Sample records for linear temperature increase

  1. Temperature dependence of elastic and strength properties of T300/5208 graphite-epoxy

    NASA Technical Reports Server (NTRS)

    Milkovich, S. M.; Herakovich, C. T.

    1984-01-01

    Experimental results are presented for the elastic and strength properties of T300/5208 graphite-epoxy at room temperature, 116K (-250 F), and 394K (+250 F). Results are presented for unidirectional 0, 90, and 45 degree laminates, and + or - 30, + or - 45, and + or - 60 degree angle-ply laminates. The stress-strain behavior of the 0 and 90 degree laminates is essentially linear for all three temperatures and that the stress-strain behavior of all other laminates is linear at 116K. A second-order curve provides the best fit for the temperature is linear at 116K. A second-order curve provides the best fit for the temperature dependence of the elastic modulus of all laminates and for the principal shear modulus. Poisson's ratio appears to vary linearly with temperature. all moduli decrease with increasing temperature except for E (sub 1) which exhibits a small increase. The strength temperature dependence is also quadratic for all laminates except the 0 degree - laminate which exhibits linear temperature dependence. In many cases the temperature dependence of properties is nearly linear.

  2. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone.

    PubMed

    Chen, Xiaoqiu; Tian, Youhua; Xu, Lin

    2015-10-01

    Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.

  3. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoqiu; Tian, Youhua; Xu, Lin

    2015-10-01

    Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.

  4. Experimental and theoretical investigation of temperature effects on an interbedded betavoltaic employing epitaxial Si and bidirectional (63)Ni.

    PubMed

    Liu, Yunpeng; Tang, Xiaobin; Xu, Zhiheng; Hong, Liang; Chen, Da

    2014-12-01

    The performance of an interbedded betavoltaic employing epitaxial Si and bidirectional (63)Ni was measured and calculated at various temperatures. The experimental results indicate that the temperature dependence of the performance of interbedded betavoltaics is similar to that of monolayer betavoltaics: Voc and Pmax decrease approximately linearly with increasing temperature at low temperatures of 213.15-253.15K and decrease exponentially with increasing temperature at high temperatures of 253.15-333.15K. However, the calculation results indicate that the temperature dependences of Voc and Pmax are always linear at both high and low temperatures. Isc increases slightly with increasing temperature in both experiment and calculation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Thermal-Interaction Matrix For Resistive Test Structure

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser

    1990-01-01

    Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.

  6. Expansion in chickpea (Cicer arietinum L.) seed during soaking and cooking

    NASA Astrophysics Data System (ADS)

    Sayar, Sedat; Turhan, Mahir; Köksel, Hamit

    2016-01-01

    The linear and volumetric expansion of chickpea seeds during water absorption at 20, 30, 50, 70, 85 and 100°C was studied. Length, width and thickness of chickpea seeds linearly increased with the increase in moisture content at all temperatures studied, where the greatest increase was found in length. Two different mathematical approaches were used for the determination of the expansion coefficients. The plots of the both linear and volumetric expansion coefficients versus temperature exhibited two linear lines, the first one was through 20, 30 and 50ºC and the second one was trough 70, 85 and 100ºC. The crossing point (58ºC) of these lines was very close to the gelatinisation temperature (60ºC) of chickpea starch.

  7. Different responses of weather factors on hand, foot and mouth disease in three different climate areas of Gansu, China.

    PubMed

    Gou, Faxiang; Liu, Xinfeng; He, Jian; Liu, Dongpeng; Cheng, Yao; Liu, Haixia; Yang, Xiaoting; Wei, Kongfu; Zheng, Yunhe; Jiang, Xiaojuan; Meng, Lei; Hu, Wenbiao

    2018-01-08

    To determine the linear and non-linear interacting relationships between weather factors and hand, foot and mouth disease (HFMD) in children in Gansu, China, and gain further traction as an early warning signal based on weather variability for HFMD transmission. Weekly HFMD cases aged less than 15 and meteorological information from 2010 to 2014 in Jiuquan, Lanzhou and Tianshu, Gansu, China were collected. Generalized linear regression models (GLM) with Poisson link and classification and regression trees (CART) were employed to determine the combined and interactive relationship of weather factors and HFMD in both linear and non-linear ways. GLM suggested an increase in weekly HFMD of 5.9% [95% confidence interval (CI): 5.4%, 6.5%] in Tianshui, 2.8% [2.5%, 3.1%] in Lanzhou and 1.8% [1.4%, 2.2%] in Jiuquan in association with a 1 °C increase in average temperature, respectively. And 1% increase of relative humidity could increase weekly HFMD of 2.47% [2.23%, 2.71%] in Lanzhou and 1.11% [0.72%, 1.51%] in Tianshui. CART revealed that average temperature and relative humidity were the first two important determinants, and their threshold values for average temperature deceased from 20 °C of Jiuquan to 16 °C in Tianshui; and for relative humidity, threshold values increased from 38% of Jiuquan to 65% of Tianshui. Average temperature was the primary weather factor in three areas, more sensitive in southeast Tianshui, compared with northwest Jiuquan; Relative humidity's effect on HFMD showed a non-linear interacting relationship with average temperature.

