Time domain convergence properties of Lyapunov stable penalty methods

    NASA Technical Reports Server (NTRS)

    Kurdila, A. J.; Sunkel, John

    1991-01-01

    Linear hyperbolic partial differential equations are analyzed using standard techniques to show that a sequence of solutions generated by the Liapunov stable penalty equations approaches the solution of the differential-algebraic equations governing the dynamics of multibody problems arising in linear vibrations. The analysis does not require that the system be conservative and does not impose any specific integration scheme. Variational statements are derived which bound the error in approximation by the norm of the constraint violation obtained in the approximate solutions.

  19. Transit-time and age distributions for nonlinear time-dependent compartmental systems.

    PubMed

    Metzler, Holger; Müller, Markus; Sierra, Carlos A

    2018-02-06

    Many processes in nature are modeled using compartmental systems (reservoir/pool/box systems). Usually, they are expressed as a set of first-order differential equations describing the transfer of matter across a network of compartments. The concepts of age of matter in compartments and the time required for particles to transit the system are important diagnostics of these models with applications to a wide range of scientific questions. Until now, explicit formulas for transit-time and age distributions of nonlinear time-dependent compartmental systems were not available. We compute densities for these types of systems under the assumption of well-mixed compartments. Assuming that a solution of the nonlinear system is available at least numerically, we show how to construct a linear time-dependent system with the same solution trajectory. We demonstrate how to exploit this solution to compute transit-time and age distributions in dependence on given start values and initial age distributions. Furthermore, we derive equations for the time evolution of quantiles and moments of the age distributions. Our results generalize available density formulas for the linear time-independent case and mean-age formulas for the linear time-dependent case. As an example, we apply our formulas to a nonlinear and a linear version of a simple global carbon cycle model driven by a time-dependent input signal which represents fossil fuel additions. We derive time-dependent age distributions for all compartments and calculate the time it takes to remove fossil carbon in a business-as-usual scenario.

  20. Projective-Dual Method for Solving Systems of Linear Equations with Nonnegative Variables

    NASA Astrophysics Data System (ADS)

    Ganin, B. V.; Golikov, A. I.; Evtushenko, Yu. G.

    2018-02-01

    In order to solve an underdetermined system of linear equations with nonnegative variables, the projection of a given point onto its solutions set is sought. The dual of this problem—the problem of unconstrained maximization of a piecewise-quadratic function—is solved by Newton's method. The problem of unconstrained optimization dual of the regularized problem of finding the projection onto the solution set of the system is considered. A connection of duality theory and Newton's method with some known algorithms of projecting onto a standard simplex is shown. On the example of taking into account the specifics of the constraints of the transport linear programming problem, the possibility to increase the efficiency of calculating the generalized Hessian matrix is demonstrated. Some examples of numerical calculations using MATLAB are presented.

  1. The condition of regular degeneration for singularly perturbed systems of linear differential-difference equations.

    NASA Technical Reports Server (NTRS)

    Cooke, K. L.; Meyer, K. R.

    1966-01-01

    Extension of problem of singular perturbation for linear scalar constant coefficient differential- difference equation with single retardation to several retardations, noting degenerate equation solution

  2. Recursive inversion of externally defined linear systems

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1988-01-01

    The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problems of system identification and compensation.

  3. Scalable Parallel Computation for Extended MHD Modeling of Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Glasser, Alan H.

    2008-11-01

    Parallel solution of a linear system is scalable if simultaneously doubling the number of dependent variables and the number of processors results in little or no increase in the computation time to solution. Two approaches have this property for parabolic systems: multigrid and domain decomposition. Since extended MHD is primarily a hyperbolic rather than a parabolic system, additional steps must be taken to parabolize the linear system to be solved by such a method. Such physics-based preconditioning (PBP) methods have been pioneered by Chac'on, using finite volumes for spatial discretization, multigrid for solution of the preconditioning equations, and matrix-free Newton-Krylov methods for the accurate solution of the full nonlinear preconditioned equations. The work described here is an extension of these methods using high-order spectral element methods and FETI-DP domain decomposition. Application of PBP to a flux-source representation of the physics equations is discussed. The resulting scalability will be demonstrated for simple wave and for ideal and Hall MHD waves.

  4. Mass Optimization of Battery/Supercapacitors Hybrid Systems Based on a Linear Programming Approach

    NASA Astrophysics Data System (ADS)

    Fleury, Benoit; Labbe, Julien

    2014-08-01

    The objective of this paper is to show that, on a specific launcher-type mission profile, a 40% gain of mass is expected using a battery/supercapacitors active hybridization instead of a single battery solution. This result is based on the use of a linear programming optimization approach to perform the mass optimization of the hybrid power supply solution.

  5. Strong convergence and convergence rates of approximating solutions for algebraic Riccati equations in Hilbert spaces

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi

    1987-01-01

    The linear quadratic optimal control problem on infinite time interval for linear time-invariant systems defined on Hilbert spaces is considered. The optimal control is given by a feedback form in terms of solution pi to the associated algebraic Riccati equation (ARE). A Ritz type approximation is used to obtain a sequence pi sup N of finite dimensional approximations of the solution to ARE. A sufficient condition that shows pi sup N converges strongly to pi is obtained. Under this condition, a formula is derived which can be used to obtain a rate of convergence of pi sup N to pi. The results of the Galerkin approximation is demonstrated and applied for parabolic systems and the averaging approximation for hereditary differential systems.

  6. Numerical Solution of Systems of Loaded Ordinary Differential Equations with Multipoint Conditions

    NASA Astrophysics Data System (ADS)

    Assanova, A. T.; Imanchiyev, A. E.; Kadirbayeva, Zh. M.

    2018-04-01

    A system of loaded ordinary differential equations with multipoint conditions is considered. The problem under study is reduced to an equivalent boundary value problem for a system of ordinary differential equations with parameters. A system of linear algebraic equations for the parameters is constructed using the matrices of the loaded terms and the multipoint condition. The conditions for the unique solvability and well-posedness of the original problem are established in terms of the matrix made up of the coefficients of the system of linear algebraic equations. The coefficients and the righthand side of the constructed system are determined by solving Cauchy problems for linear ordinary differential equations. The solutions of the system are found in terms of the values of the desired function at the initial points of subintervals. The parametrization method is numerically implemented using the fourth-order accurate Runge-Kutta method as applied to the Cauchy problems for ordinary differential equations. The performance of the constructed numerical algorithms is illustrated by examples.

  7. Linear CCD attitude measurement system based on the identification of the auxiliary array CCD

    NASA Astrophysics Data System (ADS)

    Hu, Yinghui; Yuan, Feng; Li, Kai; Wang, Yan

    2015-10-01

    Object to the high precision flying target attitude measurement issues of a large space and large field of view, comparing existing measurement methods, the idea is proposed of using two array CCD to assist in identifying the three linear CCD with multi-cooperative target attitude measurement system, and to address the existing nonlinear system errors and calibration parameters and more problems with nine linear CCD spectroscopic test system of too complicated constraints among camera position caused by excessive. The mathematical model of binocular vision and three linear CCD test system are established, co-spot composition triangle utilize three red LED position light, three points' coordinates are given in advance by Cooperate Measuring Machine, the red LED in the composition of the three sides of a triangle adds three blue LED light points as an auxiliary, so that array CCD is easier to identify three red LED light points, and linear CCD camera is installed of a red filter to filter out the blue LED light points while reducing stray light. Using array CCD to measure the spot, identifying and calculating the spatial coordinates solutions of red LED light points, while utilizing linear CCD to measure three red LED spot for solving linear CCD test system, which can be drawn from 27 solution. Measured with array CCD coordinates auxiliary linear CCD has achieved spot identification, and has solved the difficult problems of multi-objective linear CCD identification. Unique combination of linear CCD imaging features, linear CCD special cylindrical lens system is developed using telecentric optical design, the energy center of the spot position in the depth range of convergence in the direction is perpendicular to the optical axis of the small changes ensuring highprecision image quality, and the entire test system improves spatial object attitude measurement speed and precision.

  8. Precise Point Positioning Using Triple GNSS Constellations in Various Modes

    PubMed Central

    Afifi, Akram; El-Rabbany, Ahmed

    2016-01-01

    This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada’s GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence time by 25% compared with the GPS-only counterpart, regardless of the linear combination used. The use of BSSD linear combination improves the precision of the estimated positioning parameters by about 25% in comparison with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for the BSSD model, which represents about 50% reduction, in comparison with the GPS-only PPP solution. The GNSS RT-PPP solution, on the other hand, shows a similar convergence time and precision to the GPS-only counterpart. PMID:27240376

  9. Precise Point Positioning Using Triple GNSS Constellations in Various Modes.

    PubMed

    Afifi, Akram; El-Rabbany, Ahmed

    2016-05-28

    This paper introduces a new dual-frequency precise point positioning (PPP) model, which combines the observations from three different global navigation satellite system (GNSS) constellations, namely GPS, Galileo, and BeiDou. Combining measurements from different GNSS systems introduces additional biases, including inter-system bias and hardware delays, which require rigorous modelling. Our model is based on the un-differenced and between-satellite single-difference (BSSD) linear combinations. BSSD linear combination cancels out some receiver-related biases, including receiver clock error and non-zero initial phase bias of the receiver oscillator. Forming the BSSD linear combination requires a reference satellite, which can be selected from any of the GPS, Galileo, and BeiDou systems. In this paper three BSSD scenarios are tested; each considers a reference satellite from a different GNSS constellation. Natural Resources Canada's GPSPace PPP software is modified to enable a combined GPS, Galileo, and BeiDou PPP solution and to handle the newly introduced biases. A total of four data sets collected at four different IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the International GNSS Service Multi-GNSS Experiment (IGS-MGEX) network are used to correct the GPS, Galileo, and BeiDou measurements in the post-processing PPP mode. A real-time PPP solution is also obtained, which is referred to as RT-PPP in the sequel, through the use of the IGS real-time service (RTS) for satellite orbit and clock corrections. However, only GPS and Galileo observations are used for the RT-PPP solution, as the RTS-IGS satellite products are not presently available for BeiDou system. All post-processed and real-time PPP solutions are compared with the traditional un-differenced GPS-only counterparts. It is shown that combining the GPS, Galileo, and BeiDou observations in the post-processing mode improves the PPP convergence time by 25% compared with the GPS-only counterpart, regardless of the linear combination used. The use of BSSD linear combination improves the precision of the estimated positioning parameters by about 25% in comparison with the GPS-only PPP solution. Additionally, the solution convergence time is reduced to 10 minutes for the BSSD model, which represents about 50% reduction, in comparison with the GPS-only PPP solution. The GNSS RT-PPP solution, on the other hand, shows a similar convergence time and precision to the GPS-only counterpart.

  10. Lie algebras and linear differential equations.

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Rahimi, A.

    1972-01-01

    Certain symmetry properties possessed by the solutions of linear differential equations are examined. For this purpose, some basic ideas from the theory of finite dimensional linear systems are used together with the work of Wei and Norman on the use of Lie algebraic methods in differential equation theory.

  11. ILUBCG2-11: Solution of 11-banded nonsymmetric linear equation systems by a preconditioned biconjugate gradient routine

    NASA Astrophysics Data System (ADS)

    Chen, Y.-M.; Koniges, A. E.; Anderson, D. V.

    1989-10-01

    The biconjugate gradient method (BCG) provides an attractive alternative to the usual conjugate gradient algorithms for the solution of sparse systems of linear equations with nonsymmetric and indefinite matrix operators. A preconditioned algorithm is given, whose form resembles the incomplete L-U conjugate gradient scheme (ILUCG2) previously presented. Although the BCG scheme requires the storage of two additional vectors, it converges in a significantly lesser number of iterations (often half), while the number of calculations per iteration remains essentially the same.

  12. A survey of packages for large linear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Kesheng; Milne, Brent

    2000-02-11

    This paper evaluates portable software packages for the iterative solution of very large sparse linear systems on parallel architectures. While we cannot hope to tell individual users which package will best suit their needs, we do hope that our systematic evaluation provides essential unbiased information about the packages and the evaluation process may serve as an example on how to evaluate these packages. The information contained here include feature comparisons, usability evaluations and performance characterizations. This review is primarily focused on self-contained packages that can be easily integrated into an existing program and are capable of computing solutions to verymore » large sparse linear systems of equations. More specifically, it concentrates on portable parallel linear system solution packages that provide iterative solution schemes and related preconditioning schemes because iterative methods are more frequently used than competing schemes such as direct methods. The eight packages evaluated are: Aztec, BlockSolve,ISIS++, LINSOL, P-SPARSLIB, PARASOL, PETSc, and PINEAPL. Among the eight portable parallel iterative linear system solvers reviewed, we recommend PETSc and Aztec for most application programmers because they have well designed user interface, extensive documentation and very responsive user support. Both PETSc and Aztec are written in the C language and are callable from Fortran. For those users interested in using Fortran 90, PARASOL is a good alternative. ISIS++is a good alternative for those who prefer the C++ language. Both PARASOL and ISIS++ are relatively new and are continuously evolving. Thus their user interface may change. In general, those packages written in Fortran 77 are more cumbersome to use because the user may need to directly deal with a number of arrays of varying sizes. Languages like C++ and Fortran 90 offer more convenient data encapsulation mechanisms which make it easier to implement a clean and intuitive user interface. In addition to reviewing these portable parallel iterative solver packages, we also provide a more cursory assessment of a range of related packages, from specialized parallel preconditioners to direct methods for sparse linear systems.« less

  13. Design of Linear Quadratic Regulators and Kalman Filters

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Geyser, L.

    1986-01-01

    AESOP solves problems associated with design of controls and state estimators for linear time-invariant systems. Systems considered are modeled in state-variable form by set of linear differential and algebraic equations with constant coefficients. Two key problems solved by AESOP are linear quadratic regulator (LQR) design problem and steady-state Kalman filter design problem. AESOP is interactive. User solves design problems and analyzes solutions in single interactive session. Both numerical and graphical information available to user during the session.

  14. A linear quadratic regulator approach to the stabilization of uncertain linear systems

    NASA Technical Reports Server (NTRS)

    Shieh, L. S.; Sunkel, J. W.; Wang, Y. J.

    1990-01-01

    This paper presents a linear quadratic regulator approach to the stabilization of uncertain linear systems. The uncertain systems under consideration are described by state equations with the presence of time-varying unknown-but-bounded uncertainty matrices. The method is based on linear quadratic regulator (LQR) theory and Liapunov stability theory. The robust stabilizing control law for a given uncertain system can be easily constructed from the symmetric positive-definite solution of the associated augmented Riccati equation. The proposed approach can be applied to matched and/or mismatched systems with uncertainty matrices in which only their matrix norms are bounded by some prescribed values and/or their entries are bounded by some prescribed constraint sets. Several numerical examples are presented to illustrate the results.

  15. Theory of bimolecular reactions in a solution with linear traps: Application to the problem of target search on DNA.

    PubMed

    Turkin, Alexander; van Oijen, Antoine M; Turkin, Anatoliy A

    2015-01-01

    One-dimensional sliding along DNA as a means to accelerate protein target search is a well-known phenomenon occurring in various biological systems. Using a biomimetic approach, we have recently demonstrated the practical use of DNA-sliding peptides to speed up bimolecular reactions more than an order of magnitude by allowing the reactants to associate not only in the solution by three-dimensional (3D) diffusion, but also on DNA via one-dimensional (1D) diffusion [A. Turkin et al., Chem. Sci. (2015)]. Here we present a mean-field kinetic model of a bimolecular reaction in a solution with linear extended sinks (e.g., DNA) that can intermittently trap molecules present in a solution. The model consists of chemical rate equations for mean concentrations of reacting species. Our model demonstrates that addition of linear traps to the solution can significantly accelerate reactant association. We show that at optimum concentrations of linear traps the 1D reaction pathway dominates in the kinetics of the bimolecular reaction; i.e., these 1D traps function as an assembly line of the reaction product. Moreover, we show that the association reaction on linear sinks between trapped reactants exhibits a nonclassical third-order behavior. Predictions of the model agree well with our experimental observations. Our model provides a general description of bimolecular reactions that are controlled by a combined 3D+1D mechanism and can be used to quantitatively describe both naturally occurring as well as biomimetic biochemical systems that reduce the dimensionality of search.

  16. A class of nonideal solutions. 1: Definition and properties

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1983-01-01

    A class of nonideal solutions is defined by constructing a function to represent the composition dependence of thermodynamic properties for members of the class, and some properties of these solutions are studied. The constructed function has several useful features: (1) its parameters occur linearly; (2) it contains a logarithmic singularity in the dilute solution region and contains ideal solutions and regular solutions as special cases; and (3) it is applicable to N-ary systems and reduces to M-ary systems (M or = N) in a form-invariant manner.

  17. Algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations with the use of parallel computations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moryakov, A. V., E-mail: sailor@orc.ru

    2016-12-15

    An algorithm for solving the linear Cauchy problem for large systems of ordinary differential equations is presented. The algorithm for systems of first-order differential equations is implemented in the EDELWEISS code with the possibility of parallel computations on supercomputers employing the MPI (Message Passing Interface) standard for the data exchange between parallel processes. The solution is represented by a series of orthogonal polynomials on the interval [0, 1]. The algorithm is characterized by simplicity and the possibility to solve nonlinear problems with a correction of the operator in accordance with the solution obtained in the previous iterative process.

  18. Recursive inversion of externally defined linear systems by FIR filters

    NASA Technical Reports Server (NTRS)

    Bach, Ralph E., Jr.; Baram, Yoram

    1989-01-01

    The approximate inversion of an internally unknown linear system, given by its impulse response sequence, by an inverse system having a finite impulse response, is considered. The recursive least-squares procedure is shown to have an exact initialization, based on the triangular Toeplitz structure of the matrix involved. The proposed approach also suggests solutions to the problem of system identification and compensation.

  19. Image reconstruction

    NASA Astrophysics Data System (ADS)

    Vasilenko, Georgii Ivanovich; Taratorin, Aleksandr Markovich

    Linear, nonlinear, and iterative image-reconstruction (IR) algorithms are reviewed. Theoretical results are presented concerning controllable linear filters, the solution of ill-posed functional minimization problems, and the regularization of iterative IR algorithms. Attention is also given to the problem of superresolution and analytical spectrum continuation, the solution of the phase problem, and the reconstruction of images distorted by turbulence. IR in optical and optical-digital systems is discussed with emphasis on holographic techniques.

  20. A computing method for sound propagation through a nonuniform jet stream

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Liu, C. H.

    1974-01-01

    The classical formulation of sound propagation through a jet flow was found to be inadequate for computer solutions. Previous investigations selected the phase and amplitude of the acoustic pressure as dependent variables requiring the solution of a system of nonlinear algebraic equations. The nonlinearities complicated both the analysis and the computation. A reformulation of the convective wave equation in terms of a new set of dependent variables is developed with a special emphasis on its suitability for numerical solutions on fast computers. The technique is very attractive because the resulting equations are linear in nonwaving variables. The computer solution to such a linear system of algebraic equations may be obtained by well-defined and direct means which are conservative of computer time and storage space. Typical examples are illustrated and computational results are compared with available numerical and experimental data.

  1. An efficient closed-form solution for acoustic emission source location in three-dimensional structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xibing; Dong, Longjun, E-mail: csudlj@163.com; Australian Centre for Geomechanics, The University of Western Australia, Crawley, 6009

    This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.

  2. Finding all solutions of nonlinear equations using the dual simplex method

    NASA Astrophysics Data System (ADS)

    Yamamura, Kiyotaka; Fujioka, Tsuyoshi

    2003-03-01

    Recently, an efficient algorithm has been proposed for finding all solutions of systems of nonlinear equations using linear programming. This algorithm is based on a simple test (termed the LP test) for nonexistence of a solution to a system of nonlinear equations using the dual simplex method. In this letter, an improved version of the LP test algorithm is proposed. By numerical examples, it is shown that the proposed algorithm could find all solutions of a system of 300 nonlinear equations in practical computation time.

  3. System design optimization for a Mars-roving vehicle and perturbed-optimal solutions in nonlinear programming

    NASA Technical Reports Server (NTRS)

    Pavarini, C.

    1974-01-01

    Work in two somewhat distinct areas is presented. First, the optimal system design problem for a Mars-roving vehicle is attacked by creating static system models and a system evaluation function and optimizing via nonlinear programming techniques. The second area concerns the problem of perturbed-optimal solutions. Given an initial perturbation in an element of the solution to a nonlinear programming problem, a linear method is determined to approximate the optimal readjustments of the other elements of the solution. Then, the sensitivity of the Mars rover designs is described by application of this method.

  4. Theory of Metastable State Relaxation for Non-Critical Binary Systems with Non-Conserved Order Parameter

    NASA Technical Reports Server (NTRS)

    Izmailov, Alexander; Myerson, Allan S.

    1993-01-01

    A new mathematical ansatz for a solution of the time-dependent Ginzburg-Landau non-linear partial differential equation is developed for non-critical systems such as non-critical binary solutions (solute + solvent) described by the non-conserved scalar order parameter. It is demonstrated that in such systems metastability initiates heterogeneous solute redistribution which results in formation of the non-equilibrium singly-periodic spatial solute structure. It is found how the time-dependent period of this structure evolves in time. In addition, the critical radius r(sub c) for solute embryo of the new solute rich phase together with the metastable state lifetime t(sub c) are determined analytically and analyzed.

  5. Integrability and Linear Stability of Nonlinear Waves

    NASA Astrophysics Data System (ADS)

    Degasperis, Antonio; Lombardo, Sara; Sommacal, Matteo

    2018-03-01

    It is well known that the linear stability of solutions of 1+1 partial differential equations which are integrable can be very efficiently investigated by means of spectral methods. We present here a direct construction of the eigenmodes of the linearized equation which makes use only of the associated Lax pair with no reference to spectral data and boundary conditions. This local construction is given in the general N× N matrix scheme so as to be applicable to a large class of integrable equations, including the multicomponent nonlinear Schrödinger system and the multiwave resonant interaction system. The analytical and numerical computations involved in this general approach are detailed as an example for N=3 for the particular system of two coupled nonlinear Schrödinger equations in the defocusing, focusing and mixed regimes. The instabilities of the continuous wave solutions are fully discussed in the entire parameter space of their amplitudes and wave numbers. By defining and computing the spectrum in the complex plane of the spectral variable, the eigenfrequencies are explicitly expressed. According to their topological properties, the complete classification of these spectra in the parameter space is presented and graphically displayed. The continuous wave solutions are linearly unstable for a generic choice of the coupling constants.

  6. H2, fixed architecture, control design for large scale systems. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1990-01-01

    The H2, fixed architecture, control problem is a classic linear quadratic Gaussian (LQG) problem whose solution is constrained to be a linear time invariant compensator with a decentralized processing structure. The compensator can be made of p independent subcontrollers, each of which has a fixed order and connects selected sensors to selected actuators. The H2, fixed architecture, control problem allows the design of simplified feedback systems needed to control large scale systems. Its solution becomes more complicated, however, as more constraints are introduced. This work derives the necessary conditions for optimality for the problem and studies their properties. It is found that the filter and control problems couple when the architecture constraints are introduced, and that the different subcontrollers must be coordinated in order to achieve global system performance. The problem requires the simultaneous solution of highly coupled matrix equations. The use of homotopy is investigated as a numerical tool, and its convergence properties studied. It is found that the general constrained problem may have multiple stabilizing solutions, and that these solutions may be local minima or saddle points for the quadratic cost. The nature of the solution is not invariant when the parameters of the system are changed. Bifurcations occur, and a solution may continuously transform into a nonstabilizing compensator. Using a modified homotopy procedure, fixed architecture compensators are derived for models of large flexible structures to help understand the properties of the constrained solutions and compare them to the corresponding unconstrained ones.

  7. Transformation matrices between non-linear and linear differential equations

    NASA Technical Reports Server (NTRS)

    Sartain, R. L.

    1983-01-01

    In the linearization of systems of non-linear differential equations, those systems which can be exactly transformed into the second order linear differential equation Y"-AY'-BY=0 where Y, Y', and Y" are n x 1 vectors and A and B are constant n x n matrices of real numbers were considered. The 2n x 2n matrix was used to transform the above matrix equation into the first order matrix equation X' = MX. Specially the matrix M and the conditions which will diagonalize or triangularize M were studied. Transformation matrices P and P sub -1 were used to accomplish this diagonalization or triangularization to return to the solution of the second order matrix differential equation system from the first order system.

  8. Power Laws, Scale Invariance and the Generalized Frobenius Series:

    NASA Astrophysics Data System (ADS)

    Visser, Matt; Yunes, Nicolas

    We present a self-contained formalism for calculating the background solution, the linearized solutions and a class of generalized Frobenius-like solutions to a system of scale-invariant differential equations. We first cast the scale-invariant model into its equidimensional and autonomous forms, find its fixed points, and then obtain power-law background solutions. After linearizing about these fixed points, we find a second linearized solution, which provides a distinct collection of power laws characterizing the deviations from the fixed point. We prove that generically there will be a region surrounding the fixed point in which the complete general solution can be represented as a generalized Frobenius-like power series with exponents that are integer multiples of the exponents arising in the linearized problem. While discussions of the linearized system are common, and one can often find a discussion of power-series with integer exponents, power series with irrational (indeed complex) exponents are much rarer in the extant literature. The Frobenius-like series we encounter can be viewed as a variant of the rarely-discussed Liapunov expansion theorem (not to be confused with the more commonly encountered Liapunov functions and Liapunov exponents). As specific examples we apply these ideas to Newtonian and relativistic isothermal stars and construct two separate power series with the overlapping radius of convergence. The second of these power series solutions represents an expansion around "spatial infinity," and in realistic models it is this second power series that gives information about the stellar core, and the damped oscillations in core mass and core radius as the central pressure goes to infinity. The power-series solutions we obtain extend classical results; as exemplified for instance by the work of Lane, Emden, and Chandrasekhar in the Newtonian case, and that of Harrison, Thorne, Wakano, and Wheeler in the relativistic case. We also indicate how to extend these ideas to situations where fixed points may not exist — either due to "monotone" flow or due to the presence of limit cycles. Monotone flow generically leads to logarithmic deviations from scaling, while limit cycles generally lead to discrete self-similar solutions.

  9. A Computing Method for Sound Propagation Through a Nonuniform Jet Stream

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Liu, C. H.

    1974-01-01

    Understanding the principles of jet noise propagation is an essential ingredient of systematic noise reduction research. High speed computer methods offer a unique potential for dealing with complex real life physical systems whereas analytical solutions are restricted to sophisticated idealized models. The classical formulation of sound propagation through a jet flow was found to be inadequate for computer solutions and a more suitable approach was needed. Previous investigations selected the phase and amplitude of the acoustic pressure as dependent variables requiring the solution of a system of nonlinear algebraic equations. The nonlinearities complicated both the analysis and the computation. A reformulation of the convective wave equation in terms of a new set of dependent variables is developed with a special emphasis on its suitability for numerical solutions on fast computers. The technique is very attractive because the resulting equations are linear in nonwaving variables. The computer solution to such a linear system of algebraic equations may be obtained by well-defined and direct means which are conservative of computer time and storage space. Typical examples are illustrated and computational results are compared with available numerical and experimental data.

  10. The Programming Language Python In Earth System Simulations

    NASA Astrophysics Data System (ADS)

    Gross, L.; Imranullah, A.; Mora, P.; Saez, E.; Smillie, J.; Wang, C.

    2004-12-01

    Mathematical models in earth sciences base on the solution of systems of coupled, non-linear, time-dependent partial differential equations (PDEs). The spatial and time-scale vary from a planetary scale and million years for convection problems to 100km and 10 years for fault systems simulations. Various techniques are in use to deal with the time dependency (e.g. Crank-Nicholson), with the non-linearity (e.g. Newton-Raphson) and weakly coupled equations (e.g. non-linear Gauss-Seidel). Besides these high-level solution algorithms discretization methods (e.g. finite element method (FEM), boundary element method (BEM)) are used to deal with spatial derivatives. Typically, large-scale, three dimensional meshes are required to resolve geometrical complexity (e.g. in the case of fault systems) or features in the solution (e.g. in mantel convection simulations). The modelling environment escript allows the rapid implementation of new physics as required for the development of simulation codes in earth sciences. Its main object is to provide a programming language, where the user can define new models and rapidly develop high-level solution algorithms. The current implementation is linked with the finite element package finley as a PDE solver. However, the design is open and other discretization technologies such as finite differences and boundary element methods could be included. escript is implemented as an extension of the interactive programming environment python (see www.python.org). Key concepts introduced are Data objects, which are holding values on nodes or elements of the finite element mesh, and linearPDE objects, which are defining linear partial differential equations to be solved by the underlying discretization technology. In this paper we will show the basic concepts of escript and will show how escript is used to implement a simulation code for interacting fault systems. We will show some results of large-scale, parallel simulations on an SGI Altix system. Acknowledgements: Project work is supported by Australian Commonwealth Government through the Australian Computational Earth Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility Fund, The University of Queensland and SGI.

  11. Homotopy approach to optimal, linear quadratic, fixed architecture compensation

    NASA Technical Reports Server (NTRS)

    Mercadal, Mathieu

    1991-01-01

    Optimal linear quadratic Gaussian compensators with constrained architecture are a sensible way to generate good multivariable feedback systems meeting strict implementation requirements. The optimality conditions obtained from the constrained linear quadratic Gaussian are a set of highly coupled matrix equations that cannot be solved algebraically except when the compensator is centralized and full order. An alternative to the use of general parameter optimization methods for solving the problem is to use homotopy. The benefit of the method is that it uses the solution to a simplified problem as a starting point and the final solution is then obtained by solving a simple differential equation. This paper investigates the convergence properties and the limitation of such an approach and sheds some light on the nature and the number of solutions of the constrained linear quadratic Gaussian problem. It also demonstrates the usefulness of homotopy on an example of an optimal decentralized compensator.

  12. Communication: Relationship between solute localization and diffusion in a dynamically constrained polymer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saylor, David M.; Jawahery, Sudi; Silverstein, Joshua S.

    2016-07-21

    We investigate the link between dynamic localization, characterized by the Debye–Waller factor, 〈u{sup 2}〉, and solute self-diffusivity, D, in a polymer system using atomistic molecular dynamics simulations and vapor sorption experiments. We find a linear relationship between lnD and 1/〈u{sup 2}〉 over more than four decades of D, encompassing most of the glass formation regime. The observed linearity is consistent with the Langevin dynamics in a periodically varying potential field and may offer a means to rapidly assess diffusion based on the characterization of dynamic localization.

  13. On the parallel solution of parabolic equations

    NASA Technical Reports Server (NTRS)

    Gallopoulos, E.; Saad, Youcef

    1989-01-01

    Parallel algorithms for the solution of linear parabolic problems are proposed. The first of these methods is based on using polynomial approximation to the exponential. It does not require solving any linear systems and is highly parallelizable. The two other methods proposed are based on Pade and Chebyshev approximations to the matrix exponential. The parallelization of these methods is achieved by using partial fraction decomposition techniques to solve the resulting systems and thus offers the potential for increased time parallelism in time dependent problems. Experimental results from the Alliant FX/8 and the Cray Y-MP/832 vector multiprocessors are also presented.

  14. Born approximation in linear-time invariant system

    NASA Astrophysics Data System (ADS)

    Gumjudpai, Burin

    2017-09-01

    An alternative way of finding the LTI’s solution with the Born approximation, is investigated. We use Born approximation in the LTI and in the transformed LTI in form of Helmholtz equation. General solution are considered as infinite series or Feynman graph. Slow-roll approximation are explored. Transforming the LTI system into Helmholtz equation, approximated general solution can be found for any given forms of force with its initial value.

  15. Investigation of ODE integrators using interactive graphics. [Ordinary Differential Equations

    NASA Technical Reports Server (NTRS)

    Brown, R. L.

    1978-01-01

    Two FORTRAN programs using an interactive graphic terminal to generate accuracy and stability plots for given multistep ordinary differential equation (ODE) integrators are described. The first treats the fixed stepsize linear case with complex variable solutions, and generates plots to show accuracy and error response to step driving function of a numerical solution, as well as the linear stability region. The second generates an analog to the stability region for classes of non-linear ODE's as well as accuracy plots. Both systems can compute method coefficients from a simple specification of the method. Example plots are given.

  16. Modulation of localized solutions in a system of two coupled nonlinear Schrödinger equations.

    PubMed

    Cardoso, W B; Avelar, A T; Bazeia, D

    2012-08-01

    In this work we study localized solutions of a system of two coupled nonlinear Schrödinger equations, with the linear (potential) and nonlinear coefficients engendering spatial and temporal dependencies. Similarity transformations are used to convert the nonautonomous coupled equations into autonomous ones and we use the trial orbit method to help us solving them, presenting solutions in a general way. Numerical experiments are then used to verify the stability of the localized solutions.

  17. The Solution Construction of Heterotic Super-Liouville Model

    NASA Astrophysics Data System (ADS)

    Yang, Zhan-Ying; Zhen, Yi

    2001-12-01

    We investigate the heterotic super-Liouville model on the base of the basic Lie super-algebra Osp(1|2).Using the super extension of Leznov-Saveliev analysis and Drinfeld-Sokolov linear system, we construct the explicit solution of the heterotic super-Liouville system in component form. We also show that the solutions are local and periodic by calculating the exchange relation of the solution. Finally starting from the action of heterotic super-Liouville model, we obtain the conserved current and conserved charge which possessed the BRST properties.

  18. Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

    DOE PAGES

    Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.; ...

    2017-01-18

    Currently, Constraint-Based Reconstruction and Analysis (COBRA) is the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many orders of magnitude. Data values also have greatly varying magnitudes. Furthermore, standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME models have 70,000 constraints and variables and will grow larger). We also developed a quadrupleprecision version of ourmore » linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging problems tested here. DQQ will enable extensive use of large linear and nonlinear models in systems biology and other applications involving multiscale data.« less

  19. Reliable and efficient solution of genome-scale models of Metabolism and macromolecular Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Ding; Yang, Laurence; Fleming, Ronan M. T.

    Currently, Constraint-Based Reconstruction and Analysis (COBRA) is the only methodology that permits integrated modeling of Metabolism and macromolecular Expression (ME) at genome-scale. Linear optimization computes steady-state flux solutions to ME models, but flux values are spread over many orders of magnitude. Data values also have greatly varying magnitudes. Furthermore, standard double-precision solvers may return inaccurate solutions or report that no solution exists. Exact simplex solvers based on rational arithmetic require a near-optimal warm start to be practical on large problems (current ME models have 70,000 constraints and variables and will grow larger). We also developed a quadrupleprecision version of ourmore » linear and nonlinear optimizer MINOS, and a solution procedure (DQQ) involving Double and Quad MINOS that achieves reliability and efficiency for ME models and other challenging problems tested here. DQQ will enable extensive use of large linear and nonlinear models in systems biology and other applications involving multiscale data.« less

  20. Indirect synthesis of multidegree-of-freedom transient systems

    NASA Technical Reports Server (NTRS)

    Chen, Y. H.; Pilkey, W. D.; Kalinowski, A. J.

    1976-01-01

    The indirect synthesis method is developed and shown to be capable of leading a near-optimal design of multidegree-of-freedom and multidesign-element transient nonlinear dynamical systems. The basis of the approach is to select the open design parameters such that the response of the portion of the system being designed approximates the limiting performances solution. The limiting performance problem can be formulated as one of linear programming by replacing all portions of the system subject to transient disturbances by control forces and supposing that the remaining portions are linear as are the overall kinematic constraints. One then selects the design parameters that respond most closely to the limiting performance solution, which can be achieved by unconstrained curve-fitting techniques.

  1. Construction of normal-regular decisions of Bessel typed special system

    NASA Astrophysics Data System (ADS)

    Tasmambetov, Zhaksylyk N.; Talipova, Meiramgul Zh.

    2017-09-01

    Studying a special system of differential equations in the separate production of the second order is solved by the degenerate hypergeometric function reducing to the Bessel functions of two variables. To construct a solution of this system near regular and irregular singularities, we use the method of Frobenius-Latysheva applying the concepts of rank and antirank. There is proved the basic theorem that establishes the existence of four linearly independent solutions of studying system type of Bessel. To prove the existence of normal-regular solutions we establish necessary conditions for the existence of such solutions. The existence and convergence of a normally regular solution are shown using the notion of rank and antirank.

  2. A frequency averaging framework for the solution of complex dynamic systems

    PubMed Central

    Lecomte, Christophe

    2014-01-01

    A frequency averaging framework is proposed for the solution of complex linear dynamic systems. It is remarkable that, while the mid-frequency region is usually very challenging, a smooth transition from low- through mid- and high-frequency ranges is possible and all ranges can now be considered in a single framework. An interpretation of the frequency averaging in the time domain is presented and it is explained that the average may be evaluated very efficiently in terms of system solutions. PMID:24910518

  3. An analysis of hypercritical states in elastic and inelastic systems

    NASA Astrophysics Data System (ADS)

    Kowalczk, Maciej

    The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.

  4. Analysis of Monte Carlo accelerated iterative methods for sparse linear systems: Analysis of Monte Carlo accelerated iterative methods for sparse linear systems

    DOE PAGES

    Benzi, Michele; Evans, Thomas M.; Hamilton, Steven P.; ...

    2017-03-05

    Here, we consider hybrid deterministic-stochastic iterative algorithms for the solution of large, sparse linear systems. Starting from a convergent splitting of the coefficient matrix, we analyze various types of Monte Carlo acceleration schemes applied to the original preconditioned Richardson (stationary) iteration. We expect that these methods will have considerable potential for resiliency to faults when implemented on massively parallel machines. We also establish sufficient conditions for the convergence of the hybrid schemes, and we investigate different types of preconditioners including sparse approximate inverses. Numerical experiments on linear systems arising from the discretization of partial differential equations are presented.

  5. SUBOPT: A CAD program for suboptimal linear regulators

    NASA Technical Reports Server (NTRS)

    Fleming, P. J.

    1985-01-01

    An interactive software package which provides design solutions for both standard linear quadratic regulator (LQR) and suboptimal linear regulator problems is described. Intended for time-invariant continuous systems, the package is easily modified to include sampled-data systems. LQR designs are obtained by established techniques while the large class of suboptimal problems containing controller and/or performance index options is solved using a robust gradient minimization technique. Numerical examples demonstrate features of the package and recent developments are described.

  6. Least-squares finite element solution of 3D incompressible Navier-Stokes problems

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, Tsung-Liang; Povinelli, Louis A.

    1992-01-01

    Although significant progress has been made in the finite element solution of incompressible viscous flow problems. Development of more efficient methods is still needed before large-scale computation of 3D problems becomes feasible. This paper presents such a development. The most popular finite element method for the solution of incompressible Navier-Stokes equations is the classic Galerkin mixed method based on the velocity-pressure formulation. The mixed method requires the use of different elements to interpolate the velocity and the pressure in order to satisfy the Ladyzhenskaya-Babuska-Brezzi (LBB) condition for the existence of the solution. On the other hand, due to the lack of symmetry and positive definiteness of the linear equations arising from the mixed method, iterative methods for the solution of linear systems have been hard to come by. Therefore, direct Gaussian elimination has been considered the only viable method for solving the systems. But, for three-dimensional problems, the computer resources required by a direct method become prohibitively large. In order to overcome these difficulties, a least-squares finite element method (LSFEM) has been developed. This method is based on the first-order velocity-pressure-vorticity formulation. In this paper the LSFEM is extended for the solution of three-dimensional incompressible Navier-Stokes equations written in the following first-order quasi-linear velocity-pressure-vorticity formulation.

  7. A Flexible CUDA LU-based Solver for Small, Batched Linear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumeo, Antonino; Gawande, Nitin A.; Villa, Oreste

    This chapter presents the implementation of a batched CUDA solver based on LU factorization for small linear systems. This solver may be used in applications such as reactive flow transport models, which apply the Newton-Raphson technique to linearize and iteratively solve the sets of non linear equations that represent the reactions for ten of thousands to millions of physical locations. The implementation exploits somewhat counterintuitive GPGPU programming techniques: it assigns the solution of a matrix (representing a system) to a single CUDA thread, does not exploit shared memory and employs dynamic memory allocation on the GPUs. These techniques enable ourmore » implementation to simultaneously solve sets of systems with over 100 equations and to employ LU decomposition with complete pivoting, providing the higher numerical accuracy required by certain applications. Other currently available solutions for batched linear solvers are limited by size and only support partial pivoting, although they may result faster in certain conditions. We discuss the code of our implementation and present a comparison with the other implementations, discussing the various tradeoffs in terms of performance and flexibility. This work will enable developers that need batched linear solvers to choose whichever implementation is more appropriate to the features and the requirements of their applications, and even to implement dynamic switching approaches that can choose the best implementation depending on the input data.« less

  8. On recent advances and future research directions for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Soliman, M. O.; Manhardt, P. D.

    1986-01-01

    This paper highlights some recent accomplishments regarding CFD numerical algorithm constructions for generation of discrete approximate solutions to classes of Reynolds-averaged Navier-Stokes equations. Following an overview of turbulent closure modeling, and development of appropriate conservation law systems, a Taylor weak-statement semi-discrete approximate solution algorithm is developed. Various forms for completion to the final linear algebra statement are cited, as are a range of candidate numerical linear algebra solution procedures. This development sequence emphasizes the key building blocks of a CFD RNS algorithm, including solution trial and test spaces, integration procedure and added numerical stability mechanisms. A range of numerical results are discussed focusing on key topics guiding future research directions.

  9. Optimal Linear Responses for Markov Chains and Stochastically Perturbed Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Antown, Fadi; Dragičević, Davor; Froyland, Gary

    2018-03-01

    The linear response of a dynamical system refers to changes to properties of the system when small external perturbations are applied. We consider the little-studied question of selecting an optimal perturbation so as to (i) maximise the linear response of the equilibrium distribution of the system, (ii) maximise the linear response of the expectation of a specified observable, and (iii) maximise the linear response of the rate of convergence of the system to the equilibrium distribution. We also consider the inhomogeneous, sequential, or time-dependent situation where the governing dynamics is not stationary and one wishes to select a sequence of small perturbations so as to maximise the overall linear response at some terminal time. We develop the theory for finite-state Markov chains, provide explicit solutions for some illustrative examples, and numerically apply our theory to stochastically perturbed dynamical systems, where the Markov chain is replaced by a matrix representation of an approximate annealed transfer operator for the random dynamical system.

  10. Chandrasekhar equations for infinite dimensional systems. Part 2: Unbounded input and output case

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Powers, Robert K.

    1987-01-01

    A set of equations known as Chandrasekhar equations arising in the linear quadratic optimal control problem is considered. In this paper, we consider the linear time-invariant system defined in Hilbert spaces involving unbounded input and output operators. For a general class of such systems, the Chandrasekhar equations are derived and the existence, uniqueness, and regularity of the results of their solutions established.

  11. Unsteady Flow Simulation: A Numerical Challenge

    DTIC Science & Technology

    2003-03-01

    drive to convergence the numerical unsteady term. The time marching procedure is based on the approximate implicit Newton method for systems of non...computed through analytical derivatives of S. The linear system stemming from equation (3) is solved at each integration step by the same iterative method...significant reduction of memory usage, thanks to the reduced dimensions of the linear system matrix during the implicit marching of the solution. The

  12. ELASTIC NET FOR COX'S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM.

    PubMed

    Wu, Yichao

    2012-01-01

    For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox's proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox's proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems.

  13. Stability margin of linear systems with parameters described by fuzzy numbers.

    PubMed

    Husek, Petr

    2011-10-01

    This paper deals with the linear systems with uncertain parameters described by fuzzy numbers. The problem of determining the stability margin of those systems with linear affine dependence of the coefficients of a characteristic polynomial on system parameters is studied. Fuzzy numbers describing the system parameters are allowed to be characterized by arbitrary nonsymmetric membership functions. An elegant solution, graphical in nature, based on generalization of the Tsypkin-Polyak plot is presented. The advantage of the presented approach over the classical robust concept is demonstrated on a control of the Fiat Dedra engine model and a control of the quarter car suspension model.

  14. On the Convenience of Using the Complete Linearization Method in Modelling the BLR of AGN

    NASA Astrophysics Data System (ADS)

    Patriarchi, P.; Perinotto, M.

    The Complete Linearization Method (Mihalas, 1978) consists in the determination of the radiation field (at a set of frequency points), atomic level populations, temperature, electron density etc., by resolving the system of radiative transfer, thermal equilibrium, statistical equilibrium equations simultaneously and self-consistently. Since the system is not linear, it must be solved by iteration after linearization, using a perturbative method, starting from an initial guess solution. Of course the Complete Linearization Method is more time consuming than the previous one. But how great can this disadvantage be in the age of supercomputers? It is possible to approximately evaluate the CPU time needed to run a model by computing the number of multiplications necessary to solve the system.

  15. A New Stochastic Equivalent Linearization Implementation for Prediction of Geometrically Nonlinear Vibrations

    NASA Technical Reports Server (NTRS)

    Muravyov, Alexander A.; Turner, Travis L.; Robinson, Jay H.; Rizzi, Stephen A.

    1999-01-01

    In this paper, the problem of random vibration of geometrically nonlinear MDOF structures is considered. The solutions obtained by application of two different versions of a stochastic linearization method are compared with exact (F-P-K) solutions. The formulation of a relatively new version of the stochastic linearization method (energy-based version) is generalized to the MDOF system case. Also, a new method for determination of nonlinear sti ness coefficients for MDOF structures is demonstrated. This method in combination with the equivalent linearization technique is implemented in a new computer program. Results in terms of root-mean-square (RMS) displacements obtained by using the new program and an existing in-house code are compared for two examples of beam-like structures.

