Volume 28, Issue5 (25 April 2004)
Articles in the Current Issue:
Research Article
Softening, localization and stabilization: capture of discontinuous solutions in J2 plasticity
NASA Astrophysics Data System (ADS)
Cervera, M.; Chiumenti, M.; Agelet de Saracibar, C.
2004-04-01
This paper exploits the concept of stabilization techniques to improve the behaviour of mixed linear/linear simplicial elements (triangles and tetrahedra) in incompressible or nearly incompressible situations. Elasto-J2-plastic constitutive behaviour has been considered with linear and exponential softening. Two different stabilization methods are used to attain global stability of the corresponding discrete finite element formulation. Implementation and computational aspects are also discussed, showing that a robust application of the proposed formulation is feasible. Numerical examples show that the formulation derived is free of volumetric locking and spurious oscillations of the pressure. The results obtained do not suffer from spurious mesh-size or mesh-bias dependence, comparing very favourably with those obtained with the standard, non-stabilized, approaches. Copyright
Cell Phone Information Seeking Explains Blood Pressure in African American Women.
Jones, Lenette M; Veinot, Tiffany C; Pressler, Susan J
2018-05-01
Although cell phone use and Internet access via cell phone is not marked by racial disparities, little is known about how cell phone use relates to blood pressure and health information seeking behaviors. The purposes of this study were to (a) describe Internet activities, cell phone use, and information seeking; (b) determine differences in blood pressure and information seeking between cell phone information seekers and nonseekers; and (c) examine cell phone information seeking as a predictor of blood pressure in African American women. Participants ( N = 147) completed a survey and had their blood pressure measured. Independent-sample t tests showed a significant difference in systolic blood pressure in cell phone information seekers and nonseekers. Linear regression revealed cell phone information seeking as an independent predictor of systolic blood pressure, despite confounders. It is possible that cell phone information seekers were using health information to make decisions about self-management of blood pressure.
Linear Combination of Heuristics Approach to Spatial Sampling Hyperspectral Data for Target Tracking
2010-12-01
Figure 37 - Illustration of the tunable spectral polarimeter. ........................................... 154 Figure 38 - Illustration of micromirrors ...polarimeter. 9.2 Multiobject Tracking Spectrometer The idea of combining an array of MEMS micromirrors with an imager and a spectrometer array is the... micromirror array is located at an intermediate focal plane of the optical system. If all the individual mirrors are turned in the same direction
NASA Technical Reports Server (NTRS)
Mckenna, J. F.
1973-01-01
Transformer-type memory is fault-tolerant array of independent read-only memory units. Information pattern in each unit is written by weaving wires through array of linear (nonswitching) transformers. Presence or absence of a bit is determined by whether a given wire threads or bypasses given transformer.
Schreuder, Jan J; Castiglioni, Alessandro; Maisano, Francesco; Steendijk, Paul; Donelli, Andrea; Baan, Jan; Alfieri, Ottavio
2005-01-01
Surgical left ventricular restoration by means of endoventricular patch aneurysmectomy in patients with postinfarction aneurysm should result in acute improved left ventricular performance by decreasing mechanical dyssynchrony and increasing energy efficiency. Nine patients with left ventricular postinfarction aneurysm were studied intraoperatively before and after ventricular restoration with a conductance volume catheter to analyze pressure-volume relationships, energy efficiency, and mechanical dyssynchrony. The end-systolic elastance was used as a load-independent index of contractile state. Left ventricular energy efficiency was calculated from stroke work and total pressure-volume area. Segmental volume changes perpendicular to the long axis were used to calculate mechanical dyssynchrony. Statistical analysis was performed with the paired t test and least-squares linear regression. Endoventricular patch aneurysmectomy reduced end-diastolic volume by 37% (P < .001), with unchanged stroke volume. Systolic function improved, as derived from increased +dP/dt(max), by 42% (P < .03), peak ejection rate by 28% (P < .02), and ejection fraction by 16% (P < .0002). Early diastolic function improved, as shown by reduction of -dP/dt(max) by 34% (P < .006) and shortened tau by 30% (P < .001). Left ventricular end-systolic elastance increased from 1.2 +/- 0.6 to 2.2 +/- 1 mm Hg/mL (P < .001). Left ventricular energy efficiency increased by 36% (P < .002). Left ventricular mechanical dyssynchrony decreased during systole by 33% (P < .001) and during diastole by 20% (P < .005). Left ventricular restoration induced acute improvements in contractile state, energy efficiency, and relaxation, together with a decrease in left ventricular mechanical dyssynchrony.