  8. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan; Geng, Steven

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpowers Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 C. Increasing the temperature capability of the linear alternator could expand the mission space of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to uses. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 C is currently underway.

  9. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Geng, Steven M.

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpower's Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 deg. Increasing the temperature capability of the linear alternator could expand the mission set of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to use. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 deg is currently underway.

  10. Analysis of multimode BDK doped POF gratings for temperature sensing

    NASA Astrophysics Data System (ADS)

    Luo, Yanhua; Wu, Wenxuan; Wang, Tongxin; Cheng, Xusheng; Zhang, Qijin; Peng, Gang-Ding; Zhu, Bing

    2012-10-01

    We report a temperature sensor based on a Bragg grating written in a benzil dimethyl ketal (BDK) doped multimode (MM) polymer optical fiber (POF) for the first time to our knowledge. The thermal response was further analyzed in view of theory and experiment. In theory, with the order of the reflected mode increasing from 1st to 60th order, for MM silica fiber Bragg grating (FBG) the temperature sensitivity will increase linearly from 16.2 pm/°C to 17.5 pm/°C, while for MM polymer FBG the temperature sensitivity (absolute value) will increase linearly from -79.5 pm/°C to -104.4 pm/°C. In addition, temperature sensitivity of MM polymer FBG exhibits almost 1 order larger mode order dependence than that of MM silica FBG. In experiment, the Bragg wavelength shift will decline linearly as the temperature rises, contrary to that of MM silica FBG. The temperature sensitivity of MM polymer FBG is ranged from -0.097 nm/°C to -0.111 nm/°C, more than 8 times that of MM silica FBG, showing great potential used as a temperature sensor.

  11. High temperature XRD of Cu2GeSe3

    NASA Astrophysics Data System (ADS)

    Premkumar D., S.; Chetty, Raju; Malar, P.; Mallik, Ramesh Chandra

    2015-06-01

    The Cu2GeSe3 is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu2GeSe3 phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a and c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.

  12. Fiber-optic epoxy composite cure sensor. I. Dependence of refractive index of an autocatalytic reaction epoxy system at 850 nm on temperature and extent of cure

    NASA Astrophysics Data System (ADS)

    Lam, Kai-Yuen; Afromowitz, Martin A.

    1995-09-01

    We discuss the behavior of the refractive index of a typical epoxy-aromatic diamine system. Near 850 nm the index of refraction is found to be largely controlled by the density of the epoxy. Models are derived to describe its dependence on temperature and extent of cure. Within the range of temperatures studied, the refractive index decreases linearly with increasing temperature. In addition, as the epoxy is cured, the refractive index increases linearly with conversion to the gel point. >From then on, shrinkage in the volume of the epoxy is restricted by local viscosity. Therefore the linear relationship between the refractive index and the extent of cure does not hold beyond the gel point.

  13. Ambient temperature and coronary heart disease mortality in Beijing, China: a time series study

    PubMed Central

    2012-01-01

    Background Many studies have examined the association between ambient temperature and mortality. However, less evidence is available on the temperature effects on coronary heart disease (CHD) mortality, especially in China. In this study, we examined the relationship between ambient temperature and CHD mortality in Beijing, China during 2000 to 2011. In addition, we compared time series and time-stratified case-crossover models for the non-linear effects of temperature. Methods We examined the effects of temperature on CHD mortality using both time series and time-stratified case-crossover models. We also assessed the effects of temperature on CHD mortality by subgroups: gender (female and male) and age (age > =65 and age < 65). We used a distributed lag non-linear model to examine the non-linear effects of temperature on CHD mortality up to 15 lag days. We used Akaike information criterion to assess the model fit for the two designs. Results The time series models had a better model fit than time-stratified case-crossover models. Both designs showed that the relationships between temperature and group-specific CHD mortality were non-linear. Extreme cold and hot temperatures significantly increased the risk of CHD mortality. Hot effects were acute and short-term, while cold effects were delayed by two days and lasted for five days. The old people and women were more sensitive to extreme cold and hot temperatures than young and men. Conclusions This study suggests that time series models performed better than time-stratified case-crossover models according to the model fit, even though they produced similar non-linear effects of temperature on CHD mortality. In addition, our findings indicate that extreme cold and hot temperatures increase the risk of CHD mortality in Beijing, China, particularly for women and old people. PMID:22909034

  14. Modeling of thermal degradation kinetics of the C-glucosyl xanthone mangiferin in an aqueous model solution as a function of pH and temperature and protective effect of honeybush extract matrix.