  16. Symbolic Solution of Linear Differential Equations

    NASA Technical Reports Server (NTRS)

    Feinberg, R. B.; Grooms, R. G.

    1981-01-01

    An algorithm for solving linear constant-coefficient ordinary differential equations is presented. The computational complexity of the algorithm is discussed and its implementation in the FORMAC system is described. A comparison is made between the algorithm and some classical algorithms for solving differential equations.

  17. FAST TRACK PAPER: Non-iterative multiple-attenuation methods: linear inverse solutions to non-linear inverse problems - II. BMG approximation

    NASA Astrophysics Data System (ADS)

    Ikelle, Luc T.; Osen, Are; Amundsen, Lasse; Shen, Yunqing

    2004-12-01

    The classical linear solutions to the problem of multiple attenuation, like predictive deconvolution, τ-p filtering, or F-K filtering, are generally fast, stable, and robust compared to non-linear solutions, which are generally either iterative or in the form of a series with an infinite number of terms. These qualities have made the linear solutions more attractive to seismic data-processing practitioners. However, most linear solutions, including predictive deconvolution or F-K filtering, contain severe assumptions about the model of the subsurface and the class of free-surface multiples they can attenuate. These assumptions limit their usefulness. In a recent paper, we described an exception to this assertion for OBS data. We showed in that paper that a linear and non-iterative solution to the problem of attenuating free-surface multiples which is as accurate as iterative non-linear solutions can be constructed for OBS data. We here present a similar linear and non-iterative solution for attenuating free-surface multiples in towed-streamer data. For most practical purposes, this linear solution is as accurate as the non-linear ones.

  18. A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics. Part 1. Analysis Development

    DTIC Science & Technology

    1980-06-01

    sufficient. Dropping the time lag terms, the equations for Xu, Xx’, and X reduce to linear algebraic equations.Y Hence in the quasistatic case the...quasistatic variables now are not described by differential equations but rather by linear algebraic equations. The solution for x0 then is simply -365...matrices for two-bladed rotor 414 7. LINEAR SYSTEM ANALYSIS 425 7,1 State Variable Form 425 7.2 Constant Coefficient System 426 7.2. 1 Eigen-analysis 426

  19. Predicting the Underwater Sound of Moderate and Heavy Rainfall from Laboratory Measurements of Radiation from Single Large Raindrops

    DTIC Science & Technology

    1992-03-01

    Elementary Linear Algebra with Applications, pp. 301- 323, John Wiley and Sons Inc., 1987. Atlas, D., and Ulbrich, C. E. W., "The Physical Basis for...vector drd In this case, the linear system is said to be inconsistent ( Anton and Rorres, 1987). In contrast, for an underdetermined system (where the...ocean acoustical tomography and seismology. In simplest terms, the general linear inverse problem consists of fimding the desired solution to a set of m

  20. Application of a local linearization technique for the solution of a system of stiff differential equations associated with the simulation of a magnetic bearing assembly

    NASA Technical Reports Server (NTRS)

    Kibler, K. S.; Mcdaniel, G. A.

    1981-01-01

    A digital local linearization technique was used to solve a system of stiff differential equations which simulate a magnetic bearing assembly. The results prove the technique to be accurate, stable, and efficient when compared to a general purpose variable order Adams method with a stiff option.

  1. Investigation of broadband digital predistortion for broadband radio over fiber transmission systems

    NASA Astrophysics Data System (ADS)

    Zhang, Xiupu; Liu, Taijun; Shen, Dongya

    2016-12-01

    In future broadband cloud radio access networks (C-RAN), front-haul transmission systems play a significant role in performance and cost of C-RAN. Broadband and high linearity radio over fiber (RoF) transmission systems are considered a promising solution for the front-haul. Digital linearization is one possible solution for RoF front-haul. In this paper, we investigate RF domain digital predistortion (DPD) linearization for broadband RoF front-haul. The implemented DPD is first investigated in 2.4 GHz WiFi over fiber transmission systems at 36 Mb/s, and more than 8-dB and 5.6-dB improvements of error vector magnitude (EVM) are achieved in back to back (BTB) and after 10 km single mode fiber (SMF) transmission. Further, both WiFi and ultra wide band (UWB) wireless signals are transmitted together, in which the DPD has linearization bandwidth of 2.4 GHz. It is shown that the implemented DPD leads to EVM improvements of 4.5-dB (BTB) and 3.1-dB (10 km SMF) for the WiFi signal, and 4.6-dB (BTB) and 4-dB (10 km SMF) for the broadband UWB signal.

  2. An iterative technique to stabilize a linear time invariant multivariable system with output feedback

    NASA Technical Reports Server (NTRS)

    Sankaran, V.

    1974-01-01

    An iterative procedure for determining the constant gain matrix that will stabilize a linear constant multivariable system using output feedback is described. The use of this procedure avoids the transformation of variables which is required in other procedures. For the case in which the product of the output and input vector dimensions is greater than the number of states of the plant, general solution is given. In the case in which the states exceed the product of input and output vector dimensions, a least square solution which may not be stable in all cases is presented. The results are illustrated with examples.

  3. Monte Carlo, Probability, Algebra, and Pi.

    ERIC Educational Resources Information Center

    Hinders, Duane C.

    1981-01-01

    The uses of random number generators are illustrated in three ways: (1) the solution of a probability problem using a coin; (2) the solution of a system of simultaneous linear equations using a die; and (3) the approximation of pi using darts. (MP)

  4. Linear homotopy solution of nonlinear systems of equations in geodesy

    NASA Astrophysics Data System (ADS)

    Paláncz, Béla; Awange, Joseph L.; Zaletnyik, Piroska; Lewis, Robert H.

    2010-01-01

    A fundamental task in geodesy is solving systems of equations. Many geodetic problems are represented as systems of multivariate polynomials. A common problem in solving such systems is improper initial starting values for iterative methods, leading to convergence to solutions with no physical meaning, or to convergence that requires global methods. Though symbolic methods such as Groebner bases or resultants have been shown to be very efficient, i.e., providing solutions for determined systems such as 3-point problem of 3D affine transformation, the symbolic algebra can be very time consuming, even with special Computer Algebra Systems (CAS). This study proposes the Linear Homotopy method that can be implemented easily in high-level computer languages like C++ and Fortran that are faster than CAS by at least two orders of magnitude. Using Mathematica, the power of Homotopy is demonstrated in solving three nonlinear geodetic problems: resection, GPS positioning, and affine transformation. The method enlarging the domain of convergence is found to be efficient, less sensitive to rounding of numbers, and has lower complexity compared to other local methods like Newton-Raphson.

  5. Stability of Bifurcating Stationary Solutions of the Artificial Compressible System

    NASA Astrophysics Data System (ADS)

    Teramoto, Yuka

    2018-02-01

    The artificial compressible system gives a compressible approximation of the incompressible Navier-Stokes system. The latter system is obtained from the former one in the zero limit of the artificial Mach number ɛ which is a singular limit. The sets of stationary solutions of both systems coincide with each other. It is known that if a stationary solution of the incompressible system is asymptotically stable and the velocity field of the stationary solution satisfies an energy-type stability criterion, then it is also stable as a solution of the artificial compressible one for sufficiently small ɛ . In general, the range of ɛ shrinks when the spectrum of the linearized operator for the incompressible system approaches to the imaginary axis. This can happen when a stationary bifurcation occurs. It is proved that when a stationary bifurcation from a simple eigenvalue occurs, the range of ɛ can be taken uniformly near the bifurcation point to conclude the stability of the bifurcating solution as a solution of the artificial compressible system.

  6. Some estimation formulae for continuous time-invariant linear systems

    NASA Technical Reports Server (NTRS)

    Bierman, G. J.; Sidhu, G. S.

    1975-01-01

    In this brief paper we examine a Riccati equation decomposition due to Reid and Lainiotis and apply the result to the continuous time-invariant linear filtering problem. Exploitation of the time-invariant structure leads to integration-free covariance recursions which are of use in covariance analyses and in filter implementations. A super-linearly convergent iterative solution to the algebraic Riccati equation (ARE) is developed. The resulting algorithm, arranged in a square-root form, is thought to be numerically stable and competitive with other ARE solution methods. Certain covariance relations that are relevant to the fixed-point and fixed-lag smoothing problems are also discussed.

  7. Linear and non-linear dynamic models of a geared rotor-bearing system

    NASA Technical Reports Server (NTRS)

    Kahraman, Ahmet; Singh, Rajendra

    1990-01-01

    A three degree of freedom non-linear model of a geared rotor-bearing system with gear backlash and radial clearances in rolling element bearings is proposed here. This reduced order model can be used to describe the transverse-torsional motion of the system. It is justified by comparing the eigen solutions yielded by corresponding linear model with the finite element method results. Nature of nonlinearities in bearings is examined and two approximate nonlinear stiffness functions are proposed. These approximate bearing models are verified by comparing their frequency responses with the results given by the exact form of nonlinearity. The proposed nonlinear dynamic model of the geared rotor-bearing system can be used to investigate the dynamic behavior and chaos.

  8. Multi-flexible-body analysis for application to wind turbine control design

    NASA Astrophysics Data System (ADS)

    Lee, Donghoon

    The objective of the present research is to build a theoretical and computational framework for the aeroelastic analysis of flexible rotating systems, more specifically with special application to a wind turbine control design. The methodology is based on the integration of Kane's approach for the analysis of the multi-rigid-body subsystem and a mixed finite element method for the analysis of the flexible-body subsystem. The combined analysis is then strongly coupled with an aerodynamic model based on Blade Element Momentum theory for inflow model. The unified framework from the analysis of subsystems is represented as, in a symbolic manner, a set of nonlinear ordinary differential equations with time-variant, periodic coefficients, which describe the aeroelastic behavior of whole system. The framework can be directly applied to control design due to its symbolic characteristics. The solution procedures for the equations are presented for the study of nonlinear simulation, periodic steady-state solution, and Floquet stability of the linearized system about the steady-state solution. Finally the linear periodic system equation can be obtained with both system and control matrices as explicit functions of time, which can be directly applicable to control design. The structural model is validated by comparison of its results with those from software, some of which is commercial. The stability of the linearized system about periodic steady-state solution is different from that obtained about a constant steady-state solution, which have been conventional in the field of wind turbine dynamics. Parametric studies are performed on a wind turbine model with various pitch angles, precone angles, and rotor speeds. Combined with composite material, their effects on wind turbine aeroelastic stability are investigated. Finally it is suggested that the aeroelastic stability analysis and control design for the whole system is crucial for the design of wind turbines, and the present research breaks new ground in the ability to treat the issue.

  9. Controllable rogue waves in the nonautonomous nonlinear system with a linear potential

    NASA Astrophysics Data System (ADS)

    Dai, C. Q.; Zheng, C. L.; Zhu, H. P.

    2012-04-01

    Based on the similarity transformation connected the nonautonomous nonlinear Schrödinger equation with the autonomous nonlinear Schrödinger equation, we firstly derive self-similar rogue wave solutions (rational solutions) for the nonautonomous nonlinear system with a linear potential. Then, we investigate the controllable behaviors of one-rogue wave, two-rogue wave and rogue wave triplets in a soliton control system. Our results demonstrate that the propagation behaviors of rogue waves, including postpone, sustainment, recurrence and annihilation, can be manipulated by choosing the relation between the maximum value of the effective propagation distance Z m and the parameter Z 0. Moreover, the excitation time of controllable rogue waves is decided by the parameter T 0.

  10. Block Gauss elimination followed by a classical iterative method for the solution of linear systems

    NASA Astrophysics Data System (ADS)

    Alanelli, Maria; Hadjidimos, Apostolos

    2004-02-01

    In the last two decades many papers have appeared in which the application of an iterative method for the solution of a linear system is preceded by a step of the Gauss elimination process in the hope that this will increase the rates of convergence of the iterative method. This combination of methods has been proven successful especially when the matrix A of the system is an M-matrix. The purpose of this paper is to extend the idea of one to more Gauss elimination steps, consider other classes of matrices A, e.g., p-cyclic consistently ordered, and generalize and improve the asymptotic convergence rates of some of the methods known so far.

  11. Stabilisation of time-varying linear systems via Lyapunov differential equations

    NASA Astrophysics Data System (ADS)

    Zhou, Bin; Cai, Guang-Bin; Duan, Guang-Ren

    2013-02-01

    This article studies stabilisation problem for time-varying linear systems via state feedback. Two types of controllers are designed by utilising solutions to Lyapunov differential equations. The first type of feedback controllers involves the unique positive-definite solution to a parametric Lyapunov differential equation, which can be solved when either the state transition matrix of the open-loop system is exactly known, or the future information of the system matrices are accessible in advance. Different from the first class of controllers which may be difficult to implement in practice, the second type of controllers can be easily implemented by solving a state-dependent Lyapunov differential equation with a given positive-definite initial condition. In both cases, explicit conditions are obtained to guarantee the exponentially asymptotic stability of the associated closed-loop systems. Numerical examples show the effectiveness of the proposed approaches.

  12. Guaranteed estimation of solutions to Helmholtz transmission problems with uncertain data from their indirect noisy observations

    NASA Astrophysics Data System (ADS)

    Podlipenko, Yu. K.; Shestopalov, Yu. V.

    2017-09-01

    We investigate the guaranteed estimation problem of linear functionals from solutions to transmission problems for the Helmholtz equation with inexact data. The right-hand sides of equations entering the statements of transmission problems and the statistical characteristics of observation errors are supposed to be unknown and belonging to certain sets. It is shown that the optimal linear mean square estimates of the above mentioned functionals and estimation errors are expressed via solutions to the systems of transmission problems of the special type. The results and techniques can be applied in the analysis and estimation of solution to forward and inverse electromagnetic and acoustic problems with uncertain data that arise in mathematical models of the wave diffraction on transparent bodies.

  13. Mid-IR Lasers: Challenges Imposed by the Population Dynamics of the Gain System

    DTIC Science & Technology

    2010-09-01

    MicroSystems (IOMS) Central-Field Approximation: Perturbations 1. a) Non-centrosymmetric splitting (Coulomb interaction) ⇒ total orbital angular momentum b...Accordingly: ⇒ total electron-spin momentum 2. Spin-orbit coupling (“LS” coupling) ⇒ total angular momentum lanthanides: intermediate coupling (LS / jj) 3...MicroSystems (IOMS) Luminescence Decay Curves Rate-equation for decay: Solution ( Bernoulli -Eq.): Linearized solution: T. Jensen, Ph.D. Thesis, Univ. Hamburg

  14. An invariant asymptotic formula for solutions of second-order linear ODE's

    NASA Technical Reports Server (NTRS)

    Gingold, H.

    1988-01-01

    An invariant-matrix technique for the approximate solution of second-order ordinary differential equations (ODEs) of form y-double-prime = phi(x)y is developed analytically and demonstrated. A set of linear transformations for the companion matrix differential system is proposed; the diagonalization procedure employed in the final stage of the asymptotic decomposition is explained; and a scalar formulation of solutions for the ODEs is obtained. Several typical ODEs are analyzed, and it is shown that the Liouville-Green or WKB approximation is a special case of the present formula, which provides an approximation which is valid for the entire interval (0, infinity).

  15. Bimolecular Recombination Kinetics of an Exciton-Trion Gas

    DTIC Science & Technology

    2015-07-01

    3-D systems. Whereas a linear time-dependent system of first-order differential equations has only trivial steady- state solutions (all carrier...derivatives to zero, which reduces the system (Eq. 9) to the following set of 3 algebraic equations: ( ) ( ) ( ) ( ) 1 2 210 2 110...crossover around 20 ns. The exciton curve is nearly linear over a wide range from 10 ns to 50 ns. Fig. 2 Time dependence of carrier species for Λ = 4

  16. Cooperativity between various types of polar solute-solvent interactions in aqueous media.

    PubMed

    Madeira, Pedro P; Bessa, Ana; Loureiro, Joana A; Álvares-Ribeiro, Luís; Rodrigues, Alírio E; Zaslavsky, Boris Y

    2015-08-21

    Partition coefficients of seven low molecular weight compounds were measured in multiple aqueous two-phase systems (ATPSs) formed by pairs of different polymers. The ionic composition of each ATPS was varied to include 0.01M sodium phosphate buffer (NaPB), pH 7.4 and 0.1M Na2SO4, 0.15M NaCl, and 0.15M NaClO4 all in 0.01M NaPB, pH 7.4. The differences between the solvent features of the coexisting phases in all the ATPSs were estimated from partitioning of a homologous series of dinitrophenylated-amino acids and by the solvatochromic method. The solute-specific coefficients for the compounds examined were determined by the multiple linear regression analysis using the modified linear solvation energy relationship equation. It is established that the solute specific coefficients characterizing different types of the solute-water interactions (dipole-dipole, dipole-ion, and H-bonding) for a given solute change in the presence of different salt additives in the solute specific manner. It is also found that these characteristics are linearly interrelated. It is suggested that there is a cooperativity between various types of solute-water interactions governed by the solute structure. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. A parallel solver for huge dense linear systems

    NASA Astrophysics Data System (ADS)

    Badia, J. M.; Movilla, J. L.; Climente, J. I.; Castillo, M.; Marqués, M.; Mayo, R.; Quintana-Ortí, E. S.; Planelles, J.

    2011-11-01

    HDSS (Huge Dense Linear System Solver) is a Fortran Application Programming Interface (API) to facilitate the parallel solution of very large dense systems to scientists and engineers. The API makes use of parallelism to yield an efficient solution of the systems on a wide range of parallel platforms, from clusters of processors to massively parallel multiprocessors. It exploits out-of-core strategies to leverage the secondary memory in order to solve huge linear systems O(100.000). The API is based on the parallel linear algebra library PLAPACK, and on its Out-Of-Core (OOC) extension POOCLAPACK. Both PLAPACK and POOCLAPACK use the Message Passing Interface (MPI) as the communication layer and BLAS to perform the local matrix operations. The API provides a friendly interface to the users, hiding almost all the technical aspects related to the parallel execution of the code and the use of the secondary memory to solve the systems. In particular, the API can automatically select the best way to store and solve the systems, depending of the dimension of the system, the number of processes and the main memory of the platform. Experimental results on several parallel platforms report high performance, reaching more than 1 TFLOP with 64 cores to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors. New version program summaryProgram title: Huge Dense System Solver (HDSS) Catalogue identifier: AEHU_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHU_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 87 062 No. of bytes in distributed program, including test data, etc.: 1 069 110 Distribution format: tar.gz Programming language: Fortran90, C Computer: Parallel architectures: multiprocessors, computer clusters Operating system: Linux/Unix Has the code been vectorized or parallelized?: Yes, includes MPI primitives. RAM: Tested for up to 190 GB Classification: 6.5 External routines: MPI ( http://www.mpi-forum.org/), BLAS ( http://www.netlib.org/blas/), PLAPACK ( http://www.cs.utexas.edu/~plapack/), POOCLAPACK ( ftp://ftp.cs.utexas.edu/pub/rvdg/PLAPACK/pooclapack.ps) (code for PLAPACK and POOCLAPACK is included in the distribution). Catalogue identifier of previous version: AEHU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 182 (2011) 533 Does the new version supersede the previous version?: Yes Nature of problem: Huge scale dense systems of linear equations, Ax=B, beyond standard LAPACK capabilities. Solution method: The linear systems are solved by means of parallelized routines based on the LU factorization, using efficient secondary storage algorithms when the available main memory is insufficient. Reasons for new version: In many applications we need to guarantee a high accuracy in the solution of very large linear systems and we can do it by using double-precision arithmetic. Summary of revisions: Version 1.1 Can be used to solve linear systems using double-precision arithmetic. New version of the initialization routine. The user can choose the kind of arithmetic and the values of several parameters of the environment. Running time: About 5 hours to solve a system with more than 200 000 equations and more than 10 000 right-hand side vectors using double-precision arithmetic on an eight-node commodity cluster with a total of 64 Intel cores.

  18. AZTEC. Parallel Iterative method Software for Solving Linear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchinson, S.; Shadid, J.; Tuminaro, R.

    1995-07-01

    AZTEC is an interactive library that greatly simplifies the parrallelization process when solving the linear systems of equations Ax=b where A is a user supplied n X n sparse matrix, b is a user supplied vector of length n and x is a vector of length n to be computed. AZTEC is intended as a software tool for users who want to avoid cumbersome parallel programming details but who have large sparse linear systems which require an efficiently utilized parallel processing system. A collection of data transformation tools are provided that allow for easy creation of distributed sparse unstructured matricesmore » for parallel solutions.« less

  19. Well-posedness of characteristic symmetric hyperbolic systems

    NASA Astrophysics Data System (ADS)

    Secchi, Paolo

    1996-06-01

    We consider the initial-boundary-value problem for quasi-linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity. We show the well-posedness in Hadamard's sense (i.e., existence, uniqueness and continuous dependence of solutions on the data) of regular solutions in suitable functions spaces which take into account the loss of regularity in the normal direction to the characteristic boundary.

  20. Unsteady Solution of Non-Linear Differential Equations Using Walsh Function Series

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2015-01-01

    Walsh functions form an orthonormal basis set consisting of square waves. The discontinuous nature of square waves make the system well suited for representing functions with discontinuities. The product of any two Walsh functions is another Walsh function - a feature that can radically change an algorithm for solving non-linear partial differential equations (PDEs). The solution algorithm of non-linear differential equations using Walsh function series is unique in that integrals and derivatives may be computed using simple matrix multiplication of series representations of functions. Solutions to PDEs are derived as functions of wave component amplitude. Three sample problems are presented to illustrate the Walsh function series approach to solving unsteady PDEs. These include an advection equation, a Burgers equation, and a Riemann problem. The sample problems demonstrate the use of the Walsh function solution algorithms, exploiting Fast Walsh Transforms in multi-dimensions (O(Nlog(N))). Details of a Fast Walsh Reciprocal, defined here for the first time, enable inversion of aWalsh Symmetric Matrix in O(Nlog(N)) operations. Walsh functions have been derived using a fractal recursion algorithm and these fractal patterns are observed in the progression of pairs of wave number amplitudes in the solutions. These patterns are most easily observed in a remapping defined as a fractal fingerprint (FFP). A prolongation of existing solutions to the next highest order exploits these patterns. The algorithms presented here are considered a work in progress that provide new alternatives and new insights into the solution of non-linear PDEs.

  1. Linear quadratic regulators with eigenvalue placement in a horizontal strip

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1987-01-01

    A method for optimally shifting the imaginary parts of the open-loop poles of a multivariable control system to the desirable closed-loop locations is presented. The optimal solution with respect to a quadratic performance index is obtained by solving a linear matrix Liapunov equation.

  2. LDRD final report on massively-parallel linear programming : the parPCx system.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parekh, Ojas; Phillips, Cynthia Ann; Boman, Erik Gunnar

    2005-02-01

    This report summarizes the research and development performed from October 2002 to September 2004 at Sandia National Laboratories under the Laboratory-Directed Research and Development (LDRD) project ''Massively-Parallel Linear Programming''. We developed a linear programming (LP) solver designed to use a large number of processors. LP is the optimization of a linear objective function subject to linear constraints. Companies and universities have expended huge efforts over decades to produce fast, stable serial LP solvers. Previous parallel codes run on shared-memory systems and have little or no distribution of the constraint matrix. We have seen no reports of general LP solver runsmore » on large numbers of processors. Our parallel LP code is based on an efficient serial implementation of Mehrotra's interior-point predictor-corrector algorithm (PCx). The computational core of this algorithm is the assembly and solution of a sparse linear system. We have substantially rewritten the PCx code and based it on Trilinos, the parallel linear algebra library developed at Sandia. Our interior-point method can use either direct or iterative solvers for the linear system. To achieve a good parallel data distribution of the constraint matrix, we use a (pre-release) version of a hypergraph partitioner from the Zoltan partitioning library. We describe the design and implementation of our new LP solver called parPCx and give preliminary computational results. We summarize a number of issues related to efficient parallel solution of LPs with interior-point methods including data distribution, numerical stability, and solving the core linear system using both direct and iterative methods. We describe a number of applications of LP specific to US Department of Energy mission areas and we summarize our efforts to integrate parPCx (and parallel LP solvers in general) into Sandia's massively-parallel integer programming solver PICO (Parallel Interger and Combinatorial Optimizer). We conclude with directions for long-term future algorithmic research and for near-term development that could improve the performance of parPCx.« less

  3. Numerical solutions of nonlinear STIFF initial value problems by perturbed functional iterations

    NASA Technical Reports Server (NTRS)

    Dey, S. K.

    1982-01-01

    Numerical solution of nonlinear stiff initial value problems by a perturbed functional iterative scheme is discussed. The algorithm does not fully linearize the system and requires only the diagonal terms of the Jacobian. Some examples related to chemical kinetics are presented.

  4. Error compensation for hybrid-computer solution of linear differential equations

    NASA Technical Reports Server (NTRS)

    Kemp, N. H.

    1970-01-01

    Z-transform technique compensates for digital transport delay and digital-to-analog hold. Method determines best values for compensation constants in multi-step and Taylor series projections. Technique also provides hybrid-calculation error compared to continuous exact solution, plus system stability properties.

  5. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (CDC VERSION)

    NASA Technical Reports Server (NTRS)

    Armstrong, E. S.

    1994-01-01

    This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following computations: the eigenvalues and eigenvectors of real matrices; the relative stability of a given matrix; matrix factorization; the solution of linear constant coefficient vector-matrix algebraic equations; the controllability properties of a linear time-invariant system; the steady-state covariance matrix of an open-loop stable system forced by white noise; and the transient response of continuous linear time-invariant systems. The control law design routines of ORACLS implement some of the more common techniques of time-invariant LQG methodology. For the finite-duration optimal linear regulator problem with noise-free measurements, continuous dynamics, and integral performance index, a routine is provided which implements the negative exponential method for finding both the transient and steady-state solutions to the matrix Riccati equation. For the discrete version of this problem, the method of backwards differencing is applied to find the solutions to the discrete Riccati equation. A routine is also included to solve the steady-state Riccati equation by the Newton algorithms described by Klein, for continuous problems, and by Hewer, for discrete problems. Another routine calculates the prefilter gain to eliminate control state cross-product terms in the quadratic performance index and the weighting matrices for the sampled data optimal linear regulator problem. For cases with measurement noise, duality theory and optimal regulator algorithms are used to calculate solutions to the continuous and discrete Kalman-Bucy filter problems. Finally, routines are included to implement the continuous and discrete forms of the explicit (model-in-the-system) and implicit (model-in-the-performance-index) model following theory. These routines generate linear control laws which cause the output of a dynamic time-invariant system to track the output of a prescribed model. In order to apply ORACLS, the user must write an executive (driver) program which inputs the problem coefficients, formulates and selects the routines to be used to solve the problem, and specifies the desired output. There are three versions of ORACLS source code available for implementation: CDC, IBM, and DEC. The CDC version has been implemented on a CDC 6000 series computer with a central memory of approximately 13K (octal) of 60 bit words. The CDC version is written in FORTRAN IV, was developed in 1978, and last updated in 1989. The IBM version has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The IBM version is written in FORTRAN IV and was generated in 1981. The DEC version has been implemented on a VAX series computer operating under VMS. The VAX version is written in FORTRAN 77 and was generated in 1986.

  6. ORACLS- OPTIMAL REGULATOR ALGORITHMS FOR THE CONTROL OF LINEAR SYSTEMS (DEC VAX VERSION)

    NASA Technical Reports Server (NTRS)

    Frisch, H.

    1994-01-01

    This control theory design package, called Optimal Regulator Algorithms for the Control of Linear Systems (ORACLS), was developed to aid in the design of controllers and optimal filters for systems which can be modeled by linear, time-invariant differential and difference equations. Optimal linear quadratic regulator theory, currently referred to as the Linear-Quadratic-Gaussian (LQG) problem, has become the most widely accepted method of determining optimal control policy. Within this theory, the infinite duration time-invariant problems, which lead to constant gain feedback control laws and constant Kalman-Bucy filter gains for reconstruction of the system state, exhibit high tractability and potential ease of implementation. A variety of new and efficient methods in the field of numerical linear algebra have been combined into the ORACLS program, which provides for the solution to time-invariant continuous or discrete LQG problems. The ORACLS package is particularly attractive to the control system designer because it provides a rigorous tool for dealing with multi-input and multi-output dynamic systems in both continuous and discrete form. The ORACLS programming system is a collection of subroutines which can be used to formulate, manipulate, and solve various LQG design problems. The ORACLS program is constructed in a manner which permits the user to maintain considerable flexibility at each operational state. This flexibility is accomplished by providing primary operations, analysis of linear time-invariant systems, and control synthesis based on LQG methodology. The input-output routines handle the reading and writing of numerical matrices, printing heading information, and accumulating output information. The basic vector-matrix operations include addition, subtraction, multiplication, equation, norm construction, tracing, transposition, scaling, juxtaposition, and construction of null and identity matrices. The analysis routines provide for the following computations: the eigenvalues and eigenvectors of real matrices; the relative stability of a given matrix; matrix factorization; the solution of linear constant coefficient vector-matrix algebraic equations; the controllability properties of a linear time-invariant system; the steady-state covariance matrix of an open-loop stable system forced by white noise; and the transient response of continuous linear time-invariant systems. The control law design routines of ORACLS implement some of the more common techniques of time-invariant LQG methodology. For the finite-duration optimal linear regulator problem with noise-free measurements, continuous dynamics, and integral performance index, a routine is provided which implements the negative exponential method for finding both the transient and steady-state solutions to the matrix Riccati equation. For the discrete version of this problem, the method of backwards differencing is applied to find the solutions to the discrete Riccati equation. A routine is also included to solve the steady-state Riccati equation by the Newton algorithms described by Klein, for continuous problems, and by Hewer, for discrete problems. Another routine calculates the prefilter gain to eliminate control state cross-product terms in the quadratic performance index and the weighting matrices for the sampled data optimal linear regulator problem. For cases with measurement noise, duality theory and optimal regulator algorithms are used to calculate solutions to the continuous and discrete Kalman-Bucy filter problems. Finally, routines are included to implement the continuous and discrete forms of the explicit (model-in-the-system) and implicit (model-in-the-performance-index) model following theory. These routines generate linear control laws which cause the output of a dynamic time-invariant system to track the output of a prescribed model. In order to apply ORACLS, the user must write an executive (driver) program which inputs the problem coefficients, formulates and selects the routines to be used to solve the problem, and specifies the desired output. There are three versions of ORACLS source code available for implementation: CDC, IBM, and DEC. The CDC version has been implemented on a CDC 6000 series computer with a central memory of approximately 13K (octal) of 60 bit words. The CDC version is written in FORTRAN IV, was developed in 1978, and last updated in 1986. The IBM version has been implemented on an IBM 370 series computer with a central memory requirement of approximately 300K of 8 bit bytes. The IBM version is written in FORTRAN IV and was generated in 1981. The DEC version has been implemented on a VAX series computer operating under VMS. The VAX version is written in FORTRAN 77 and was generated in 1986.

  7. Heat kernel for the elliptic system of linear elasticity with boundary conditions

    NASA Astrophysics Data System (ADS)

    Taylor, Justin; Kim, Seick; Brown, Russell

    2014-10-01

    We consider the elliptic system of linear elasticity with bounded measurable coefficients in a domain where the second Korn inequality holds. We construct heat kernel of the system subject to Dirichlet, Neumann, or mixed boundary condition under the assumption that weak solutions of the elliptic system are Hölder continuous in the interior. Moreover, we show that if weak solutions of the mixed problem are Hölder continuous up to the boundary, then the corresponding heat kernel has a Gaussian bound. In particular, if the domain is a two dimensional Lipschitz domain satisfying a corkscrew or non-tangential accessibility condition on the set where we specify Dirichlet boundary condition, then we show that the heat kernel has a Gaussian bound. As an application, we construct Green's function for elliptic mixed problem in such a domain.

  8. A monolithic Lagrangian approach for fluid-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Ryzhakov, P. B.; Rossi, R.; Idelsohn, S. R.; Oñate, E.

    2010-11-01

    Current work presents a monolithic method for the solution of fluid-structure interaction problems involving flexible structures and free-surface flows. The technique presented is based upon the utilization of a Lagrangian description for both the fluid and the structure. A linear displacement-pressure interpolation pair is used for the fluid whereas the structure utilizes a standard displacement-based formulation. A slight fluid compressibility is assumed that allows to relate the mechanical pressure to the local volume variation. The method described features a global pressure condensation which in turn enables the definition of a purely displacement-based linear system of equations. A matrix-free technique is used for the solution of such linear system, leading to an efficient implementation. The result is a robust method which allows dealing with FSI problems involving arbitrary variations in the shape of the fluid domain. The method is completely free of spurious added-mass effects.

  9. Parallel computation using boundary elements in solid mechanics

    NASA Technical Reports Server (NTRS)

    Chien, L. S.; Sun, C. T.

    1990-01-01

    The inherent parallelism of the boundary element method is shown. The boundary element is formulated by assuming the linear variation of displacements and tractions within a line element. Moreover, MACSYMA symbolic program is employed to obtain the analytical results for influence coefficients. Three computational components are parallelized in this method to show the speedup and efficiency in computation. The global coefficient matrix is first formed concurrently. Then, the parallel Gaussian elimination solution scheme is applied to solve the resulting system of equations. Finally, and more importantly, the domain solutions of a given boundary value problem are calculated simultaneously. The linear speedups and high efficiencies are shown for solving a demonstrated problem on Sequent Symmetry S81 parallel computing system.

  10. Solving the linear inviscid shallow water equations in one dimension, with variable depth, using a recursion formula

    NASA Astrophysics Data System (ADS)

    Hernandez-Walls, R.; Martín-Atienza, B.; Salinas-Matus, M.; Castillo, J.

    2017-11-01

    When solving the linear inviscid shallow water equations with variable depth in one dimension using finite differences, a tridiagonal system of equations must be solved. Here we present an approach, which is more efficient than the commonly used numerical method, to solve this tridiagonal system of equations using a recursion formula. We illustrate this approach with an example in which we solve for a rectangular channel to find the resonance modes. Our numerical solution agrees very well with the analytical solution. This new method is easy to use and understand by undergraduate students, so it can be implemented in undergraduate courses such as Numerical Methods, Lineal Algebra or Differential Equations.

  11. Digital program for solving the linear stochastic optimal control and estimation problem

    NASA Technical Reports Server (NTRS)

    Geyser, L. C.; Lehtinen, B.

    1975-01-01

    A computer program is described which solves the linear stochastic optimal control and estimation (LSOCE) problem by using a time-domain formulation. The LSOCE problem is defined as that of designing controls for a linear time-invariant system which is disturbed by white noise in such a way as to minimize a performance index which is quadratic in state and control variables. The LSOCE problem and solution are outlined; brief descriptions are given of the solution algorithms, and complete descriptions of each subroutine, including usage information and digital listings, are provided. A test case is included, as well as information on the IBM 7090-7094 DCS time and storage requirements.

  12. Analytical description of the ternary melt and solution crystallization with a non-linear phase diagram

    NASA Astrophysics Data System (ADS)

    Toropova, L. V.; Alexandrov, D. V.

    2018-05-01

    The directional solidification of a ternary system with an extended phase transition region is theoretically studied. A mathematical model is developed to describe quasi-stationary solidification, and its analytical solution is constructed with allowance for a nonlinear liquids line equation. We demonstrate that the phase diagram nonlinearity leads to substantial changes of analytical solutions.

  13. Finite-horizon differential games for missile-target interception system using adaptive dynamic programming with input constraints

    NASA Astrophysics Data System (ADS)

    Sun, Jingliang; Liu, Chunsheng

    2018-01-01

    In this paper, the problem of intercepting a manoeuvring target within a fixed final time is posed in a non-linear constrained zero-sum differential game framework. The Nash equilibrium solution is found by solving the finite-horizon constrained differential game problem via adaptive dynamic programming technique. Besides, a suitable non-quadratic functional is utilised to encode the control constraints into a differential game problem. The single critic network with constant weights and time-varying activation functions is constructed to approximate the solution of associated time-varying Hamilton-Jacobi-Isaacs equation online. To properly satisfy the terminal constraint, an additional error term is incorporated in a novel weight-updating law such that the terminal constraint error is also minimised over time. By utilising Lyapunov's direct method, the closed-loop differential game system and the estimation weight error of the critic network are proved to be uniformly ultimately bounded. Finally, the effectiveness of the proposed method is demonstrated by using a simple non-linear system and a non-linear missile-target interception system, assuming first-order dynamics for the interceptor and target.

  14. Computation of optimal output-feedback compensators for linear time-invariant systems

    NASA Technical Reports Server (NTRS)

    Platzman, L. K.

    1972-01-01

    The control of linear time-invariant systems with respect to a quadratic performance criterion was considered, subject to the constraint that the control vector be a constant linear transformation of the output vector. The optimal feedback matrix, f*, was selected to optimize the expected performance, given the covariance of the initial state. It is first shown that the expected performance criterion can be expressed as the ratio of two multinomials in the element of f. This expression provides the basis for a feasible method of determining f* in the case of single-input single-output systems. A number of iterative algorithms are then proposed for the calculation of f* for multiple input-output systems. For two of these, monotone convergence is proved, but they involve the solution of nonlinear matrix equations at each iteration. Another is proposed involving the solution of Lyapunov equations at each iteration, and the gradual increase of the magnitude of a penalty function. Experience with this algorithm will be needed to determine whether or not it does, indeed, possess desirable convergence properties, and whether it can be used to determine the globally optimal f*.

  15. Collapse for the higher-order nonlinear Schrödinger equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Achilleos, V.; Diamantidis, S.; Frantzeskakis, D. J.

    We examine conditions for finite-time collapse of the solutions of the higher-order nonlinear Schr odinger (NLS) equation incorporating third-order dispersion, self-steepening, linear and nonlinear gain and loss, and Raman scattering; this is a system that appears in many physical contexts as a more realistic generalization of the integrable NLS. By using energy arguments, it is found that the collapse dynamics is chiefly controlled by the linear/nonlinear gain/loss strengths. We identify a critical value of the linear gain, separating the possible decay of solutions to the trivial zero-state, from collapse. The numerical simulations, performed for a wide class of initial data,more » are found to be in very good agreement with the analytical results, and reveal long-time stability properties of localized solutions. The role of the higher-order effects to the transient dynamics is also revealed in these simulations.« less

  16. Collapse for the higher-order nonlinear Schrödinger equation

    DOE PAGES

    Achilleos, V.; Diamantidis, S.; Frantzeskakis, D. J.; ...

    2016-02-01

    We examine conditions for finite-time collapse of the solutions of the higher-order nonlinear Schr odinger (NLS) equation incorporating third-order dispersion, self-steepening, linear and nonlinear gain and loss, and Raman scattering; this is a system that appears in many physical contexts as a more realistic generalization of the integrable NLS. By using energy arguments, it is found that the collapse dynamics is chiefly controlled by the linear/nonlinear gain/loss strengths. We identify a critical value of the linear gain, separating the possible decay of solutions to the trivial zero-state, from collapse. The numerical simulations, performed for a wide class of initial data,more » are found to be in very good agreement with the analytical results, and reveal long-time stability properties of localized solutions. The role of the higher-order effects to the transient dynamics is also revealed in these simulations.« less

  17. ELASTIC NET FOR COX’S PROPORTIONAL HAZARDS MODEL WITH A SOLUTION PATH ALGORITHM

    PubMed Central

    Wu, Yichao

    2012-01-01

    For least squares regression, Efron et al. (2004) proposed an efficient solution path algorithm, the least angle regression (LAR). They showed that a slight modification of the LAR leads to the whole LASSO solution path. Both the LAR and LASSO solution paths are piecewise linear. Recently Wu (2011) extended the LAR to generalized linear models and the quasi-likelihood method. In this work we extend the LAR further to handle Cox’s proportional hazards model. The goal is to develop a solution path algorithm for the elastic net penalty (Zou and Hastie (2005)) in Cox’s proportional hazards model. This goal is achieved in two steps. First we extend the LAR to optimizing the log partial likelihood plus a fixed small ridge term. Then we define a path modification, which leads to the solution path of the elastic net regularized log partial likelihood. Our solution path is exact and piecewise determined by ordinary differential equation systems. PMID:23226932

  18. Linear Quadratic Mean Field Type Control and Mean Field Games with Common Noise, with Application to Production of an Exhaustible Resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Graber, P. Jameson, E-mail: jameson-graber@baylor.edu

    We study a general linear quadratic mean field type control problem and connect it to mean field games of a similar type. The solution is given both in terms of a forward/backward system of stochastic differential equations and by a pair of Riccati equations. In certain cases, the solution to the mean field type control is also the equilibrium strategy for a class of mean field games. We use this fact to study an economic model of production of exhaustible resources.

  19. Partner symmetries and non-invariant solutions of four-dimensional heavenly equations

    NASA Astrophysics Data System (ADS)

    Malykh, A. A.; Nutku, Y.; Sheftel, M. B.

    2004-07-01

    We extend our method of partner symmetries to the hyperbolic complex Monge-Ampère equation and the second heavenly equation of Plebañski. We show the existence of partner symmetries and derive the relations between them. For certain simple choices of partner symmetries the resulting differential constraints together with the original heavenly equations are transformed to systems of linear equations by an appropriate Legendre transformation. The solutions of these linear equations are generically non-invariant. As a consequence we obtain explicitly new classes of heavenly metrics without Killing vectors.

  20. ADER schemes for scalar non-linear hyperbolic conservation laws with source terms in three-space dimensions

    NASA Astrophysics Data System (ADS)

    Toro, E. F.; Titarev, V. A.

    2005-01-01

    In this paper we develop non-linear ADER schemes for time-dependent scalar linear and non-linear conservation laws in one-, two- and three-space dimensions. Numerical results of schemes of up to fifth order of accuracy in both time and space illustrate that the designed order of accuracy is achieved in all space dimensions for a fixed Courant number and essentially non-oscillatory results are obtained for solutions with discontinuities. We also present preliminary results for two-dimensional non-linear systems.

  1. Multi-Maneuver Clohessy-Wiltshire Targeting

    NASA Technical Reports Server (NTRS)

    Dannemiller, David P.

    2011-01-01

    Orbital rendezvous involves execution of a sequence of maneuvers by a chaser vehicle to bring the chaser to a desired state relative to a target vehicle while meeting intermediate and final relative constraints. Intermediate and final relative constraints are necessary to meet a multitude of requirements such as to control approach direction, ensure relative position is adequate for operation of space-to-space communication systems and relative sensors, provide fail-safe trajectory features, and provide contingency hold points. The effect of maneuvers on constraints is often coupled, so the maneuvers must be solved for as a set. For example, maneuvers that affect orbital energy change both the chaser's height and downrange position relative to the target vehicle. Rendezvous designers use experience and rules-of-thumb to design a sequence of maneuvers and constraints. A non-iterative method is presented for targeting a rendezvous scenario that includes a sequence of maneuvers and relative constraints. This method is referred to as Multi-Maneuver Clohessy-Wiltshire Targeting (MM_CW_TGT). When a single maneuver is targeted to a single relative position, the classic CW targeting solution is obtained. The MM_CW_TGT method involves manipulation of the CW state transition matrix to form a linear system. As a starting point for forming the algorithm, the effects of a series of impulsive maneuvers on the state are derived. Simple and moderately complex examples are used to demonstrate the pattern of the resulting linear system. The general form of the pattern results in an algorithm for formation of the linear system. The resulting linear system relates the effect of maneuver components and initial conditions on relative constraints specified by the rendezvous designer. Solution of the linear system includes the straight-forward inverse of a square matrix. Inversion of the square matrix is assured if the designer poses a controllable scenario - a scenario where the the constraints can be met by the sequence of maneuvers. Matrices in the linear system are dependent on selection of maneuvers and constraints by the designer, but the matrices are independent of the chaser's initial conditions. For scenarios where the sequence of maneuvers and constraints are fixed, the linear system can be formed and the square matrix inverted prior to real-time operations. Example solutions are presented for several rendezvous scenarios to illustrate the utility of the method. The MM_CW_TGT method has been used during the preliminary design of rendezvous scenarios and is expected to be useful for iterative methods in the generation of an initial guess and corrections.

  2. Time-periodic solutions of the Benjamin-Ono equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ambrose , D.M.; Wilkening, Jon

    2008-04-01

    We present a spectrally accurate numerical method for finding non-trivial time-periodic solutions of non-linear partial differential equations. The method is based on minimizing a functional (of the initial condition and the period) that is positive unless the solution is periodic, in which case it is zero. We solve an adjoint PDE to compute the gradient of this functional with respect to the initial condition. We include additional terms in the functional to specify the free parameters, which, in the case of the Benjamin-Ono equation, are the mean, a spatial phase, a temporal phase and the real part of one ofmore » the Fourier modes at t = 0. We use our method to study global paths of non-trivial time-periodic solutions connecting stationary and traveling waves of the Benjamin-Ono equation. As a starting guess for each path, we compute periodic solutions of the linearized problem by solving an infinite dimensional eigenvalue problem in closed form. We then use our numerical method to continue these solutions beyond the realm of linear theory until another traveling wave is reached (or until the solution blows up). By experimentation with data fitting, we identify the analytical form of the solutions on the path connecting the one-hump stationary solution to the two-hump traveling wave. We then derive exact formulas for these solutions by explicitly solving the system of ODE's governing the evolution of solitons using the ansatz suggested by the numerical simulations.« less

  3. Geometric model of pseudo-distance measurement in satellite location systems

    NASA Astrophysics Data System (ADS)

    Panchuk, K. L.; Lyashkov, A. A.; Lyubchinov, E. V.