Preliminary performances measured on a CMOS long linear array for space application
NASA Astrophysics Data System (ADS)
Renard, Christophe; Artinian, Armand; Dantes, Didier; Lepage, Gérald; Diels, Wim
2017-11-01
This paper presents the design and the preliminary performances of a CMOS linear array, resulting from collaboration between Alcatel Alenia Space and Cypress Semiconductor BVBA, which takes advantage of emerging potentialities of CMOS technologies. The design of the sensor is presented: it includes 8000 panchromatic pixels with up to 25 rows used in TDI mode, and 4 lines of 2000 pixels for multispectral imaging. Main system requirements and detector tradeoffs are recalled, and the preliminary test results obtained with a first generation prototype are summarized and compared with predicted performances.
Space Power Amplification with Active Linearly Tapered Slot Antenna Array
NASA Technical Reports Server (NTRS)
Simons, Rainee N.; Lee, Richard Q.
1993-01-01
A space power amplifier composed of active linearly tapered slot antennas (LTSA's) has been demonstrated and shown to have a gain of 30 dB at 20 GHz. In each of the antenna elements, a GaAs monolithic microwave integrated circuit (MMIC) three-stage power amplifier is integrated with two LTSA's. The LTSA and the MMIC power amplifier has a gain of 11 dB and power added efficiency of 14 percent respectively. The design is suitable for constructing a large array using monolithic integration techniques.
Acoustic emission linear pulse holography
Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.
1985-01-01
Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.
Study on the near-field non-linearity (SMILE) of high power diode laser arrays
NASA Astrophysics Data System (ADS)
Zhang, Hongyou; Jia, Yangtao; Li, Changxuan; Zah, Chung-en; Liu, Xingsheng
2018-02-01
High power laser diodes have been found a wide range of industrial, space, medical applications, characterized by high conversion efficiency, small size, light weight and a long lifetime. However, due to thermal induced stress, each emitter in a semiconductor laser bar or array is displaced along p-n junction, resulting of each emitter is not in a line, called Near-field Non-linearity. Near-field Non-linearity along laser bar (also known as "SMILE") determines the outcome of optical coupling and beam shaping [1]. The SMILE of a laser array is the main obstacle to obtain good optical coupling efficiency and beam shaping from a laser array. Larger SMILE value causes a larger divergence angle and a wider line after collimation and focusing, respectively. In this letter, we simulate two different package structures based on MCC (Micro Channel Cooler) with Indium and AuSn solders, including the distribution of normal stress and the SMILE value. According to the theoretical results, we found the distribution of normal stress on laser bar shows the largest in the middle and drops rapidly near both ends. At last, we did another experiment to prove that the SMILE value of a laser bar was mainly affected by the die bonding process, rather than the operating condition.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photo-voltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic control system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
Dynamic analysis of space-related linear and non-linear structures
NASA Technical Reports Server (NTRS)
Bosela, Paul A.; Shaker, Francis J.; Fertis, Demeter G.
1990-01-01
In order to be cost effective, space structures must be extremely light weight, and subsequently, very flexible structures. The power system for Space Station Freedom is such a structure. Each array consists of a deployable truss mast and a split blanket of photovoltaic solar collectors. The solar arrays are deployed in orbit, and the blanket is stretched into position as the mast is extended. Geometric stiffness due to the preload make this an interesting non-linear problem. The space station will be subjected to various dynamic loads, during shuttle docking, solar tracking, attitude adjustment, etc. Accurate prediction of the natural frequencies and mode shapes of the space station components, including the solar arrays, is critical for determining the structural adequacy of the components, and for designing a dynamic controls system. The process used in developing and verifying the finite element dynamic model of the photo-voltaic arrays is documented. Various problems were identified, such as grounding effects due to geometric stiffness, large displacement effects, and pseudo-stiffness (grounding) due to lack of required rigid body modes. Analysis techniques, such as development of rigorous solutions using continuum mechanics, finite element solution sequence altering, equivalent systems using a curvature basis, Craig-Bampton superelement approach, and modal ordering schemes were utilized. The grounding problems associated with the geometric stiffness are emphasized.