    2018-04-01

    The existing mathematical model of pseudo-distance measurement in satellite location systems does not provide a precise solution of the problem, but rather an approximate one. The existence of such inaccuracy, as well as bias in measurement of distance from satellite to receiver, results in inaccuracy level of several meters. Thereupon, relevance of refinement of the current mathematical model becomes obvious. The solution of the system of quadratic equations used in the current mathematical model is based on linearization. The objective of the paper is refinement of current mathematical model and derivation of analytical solution of the system of equations on its basis. In order to attain the objective, geometric analysis is performed; geometric interpretation of the equations is given. As a result, an equivalent system of equations, which allows analytical solution, is derived. An example of analytical solution implementation is presented. Application of analytical solution algorithm to the problem of pseudo-distance measurement in satellite location systems allows to improve the accuracy such measurements.

  4. Development of a technique for estimating noise covariances using multiple observers

    NASA Technical Reports Server (NTRS)

    Bundick, W. Thomas

    1988-01-01

    Friedland's technique for estimating the unknown noise variances of a linear system using multiple observers has been extended by developing a general solution for the estimates of the variances, developing the statistics (mean and standard deviation) of these estimates, and demonstrating the solution on two examples.

  5. The existence of solutions of q-difference-differential equations.

    PubMed

    Wang, Xin-Li; Wang, Hua; Xu, Hong-Yan

    2016-01-01

    By using the Nevanlinna theory of value distribution, we investigate the existence of solutions of some types of non-linear q-difference differential equations. In particular, we generalize the Rellich-Wittich-type theorem and Malmquist-type theorem about differential equations to the case of q-difference differential equations (system).

  6. Optimal inventories for overhaul of repairable redundant systems - A Markov decision model

    NASA Technical Reports Server (NTRS)

    Schaefer, M. K.

    1984-01-01

    A Markovian decision model was developed to calculate the optimal inventory of repairable spare parts for an avionics control system for commercial aircraft. Total expected shortage costs, repair costs, and holding costs are minimized for a machine containing a single system of redundant parts. Transition probabilities are calculated for each repair state and repair rate, and optimal spare parts inventory and repair strategies are determined through linear programming. The linear programming solutions are given in a table.

  7. Decentralized Control and Multicriterion Decision Making.

    DTIC Science & Technology

    1979-12-01

    stabilizable and detectable? ’V L 42 Theorem 3.1: Existence of stabilizing solution. We assume that the system is jointly controllable R1 (0...a leader’s control that will make the system stabilizable for the follower and that in order for J to be finite the leader must choose F such1 1 that...a stabilizing solution will be developed. We restrict our attention to a formulation dealing with a linear continuous time system and in which

  8. Analysis of Operating Principles with S-system Models

    PubMed Central

    Lee, Yun; Chen, Po-Wei; Voit, Eberhard O.

    2011-01-01

    Operating principles address general questions regarding the response dynamics of biological systems as we observe or hypothesize them, in comparison to a priori equally valid alternatives. In analogy to design principles, the question arises: Why are some operating strategies encountered more frequently than others and in what sense might they be superior? It is at this point impossible to study operation principles in complete generality, but the work here discusses the important situation where a biological system must shift operation from its normal steady state to a new steady state. This situation is quite common and includes many stress responses. We present two distinct methods for determining different solutions to this task of achieving a new target steady state. Both methods utilize the property of S-system models within Biochemical Systems Theory (BST) that steady-states can be explicitly represented as systems of linear algebraic equations. The first method uses matrix inversion, a pseudo-inverse, or regression to characterize the entire admissible solution space. Operations on the basis of the solution space permit modest alterations of the transients toward the target steady state. The second method uses standard or mixed integer linear programming to determine admissible solutions that satisfy criteria of functional effectiveness, which are specified beforehand. As an illustration, we use both methods to characterize alternative response patterns of yeast subjected to heat stress, and compare them with observations from the literature. PMID:21377479

  9. Non-linear analysis of wave progagation using transform methods and plates and shells using integral equations

    NASA Astrophysics Data System (ADS)

    Pipkins, Daniel Scott

    Two diverse topics of relevance in modern computational mechanics are treated. The first involves the modeling of linear and non-linear wave propagation in flexible, lattice structures. The technique used combines the Laplace Transform with the Finite Element Method (FEM). The procedure is to transform the governing differential equations and boundary conditions into the transform domain where the FEM formulation is carried out. For linear problems, the transformed differential equations can be solved exactly, hence the method is exact. As a result, each member of the lattice structure is modeled using only one element. In the non-linear problem, the method is no longer exact. The approximation introduced is a spatial discretization of the transformed non-linear terms. The non-linear terms are represented in the transform domain by making use of the complex convolution theorem. A weak formulation of the resulting transformed non-linear equations yields a set of element level matrix equations. The trial and test functions used in the weak formulation correspond to the exact solution of the linear part of the transformed governing differential equation. Numerical results are presented for both linear and non-linear systems. The linear systems modeled are longitudinal and torsional rods and Bernoulli-Euler and Timoshenko beams. For non-linear systems, a viscoelastic rod and Von Karman type beam are modeled. The second topic is the analysis of plates and shallow shells under-going finite deflections by the Field/Boundary Element Method. Numerical results are presented for two plate problems. The first is the bifurcation problem associated with a square plate having free boundaries which is loaded by four, self equilibrating corner forces. The results are compared to two existing numerical solutions of the problem which differ substantially.

  10. A survey of the state of the art and focused research in range systems, task 2

    NASA Technical Reports Server (NTRS)

    Yao, K.

    1986-01-01

    Many communication, control, and information processing subsystems are modeled by linear systems incorporating tapped delay lines (TDL). Such optimized subsystems result in full precision multiplications in the TDL. In order to reduce complexity and cost in a microprocessor implementation, these multiplications can be replaced by single-shift instructions which are equivalent to powers of two multiplications. Since, in general, the obvious operation of rounding the infinite precision TDL coefficients to the nearest powers of two usually yield quite poor system performance, the optimum powers of two coefficient solution was considered. Detailed explanations on the use of branch-and-bound algorithms for finding the optimum powers of two solutions are given. Specific demonstration of this methodology to the design of a linear data equalizer and its implementation in assembly language on a 8080 microprocessor with a 12 bit A/D converter are reported. This simple microprocessor implementation with optimized TDL coefficients achieves a system performance comparable to the optimum linear equalization with full precision multiplications for an input data rate of 300 baud. The philosophy demonstrated in this implementation is dully applicable to many other microprocessor controlled information processing systems.

  11. Analysis of dynamic system response to product random processes

    NASA Technical Reports Server (NTRS)

    Sidwell, K.

    1978-01-01

    The response of dynamic systems to the product of two independent Gaussian random processes is developed by use of the Fokker-Planck and associated moment equations. The development is applied to the amplitude modulated process which is used to model atmospheric turbulence in aeronautical applications. The exact solution for the system response is compared with the solution obtained by the quasi-steady approximation which omits the dynamic properties of the random amplitude modulation. The quasi-steady approximation is valid as a limiting case of the exact solution for the dynamic response of linear systems to amplitude modulated processes. In the nonlimiting case the quasi-steady approximation can be invalid for dynamic systems with low damping.

  12. Construction of Orthonormal Wavelets Using Symbolic Algebraic Methods

    NASA Astrophysics Data System (ADS)

    Černá, Dana; Finěk, Václav

    2009-09-01

    Our contribution is concerned with the solution of nonlinear algebraic equations systems arising from the computation of scaling coefficients of orthonormal wavelets with compact support. Specifically Daubechies wavelets, symmlets, coiflets, and generalized coiflets. These wavelets are defined as a solution of equation systems which are partly linear and partly nonlinear. The idea of presented methods consists in replacing those equations for scaling coefficients by equations for scaling moments. It enables us to eliminate some quadratic conditions in the original system and then simplify it. The simplified system is solved with the aid of the Gröbner basis method. The advantage of our approach is that in some cases, it provides all possible solutions and these solutions can be computed to arbitrary precision. For small systems, we are even able to find explicit solutions. The computation was carried out by symbolic algebra software Maple.

  13. Interior-Point Methods for Linear Programming: A Challenge to the Simplex Method

    DTIC Science & Technology

    1988-07-01

    subsequently found that the method was first proposed by Dikin in 1967 [6]. Search directions are generated by the same system (5). Any hint of quadratic...1982). Inexact Newton methods, SIAM Journal on Numerical Analysis 19, 400-408. [6] I. I. Dikin (1967). Iterative solution of problems of linear and

  14. Sparse matrix methods based on orthogonality and conjugacy

    NASA Technical Reports Server (NTRS)

    Lawson, C. L.

    1973-01-01

    A matrix having a high percentage of zero elements is called spares. In the solution of systems of linear equations or linear least squares problems involving large sparse matrices, significant saving of computer cost can be achieved by taking advantage of the sparsity. The conjugate gradient algorithm and a set of related algorithms are described.

  15. Fixing convergence of Gaussian belief propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jason K; Bickson, Danny; Dolev, Danny

    Gaussian belief propagation (GaBP) is an iterative message-passing algorithm for inference in Gaussian graphical models. It is known that when GaBP converges it converges to the correct MAP estimate of the Gaussian random vector and simple sufficient conditions for its convergence have been established. In this paper we develop a double-loop algorithm for forcing convergence of GaBP. Our method computes the correct MAP estimate even in cases where standard GaBP would not have converged. We further extend this construction to compute least-squares solutions of over-constrained linear systems. We believe that our construction has numerous applications, since the GaBP algorithm ismore » linked to solution of linear systems of equations, which is a fundamental problem in computer science and engineering. As a case study, we discuss the linear detection problem. We show that using our new construction, we are able to force convergence of Montanari's linear detection algorithm, in cases where it would originally fail. As a consequence, we are able to increase significantly the number of users that can transmit concurrently.« less

  16. Solution Methods for 3D Tomographic Inversion Using A Highly Non-Linear Ray Tracer

    NASA Astrophysics Data System (ADS)

    Hipp, J. R.; Ballard, S.; Young, C. J.; Chang, M.

    2008-12-01

    To develop 3D velocity models to improve nuclear explosion monitoring capability, we have developed a 3D tomographic modeling system that traces rays using an implementation of the Um and Thurber ray pseudo- bending approach, with full enforcement of Snell's Law in 3D at the major discontinuities. Due to the highly non-linear nature of the ray tracer, however, we are forced to substantially damp the inversion in order to converge on a reasonable model. Unfortunately the amount of damping is not known a priori and can significantly extend the number of calls of the computationally expensive ray-tracer and the least squares matrix solver. If the damping term is too small the solution step-size produces either an un-realistic model velocity change or places the solution in or near a local minimum from which extrication is nearly impossible. If the damping term is too large, convergence can be very slow or premature convergence can occur. Standard approaches involve running inversions with a suite of damping parameters to find the best model. A better solution methodology is to take advantage of existing non-linear solution techniques such as Levenberg-Marquardt (LM) or quasi-newton iterative solvers. In particular, the LM algorithm was specifically designed to find the minimum of a multi-variate function that is expressed as the sum of squares of non-linear real-valued functions. It has become a standard technique for solving non-linear least squared problems, and is widely adopted in a broad spectrum of disciplines, including the geosciences. At each iteration, the LM approach dynamically varies the level of damping to optimize convergence. When the current estimate of the solution is far from the ultimate solution LM behaves as a steepest decent method, but transitions to Gauss- Newton behavior, with near quadratic convergence, as the estimate approaches the final solution. We show typical linear solution techniques and how they can lead to local minima if the damping is set too low. We also describe the LM technique and show how it automatically determines the appropriate damping factor as it iteratively converges on the best solution. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under Contract DE-AC04- 94AL85000.

  17. An approximation theory for the identification of nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.

  18. Oscillations and stability of numerical solutions of the heat conduction equation

    NASA Technical Reports Server (NTRS)

    Kozdoba, L. A.; Levi, E. V.

    1976-01-01

    The mathematical model and results of numerical solutions are given for the one dimensional problem when the linear equations are written in a rectangular coordinate system. All the computations are easily realizable for two and three dimensional problems when the equations are written in any coordinate system. Explicit and implicit schemes are shown in tabular form for stability and oscillations criteria; the initial temperature distribution is considered uniform.

  19. Semi-implicit finite difference methods for three-dimensional shallow water flow

    USGS Publications Warehouse

    Casulli, Vincenzo; Cheng, Ralph T.

    1992-01-01

    A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.

  20. Modeling meniscus rise in capillary tubes using fluid in rigid-body motion approach

    NASA Astrophysics Data System (ADS)

    Hamdan, Mohammad O.; Abu-Nabah, Bassam A.

    2018-04-01

    In this study, a new term representing net flux rate of linear momentum is introduced to Lucas-Washburn equation. Following a fluid in rigid-body motion in modeling the meniscus rise in vertical capillary tubes transforms the nonlinear Lucas-Washburn equation to a linear mass-spring-damper system. The linear nature of mass-spring-damper system with constant coefficients offers a nondimensional analytical solution where meniscus dynamics are dictated by two parameters, namely the system damping ratio and its natural frequency. This connects the numerous fluid-surface interaction physical and geometrical properties to rather two nondimensional parameters, which capture the underlying physics of meniscus dynamics in three distinct cases, namely overdamped, critically damped, and underdamped systems. Based on experimental data available in the literature and the understanding meniscus dynamics, the proposed model brings a new approach of understanding the system initial conditions. Accordingly, a closed form relation is produced for the imbibition velocity, which equals half of the Bosanquet velocity divided by the damping ratio. The proposed general analytical model is ideal for overdamped and critically damped systems. While for underdamped systems, the solution shows fair agreement with experimental measurements once the effective viscosity is determined. Moreover, the presented model shows meniscus oscillations around equilibrium height occur if the damping ratio is less than one.

  1. An Obstruction to the Integrability of a Class of Non-linear Wave Equations by 1-Stable Cartan Characteristics

    NASA Astrophysics Data System (ADS)

    Fackerell, E. D.; Hartley, D.; Tucker, R. W.

    We examine in detail the Cauchy problem for a class of non-linear hyperbolic equations in two independent variables. This class is motivated by the analysis of the dynamics of a line of non-linearly coupled particles by Fermi, Pasta, and Ulam and extends the recent investigation of this problem by Gardner and Kamran. We find conditions for the existence of a 1-stable Cartan characteristic of a Pfaffian exterior differential system whose integral curves provide a solution to the Cauchy problem. The same obstruction to involution is exposed in Darboux's method of integration and the two approaches are compared. A class of particular solutions to the obstruction is constructed.

  2. Continuum description of ionic and dielectric shielding for molecular-dynamics simulations of proteins in solution

    NASA Astrophysics Data System (ADS)

    Egwolf, Bernhard; Tavan, Paul

    2004-01-01

    We extend our continuum description of solvent dielectrics in molecular-dynamics (MD) simulations [B. Egwolf and P. Tavan, J. Chem. Phys. 118, 2039 (2003)], which has provided an efficient and accurate solution of the Poisson equation, to ionic solvents as described by the linearized Poisson-Boltzmann (LPB) equation. We start with the formulation of a general theory for the electrostatics of an arbitrarily shaped molecular system, which consists of partially charged atoms and is embedded in a LPB continuum. This theory represents the reaction field induced by the continuum in terms of charge and dipole densities localized within the molecular system. Because these densities cannot be calculated analytically for systems of arbitrary shape, we introduce an atom-based discretization and a set of carefully designed approximations. This allows us to represent the densities by charges and dipoles located at the atoms. Coupled systems of linear equations determine these multipoles and can be rapidly solved by iteration during a MD simulation. The multipoles yield the reaction field forces and energies. Finally, we scrutinize the quality of our approach by comparisons with an analytical solution restricted to perfectly spherical systems and with results of a finite difference method.

  3. Controller Synthesis for Periodically Forced Chaotic Systems

    NASA Astrophysics Data System (ADS)

    Basso, Michele; Genesio, Roberto; Giovanardi, Lorenzo

    Delayed feedback controllers are an appealing tool for stabilization of periodic orbits in chaotic systems. Despite their conceptual simplicity, specific and reliable design procedures are difficult to obtain, partly also because of their inherent infinite-dimensional structure. This chapter considers the use of finite dimensional linear time invariant controllers for stabilization of periodic solutions in a general class of sinusoidally forced nonlinear systems. For such controllers — which can be interpreted as rational approximations of the delayed ones — we provide a computationally attractive synthesis technique based on Linear Matrix Inequalities (LMIs), by mixing results concerning absolute stability of nonlinear systems and robustness of uncertain linear systems. The resulting controllers prove to be effective for chaos suppression in electronic circuits and systems, as shown by two different application examples.

  4. Nonlinear Model Predictive Control for Cooperative Control and Estimation

    NASA Astrophysics Data System (ADS)

    Ru, Pengkai

    Recent advances in computational power have made it possible to do expensive online computations for control systems. It is becoming more realistic to perform computationally intensive optimization schemes online on systems that are not intrinsically stable and/or have very small time constants. Being one of the most important optimization based control approaches, model predictive control (MPC) has attracted a lot of interest from the research community due to its natural ability to incorporate constraints into its control formulation. Linear MPC has been well researched and its stability can be guaranteed in the majority of its application scenarios. However, one issue that still remains with linear MPC is that it completely ignores the system's inherent nonlinearities thus giving a sub-optimal solution. On the other hand, if achievable, nonlinear MPC, would naturally yield a globally optimal solution and take into account all the innate nonlinear characteristics. While an exact solution to a nonlinear MPC problem remains extremely computationally intensive, if not impossible, one might wonder if there is a middle ground between the two. We tried to strike a balance in this dissertation by employing a state representation technique, namely, the state dependent coefficient (SDC) representation. This new technique would render an improved performance in terms of optimality compared to linear MPC while still keeping the problem tractable. In fact, the computational power required is bounded only by a constant factor of the completely linearized MPC. The purpose of this research is to provide a theoretical framework for the design of a specific kind of nonlinear MPC controller and its extension into a general cooperative scheme. The controller is designed and implemented on quadcopter systems.

  5. On solutions of the fifth-order dispersive equations with porous medium type non-linearity

    NASA Astrophysics Data System (ADS)

    Kocak, Huseyin; Pinar, Zehra

    2018-07-01

    In this work, we focus on obtaining the exact solutions of the fifth-order semi-linear and non-linear dispersive partial differential equations, which have the second-order diffusion-like (porous-type) non-linearity. The proposed equations were not studied in the literature in the sense of the exact solutions. We reveal solutions of the proposed equations using the classical Riccati equations method. The obtained exact solutions, which can play a key role to simulate non-linear waves in the medium with dispersion and diffusion, are illustrated and discussed in details.

  6. Discrete integration of continuous Kalman filtering equations for time invariant second-order structural systems

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith

    1990-01-01

    A general form for the first-order representation of the continuous second-order linear structural-dynamics equations is introduced to derive a corresponding form of first-order continuous Kalman filtering equations. Time integration of the resulting equations is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete Kalman filtering equations involving only symmetric sparse N x N solution matrices.

  7. Description of a computer program and numerical techniques for developing linear perturbation models from nonlinear systems simulations

    NASA Technical Reports Server (NTRS)

    Dieudonne, J. E.

    1978-01-01

    A numerical technique was developed which generates linear perturbation models from nonlinear aircraft vehicle simulations. The technique is very general and can be applied to simulations of any system that is described by nonlinear differential equations. The computer program used to generate these models is discussed, with emphasis placed on generation of the Jacobian matrices, calculation of the coefficients needed for solving the perturbation model, and generation of the solution of the linear differential equations. An example application of the technique to a nonlinear model of the NASA terminal configured vehicle is included.

  8. Three dimensional radiative flow of magnetite-nanofluid with homogeneous-heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Rashid, Madiha; Alsaedi, Ahmed

    2018-03-01

    Present communication deals with the effects of homogeneous-heterogeneous reactions in flow of nanofluid by non-linear stretching sheet. Water based nanofluid containing magnetite nanoparticles is considered. Non-linear radiation and non-uniform heat sink/source effects are examined. Non-linear differential systems are computed by Optimal homotopy analysis method (OHAM). Convergent solutions of nonlinear systems are established. The optimal data of auxiliary variables is obtained. Impact of several non-dimensional parameters for velocity components, temperature and concentration fields are examined. Graphs are plotted for analysis of surface drag force and heat transfer rate.

  9. On the continuous dependence with respect to sampling of the linear quadratic regulator problem for distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Wang, C.

    1990-01-01

    The convergence of solutions to the discrete or sampled time linear quadratic regulator problem and associated Riccati equation for infinite dimensional systems to the solutions to the corresponding continuous time problem and equation, as the length of the sampling interval (the sampling rate) tends toward zero (infinity) is established. Both the finite and infinite time horizon problems are studied. In the finite time horizon case, strong continuity of the operators which define the control system and performance index together with a stability and consistency condition on the sampling scheme are required. For the infinite time horizon problem, in addition, the sampled systems must be stabilizable and detectable, uniformly with respect to the sampling rate. Classes of systems for which this condition can be verified are discussed. Results of numerical studies involving the control of a heat/diffusion equation, a hereditary of delay system, and a flexible beam are presented and discussed.

  10. On the continuous dependence with respect to sampling of the linear quadratic regulator problem for distributed parameter system

    NASA Technical Reports Server (NTRS)

    Rosen, I. G.; Wang, C.

    1992-01-01

    The convergence of solutions to the discrete- or sampled-time linear quadratic regulator problem and associated Riccati equation for infinite-dimensional systems to the solutions to the corresponding continuous time problem and equation, as the length of the sampling interval (the sampling rate) tends toward zero(infinity) is established. Both the finite-and infinite-time horizon problems are studied. In the finite-time horizon case, strong continuity of the operators that define the control system and performance index, together with a stability and consistency condition on the sampling scheme are required. For the infinite-time horizon problem, in addition, the sampled systems must be stabilizable and detectable, uniformly with respect to the sampling rate. Classes of systems for which this condition can be verified are discussed. Results of numerical studies involving the control of a heat/diffusion equation, a hereditary or delay system, and a flexible beam are presented and discussed.

  11. Analytical Solution for Optimum Design of Furrow Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Kiwan, M. E.

    1996-05-01

    An analytical solution for the optimum design of furrow irrigation systems is derived. The non-linear calculus optimization method is used to formulate a general form for designing the optimum system elements under circumstances of maximizing the water application efficiency of the system during irrigation. Different system bases and constraints are considered in the solution. A full irrigation water depth is considered to be achieved at the tail of the furrow line. The solution is based on neglecting the recession and depletion times after off-irrigation. This assumption is valid in the case of open-end (free gradient) furrow systems rather than closed-end (closed dike) systems. Illustrative examples for different systems are presented and the results are compared with the output obtained using an iterative numerical solution method. The final derived solution is expressed as a function of the furrow length ratio (the furrow length to the water travelling distance). The function of water travelling developed by Reddy et al. is considered for reaching the optimum solution. As practical results from the study, the optimum furrow elements for free gradient systems can be estimated to achieve the maximum application efficiency, i.e. furrow length, water inflow rate and cutoff irrigation time.

  12. Trends in modern system theory

    NASA Technical Reports Server (NTRS)

    Athans, M.

    1976-01-01

    The topics considered are related to linear control system design, adaptive control, failure detection, control under failure, system reliability, and large-scale systems and decentralized control. It is pointed out that the design of a linear feedback control system which regulates a process about a desirable set point or steady-state condition in the presence of disturbances is a very important problem. The linearized dynamics of the process are used for design purposes. The typical linear-quadratic design involving the solution of the optimal control problem of a linear time-invariant system with respect to a quadratic performance criterion is considered along with gain reduction theorems and the multivariable phase margin theorem. The stumbling block in many adaptive design methodologies is associated with the amount of real time computation which is necessary. Attention is also given to the desperate need to develop good theories for large-scale systems, the beginning of a microprocessor revolution, the translation of the Wiener-Hopf theory into the time domain, and advances made in dynamic team theory, dynamic stochastic games, and finite memory stochastic control.

  13. A Numerical Scheme for Ordinary Differential Equations Having Time Varying and Nonlinear Coefficients Based on the State Transition Matrix

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2002-01-01

    A variable order method of integrating initial value ordinary differential equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. While it is more complex than most other methods, it produces exact solutions at arbitrary time step size when the time variation of the system can be modeled exactly by a polynomial. Solutions to several nonlinear problems exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with an exact solution and with solutions obtained by established methods.

  14. Strongly nonlinear waves in locally resonant granular chains

    DOE PAGES

    Liu, Lifeng; James, Guillaume; Kevrekidis, Panayotis; ...

    2016-09-23

    In this paper, we explore a recently proposed locally resonant granular system bearing harmonic internal resonators in a chain of beads interacting via Hertzian elastic contacts. In this system, we propose the existence of two types of configurations: (a) small-amplitude periodic traveling waves and (b) dark-breather solutions, i.e. exponentially localized, time-periodic states mounted on top of a non-vanishing background. A remarkable feature distinguishing our results from other settings where dark breathers are observed is the complete absence of precompression in the system, i.e. the absence of a linear spectral band. We also identify conditions under which the system admits long-livedmore » bright breather solutions. Our results are obtained by means of an asymptotic reduction to a suitably modified version of the so-called discrete p-Schrödinger (DpS) equation, which is established as controllably approximating the solutions of the original system for large but finite times (under suitable assumptions on the solution amplitude and the resonator mass). The findings are also corroborated by detailed numerical computations. Long-lived bright breathers are proved to exist over long but finite times, after which numerical simulations indicate that the breathers disintegrate. Finally, in line with these results, we prove that the only exact time-periodic bright breathers consist of trivial linear oscillations, without contact interactions between discrete elements.« less

  15. Linear frequency tuning in an LC-resonant system using a C-V response controllable MEMS varactor

    NASA Astrophysics Data System (ADS)

    Han, Chang-Hoon; Yoon, Yong-Hoon; Ko, Seung-Deok; Seo, Min-Ho; Yoon, Jun-Bo

    2017-12-01

    This paper proposes a device level solution to achieve linear frequency tuning with respect to a tuning voltage ( V tune ) sweep in an inductor ( L)-capacitor ( C) resonant system. Since the linearity of the resonant frequency vs. tuning voltage ( f- V) relationship in an LC-resonant system is closely related to the C- V response characteristic of the varactor, we propose a C- V response tunable varactor to realize the linear frequency tuning. The proposed varactor was fabricated using microelectromechanical system (MEMS) surface micromachining. The fabricated MEMS varactor has the ability to dynamically change the C- V response characteristic according to a curve control voltage ( V curve- control ). When V curve- control was increased from zero to 9 V, the C- V response curve was changed from a linear to a concave form (i.e., the capacitance decreased quickly in the low tuning voltage region and slowly in the high tuning voltage region). This change in the C- V response characteristic resulted in a change in the f- V relationship, and we successfully demonstrated almost perfectly linear frequency tuning in the LC-resonant system, with a linearity factor of 99.95%.

  16. Analytic Solutions of the Vector Burgers Equation

    NASA Technical Reports Server (NTRS)

    Nerney, Steven; Schmahl, Edward J.; Musielak, Z. E.

    1996-01-01

    The well-known analytical solution of Burgers' equation is extended to curvilinear coordinate systems in three dimensions by a method that is much simpler and more suitable to practical applications than that previously used. The results obtained are applied to incompressible flow with cylindrical symmetry, and also to the decay of an initially linearly increasing wind.

  17. Krylov subspace methods - Theory, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Sad, Youcef

    1990-01-01

    Projection methods based on Krylov subspaces for solving various types of scientific problems are reviewed. The main idea of this class of methods when applied to a linear system Ax = b, is to generate in some manner an approximate solution to the original problem from the so-called Krylov subspace span. Thus, the original problem of size N is approximated by one of dimension m, typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now becoming popular for solving nonlinear equations. The main ideas in Krylov subspace methods are shown and their use in solving linear systems, eigenvalue problems, parabolic partial differential equations, Liapunov matrix equations, and nonlinear system of equations are discussed.

  18. A perturbation analysis of a mechanical model for stable spatial patterning in embryology

    NASA Astrophysics Data System (ADS)

    Bentil, D. E.; Murray, J. D.

    1992-12-01

    We investigate a mechanical cell-traction mechanism that generates stationary spatial patterns. A linear analysis highlights the model's potential for these heterogeneous solutions. We use multiple-scale perturbation techniques to study the evolution of these solutions and compare our solutions with numerical simulations of the model system. We discuss some potential biological applications among which are the formation of ridge patterns, dermatoglyphs, and wound healing.

  19. The lifespan of 3D radial solutions to the non-isentropic relativistic Euler equations

    NASA Astrophysics Data System (ADS)

    Wei, Changhua

    2017-10-01

    This paper investigates the lower bound of the lifespan of three-dimensional spherically symmetric solutions to the non-isentropic relativistic Euler equations, when the initial data are prescribed as a small perturbation with compact support to a constant state. Based on the structure of the hyperbolic system, we show the almost global existence of the smooth solutions to Eulerian flows (polytropic gases and generalized Chaplygin gases) with genuinely nonlinear characteristics. While for the Eulerian flows (Chaplygin gas and stiff matter) with mild linearly degenerate characteristics, we show the global existence of the radial solutions, moreover, for the non-strictly hyperbolic system (pressureless perfect fluid) satisfying the mild linearly degenerate condition, we prove the blowup phenomenon of the radial solutions and show that the lifespan of the solutions is of order O(ɛ ^{-1}), where ɛ denotes the width of the perturbation. This work can be seen as a complement of our work (Lei and Wei in Math Ann 367:1363-1401, 2017) for relativistic Chaplygin gas and can also be seen as a generalization of the classical Eulerian fluids (Godin in Arch Ration Mech Anal 177:497-511, 2005, J Math Pures Appl 87:91-117, 2007) to the relativistic Eulerian fluids.

  20. Asymptotically Exact Solution of the Problem of Harmonic Vibrations of an Elastic Parallelepiped

    NASA Astrophysics Data System (ADS)

    Papkov, S. O.

    2017-11-01

    An asymptotically exact solution of the classical problem of elasticity about the steadystate forced vibrations of an elastic rectangular parallelepiped is constructed. The general solution of the vibration equations is constructed in the form of double Fourier series with undetermined coefficients, and an infinite system of linear algebraic equations is obtained for determining these coefficients. An analysis of the infinite system permits determining the asymptotics of the unknowns which are used to convolve the double series in both equations of the infinite systems and the displacement and stress components. The efficiency of this approach is illustrated by numerical examples and comparison with known solutions. The spectrum of the parallelepiped symmetric vibrations is studied for various ratios of its sides.

  1. Fundamental solution of the problem of linear programming and method of its determination

    NASA Technical Reports Server (NTRS)

    Petrunin, S. V.

    1978-01-01

    The idea of a fundamental solution to a problem in linear programming is introduced. A method of determining the fundamental solution and of applying this method to the solution of a problem in linear programming is proposed. Numerical examples are cited.

  2. Nonlinear system guidance in the presence of transmission zero dynamics

    NASA Technical Reports Server (NTRS)

    Meyer, G.; Hunt, L. R.; Su, R.

    1995-01-01

    An iterative procedure is proposed for computing the commanded state trajectories and controls that guide a possibly multiaxis, time-varying, nonlinear system with transmission zero dynamics through a given arbitrary sequence of control points. The procedure is initialized by the system inverse with the transmission zero effects nulled out. Then the 'steady state' solution of the perturbation model with the transmission zero dynamics intact is computed and used to correct the initial zero-free solution. Both time domain and frequency domain methods are presented for computing the steady state solutions of the possibly nonminimum phase transmission zero dynamics. The procedure is illustrated by means of linear and nonlinear examples.

  3. Linear or linearizable first-order delay ordinary differential equations and their Lie point symmetries

    NASA Astrophysics Data System (ADS)

    Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel

    2018-05-01

    A recent article was devoted to an analysis of the symmetry properties of a class of first-order delay ordinary differential systems (DODSs). Here we concentrate on linear DODSs, which have infinite-dimensional Lie point symmetry groups due to the linear superposition principle. Their symmetry algebra always contains a two-dimensional subalgebra realized by linearly connected vector fields. We identify all classes of linear first-order DODSs that have additional symmetries, not due to linearity alone, and we present representatives of each class. These additional symmetries are then used to construct exact analytical particular solutions using symmetry reduction.

  4. Neutron star dynamics under time-dependent external torques

    NASA Astrophysics Data System (ADS)

    Gügercinoǧlu, Erbil; Alpar, M. Ali

    2017-11-01

    The two-component model describes neutron star dynamics incorporating the response of the superfluid interior. Conventional solutions and applications involve constant external torques, as appropriate for radio pulsars on dynamical time-scales. We present the general solution of two-component dynamics under arbitrary time-dependent external torques, with internal torques that are linear in the rotation rates, or with the extremely non-linear internal torques due to vortex creep. The two-component model incorporating the response of linear or non-linear internal torques can now be applied not only to radio pulsars but also to magnetars and to neutron stars in binary systems, with strong observed variability and noise in the spin-down or spin-up rates. Our results allow the extraction of the time-dependent external torques from the observed spin-down (or spin-up) time series, \\dot{Ω }(t). Applications are discussed.

  5. A flow injection chemiluminescence system for the determination of isoniazid.

    PubMed

    Huang, Y; Zhang, Z; Zhang, D; Lv, J

    2000-10-01

    A chemiluminescence (CL) flow system is described for the determination of isoniazid based on its enhancement on the chemiluminescence (CL) emission produced upon mixing a hexacyanoferrate(III) solution with an alkaline luminol solution. The system responds linearly to isoniazid concentration in the range 0-1 mg/L with a detection limit (3sigma) of 0.03 microg/L, relative standard deviation (RSD) of 1.2% for 0.1 mg/L isoniazid (n = 11). The system has been successfully applied to the determination of isoniazid in pharmaceutical preparations.

  6. Effect of capillary forces on the nonstationary fall of a drop in an infinite fluid

    NASA Astrophysics Data System (ADS)

    Antanovskii, L. K.

    1991-12-01

    An explicit solution is presented for the linear problem concerning the motion of a drop in an infinite fluid in the presence of any number of surfactants (chemical reactions are not considered in the first approximation). It is shown that the behavior of the system considered is consistent with the Le Chatelier principle. The reactivity of the capillary forces is directly related to the fundamental principles of thermodynamics, which makes it possible to write equations of surfactant thermodiffusion in symmetric form and obtain a relatively simple solution to the linearized problem.

  7. Numerical solution of distributed order fractional differential equations

    NASA Astrophysics Data System (ADS)

    Katsikadelis, John T.

    2014-02-01

    In this paper a method for the numerical solution of distributed order FDEs (fractional differential equations) of a general form is presented. The method applies to both linear and nonlinear equations. The Caputo type fractional derivative is employed. The distributed order FDE is approximated with a multi-term FDE, which is then solved by adjusting appropriately the numerical method developed for multi-term FDEs by Katsikadelis. Several example equations are solved and the response of mechanical systems described by such equations is studied. The convergence and the accuracy of the method for linear and nonlinear equations are demonstrated through well corroborated numerical results.

  8. Existence and energy decay of a nonuniform Timoshenko system with second sound

    NASA Astrophysics Data System (ADS)

    Hamadouche, Taklit; Messaoudi, Salim A.

    2018-02-01

    In this paper, we consider a linear thermoelastic Timoshenko system with variable physical parameters, where the heat conduction is given by Cattaneo's law and the coupling is via the displacement equation. We discuss the well-posedness and the regularity of solution using the semigroup theory. Moreover, we establish the exponential decay result provided that the stability function χ r(x)=0. Otherwise, we show that the solution decays polynomially.

  9. Dynamic System Coupler Program (DYSCO 4.1). Volume 1. Theoretical Manual

    DTIC Science & Technology

    1989-01-01

    present analysis is as follows: 1. Triplet X, Y, Z represents an inertia frame, R. The R system coordinates are the rotor shaft axes when there is...small perturbation analysis . 2.5 3-D MODAL STRUCTURE - CFM3 A three-dimensional structure is represented as a linear combination of orth­ ogonal modes...Include rotor blade damage modeling, Elgen analysis development, general time history solution development, frequency domain solution development

  10. New trends in Taylor series based applications

    NASA Astrophysics Data System (ADS)

    Kocina, Filip; Šátek, Václav; Veigend, Petr; Nečasová, Gabriela; Valenta, Václav; Kunovský, Jiří

    2016-06-01

    The paper deals with the solution of large system of linear ODEs when minimal comunication among parallel processors is required. The Modern Taylor Series Method (MTSM) is used. The MTSM allows using a higher order during the computation that means a larger integration step size while keeping desired accuracy. As an example of complex systems we can take the Telegraph Equation Model. Symbolic and numeric solutions are compared when harmonic input signal is used.

  11. The design and implementation of cost-effective algorithms for direct solution of banded linear systems on the vector processor system 32 supercomputer

    NASA Technical Reports Server (NTRS)

    Samba, A. S.

    1985-01-01

    The problem of solving banded linear systems by direct (non-iterative) techniques on the Vector Processor System (VPS) 32 supercomputer is considered. Two efficient direct methods for solving banded linear systems on the VPS 32 are described. The vector cyclic reduction (VCR) algorithm is discussed in detail. The performance of the VCR on a three parameter model problem is also illustrated. The VCR is an adaptation of the conventional point cyclic reduction algorithm. The second direct method is the Customized Reduction of Augmented Triangles' (CRAT). CRAT has the dominant characteristics of an efficient VPS 32 algorithm. CRAT is tailored to the pipeline architecture of the VPS 32 and as a consequence the algorithm is implicitly vectorizable.

  12. USSR and Eastern Europe Scientific Abstracts, Electronics and Electrical Engineering, Number 33.

    DTIC Science & Technology

    1977-09-27

    reduces to an infinite system of linear homogeneous algebraic equations and leads to Mathieu functions of the k-th order. The solution is convergent in...cylinder walls to be infinitesimally thin ideal conductors. The problem is reduced to a system of Fredholm linear algebraic equations of the second...EXPECTED DEVELOPMENTS OF TRANSISTORIZED LOW-NOISE MICROWAVE AMPLIFIERS Prague SDELOVACI TECHNIKA in Czech Vol 25, No 2, Feb 77 pp 47-49 TALLO, ANTON

  13. Legendre-tau approximation for functional differential equations. Part 2: The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, K.; Teglas, R.

    1984-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  14. Legendre-tau approximation for functional differential equations. II - The linear quadratic optimal control problem

    NASA Technical Reports Server (NTRS)

    Ito, Kazufumi; Teglas, Russell

    1987-01-01

    The numerical scheme based on the Legendre-tau approximation is proposed to approximate the feedback solution to the linear quadratic optimal control problem for hereditary differential systems. The convergence property is established using Trotter ideas. The method yields very good approximations at low orders and provides an approximation technique for computing closed-loop eigenvalues of the feedback system. A comparison with existing methods (based on averaging and spline approximations) is made.

  15. Space-Time Adaptive Processing for Airborne Radar

    DTIC Science & Technology

    1994-12-13

    horizontal plane Uniform linear antenna array (possibly columns of a planar array) Identical element patterns 13 14 15 9 7 7,33 7 7 Target Model ...Parameters for Example Scenario 31 3 Assumptions Made for Radar System and Signal Model 52 4 Platform and Interference Scenario for Baseline Scenario. 61 5...pulses, is addressed first. Fully adaptive STAP requires the solution to a system of linear equations of size MN, where N is the number of array

  16. CORDIC-based digital signal processing (DSP) element for adaptive signal processing

    NASA Astrophysics Data System (ADS)

    Bolstad, Gregory D.; Neeld, Kenneth B.

    1995-04-01

    The High Performance Adaptive Weight Computation (HAWC) processing element is a CORDIC based application specific DSP element that, when connected in a linear array, can perform extremely high throughput (100s of GFLOPS) matrix arithmetic operations on linear systems of equations in real time. In particular, it very efficiently performs the numerically intense computation of optimal least squares solutions for large, over-determined linear systems. Most techniques for computing solutions to these types of problems have used either a hard-wired, non-programmable systolic array approach, or more commonly, programmable DSP or microprocessor approaches. The custom logic methods can be efficient, but are generally inflexible. Approaches using multiple programmable generic DSP devices are very flexible, but suffer from poor efficiency and high computation latencies, primarily due to the large number of DSP devices that must be utilized to achieve the necessary arithmetic throughput. The HAWC processor is implemented as a highly optimized systolic array, yet retains some of the flexibility of a programmable data-flow system, allowing efficient implementation of algorithm variations. This provides flexible matrix processing capabilities that are one to three orders of magnitude less expensive and more dense than the current state of the art, and more importantly, allows a realizable solution to matrix processing problems that were previously considered impractical to physically implement. HAWC has direct applications in RADAR, SONAR, communications, and image processing, as well as in many other types of systems.

  17. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models

    PubMed Central

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization. PMID:27243005

  18. Customized Steady-State Constraints for Parameter Estimation in Non-Linear Ordinary Differential Equation Models.

    PubMed

    Rosenblatt, Marcus; Timmer, Jens; Kaschek, Daniel

    2016-01-01

    Ordinary differential equation models have become a wide-spread approach to analyze dynamical systems and understand underlying mechanisms. Model parameters are often unknown and have to be estimated from experimental data, e.g., by maximum-likelihood estimation. In particular, models of biological systems contain a large number of parameters. To reduce the dimensionality of the parameter space, steady-state information is incorporated in the parameter estimation process. For non-linear models, analytical steady-state calculation typically leads to higher-order polynomial equations for which no closed-form solutions can be obtained. This can be circumvented by solving the steady-state equations for kinetic parameters, which results in a linear equation system with comparatively simple solutions. At the same time multiplicity of steady-state solutions is avoided, which otherwise is problematic for optimization. When solved for kinetic parameters, however, steady-state constraints tend to become negative for particular model specifications, thus, generating new types of optimization problems. Here, we present an algorithm based on graph theory that derives non-negative, analytical steady-state expressions by stepwise removal of cyclic dependencies between dynamical variables. The algorithm avoids multiple steady-state solutions by construction. We show that our method is applicable to most common classes of biochemical reaction networks containing inhibition terms, mass-action and Hill-type kinetic equations. Comparing the performance of parameter estimation for different analytical and numerical methods of incorporating steady-state information, we show that our approach is especially well-tailored to guarantee a high success rate of optimization.

  19. Multiparametric Flow System for the Automated Determination of Sodium, Potassium, Calcium, and Magnesium in Large-Volume Parenteral Solutions and Concentrated Hemodialysis Solutions

    PubMed Central

    Pistón, Mariela; Dol, Isabel

    2006-01-01

    A multiparametric flow system based on multicommutation and binary sampling has been designed for the automated determination of sodium, potassium, calcium, and magnesium in large-volume parenteral solutions and hemodialysis concentrated solutions. The goal was to obtain a computer-controlled system capable of determining the four metals without extensive modifications. The system involved the use of five solenoid valves under software control, allowing the establishment of the appropriate flow conditions for each analyte, that is, sample size, dilution, reagent addition, and so forth. Detection was carried out by either flame atomic emission spectrometry (sodium, potassium) or flame atomic absorption spectrometry (calcium, magnesium). The influence of several operating parameters was studied. Validation was carried out by analyzing artificial samples. Figures of merit obtained include linearity, accuracy, precision, and sampling frequency. Linearity was satisfactory: sodium, r 2 >0.999 ( 0.5 – 3.5 g/L), potassium, r 2 >0.996 (50–150 mg/L), calcium, r 2 >0.999 (30–120 mg/L), and magnesium, r 2 >0.999 (20–40 mg/L). Precision ( s r , %, n=5 ) was better than 2.1 %, and accuracy (evaluated through recovery assays) was in the range of 99.8 %– 101.0 % (sodium), 100.8 – 102.5 % (potassium), 97.3 %– 101.3 % (calcium), and 97.1 %– 99.8 % (magnesium). Sampling frequencies ( h −1 ) were 70 (sodium), 75 (potassium), 70 (calcium), and 58 (magnesium). According to the results obtained, the use of an automated multiparametric system based on multicommutation offers several advantages for the quality control of large-volume parenteral solutions and hemodialysis concentrated solutions. PMID:17671619

  20. Simultaneous analysis of large INTEGRAL/SPI1 datasets: Optimizing the computation of the solution and its variance using sparse matrix algorithms

    NASA Astrophysics Data System (ADS)

    Bouchet, L.; Amestoy, P.; Buttari, A.; Rouet, F.-H.; Chauvin, M.

    2013-02-01

    Nowadays, analyzing and reducing the ever larger astronomical datasets is becoming a crucial challenge, especially for long cumulated observation times. The INTEGRAL/SPI X/γ-ray spectrometer is an instrument for which it is essential to process many exposures at the same time in order to increase the low signal-to-noise ratio of the weakest sources. In this context, the conventional methods for data reduction are inefficient and sometimes not feasible at all. Processing several years of data simultaneously requires computing not only the solution of a large system of equations, but also the associated uncertainties. We aim at reducing the computation time and the memory usage. Since the SPI transfer function is sparse, we have used some popular methods for the solution of large sparse linear systems; we briefly review these methods. We use the Multifrontal Massively Parallel Solver (MUMPS) to compute the solution of the system of equations. We also need to compute the variance of the solution, which amounts to computing selected entries of the inverse of the sparse matrix corresponding to our linear system. This can be achieved through one of the latest features of the MUMPS software that has been partly motivated by this work. In this paper we provide a brief presentation of this feature and evaluate its effectiveness on astrophysical problems requiring the processing of large datasets simultaneously, such as the study of the entire emission of the Galaxy. We used these algorithms to solve the large sparse systems arising from SPI data processing and to obtain both their solutions and the associated variances. In conclusion, thanks to these newly developed tools, processing large datasets arising from SPI is now feasible with both a reasonable execution time and a low memory usage.