NASA Astrophysics Data System (ADS)
Horiuchi, Toshiyuki; Watanabe, Jun; Suzuki, Yuta; Iwasaki, Jun-ya
2017-05-01
Two dimensional code marks are often used for the production management. In particular, in the production lines of liquid-crystal-display panels and others, data on fabrication processes such as production number and process conditions are written on each substrate or device in detail, and they are used for quality managements. For this reason, lithography system specialized in code mark printing is developed. However, conventional systems using lamp projection exposure or laser scan exposure are very expensive. Therefore, development of a low-cost exposure system using light emitting diodes (LEDs) and optical fibers with squared ends arrayed in a matrix is strongly expected. In the past research, feasibility of such a new exposure system was demonstrated using a handmade system equipped with 100 LEDs with a central wavelength of 405 nm, a 10×10 matrix of optical fibers with 1 mm square ends, and a 10X projection lens. Based on these progresses, a new method for fabricating large-scale arrays of finer fibers with squared ends was developed in this paper. At most 40 plastic optical fibers were arranged in a linear gap of an arraying instrument, and simultaneously squared by heating them on a hotplate at 120°C for 7 min. Fiber sizes were homogeneous within 496+/-4 μm. In addition, average light leak was improved from 34.4 to 21.3% by adopting the new method in place of conventional one by one squaring method. Square matrix arrays necessary for printing code marks will be obtained by piling the newly fabricated linear arrays up.
Design and Development of 256x256 Linear Mode Low-Noise Avalanche Photodiode Arrays
NASA Technical Reports Server (NTRS)
Yuan, Ping; Sudharsanan, Rengarajan; Bai, Xiaogang; Boisvert, Joseph; McDonald, Paul; Chang, James
2011-01-01
A larger format photodiode array is always desirable for many LADAR imaging applications. However, as the array format increases, the laser power or the lens aperture has to increase to maintain the same flux per pixel thus increasing the size, weight and power of the imaging system. In order to avoid this negative impact, it is essential to improve the pixel sensitivity. The sensitivity of a short wavelength infrared linear-mode avalanche photodiode (APD) is a delicate balance of quantum efficiency, usable gain, excess noise factor, capacitance, and dark current of APD as well as the input equivalent noise of the amplifier. By using InA1As as a multiplication layer in an InP-based APD, the ionization coefficient ratio, k, is reduced from 0.40 (lnP) to 0.22, and the excess noise is reduced by about 50%. An additional improvement in excess noise of 25% was achieved by employing an impact-ionization-engineering structure with a k value of 0.15. Compared with the traditional InP structure, about 30% reduction in the noise-equivalent power with the following amplifier can be achieved. Spectrolab demonstrated 30-um mesa APD pixels with a dark current less than 10 nA and a capacitance of 60 fF at gain of 10. APD gain uninformity determines the usable gain of most pixels in an array, which is critical to focal plane array sensitivity. By fine tuning the material growth and device process, a break-down-voltage standard deviation of 0.1 V and gain of 30 on individual pixels were demonstrated in our 256x256 linear-mode APD arrays.
Schober, Karsten E; Fuentes, Virginia Luis
2002-05-01
To evaluate left ventricular (LV) diastolic function in boxer dogs with aortic stenosis (AS). LV relaxation, elastic recoil, filling and stiffness have been found to be abnormal in people with AS and were related to disease severity, clinical signs and prognosis. 2-D, M-mode and Doppler echocardiography was done in 74 boxers with AS (55 with mild AS, 7 with moderate AS and 12 with severe AS) and compared with reference values from 66 normal boxers. Measurements included isovolumic relaxation time (IVRT), peak early (E) and late (A) transmitral filling velocities, mitral E wave deceleration time, peak systolic, and early and late (AR) diastolic pulmonary wenous flow velocities and related variables. In addition, left atrial (LA) function, LV dimensions and hypertrophy and LV systolic performance were assessed. Eight dogs (15%) with mild AS had abnormal LV diastolic function, compared with 16 dogs (84%) with moderate or severe AS. Two dogs (3%) had also systolic abnormalities. The flow pattern of delayed relaxation, pseudonormal mitral inflow and restrictive flow were found in 10, 11 and 3 dogs, respectively. IVRT and E:A were heterogeneous in dogs with moderate or severe AS, being either high, normal, or low. Peak AR velocity was significantly higher (p = 0.05) in dogs with severe AS, and the A duration:AR duration ratio was significantly lower (p = 0.05) in dogs with moderate and severe AS compared with the other dogs, suggesting decreased LV compliance, increased LV end-diastolic pressure, and normal or increased LA systolic function. Bivariate linear regression analysis revealed significant correlations between the severity of AS based on Doppler and LV hypertrophy (IVSd: r = 0.61, p = 0.001 and LVPWd: r = 0.46, p = 0.001) and AS severity and A duration: AR duration (r = -0.64, p = 0.001). [corrected] In most boxer dogs with moderate or severe AS, LV diastolic function is abnormal even in the presence of normal systolic performance.