  1. Constructive Development of the Solutions of Linear Equations in Introductory Ordinary Differential Equations

    ERIC Educational Resources Information Center

    Mallet, D. G.; McCue, S. W.

    2009-01-01

    The solution of linear ordinary differential equations (ODEs) is commonly taught in first-year undergraduate mathematics classrooms, but the understanding of the concept of a solution is not always grasped by students until much later. Recognizing what it is to be a solution of a linear ODE and how to postulate such solutions, without resorting to…

  2. A comparison of lidar inversion methods for cirrus applications

    NASA Technical Reports Server (NTRS)

    Elouragini, Salem; Flamant, Pierre H.

    1992-01-01

    Several methods for inverting the lidar equation are suggested as means to derive the cirrus optical properties (beta backscatter, alpha extinction coefficients, and delta optical depth) at one wavelength. The lidar equation can be inverted in a linear or logarithmic form; either solution assumes a linear relationship: beta = kappa(alpha), where kappa is the lidar ratio. A number of problems prevent us from calculating alpha (or beta) with a good accuracy. Some of these are as follows: (1) the multiple scattering effect (most authors neglect it); (2) an absolute calibration of the lidar system (difficult and sometimes not possible); (3) lack of accuracy on the lidar ratio k (taken as constant, but in fact it varies with range and cloud species); and (4) the determination of boundary condition for logarithmic solution which depends on signal to noise ration (SNR) at cloud top. An inversion in a linear form needs an absolute calibration of the system. In practice one uses molecular backscattering below the cloud to calibrate the system. This method is not permanent because the lower atmosphere turbidity is variable. For a logarithmic solution, a reference extinction coefficient (alpha(sub f)) at cloud top is required. Several methods to determine alpha(sub f) were suggested. We tested these methods at low SNR. This led us to propose two new methods referenced as S1 and S2.

  3. Systems of Differential Equations with Skew-Symmetric, Orthogonal Matrices

    ERIC Educational Resources Information Center

    Glaister, P.

    2008-01-01

    The solution of a system of linear, inhomogeneous differential equations is discussed. The particular class considered is where the coefficient matrix is skew-symmetric and orthogonal, and where the forcing terms are sinusoidal. More general matrices are also considered.

  4. Exact solutions of a hierarchy of mixing speeds models

    NASA Astrophysics Data System (ADS)

    Cornille, H.; Platkowski, T.

    1992-07-01

    This paper presents several new aspects of discrete kinetic theory (DKT). First a hierarchy of d-dimensional (d=1,2,3) models is proposed with (2d+3) velocities and three moduli speeds: 0, 2, and a third one that can be arbitrary. It is assumed that the particles at rest have an internal energy which, for microscopic collisions, supplies for the loss of the kinetic energy. In a more general way than usual, collisions are allowed that mix particles with different speeds. Second, for the (1+1)-dimensional restriction of the systems of PDE for these models which have two independent quadratic collision terms we construct different exact solutions. The usual types of exact solutions are studied: periodic solutions and shock wave solutions obtained from the standard linearization of the scalar Riccati equations called Riccatian shock waves. Then other types of solutions of the coupled Riccati equations are found called non-Riccatian shock waves and they are compared with the previous ones. The main new result is that, between the upstream and downstream states, these new solutions are not necessarily monotonous. Further, for the shock problem, a two-dimensional dynamical system of ODE is solved numerically with limit values corresponding to the upstream and downstream states. As a by-product of this study two new linearizations for the Riccati coupled equations with two functions are proposed.

  5. Why Representations?

    ERIC Educational Resources Information Center

    Schultz, James E.; Waters, Michael S.

    2000-01-01

    Discusses representations in the context of solving a system of linear equations. Views representations (concrete, tables, graphs, algebraic, matrices) from perspectives of understanding, technology, generalization, exact versus approximate solution, and learning style. (KHR)

  6. Lattice cluster theory of associating polymers. I. Solutions of linear telechelic polymer chains.

    PubMed

    Dudowicz, Jacek; Freed, Karl F

    2012-02-14

    The lattice cluster theory (LCT) for the thermodynamics of a wide array of polymer systems has been developed by using an analogy to Mayer's virial expansions for non-ideal gases. However, the high-temperature expansion inherent to the LCT has heretofore precluded its application to systems exhibiting strong, specific "sticky" interactions. The present paper describes a reformulation of the LCT necessary to treat systems with both weak and strong, "sticky" interactions. This initial study concerns solutions of linear telechelic chains (with stickers at the chain ends) as the self-assembling system. The main idea behind this extension of the LCT lies in the extraction of terms associated with the strong interactions from the cluster expansion. The generalized LCT for sticky systems reduces to the quasi-chemical theory of hydrogen bonding of Panyioutou and Sanchez when correlation corrections are neglected in the LCT. A diagrammatic representation is employed to facilitate the evaluation of the corrections to the zeroth-order approximation from short range correlations. © 2012 American Institute of Physics

  7. Structural Aspects of System Identification

    NASA Technical Reports Server (NTRS)

    Glover, Keith

    1973-01-01

    The problem of identifying linear dynamical systems is studied by considering structural and deterministic properties of linear systems that have an impact on stochastic identification algorithms. In particular considered is parametrization of linear systems so that there is a unique solution and all systems in appropriate class can be represented. It is assumed that a parametrization of system matrices has been established from a priori knowledge of the system, and the question is considered of when the unknown parameters of this system can be identified from input/output observations. It is assumed that the transfer function can be asymptotically identified, and the conditions are derived for the local, global and partial identifiability of the parametrization. Then it is shown that, with the right formulation, identifiability in the presence of feedback can be treated in the same way. Similarly the identifiability of parametrizations of systems driven by unobserved white noise is considered using the results from the theory of spectral factorization.

  8. Resolving Phase Ambiguities in the Calibration of Redundant Interferometric Arrays: Implications for Array Design

    DTIC Science & Technology

    2016-03-04

    summary of the linear algebra involved. As we have seen, the RSC process begins with the interferometric phase measurement β, which due to wrapping will...mentary Divisors) in Section 2 and the following defi- nition of the matrix determinant. This definition is given in many linear algebra texts (see...principle solve for a particular solution of this system by arbitrarily setting two object phases (whose spatial frequencies are not co- linear ) and one

  9. Block iterative restoration of astronomical images with the massively parallel processor

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don J.

    1987-01-01

    A method is described for algebraic image restoration capable of treating astronomical images. For a typical 500 x 500 image, direct algebraic restoration would require the solution of a 250,000 x 250,000 linear system. The block iterative approach is used to reduce the problem to solving 4900 121 x 121 linear systems. The algorithm was implemented on the Goddard Massively Parallel Processor, which can solve a 121 x 121 system in approximately 0.06 seconds. Examples are shown of the results for various astronomical images.

  10. Waste management under multiple complexities: Inexact piecewise-linearization-based fuzzy flexible programming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun Wei; Huang, Guo H., E-mail: huang@iseis.org; Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina, Saskatchewan, S4S 0A2

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Inexact piecewise-linearization-based fuzzy flexible programming is proposed. Black-Right-Pointing-Pointer It's the first application to waste management under multiple complexities. Black-Right-Pointing-Pointer It tackles nonlinear economies-of-scale effects in interval-parameter constraints. Black-Right-Pointing-Pointer It estimates costs more accurately than the linear-regression-based model. Black-Right-Pointing-Pointer Uncertainties are decreased and more satisfactory interval solutions are obtained. - Abstract: To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerancemore » intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities.« less

  11. Existence of almost periodic solutions for forced perturbed systems with piecewise constant argument

    NASA Astrophysics Data System (ADS)

    Xia, Yonghui; Huang, Zhenkun; Han, Maoan

    2007-09-01

    Certain almost periodic forced perturbed systems with piecewise argument are considered in this paper. By using the contraction mapping principle and some new analysis technique, some sufficient conditions are obtained for the existence and uniqueness of almost periodic solution of these systems. Furthermore, we study the harmonic and subharmonic solutions of these systems. The obtained results generalize the previous known results such as [A.M. Fink, Almost Periodic Differential Equation, Lecture Notes in Math., volE 377, Springer-Verlag, Berlin, 1974; C.Y. He, Almost Periodic Differential Equations, Higher Education Press, Beijing, 1992 (in Chinese); Z.S. Lin, The existence of almost periodic solution of linear system, Acta Math. Sinica 22 (5) (1979) 515-528 (in Chinese); C.Y. He, Existence of almost periodic solutions of perturbation systems, Ann. Differential Equations 9 (2) (1992) 173-181; Y.H. Xia, M. Lin, J. Cao, The existence of almost periodic solutions of certain perturbation system, J. Math. Anal. Appl. 310 (1) (2005) 81-96]. Finally, a tangible example and its numeric simulations show the feasibility of our results, the comparison between non-perturbed system and perturbed system, the relation between systems with and without piecewise argument.

  12. A generalized fuzzy linear programming approach for environmental management problem under uncertainty.

    PubMed

    Fan, Yurui; Huang, Guohe; Veawab, Amornvadee

    2012-01-01

    In this study, a generalized fuzzy linear programming (GFLP) method was developed to deal with uncertainties expressed as fuzzy sets that exist in the constraints and objective function. A stepwise interactive algorithm (SIA) was advanced to solve GFLP model and generate solutions expressed as fuzzy sets. To demonstrate its application, the developed GFLP method was applied to a regional sulfur dioxide (SO2) control planning model to identify effective SO2 mitigation polices with a minimized system performance cost under uncertainty. The results were obtained to represent the amount of SO2 allocated to different control measures from different sources. Compared with the conventional interval-parameter linear programming (ILP) approach, the solutions obtained through GFLP were expressed as fuzzy sets, which can provide intervals for the decision variables and objective function, as well as related possibilities. Therefore, the decision makers can make a tradeoff between model stability and the plausibility based on solutions obtained through GFLP and then identify desired policies for SO2-emission control under uncertainty.

  13. Using emergent order to shape a space society

    NASA Technical Reports Server (NTRS)

    Graps, Amara L.

    1993-01-01

    A fast-growing movement in the scientific community is reshaping the way that we view the world around us. The short-hand name for this movement is 'chaos'. Chaos is a science of the global, nonlinear nature of systems. The center of this set of ideas is that simple, deterministic systems can breed complexity. Systems as complex as the human body, ecology, the mind or a human society. While it is true that simple laws can breed complexity, the other side is that complex systems can breed order. It is the latter that I will focus on in this paper. In the past, nonlinear was nearly synonymous with unsolvable because no general analytic solutions exist. Mathematically, an essential difference exists between linear and nonlinear systems. For linear systems, you just break up the complicated system into many simple pieces and patch together the separated solutions for each piece to form a solution to the full problem. In contrast, solutions to a nonlinear system cannot be added to form a new solution. The system must be treated in its full complexity. While it is true that no general analytical approach exists for reducing a complex system such as a society, it can be modeled. The technical involves a mathematical construct called phase space. In this space stable structures can appear which I use as analogies for the stable structures that appear in a complex system such as an ecology, the mind or a society. The common denominator in all of these systems is that they rely on a process called feedback loops. Feedback loops link the microscopic (individual) parts to the macroscopic (global) parts. The key, then, in shaping a space society, is in effectively using feedback loops. This paper will illustrate how one can model a space society by using methods that chaoticists have developed over the last hundred years. And I will show that common threads exist in the modeling of biological, economical, philosophical, and sociological systems.

  14. Reaction-diffusion systems coupled at the boundary and the Morse-Smale property

    NASA Astrophysics Data System (ADS)

    Broche, Rita de Cássia D. S.; de Oliveira, Luiz Augusto F.

    We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem.

  15. Langevin equation with time dependent linear force and periodic load force: stochastic resonance

    NASA Astrophysics Data System (ADS)

    Sau Fa, Kwok

    2017-11-01

    The motion of a particle described by the Langevin equation with constant diffusion coefficient, time dependent linear force (ω (1+α \\cos ({ω }1t))x) and periodic load force ({A}0\\cos ({{Ω }}t)) is investigated. Analytical solutions for the probability density function (PDF) and n-moment are obtained and analysed. For {ω }1\\gg α ω the influence of the periodic term α \\cos ({ω }1t) is negligible to the PDF and n-moment for any time; this result shows that the statistical averages such as n-moments and the PDF have no access to some information of the system. For small and intermediate values of {ω }1 the influence of the periodic term α \\cos ({ω }1t) to the system is also analysed; in particular the system may present multiresonance. The solutions are obtained in a direct and pedagogical manner readily understandable by graduate students.

  16. New Galerkin operational matrices for solving Lane-Emden type equations

    NASA Astrophysics Data System (ADS)

    Abd-Elhameed, W. M.; Doha, E. H.; Saad, A. S.; Bassuony, M. A.

    2016-04-01

    Lane-Emden type equations model many phenomena in mathematical physics and astrophysics, such as thermal explosions. This paper is concerned with introducing third and fourth kind Chebyshev-Galerkin operational matrices in order to solve such problems. The principal idea behind the suggested algorithms is based on converting the linear or nonlinear Lane-Emden problem, through the application of suitable spectral methods, into a system of linear or nonlinear equations in the expansion coefficients, which can be efficiently solved. The main advantage of the proposed algorithm in the linear case is that the resulting linear systems are specially structured, and this of course reduces the computational effort required to solve such systems. As an application, we consider the solar model polytrope with n=3 to show that the suggested solutions in this paper are in good agreement with the numerical results.

  17. Interpolation problem for the solutions of linear elasticity equations based on monogenic functions

    NASA Astrophysics Data System (ADS)

    Grigor'ev, Yuri; Gürlebeck, Klaus; Legatiuk, Dmitrii

    2017-11-01

    Interpolation is an important tool for many practical applications, and very often it is beneficial to interpolate not only with a simple basis system, but rather with solutions of a certain differential equation, e.g. elasticity equation. A typical example for such type of interpolation are collocation methods widely used in practice. It is known, that interpolation theory is fully developed in the framework of the classical complex analysis. However, in quaternionic analysis, which shows a lot of analogies to complex analysis, the situation is more complicated due to the non-commutative multiplication. Thus, a fundamental theorem of algebra is not available, and standard tools from linear algebra cannot be applied in the usual way. To overcome these problems, a special system of monogenic polynomials the so-called Pseudo Complex Polynomials, sharing some properties of complex powers, is used. In this paper, we present an approach to deal with the interpolation problem, where solutions of elasticity equations in three dimensions are used as an interpolation basis.

  18. Sampling with poling-based flux balance analysis: optimal versus sub-optimal flux space analysis of Actinobacillus succinogenes.

    PubMed

    Binns, Michael; de Atauri, Pedro; Vlysidis, Anestis; Cascante, Marta; Theodoropoulos, Constantinos

    2015-02-18

    Flux balance analysis is traditionally implemented to identify the maximum theoretical flux for some specified reaction and a single distribution of flux values for all the reactions present which achieve this maximum value. However it is well known that the uncertainty in reaction networks due to branches, cycles and experimental errors results in a large number of combinations of internal reaction fluxes which can achieve the same optimal flux value. In this work, we have modified the applied linear objective of flux balance analysis to include a poling penalty function, which pushes each new set of reaction fluxes away from previous solutions generated. Repeated poling-based flux balance analysis generates a sample of different solutions (a characteristic set), which represents all the possible functionality of the reaction network. Compared to existing sampling methods, for the purpose of generating a relatively "small" characteristic set, our new method is shown to obtain a higher coverage than competing methods under most conditions. The influence of the linear objective function on the sampling (the linear bias) constrains optimisation results to a subspace of optimal solutions all producing the same maximal fluxes. Visualisation of reaction fluxes plotted against each other in 2 dimensions with and without the linear bias indicates the existence of correlations between fluxes. This method of sampling is applied to the organism Actinobacillus succinogenes for the production of succinic acid from glycerol. A new method of sampling for the generation of different flux distributions (sets of individual fluxes satisfying constraints on the steady-state mass balances of intermediates) has been developed using a relatively simple modification of flux balance analysis to include a poling penalty function inside the resulting optimisation objective function. This new methodology can achieve a high coverage of the possible flux space and can be used with and without linear bias to show optimal versus sub-optimal solution spaces. Basic analysis of the Actinobacillus succinogenes system using sampling shows that in order to achieve the maximal succinic acid production CO₂ must be taken into the system. Solutions involving release of CO₂ all give sub-optimal succinic acid production.

  19. A Time Integration Algorithm Based on the State Transition Matrix for Structures with Time Varying and Nonlinear Properties

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2003-01-01

    A variable order method of integrating the structural dynamics equations that is based on the state transition matrix has been developed. The method has been evaluated for linear time variant and nonlinear systems of equations. When the time variation of the system can be modeled exactly by a polynomial it produces nearly exact solutions for a wide range of time step sizes. Solutions of a model nonlinear dynamic response exhibiting chaotic behavior have been computed. Accuracy of the method has been demonstrated by comparison with solutions obtained by established methods.

  20. Integral method for transient He II heat transfer in a semi-infinite domain

    NASA Astrophysics Data System (ADS)

    Baudouy, B.

    2002-05-01

    Integral methods are suited to solve a non-linear system of differential equations where the non-linearity can be found either in the differential equations or in the boundary conditions. Though they are approximate methods, they have proven to give simple solutions with acceptable accuracy for transient heat transfer in He II. Taking in account the temperature dependence of thermal properties, direct solutions are found without the need of adjusting a parameter. Previously, we have presented a solution for the clamped heat flux and in the present study this method is used to accommodate the clamped-temperature problem. In the case of constant thermal properties, this method yields results that are within a few percent of the exact solution for the heat flux at the axis origin. We applied this solution to analyze recovery from burnout and find an agreement within 10% at low heat flux, whereas at high heat flux the model deviates from the experimental data suggesting the need for a more refined thermal model.

  1. Control system estimation and design for aerospace vehicles with time delay

    NASA Technical Reports Server (NTRS)

    Allgaier, G. R.; Williams, T. L.

    1972-01-01

    The problems of estimation and control of discrete, linear, time-varying systems are considered. Previous solutions to these problems involved either approximate techniques, open-loop control solutions, or results which required excessive computation. The estimation problem is solved by two different methods, both of which yield the identical algorithm for determining the optimal filter. The partitioned results achieve a substantial reduction in computation time and storage requirements over the expanded solution, however. The results reduce to the Kalman filter when no delays are present in the system. The control problem is also solved by two different methods, both of which yield identical algorithms for determining the optimal control gains. The stochastic control is shown to be identical to the deterministic control, thus extending the separation principle to time delay systems. The results obtained reduce to the familiar optimal control solution when no time delays are present in the system.

  2. Similar solutions for the compressible laminar boundary layer with heat transfer and pressure gradient

    NASA Technical Reports Server (NTRS)

    Cohen, Clarence B; Reshotko, Eli

    1956-01-01

    Stewartson's transformation is applied to the laminar compressible boundary-layer equations and the requirement of similarity is introduced, resulting in a set of ordinary nonlinear differential equations previously quoted by Stewartson, but unsolved. The requirements of the system are Prandtl number of 1.0, linear viscosity-temperature relation across the boundary layer, an isothermal surface, and the particular distributions of free-stream velocity consistent with similar solutions. This system admits axial pressure gradients of arbitrary magnitude, heat flux normal to the surface, and arbitrary Mach numbers. The system of differential equations is transformed to integral system, with the velocity ratio as the independent variable. For this system, solutions are found by digital computation for pressure gradients varying from that causing separation to the infinitely favorable gradient and for wall temperatures from absolute zero to twice the free-stream stagnation temperature. Some solutions for separated flows are also presented.

  3. Analytical Solutions for the Surface States of Bi1-xSbx (0 ≤ x ≲ 0.1)

    NASA Astrophysics Data System (ADS)

    Fuseya, Yuki; Fukuyama, Hidetoshi

    2018-04-01

    Analytical solutions for the surface state (SS) of an extended Wolff Hamiltonian, which is a common Hamiltonian for strongly spin-orbit coupled systems, are obtained both for semi-infinite and finite-thickness boundary conditions. For the semi-infinite system, there are two types of SS solutions: (I-a) linearly crossing SSs in the direct bulk band gap, and (I-b) SSs with linear dispersions entering the bulk conduction or valence bands away from the band edge. For the finite-thickness system, a gap opens in the SS of solution I-a. Numerical solutions for the SS are also obtained based on the tight-binding model of Liu and Allen [Phys. Rev. B 52, 1566 (1995)] for Bi1-xSbx (0 ≤ x ≤ 0.1). A perfect correspondence between the analytic and numerical solutions is obtained around the \\bar{M} point including their thickness dependence. This is the first time that the character of the SS numerically obtained is identified with the help of analytical solutions. The size of the gap for I-a SS can be larger than that of bulk band gap even for a "thick" films ( ≲ 200 bilayers ≃ 80 nm) of pure bismuth. Consequently, in such a film of Bi1-xSbx, there is no apparent change in the SSs through the band inversion at x ≃ 0.04, even though the nature of the SS is changed from solution I-a to I-b. Based on our theoretical results, the experimental results on the SS of Bi1-xSbx (0 ≤ x ≲ 0.1) are discussed.

  4. A Fifth-order Symplectic Trigonometrically Fitted Partitioned Runge-Kutta Method

    NASA Astrophysics Data System (ADS)

    Kalogiratou, Z.; Monovasilis, Th.; Simos, T. E.

    2007-09-01

    Trigonometrically fitted symplectic Partitioned Runge Kutta (EFSPRK) methods for the numerical integration of Hamoltonian systems with oscillatory solutions are derived. These methods integrate exactly differential systems whose solutions can be expressed as linear combinations of the set of functions sin(wx),cos(wx), w∈R. We modify a fifth order symplectic PRK method with six stages so to derive an exponentially fitted SPRK method. The methods are tested on the numerical integration of the two body problem.

  5. Linear quadratic regulators with eigenvalue placement in a specified region

    NASA Technical Reports Server (NTRS)

    Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar

    1988-01-01

    A linear optimal quadratic regulator is developed for optimally placing the closed-loop poles of multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at + or - pi/2k (k = 2 or 3) from the negative real axis with a sector angle of pi/2 or less, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane. The design method is mainly based on the solution of a linear matrix Liapunov equation, and the resultant closed-loop system with its eigenvalues in the desired region is optimal with respect to a quadratic performance index.

  6. Computing the Evans function via solving a linear boundary value ODE

    NASA Astrophysics Data System (ADS)

    Wahl, Colin; Nguyen, Rose; Ventura, Nathaniel; Barker, Blake; Sandstede, Bjorn

    2015-11-01

    Determining the stability of traveling wave solutions to partial differential equations can oftentimes be computationally intensive but of great importance to understanding the effects of perturbations on the physical systems (chemical reactions, hydrodynamics, etc.) they model. For waves in one spatial dimension, one may linearize around the wave and form an Evans function - an analytic Wronskian-like function which has zeros that correspond in multiplicity to the eigenvalues of the linearized system. If eigenvalues with a positive real part do not exist, the traveling wave will be stable. Two methods exist for calculating the Evans function numerically: the exterior-product method and the method of continuous orthogonalization. The first is numerically expensive, and the second reformulates the originally linear system as a nonlinear system. We develop a new algorithm for computing the Evans function through appropriate linear boundary-value problems. This algorithm is cheaper than the previous methods, and we prove that it preserves analyticity of the Evans function. We also provide error estimates and implement it on some classical one- and two-dimensional systems, one being the Swift-Hohenberg equation in a channel, to show the advantages.

  7. Shape determination and control for large space structures

    NASA Technical Reports Server (NTRS)

    Weeks, C. J.

    1981-01-01

    An integral operator approach is used to derive solutions to static shape determination and control problems associated with large space structures. Problem assumptions include a linear self-adjoint system model, observations and control forces at discrete points, and performance criteria for the comparison of estimates or control forms. Results are illustrated by simulations in the one dimensional case with a flexible beam model, and in the multidimensional case with a finite model of a large space antenna. Modal expansions for terms in the solution algorithms are presented, using modes from the static or associated dynamic mode. These expansions provide approximated solutions in the event that a used form analytical solution to the system boundary value problem is not available.

  8. Application of Hamilton's law of varying action

    NASA Technical Reports Server (NTRS)

    Bailey, C. D.

    1975-01-01

    The law of varying action enunciated by Hamilton in 1834-1835 permits the direct analytical solution of the problems of mechanics, both stationary and nonstationary, without consideration of force equilibrium and the theory of differential equations associated therewith. It has not been possible to obtain direct analytical solutions to nonstationary systems through the use of energy theory, which has been limited for 140 years to the principle of least action and to Hamilton's principle. It is shown here that Hamilton's law permits the direct analytical solution to nonstationary, initial value systems in the mechanics of solids without any knowledge or use of the theory of differential equations. Solutions are demonstrated for nonconservative, nonstationary particle motion, both linear and nonlinear.

  9. On improving linear solver performance: a block variant of GMRES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, A H; Dennis, J M; Jessup, E R

    2004-05-10

    The increasing gap between processor performance and memory access time warrants the re-examination of data movement in iterative linear solver algorithms. For this reason, we explore and establish the feasibility of modifying a standard iterative linear solver algorithm in a manner that reduces the movement of data through memory. In particular, we present an alternative to the restarted GMRES algorithm for solving a single right-hand side linear system Ax = b based on solving the block linear system AX = B. Algorithm performance, i.e. time to solution, is improved by using the matrix A in operations on groups of vectors.more » Experimental results demonstrate the importance of implementation choices on data movement as well as the effectiveness of the new method on a variety of problems from different application areas.« less

  10. Towards a non-linear theory for fluid pressure and osmosis in shales

    NASA Astrophysics Data System (ADS)

    Droghei, Riccardo; Salusti, Ettore

    2015-04-01

    In exploiting deep hydrocarbon reservoirs, often injections of fluid and/or solute are used. To control and avoid troubles as fluid and gas unexpected diffusions, a reservoir characterization can be obtained also from observations of space and time evolution of micro-earthquake clouds resulting from such injections. This is important since several among the processes caused by fluid injections can modify the deep matrix. Information about the evolution of such micro-seismicity clouds therefore plays a realistic role in the reservoir analyses. To reach a better insight about such processes, and obtain a better system control, we here analyze the initial stress necessary to originate strong non linear transients of combined fluid pressure and solute density (osmosis) in a porous matrix. All this can indeed perturb in a mild (i.e. a linear diffusion) or dramatic non linear way the rock structure, till inducing rock deformations, micro-earthquakes or fractures. I more detail we here assume first a linear Hooke law relating strain, stress, solute density and fluid pressure, and analyze their effect in the porous rock dynamics. Then we analyze its generalization, i.e. the further non linear effect of a stronger external pressure, also in presence of a trend of pressure or solute in the whole region. We moreover characterize the zones where a sudden arrival of such a front can cause micro-earthquakes or fractures. All this allows to reach a novel, more realistic insight about the control of rock evolution in presence of strong pressure fronts. We thus obtain a more efficient reservoir control to avoid large geological perturbations. It is of interest that our results are very similar to those found by Shapiro et al.(2013) with a different approach.

  11. Analytical solutions to optimal underactuated spacecraft formation reconfiguration

    NASA Astrophysics Data System (ADS)

    Huang, Xu; Yan, Ye; Zhou, Yang

    2015-11-01

    Underactuated systems can generally be defined as systems with fewer number of control inputs than that of the degrees of freedom to be controlled. In this paper, analytical solutions to optimal underactuated spacecraft formation reconfiguration without either the radial or the in-track control are derived. By using a linear dynamical model of underactuated spacecraft formation in circular orbits, controllability analysis is conducted for either underactuated case. Indirect optimization methods based on the minimum principle are then introduced to generate analytical solutions to optimal open-loop underactuated reconfiguration problems. Both fixed and free final conditions constraints are considered for either underactuated case and comparisons between these two final conditions indicate that the optimal control strategies with free final conditions require less control efforts than those with the fixed ones. Meanwhile, closed-loop adaptive sliding mode controllers for both underactuated cases are designed to guarantee optimal trajectory tracking in the presence of unmatched external perturbations, linearization errors, and system uncertainties. The adaptation laws are designed via a Lyapunov-based method to ensure the overall stability of the closed-loop system. The explicit expressions of the terminal convergent regions of each system states have also been obtained. Numerical simulations demonstrate the validity and feasibility of the proposed open-loop and closed-loop control schemes for optimal underactuated spacecraft formation reconfiguration in circular orbits.

  12. Error Checking and Graphical Representation of Multiple–Complete–Digest (MCD) Restriction-Fragment Maps

    PubMed Central

    Thayer, Edward C.; Olson, Maynard V.; Karp, Richard M.

    1999-01-01

    Genetic and physical maps display the relative positions of objects or markers occurring within a target DNA molecule. In constructing maps, the primary objective is to determine the ordering of these objects. A further objective is to assign a coordinate to each object, indicating its distance from a reference end of the target molecule. This paper describes a computational method and a body of software for assigning coordinates to map objects, given a solution or partial solution to the ordering problem. We describe our method in the context of multiple–complete–digest (MCD) mapping, but it should be applicable to a variety of other mapping problems. Because of errors in the data or insufficient clone coverage to uniquely identify the true ordering of the map objects, a partial ordering is typically the best one can hope for. Once a partial ordering has been established, one often seeks to overlay a metric along the map to assess the distances between the map objects. This problem often proves intractable because of data errors such as erroneous local length measurements (e.g., large clone lengths on low-resolution physical maps). We present a solution to the coordinate assignment problem for MCD restriction-fragment mapping, in which a coordinated set of single-enzyme restriction maps are simultaneously constructed. We show that the coordinate assignment problem can be expressed as the solution of a system of linear constraints. If the linear system is free of inconsistencies, it can be solved using the standard Bellman–Ford algorithm. In the more typical case where the system is inconsistent, our program perturbs it to find a new consistent system of linear constraints, close to those of the given inconsistent system, using a modified Bellman–Ford algorithm. Examples are provided of simple map inconsistencies and the methods by which our program detects candidate data errors and directs the user to potential suspect regions of the map. PMID:9927487

  13. A highly sensitive and temporal visualization system for gaseous ethanol with chemiluminescence enhancer.

    PubMed

    Arakawa, Takahiro; Ando, Eri; Wang, Xin; Kumiko, Miyajima; Kudo, Hiroyuki; Saito, Hirokazu; Mitani, Tomoyo; Takahashi, Mitsuo; Mitsubayashi, Kohji

    2012-01-01

    A two-dimensional gaseous ethanol visualization system has been developed and demonstrated using a horseradish peroxidase-luminol-hydrogen peroxide system with high-purity luminol solution and a chemiluminescence (CL) enhancer. This system measures ethanol concentrations as intensities of CL via the luminol reaction. CL was emitted when the gaseous ethanol was injected onto an enzyme-immobilized membrane, which was employed as a screen for two-dimensional gas visualization. The average intensity of CL on the substrate was linearly related to the concentration of standard ethanol gas. These results were compared with the CL intensity of the CCD camera recording image in the visualization system. This system is available for gas components not only for spatial but also for temporal analysis in real time. A high-purity sodium salt HG solution (L-HG) instead of standard luminol solution and an enhancer, eosin Y (EY) solution, were adapted for improvement of CL intensity of the system. The visualization of gaseous ethanol was achieved at a detection limit of 3 ppm at optimized concentrations of L-HG solution and EY. Copyright © 2011 John Wiley & Sons, Ltd.

  14. Double power series method for approximating cosmological perturbations

    NASA Astrophysics Data System (ADS)

    Wren, Andrew J.; Malik, Karim A.

    2017-04-01

    We introduce a double power series method for finding approximate analytical solutions for systems of differential equations commonly found in cosmological perturbation theory. The method was set out, in a noncosmological context, by Feshchenko, Shkil' and Nikolenko (FSN) in 1966, and is applicable to cases where perturbations are on subhorizon scales. The FSN method is essentially an extension of the well known Wentzel-Kramers-Brillouin (WKB) method for finding approximate analytical solutions for ordinary differential equations. The FSN method we use is applicable well beyond perturbation theory to solve systems of ordinary differential equations, linear in the derivatives, that also depend on a small parameter, which here we take to be related to the inverse wave-number. We use the FSN method to find new approximate oscillating solutions in linear order cosmological perturbation theory for a flat radiation-matter universe. Together with this model's well-known growing and decaying Mészáros solutions, these oscillating modes provide a complete set of subhorizon approximations for the metric potential, radiation and matter perturbations. Comparison with numerical solutions of the perturbation equations shows that our approximations can be made accurate to within a typical error of 1%, or better. We also set out a heuristic method for error estimation. A Mathematica notebook which implements the double power series method is made available online.

  15. SPAR reference manual

    NASA Technical Reports Server (NTRS)

    Whetstone, W. D.

    1976-01-01

    The functions and operating rules of the SPAR system, which is a group of computer programs used primarily to perform stress, buckling, and vibrational analyses of linear finite element systems, were given. The following subject areas were discussed: basic information, structure definition, format system matrix processors, utility programs, static solutions, stresses, sparse matrix eigensolver, dynamic response, graphics, and substructure processors.

  16. On the solution of the complex eikonal equation in acoustic VTI media: A perturbation plus optimization scheme

    NASA Astrophysics Data System (ADS)

    Huang, Xingguo; Sun, Jianguo; Greenhalgh, Stewart

    2018-04-01

    We present methods for obtaining numerical and analytic solutions of the complex eikonal equation in inhomogeneous acoustic VTI media (transversely isotropic media with a vertical symmetry axis). The key and novel point of the method for obtaining numerical solutions is to transform the problem of solving the highly nonlinear acoustic VTI eikonal equation into one of solving the relatively simple eikonal equation for the background (isotropic) medium and a system of linear partial differential equations. Specifically, to obtain the real and imaginary parts of the complex traveltime in inhomogeneous acoustic VTI media, we generalize a perturbation theory, which was developed earlier for solving the conventional real eikonal equation in inhomogeneous anisotropic media, to the complex eikonal equation in such media. After the perturbation analysis, we obtain two types of equations. One is the complex eikonal equation for the background medium and the other is a system of linearized partial differential equations for the coefficients of the corresponding complex traveltime formulas. To solve the complex eikonal equation for the background medium, we employ an optimization scheme that we developed for solving the complex eikonal equation in isotropic media. Then, to solve the system of linearized partial differential equations for the coefficients of the complex traveltime formulas, we use the finite difference method based on the fast marching strategy. Furthermore, by applying the complex source point method and the paraxial approximation, we develop the analytic solutions of the complex eikonal equation in acoustic VTI media, both for the isotropic and elliptical anisotropic background medium. Our numerical results demonstrate the effectiveness of our derivations and illustrate the influence of the beam widths and the anisotropic parameters on the complex traveltimes.

  17. Global stability and exact solution of an arbitrary-solute nonlinear cellular mass transport system.

    PubMed

    Benson, James D

    2014-12-01

    The prediction of the cellular state as a function of extracellular concentrations and temperatures has been of interest to physiologists for nearly a century. One of the most widely used models in the field is one where mass flux is linearly proportional to the concentration difference across the membrane. These fluxes define a nonlinear differential equation system for the intracellular state, which when coupled with appropriate initial conditions, define the intracellular state as a function of the extracellular concentrations of both permeating and nonpermeating solutes. Here we take advantage of a reparametrization scheme to extend existing stability results to a more general setting and to a develop analytical solutions to this model for an arbitrary number of extracellular solutes. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph

    NASA Astrophysics Data System (ADS)

    Primo, Amedeo; Tancredi, Lorenzo

    2017-08-01

    We consider the calculation of the master integrals of the three-loop massive banana graph. In the case of equal internal masses, the graph is reduced to three master integrals which satisfy an irreducible system of three coupled linear differential equations. The solution of the system requires finding a 3 × 3 matrix of homogeneous solutions. We show how the maximal cut can be used to determine all entries of this matrix in terms of products of elliptic integrals of first and second kind of suitable arguments. All independent solutions are found by performing the integration which defines the maximal cut on different contours. Once the homogeneous solution is known, the inhomogeneous solution can be obtained by use of Euler's variation of constants.

  19. Long-time behavior and Turing instability induced by cross-diffusion in a three species food chain model with a Holling type-II functional response.

    PubMed

    Haile, Dawit; Xie, Zhifu

    2015-09-01

    In this paper, we study a strongly coupled reaction-diffusion system describing three interacting species in a food chain model, where the third species preys on the second one and simultaneously the second species preys on the first one. An intra-species competition b2 among the second predator is introduced to the food chain model. This parameter produces some very interesting result in linear stability and Turing instability. We first show that the unique positive equilibrium solution is locally asymptotically stable for the corresponding ODE system when the intra-species competition exists among the second predator. The positive equilibrium solution remains linearly stable for the reaction diffusion system without cross diffusion, hence it does not belong to the classical Turing instability scheme. But it becomes linearly unstable only when cross-diffusion also plays a role in the reaction-diffusion system, hence the instability is driven solely from the effect of cross diffusion. Our results also exhibit some interesting combining effects of cross-diffusion, intra-species competitions and inter-species interactions. Numerically, we conduct a one parameter analysis which illustrate how the interactions change the existence of stable equilibrium, limit cycle, and chaos. Some interesting dynamical phenomena occur when we perform analysis of interactions in terms of self-production of prey and intra-species competition of the middle predator. By numerical simulations, it illustrates the existence of nonuniform steady solutions and new patterns such as spot patterns, strip patterns and fluctuations due to the diffusion and cross diffusion in two-dimension. Published by Elsevier Inc.

  20. Asymptotic of the Solutions of Hyperbolic Equations with a Skew-Symmetric Perturbation

    NASA Astrophysics Data System (ADS)

    Gallagher, Isabelle

    1998-12-01

    Using methods introduced by S. Schochet inJ. Differential Equations114(1994), 476-512, we compute the first term of an asymptotic expansion of the solutions of hyperbolic equations perturbated by a skew-symmetric linear operator. That result is first applied to two systems describing the motion of geophysic fluids: the rotating Euler equations and the primitive system of the quasigeostrophic equations. Finally in the last part, we study the slightly compressible Euler equations by application of that same result.

  1. Levels of Arithmetic Reasoning in Solving an Open-Ended Problem

    ERIC Educational Resources Information Center

    Kosyvas, Georgios

    2016-01-01

    This paper presents the results of an experimental teaching carried out on 12-year-old students. An open-ended task was given to them and they had not been taught the algorithmic process leading to the solution. The formal solution to the problem refers to a system of two linear equations with two unknown quantities. In this mathematical activity,…

  2. An integrated structural and geochemical study of fracture aperture growth in the Campito Formation of eastern California

    NASA Astrophysics Data System (ADS)

    Doungkaew, N.; Eichhubl, P.

    2015-12-01

    Processes of fracture formation control flow of fluid in the subsurface and the mechanical properties of the brittle crust. Understanding of fundamental fracture growth mechanisms is essential for understanding fracture formation and cementation in chemically reactive systems with implications for seismic and aseismic fault and fracture processes, migration of hydrocarbons, long-term CO2 storage, and geothermal energy production. A recent study on crack-seal veins in deeply buried sandstone of east Texas provided evidence for non-linear fracture growth, which is indicated by non-elliptical kinematic fracture aperture profiles. We hypothesize that similar non-linear fracture growth also occurs in other geologic settings, including under higher temperature where solution-precipitation reactions are kinetically favored. To test this hypothesis, we investigate processes of fracture growth in quartzitic sandstone of the Campito Formation, eastern California, by combining field structural observations, thin section petrography, and fluid inclusion microthermometry. Fracture aperture profile measurements of cemented opening-mode fractures show both elliptical and non-elliptical kinematic aperture profiles. In general, fractures that contain fibrous crack-seal cement have elliptical aperture profiles. Fractures filled with blocky cement have linear aperture profiles. Elliptical fracture aperture profiles are consistent with linear-elastic or plastic fracture mechanics. Linear aperture profiles may reflect aperture growth controlled by solution-precipitation creep, with the aperture distribution controlled by solution-precipitation kinetics. We hypothesize that synkinematic crack-seal cement preserves the elliptical aperture profiles of elastic fracture opening increments. Blocky cement, on the other hand, may form postkinematically relative to fracture opening, with fracture opening accommodated by continuous solution-precipitation creep.

  3. Finite element analysis of the effect of a non-planar solid-liquid interface on the lateral solute segregation during unidirectional solidification

    NASA Technical Reports Server (NTRS)

    Carlson, F. M.; Chin, L.-Y.; Fripp, A. L.; Crouch, R. K.

    1982-01-01

    The effect of solid-liquid interface shape on lateral solute segregation during steady-state unidirectional solidification of a binary mixture is calculated under the assumption of no convection in the liquid. A finite element technique is employed to compute the concentration field in the liquid and the lateral segregation in the solid with a curved boundary between the liquid and solid phases. The computational model is constructed assuming knowledge of the solid-liquid interface shape; no attempt is made to relate this shape to the thermal field. The influence of interface curvature on the lateral compositional variation is investigated over a range of system parameters including diffusivity, growth speed, distribution coefficient, and geometric factors of the system. In the limiting case of a slightly nonplanar interface, numerical results from the finite element technique are in good agreement with the analytical solutions of Coriell and Sekerka obtained by using linear theory. For the general case of highly non-planar interface shapes, the linear theory fails and the concentration field in the liquid as well as the lateral solute segregation in the solid can be calculated by using the finite element method.

  4. Photoacoustic measurement for glucose solution concentration based on tunable pulsed laser induced ultrasound

    NASA Astrophysics Data System (ADS)

    Ren, Zhong; Liu, Guodong; Huang, Zhen; Zhao, Dengji

    2012-12-01

    Noninvasive measurement of blood glucose concentration (BGC) has become a research hotspot. BGC measurement based on photoacoustic spectroscopy (PAS) was employed to detect the photoacoustic (PA) signal of blood glucose due to the advantages of avoiding the disturbance of optical scattering. In this paper, a set of custom-built BGC measurement system based on tunable optical parametric oscillator (OPO) pulsed laser and ultrasonic transducer was established to test the PA response effect of the glucose solution. In the experiments, we successfully acquired the time resolved PA signals of distilled water and glucose aqueous solution, and the PA peak-to-peak values(PPV) were gotten under the condition of excitated pulsed laser with changed wavelength from 1340nm to 2200nm by increasing interval of 10nm, the optimal characteristic wavelengths of distilled water and glucose solution were determined. Finally, to get the concentration prediction error, we used the linear fitting of ordinary least square (OLS) algorithm to fit the PPV of 1510nm, and we got the predicted concentration error was about 0.69mmol/L via the fitted linear equation. So, this system and scheme have some values in the research of noninvasive BGC measurement.

  5. Newton's method: A link between continuous and discrete solutions of nonlinear problems

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.

    1980-01-01

    Newton's method for nonlinear mechanics problems replaces the governing nonlinear equations by an iterative sequence of linear equations. When the linear equations are linear differential equations, the equations are usually solved by numerical methods. The iterative sequence in Newton's method can exhibit poor convergence properties when the nonlinear problem has multiple solutions for a fixed set of parameters, unless the iterative sequences are aimed at solving for each solution separately. The theory of the linear differential operators is often a better guide for solution strategies in applying Newton's method than the theory of linear algebra associated with the numerical analogs of the differential operators. In fact, the theory for the differential operators can suggest the choice of numerical linear operators. In this paper the method of variation of parameters from the theory of linear ordinary differential equations is examined in detail in the context of Newton's method to demonstrate how it might be used as a guide for numerical solutions.

  6. Unfolded equations for current interactions of 4d massless fields as a free system in mixed dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelfond, O. A., E-mail: gel@lpi.ru; Vasiliev, M. A., E-mail: vasiliev@lpi.ru

    2015-03-15

    Interactions of massless fields of all spins in four dimensions with currents of any spin are shown to result from a solution of the linear problem that describes a gluing between a rank-one (massless) system and a rank-two (current) system in the unfolded dynamics approach. Since the rank-two system is dual to a free rank-one higher-dimensional system that effectively describes conformal fields in six space-time dimensions, the constructed system can be interpreted as describing a mixture between linear conformal fields in four and six dimensions. An interpretation of the obtained results in the spirit of the AdS/CFT correspondence is discussed.

  7. Evidence for transbilayer, tail-to-tail cholesterol dimers in dipalmitoylglycerophosphocholine liposomes.

    PubMed

    Harris, J S; Epps, D E; Davio, S R; Kézdy, F J

    1995-03-21

    The behavior of multilamellar liposomes of 2,3-dipalmitoyl-sn-glycero-1-phosphocholine (DPPC) was studied by differential scanning calorimetry (DSC) in the presence of < or = 5 mol % of the amphiphilic solutes methyl oleate, cholesterol, pregnenolone, and dehydroandrosterone. The DSC thermograms indicate that the solutes are miscible only with the liquid-disordered (Id) phase, and not with the solid-ordered (so) phase. The slopes of the Tm vs solute concentration curves confirm this conclusion: It appears that the so-1d phase transition of DPPC, which corresponds to the melting of the phospholipid chains, can be treated as a simple melting process and, thus, could be used as a cryoscopic system. In that case, its melting point depression constant, Kf, can be calculated a priori from the experimentally measured heat of fusion per gram of DPPC, lf, and the temperature of the phase transition of pure DPPC, T(o), by the equation Kf = RTo2/(1000lf) = 12.3 +/- 0.9 K g M-1 cm3. With methyl oleate as the solute, the Tm vs methyl oleate concentration plot is linear, and from the slope we calculate Kf = 12.9 +/- 0.8 K g M-1 cm3. Thus, methyl oleate appears to form an ideal cryoscopic system with dipalmitoyllecithin liposomes: It is fully miscible with the 1d phase but is apparently insoluble in the s(o) phase. Pregnenolone and dehydroandrosterone also form ideal cryoscopic systems with dipalmitoyllecithin liposomes: The Tm vs solute concentration plots are linear and yield the correct MWs for these solutes.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Aerodynamic preliminary analysis system. Part 1: Theory. [linearized potential theory

    NASA Technical Reports Server (NTRS)

    Bonner, E.; Clever, W.; Dunn, K.

    1978-01-01

    A comprehensive aerodynamic analysis program based on linearized potential theory is described. The solution treats thickness and attitude problems at subsonic and supersonic speeds. Three dimensional configurations with or without jet flaps having multiple non-planar surfaces of arbitrary planform and open or closed slender bodies of non-circular contour may be analyzed. Longitudinal and lateral-directional static and rotary derivative solutions may be generated. The analysis was implemented on a time sharing system in conjunction with an input tablet digitizer and an interactive graphics input/output display and editing terminal to maximize its responsiveness to the preliminary analysis problem. Nominal case computation time of 45 CPU seconds on the CDC 175 for a 200 panel simulation indicates the program provides an efficient analysis for systematically performing various aerodynamic configuration tradeoff and evaluation studies.

  9. Optimal policy for profit maximising in an EOQ model under non-linear holding cost and stock-dependent demand rate

    NASA Astrophysics Data System (ADS)

    Pando, V.; García-Laguna, J.; San-José, L. A.

    2012-11-01

    In this article, we integrate a non-linear holding cost with a stock-dependent demand rate in a maximising profit per unit time model, extending several inventory models studied by other authors. After giving the mathematical formulation of the inventory system, we prove the existence and uniqueness of the optimal policy. Relying on this result, we can obtain the optimal solution using different numerical algorithms. Moreover, we provide a necessary and sufficient condition to determine whether a system is profitable, and we establish a rule to check when a given order quantity is the optimal lot size of the inventory model. The results are illustrated through numerical examples and the sensitivity of the optimal solution with respect to changes in some values of the parameters is assessed.

  10. Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems.

    PubMed

    Choi, Sou-Cheng T; Saunders, Michael A

    2014-02-01

    We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP.

  11. Properties of light reflected from road signs in active imaging.

    PubMed

    Halstuch, Aviran; Yitzhaky, Yitzhak

    2008-08-01

    Night vision systems in vehicles are a new emerging technology. A crucial problem in active (laser-based) systems is distortion of images by saturation and blooming due to strong retroreflections from road signs. We quantify this phenomenon. We measure the Mueller matrices and the polarization state of the reflected light from three different types of road sign commonly used. Measurements of the reflected intensity are also taken with respect to the angle of reflection. We find that different types of sign have different reflection properties. It is concluded that the optimal solution for attenuating the retroreflected intensity is using a linear polarized light source and a linear polarizer with perpendicular orientation (with regard to the source) at the detector. Unfortunately, while this solution performs well for two types of road sign, it is less efficient for the third sign type.

  12. Extended Decentralized Linear-Quadratic-Gaussian Control

    NASA Technical Reports Server (NTRS)

    Carpenter, J. Russell

    2000-01-01

    A straightforward extension of a solution to the decentralized linear-Quadratic-Gaussian problem is proposed that allows its use for commonly encountered classes of problems that are currently solved with the extended Kalman filter. This extension allows the system to be partitioned in such a way as to exclude the nonlinearities from the essential algebraic relationships that allow the estimation and control to be optimally decentralized.

  13. Supporting second grade lower secondary school students’ understanding of linear equation system in two variables using ethnomathematics

    NASA Astrophysics Data System (ADS)

    Nursyahidah, F.; Saputro, B. A.; Rubowo, M. R.

    2018-03-01

    The aim of this research is to know the students’ understanding of linear equation system in two variables using Ethnomathematics and to acquire learning trajectory of linear equation system in two variables for the second grade of lower secondary school students. This research used methodology of design research that consists of three phases, there are preliminary design, teaching experiment, and retrospective analysis. Subject of this study is 28 second grade students of Sekolah Menengah Pertama (SMP) 37 Semarang. The result of this research shows that the students’ understanding in linear equation system in two variables can be stimulated by using Ethnomathematics in selling buying tradition in Peterongan traditional market in Central Java as a context. All of strategies and model that was applied by students and also their result discussion shows how construction and contribution of students can help them to understand concept of linear equation system in two variables. All the activities that were done by students produce learning trajectory to gain the goal of learning. Each steps of learning trajectory of students have an important role in understanding the concept from informal to the formal level. Learning trajectory using Ethnomathematics that is produced consist of watching video of selling buying activity in Peterongan traditional market to construct linear equation in two variables, determine the solution of linear equation in two variables, construct model of linear equation system in two variables from contextual problem, and solving a contextual problem related to linear equation system in two variables.

  14. Mean-square state and parameter estimation for stochastic linear systems with Gaussian and Poisson noises

    NASA Astrophysics Data System (ADS)

    Basin, M.; Maldonado, J. J.; Zendejo, O.

    2016-07-01

    This paper proposes new mean-square filter and parameter estimator design for linear stochastic systems with unknown parameters over linear observations, where unknown parameters are considered as combinations of Gaussian and Poisson white noises. The problem is treated by reducing the original problem to a filtering problem for an extended state vector that includes parameters as additional states, modelled as combinations of independent Gaussian and Poisson processes. The solution to this filtering problem is based on the mean-square filtering equations for incompletely polynomial states confused with Gaussian and Poisson noises over linear observations. The resulting mean-square filter serves as an identifier for the unknown parameters. Finally, a simulation example shows effectiveness of the proposed mean-square filter and parameter estimator.

  15. Multidimensional FEM-FCT schemes for arbitrary time stepping

    NASA Astrophysics Data System (ADS)

    Kuzmin, D.; Möller, M.; Turek, S.

    2003-05-01

    The flux-corrected-transport paradigm is generalized to finite-element schemes based on arbitrary time stepping. A conservative flux decomposition procedure is proposed for both convective and diffusive terms. Mathematical properties of positivity-preserving schemes are reviewed. A nonoscillatory low-order method is constructed by elimination of negative off-diagonal entries of the discrete transport operator. The linearization of source terms and extension to hyperbolic systems are discussed. Zalesak's multidimensional limiter is employed to switch between linear discretizations of high and low order. A rigorous proof of positivity is provided. The treatment of non-linearities and iterative solution of linear systems are addressed. The performance of the new algorithm is illustrated by numerical examples for the shock tube problem in one dimension and scalar transport equations in two dimensions.

  16. Double Diffusive Convection in Materials Processing

    NASA Technical Reports Server (NTRS)

    Ramachandra, Narayanan; Leslie, Fred W.

    1999-01-01

    A great number of crystals grown in space are plagued by convective motions which contribute to structural flaws. The character of these instabilities is not well understood but is associated with density variations in the presence of residual gravity (g-jitter). As a specific example, past HgCdTe crystal growth space experiments by Lehoczky and co-workers indicate radial compositional asymmetry in the grown crystals. In the case of HgCdTe the rejected component into the melt upon solidification is HgTe which is denser than the melt. The space grown crystals indicate the presence of three dimensional flow with the heavier HgTe-rich material clearly aligned with the residual gravity (0.55-1.55 micro g) vector. This flow stems from double-diffusive convection, namely, thermal and solutal buoyancy driven flow in the melt. The study of double-diffusive convection is multi-faceted and rather vast. In our investigation, we seek to focus on one specific aspect of this discipline that is of direct relevance to materials processing especially crystal growth, namely, the side ways heating regime. This problem has been widely studied, both experimentally and numerically, in the context of solar ponds wherein the system is characterized by a linear salt (solutal) gradient with an imposed lateral temperature gradient. The induced flow instabilities arise from the wide disparity between the fluid thermal diffusivity and the solute diffusivity. The extension of the analysis to practical crystal growth applications has however not been rigorously made and understood. One subtle but important difference in crystal growth systems is the fact that die system solute gradient is non-linear (typically exponential). Besides, the crystal growth problem has the added complexities of solidification, both lateral and longitudinal thermal gradients and segregation phenomena in systems where binary and ternary compounds are being grown. This paper treats the side ways heating problem alone in a model fluid system. Results from detailed numerical calculations, mainly two dimensional are provided. The interactions between a non-linear solute gradient and an imposed transverse thermal gradient are investigated. The buoyancy effects are treated in the traditional Boussinesq approximation and also in a more complete density formulation to address recent concerns of the first approach especially in simulations of the system response in a reduced gravity environment. Detailed flow, temperature and solute field plots along with heat and mass transfer results are presented in the paper. Implications to practical crystal growth systems as discerned from the modeling results are also explored and reported.

  17. Nonlinear Diophantine equation 11 x +13 y = z 2

    NASA Astrophysics Data System (ADS)

    Sugandha, A.; Tripena, A.; Prabowo, A.; Sukono, F.

    2018-03-01

    This research aims to obtaining the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2. There are 3 possibilities to obtain the solutions (if any) from the Non Linear Diophantine equation, namely single, multiple, and no solution. This research is conducted in two stages: (1) by utilizing simulation to obtain the solutions (if any) from the Non Linear Diophantine equation of 11 x + 13 y = z 2 and (2) by utilizing congruency theory with its characteristics proven that the Non Linear Diophantine equation has no solution for non negative whole numbers (integers) of x, y, z.

  18. A spline-based non-linear diffeomorphism for multimodal prostate registration.

    PubMed

    Mitra, Jhimli; Kato, Zoltan; Martí, Robert; Oliver, Arnau; Lladó, Xavier; Sidibé, Désiré; Ghose, Soumya; Vilanova, Joan C; Comet, Josep; Meriaudeau, Fabrice

    2012-08-01

    This paper presents a novel method for non-rigid registration of transrectal ultrasound and magnetic resonance prostate images based on a non-linear regularized framework of point correspondences obtained from a statistical measure of shape-contexts. The segmented prostate shapes are represented by shape-contexts and the Bhattacharyya distance between the shape representations is used to find the point correspondences between the 2D fixed and moving images. The registration method involves parametric estimation of the non-linear diffeomorphism between the multimodal images and has its basis in solving a set of non-linear equations of thin-plate splines. The solution is obtained as the least-squares solution of an over-determined system of non-linear equations constructed by integrating a set of non-linear functions over the fixed and moving images. However, this may not result in clinically acceptable transformations of the anatomical targets. Therefore, the regularized bending energy of the thin-plate splines along with the localization error of established correspondences should be included in the system of equations. The registration accuracies of the proposed method are evaluated in 20 pairs of prostate mid-gland ultrasound and magnetic resonance images. The results obtained in terms of Dice similarity coefficient show an average of 0.980±0.004, average 95% Hausdorff distance of 1.63±0.48 mm and mean target registration and target localization errors of 1.60±1.17 mm and 0.15±0.12 mm respectively. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. On the optimal systems of subalgebras for the equations of hydrodynamic stability analysis of smooth shear flows and their group-invariant solutions

    NASA Astrophysics Data System (ADS)

    Hau, Jan-Niklas; Oberlack, Martin; Chagelishvili, George

    2017-04-01

    We present a unifying solution framework for the linearized compressible equations for two-dimensional linearly sheared unbounded flows using the Lie symmetry analysis. The full set of symmetries that are admitted by the underlying system of equations is employed to systematically derive the one- and two-dimensional optimal systems of subalgebras, whose connected group reductions lead to three distinct invariant ansatz functions for the governing sets of partial differential equations (PDEs). The purpose of this analysis is threefold and explicitly we show that (i) there are three invariant solutions that stem from the optimal system. These include a general ansatz function with two free parameters, as well as the ansatz functions of the Kelvin mode and the modal approach. Specifically, the first approach unifies these well-known ansatz functions. By considering two limiting cases of the free parameters and related algebraic transformations, the general ansatz function is reduced to either of them. This fact also proves the existence of a link between the Kelvin mode and modal ansatz functions, as these appear to be the limiting cases of the general one. (ii) The Lie algebra associated with the Lie group admitted by the PDEs governing the compressible dynamics is a subalgebra associated with the group admitted by the equations governing the incompressible dynamics, which allows an additional (scaling) symmetry. Hence, any consequences drawn from the compressible case equally hold for the incompressible counterpart. (iii) In any of the systems of ordinary differential equations, derived by the three ansatz functions in the compressible case, the linearized potential vorticity is a conserved quantity that allows us to analyze vortex and wave mode perturbations separately.

  20. Algebraic approach to solve ttbar dilepton equations

    NASA Astrophysics Data System (ADS)

    Sonnenschein, Lars

    2006-01-01

    The set of non-linear equations describing the Standard Model kinematics of the top quark an- tiqark production system in the dilepton decay channel has at most a four-fold ambiguity due to two not fully reconstructed neutrinos. Its most precise and robust solution is of major importance for measurements of top quark properties like the top quark mass and t t spin correlations. Simple algebraic operations allow to transform the non-linear equations into a system of two polynomial equations with two unknowns. These two polynomials of multidegree eight can in turn be an- alytically reduced to one polynomial with one unknown by means of resultants. The obtained univariate polynomial is of degree sixteen and the coefficients are free of any singularity. The number of its real solutions is determined analytically by means of Sturm’s theorem, which is as well used to isolate each real solution into a unique pairwise disjoint interval. The solutions are polished by seeking the sign change of the polynomial in a given interval through binary brack- eting. Further a new Ansatz - exploiting an accidental cancelation in the process of transforming the equations - is presented. It permits to transform the initial system of equations into two poly- nomial equations with two unknowns. These two polynomials of multidegree two can be reduced to one univariate polynomial of degree four by means of resultants. The obtained quartic equation can be solved analytically. The analytical solution has singularities which can be circumvented by the algebraic approach described above.

  1. Dynamics from a mathematical model of a two-state gas laser

    NASA Astrophysics Data System (ADS)

    Kleanthous, Antigoni; Hua, Tianshu; Manai, Alexandre; Yawar, Kamran; Van Gorder, Robert A.

    2018-05-01

    Motivated by recent work in the area, we consider the behavior of solutions to a nonlinear PDE model of a two-state gas laser. We first review the derivation of the two-state gas laser model, before deriving a non-dimensional model given in terms of coupled nonlinear partial differential equations. We then classify the steady states of this system, in order to determine the possible long-time asymptotic solutions to this model, as well as corresponding stability results, showing that the only uniform steady state (the zero motion state) is unstable, while a linear profile in space is stable. We then provide numerical simulations for the full unsteady model. We show for a wide variety of initial conditions that the solutions tend toward the stable linear steady state profiles. We also consider traveling wave solutions, and determine the unique wave speed (in terms of the other model parameters) which allows wave-like solutions to exist. Despite some similarities between the model and the inviscid Burger's equation, the solutions we obtain are much more regular than the solutions to the inviscid Burger's equation, with no evidence of shock formation or loss of regularity.

  2. ELAS: A general-purpose computer program for the equilibrium problems of linear structures. Volume 2: Documentation of the program. [subroutines and flow charts

    NASA Technical Reports Server (NTRS)

    Utku, S.

    1969-01-01

    A general purpose digital computer program for the in-core solution of linear equilibrium problems of structural mechanics is documented. The program requires minimum input for the description of the problem. The solution is obtained by means of the displacement method and the finite element technique. Almost any geometry and structure may be handled because of the availability of linear, triangular, quadrilateral, tetrahedral, hexahedral, conical, triangular torus, and quadrilateral torus elements. The assumption of piecewise linear deflection distribution insures monotonic convergence of the deflections from the stiffer side with decreasing mesh size. The stresses are provided by the best-fit strain tensors in the least squares at the mesh points where the deflections are given. The selection of local coordinate systems whenever necessary is automatic. The core memory is used by means of dynamic memory allocation, an optional mesh-point relabelling scheme and imposition of the boundary conditions during the assembly time.

  3. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.

    PubMed

    Nakagawa, Kyuya; Tamiya, Shinri; Do, Gabsoo; Kono, Shinji; Ochiai, Takaaki

    2018-06-01

    Glassy phase formation in a frozen product determines various properties of the freeze-dried products. When an aqueous solution is subjected to freezing, a glassy phase forms as a consequence of freeze-concentration. During post-freezing annealing, the relaxation of the glassy phase and the ripening of ice crystals (i.e. Ostwald ripening) spontaneously occur, where the kinetics are controlled by the annealing and glass transition temperatures. This study was motivated to observe the progress of glassy state relaxation separate from ice coarsening during annealing. X-ray computed tomography (CT) was used to observe a frozen and post-freezing annealed solutions by using monochromatized X-ray from the synchrotron radiation. CT images were successfully obtained, and the frozen matrix were analyzed based on the gray level values that were equivalent to the linear X-ray attenuation coefficients of the observed matters. The CT images obtained from rapidly frozen sucrose and dextrin solutions with different concentrations gave clear linear relationships between the linear X-ray attenuation coefficients values and the solute concentrations. It was confirmed that the glassy state relaxation progressed as increasing annealing time, and this trend was larger in the order of the glass transition temperature of the maximally freeze-concentrated phase. The sucrose-water system required nearly 20 h of annealing time at -5 °C for the completion of the glassy phase relaxation, whereas dextrin-water systems required much longer periods because of their higher glass transition temperatures. The trends of ice coarsening, however, did not perfectly correspond to the trends of the relaxation, suggesting that the glassy phase relaxation and Ostwald ripening would jointly control the ice crystal growth/ripening kinetics, and the dominant mechanism differed by the annealing stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Nanoprobe diffusion in entangled polymer solutions: Linear vs. unconcatenated ring chains

    NASA Astrophysics Data System (ADS)

    Nahali, Negar; Rosa, Angelo

    2018-05-01

    We employ large-scale molecular dynamics computer simulations to study the problem of nanoprobe diffusion in entangled solutions of linear polymers and unknotted and unconcatenated circular (ring) polymers. By tuning both the diameter of the nanoprobe and the density of the solution, we show that nanoprobes of diameter smaller than the entanglement distance (tube diameter) of the solution display the same (Rouse-like) behavior in solutions of both polymer architectures. Instead, nanoprobes with larger diameters appear to diffuse markedly faster in solutions of rings than in solutions of linear chains. Finally, by analysing the distribution functions of spatial displacements, we find that nanoprobe motion in rings' solutions shows both Gaussian and ergodic behaviors, in all regimes considered, while, in solutions of linear chains, nanoprobes exceeding the size of the tube diameter show a transition to non-Gaussian and non-ergodic motion. Our results emphasize the role of chain architecture in the motion of nanoprobes dispersed in polymer solutions.

  5. A novel method for determining the solubility of small molecules in aqueous media and polymer solvent systems using solution calorimetry.

    PubMed

    Fadda, Hala M; Chen, Xin; Aburub, Aktham; Mishra, Dinesh; Pinal, Rodolfo

    2014-07-01

    To explore the application of solution calorimetry for measuring drug solubility in experimentally challenging situations while providing additional information on the physical properties of the solute material. A semi-adiabatic solution calorimeter was used to measure the heat of dissolution of prednisolone and chlorpropamide in aqueous solvents and of griseofulvin and ritonavir in viscous solutions containing polyvinylpyrrolidone and N-ethylpyrrolidone. Dissolution end point was clearly ascertained when heat generation stopped. The heat of solution was a linear function of dissolved mass for all drugs (<10% RSD, except for chlorpropamide). Heats of solution of 9.8 ± 0.8, 28.8 ± 0.6, 45.7 ± 1.6 and 159.8 ± 20.1 J/g were obtained for griseofulvin, ritonavir, prednisolone and chlorpropamide, respectively. Saturation was identifiable by a plateau in the heat signal and the crossing of the two linear segments corresponds to the solubility limit. The solubilities of prednisolone and chlopropamide in water by the calorimetric method were 0.23 and 0.158 mg/mL, respectively, in agreement with the shake-flask/HPLC-UV determined values of 0.212 ± 0.013 and 0.169 ± 0.015 mg/mL, respectively. For the higher solubility and high viscosity systems of griseofulvin and ritonavir in NEP/PVP mixtures, respectively, solubility values of 65 and 594 mg/g, respectively, were obtained. Solution calorimetry offers a reliable method for measuring drug solubility in organic and aqueous solvents. The approach is complementary to the traditional shake-flask method, providing information on the solid properties of the solute. For highly viscous solutions, the calorimetric approach is advantageous.

  6. A boundary-value problem for a first-order hyperbolic system in a two-dimensional domain

    NASA Astrophysics Data System (ADS)

    Zhura, N. A.; Soldatov, A. P.

    2017-06-01

    We consider a strictly hyperbolic first-order system of three equations with constant coefficients in a bounded piecewise-smooth domain. The boundary of the domain is assumed to consist of six smooth non-characteristic arcs. A boundary-value problem in this domain is posed by alternately prescribing one or two linear combinations of the components of the solution on these arcs. We show that this problem has a unique solution under certain additional conditions on the coefficients of these combinations, the boundary of the domain and the behaviour of the solution near the characteristics passing through the corner points of the domain.

  7. Solution of Nonlinear Systems

    NASA Technical Reports Server (NTRS)

    Turner, L. R.

    1960-01-01

    The problem of solving systems of nonlinear equations has been relatively neglected in the mathematical literature, especially in the textbooks, in comparison to the corresponding linear problem. Moreover, treatments that have an appearance of generality fail to discuss the nature of the solutions and the possible pitfalls of the methods suggested. Probably it is unrealistic to expect that a unified and comprehensive treatment of the subject will evolve, owing to the great variety of situations possible, especially in the applied field where some requirement of human or mechanical efficiency is always present. Therefore we attempt here simply to pose the problem and to describe and partially appraise the methods of solution currently in favor.

  8. Algebraic solutions of shape-invariant position-dependent effective mass systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amir, Naila, E-mail: naila.amir@live.com, E-mail: naila.amir@seecs.edu.pk; Iqbal, Shahid, E-mail: sic80@hotmail.com, E-mail: siqbal@sns.nust.edu.pk

    2016-06-15

    Keeping in view the ordering ambiguity that arises due to the presence of position-dependent effective mass in the kinetic energy term of the Hamiltonian, a general scheme for obtaining algebraic solutions of quantum mechanical systems with position-dependent effective mass is discussed. We quantize the Hamiltonian of the pertaining system by using symmetric ordering of the operators concerning momentum and the spatially varying mass, initially proposed by von Roos and Lévy-Leblond. The algebraic method, used to obtain the solutions, is based on the concepts of supersymmetric quantum mechanics and shape invariance. In order to exemplify the general formalism a class ofmore » non-linear oscillators has been considered. This class includes the particular example of a one-dimensional oscillator with different position-dependent effective mass profiles. Explicit expressions for the eigenenergies and eigenfunctions in terms of generalized Hermite polynomials are presented. Moreover, properties of these modified Hermite polynomials, like existence of generating function and recurrence relations among the polynomials have also been studied. Furthermore, it has been shown that in the harmonic limit, all the results for the linear harmonic oscillator are recovered.« less

  9. Systems of fuzzy equations in structural mechanics

    NASA Astrophysics Data System (ADS)

    Skalna, Iwona; Rama Rao, M. V.; Pownuk, Andrzej

    2008-08-01

    Systems of linear and nonlinear equations with fuzzy parameters are relevant to many practical problems arising in structure mechanics, electrical engineering, finance, economics and physics. In this paper three methods for solving such equations are discussed: method for outer interval solution of systems of linear equations depending linearly on interval parameters, fuzzy finite element method proposed by Rama Rao and sensitivity analysis method. The performance and advantages of presented methods are described with illustrative examples. Extended version of the present paper can be downloaded from the web page of the UTEP [I. Skalna, M.V. Rama Rao, A. Pownuk, Systems of fuzzy equations in structural mechanics, The University of Texas at El Paso, Department of Mathematical Sciences Research Reports Series, , Texas Research Report No. 2007-01, 2007].

  10. Linear parameter varying representations for nonlinear control design

    NASA Astrophysics Data System (ADS)

    Carter, Lance Huntington

    Linear parameter varying (LPV) systems are investigated as a framework for gain-scheduled control design and optimal hybrid control. An LPV system is defined as a linear system whose dynamics depend upon an a priori unknown but measurable exogenous parameter. A gain-scheduled autopilot design is presented for a bank-to-turn (BTT) missile. The method is novel in that the gain-scheduled design does not involve linearizations about operating points. Instead, the missile dynamics are brought to LPV form via a state transformation. This idea is applied to the design of a coupled longitudinal/lateral BTT missile autopilot. The pitch and yaw/roll dynamics are separately transformed to LPV form, where the cross axis states are treated as "exogenous" parameters. These are actually endogenous variables, so such a plant is called "quasi-LPV." Once in quasi-LPV form, a family of robust controllers using mu synthesis is designed for both the pitch and yaw/roll channels, using angle-of-attack and roll rate as the scheduling variables. The closed-loop time response is simulated using the original nonlinear model and also using perturbed aerodynamic coefficients. Modeling and control of engine idle speed is investigated using LPV methods. It is shown how generalized discrete nonlinear systems may be transformed into quasi-LPV form. A discrete nonlinear engine model is developed and expressed in quasi-LPV form with engine speed as the scheduling variable. An example control design is presented using linear quadratic methods. Simulations are shown comparing the LPV based controller performance to that using PID control. LPV representations are also shown to provide a setting for hybrid systems. A hybrid system is characterized by control inputs consisting of both analog signals and discrete actions. A solution is derived for the optimal control of hybrid systems with generalized cost functions. This is shown to be computationally intensive, so a suboptimal strategy is proposed that neglects a subset of possible parameter trajectories. A computational algorithm is constructed for this suboptimal solution applied to a class of linear non-quadratic cost functions.

  11. An implicit boundary integral method for computing electric potential of macromolecules in solvent

    NASA Astrophysics Data System (ADS)

    Zhong, Yimin; Ren, Kui; Tsai, Richard

    2018-04-01

    A numerical method using implicit surface representations is proposed to solve the linearized Poisson-Boltzmann equation that arises in mathematical models for the electrostatics of molecules in solvent. The proposed method uses an implicit boundary integral formulation to derive a linear system defined on Cartesian nodes in a narrowband surrounding the closed surface that separates the molecule and the solvent. The needed implicit surface is constructed from the given atomic description of the molecules, by a sequence of standard level set algorithms. A fast multipole method is applied to accelerate the solution of the linear system. A few numerical studies involving some standard test cases are presented and compared to other existing results.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wollaber, Allan Benton; Park, HyeongKae; Lowrie, Robert Byron

    Moment-based acceleration via the development of “high-order, low-order” (HO-LO) algorithms has provided substantial accuracy and efficiency enhancements for solutions of the nonlinear, thermal radiative transfer equations by CCS-2 and T-3 staff members. Accuracy enhancements over traditional, linearized methods are obtained by solving a nonlinear, timeimplicit HO-LO system via a Jacobian-free Newton Krylov procedure. This also prevents the appearance of non-physical maximum principle violations (“temperature spikes”) associated with linearization. Efficiency enhancements are obtained in part by removing “effective scattering” from the linearized system. In this highlight, we summarize recent work in which we formally extended the HO-LO radiation algorithm to includemore » operator-split radiation-hydrodynamics.« less

  13. Improving the Energy Market: Algorithms, Market Implications, and Transmission Switching

    NASA Astrophysics Data System (ADS)

    Lipka, Paula Ann

    This dissertation aims to improve ISO operations through a better real-time market solution algorithm that directly considers both real and reactive power, finds a feasible Alternating Current Optimal Power Flow solution, and allows for solving transmission switching problems in an AC setting. Most of the IEEE systems do not contain any thermal limits on lines, and the ones that do are often not binding. Chapter 3 modifies the thermal limits for the IEEE systems to create new, interesting test cases. Algorithms created to better solve the power flow problem often solve the IEEE cases without line limits. However, one of the factors that makes the power flow problem hard is thermal limits on the lines. The transmission networks in practice often have transmission lines that become congested, and it is unrealistic to ignore line limits. Modifying the IEEE test cases makes it possible for other researchers to be able to test their algorithms on a setup that is closer to the actual ISO setup. This thesis also examines how to convert limits given on apparent power---as is in the case in the Polish test systems---to limits on current. The main consideration in setting line limits is temperature, which linearly relates to current. Setting limits on real or apparent power is actually a proxy for using the limits on current. Therefore, Chapter 3 shows how to convert back to the best physical representation of line limits. A sequential linearization of the current-voltage formulation of the Alternating Current Optimal Power Flow (ACOPF) problem is used to find an AC-feasible generator dispatch. In this sequential linearization, there are parameters that are set to the previous optimal solution. Additionally, to improve accuracy of the Taylor series approximations that are used, the movement of the voltage is restricted. The movement of the voltage is allowed to be very large at the first iteration and is restricted further on each subsequent iteration, with the restriction corresponding to the accuracy and AC-feasiblity of the solution. This linearization was tested on the IEEE and Polish systems, which range from 14 to 3375 buses and 20 to 4161 transmission lines. It had an accuracy of 0.5% or less for all but the 30-bus system. It also solved in linear time with CPLEX, while the non-linear version solved in O(n1.11) to O(n1.39). The sequential linearization is slower than the nonlinear formulation for smaller problems, but faster for larger problems, and its linear computational time means it would continue solving faster for larger problems. A major consideration to implementing algorithms to solve the optimal generator dispatch is ensuring that the resulting prices from the algorithm will support the market. Since the sequential linearization is linear, it is convex, its marginal values are well-defined, and there is no duality gap. The prices and settlements obtained from the sequential linearization therefore can be used to run a market. This market will include extra prices and settlements for reactive power and voltage, compared to the present-day market, which is based on real power. An advantage of this is that there is a very clear pool that can be used for reactive power/voltage support payments, while presently there is not a clear pool to take them out of. This method also reveals how valuable reactive power and voltage are at different locations, which can enable better planning of reactive resource construction. Transmission switching increases the feasible region of the generator dispatch, which means there may be a better solution than without transmission switching. Power flows on transmission lines are not directly controllable; rather, the power flows according to how it is injected and the physical characteristics of the lines. Changing the network topology changes the physical characteristics, which changes the flows. This means that sets of generator dispatch that may have previously been infeasible due to the flow exceeding line constraints may be feasible, since the flows will be different and may meet line constraints. However, transmission switching is a mixed integer problem, which may have a very slow solution time. For economic switching, we examine a series of heuristics. We examine the congestion rent heuristic in detail and then examine many other heuristics at a higher level. Post-contingency corrective switching aims to fix issues in the power network after a line or generator outage. In Chapter 7, we show that using the sequential linear program with corrective switching helps solve voltage and excessive flow issues. (Abstract shortened by UMI.).

  14. Control logic to track the outputs of a command generator or randomly forced target

    NASA Technical Reports Server (NTRS)

    Trankle, T. L.; Bryson, A. E., Jr.

    1977-01-01

    A procedure is presented for synthesizing time-invariant control logic to cause the outputs of a linear plant to track the outputs of an unforced (or randomly forced) linear dynamic system. The control logic uses feed-forward of the reference system state variables and feedback of the plant state variables. The feed-forward gains are obtained from the solution of a linear algebraic matrix equation of the Liapunov type. The feedback gains are the usual regulator gains, determined to stabilize (or augment the stability of) the plant, possibly including integral control. The method is applied here to the design of control logic for a second-order servomechanism to follow a linearly increasing (ramp) signal, an unstable third-order system with two controls to track two separate ramp signals, and a sixth-order system with two controls to track a constant signal and an exponentially decreasing signal (aircraft landing-flare or glide-slope-capture with constant velocity).

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korneeva, Anna; Shaydurov, Vladimir

    In the paper, the data analysis is considered for thin-film thermoresistors coated on to a radio-electronic printed circuit board to determine possible zones of its overheating. A mathematical model consists in an underdetermined system of linear algebraic equations with an infinite set of solutions. For computing a more real solution, two additional conditions are used: the smoothness of a solution and the positiveness of an increase of temperature during overheating. Computational experiments demonstrate that an overheating zone is determined exactly with a tolerable accuracy of temperature in it.

  16. Concentration Dependent Physical Properties of Ge1-xSnx Solid Solution

    NASA Astrophysics Data System (ADS)

    Jivani, A. R.; Jani, A. R.

    2011-12-01

    Our own proposed potential is used to investigate few physical properties like total energy, bulk modulus, pressure derivative of bulk modulus, elastic constants, pressure derivative of elastic constants, Poisson's ratio and Young's modulus of Ge1-xSnx solid solution with x is atomic concentration of α-Sn. The potential combines linear plus quadratic types of electron-ion interaction. First time screening function proposed by Sarkar et al is used to investigate the properties of the Ge-Sn solid solution system.

  17. Application of quadratic optimization to supersonic inlet control.

    NASA Technical Reports Server (NTRS)

    Lehtinen, B.; Zeller, J. R.

    1972-01-01

    This paper describes the application of linear stochastic optimal control theory to the design of the control system for the air intake, the inlet, of a supersonic air-breathing propulsion system. The controls must maintain a stable inlet shock position in the presence of random airflow disturbances and prevent inlet unstart. Two different linear time invariant controllers are developed. One is designed to minimize a nonquadratic index, the expected frequency of inlet unstart, and the other is designed to minimize the mean square value of inlet shock motion. The quadratic equivalence principle is used to obtain a linear controller that minimizes the nonquadratic index. The two controllers are compared on the basis of unstart prevention, control effort requirements, and frequency response. It is concluded that while controls designed to minimize unstarts are desirable in that the index minimized is physically meaningful, computation time required is longer than for the minimum mean square shock position approach. The simpler minimum mean square shock position solution produced expected unstart frequency values which were not significantly larger than those of the nonquadratic solution.

  18. Non-linear motions in reprocessed GPS station position time series

    NASA Astrophysics Data System (ADS)

    Rudenko, Sergei; Gendt, Gerd

    2010-05-01

    Global Positioning System (GPS) data of about 400 globally distributed stations obtained at time span from 1998 till 2007 were reprocessed using GFZ Potsdam EPOS (Earth Parameter and Orbit System) software within International GNSS Service (IGS) Tide Gauge Benchmark Monitoring (TIGA) Pilot Project and IGS Data Reprocessing Campaign with the purpose to determine weekly precise coordinates of GPS stations located at or near tide gauges. Vertical motions of these stations are used to correct the vertical motions of tide gauges for local motions and to tie tide gauge measurements to the geocentric reference frame. Other estimated parameters include daily values of the Earth rotation parameters and their rates, as well as satellite antenna offsets. The solution GT1 derived is based on using absolute phase center variation model, ITRF2005 as a priori reference frame, and other new models. The solution contributed also to ITRF2008. The time series of station positions are analyzed to identify non-linear motions caused by different effects. The paper presents the time series of GPS station coordinates and investigates apparent non-linear motions and their influence on GPS station height rates.

  19. Vectorization of transport and diffusion computations on the CDC Cyber 205

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abu-Shumays, I.K.

    1986-01-01

    The development and testing of alternative numerical methods and computational algorithms specifically designed for the vectorization of transport and diffusion computations on a Control Data Corporation (CDC) Cyber 205 vector computer are described. Two solution methods for the discrete ordinates approximation to the transport equation are summarized and compared. Factors of 4 to 7 reduction in run times for certain large transport problems were achieved on a Cyber 205 as compared with run times on a CDC-7600. The solution of tridiagonal systems of linear equations, central to several efficient numerical methods for multidimensional diffusion computations and essential for fluid flowmore » and other physics and engineering problems, is also dealt with. Among the methods tested, a combined odd-even cyclic reduction and modified Cholesky factorization algorithm for solving linear symmetric positive definite tridiagonal systems is found to be the most effective for these systems on a Cyber 205. For large tridiagonal systems, computation with this algorithm is an order of magnitude faster on a Cyber 205 than computation with the best algorithm for tridiagonal systems on a CDC-7600.« less

  20. Global asymptotic stabilisation of rational dynamical systems based on solving BMI

    NASA Astrophysics Data System (ADS)

    Esmaili, Farhad; Kamyad, A. V.; Jahed-Motlagh, Mohammad Reza; Pariz, Naser

    2017-08-01

    In this paper, the global asymptotic stabiliser design of rational systems is studied in detail. To develop the idea, the state equations of the system are transformed to a new coordinate via polynomial transformation and the state feedback control law. This in turn is followed by the satisfaction of the linear growth condition (i.e. Lipschitz at zero). Based on a linear matrix inequality solution, the system in the new coordinate is globally asymptotically stabilised and then, leading to the global asymptotic stabilisation of the primary system. The polynomial transformation coefficients are derived by solving the bilinear matrix inequality problem. To confirm the capability of this method, three examples are highlighted.

  1. Nonlinear control systems - A brief overview of historical and recent advances

    NASA Astrophysics Data System (ADS)

    Iqbal, Jamshed; Ullah, Mukhtar; Khan, Said Ghani; Khelifa, Baizid; Ćuković, Saša

    2017-12-01

    Last five decades witnessed remarkable developments in linear control systems and thus problems in this subject has been largely resolved. The scope of the present paper is beyond linear solutions. Modern technology demands sophisticated control laws to meet stringent design specifications thus highlighting the increasingly conspicuous position of nonlinear control systems, which is the topic of this paper. Historical role of analytical concepts in analysis and design of nonlinear control systems is briefly outlined. Recent advancements in these systems from applications perspective are examined with critical comments on associated challenges. It is anticipated that wider dissemination of this comprehensive review will stimulate more collaborations among the research community and contribute to further developments.

  2. Feedforward Tracking Control of Flat Recurrent Fuzzy Systems

    NASA Astrophysics Data System (ADS)

    Gering, Stefan; Adamy, Jürgen

    2014-12-01

    Flatness based feedforward control has proven to be a feasible solution for the problem of tracking control, which may be applied to a broad class of nonlinear systems. If a flat output of the system is known, the control is often based on a feedforward controller generating a nominal input in combination with a linear controller stabilizing the linearized error dynamics around the trajectory. We show in this paper that the very same idea may be incorporated for tracking control of MIMO recurrent fuzzy systems. Their dynamics is given by means of linguistic differential equations but may be converted into a hybrid system representation, which then serves as the basis for controller synthesis.

  3. Investigation of absolute and relative response for three different liquid chromatography/tandem mass spectrometry systems; the impact of ionization and detection saturation.

    PubMed

    Nilsson, Lars B; Skansen, Patrik

    2012-06-30

    The investigations in this article were triggered by two observations in the laboratory; for some liquid chromatography/tandem mass spectrometry (LC/MS/MS) systems it was possible to obtain linear calibration curves for extreme concentration ranges and for some systems seemingly linear calibration curves gave good accuracy at low concentrations only when using a quadratic regression function. The absolute and relative responses were tested for three different LC/MS/MS systems by injecting solutions of a model compound and a stable isotope labeled internal standard. The analyte concentration range for the solutions was 0.00391 to 500 μM (128,000×), giving overload of the chromatographic column at the highest concentrations. The stable isotope labeled internal standard concentration was 0.667 μM in all samples. The absolute response per concentration unit decreased rapidly as higher concentrations were injected. The relative response, the ratio for the analyte peak area to the internal standard peak area, per concentration unit was calculated. For system 1, the ionization process was found to limit the response and the relative response per concentration unit was constant. For systems 2 and 3, the ion detection process was the limiting factor resulting in decreasing relative response at increasing concentrations. For systems behaving like system 1, simple linear regression can be used for any concentration range while, for systems behaving like systems 2 and 3, non-linear regression is recommended for all concentration ranges. Another consequence is that the ionization capacity limited systems will be insensitive to matrix ion suppression when an ideal internal standard is used while the detection capacity limited systems are at risk of giving erroneous results at high concentrations if the matrix ion suppression varies for different samples in a run. Copyright © 2012 John Wiley & Sons, Ltd.

  4. The primer vector in linear, relative-motion equations. [spacecraft trajectory optimization

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Primer vector theory is used in analyzing a set of linear, relative-motion equations - the Clohessy-Wiltshire equations - to determine the criteria and necessary conditions for an optimal, N-impulse trajectory. Since the state vector for these equations is defined in terms of a linear system of ordinary differential equations, all fundamental relations defining the solution of the state and costate equations, and the necessary conditions for optimality, can be expressed in terms of elementary functions. The analysis develops the analytical criteria for improving a solution by (1) moving any dependent or independent variable in the initial and/or final orbit, and (2) adding intermediate impulses. If these criteria are violated, the theory establishes a sufficient number of analytical equations. The subsequent satisfaction of these equations will result in the optimal position vectors and times of an N-impulse trajectory. The solution is examined for the specific boundary conditions of (1) fixed-end conditions, two-impulse, and time-open transfer; (2) an orbit-to-orbit transfer; and (3) a generalized rendezvous problem. A sequence of rendezvous problems is solved to illustrate the analysis and the computational procedure.

  5. Fast solution of elliptic partial differential equations using linear combinations of plane waves.

    PubMed

    Pérez-Jordá, José M

    2016-02-01

    Given an arbitrary elliptic partial differential equation (PDE), a procedure for obtaining its solution is proposed based on the method of Ritz: the solution is written as a linear combination of plane waves and the coefficients are obtained by variational minimization. The PDE to be solved is cast as a system of linear equations Ax=b, where the matrix A is not sparse, which prevents the straightforward application of standard iterative methods in order to solve it. This sparseness problem can be circumvented by means of a recursive bisection approach based on the fast Fourier transform, which makes it possible to implement fast versions of some stationary iterative methods (such as Gauss-Seidel) consuming O(NlogN) memory and executing an iteration in O(Nlog(2)N) time, N being the number of plane waves used. In a similar way, fast versions of Krylov subspace methods and multigrid methods can also be implemented. These procedures are tested on Poisson's equation expressed in adaptive coordinates. It is found that the best results are obtained with the GMRES method using a multigrid preconditioner with Gauss-Seidel relaxation steps.

  6. Chaos, Fractals, and Polynomials.

    ERIC Educational Resources Information Center

    Tylee, J. Louis; Tylee, Thomas B.

    1996-01-01

    Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)

  7. Handling of computational in vitro/in vivo correlation problems by Microsoft Excel: IV. Generalized matrix analysis of linear compartment systems.

    PubMed

    Langenbucher, Frieder

    2005-01-01

    A linear system comprising n compartments is completely defined by the rate constants between any of the compartments and the initial condition in which compartment(s) the drug is present at the beginning. The generalized solution is the time profiles of drug amount in each compartment, described by polyexponential equations. Based on standard matrix operations, an Excel worksheet computes the rate constants and the coefficients, finally the full time profiles for a specified range of time values.

  8. Forward and inverse solutions for Risley prism based on the Denavit-Hartenberg methodology

    NASA Astrophysics Data System (ADS)

    Beltran-Gonzalez, A.; Garcia-Torales, G.; Strojnik, M.; Flores, J. L.; Garcia-Luna, J. L.

    2017-08-01

    In this work forward and inverse solutions for two-element Risley prism for pointing and scanning beam systems are developed. A more efficient and faster algorithm is proposed to make an analogy of the Risley prism system compared with a robotic system with two degrees of freedom. This system of equations controls each Risley prism individually as a planar manipulator arm of two links. In order to evaluate the algorithm we implement it in a pointing system. We perform popular routines such as the linear, spiral and loops traces. Using forward and inverse solutions for two-element Risley prism it is also possible to point at coordinates specified by the user, provided they are within the pointer area of work area. Experimental results are showed as a validation of our proposal.

  9. Concentration-dependent changes in apparent diffusion coefficients as indicator for colloidal stability of protein solutions.

    PubMed

    Bauer, Katharina Christin; Göbel, Mathias; Schwab, Marie-Luise; Schermeyer, Marie-Therese; Hubbuch, Jürgen

    2016-09-10

    The colloidal stability of a protein solution during downstream processing, formulation, and storage is a key issue for the biopharmaceutical production process. Thus, knowledge about colloidal solution characteristics, such as the tendency to form aggregates or high viscosity, at various processing conditions is of interest. This work correlates changes in the apparent diffusion coefficient as a parameter of protein interactions with observed protein aggregation and dynamic viscosity of the respective protein samples. For this purpose, the diffusion coefficient, the protein phase behavior, and the dynamic viscosity in various systems containing the model proteins α-lactalbumin, lysozyme, and glucose oxidase were studied. Each of these experiments revealed a wide range of variations in protein interactions depending on protein type, protein concentration, pH, and the NaCl concentration. All these variations showed to be mirrored by changes in the apparent diffusion coefficient in the respective samples. Whereas stable samples with relatively low viscosity showed an almost linear dependence, the deviation from the concentration-dependent linearity indicated both an increase in the sample viscosity and probability of protein aggregation. This deviation of the apparent diffusion coefficient from concentration-dependent linearity was independent of protein type and solution properties for this study. Thus, this single parameter shows the potential to act as a prognostic tool for colloidal stability of protein solutions. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system

    NASA Astrophysics Data System (ADS)

    Gambino, G.; Lombardo, M. C.; Sammartino, M.