Pan, Fu-Shun; Yu, Liang; Luo, Jia; Wu, Ri-Dong; Xu, Ming; Liang, Jin-Yu; Zheng, Yan-Ling; Xie, Xiao-Yan
2018-04-19
To evaluate the feasibility of the ultrafast ultrasound pulsed wave velocity (PWV) for carotid stiffness assessment and potential influencing factors. Ultrafast PWV measurements of 442 carotid arteries in 162 consecutive patients (patient group) and 66 healthy volunteers (control group) were performed. High- and very high-frequency transducers were used in 110 carotid segments. The ultrafast PWVs at the beginning and end of systole were automatically measured. The correlations between the intima-media thickness (IMT) and ultrafast PWV and the equipment and carotid factors influencing the utility of ultrafast PWV were analyzed. Each ultrafast PWV acquisition was completed within 1 minute. The intraobserver variability showed mean differences ± SD of 0.12 ± 1.28 m/s for the PWV before systole and 0.06 ± 1.30 m/s for the PWV at the end of systole. Ultrafast PWV measurements were more likely obtained with the very high- frequency transducer when the IMT was less than 1.5 mm (P < .05). A generalized linear mixed-effects model analysis showed that the very high-frequency transducer had a greater ability to obtain a valid carotid ultrafast PWV measurement with an IMT of less than 1.5 mm (P < .05). The IMT was positively correlated with the PWV before systole and at the end of systole (r = 0.207-0.771; all P < .05) in the control group, patient group, and carotid subgroup with an IMT of less than 1.5 mm. A multiple regression analysis showed that the IMT and plaque were important independent factors in predicting failure of the ultrafast PWV (P < .001). The ultrafast PWV is an effective and user-friendly method for evaluating carotid stiffness. The IMT and transducer type are factors influencing the ability to obtain an ultrafast PWV measurement. © 2018 by the American Institute of Ultrasound in Medicine.
Agarwal, Rajiv; Pappas, Maria K
2017-10-01
Among people treated for hypertension, the presence of elevated blood pressure (BP) out of the clinic but normal BP in the clinic is called masked uncontrolled hypertension (MUCH). What causes MUCH remains unknown. The purpose of this study was to answer the question of whether patients with MUCH have an increased hemodynamic reactivity to exercise and delayed hemodynamic recovery following exercise. Four groups were compared: controlled hypertension (CH, n = 58), MUCH (n = 34) and uncontrolled hypertension (UCH, n = 12), all of which had chronic kidney disease (CKD), and a group of healthy normal volunteers who did not have hypertension or CKD (n = 16). All participants underwent assessment of 24-h ambulatory BP monitoring, BP measurement during a graded symptom-limited exercise using a cycle ergometer and BP recovery over 7 min following exercise. Exercise-induced increase in systolic BP was similar among the four groups. When compared with healthy controls, recovery of systolic BP following termination of exercise was blunted among the CKD groups in unadjusted (P < 0.0001) and adjusted (P < 0.001) models. During recovery, the healthy control group had 5.9% decline in systolic BP per minute. In contrast, MUCH had only 3.3% per minute reduction and the UCH group had 0.3% reduction per minute. A test of linear trend was significant (P = 0.002, adjusted model). Because there was no impairment in the heart rate recovery among groups, we speculate that the parasympathetic pathway appears intact among treated hypertensives with CKD. However, the failure to withdraw sympathetic tone upon termination of exercise causes ongoing vasoconstriction and delayed systolic BP recovery providing a biological basis for MUCH. Delayed recovery from exercise-induced hypertension in those with poorly controlled BP provides potentially a new target to assure round-the-clock BP control. Published by Oxford University Press on behalf of ERA-EDTA 2016. This work is written by US Government employees and is in the public domain in the US.