    2018-01-01

    In this paper we investigate the complex dynamics originated by a cross-diffusion-induced subharmonic destabilization of the fundamental subcritical Turing mode in a predator-prey reaction-diffusion system. The model we consider consists of a two-species Lotka-Volterra system with linear diffusion and a nonlinear cross-diffusion term in the predator equation. The taxis term in the search strategy of the predator is responsible for the onset of complex dynamics. In fact, our model does not exhibit any Hopf or wave instability, and on the basis of the linear analysis one should only expect stationary patterns; nevertheless, the presence of the nonlinear cross-diffusion term is able to induce a secondary instability: due to a subharmonic spatial resonance, the stationary primary branch bifurcates to an out-of-phase oscillating solution. Noticeably, the strong resonance between the harmonic and the subharmonic is able to generate the oscillating pattern albeit the subharmonic is below criticality. We show that, as the control parameter is varied, the oscillating solution (sub T mode) can undergo a sequence of secondary instabilities, generating a transition toward chaotic dynamics. Finally, we investigate the emergence of sub T -mode solutions on two-dimensional domains: when the fundamental mode describes a square pattern, subharmonic resonance originates oscillating square patterns. In the case of subcritical Turing hexagon solutions, the internal interactions with a subharmonic mode are able to generate the so-called "twinkling-eyes" pattern.

  11. A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garrett, C. Kristopher; Hauck, Cory D.

    In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less

  12. A Fast Solver for Implicit Integration of the Vlasov--Poisson System in the Eulerian Framework

    DOE PAGES

    Garrett, C. Kristopher; Hauck, Cory D.

    2018-04-05

    In this paper, we present a domain decomposition algorithm to accelerate the solution of Eulerian-type discretizations of the linear, steady-state Vlasov equation. The steady-state solver then forms a key component in the implementation of fully implicit or nearly fully implicit temporal integrators for the nonlinear Vlasov--Poisson system. The solver relies on a particular decomposition of phase space that enables the use of sweeping techniques commonly used in radiation transport applications. The original linear system for the phase space unknowns is then replaced by a smaller linear system involving only unknowns on the boundary between subdomains, which can then be solvedmore » efficiently with Krylov methods such as GMRES. Steady-state solves are combined to form an implicit Runge--Kutta time integrator, and the Vlasov equation is coupled self-consistently to the Poisson equation via a linearized procedure or a nonlinear fixed-point method for the electric field. Finally, numerical results for standard test problems demonstrate the efficiency of the domain decomposition approach when compared to the direct application of an iterative solver to the original linear system.« less

  13. Linear Transformation Method for Multinuclide Decay Calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Yuan

    2010-12-29

    A linear transformation method for generic multinuclide decay calculations is presented together with its properties and implications. The method takes advantage of the linear form of the decay solution N(t) = F(t)N{sub 0}, where N(t) is a column vector that represents the numbers of atoms of the radioactive nuclides in the decay chain, N{sub 0} is the initial value vector of N(t), and F(t) is a lower triangular matrix whose time-dependent elements are independent of the initial values of the system.

  14. Online Solution of Two-Player Zero-Sum Games for Continuous-Time Nonlinear Systems With Completely Unknown Dynamics.

    PubMed

    Fu, Yue; Chai, Tianyou

    2016-12-01

    Regarding two-player zero-sum games of continuous-time nonlinear systems with completely unknown dynamics, this paper presents an online adaptive algorithm for learning the Nash equilibrium solution, i.e., the optimal policy pair. First, for known systems, the simultaneous policy updating algorithm (SPUA) is reviewed. A new analytical method to prove the convergence is presented. Then, based on the SPUA, without using a priori knowledge of any system dynamics, an online algorithm is proposed to simultaneously learn in real time either the minimal nonnegative solution of the Hamilton-Jacobi-Isaacs (HJI) equation or the generalized algebraic Riccati equation for linear systems as a special case, along with the optimal policy pair. The approximate solution to the HJI equation and the admissible policy pair is reexpressed by the approximation theorem. The unknown constants or weights of each are identified simultaneously by resorting to the recursive least square method. The convergence of the online algorithm to the optimal solutions is provided. A practical online algorithm is also developed. Simulation results illustrate the effectiveness of the proposed method.

  15. Analysis of the Multiple-Solution Response of a Flexible Rotor Supported on Non-Linear Squeeze Film Dampers

    NASA Astrophysics Data System (ADS)

    ZHU, C. S.; ROBB, D. A.; EWINS, D. J.

    2002-05-01

    The multiple-solution response of rotors supported on squeeze film dampers is a typical non-linear phenomenon. The behaviour of the multiple-solution response in a flexible rotor supported on two identical squeeze film dampers with centralizing springs is studied by three methods: synchronous circular centred-orbit motion solution, numerical integration method and slow acceleration method using the assumption of a short bearing and cavitated oil film; the differences of computational results obtained by the three different methods are compared in this paper. It is shown that there are three basic forms for the multiple-solution response in the flexible rotor system supported on the squeeze film dampers, which are the resonant, isolated bifurcation and swallowtail bifurcation multiple solutions. In the multiple-solution speed regions, the rotor motion may be subsynchronous, super-subsynchronous, almost-periodic and even chaotic, besides synchronous circular centred, even if the gravity effect is not considered. The assumption of synchronous circular centred-orbit motion for the journal and rotor around the static deflection line can be used only in some special cases; the steady state numerical integration method is very useful, but time consuming. Using the slow acceleration method, not only can the multiple-solution speed regions be detected, but also the non-synchronous response regions.

  16. Proposed solution methodology for the dynamically coupled nonlinear geared rotor mechanics equations

    NASA Technical Reports Server (NTRS)

    Mitchell, L. D.; David, J. W.

    1983-01-01

    The equations which describe the three-dimensional motion of an unbalanced rigid disk in a shaft system are nonlinear and contain dynamic-coupling terms. Traditionally, investigators have used an order analysis to justify ignoring the nonlinear terms in the equations of motion, producing a set of linear equations. This paper will show that, when gears are included in such a rotor system, the nonlinear dynamic-coupling terms are potentially as large as the linear terms. Because of this, one must attempt to solve the nonlinear rotor mechanics equations. A solution methodology is investigated to obtain approximate steady-state solutions to these equations. As an example of the use of the technique, a simpler set of equations is solved and the results compared to numerical simulations. These equations represent the forced, steady-state response of a spring-supported pendulum. These equations were chosen because they contain the type of nonlinear terms found in the dynamically-coupled nonlinear rotor equations. The numerical simulations indicate this method is reasonably accurate even when the nonlinearities are large.

  17. Domain decomposition methods for the parallel computation of reacting flows

    NASA Technical Reports Server (NTRS)

    Keyes, David E.

    1988-01-01

    Domain decomposition is a natural route to parallel computing for partial differential equation solvers. Subdomains of which the original domain of definition is comprised are assigned to independent processors at the price of periodic coordination between processors to compute global parameters and maintain the requisite degree of continuity of the solution at the subdomain interfaces. In the domain-decomposed solution of steady multidimensional systems of PDEs by finite difference methods using a pseudo-transient version of Newton iteration, the only portion of the computation which generally stands in the way of efficient parallelization is the solution of the large, sparse linear systems arising at each Newton step. For some Jacobian matrices drawn from an actual two-dimensional reacting flow problem, comparisons are made between relaxation-based linear solvers and also preconditioned iterative methods of Conjugate Gradient and Chebyshev type, focusing attention on both iteration count and global inner product count. The generalized minimum residual method with block-ILU preconditioning is judged the best serial method among those considered, and parallel numerical experiments on the Encore Multimax demonstrate for it approximately 10-fold speedup on 16 processors.

  18. Ultrasonic Monitoring of the Interaction between Cement Matrix and Alkaline Silicate Solution in Self-Healing Systems.

    PubMed

    Ait Ouarabi, Mohand; Antonaci, Paola; Boubenider, Fouad; Gliozzi, Antonio S; Scalerandi, Marco

    2017-01-07

    Alkaline solutions, such as sodium, potassium or lithium silicates, appear to be very promising as healing agents for the development of encapsulated self-healing concretes. However, the evolution of their mechanical and acoustic properties in time has not yet been completely clarified, especially regarding their behavior and related kinetics when they are used in the form of a thin layer in contact with a hardened cement matrix. This study aims to monitor, using linear and nonlinear ultrasonic methods, the evolution of a sodium silicate solution interacting with a cement matrix in the presence of localized cracks. The ultrasonic inspection via linear methods revealed that an almost complete recovery of the elastic and acoustic properties occurred within a few days of healing. The nonlinear ultrasonic measurements contributed to provide further insight into the kinetics of the recovery due to the presence of the healing agent. A good regain of mechanical performance was ascertained through flexural tests at the end of the healing process, confirming the suitability of sodium silicate as a healing agent for self-healing cementitious systems.

  19. Molecular Interactions in 1,4-Dioxane, Tetrahydrofuran, and Ethyl Acetate Solutions of 1,1'-Bis(4-isopropyloxyacetylphenoxy)cyclohexane on Reological, Density, and Acoustic Behavior

    NASA Astrophysics Data System (ADS)

    Dhaduk, B. B.; Patel, Ch. B.; Parsania, P. H.

    2017-12-01

    Various thermo-acoustical parameters of 1,4-dioxane, tetrahydofuran and ethylacetae solutions of 1,1'-bis(4-isopropyloxyacetylphenoxy)cyclohexane were determined at different temperatures using density, viscosity and ultrasonic speed and correlated with concentration. Linear increase of ultrasonic speed, specific acoustical impedance, Rao's molar sound function, Van der Waals constant and free volume with concentration C and decreased with temperature. Linear decrease of adiabatic compressibility, internal pressure, intermolecular free path length, classical absorption coefficient, and viscous relaxation time with concentration and increased with temperature indicated existence of strong molecular interactions in solutions and further supported by positive values of solvation number. Gibbs free energy of activation decreased with C in all three systems. It is decreased with T in 1,4-dioxane, while increased in tetrahydrofuran and ethyl acetate. Both enthalpy of activation and entropy of activation are increased gradually with C in 1,4-dioxane, while they are negative and remained practically independent of concentration in 1,4-dioxane and tetrahydofuran systems.

  20. The Jeffcott equations in nonlinear rotordynamics

    NASA Technical Reports Server (NTRS)

    Zalik, R. A.

    1987-01-01

    The Jeffcott equations are a system of coupled differential equations representing the behavior of a rotating shaft. This is a simple model which allows investigation of the basic dynamic behavior of rotating machinery. Nolinearities can be introduced by taking into consideration deadband, side force, and rubbing, among others. The properties of the solutions of the Jeffcott equations with deadband are studied. In particular, it is shown how bounds for the solution of these equations can be obtained from bounds for the solutions of the linearized equations. By studying the behavior of the Fourier transforms of the solutions, we are also able to predict the onset of destructive vibrations. These conclusions are verified by means of numerical solutions of the equations, and of power spectrum density (PSD) plots. This study offers insight into a possible detection method to determine pump stability margins during flight and hot fire tests, and was motivated by the need to explain a phenomenon observed in the development phase of the cryogenic pumps of the Space Shuttle, during hot fire ground testing; namely, the appearance of vibrations at frequencies that could not be accounted for by means of linear models.

  1. Solutions for correlations along the coexistence curve and at the critical point of a kagomé lattice gas with three-particle interactions

    NASA Astrophysics Data System (ADS)

    Barry, J. H.; Muttalib, K. A.; Tanaka, T.

    2008-01-01

    We consider a two-dimensional (d=2) kagomé lattice gas model with attractive three-particle interactions around each triangular face of the kagomé lattice. Exact solutions are obtained for multiparticle correlations along the liquid and vapor branches of the coexistence curve and at criticality. The correlation solutions are also determined along the continuation of the curvilinear diameter of the coexistence region into the disordered fluid region. The method generates a linear algebraic system of correlation identities with coefficients dependent only upon the interaction parameter. Using a priori knowledge of pertinent solutions for the density and elementary triplet correlation, one finds a closed and linearly independent set of correlation identities defined upon a spatially compact nine-site cluster of the kagomé lattice. Resulting exact solution curves of the correlations are plotted and discussed as functions of the temperature and are compared with corresponding results in a traditional kagomé lattice gas having nearest-neighbor pair interactions. An example of application for the multiparticle correlations is demonstrated in cavitation theory.

  2. CCD Measurements and Linear Solution for WDS 02041-7115

    NASA Astrophysics Data System (ADS)

    Hensley, Hagan; Giles, Ava; Mayhue, Lance; Badami, Umar Ahmed; Tock, Kalée.

    2018-01-01

    The double star system WDS 02041-7115 or HJ 3483 was imaged using the Skynet Robotic Telescope Network on Jan 31 (Besselian date 2017.085). Using AstroImageJ, the secondary was measured to have a position angle of 263° and a separation of 7.6". Because the distance to the primary is known, along with the spectral classes and proper motions of both, we show that a gravitational relationship is not only unlikely, but mathematically impossible for these stars. Even if the secondary is at the same distance as the primary, its proper motion rela-tive to the primary would exceed its escape velocity. We also present a linear solution for the pair.

  3. Compressible Fluids Interacting with a Linear-Elastic Shell

    NASA Astrophysics Data System (ADS)

    Breit, Dominic; Schwarzacher, Sebastian

    2018-05-01

    We study the Navier-Stokes equations governing the motion of an isentropic compressible fluid in three dimensions interacting with a flexible shell of Koiter type. The latter one constitutes a moving part of the boundary of the physical domain. Its deformation is modeled by a linearized version of Koiter's elastic energy. We show the existence of weak solutions to the corresponding system of PDEs provided the adiabatic exponent satisfies {γ > 12/7} ({γ >1 } in two dimensions). The solution exists until the moving boundary approaches a self-intersection. This provides a compressible counterpart of the results in Lengeler and Růžičkaka (Arch Ration Mech Anal 211(1):205-255, 2014) on incompressible Navier-Stokes equations.

  4. An Algebraic Construction of the First Integrals of the Stationary KdV Hierarchy

    NASA Astrophysics Data System (ADS)

    Matsushima, Masatomo; Ohmiya, Mayumi

    2009-09-01

    The stationary KdV hierarchy is constructed using a kind of recursion operator called Λ-operator. The notion of the maximal solution of the n-th stationary KdV equation is introduced. Using this maximal solution, a specific differential polynomial with the auxiliary spectral parameter called the spectral M-function is constructed as the quadratic form of the fundamental system of the eigenvalue problem for the 2-nd order linear ordinary differential equation which is related to the linearizing operator of the hierarchy. By calculating a perfect square condition of the quadratic form by an elementary algebraic method, the complete set of first integrals of this hierarchy is constructed.

  5. Exact Solution of Klein-Gordon and Dirac Equations with Snyder-de Sitter Algebra

    NASA Astrophysics Data System (ADS)

    Merad, M.; Hadj Moussa, M.

    2018-01-01

    In this paper, we present the exact solution of the (1+1)-dimensional relativistic Klein-Gordon and Dirac equations with linear vector and scalar potentials in the framework of deformed Snyder-de Sitter model. We introduce some changes of variables, we show that a one-dimensional linear potential for the relativistic system in a space deformed can be equivalent to the trigonometric Rosen-Morse potential in a regular space. In both cases, we determine explicitly the energy eigenvalues and their corresponding eigenfunctions expressed in terms of Romonovski polynomials. The limiting cases are analyzed for α 1 and α 2 → 0 and are compared with those of literature.

  6. An automatic multigrid method for the solution of sparse linear systems

    NASA Technical Reports Server (NTRS)

    Shapira, Yair; Israeli, Moshe; Sidi, Avram

    1993-01-01

    An automatic version of the multigrid method for the solution of linear systems arising from the discretization of elliptic PDE's is presented. This version is based on the structure of the algebraic system solely, and does not use the original partial differential operator. Numerical experiments show that for the Poisson equation the rate of convergence of our method is equal to that of classical multigrid methods. Moreover, the method is robust in the sense that its high rate of convergence is conserved for other classes of problems: non-symmetric, hyperbolic (even with closed characteristics) and problems on non-uniform grids. No double discretization or special treatment of sub-domains (e.g. boundaries) is needed. When supplemented with a vector extrapolation method, high rates of convergence are achieved also for anisotropic and discontinuous problems and also for indefinite Helmholtz equations. A new double discretization strategy is proposed for finite and spectral element schemes and is found better than known strategies.

  7. Linearization instability for generic gravity in AdS spacetime

    NASA Astrophysics Data System (ADS)

    Altas, Emel; Tekin, Bayram

    2018-01-01

    In general relativity, perturbation theory about a background solution fails if the background spacetime has a Killing symmetry and a compact spacelike Cauchy surface. This failure, dubbed as linearization instability, shows itself as non-integrability of the perturbative infinitesimal deformation to a finite deformation of the background. Namely, the linearized field equations have spurious solutions which cannot be obtained from the linearization of exact solutions. In practice, one can show the failure of the linear perturbation theory by showing that a certain quadratic (integral) constraint on the linearized solutions is not satisfied. For non-compact Cauchy surfaces, the situation is different and for example, Minkowski space having a non-compact Cauchy surface, is linearization stable. Here we study, the linearization instability in generic metric theories of gravity where Einstein's theory is modified with additional curvature terms. We show that, unlike the case of general relativity, for modified theories even in the non-compact Cauchy surface cases, there are some theories which show linearization instability about their anti-de Sitter backgrounds. Recent D dimensional critical and three dimensional chiral gravity theories are two such examples. This observation sheds light on the paradoxical behavior of vanishing conserved charges (mass, angular momenta) for non-vacuum solutions, such as black holes, in these theories.

  8. Numerical methods of solving a system of multi-dimensional nonlinear equations of the diffusion type

    NASA Technical Reports Server (NTRS)

    Agapov, A. V.; Kolosov, B. I.

    1979-01-01

    The principles of conservation and stability of difference schemes achieved using the iteration control method were examined. For the schemes obtained of the predictor-corrector type, the conversion was proved for the control sequences of approximate solutions to the precise solutions in the Sobolev metrics. Algorithms were developed for reducing the differential problem to integral relationships, whose solution methods are known, were designed. The algorithms for the problem solution are classified depending on the non-linearity of the diffusion coefficients, and practical recommendations for their effective use are given.

  9. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    DOE PAGES

    Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano; ...

    2018-01-01

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less

  10. Load-Flow in Multiphase Distribution Networks: Existence, Uniqueness, Non-Singularity, and Linear Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Andrey; Wang, Cong; Dall'Anese, Emiliano

    This paper considers unbalanced multiphase distribution systems with generic topology and different load models, and extends the Z-bus iterative load-flow algorithm based on a fixed-point interpretation of the AC load-flow equations. Explicit conditions for existence and uniqueness of load-flow solutions are presented. These conditions also guarantee convergence of the load-flow algorithm to the unique solution. The proposed methodology is applicable to generic systems featuring (i) wye connections; (ii) ungrounded delta connections; (iii) a combination of wye-connected and delta-connected sources/loads; and, (iv) a combination of line-to-line and line-to-grounded-neutral devices at the secondary of distribution transformers. Further, a sufficient condition for themore » non-singularity of the load-flow Jacobian is proposed. Finally, linear load-flow models are derived, and their approximation accuracy is analyzed. Theoretical results are corroborated through experiments on IEEE test feeders.« less

  11. A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at; Tuffaha, Amjad, E-mail: atufaha@aus.edu

    We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solutionmore » of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.« less

  12. Properties of light reflected from road signs in active imaging for driving safety

    NASA Astrophysics Data System (ADS)

    Halstuch, Aviran; Yitzhaky, Yitzhak

    2007-10-01

    Night-vision systems in vehicles are a new emerging technology. A crucial problem in active (illumination-based) systems is distortion of images by saturation and blooming, due to strong retro-reflections from road signs. In this work we quantified this phenomenon. We measured the Mueller matrices and the polarization state of the reflected light from three different types of road signs commonly used. Measurements of the reflected intensity were taken also with respect to the angle of reflection. We found that different types of signs have different reflection properties. It is concluded from our measurements that the optimal solution for attenuating the retro-reflected intensity is using a linear horizontal polarized light source and a linear vertical polarizer. Unfortunately, while the performance of this solution is good for two types of road signs, it is less efficient for the third sign type.

  13. Algorithm 937: MINRES-QLP for Symmetric and Hermitian Linear Equations and Least-Squares Problems

    PubMed Central

    Choi, Sou-Cheng T.; Saunders, Michael A.

    2014-01-01

    We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-definite pre-conditioner may be supplied. Our FORTRAN 90 implementation illustrates a design pattern that allows users to make problem data known to the solver but hidden and secure from other program units. In particular, we circumvent the need for reverse communication. Example test programs input and solve real or complex problems specified in Matrix Market format. While we focus here on a FORTRAN 90 implementation, we also provide and maintain MATLAB versions of MINRES and MINRES-QLP. PMID:25328255

  14. Imaging skeletal muscle with linearly polarized light

    NASA Astrophysics Data System (ADS)

    Li, X.; Ranasinghesagara, J.; Yao, G.

    2008-04-01

    We developed a polarization sensitive imaging system that can acquire reflectance images in turbid samples using incident light of different polarization states. Using this system, we studied polarization imaging on bovine sternomandibularis muscle strips using light of two orthogonal linearly polarized states. We found the obtained polarization sensitive reflectance images had interesting patterns depending on the polarization states. In addition, we computed four elements of the Mueller matrix from the acquired images. As a comparison, we also obtained polarization images of a 20% Intralipid"R" solution and compared the results with those from muscle samples. We found that the polarization imaging patterns from Intralipid solution can be described with a model based on single-scattering approximation. However, the polarization images in muscle had distinct patterns and can not be explained by this simple model. These results implied that the unique structural properties of skeletal muscle play important roles in modulating the propagation of polarized light.

  15. An extended GS method for dense linear systems

    NASA Astrophysics Data System (ADS)

    Niki, Hiroshi; Kohno, Toshiyuki; Abe, Kuniyoshi

    2009-09-01

    Davey and Rosindale [K. Davey, I. Rosindale, An iterative solution scheme for systems of boundary element equations, Internat. J. Numer. Methods Engrg. 37 (1994) 1399-1411] derived the GSOR method, which uses an upper triangular matrix [Omega] in order to solve dense linear systems. By applying functional analysis, the authors presented an expression for the optimum [Omega]. Moreover, Davey and Bounds [K. Davey, S. Bounds, A generalized SOR method for dense linear systems of boundary element equations, SIAM J. Comput. 19 (1998) 953-967] also introduced further interesting results. In this note, we employ a matrix analysis approach to investigate these schemes, and derive theorems that compare these schemes with existing preconditioners for dense linear systems. We show that the convergence rate of the Gauss-Seidel method with preconditioner PG is superior to that of the GSOR method. Moreover, we define some splittings associated with the iterative schemes. Some numerical examples are reported to confirm the theoretical analysis. We show that the EGS method with preconditioner produces an extremely small spectral radius in comparison with the other schemes considered.

  16. Geometric Integration of Weakly Dissipative Systems

    NASA Astrophysics Data System (ADS)

    Modin, K.; Führer, C.; Soöderlind, G.

    2009-09-01

    Some problems in mechanics, e.g. in bearing simulation, contain subsystems that are conservative as well as weakly dissipative subsystems. Our experience is that geometric integration methods are often superior for such systems, as long as the dissipation is weak. Here we develop adaptive methods for dissipative perturbations of Hamiltonian systems. The methods are "geometric" in the sense that the form of the dissipative perturbation is preserved. The methods are linearly explicit, i.e., they require the solution of a linear subsystem. We sketch an analysis in terms of backward error analysis and numerical comparisons with a conventional RK method of the same order is given.

  17. A one-dimensional nonlinear problem of thermoelasticity in extended thermodynamics

    NASA Astrophysics Data System (ADS)

    Rawy, E. K.

    2018-06-01

    We solve a nonlinear, one-dimensional initial boundary-value problem of thermoelasticity in generalized thermodynamics. A Cattaneo-type evolution equation for the heat flux is used, which differs from the one used extensively in the literature. The hyperbolic nature of the associated linear system is clarified through a study of the characteristic curves. Progressive wave solutions with two finite speeds are noted. A numerical treatment is presented for the nonlinear system using a three-step, quasi-linearization, iterative finite-difference scheme for which the linear system of equations is the initial step in the iteration. The obtained results are discussed in detail. They clearly show the hyperbolic nature of the system, and may be of interest in investigating thermoelastic materials, not only at low temperatures, but also during high temperature processes involving rapid changes in temperature as in laser treatment of surfaces.

  18. The Fundamental Solution of the Linearized Navier Stokes Equations for Spinning Bodies in Three Spatial Dimensions Time Dependent Case

    NASA Astrophysics Data System (ADS)

    Thomann, Enrique A.; Guenther, Ronald B.

    2006-02-01

    Explicit formulae for the fundamental solution of the linearized time dependent Navier Stokes equations in three spatial dimensions are obtained. The linear equations considered in this paper include those used to model rigid bodies that are translating and rotating at a constant velocity. Estimates extending those obtained by Solonnikov in [23] for the fundamental solution of the time dependent Stokes equations, corresponding to zero translational and angular velocity, are established. Existence and uniqueness of solutions of these linearized problems is obtained for a class of functions that includes the classical Lebesgue spaces L p (R 3), 1 < p < ∞. Finally, the asymptotic behavior and semigroup properties of the fundamental solution are established.

  19. Lie group classification of first-order delay ordinary differential equations

    NASA Astrophysics Data System (ADS)

    Dorodnitsyn, Vladimir A.; Kozlov, Roman; Meleshko, Sergey V.; Winternitz, Pavel

    2018-05-01

    A group classification of first-order delay ordinary differential equations (DODEs) accompanied by an equation for the delay parameter (delay relation) is presented. A subset of such systems (delay ordinary differential systems or DODSs), which consists of linear DODEs and solution-independent delay relations, have infinite-dimensional symmetry algebras—as do nonlinear ones that are linearizable by an invertible transformation of variables. Genuinely nonlinear DODSs have symmetry algebras of dimension n, . It is shown how exact analytical solutions of invariant DODSs can be obtained using symmetry reduction.

  20. Sitnikov cyclic configuration of N+1-body problem

    NASA Astrophysics Data System (ADS)

    Shahbaz Ullah, M.; Hassan, M. R.

    2014-12-01

    This manuscript deals with the generalisation of all previous works on series solutions and linear stability of equilibrium points of the Sitnikov problem. Following Giacaglia (1967), in Sect. 2 we have derived the equation of motion of the infinitesimal mass moving along the z-axis about which the plane of motion is rotating with unit angular velocity. In Sects. 3, 4 and 5 the series solutions of the Sitnikov problem have been developed by the method of MacMillan, Lindstedt-Poincaré and iteration of Green's function respectively. In Sect. 6 the three series solutions have been compared graphically by putting N=2, 3, 4. In Sect. 7 the coordinates of equilibrium points have been calculated. In Sect. 8 the linear stability of equilibrium points has been examined by the method of Murray and Dermott (Solar System Dynamics, Cambridge University Press, Cambridge, 1999) and it was found that the equilibrium points are stable in Sitnikov problem.

  1. Acoustooptic linear algebra processors - Architectures, algorithms, and applications

    NASA Technical Reports Server (NTRS)

    Casasent, D.

    1984-01-01

    Architectures, algorithms, and applications for systolic processors are described with attention to the realization of parallel algorithms on various optical systolic array processors. Systolic processors for matrices with special structure and matrices of general structure, and the realization of matrix-vector, matrix-matrix, and triple-matrix products and such architectures are described. Parallel algorithms for direct and indirect solutions to systems of linear algebraic equations and their implementation on optical systolic processors are detailed with attention to the pipelining and flow of data and operations. Parallel algorithms and their optical realization for LU and QR matrix decomposition are specifically detailed. These represent the fundamental operations necessary in the implementation of least squares, eigenvalue, and SVD solutions. Specific applications (e.g., the solution of partial differential equations, adaptive noise cancellation, and optimal control) are described to typify the use of matrix processors in modern advanced signal processing.

  2. Variational method for calculating the binding energy of the base state of an impurity D- centered on a quantum dot of GaAs-Ga1-xAlxAs

    NASA Astrophysics Data System (ADS)

    Durán-Flórez, F.; Caicedo, L. C.; Gonzalez, J. E.

    2018-04-01

    In quantum mechanics it is very difficult to obtain exact solutions, therefore, it is necessary to resort to tools and methods that facilitate the calculations of the solutions of these systems, one of these methods is the variational method that consists in proposing a wave function that depend on several parameters that are adjusted to get close to the exact solution. Authors in the past have performed calculations applying this method using exponential and Gaussian orbital functions with linear and quadratic correlation factors. In this paper, a Gaussian function with a linear correlation factor is proposed, for the calculation of the binding energy of an impurity D ‑ centered on a quantum dot of radius r, the Gaussian function is dependent on the radius of the quantum dot.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaitsgory, Vladimir, E-mail: vladimir.gaitsgory@mq.edu.au; Rossomakhine, Sergey, E-mail: serguei.rossomakhine@flinders.edu.au

    The paper aims at the development of an apparatus for analysis and construction of near optimal solutions of singularly perturbed (SP) optimal controls problems (that is, problems of optimal control of SP systems) considered on the infinite time horizon. We mostly focus on problems with time discounting criteria but a possibility of the extension of results to periodic optimization problems is discussed as well. Our consideration is based on earlier results on averaging of SP control systems and on linear programming formulations of optimal control problems. The idea that we exploit is to first asymptotically approximate a given problem ofmore » optimal control of the SP system by a certain averaged optimal control problem, then reformulate this averaged problem as an infinite-dimensional linear programming (LP) problem, and then approximate the latter by semi-infinite LP problems. We show that the optimal solution of these semi-infinite LP problems and their duals (that can be found with the help of a modification of an available LP software) allow one to construct near optimal controls of the SP system. We demonstrate the construction with two numerical examples.« less

  4. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction

    PubMed Central

    Nikazad, T; Davidi, R; Herman, G. T.

    2013-01-01

    We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data. PMID:23440911

  5. Accelerated perturbation-resilient block-iterative projection methods with application to image reconstruction.

    PubMed

    Nikazad, T; Davidi, R; Herman, G T

    2012-03-01

    We study the convergence of a class of accelerated perturbation-resilient block-iterative projection methods for solving systems of linear equations. We prove convergence to a fixed point of an operator even in the presence of summable perturbations of the iterates, irrespective of the consistency of the linear system. For a consistent system, the limit point is a solution of the system. In the inconsistent case, the symmetric version of our method converges to a weighted least squares solution. Perturbation resilience is utilized to approximate the minimum of a convex functional subject to the equations. A main contribution, as compared to previously published approaches to achieving similar aims, is a more than an order of magnitude speed-up, as demonstrated by applying the methods to problems of image reconstruction from projections. In addition, the accelerated algorithms are illustrated to be better, in a strict sense provided by the method of statistical hypothesis testing, than their unaccelerated versions for the task of detecting small tumors in the brain from X-ray CT projection data.

  6. Accelerating molecular property calculations with nonorthonormal Krylov space methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.

    Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less

  7. Accelerating molecular property calculations with nonorthonormal Krylov space methods

    DOE PAGES

    Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; ...

    2016-05-03

    Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less

  8. A stopping criterion for the iterative solution of partial differential equations

    NASA Astrophysics Data System (ADS)

    Rao, Kaustubh; Malan, Paul; Perot, J. Blair

    2018-01-01

    A stopping criterion for iterative solution methods is presented that accurately estimates the solution error using low computational overhead. The proposed criterion uses information from prior solution changes to estimate the error. When the solution changes are noisy or stagnating it reverts to a less accurate but more robust, low-cost singular value estimate to approximate the error given the residual. This estimator can also be applied to iterative linear matrix solvers such as Krylov subspace or multigrid methods. Examples of the stopping criterion's ability to accurately estimate the non-linear and linear solution error are provided for a number of different test cases in incompressible fluid dynamics.

  9. A Chess-Like Game for Teaching Engineering Students to Solve Large System of Simultaneous Linear Equations

    NASA Technical Reports Server (NTRS)

    Nguyen, Duc T.; Mohammed, Ahmed Ali; Kadiam, Subhash

    2010-01-01

    Solving large (and sparse) system of simultaneous linear equations has been (and continues to be) a major challenging problem for many real-world engineering/science applications [1-2]. For many practical/large-scale problems, the sparse, Symmetrical and Positive Definite (SPD) system of linear equations can be conveniently represented in matrix notation as [A] {x} = {b} , where the square coefficient matrix [A] and the Right-Hand-Side (RHS) vector {b} are known. The unknown solution vector {x} can be efficiently solved by the following step-by-step procedures [1-2]: Reordering phase, Matrix Factorization phase, Forward solution phase, and Backward solution phase. In this research work, a Game-Based Learning (GBL) approach has been developed to help engineering students to understand crucial details about matrix reordering and factorization phases. A "chess-like" game has been developed and can be played by either a single player, or two players. Through this "chess-like" open-ended game, the players/learners will not only understand the key concepts involved in reordering algorithms (based on existing algorithms), but also have the opportunities to "discover new algorithms" which are better than existing algorithms. Implementing the proposed "chess-like" game for matrix reordering and factorization phases can be enhanced by FLASH [3] computer environments, where computer simulation with animated human voice, sound effects, visual/graphical/colorful displays of matrix tables, score (or monetary) awards for the best game players, etc. can all be exploited. Preliminary demonstrations of the developed GBL approach can be viewed by anyone who has access to the internet web-site [4]!

  10. Waste management under multiple complexities: inexact piecewise-linearization-based fuzzy flexible programming.

    PubMed

    Sun, Wei; Huang, Guo H; Lv, Ying; Li, Gongchen

    2012-06-01

    To tackle nonlinear economies-of-scale (EOS) effects in interval-parameter constraints for a representative waste management problem, an inexact piecewise-linearization-based fuzzy flexible programming (IPFP) model is developed. In IPFP, interval parameters for waste amounts and transportation/operation costs can be quantified; aspiration levels for net system costs, as well as tolerance intervals for both capacities of waste treatment facilities and waste generation rates can be reflected; and the nonlinear EOS effects transformed from objective function to constraints can be approximated. An interactive algorithm is proposed for solving the IPFP model, which in nature is an interval-parameter mixed-integer quadratically constrained programming model. To demonstrate the IPFP's advantages, two alternative models are developed to compare their performances. One is a conventional linear-regression-based inexact fuzzy programming model (IPFP2) and the other is an IPFP model with all right-hand-sides of fussy constraints being the corresponding interval numbers (IPFP3). The comparison results between IPFP and IPFP2 indicate that the optimized waste amounts would have the similar patterns in both models. However, when dealing with EOS effects in constraints, the IPFP2 may underestimate the net system costs while the IPFP can estimate the costs more accurately. The comparison results between IPFP and IPFP3 indicate that their solutions would be significantly different. The decreased system uncertainties in IPFP's solutions demonstrate its effectiveness for providing more satisfactory interval solutions than IPFP3. Following its first application to waste management, the IPFP can be potentially applied to other environmental problems under multiple complexities. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Numerical model for the uptake of groundwater contaminants by phreatophytes

    USGS Publications Warehouse

    Widdowson, M.A.; El-Sayed, A.; Landmeyer, J.E.

    2008-01-01

    Conventional solute transport models do not adequately account for the effects of phreatophytic plant systems on contaminant concentrations in shallow groundwater systems. A numerical model was developed and tested to simulate threedimensional reactive solute transport in a heterogeneous porous medium. Advective-dispersive transport is coupled to biodegradation, sorption, and plantbased attenuation processes including plant uptake and sorption by plant roots. The latter effects are a function of the physical-chemical properties of the individual solutes and plant species. Models for plant uptake were tested and evaluated using the experimental data collected at a field site comprised of hybrid poplar trees. A non-linear equilibrium isotherm model best represented site conditions.

  12. String Stability of a Linear Formation Flight Control System

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.; Ryan, Jack; Hanson, Curtis E.; Parle, James F.

    2002-01-01

    String stability analysis of an autonomous formation flight system was performed using linear and nonlinear simulations. String stability is a measure of how position errors propagate from one vehicle to another in a cascaded system. In the formation flight system considered here, each i(sup th) aircraft uses information from itself and the preceding ((i-1)(sup th)) aircraft to track a commanded relative position. A possible solution for meeting performance requirements with such a system is to allow string instability. This paper explores two results of string instability and outlines analysis techniques for string unstable systems. The three analysis techniques presented here are: linear, nonlinear formation performance, and ride quality. The linear technique was developed from a worst-case scenario and could be applied to the design of a string unstable controller. The nonlinear formation performance and ride quality analysis techniques both use nonlinear formation simulation. Three of the four formation-controller gain-sets analyzed in this paper were limited more by ride quality than by performance. Formations of up to seven aircraft in a cascaded formation could be used in the presence of light gusts with this string unstable system.

  13. A portable integrated system to control an active needle

    NASA Astrophysics Data System (ADS)

    Konh, Bardia; Motalleb, Mahdi; Ashrafiuon, Hashem

    2017-04-01

    The primary objective of this work is to introduce an integrated portable system to operate a flexible active surgical needle with actuation capabilities. The smart needle uses the robust actuation capabilities of the shape memory alloy wires to drastically improve the accuracy of in medical procedures such as brachytherapy. This, however, requires an integrated system aimed to control the insertion of the needle via a linear motor and its deflection by the SMA wire in real-time. The integrated system includes a flexible needle prototype, a Raspberry Pi computer, a linear stage motor, an SMA wire actuator, a power supply, electromagnetic tracking system, and various communication supplies. The linear stage motor guides the needle into tissue. The power supply provides appropriate current to the SMA actuator. The tracking system measures tip movement for feedback, The Raspberry Pi is the central tool that receives the tip movement feedback and controls the linear stage motor and the SMA actuator via the power supply. The implemented algorithms required for communication and feedback control are also described. This paper demonstrates that the portable integrated system may be a viable solution for more effective procedures requiring surgical needles.

  14. A generalized fuzzy credibility-constrained linear fractional programming approach for optimal irrigation water allocation under uncertainty

    NASA Astrophysics Data System (ADS)

    Zhang, Chenglong; Guo, Ping

    2017-10-01

    The vague and fuzzy parametric information is a challenging issue in irrigation water management problems. In response to this problem, a generalized fuzzy credibility-constrained linear fractional programming (GFCCFP) model is developed for optimal irrigation water allocation under uncertainty. The model can be derived from integrating generalized fuzzy credibility-constrained programming (GFCCP) into a linear fractional programming (LFP) optimization framework. Therefore, it can solve ratio optimization problems associated with fuzzy parameters, and examine the variation of results under different credibility levels and weight coefficients of possibility and necessary. It has advantages in: (1) balancing the economic and resources objectives directly; (2) analyzing system efficiency; (3) generating more flexible decision solutions by giving different credibility levels and weight coefficients of possibility and (4) supporting in-depth analysis of the interrelationships among system efficiency, credibility level and weight coefficient. The model is applied to a case study of irrigation water allocation in the middle reaches of Heihe River Basin, northwest China. Therefore, optimal irrigation water allocation solutions from the GFCCFP model can be obtained. Moreover, factorial analysis on the two parameters (i.e. λ and γ) indicates that the weight coefficient is a main factor compared with credibility level for system efficiency. These results can be effective for support reasonable irrigation water resources management and agricultural production.

  15. Dynamic analysis of space-related linear and non-linear structures

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.

    1990-01-01

    In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.

  16. Dynamic analysis of space-related linear and non-linear structures

    NASA Technical Reports Server (NTRS)

    Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.

    1990-01-01

    In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.

  17. Self-Consistent Sources for Integrable Equations Via Deformations of Binary Darboux Transformations

    NASA Astrophysics Data System (ADS)

    Chvartatskyi, Oleksandr; Dimakis, Aristophanes; Müller-Hoissen, Folkert

    2016-08-01

    We reveal the origin and structure of self-consistent source extensions of integrable equations from the perspective of binary Darboux transformations. They arise via a deformation of the potential that is central in this method. As examples, we obtain in particular matrix versions of self-consistent source extensions of the KdV, Boussinesq, sine-Gordon, nonlinear Schrödinger, KP, Davey-Stewartson, two-dimensional Toda lattice and discrete KP equation. We also recover a (2+1)-dimensional version of the Yajima-Oikawa system from a deformation of the pKP hierarchy. By construction, these systems are accompanied by a hetero binary Darboux transformation, which generates solutions of such a system from a solution of the source-free system and additionally solutions of an associated linear system and its adjoint. The essence of all this is encoded in universal equations in the framework of bidifferential calculus.

  18. Qualitative properties of large buckled states of spherical shells

    NASA Technical Reports Server (NTRS)

    Shih, K. G.; Antman, S. S.

    1985-01-01

    A system of 6th-order quasi-linear Ordinary Differential Equations is analyzed to show the global existence of axisymmetrically buckled states. A surprising nodal property is obtained which shows that everywhere along a branch of solutions that bifurcates from a simple eigenvalue of the linearized equation, the number of simultaneously vanishing points of both shear resultant and circumferential bending moment resultant remains invariant, provided that a certain auxiliary condition is satisfied.

  19. Reliability enhancement of common module systems

    NASA Astrophysics Data System (ADS)

    Schellenberger, Gisbert; Ruehlich, Ingo; Korf, Herbert; Petrie, Juergen J.; Muenter, Rolf

    2004-08-01

    Several thousands of 1st Gen IR Systems operated by Integral Stirling Cooler HD1033 are still in service worldwide. Replacing the HD 1033 Stirling by a Linear Drive Cooler will result in a significant reliability enhancement of these IR system of about a factor of three. These attempts had been unsuccessful in the past due to excessive EMI noise induced by the linear cooler compressor. So a main goal for such a development is the elimination of various EMI distortions in the IR system by EMI filtering and shielding. Additionally, the synchronization of the cooler power to the predominant scanning frequency of the IR system significantly improves the image quality. Technical details of the solution, MTTF data and performance data are described in detail.

  20. Locally linear regression for pose-invariant face recognition.

    PubMed

    Chai, Xiujuan; Shan, Shiguang; Chen, Xilin; Gao, Wen

    2007-07-01

    The variation of facial appearance due to the viewpoint (/pose) degrades face recognition systems considerably, which is one of the bottlenecks in face recognition. One of the possible solutions is generating virtual frontal view from any given nonfrontal view to obtain a virtual gallery/probe face. Following this idea, this paper proposes a simple, but efficient, novel locally linear regression (LLR) method, which generates the virtual frontal view from a given nonfrontal face image. We first justify the basic assumption of the paper that there exists an approximate linear mapping between a nonfrontal face image and its frontal counterpart. Then, by formulating the estimation of the linear mapping as a prediction problem, we present the regression-based solution, i.e., globally linear regression. To improve the prediction accuracy in the case of coarse alignment, LLR is further proposed. In LLR, we first perform dense sampling in the nonfrontal face image to obtain many overlapped local patches. Then, the linear regression technique is applied to each small patch for the prediction of its virtual frontal patch. Through the combination of all these patches, the virtual frontal view is generated. The experimental results on the CMU PIE database show distinct advantage of the proposed method over Eigen light-field method.

  1. Unified treatment of microscopic boundary conditions and efficient algorithms for estimating tangent operators of the homogenized behavior in the computational homogenization method

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Dung; Wu, Ling; Noels, Ludovic

    2017-03-01

    This work provides a unified treatment of arbitrary kinds of microscopic boundary conditions usually considered in the multi-scale computational homogenization method for nonlinear multi-physics problems. An efficient procedure is developed to enforce the multi-point linear constraints arising from the microscopic boundary condition either by the direct constraint elimination or by the Lagrange multiplier elimination methods. The macroscopic tangent operators are computed in an efficient way from a multiple right hand sides linear system whose left hand side matrix is the stiffness matrix of the microscopic linearized system at the converged solution. The number of vectors at the right hand side is equal to the number of the macroscopic kinematic variables used to formulate the microscopic boundary condition. As the resolution of the microscopic linearized system often follows a direct factorization procedure, the computation of the macroscopic tangent operators is then performed using this factorized matrix at a reduced computational time.

  2. Sequential-Optimization-Based Framework for Robust Modeling and Design of Heterogeneous Catalytic Systems

    DOE PAGES

    Rangarajan, Srinivas; Maravelias, Christos T.; Mavrikakis, Manos

    2017-11-09

    Here, we present a general optimization-based framework for (i) ab initio and experimental data driven mechanistic modeling and (ii) optimal catalyst design of heterogeneous catalytic systems. Both cases are formulated as a nonlinear optimization problem that is subject to a mean-field microkinetic model and thermodynamic consistency requirements as constraints, for which we seek sparse solutions through a ridge (L 2 regularization) penalty. The solution procedure involves an iterative sequence of forward simulation of the differential algebraic equations pertaining to the microkinetic model using a numerical tool capable of handling stiff systems, sensitivity calculations using linear algebra, and gradient-based nonlinear optimization.more » A multistart approach is used to explore the solution space, and a hierarchical clustering procedure is implemented for statistically classifying potentially competing solutions. An example of methanol synthesis through hydrogenation of CO and CO 2 on a Cu-based catalyst is used to illustrate the framework. The framework is fast, is robust, and can be used to comprehensively explore the model solution and design space of any heterogeneous catalytic system.« less

  3. Sequential-Optimization-Based Framework for Robust Modeling and Design of Heterogeneous Catalytic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rangarajan, Srinivas; Maravelias, Christos T.; Mavrikakis, Manos

    Here, we present a general optimization-based framework for (i) ab initio and experimental data driven mechanistic modeling and (ii) optimal catalyst design of heterogeneous catalytic systems. Both cases are formulated as a nonlinear optimization problem that is subject to a mean-field microkinetic model and thermodynamic consistency requirements as constraints, for which we seek sparse solutions through a ridge (L 2 regularization) penalty. The solution procedure involves an iterative sequence of forward simulation of the differential algebraic equations pertaining to the microkinetic model using a numerical tool capable of handling stiff systems, sensitivity calculations using linear algebra, and gradient-based nonlinear optimization.more » A multistart approach is used to explore the solution space, and a hierarchical clustering procedure is implemented for statistically classifying potentially competing solutions. An example of methanol synthesis through hydrogenation of CO and CO 2 on a Cu-based catalyst is used to illustrate the framework. The framework is fast, is robust, and can be used to comprehensively explore the model solution and design space of any heterogeneous catalytic system.« less

  4. Competition Between Transients in the Rate of Approach to a Fixed Point

    NASA Astrophysics Data System (ADS)

    Day, Judy; Rubin, Jonathan E.; Chow, Carson C.

    2009-01-01

    The goal of this paper is to provide and apply tools for analyzing a specific aspect of transient dynamics not covered by previous theory. The question we address is whether one component of a perturbed solution to a system of differential equations can overtake the corresponding component of a reference solution as both converge to a stable node at the origin, given that the perturbed solution was initially farther away and that both solutions are nonnegative for all time. We call this phenomenon tolerance, for its relation to a biological effect. We show using geometric arguments that tolerance will exist in generic linear systems with a complete set of eigenvectors and in excitable nonlinear systems. We also define a notion of inhibition that may constrain the regions in phase space where the possibility of tolerance arises in general systems. However, these general existence theorems do not not yield an assessment of tolerance for specific initial conditions. To address that issue, we develop some analytical tools for determining if particular perturbed and reference solution initial conditions will exhibit tolerance.

  5. Tikekar superdense stars in electric fields

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-04-01

    We present exact solutions to the Einstein-Maxwell system of equations with a specified form of the electric field intensity by assuming that the hypersurface {t=constant} are spheroidal. The solution of the Einstein-Maxwell system is reduced to a recurrence relation with variable rational coefficients which can be solved in general using mathematical induction. New classes of solutions of linearly independent functions are obtained by restricting the spheroidal parameter K and the electric field intensity parameter α. Consequently, it is possible to find exact solutions in terms of elementary functions, namely, polynomials and algebraic functions. Our result contains models found previously including the superdense Tikekar neutron star model [J. Math. Phys. 31, 2454 (1990)] when K=-7 and α=0. Our class of charged spheroidal models generalize the uncharged isotropic Maharaj and Leach solutions [J. Math. Phys. 37, 430 (1996)]. In particular, we find an explicit relationship directly relating the spheroidal parameter K to the electromagnetic field.

  6. The linear stability of vertical mixture seepage into the close porous filter with clogging

    NASA Astrophysics Data System (ADS)

    Maryshev, Boris S.

    2017-02-01

    In the present paper, filtration of a mixture through a close porous filter is considered. A heavy solute penetrates from the upper side of the filter into the filter body due to seepage flow and diffusion. In the presence of heavy solute a domain with a heavy fluid is formed near the upper boundary of the filter. The stratification, at which the heavy fluid is located above the light, is unstable. When the mass of the heavy solute exceeds the critical value, one can observe the onset of instability. As a result, two regimes of vertical filtration can occur: (1) homogeneous seepage and (2) convective filtration. Filtration of a mixture in porous media is a complex process. It is necessary to take into account the solute immobilization (or sorption) and clogging of porous medium. We consider the case of low solute concentrations, in which the immobilization is described by the linear MIM (mobile/immobile media) model. The clogging is described by the dependence of permeability on porosity in terms of the Carman-Kozeny formula. The presence of immobile (or adsorbed) particles of the solute decreases the porosity of media and porous media becomes less permeable. The purpose of the paper is to find the stability conditions for the homogeneous vertical seepage of the mixture into the close porous filter. The linear stability problem is solved using the quasi-static approach. The critical times of instability are estimated. The stability maps have been plotted in the space of system parameters. The applicability of quasi-static approach is substantiated by direct numerical simulation.

  7. An Explicit Linear Filtering Solution for the Optimization of Guidance Systems with Statistical Inputs

    NASA Technical Reports Server (NTRS)

    Stewart, Elwood C.

    1961-01-01

    The determination of optimum filtering characteristics for guidance system design is generally a tedious process which cannot usually be carried out in general terms. In this report a simple explicit solution is given which is applicable to many different types of problems. It is shown to be applicable to problems which involve optimization of constant-coefficient guidance systems and time-varying homing type systems for several stationary and nonstationary inputs. The solution is also applicable to off-design performance, that is, the evaluation of system performance for inputs for which the system was not specifically optimized. The solution is given in generalized form in terms of the minimum theoretical error, the optimum transfer functions, and the optimum transient response. The effects of input signal, contaminating noise, and limitations on the response are included. From the results given, it is possible in an interception problem, for example, to rapidly assess the effects on minimum theoretical error of such factors as target noise and missile acceleration. It is also possible to answer important questions regarding the effect of type of target maneuver on optimum performance.

  8. Tensor-GMRES method for large sparse systems of nonlinear equations

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1994-01-01

    This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.

  9. Asymptotic solution of the turbulent mixing layer for velocity ratio close to unity

    NASA Technical Reports Server (NTRS)

    Higuera, F. J.; Jimenez, J.; Linan, A.

    1996-01-01

    The equations describing the first two terms of an asymptotic expansion of the solution of the planar turbulent mixing layer for values of the velocity ratio close to one are obtained. The first term of this expansion is the solution of the well-known time-evolving problem and the second, which includes the effects of the increase of the turbulence scales in the stream-wise direction, obeys a linear system of equations. Numerical solutions of these equations for a two-dimensional reacting mixing layer show that the correction to the time-evolving solution may explain the asymmetry of the entrainment and the differences in product generation observed in flip experiments.

  10. A binary linear programming formulation of the graph edit distance.

    PubMed

    Justice, Derek; Hero, Alfred

    2006-08-01

    A binary linear programming formulation of the graph edit distance for unweighted, undirected graphs with vertex attributes is derived and applied to a graph recognition problem. A general formulation for editing graphs is used to derive a graph edit distance that is proven to be a metric, provided the cost function for individual edit operations is a metric. Then, a binary linear program is developed for computing this graph edit distance, and polynomial time methods for determining upper and lower bounds on the solution of the binary program are derived by applying solution methods for standard linear programming and the assignment problem. A recognition problem of comparing a sample input graph to a database of known prototype graphs in the context of a chemical information system is presented as an application of the new method. The costs associated with various edit operations are chosen by using a minimum normalized variance criterion applied to pairwise distances between nearest neighbors in the database of prototypes. The new metric is shown to perform quite well in comparison to existing metrics when applied to a database of chemical graphs.

  11. Particlelike solutions of the Einstein-Dirac equations

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    1999-05-01

    The coupled Einstein-Dirac equations for a static, spherically symmetric system of two fermions in a singlet spinor state are derived. Using numerical methods, we construct an infinite number of solitonlike solutions of these equations. The stability of the solutions is analyzed. For weak coupling (i.e., small rest mass of the fermions), all the solutions are linearly stable (with respect to spherically symmetric perturbations), whereas for stronger coupling, both stable and unstable solutions exist. For the physical interpretation, we discuss how the energy of the fermions and the (ADM) mass behave as functions of the rest mass of the fermions. Although gravitation is not renormalizable, our solutions of the Einstein-Dirac equations are regular and well behaved even for strong coupling.

  12. Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Adamian, A.

    1988-01-01

    An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.

  13. Numerical analysis for trajectory controllability of a coupled multi-order fractional delay differential system via the shifted Jacobi method

    NASA Astrophysics Data System (ADS)

    Priya, B. Ganesh; Muthukumar, P.

    2018-02-01

    This paper deals with the trajectory controllability for a class of multi-order fractional linear systems subject to a constant delay in state vector. The solution for the coupled fractional delay differential equation is established by the Mittag-Leffler function. The necessary and sufficient condition for the trajectory controllability is formulated and proved by the generalized Gronwall's inequality. The approximate trajectory for the proposed system is obtained through the shifted Jacobi operational matrix method. The numerical simulation of the approximate solution shows the theoretical results. Finally, some remarks and comments on the existing results of constrained controllability for the fractional dynamical system are also presented.

  14. Solution for the nonuniformity correction of infrared focal plane arrays.

    PubMed

    Zhou, Huixin; Liu, Shangqian; Lai, Rui; Wang, Dabao; Cheng, Yubao

    2005-05-20

    Based on the S-curve model of the detector response of infrared focal plan arrays (IRFPAs), an improved two-point correction algorithm is presented. The algorithm first transforms the nonlinear image data into linear data and then uses the normal two-point algorithm to correct the linear data. The algorithm can effectively overcome the influence of nonlinearity of the detector's response, and it enlarges the correction precision and the dynamic range of the response. A real-time imaging-signal-processing system for IRFPAs that is based on a digital signal processor and field-programmable gate arrays is also presented. The nonuniformity correction capability of the presented solution is validated by experimental imaging procedures of a 128 x 128 pixel IRFPA camera prototype.

  15. Complexity transitions in global algorithms for sparse linear systems over finite fields

    NASA Astrophysics Data System (ADS)

    Braunstein, A.; Leone, M.; Ricci-Tersenghi, F.; Zecchina, R.

    2002-09-01

    We study the computational complexity of a very basic problem, namely that of finding solutions to a very large set of random linear equations in a finite Galois field modulo q. Using tools from statistical mechanics we are able to identify phase transitions in the structure of the solution space and to connect them to the changes in the performance of a global algorithm, namely Gaussian elimination. Crossing phase boundaries produces a dramatic increase in memory and CPU requirements necessary for the algorithms. In turn, this causes the saturation of the upper bounds for the running time. We illustrate the results on the specific problem of integer factorization, which is of central interest for deciphering messages encrypted with the RSA cryptosystem.

  16. An algorithm for the numerical solution of linear differential games

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polovinkin, E S; Ivanov, G E; Balashov, M V

    2001-10-31

    A numerical algorithm for the construction of stable Krasovskii bridges, Pontryagin alternating sets, and also of piecewise program strategies solving two-person linear differential (pursuit or evasion) games on a fixed time interval is developed on the basis of a general theory. The aim of the first player (the pursuer) is to hit a prescribed target (terminal) set by the phase vector of the control system at the prescribed time. The aim of the second player (the evader) is the opposite. A description of numerical algorithms used in the solution of differential games of the type under consideration is presented andmore » estimates of the errors resulting from the approximation of the game sets by polyhedra are presented.« less

  17. Second-order discrete Kalman filtering equations for control-structure interaction simulations

    NASA Technical Reports Server (NTRS)

    Park, K. C.; Belvin, W. Keith; Alvin, Kenneth F.

    1991-01-01

    A general form for the first-order representation of the continuous, second-order linear structural dynamics equations is introduced in order to derive a corresponding form of first-order Kalman filtering equations (KFE). Time integration of the resulting first-order KFE is carried out via a set of linear multistep integration formulas. It is shown that a judicious combined selection of computational paths and the undetermined matrices introduced in the general form of the first-order linear structural systems leads to a class of second-order discrete KFE involving only symmetric, N x N solution matrix.

  18. Calculation of biochemical net reactions and pathways by using matrix operations.

    PubMed Central

    Alberty, R A

    1996-01-01

    Pathways for net biochemical reactions can be calculated by using a computer program that solves systems of linear equations. The coefficients in the linear equations are the stoichiometric numbers in the biochemical equations for the system. The solution of the system of linear equations is a vector of the stoichiometric numbers of the reactions in the pathway for the net reaction; this is referred to as the pathway vector. The pathway vector gives the number of times the various reactions have to occur to produce the desired net reaction. Net reactions may involve unknown numbers of ATP, ADP, and Pi molecules. The numbers of ATP, ADP, and Pi in a desired net reaction can be calculated in a two-step process. In the first step, the pathway is calculated by solving the system of linear equations for an abbreviated stoichiometric number matrix without ATP, ADP, Pi, NADred, and NADox. In the second step, the stoichiometric numbers in the desired net reaction, which includes ATP, ADP, Pi, NADred, and NADox, are obtained by multiplying the full stoichiometric number matrix by the calculated pathway vector. PMID:8804633

  19. New exact solutions of the Tzitzéica-type equations in non-linear optics using the expa function method

    NASA Astrophysics Data System (ADS)

    Hosseini, K.; Ayati, Z.; Ansari, R.

    2018-04-01

    One specific class of non-linear evolution equations, known as the Tzitzéica-type equations, has received great attention from a group of researchers involved in non-linear science. In this article, new exact solutions of the Tzitzéica-type equations arising in non-linear optics, including the Tzitzéica, Dodd-Bullough-Mikhailov and Tzitzéica-Dodd-Bullough equations, are obtained using the expa function method. The integration technique actually suggests a useful and reliable method to extract new exact solutions of a wide range of non-linear evolution equations.

  20. Linear quadratic tracking problems in Hilbert space - Application to optimal active noise suppression

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Silcox, R. J.; Keeling, S. L.; Wang, C.

    1989-01-01

    A unified treatment of the linear quadratic tracking (LQT) problem, in which a control system's dynamics are modeled by a linear evolution equation with a nonhomogeneous component that is linearly dependent on the control function u, is presented; the treatment proceeds from the theoretical formulation to a numerical approximation framework. Attention is given to two categories of LQT problems in an infinite time interval: the finite energy and the finite average energy. The behavior of the optimal solution for finite time-interval problems as the length of the interval tends to infinity is discussed. Also presented are the formulations and properties of LQT problems in a finite time interval.

  1. ASTROP2-LE: A Mistuned Aeroelastic Analysis System Based on a Two Dimensional Linearized Euler Solver

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral

    2002-01-01

    An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.

  2. Response analysis of a class of quasi-linear systems with fractional derivative excited by Poisson white noise

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Yongge; Xu, Wei, E-mail: weixu@nwpu.edu.cn; Yang, Guidong

    The Poisson white noise, as a typical non-Gaussian excitation, has attracted much attention recently. However, little work was referred to the study of stochastic systems with fractional derivative under Poisson white noise excitation. This paper investigates the stationary response of a class of quasi-linear systems with fractional derivative excited by Poisson white noise. The equivalent stochastic system of the original stochastic system is obtained. Then, approximate stationary solutions are obtained with the help of the perturbation method. Finally, two typical examples are discussed in detail to demonstrate the effectiveness of the proposed method. The analysis also shows that the fractionalmore » order and the fractional coefficient significantly affect the responses of the stochastic systems with fractional derivative.« less

  3. Accelerating scientific computations with mixed precision algorithms

    NASA Astrophysics Data System (ADS)

    Baboulin, Marc; Buttari, Alfredo; Dongarra, Jack; Kurzak, Jakub; Langou, Julie; Langou, Julien; Luszczek, Piotr; Tomov, Stanimire

    2009-12-01

    On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. The approach presented here can apply not only to conventional processors but also to other technologies such as Field Programmable Gate Arrays (FPGA), Graphical Processing Units (GPU), and the STI Cell BE processor. Results on modern processor architectures and the STI Cell BE are presented. Program summaryProgram title: ITER-REF Catalogue identifier: AECO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 7211 No. of bytes in distributed program, including test data, etc.: 41 862 Distribution format: tar.gz Programming language: FORTRAN 77 Computer: desktop, server Operating system: Unix/Linux RAM: 512 Mbytes Classification: 4.8 External routines: BLAS (optional) Nature of problem: On modern architectures, the performance of 32-bit operations is often at least twice as fast as the performance of 64-bit operations. By using a combination of 32-bit and 64-bit floating point arithmetic, the performance of many dense and sparse linear algebra algorithms can be significantly enhanced while maintaining the 64-bit accuracy of the resulting solution. Solution method: Mixed precision algorithms stem from the observation that, in many cases, a single precision solution of a problem can be refined to the point where double precision accuracy is achieved. A common approach to the solution of linear systems, either dense or sparse, is to perform the LU factorization of the coefficient matrix using Gaussian elimination. First, the coefficient matrix A is factored into the product of a lower triangular matrix L and an upper triangular matrix U. Partial row pivoting is in general used to improve numerical stability resulting in a factorization PA=LU, where P is a permutation matrix. The solution for the system is achieved by first solving Ly=Pb (forward substitution) and then solving Ux=y (backward substitution). Due to round-off errors, the computed solution, x, carries a numerical error magnified by the condition number of the coefficient matrix A. In order to improve the computed solution, an iterative process can be applied, which produces a correction to the computed solution at each iteration, which then yields the method that is commonly known as the iterative refinement algorithm. Provided that the system is not too ill-conditioned, the algorithm produces a solution correct to the working precision. Running time: seconds/minutes

  4. An SVM-based solution for fault detection in wind turbines.

    PubMed

    Santos, Pedro; Villa, Luisa F; Reñones, Aníbal; Bustillo, Andres; Maudes, Jesús

    2015-03-09

    Research into fault diagnosis in machines with a wide range of variable loads and speeds, such as wind turbines, is of great industrial interest. Analysis of the power signals emitted by wind turbines for the diagnosis of mechanical faults in their mechanical transmission chain is insufficient. A successful diagnosis requires the inclusion of accelerometers to evaluate vibrations. This work presents a multi-sensory system for fault diagnosis in wind turbines, combined with a data-mining solution for the classification of the operational state of the turbine. The selected sensors are accelerometers, in which vibration signals are processed using angular resampling techniques and electrical, torque and speed measurements. Support vector machines (SVMs) are selected for the classification task, including two traditional and two promising new kernels. This multi-sensory system has been validated on a test-bed that simulates the real conditions of wind turbines with two fault typologies: misalignment and imbalance. Comparison of SVM performance with the results of artificial neural networks (ANNs) shows that linear kernel SVM outperforms other kernels and ANNs in terms of accuracy, training and tuning times. The suitability and superior performance of linear SVM is also experimentally analyzed, to conclude that this data acquisition technique generates linearly separable datasets.

  5. Fractional Gaussian model in global optimization

    NASA Astrophysics Data System (ADS)

    Dimri, V. P.; Srivastava, R. P.

    2009-12-01

    Earth system is inherently non-linear and it can be characterized well if we incorporate no-linearity in the formulation and solution of the problem. General tool often used for characterization of the earth system is inversion. Traditionally inverse problems are solved using least-square based inversion by linearizing the formulation. The initial model in such inversion schemes is often assumed to follow posterior Gaussian probability distribution. It is now well established that most of the physical properties of the earth follow power law (fractal distribution). Thus, the selection of initial model based on power law probability distribution will provide more realistic solution. We present a new method which can draw samples of posterior probability density function very efficiently using fractal based statistics. The application of the method has been demonstrated to invert band limited seismic data with well control. We used fractal based probability density function which uses mean, variance and Hurst coefficient of the model space to draw initial model. Further this initial model is used in global optimization inversion scheme. Inversion results using initial models generated by our method gives high resolution estimates of the model parameters than the hitherto used gradient based liner inversion method.

  6. The research of Raman spectra measurement system based on tiled-grating monochromator

    NASA Astrophysics Data System (ADS)

    Liu, Li-na; Zhang, Yin-chao; Chen, Si-ying; Chen, He; Guo, Pan; Wang, Yuan

    2013-09-01

    A set of Raman spectrum measurement system, essentially a Raman spectrometer, has been independently designed and accomplished by our research group. This system adopts tiled-grating structure, namely two 50mm × 50mm holographic gratings are tiled to form a big spectral grating. It not only improves the resolution but also reduces the cost. This article outlines the Raman spectroscopy system's composition structure and performance parameters. Then corresponding resolutions of the instrument under different criterions are deduced through experiments and data fitting. The result shows that the system's minimum resolution is up to 0.02nm, equivalent to 0.5cm-1 wavenumber under Rayleigh criterion; and it will be up to 0.007nm, equivalent to 0.19cm-1 wavenumber under Sparrow criterion. Then Raman spectra of CCl4 and alcohol have been obtained by the spectrometer, which agreed with the standard spectrum respectively very well. Finally, we measured the spectra of the alcohol solutions with different concentrations and extracted the intensity of characteristic peaks from smoothed spectra. Linear fitting between intensity of characteristic peaks and alcohol solution concentrations has been made. And the linear correlation coefficient is 0.96.

  7. Analysis of Vlbi, Slr and GPS Site Position Time Series

    NASA Astrophysics Data System (ADS)

    Angermann, D.; Krügel, M.; Meisel, B.; Müller, H.; Tesmer, V.

    Conventionally the IERS terrestrial reference frame (ITRF) is realized by the adoption of a set of epoch coordinates and linear velocities for a set of global tracking stations. Due to the remarkable progress of the space geodetic observation techniques (e.g. VLBI, SLR, GPS) the accuracy and consistency of the ITRF increased continuously. The accuracy achieved today is mainly limited by technique-related systematic errors, which are often poorly characterized or quantified. Therefore it is essential to analyze the individual techniques' solutions with respect to systematic differences, models, parameters, datum definition, etc. Main subject of this presentation is the analysis of GPS, SLR and VLBI time series of site positions. The investigations are based on SLR and VLBI solutions computed at DGFI with the software systems DOGS (SLR) and OCCAM (VLBI). The GPS time series are based on weekly IGS station coordinates solutions. We analyze the time series with respect to the issues mentioned above. In particular we characterize the noise in the time series, identify periodic signals, and investigate non-linear effects that complicate the assignment of linear velocities for global tracking sites. One important aspect is the comparison of results obtained by different techniques at colocation sites.

  8. Secondary School Advanced Mathematics, Chapter 8, Systems of Equations. Student's Text.

    ERIC Educational Resources Information Center

    Stanford Univ., CA. School Mathematics Study Group.

    This text is the last of five in the Secondary School Advanced Mathematics (SSAM) series which was designed to meet the needs of students who have completed the Secondary School Mathematics (SSM) program, and wish to continue their study of mathematics. In this volume the solution of systems of linear and quadratic equations and inequalities in…

  9. Concordance of Interests in Dynamic Models of Social Partnership in the System of Continuing Professional Education

    ERIC Educational Resources Information Center

    Tarasenko, Larissa V.; Ougolnitsky, Guennady A.; Usov, Anatoly B.; Vaskov, Maksim A.; Kirik, Vladimir A.; Astoyanz, Margarita S.; Angel, Olga Y.

    2016-01-01

    A dynamic game theoretic model of concordance of interests in the process of social partnership in the system of continuing professional education is proposed. Non-cooperative, cooperative, and hierarchical setups are examined. Analytical solution for a linear state version of the model is provided. Nash equilibrium algorithms (for non-cooperative…

  10. Estimating system parameters for solvent-water and plant cuticle-water using quantum chemically estimated Abraham solute parameters.

    PubMed

    Liang, Yuzhen; Torralba-Sanchez, Tifany L; Di Toro, Dominic M

    2018-04-18

    Polyparameter Linear Free Energy Relationships (pp-LFERs) using Abraham system parameters have many useful applications. However, developing the Abraham system parameters depends on the availability and quality of the Abraham solute parameters. Using Quantum Chemically estimated Abraham solute Parameters (QCAP) is shown to produce pp-LFERs that have lower root mean square errors (RMSEs) of predictions for solvent-water partition coefficients than parameters that are estimated using other presently available methods. pp-LFERs system parameters are estimated for solvent-water, plant cuticle-water systems, and for novel compounds using QCAP solute parameters and experimental partition coefficients. Refitting the system parameter improves the calculation accuracy and eliminates the bias. Refitted models for solvent-water partition coefficients using QCAP solute parameters give better results (RMSE = 0.278 to 0.506 log units for 24 systems) than those based on ABSOLV (0.326 to 0.618) and QSPR (0.294 to 0.700) solute parameters. For munition constituents and munition-like compounds not included in the calibration of the refitted model, QCAP solute parameters produce pp-LFER models with much lower RMSEs for solvent-water partition coefficients (RMSE = 0.734 and 0.664 for original and refitted model, respectively) than ABSOLV (4.46 and 5.98) and QSPR (2.838 and 2.723). Refitting plant cuticle-water pp-LFER including munition constituents using QCAP solute parameters also results in lower RMSE (RMSE = 0.386) than that using ABSOLV (0.778) and QSPR (0.512) solute parameters. Therefore, for fitting a model in situations for which experimental data exist and system parameters can be re-estimated, or for which system parameters do not exist and need to be developed, QCAP is the quantum chemical method of choice.

  11. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation

    NASA Astrophysics Data System (ADS)

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-01

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ˜ cs-0.5 as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  12. Flexible polyelectrolyte chain in a strong electrolyte solution: Insight into equilibrium properties and force-extension behavior from mesoscale simulation.

    PubMed

    Malekzadeh Moghani, Mahdy; Khomami, Bamin

    2016-01-14

    Macromolecules with ionizable groups are ubiquitous in biological and synthetic systems. Due to the complex interaction between chain and electrostatic decorrelation lengths, both equilibrium properties and micro-mechanical response of dilute solutions of polyelectrolytes (PEs) are more complex than their neutral counterparts. In this work, the bead-rod micromechanical description of a chain is used to perform hi-fidelity Brownian dynamics simulation of dilute PE solutions to ascertain the self-similar equilibrium behavior of PE chains with various linear charge densities, scaling of the Kuhn step length (lE) with salt concentration cs and the force-extension behavior of the PE chain. In accord with earlier theoretical predictions, our results indicate that for a chain with n Kuhn segments, lE ∼ cs (-0.5) as linear charge density approaches 1/n. Moreover, the constant force ensemble simulation results accurately predict the initial non-linear force-extension region of PE chain recently measured via single chain experiments. Finally, inspired by Cohen's extraction of Warner's force law from the inverse Langevin force law, a novel numerical scheme is developed to extract a new elastic force law for real chains from our discrete set of force-extension data similar to Padè expansion, which accurately depicts the initial non-linear region where the total Kuhn length is less than the thermal screening length.

  13. Resource allocation in shared spectrum access communications for operators with diverse service requirements

    NASA Astrophysics Data System (ADS)

    Kibria, Mirza Golam; Villardi, Gabriel Porto; Ishizu, Kentaro; Kojima, Fumihide; Yano, Hiroyuki

    2016-12-01

    In this paper, we study inter-operator spectrum sharing and intra-operator resource allocation in shared spectrum access communication systems and propose efficient dynamic solutions to address both inter-operator and intra-operator resource allocation optimization problems. For inter-operator spectrum sharing, we present two competent approaches, namely the subcarrier gain-based sharing and fragmentation-based sharing, which carry out fair and flexible allocation of the available shareable spectrum among the operators subject to certain well-defined sharing rules, traffic demands, and channel propagation characteristics. The subcarrier gain-based spectrum sharing scheme has been found to be more efficient in terms of achieved throughput. However, the fragmentation-based sharing is more attractive in terms of computational complexity. For intra-operator resource allocation, we consider resource allocation problem with users' dissimilar service requirements, where the operator supports users with delay constraint and non-delay constraint service requirements, simultaneously. This optimization problem is a mixed-integer non-linear programming problem and non-convex, which is computationally very expensive, and the complexity grows exponentially with the number of integer variables. We propose less-complex and efficient suboptimal solution based on formulating exact linearization, linear approximation, and convexification techniques for the non-linear and/or non-convex objective functions and constraints. Extensive simulation performance analysis has been carried out that validates the efficiency of the proposed solution.

  14. General linear methods and friends: Toward efficient solutions of multiphysics problems

    NASA Astrophysics Data System (ADS)

    Sandu, Adrian

    2017-07-01

    Time dependent multiphysics partial differential equations are of great practical importance as they model diverse phenomena that appear in mechanical and chemical engineering, aeronautics, astrophysics, meteorology and oceanography, financial modeling, environmental sciences, etc. There is no single best time discretization for the complex multiphysics systems of practical interest. We discuss "multimethod" approaches that combine different time steps and discretizations using the rigourous frameworks provided by Partitioned General Linear Methods and Generalize-structure Additive Runge Kutta Methods..

  15. Positive solutions of advanced differential systems.

    PubMed

    Diblík, Josef; Kúdelčíková, Mária

    2013-01-01

    We study asymptotic behavior of solutions of general advanced differential systems y(t) = F(t, y(t)), where F : Ω → [Symbol: see text] (n) is a continuous quasi-bounded functional which satisfies a local Lipschitz condition with respect to the second argument and Ω is a subset in [Symbol: see text] × C(r)(n), C(r)(n) := C([0, r], [Symbol: see text] (n)), y t [Symbol: see text]C(r)(n), and y t (θ) = y(t + θ), θ [Symbol: see text] [0, r]. A monotone iterative method is proposed to prove the existence of a solution defined for t → ∞ with the graph coordinates lying between graph coordinates of two (lower and upper) auxiliary vector functions. This result is applied to scalar advanced linear differential equations. Criteria of existence of positive solutions are given and their asymptotic behavior is discussed.

  16. Development of an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Yoojin

    In this study, we have developed an analytical solution for thermal single-well injection-withdrawal tests in horizontally fractured reservoirs where fluid flow through the fracture is radial. The dimensionless forms of the governing equations and the initial and boundary conditions in the radial flow system can be written in a form identical to those in the linear flow system developed by Jung and Pruess [Jung, Y., and K. Pruess (2012), A Closed-Form Analytical Solution for Thermal Single-Well Injection-Withdrawal Tests, Water Resour. Res., 48, W03504, doi:10.1029/2011WR010979], and therefore the analytical solutions developed in Jung and Pruess (2012) can be applied to computemore » the time dependence of temperature recovery at the injection/withdrawal well in a horizontally oriented fracture with radial flow.« less

  17. Mean, covariance, and effective dimension of stochastic distributed delay dynamics

    NASA Astrophysics Data System (ADS)

    René, Alexandre; Longtin, André

    2017-11-01

    Dynamical models are often required to incorporate both delays and noise. However, the inherently infinite-dimensional nature of delay equations makes formal solutions to stochastic delay differential equations (SDDEs) challenging. Here, we present an approach, similar in spirit to the analysis of functional differential equations, but based on finite-dimensional matrix operators. This results in a method for obtaining both transient and stationary solutions that is directly amenable to computation, and applicable to first order differential systems with either discrete or distributed delays. With fewer assumptions on the system's parameters than other current solution methods and no need to be near a bifurcation, we decompose the solution to a linear SDDE with arbitrary distributed delays into natural modes, in effect the eigenfunctions of the differential operator, and show that relatively few modes can suffice to approximate the probability density of solutions. Thus, we are led to conclude that noise makes these SDDEs effectively low dimensional, which opens the possibility of practical definitions of probability densities over their solution space.

  18. Response statistics of rotating shaft with non-linear elastic restoring forces by path integration

    NASA Astrophysics Data System (ADS)

    Gaidai, Oleg; Naess, Arvid; Dimentberg, Michael

    2017-07-01

    Extreme statistics of random vibrations is studied for a Jeffcott rotor under uniaxial white noise excitation. Restoring force is modelled as elastic non-linear; comparison is done with linearized restoring force to see the force non-linearity effect on the response statistics. While for the linear model analytical solutions and stability conditions are available, it is not generally the case for non-linear system except for some special cases. The statistics of non-linear case is studied by applying path integration (PI) method, which is based on the Markov property of the coupled dynamic system. The Jeffcott rotor response statistics can be obtained by solving the Fokker-Planck (FP) equation of the 4D dynamic system. An efficient implementation of PI algorithm is applied, namely fast Fourier transform (FFT) is used to simulate dynamic system additive noise. The latter allows significantly reduce computational time, compared to the classical PI. Excitation is modelled as Gaussian white noise, however any kind distributed white noise can be implemented with the same PI technique. Also multidirectional Markov noise can be modelled with PI in the same way as unidirectional. PI is accelerated by using Monte Carlo (MC) estimated joint probability density function (PDF) as initial input. Symmetry of dynamic system was utilized to afford higher mesh resolution. Both internal (rotating) and external damping are included in mechanical model of the rotor. The main advantage of using PI rather than MC is that PI offers high accuracy in the probability distribution tail. The latter is of critical importance for e.g. extreme value statistics, system reliability, and first passage probability.

  19. Reduced-Order Models Based on POD-Tpwl for Compositional Subsurface Flow Simulation

    NASA Astrophysics Data System (ADS)

    Durlofsky, L. J.; He, J.; Jin, L. Z.

    2014-12-01

    A reduced-order modeling procedure applicable for compositional subsurface flow simulation will be described and applied. The technique combines trajectory piecewise linearization (TPWL) and proper orthogonal decomposition (POD) to provide highly efficient surrogate models. The method is based on a molar formulation (which uses pressure and overall component mole fractions as the primary variables) and is applicable for two-phase, multicomponent systems. The POD-TPWL procedure expresses new solutions in terms of linearizations around solution states generated and saved during previously simulated 'training' runs. High-dimensional states are projected into a low-dimensional subspace using POD. Thus, at each time step, only a low-dimensional linear system needs to be solved. Results will be presented for heterogeneous three-dimensional simulation models involving CO2 injection. Both enhanced oil recovery and carbon storage applications (with horizontal CO2 injectors) will be considered. Reasonably close agreement between full-order reference solutions and compositional POD-TPWL simulations will be demonstrated for 'test' runs in which the well controls differ from those used for training. Construction of the POD-TPWL model requires preprocessing overhead computations equivalent to about 3-4 full-order runs. Runtime speedups using POD-TPWL are, however, very significant - typically O(100-1000). The use of POD-TPWL for well control optimization will also be illustrated. For this application, some amount of retraining during the course of the optimization is required, which leads to smaller, but still significant, speedup factors.

  20. Kinematic dust viscosity effect on linear and nonlinear dust-acoustic waves in space dusty plasmas with nonthermal ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Hanbaly, A. M.; Sallah, M., E-mail: msallahd@mans.edu.eg; El-Shewy, E. K.

    2015-10-15

    Linear and nonlinear dust-acoustic (DA) waves are studied in a collisionless, unmagnetized and dissipative dusty plasma consisting of negatively charged dust grains, Boltzmann-distributed electrons, and nonthermal ions. The normal mode analysis is used to obtain a linear dispersion relation illustrating the dependence of the wave damping rate on the carrier wave number, the dust viscosity coefficient, the ratio of the ion temperature to the electron temperatures, and the nonthermal parameter. The plasma system is analyzed nonlinearly via the reductive perturbation method that gives the KdV-Burgers equation. Some interesting physical solutions are obtained to study the nonlinear waves. These solutions aremore » related to soliton, a combination between a shock and a soliton, and monotonic and oscillatory shock waves. Their behaviors are illustrated and shown graphically. The characteristics of the DA solitary and shock waves are significantly modified by the presence of nonthermal (fast) ions, the ratio of the ion temperature to the electron temperature, and the dust kinematic viscosity. The topology of the phase portrait and the potential diagram of the KdV-Burgers equation is illustrated, whose advantage is the ability to predict different classes of traveling wave solutions according to different phase orbits. The energy of the soliton wave and the electric field are calculated. The results in this paper can be generalized to analyze the nature of plasma waves in both space and laboratory plasma systems.« less

  1. Solutions to a reduced Poisson–Nernst–Planck system and determination of reaction rates

    PubMed Central

    Li, Bo; Lu, Benzhuo; Wang, Zhongming; McCammon, J. Andrew

    2010-01-01

    We study a reduced Poisson–Nernst–Planck (PNP) system for a charged spherical solute immersed in a solvent with multiple ionic or molecular species that are electrostatically neutralized in the far field. Some of these species are assumed to be in equilibrium. The concentrations of such species are described by the Boltzmann distributions that are further linearized. Others are assumed to be reactive, meaning that their concentrations vanish when in contact with the charged solute. We present both semi-analytical solutions and numerical iterative solutions to the underlying reduced PNP system, and calculate the reaction rate for the reactive species. We give a rigorous analysis on the convergence of our simple iteration algorithm. Our numerical results show the strong dependence of the reaction rates of the reactive species on the magnitude of its far field concentration as well as on the ionic strength of all the chemical species. We also find non-monotonicity of electrostatic potential in certain parameter regimes. The results for the reactive system and those for the non-reactive system are compared to show the significant differences between the two cases. Our approach provides a means of solving a PNP system which in general does not have a closed-form solution even with a special geometrical symmetry. Our findings can also be used to test other numerical methods in large-scale computational modeling of electro-diffusion in biological systems. PMID:20228879

  2. Robust H(∞) positional control of 2-DOF robotic arm driven by electro-hydraulic servo system.

    PubMed

    Guo, Qing; Yu, Tian; Jiang, Dan

    2015-11-01

    In this paper an H∞ positional feedback controller is developed to improve the robust performance under structural and parametric uncertainty disturbance in electro-hydraulic servo system (EHSS). The robust control model is described as the linear state-space equation by upper linear fractional transformation. According to the solution of H∞ sub-optimal control problem, the robust controller is designed and simplified to lower order linear model which is easily realized in EHSS. The simulation and experimental results can validate the robustness of this proposed method. The comparison result with PI control shows that the robust controller is suitable for this EHSS under the critical condition where the desired system bandwidth is higher and the external load of the hydraulic actuator is closed to its limited capability. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  3. Numerical method for the solution of large systems of differential equations of the boundary layer type

    NASA Technical Reports Server (NTRS)

    Green, M. J.; Nachtsheim, P. R.

    1972-01-01

    A numerical method for the solution of large systems of nonlinear differential equations of the boundary-layer type is described. The method is a modification of the technique for satisfying asymptotic boundary conditions. The present method employs inverse interpolation instead of the Newton method to adjust the initial conditions of the related initial-value problem. This eliminates the so-called perturbation equations. The elimination of the perturbation equations not only reduces the user's preliminary work in the application of the method, but also reduces the number of time-consuming initial-value problems to be numerically solved at each iteration. For further ease of application, the solution of the overdetermined system for the unknown initial conditions is obtained automatically by applying Golub's linear least-squares algorithm. The relative ease of application of the proposed numerical method increases directly as the order of the differential-equation system increases. Hence, the method is especially attractive for the solution of large-order systems. After the method is described, it is applied to a fifth-order problem from boundary-layer theory.

  4. Limitations and Tolerances in Optical Devices

    NASA Astrophysics Data System (ADS)

    Jackman, Neil Allan

    The performance of optical systems is limited by the imperfections of their components. Many of the devices in optical systems including optical fiber amplifiers, multimode transmission lines and multilayered media such as mirrors, windows and filters, are modeled by coupled line equations. This investigation includes: (i) a study of the limitations imposed on a wavelength multiplexed unidirectional ring by the non-uniformities of the gain spectra of Erbium-doped optical fiber amplifiers. We find numerical solutions for non-linear coupled power differential equations and use these solutions to compare the signal -to-noise ratios and signal levels at different nodes. (ii) An analytical study of the tolerances of imperfect multimode media which support forward traveling modes. The complex mode amplitudes are related by linear coupled differential equations. We use analytical methods to derive extended equations for the expected mode powers and give heuristic limits for their regions of validity. These results compare favorably to exact solutions found for a special case. (iii) A study of the tolerances of multilayered media in the presence of optical thickness imperfections. We use analytical methods including Kronecker producers, to calculate the reflection and transmission statistics of the media. Monte Carlo simulations compare well to our analytical method.

  5. A noble refractive optical scanner with linear response

    NASA Astrophysics Data System (ADS)

    Mega, Yair J.; Lai, Zhenhua; DiMarzio, Charles A.

    2013-03-01

    Many applications in various fields of science and engineering use steered optical beam systems. Currently, many methods utilize mirrors in order to steer the beam. However, this approach is an off-axis solution, which normally increases the total size of the system as well as its error and complexity. Other methods use a "Risely Prisms" based solution, which is on-axis solution, however it poses some difficulties from an engineering standpoint, and therefore isn't widely used. We present here a novel technique for steering a beam on its optical axis with a linear deflection response. We derived the formulation for the profile required of the refractive optical component necessary for preforming the beam steering. The functionality of the device was simulated analytically using Matlab, as well as using a ray-tracing software, Zemax, and showed agreement with the analytical model. An optical element was manufactured based on the proposed design and the device was tested. The results show agreement with our hypothesis. We also present some proposed geometries of the several other devices, all based on the same concept, which can be used for higher performance applications such as two-dimensional scanner, video rate scanner etc.

  6. Inhibition effect of fatty amides with secondary compound on carbon steel corrosion in hydrodynamic condition

    NASA Astrophysics Data System (ADS)

    Ibrahim, I. M.; Jai, J.; Daud, M.; Hashim, Md A.

    2018-03-01

    The inhibition effect demonstrates an increase in the inhibition performance in presence of a secondary compound in the inhibited solution. This study introduces fatty amides as corrosion inhibitor and oxygen scavenger, namely, sodium sulphite as a secondary compound. The main objective is to determine the synergistic inhibition effect of a system by using fatty amides together with sodium sulphite in hydrodynamic condition. The synergistic inhibition of fatty amides and sodium sulphite on corrosion of carbon steel in 3.5 wt% sodium chloride solution had been studied using linear polarization resistance method and scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX). Electrochemical measurement was carried out using rotating cylinder electrode at different flow regimes (static, laminar, transition and turbulent). Linear polarization resistance experiments showed the changes in polarization resistance when the rotation speed increased. It found that, by addition of fatty amides together with sodium sulphite in test solution, the inhibition efficiency increased when rotation speed increased. The results collected from LPR experiment correlated with results from SEM-EDX. The results showed inhibition efficiency of system was enhanced when fatty amides and oxygen scavengers were present together.

  7. Stability of planar traveling waves in a Keller-Segel equation on an infinite strip domain

    NASA Astrophysics Data System (ADS)

    Chae, Myeongju; Choi, Kyudong; Kang, Kyungkeun; Lee, Jihoon

    2018-07-01

    We consider a simplified model of tumor angiogenesis, described by a Keller-Segel equation on the two dimensional domain (x , y) ∈ R ×Sλ where Sλ is the circle of perimeter λ. It is known that the system allows planar traveling wave solutions of an invading type. In case that λ is sufficiently small, we establish the nonlinear stability of traveling wave solutions in the absence of chemical diffusion if the initial perturbation is sufficiently small in some weighted Sobolev space. When chemical diffusion is present, it can be shown that the system is linearly stable. Lastly, we prove that any solution with our front condition eventually becomes planar under certain regularity conditions.

  8. Models for short-wave instability in inviscid shear flows

    NASA Astrophysics Data System (ADS)

    Grimshaw, Roger

    1999-11-01

    The generation of instability in an invsicid fluid occurs by a resonance between two wave modes, where here the resonance occurs by a coincidence of phase speeds for a finite, non-zero wavenumber. We show that in the weakly nonlinear limit, the appropriate model consists of two coupled equations for the envelopes of the wave modes, in which the nonlinear terms are balanced with low-order cross-coupling linear dispersive terms rather than the more familiar high-order terms which arise in the nonlinear Schrodinger equation, for instance. We will show that this system may either contain gap solitons as solutions in the linearly stable case, or wave breakdown in the linearly unstable case. In this latter circumstance, the system either exhibits wave collapse in finite time, or disintegration into fine-scale structures.

  9. Relativistic many-body bound systems: electromagnetic properties. Monograph report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danos, M.; Gillet, V.

    1977-04-01

    The formulae for the calculation of the electron scattering form factors, and of the static magnetic dipole and electric quadrupole moments, of relativistic many-body bound systems are derived. The framework, given in NBS Monograph 147, is relativistic quantum field theory in the Schrodinger picture; the physical particles, i.e., the solutions of the interacting fields, are given as linear combinations of the solutions of the free fields, called the parton fields. The parton--photon interaction is taken as given by minimal coupling. In addition, the contribution of the photon--vector meson vertex of the vector dominance model is derived.

  10. Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data.

    PubMed

    Kim, Jongrae; Bates, Declan G; Postlethwaite, Ian; Heslop-Harrison, Pat; Cho, Kwang-Hyun

    2008-05-15

    Inherent non-linearities in biomolecular interactions make the identification of network interactions difficult. One of the principal problems is that all methods based on the use of linear time-invariant models will have fundamental limitations in their capability to infer certain non-linear network interactions. Another difficulty is the multiplicity of possible solutions, since, for a given dataset, there may be many different possible networks which generate the same time-series expression profiles. A novel algorithm for the inference of biomolecular interaction networks from temporal expression data is presented. Linear time-varying models, which can represent a much wider class of time-series data than linear time-invariant models, are employed in the algorithm. From time-series expression profiles, the model parameters are identified by solving a non-linear optimization problem. In order to systematically reduce the set of possible solutions for the optimization problem, a filtering process is performed using a phase-portrait analysis with random numerical perturbations. The proposed approach has the advantages of not requiring the system to be in a stable steady state, of using time-series profiles which have been generated by a single experiment, and of allowing non-linear network interactions to be identified. The ability of the proposed algorithm to correctly infer network interactions is illustrated by its application to three examples: a non-linear model for cAMP oscillations in Dictyostelium discoideum, the cell-cycle data for Saccharomyces cerevisiae and a large-scale non-linear model of a group of synchronized Dictyostelium cells. The software used in this article is available from http://sbie.kaist.ac.kr/software

  11. Localization in finite vibroimpact chains: Discrete breathers and multibreathers.

    PubMed

    Grinberg, Itay; Gendelman, Oleg V

    2016-09-01

    We explore the dynamics of strongly localized periodic solutions (discrete solitons or discrete breathers) in a finite one-dimensional chain of oscillators. Localization patterns with both single and multiple localization sites (breathers and multibreathers) are considered. The model involves parabolic on-site potential with rigid constraints (the displacement domain of each particle is finite) and a linear nearest-neighbor coupling. When the particle approaches the constraint, it undergoes an inelastic impact according to Newton's impact model. The rigid nonideal impact constraints are the only source of nonlinearity and damping in the system. We demonstrate that this vibro-impact model allows derivation of exact analytic solutions for the breathers and multibreathers with an arbitrary set of localization sites, both in conservative and in forced-damped settings. Periodic boundary conditions are considered; exact solutions for other types of boundary conditions are also available. Local character of the nonlinearity permits explicit derivation of a monodromy matrix for the breather solutions. Consequently, the stability of the derived breather and multibreather solutions can be efficiently studied in the framework of simple methods of linear algebra, and with rather moderate computational efforts. One reveals that that the finiteness of the chain fragment and possible proximity of the localization sites strongly affect both the existence and the stability patterns of these localized solutions.

  12. Optimal Load Shedding and Generation Rescheduling for Overload Suppression in Large Power Systems.

    NASA Astrophysics Data System (ADS)

    Moon, Young-Hyun

    Ever-increasing size, complexity and operation costs in modern power systems have stimulated the intensive study of an optimal Load Shedding and Generator Rescheduling (LSGR) strategy in the sense of a secure and economic system operation. The conventional approach to LSGR has been based on the application of LP (Linear Programming) with the use of an approximately linearized model, and the LP algorithm is currently considered to be the most powerful tool for solving the LSGR problem. However, all of the LP algorithms presented in the literature essentially lead to the following disadvantages: (i) piecewise linearization involved in the LP algorithms requires the introduction of a number of new inequalities and slack variables, which creates significant burden to the computing facilities, and (ii) objective functions are not formulated in terms of the state variables of the adopted models, resulting in considerable numerical inefficiency in the process of computing the optimal solution. A new approach is presented, based on the development of a new linearized model and on the application of QP (Quadratic Programming). The changes in line flows as a result of changes to bus injection power are taken into account in the proposed model by the introduction of sensitivity coefficients, which avoids the mentioned second disadvantages. A precise method to calculate these sensitivity coefficients is given. A comprehensive review of the theory of optimization is included, in which results of the development of QP algorithms for LSGR as based on Wolfe's method and Kuhn -Tucker theory are evaluated in detail. The validity of the proposed model and QP algorithms has been verified and tested on practical power systems, showing the significant reduction of both computation time and memory requirements as well as the expected lower generation costs of the optimal solution as compared with those obtained from computing the optimal solution with LP. Finally, it is noted that an efficient reactive power compensation algorithm is developed to suppress voltage disturbances due to load sheddings, and that a new method for multiple contingency simulation is presented.

  13. Integrable pair-transition-coupled nonlinear Schrödinger equations.

    PubMed

    Ling, Liming; Zhao, Li-Chen

    2015-08-01

    We study integrable coupled nonlinear Schrödinger equations with pair particle transition between components. Based on exact solutions of the coupled model with attractive or repulsive interaction, we predict that some new dynamics of nonlinear excitations can exist, such as the striking transition dynamics of breathers, new excitation patterns for rogue waves, topological kink excitations, and other new stable excitation structures. In particular, we find that nonlinear wave solutions of this coupled system can be written as a linear superposition of solutions for the simplest scalar nonlinear Schrödinger equation. Possibilities to observe them are discussed in a cigar-shaped Bose-Einstein condensate with two hyperfine states. The results would enrich our knowledge on nonlinear excitations in many coupled nonlinear systems with transition coupling effects, such as multimode nonlinear fibers, coupled waveguides, and a multicomponent Bose-Einstein condensate system.

  14. Dynamic analysis of a magnetic bearing system with flux control

    NASA Technical Reports Server (NTRS)

    Knight, Josiah; Walsh, Thomas; Virgin, Lawrence

    1994-01-01

    Using measured values of two-dimensional forces in a magnetic actuator, equations of motion for an active magnetic bearing are presented. The presence of geometric coupling between coordinate directions causes the equations of motion to be nonlinear. Two methods are used to examine the unbalance response of the system: simulation by direct integration in time; and determination of approximate steady state solutions by harmonic balance. For relatively large values of the derivative control coefficient, the system behaves in an essentially linear manner, but for lower values of this parameter, or for higher values of the coupling coefficient, the response shows a split of amplitudes in the two principal directions. This bifurcation is sensitive to initial conditions. The harmonic balance solution shows that the separation of amplitudes actually corresponds to a change in stability of multiple coexisting solutions.

  15. Accelerated Cartesian expansions for the rapid solution of periodic multiscale problems

    DOE PAGES

    Baczewski, Andrew David; Dault, Daniel L.; Shanker, Balasubramaniam

    2012-07-03

    We present an algorithm for the fast and efficient solution of integral equations that arise in the analysis of scattering from periodic arrays of PEC objects, such as multiband frequency selective surfaces (FSS) or metamaterial structures. Our approach relies upon the method of Accelerated Cartesian Expansions (ACE) to rapidly evaluate the requisite potential integrals. ACE is analogous to FMM in that it can be used to accelerate the matrix vector product used in the solution of systems discretized using MoM. Here, ACE provides linear scaling in both CPU time and memory. Details regarding the implementation of this method within themore » context of periodic systems are provided, as well as results that establish error convergence and scalability. In addition, we also demonstrate the applicability of this algorithm by studying several exemplary electrically dense systems.« less

  16. Improved Pedagogy for Linear Differential Equations by Reconsidering How We Measure the Size of Solutions

    ERIC Educational Resources Information Center

    Tisdell, Christopher C.

    2017-01-01

    For over 50 years, the learning of teaching of "a priori" bounds on solutions to linear differential equations has involved a Euclidean approach to measuring the size of a solution. While the Euclidean approach to "a priori" bounds on solutions is somewhat manageable in the learning and teaching of the proofs involving…

  17. Efficient control schemes with limited computation complexity for Tomographic AO systems on VLTs and ELTs

    NASA Astrophysics Data System (ADS)

    Petit, C.; Le Louarn, M.; Fusco, T.; Madec, P.-Y.

    2011-09-01

    Various tomographic control solutions have been proposed during the last decades to ensure efficient or even optimal closed-loop correction to tomographic Adaptive Optics (AO) concepts such as Laser Tomographic AO (LTAO), Multi-Conjugate AO (MCAO). The optimal solution, based on Linear Quadratic Gaussian (LQG) approach, as well as suboptimal but efficient solutions such as Pseudo-Open Loop Control (POLC) require multiple Matrix Vector Multiplications (MVM). Disregarding their respective performance, these efficient control solutions thus exhibit strong increase of on-line complexity and their implementation may become difficult in demanding cases. Among them, two cases are of particular interest. First, the system Real-Time Computer architecture and implementation is derived from past or present solutions and does not support multiple MVM. This is the case of the AO Facility which RTC architecture is derived from the SPARTA platform and inherits its simple MVM architecture, which does not fit with LTAO control solutions for instance. Second, considering future systems such as Extremely Large Telescopes, the number of degrees of freedom is twenty to one hundred times bigger than present systems. In these conditions, tomographic control solutions can hardly be used in their standard form and optimized implementation shall be considered. Single MVM tomographic control solutions represent a potential solution, and straightforward solutions such as Virtual Deformable Mirrors have been already proposed for LTAO but with tuning issues. We investigate in this paper the possibility to derive from tomographic control solutions, such as POLC or LQG, simplified control solutions ensuring simple MVM architecture and that could be thus implemented on nowadays systems or future complex systems. We theoretically derive various solutions and analyze their respective performance on various systems thanks to numerical simulation. We discuss the optimization of their performance and stability issues with respect to classic control solutions. We finally discuss off-line computation and implementation constraints.

  18. Formally biorthogonal polynomials and a look-ahead Levinson algorithm for general Toeplitz systems

    NASA Technical Reports Server (NTRS)

    Freund, Roland W.; Zha, Hongyuan

    1992-01-01

    Systems of linear equations with Toeplitz coefficient matrices arise in many important applications. The classical Levinson algorithm computes solutions of Toeplitz systems with only O(n(sub 2)) arithmetic operations, as compared to O(n(sub 3)) operations that are needed for solving general linear systems. However, the Levinson algorithm in its original form requires that all leading principal submatrices are nonsingular. An extension of the Levinson algorithm to general Toeplitz systems is presented. The algorithm uses look-ahead to skip over exactly singular, as well as ill-conditioned leading submatrices, and, at the same time, it still fully exploits the Toeplitz structure. In our derivation of this algorithm, we make use of the intimate connection of Toeplitz matrices with formally biorthogonal polynomials.

  19. Efficient techniques for forced response involving linear modal components interconnected by discrete nonlinear connection elements

    NASA Astrophysics Data System (ADS)

    Avitabile, Peter; O'Callahan, John

    2009-01-01

    Generally, response analysis of systems containing discrete nonlinear connection elements such as typical mounting connections require the physical finite element system matrices to be used in a direct integration algorithm to compute the nonlinear response analysis solution. Due to the large size of these physical matrices, forced nonlinear response analysis requires significant computational resources. Usually, the individual components of the system are analyzed and tested as separate components and their individual behavior may essentially be linear when compared to the total assembled system. However, the joining of these linear subsystems using highly nonlinear connection elements causes the entire system to become nonlinear. It would be advantageous if these linear modal subsystems could be utilized in the forced nonlinear response analysis since much effort has usually been expended in fine tuning and adjusting the analytical models to reflect the tested subsystem configuration. Several more efficient techniques have been developed to address this class of problem. Three of these techniques given as: equivalent reduced model technique (ERMT);modal modification response technique (MMRT); andcomponent element method (CEM); are presented in this paper and are compared to traditional methods.

  20. Employment of Gibbs-Donnan-based concepts for interpretation of the properties of linear polyelectrolyte solutions

    USGS Publications Warehouse

    Marinsky, J.A.; Reddy, M.M.

    1991-01-01

    Earlier research has shown that the acid dissociation and metal ion complexation equilibria of linear, weak-acid polyelectrolytes and their cross-linked gel analogues are similarly sensitive to the counterion concentration levels of their solutions. Gibbs-Donnan-based concepts, applicable to the gel, are equally applicable to the linear polyelectrolyte for the accommodation of this sensitivity to ionic strength. This result is presumed to indicate that the linear polyelectrolyte in solution develops counterion-concentrating regions that closely resemble the gel phase of their analogues. Advantage has been taken of this description of linear polyelectrolytes to estimate the solvent uptake by these regions. ?? 1991 American Chemical Society.

  1. Irradiation of Frozen Solutions of Ferrous Sulphate as Dosimeter for Low Temperature Irradiations

    NASA Astrophysics Data System (ADS)

    Sánchez-Mejorada, G.; Frias, D.

    2006-09-01

    A theoretical model is presented for the evaluation of the energy transferred during the interaction of high energy radiation with icy bodies. Numerical simulations of the chemical reaction system reproduce the behavior of the icy systems (frozen solution of iron salts) after its interaction with the gamma radiation. Simulation experiments of extraterrestrial bodies are useful for space research, where low temperature dosimetry is necessary, especially in trips with humans or in the International Space Station (ISS) where humans are exposed to high radiation doses. The results showed that theoretical model applied for the irradiated system for different doses (from 10 to 2500Gy) and at different temperature (from 77 to 298 °K). The system under study was frozen solutions of iron salts and were analyzed (after Melting) by UV-spectroscopy. The systems were irradiates with gamma radiation. It is also shown that the response of the system is a function of the temperature and it was linear with as a function of dose.

  2. A Kronecker product splitting preconditioner for two-dimensional space-fractional diffusion equations

    NASA Astrophysics Data System (ADS)

    Chen, Hao; Lv, Wen; Zhang, Tongtong

    2018-05-01

    We study preconditioned iterative methods for the linear system arising in the numerical discretization of a two-dimensional space-fractional diffusion equation. Our approach is based on a formulation of the discrete problem that is shown to be the sum of two Kronecker products. By making use of an alternating Kronecker product splitting iteration technique we establish a class of fixed-point iteration methods. Theoretical analysis shows that the new method converges to the unique solution of the linear system. Moreover, the optimal choice of the involved iteration parameters and the corresponding asymptotic convergence rate are computed exactly when the eigenvalues of the system matrix are all real. The basic iteration is accelerated by a Krylov subspace method like GMRES. The corresponding preconditioner is in a form of a Kronecker product structure and requires at each iteration the solution of a set of discrete one-dimensional fractional diffusion equations. We use structure preserving approximations to the discrete one-dimensional fractional diffusion operators in the action of the preconditioning matrix. Numerical examples are presented to illustrate the effectiveness of this approach.

  3. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE PAGES

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    2015-12-01

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  4. Anderson acceleration of the Jacobi iterative method: An efficient alternative to Krylov methods for large, sparse linear systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratapa, Phanisri P.; Suryanarayana, Phanish; Pask, John E.

    We employ Anderson extrapolation to accelerate the classical Jacobi iterative method for large, sparse linear systems. Specifically, we utilize extrapolation at periodic intervals within the Jacobi iteration to develop the Alternating Anderson–Jacobi (AAJ) method. We verify the accuracy and efficacy of AAJ in a range of test cases, including nonsymmetric systems of equations. We demonstrate that AAJ possesses a favorable scaling with system size that is accompanied by a small prefactor, even in the absence of a preconditioner. In particular, we show that AAJ is able to accelerate the classical Jacobi iteration by over four orders of magnitude, with speed-upsmore » that increase as the system gets larger. Moreover, we find that AAJ significantly outperforms the Generalized Minimal Residual (GMRES) method in the range of problems considered here, with the relative performance again improving with size of the system. As a result, the proposed method represents a simple yet efficient technique that is particularly attractive for large-scale parallel solutions of linear systems of equations.« less

  5. A variational approach to the strongly nonlinear regime of the Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Toshio

    The Rayleigh-Taylor instability is the instability of the interface between two fluids of different densities. When a heavy fluid is superposed over a light fluid. small disturbances on the interface develop into a complex form with heavy fluid ``fingers'' and light fluid ``bubbles.'' We propose a variational method for the description of the evolution of the fingers and bubbles in the late stage of the instability. In this method, the fluid region is represented as the image of a time-dependent conformal mapping; the dynamics of the mapping is determined by the least action principle for the Lagrangian. i.e., the kinetic energy minus the potential energy. The evolution of a single finger and bubble is investigated by this method. We first consider a symmetric finger and bubble in a zero gravitational field. We derive an integrable Hamiltonian system with two degrees of freedom that governs the dynamics of the symmetric finger and bubble. We present a general solution of the system. The solution predicts the linear growth of the finger and the saturation of the bubble growth. It is shown that this solution is asymptotically exact. We consider a symmetric finger and bubble with perturbations. We show that the dynamics of the finger and bubble and that of the perturbations are decoupled. We next consider an inclined finger and bubble in a zero gravitational field. We derive a Hamiltonian system with four degrees of freedom that governs the dynamics of the inclined finger and bubble. The system has four integrals of motion, one of them depends on time explicitly. When there is no lateral motion, the system reduces to an integrable Hamiltonian system with three degrees of freedom. A general solution of the system is presented. The solution predicts the linear growth of the finger toward a direction and the saturation of the bubble growth. Finally, we consider a symmetric finger and bubble in a uniform gravitational field. We derive a Hamiltonian system with two degrees of freedom that governs the dynamics of the symmetric finger and bubble. Since the system includes a potential energy term, it is not integrable in general. However, we present a general solution in the case of the total energy being zero. This case corresponds to an interesting case where the evolution starts from a flat surface. The solution predicts that the finger grows as the square of time, and the bubble as the square root of time.

  6. Incomplete Gröbner basis as a preconditioner for polynomial systems

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Tao, Yu-Hui; Bai, Feng-Shan

    2009-04-01

    Precondition plays a critical role in the numerical methods for large and sparse linear systems. It is also true for nonlinear algebraic systems. In this paper incomplete Gröbner basis (IGB) is proposed as a preconditioner of homotopy methods for polynomial systems of equations, which transforms a deficient system into a system with the same finite solutions, but smaller degree. The reduced system can thus be solved faster. Numerical results show the efficiency of the preconditioner.

  7. Symmetry operators and decoupled equations for linear fields on black hole spacetimes

    NASA Astrophysics Data System (ADS)

    Araneda, Bernardo

    2017-02-01

    In the class of vacuum Petrov type D spacetimes with cosmological constant, which includes the Kerr-(A)dS black hole as a particular case, we find a set of four-dimensional operators that, when composed off shell with the Dirac, Maxwell and linearized gravity equations, give a system of equations for spin weighted scalars associated with the linear fields, that decouple on shell. Using these operator relations we give compact reconstruction formulae for solutions of the original spinor and tensor field equations in terms of solutions of the decoupled scalar equations. We also analyze the role of Killing spinors and Killing-Yano tensors in the spin weight zero equations and, in the case of spherical symmetry, we compare our four-dimensional formulation with the standard 2  +  2 decomposition and particularize to the Schwarzschild-(A)dS black hole. Our results uncover a pattern that generalizes a number of previous results on Teukolsky-like equations and Debye potentials for higher spin fields.

  8. Classes of exact Einstein Maxwell solutions

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  9. On the reliability of computed chaotic solutions of non-linear differential equations

    NASA Astrophysics Data System (ADS)

    Liao, Shijun

    2009-08-01

    A new concept, namely the critical predictable time Tc, is introduced to give a more precise description of computed chaotic solutions of non-linear differential equations: it is suggested that computed chaotic solutions are unreliable and doubtable when t > Tc. This provides us a strategy to detect reliable solution from a given computed result. In this way, the computational phenomena, such as computational chaos (CC), computational periodicity (CP) and computational prediction uncertainty, which are mainly based on long-term properties of computed time-series, can be completely avoided. Using this concept, the famous conclusion `accurate long-term prediction of chaos is impossible' should be replaced by a more precise conclusion that `accurate prediction of chaos beyond the critical predictable time Tc is impossible'. So, this concept also provides us a timescale to determine whether or not a particular time is long enough for a given non-linear dynamic system. Besides, the influence of data inaccuracy and various numerical schemes on the critical predictable time is investigated in details by using symbolic computation software as a tool. A reliable chaotic solution of Lorenz equation in a rather large interval 0 <= t < 1200 non-dimensional Lorenz time units is obtained for the first time. It is found that the precision of the initial condition and the computed data at each time step, which is mathematically necessary to get such a reliable chaotic solution in such a long time, is so high that it is physically impossible due to the Heisenberg uncertainty principle in quantum physics. This, however, provides us a so-called `precision paradox of chaos', which suggests that the prediction uncertainty of chaos is physically unavoidable, and that even the macroscopical phenomena might be essentially stochastic and thus could be described by probability more economically.

  10. Laplacian versus topography in the solution of the linear gravimetric boundary value problem by means of successive approximations

    NASA Astrophysics Data System (ADS)

    Holota, Petr; Nesvadba, Otakar

    2017-04-01

    The aim of this paper is to discuss the solution of the linearized gravimetric boundary value problem by means of the method of successive approximations. We start with the relation between the geometry of the solution domain and the structure of Laplace's operator. Similarly as in other branches of engineering and mathematical physics a transformation of coordinates is used that offers a possibility to solve an alternative between the boundary complexity and the complexity of the coefficients of the partial differential equation governing the solution. Laplace's operator has a relatively simple structure in terms of ellipsoidal coordinates which are frequently used in geodesy. However, the physical surface of the Earth substantially differs from an oblate ellipsoid of revolution, even if it is optimally fitted. Therefore, an alternative is discussed. A system of general curvilinear coordinates such that the physical surface of the Earth is imbedded in the family of coordinate surfaces is used. Clearly, the structure of Laplace's operator is more complicated in this case. It was deduced by means of tensor calculus and in a sense it represents the topography of the physical surface of the Earth. Nevertheless, the construction of the respective Green's function is more simple, if the solution domain is transformed. This enables the use of the classical Green's function method together with the method of successive approximations for the solution of the linear gravimetric boundary value problem expressed in terms of new coordinates. The structure of iteration steps is analyzed and where useful also modified by means of the integration by parts. Comparison with other methods is discussed.

  11. Analytical solutions for solute transport in groundwater and riverine flow using Green's Function Method and pertinent coordinate transformation method

    NASA Astrophysics Data System (ADS)

    Sanskrityayn, Abhishek; Suk, Heejun; Kumar, Naveen

    2017-04-01

    In this study, analytical solutions of one-dimensional pollutant transport originating from instantaneous and continuous point sources were developed in groundwater and riverine flow using both Green's Function Method (GFM) and pertinent coordinate transformation method. Dispersion coefficient and flow velocity are considered spatially and temporally dependent. The spatial dependence of the velocity is linear, non-homogeneous and that of dispersion coefficient is square of that of velocity, while the temporal dependence is considered linear, exponentially and asymptotically decelerating and accelerating. Our proposed analytical solutions are derived for three different situations depending on variations of dispersion coefficient and velocity, respectively which can represent real physical processes occurring in groundwater and riverine systems. First case refers to steady solute transport situation in steady flow in which dispersion coefficient and velocity are only spatially dependent. The second case represents transient solute transport in steady flow in which dispersion coefficient is spatially and temporally dependent while the velocity is spatially dependent. Finally, the third case indicates transient solute transport in unsteady flow in which both dispersion coefficient and velocity are spatially and temporally dependent. The present paper demonstrates the concentration distribution behavior from a point source in realistically occurring flow domains of hydrological systems including groundwater and riverine water in which the dispersivity of pollutant's mass is affected by heterogeneity of the medium as well as by other factors like velocity fluctuations, while velocity is influenced by water table slope and recharge rate. Such capabilities give the proposed method's superiority about application of various hydrological problems to be solved over other previously existing analytical solutions. Especially, to author's knowledge, any other solution doesn't exist for both spatially and temporally variations of dispersion coefficient and velocity. In this study, the existing analytical solutions from previous widely known studies are used for comparison as validation tools to verify the proposed analytical solution as well as the numerical code of the Two-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals (2DFATMIC) code and the developed 1D finite difference code (FDM). All such solutions show perfect match with the respective proposed solutions.

  12. International Symposium on Solute-Solute-Solvent Interactions (7th) Held at Reading, United Kingdom on 15-19 July 1985.

    DTIC Science & Technology

    1985-07-19

    analytical, integral equation methods can be applied to the problem of elucidating the detailed structural properties of strongly interacting molecu- lar...curve. r. I equation -)f sate to calculate phase diagrams and critical irv,: for polar-non polar systems is described. Measurements with the .- r...FRANCE The fundamentai] equations of the Onsager approach of transport properties in linear response are summarized. From a reformula- tion of the

  13. Inverse scattering method and soliton double solution family for the general symplectic gravity model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Yajun

    A previously established Hauser-Ernst-type extended double-complex linear system is slightly modified and used to develop an inverse scattering method for the stationary axisymmetric general symplectic gravity model. The reduction procedures in this inverse scattering method are found to be fairly simple, which makes the inverse scattering method applied fine and effective. As an application, a concrete family of soliton double solutions for the considered theory is obtained.

  14. A Higher Harmonic Optimal Controller to Optimise Rotorcraft Aeromechanical Behaviour

    NASA Technical Reports Server (NTRS)

    Leyland, Jane Anne

    1996-01-01

    Three methods to optimize rotorcraft aeromechanical behavior for those cases where the rotorcraft plant can be adequately represented by a linear model system matrix were identified and implemented in a stand-alone code. These methods determine the optimal control vector which minimizes the vibration metric subject to constraints at discrete time points, and differ from the commonly used non-optimal constraint penalty methods such as those employed by conventional controllers in that the constraints are handled as actual constraints to an optimization problem rather than as just additional terms in the performance index. The first method is to use a Non-linear Programming algorithm to solve the problem directly. The second method is to solve the full set of non-linear equations which define the necessary conditions for optimality. The third method is to solve each of the possible reduced sets of equations defining the necessary conditions for optimality when the constraints are pre-selected to be either active or inactive, and then to simply select the best solution. The effects of maneuvers and aeroelasticity on the systems matrix are modelled by using a pseudo-random pseudo-row-dependency scheme to define the systems matrix. Cases run to date indicate that the first method of solution is reliable, robust, and easiest to use, and that it was superior to the conventional controllers which were considered.

  15. Gravity Gradient Tensor of Arbitrary 3D Polyhedral Bodies with up to Third-Order Polynomial Horizontal and Vertical Mass Contrasts

    NASA Astrophysics Data System (ADS)

    Ren, Zhengyong; Zhong, Yiyuan; Chen, Chaojian; Tang, Jingtian; Kalscheuer, Thomas; Maurer, Hansruedi; Li, Yang

    2018-03-01

    During the last 20 years, geophysicists have developed great interest in using gravity gradient tensor signals to study bodies of anomalous density in the Earth. Deriving exact solutions of the gravity gradient tensor signals has become a dominating task in exploration geophysics or geodetic fields. In this study, we developed a compact and simple framework to derive exact solutions of gravity gradient tensor measurements for polyhedral bodies, in which the density contrast is represented by a general polynomial function. The polynomial mass contrast can continuously vary in both horizontal and vertical directions. In our framework, the original three-dimensional volume integral of gravity gradient tensor signals is transformed into a set of one-dimensional line integrals along edges of the polyhedral body by sequentially invoking the volume and surface gradient (divergence) theorems. In terms of an orthogonal local coordinate system defined on these edges, exact solutions are derived for these line integrals. We successfully derived a set of unified exact solutions of gravity gradient tensors for constant, linear, quadratic and cubic polynomial orders. The exact solutions for constant and linear cases cover all previously published vertex-type exact solutions of the gravity gradient tensor for a polygonal body, though the associated algorithms may differ in numerical stability. In addition, to our best knowledge, it is the first time that exact solutions of gravity gradient tensor signals are derived for a polyhedral body with a polynomial mass contrast of order higher than one (that is quadratic and cubic orders). Three synthetic models (a prismatic body with depth-dependent density contrasts, an irregular polyhedron with linear density contrast and a tetrahedral body with horizontally and vertically varying density contrasts) are used to verify the correctness and the efficiency of our newly developed closed-form solutions. Excellent agreements are obtained between our solutions and other published exact solutions. In addition, stability tests are performed to demonstrate that our exact solutions can safely be used to detect shallow subsurface targets.

  16. Piping benchmark problems. Volume 1. Dynamic analysis uniform support motion response spectrum method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bezler, P.; Hartzman, M.; Reich, M.

    1980-08-01

    A set of benchmark problems and solutions have been developed for verifying the adequacy of computer programs used for dynamic analysis and design of nuclear piping systems by the Response Spectrum Method. The problems range from simple to complex configurations which are assumed to experience linear elastic behavior. The dynamic loading is represented by uniform support motion, assumed to be induced by seismic excitation in three spatial directions. The solutions consist of frequencies, participation factors, nodal displacement components and internal force and moment components. Solutions to associated anchor point motion static problems are not included.

  17. Landau-Zener extension of the Tavis-Cummings model: Structure of the solution

    DOE PAGES

    Sun, Chen; Sinitsyn, Nikolai A.

    2016-09-07

    We explore the recently discovered solution of the driven Tavis-Cummings model (DTCM). It describes interaction of an arbitrary number of two-level systems with a bosonic mode that has linearly time-dependent frequency. We derive compact and tractable expressions for transition probabilities in terms of the well-known special functions. In this form, our formulas are suitable for fast numerical calculations and analytical approximations. As an application, we obtain the semiclassical limit of the exact solution and compare it to prior approximations. Furthermore, we also reveal connection between DTCM and q-deformed binomial statistics.

  18. An exact solution for the steady state phase distribution in an array of oscillators coupled on a hexagonal lattice

    NASA Technical Reports Server (NTRS)

    Pogorzelski, Ronald J.

    2004-01-01

    When electronic oscillators are coupled to nearest neighbors to form an array on a hexagonal lattice, the planar phase distributions desired for excitation of a phased array antenna are not steady state solutions of the governing non-linear equations describing the system. Thus the steady state phase distribution deviates from planar. It is shown to be possible to obtain an exact solution for the steady state phase distribution and thus determine the deviation from the desired planar distribution as a function of beam steering angle.

  19. Kinetics Modeling of Hypergolic Propellants

    DTIC Science & Technology

    2013-07-01

    comprehensive preconditioning and employs the line Gauss Seidel algorithm for the solution of the linear system. A multi-block unstructured mesh is...Explosives, Pyrotechnics, 33(3):209–212, 2008. 24Wei-Guang Liu, Shiqing Wang, Siddharth Dasgupta, Stefan T Thynell, William A Goddard III, Sergey Zybin

  20. Program for the solution of multipoint boundary value problems of quasilinear differential equations

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Linear equations are solved by a method of superposition of solutions of a sequence of initial value problems. For nonlinear equations and/or boundary conditions, the solution is iterative and in each iteration a problem like the linear case is solved. A simple Taylor series expansion is used for the linearization of both nonlinear equations and nonlinear boundary conditions. The perturbation method of solution is used in preference to quasilinearization because of programming ease, and smaller storage requirements; and experiments indicate that the desired convergence properties exist although no proof or convergence is given.

  1. The solution of linear systems of equations with a structural analysis code on the NAS CRAY-2

    NASA Technical Reports Server (NTRS)

    Poole, Eugene L.; Overman, Andrea L.

    1988-01-01

    Two methods for solving linear systems of equations on the NAS Cray-2 are described. One is a direct method; the other is an iterative method. Both methods exploit the architecture of the Cray-2, particularly the vectorization, and are aimed at structural analysis applications. To demonstrate and evaluate the methods, they were installed in a finite element structural analysis code denoted the Computational Structural Mechanics (CSM) Testbed. A description of the techniques used to integrate the two solvers into the Testbed is given. Storage schemes, memory requirements, operation counts, and reformatting procedures are discussed. Finally, results from the new methods are compared with results from the initial Testbed sparse Choleski equation solver for three structural analysis problems. The new direct solvers described achieve the highest computational rates of the methods compared. The new iterative methods are not able to achieve as high computation rates as the vectorized direct solvers but are best for well conditioned problems which require fewer iterations to converge to the solution.

  2. Computation in Dynamically Bounded Asymmetric Systems

    PubMed Central

    Rutishauser, Ueli; Slotine, Jean-Jacques; Douglas, Rodney

    2015-01-01

    Previous explanations of computations performed by recurrent networks have focused on symmetrically connected saturating neurons and their convergence toward attractors. Here we analyze the behavior of asymmetrical connected networks of linear threshold neurons, whose positive response is unbounded. We show that, for a wide range of parameters, this asymmetry brings interesting and computationally useful dynamical properties. When driven by input, the network explores potential solutions through highly unstable ‘expansion’ dynamics. This expansion is steered and constrained by negative divergence of the dynamics, which ensures that the dimensionality of the solution space continues to reduce until an acceptable solution manifold is reached. Then the system contracts stably on this manifold towards its final solution trajectory. The unstable positive feedback and cross inhibition that underlie expansion and divergence are common motifs in molecular and neuronal networks. Therefore we propose that very simple organizational constraints that combine these motifs can lead to spontaneous computation and so to the spontaneous modification of entropy that is characteristic of living systems. PMID:25617645

  3. General Linearized Theory of Quantum Fluctuations around Arbitrary Limit Cycles

    NASA Astrophysics Data System (ADS)

    Navarrete-Benlloch, Carlos; Weiss, Talitha; Walter, Stefan; de Valcárcel, Germán J.

    2017-09-01

    The theory of Gaussian quantum fluctuations around classical steady states in nonlinear quantum-optical systems (also known as standard linearization) is a cornerstone for the analysis of such systems. Its simplicity, together with its accuracy far from critical points or situations where the nonlinearity reaches the strong coupling regime, has turned it into a widespread technique, being the first method of choice in most works on the subject. However, such a technique finds strong practical and conceptual complications when one tries to apply it to situations in which the classical long-time solution is time dependent, a most prominent example being spontaneous limit-cycle formation. Here, we introduce a linearization scheme adapted to such situations, using the driven Van der Pol oscillator as a test bed for the method, which allows us to compare it with full numerical simulations. On a conceptual level, the scheme relies on the connection between the emergence of limit cycles and the spontaneous breaking of the symmetry under temporal translations. On the practical side, the method keeps the simplicity and linear scaling with the size of the problem (number of modes) characteristic of standard linearization, making it applicable to large (many-body) systems.

  4. Hyperbolic conservation laws and numerical methods

    NASA Technical Reports Server (NTRS)

    Leveque, Randall J.

    1990-01-01

    The mathematical structure of hyperbolic systems and the scalar equation case of conservation laws are discussed. Linear, nonlinear systems and the Riemann problem for the Euler equations are also studied. The numerical methods for conservation laws are presented in a nonstandard manner which leads to large time steps generalizations and computations on irregular grids. The solution of conservation laws with stiff source terms is examined.

  5. Chandrasekhar equations and computational algorithms for distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Burns, J. A.; Ito, K.; Powers, R. K.

    1984-01-01

    The Chandrasekhar equations arising in optimal control problems for linear distributed parameter systems are considered. The equations are derived via approximation theory. This approach is used to obtain existence, uniqueness, and strong differentiability of the solutions and provides the basis for a convergent computation scheme for approximating feedback gain operators. A numerical example is presented to illustrate these ideas.

  6. HST3D; a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems

    USGS Publications Warehouse

    Kipp, K.L.

    1987-01-01

    The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the dependent variables versus time. (Lantz-PTT)

  7. Nonalgebraic integrability of one reversible dynamical system of the Cremona type

    NASA Astrophysics Data System (ADS)

    Rerikh, K. V.

    1998-05-01

    A reversible dynamical system (RDS) and a system of nonlinear functional equations, defined by a certain rational quadratic Cremona mapping and arising from the static model of the dispersion approach in the theory of strong interactions [the Chew-Low-type equations with crossing-symmetry matrix A(l,1)], are considered. This RDS is split into one- and two-dimensional ones. An explicit Cremona transformation that completely determines the exact solution of the two-dimensional system is found. This solution depends on an odd function satisfying a nonlinear autonomous three-point functional equation. Nonalgebraic integrability of RDS under consideration is proved using the method of Poincaré normal forms and the Siegel theorem on biholomorphic linearization of a mapping at a nonresonant fixed point.

  8. Attitude dynamics simulation subroutines for systems of hinge-connected rigid bodies

    NASA Technical Reports Server (NTRS)

    Fleischer, G. E.; Likins, P. W.

    1974-01-01

    Several computer subroutines are designed to provide the solution to minimum-dimension sets of discrete-coordinate equations of motion for systems consisting of an arbitrary number of hinge-connected rigid bodies assembled in a tree topology. In particular, these routines may be applied to: (1) the case of completely unrestricted hinge rotations, (2) the totally linearized case (all system rotations are small), and (3) the mixed, or partially linearized, case. The use of the programs in each case is demonstrated using a five-body spacecraft and attitude control system configuration. The ability of the subroutines to accommodate prescribed motions of system bodies is also demonstrated. Complete listings and user instructions are included for these routines (written in FORTRAN V) which are intended as multi- and general-purpose tools in the simulation of spacecraft and other complex electromechanical systems.

  9. Electrochemical force microscopy

    DOEpatents

    Kalinin, Sergei V.; Jesse, Stephen; Collins, Liam F.; Rodriguez, Brian J.

    2017-01-10

    A system and method for electrochemical force microscopy are provided. The system and method are based on a multidimensional detection scheme that is sensitive to forces experienced by a biased electrode in a solution. The multidimensional approach allows separation of fast processes, such as double layer charging, and charge relaxation, and slow processes, such as diffusion and faradaic reactions, as well as capturing the bias dependence of the response. The time-resolved and bias measurements can also allow probing both linear (small bias range) and non-linear (large bias range) electrochemical regimes and potentially the de-convolution of charge dynamics and diffusion processes from steric effects and electrochemical reactivity.

  10. Failure detection and identification

    NASA Technical Reports Server (NTRS)

    Massoumnia, Mohammad-Ali; Verghese, George C.; Willsky, Alan S.

    1989-01-01

    Using the geometric concept of an unobservability subspace, a solution is given to the problem of detecting and identifying control system component failures in linear, time-invariant systems. Conditions are developed for the existence of a causal, linear, time-invariant processor that can detect and uniquely identify a component failure, first for the case where components can fail simultaneously, and then for the case where they fail only one at a time. Explicit design algorithms are provided when these conditions are satisfied. In addition to time-domain solvability conditions, frequency-domain interpretations of the results are given, and connections are drawn with results already available in the literature.

  11. Regularization strategies for hyperplane classifiers: application to cancer classification with gene expression data.

    PubMed

    Andries, Erik; Hagstrom, Thomas; Atlas, Susan R; Willman, Cheryl

    2007-02-01

    Linear discrimination, from the point of view of numerical linear algebra, can be treated as solving an ill-posed system of linear equations. In order to generate a solution that is robust in the presence of noise, these problems require regularization. Here, we examine the ill-posedness involved in the linear discrimination of cancer gene expression data with respect to outcome and tumor subclasses. We show that a filter factor representation, based upon Singular Value Decomposition, yields insight into the numerical ill-posedness of the hyperplane-based separation when applied to gene expression data. We also show that this representation yields useful diagnostic tools for guiding the selection of classifier parameters, thus leading to improved performance.

  12. Coupling the Alkaline-Surfactant-Polymer Technology and the Gelation Technology to Maximize Oil Production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malcolm Pitts; Jie Qi; Dan Wilson

    2005-12-01

    Gelation technologies have been developed to provide more efficient vertical sweep efficiencies for flooding naturally fractured oil reservoirs or reservoirs with different sand lenses with high permeability contrast. The field proven alkaline-surfactant-polymer technology economically recovers 15% to 25% OOIP more crude oil than waterflooding froin swept pore space of an oil reservoir. However, alkaline-surfactant-polymer technology is not amenable to naturally fractured reservoirs or reservoirs with high permeability contrast zones because much of injected solution bypasses target pore space containing oil. This work investigates whether combining these two technologies could broaden applicability of alkaline-surfactant-polymer flooding into these reservoirs. Fluid-fluid interaction withmore » different gel chemical compositions and alkaline-surfactant-polymer solution with pH values ranging from 9.2 to 12.9 have been tested. Aluminum-polyacrylamide gels are not stable to alkaline-surfactant-polymer solutions at any pH. Chromium-polyacrylamide gels with polymer to chromium ion ratios of 25 or greater were stable to alkaline-surfactant-polymer solutions if solution pH was 10.6 or less. When the polymer to chromium ion was 15 or less, chromium-polyacrylamide gels were stable to alkaline-surfactant-polymer solutions with pH values up to 12.9. Chromium-xanthan gum gels were stable to alkaline-surfactant-polymer solutions with pH values of 12.9 at the polymer to chromium ion ratios tested. Silicate-polyacrylamide, resorcinol-formaldehyde, and sulfomethylated resorcinol-formaldehyde gels were also stable to alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Iron-polyacrylamide gels were immediately destroyed when contacted with any of the alkaline-surfactant-polymer solutions with pH values ranging from 9.2 to 12.9. Gel solutions under dynamic conditions of linear corefloods showed similar stability to alkaline-surfactant-polymer solutions as in the fluid-fluid analyses with the exception of the xanthan gum-chromium acetate gels. Aluminum-polyacrylamide flowing gels are not stable to alkaline-surfactant-polymer solutions of either pH 10.5 or 12.9, either in linear corefloods or in dual separate radial core, common manifold corefloods. Chromium acetate-polyacrylamide flowing and rigid tonguing gels are stable to subsequent alkaline-surfactant-polymer solution injection. Rigid tonguing chromium acetate-polyacrylamide gels maintained permeability reduction better than flowing chromium acetate-polyacrylamide gels. Chromium acetate gels were stable to injection of alkaline-surfactant-polymer solutions at 72 F, 125 F and 175 F in linear corefloods. Chromium acetate-polyacrylamide gels maintained diversion capability after injection of an alkaline-surfactant-polymer solution in stacked; radial coreflood with a common well bore. Chromium acetate-polyacrylamide gel used to seal fractured core maintain fracture closure if followed by an alkaline-surfactant-polymer solution. Chromium acetate-xanthan gum rigid gels are not stable to subsequent alkaline-surfactant-polymer solution injection at 72, 125, and 175 F. Silicate-polyacrylamide gels are not stable with subsequent injection of either a pH 10.5 or a 12.9 alkaline-surfactant-polymer solution. Resorcinol-formaldehyde gels were stable to subsequent alkaline-surfactant-polymer solution injection. When evaluated in a dual core configuration, injected fluid flows into the core with the greatest effective permeability to the injected fluid. The same gel stability trends to subsequent alkaline-surfactant-polymer injected solution were observed. Aluminum citrate-polyacrylamide, resorcinol-formaldehyde, and the silicate-polyacrylamide gel systems did not produce significant incremental oil in linear corefloods. Both flowing and rigid tonguing chromium acetate-polyacrylamide gels and the xanthan gum-chromium acetate gel system produced incremental oil with the rigid tonguing gel producing the greatest amount. Higher oil recovery could have been due to higher differential pressures across cores. Aluminum citrate-polyacrylamide gels, chromium acetate-polyacrylamide gels, silicate-polymer, and chromium-xanthan guin gels did not alter an alkaline-surfactant-polymer solution's ability to produce incremental oil. Incremental oil was reduced with the resorcinol-formaldehyde gel system. Total waterflood plus chemical flood oil recovery sequence recoveries were generally similar.« less

  13. An adiabatic linearized path integral approach for quantum time-correlation functions II: a cumulant expansion method for improving convergence.

    PubMed

    Causo, Maria Serena; Ciccotti, Giovanni; Bonella, Sara; Vuilleumier, Rodolphe

    2006-08-17

    Linearized mixed quantum-classical simulations are a promising approach for calculating time-correlation functions. At the moment, however, they suffer from some numerical problems that may compromise their efficiency and reliability in applications to realistic condensed-phase systems. In this paper, we present a method that improves upon the convergence properties of the standard algorithm for linearized calculations by implementing a cumulant expansion of the relevant averages. The effectiveness of the new approach is tested by applying it to the challenging computation of the diffusion of an excess electron in a metal-molten salt solution.

  14. Exact folded-band chaotic oscillator.

    PubMed

    Corron, Ned J; Blakely, Jonathan N

    2012-06-01

    An exactly solvable chaotic oscillator with folded-band dynamics is shown. The oscillator is a hybrid dynamical system containing a linear ordinary differential equation and a nonlinear switching condition. Bounded oscillations are provably chaotic, and successive waveform maxima yield a one-dimensional piecewise-linear return map with segments of both positive and negative slopes. Continuous-time dynamics exhibit a folded-band topology similar to Rössler's oscillator. An exact solution is written as a linear convolution of a fixed basis pulse and a discrete binary sequence, from which an equivalent symbolic dynamics is obtained. The folded-band topology is shown to be dependent on the symbol grammar.

  15. The nonlinear dynamics of a spacecraft coupled to the vibration of a contained fluid

    NASA Technical Reports Server (NTRS)

    Peterson, Lee D.; Crawley, Edward F.; Hansman, R. John

    1988-01-01

    The dynamics of a linear spacecraft mode coupled to a nonlinear low gravity slosh of a fluid in a cylindrical tank is investigated. Coupled, nonlinear equations of motion for the fluid-spacecraft dynamics are derived through an assumed mode Lagrangian method. Unlike linear fluid slosh models, this nonlinear slosh model retains two fundamental slosh modes and three secondary modes. An approximate perturbation solution of the equations of motion indicates that the nonlinear coupled system response involves fluid-spacecraft modal resonances not predicted by either a linear, or a nonlinear, uncoupled slosh analysis. Experimental results substantiate the analytical predictions.

  16. Design of linear quadratic regulators with eigenvalue placement in a specified region

    NASA Technical Reports Server (NTRS)

    Shieh, Leang-San; Zhen, Liu; Coleman, Norman P.

    1990-01-01

    Two linear quadratic regulators are developed for placing the closed-loop poles of linear multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at +/- pi/2k (for a specified integer k not less than 1) from the negative real axis, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane, and simultaneously minimizing a quadratic performance index. The design procedure mainly involves the solution of either Liapunov equations or Riccati equations. The general expression for finding the lower bound of a constant gain gamma is also developed.

  17. Free energy change of a dislocation due to a Cottrell atmosphere

    DOE PAGES

    Sills, R. B.; Cai, W.

    2018-03-07

    The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. In this work, we show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel–hydrogen system, predictingmore » hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Lastly, the influence of the free energy change on a dislocation’s line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank–Read source using discrete dislocation dynamics.« less

  18. Geopotential Error Analysis from Satellite Gradiometer and Global Positioning System Observables on Parallel Architecture

    NASA Technical Reports Server (NTRS)

    Schutz, Bob E.; Baker, Gregory A.

    1997-01-01

    The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.

  19. Free energy change of a dislocation due to a Cottrell atmosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sills, R. B.; Cai, W.

    The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. In this work, we show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel–hydrogen system, predictingmore » hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Lastly, the influence of the free energy change on a dislocation’s line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank–Read source using discrete dislocation dynamics.« less

  20. Geopotential error analysis from satellite gradiometer and global positioning system observables on parallel architectures

    NASA Astrophysics Data System (ADS)

    Baker, Gregory Allen

    The recovery of a high resolution geopotential from satellite gradiometer observations motivates the examination of high performance computational techniques. The primary subject matter addresses specifically the use of satellite gradiometer and GPS observations to form and invert the normal matrix associated with a large degree and order geopotential solution. Memory resident and out-of-core parallel linear algebra techniques along with data parallel batch algorithms form the foundation of the least squares application structure. A secondary topic includes the adoption of object oriented programming techniques to enhance modularity and reusability of code. Applications implementing the parallel and object oriented methods successfully calculate the degree variance for a degree and order 110 geopotential solution on 32 processors of the Cray T3E. The memory resident gradiometer application exhibits an overall application performance of 5.4 Gflops, and the out-of-core linear solver exhibits an overall performance of 2.4 Gflops. The combination solution derived from a sun synchronous gradiometer orbit produce average geoid height variances of 17 millimeters.

Top