    PubMed

    Beelders, Theresa; de Beer, Dalene; Kidd, Martin; Joubert, Elizabeth

    2018-01-01

    Mangiferin, a C-glucosyl xanthone, abundant in mango and honeybush, is increasingly targeted for its bioactive properties and thus to enhance functional properties of food. The thermal degradation kinetics of mangiferin at pH3, 4, 5, 6 and 7 were each modeled at five temperatures ranging between 60 and 140°C. First-order reaction models were fitted to the data using non-linear regression to determine the reaction rate constant at each pH-temperature combination. The reaction rate constant increased with increasing temperature and pH. Comparison of the reaction rate constants at 100°C revealed an exponential relationship between the reaction rate constant and pH. The data for each pH were also modeled with the Arrhenius equation using non-linear and linear regression to determine the activation energy and pre-exponential factor. Activation energies decreased slightly with increasing pH. Finally, a multi-linear model taking into account both temperature and pH was developed for mangiferin degradation. Sterilization (121°C for 4min) of honeybush extracts dissolved at pH4, 5 and 7 did not cause noticeable degradation of mangiferin, although the multi-linear model predicted 34% degradation at pH7. The extract matrix is postulated to exert a protective effect as changes in potential precursor content could not fully explain the stability of mangiferin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. High temperature XRD of Cu{sub 2}GeSe{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Premkumar, D. S.; Malar, P.; Chetty, Raju

    2015-06-24

    The Cu{sub 2}GeSe{sub 3} is prepared by solid state synthesis method. The high temperature XRD has been done at different temperature from 30 °C to 450 °C. The reitveld refinement confirms Cu{sub 2}GeSe{sub 3} phase and orthorhombic crystal structure. The lattice constants are increasing with increase in the temperature and their rate of increase with respect to temperature are used for finding the thermal expansion coefficient. The calculation of the linear and volume coefficient of thermal expansion is done from 30 °C to 400 °C. Decrease in the values of linear expansion coefficients with temperature are observed along a andmore » c axis. Since thermal expansion coefficient is the consequence of the distortion of atoms in the lattice; this can be further used to find the minimum lattice thermal conductivity at given temperature.« less

  16. Power and temperature dependent photoluminescence investigation of the linear polarization at normal and inverted interface transitions in InP/InAlAs and InGaAsP/InAlAs QW structures

    NASA Astrophysics Data System (ADS)

    Esmaielpour, Hamidreza; Whiteside, Vincent R.; Hirst, Louise C.; Forbes, David V.; Walters, Robert J.; Sellers, Ian R.

    We present an investigation of the interface effects for InGaAsP/InAlAs QW and InP/InAlAs QW structures capped with an InP layer. Continuous wave photoluminescence (PL) spectroscopy of these samples at 4 K shows features associated with the interfaces of an InAlAs layer grown on an InP layer (normal interface) and an InP layer grown on an InAlAs material (inverted interface). Power dependent PL of the InGaAsP QW indicates that there are two features related to the inverted interface, whereby the linear polarization of one increases and for the other decreases. In addition, a temperature dependent study of this sample shows that as the temperature increases: the linear polarization for both features decreases; at room temperature, there is negligible polarization effect. A power dependent PL study of the InP QW structure shows both normal and inverted interface transitions have opposing trends in linear polarization. Notably, the temperature dependent PL investigation displays a reduction of polarization degree for the inverted interface: as expected; while an increase of polarization for the normal interface was observed. In addition, power and temperature dependence of peak energy of the interface transitions for both samples will be presented.

  17. Effect of temperature degeneracy and Landau quantization on drift solitary waves and double layers

    NASA Astrophysics Data System (ADS)

    Shan, Shaukat Ali; Haque, Q.

    2018-01-01

    The linear and nonlinear drift ion acoustic waves have been investigated in an inhomogeneous, magnetized, dense degenerate, and quantized magnetic field plasma. The linear drift ion acoustic wave propagation along with the nonlinear structures like double layers and solitary waves has been found to be strongly dependent on the drift speed, magnetic field quantization parameter β, and the temperature degeneracy. The graphical illustrations show that the frequency of linear waves and the amplitude of the solitary waves increase with the increase in temperature degeneracy and Landau quantization effect, while the amplitude of the double layers decreases with the increase in η and T. The relevance of the present study is pointed out in the plasma environment of fast ignition inertial confinement fusion, the white dwarf stars, and short pulsed petawatt laser technology.

  18. Linear magneto-resistance in Bi{sub 2}SeTe{sub 2} topological insulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amaladass, E. P., E-mail: edward@igcar.gov.in; Sharma, Shilpam; Devidas, T. R.

    2016-05-23

    Magnetic field and temperature dependent electronic transport measurements have been carried out on Bi{sub 2}SeTe{sub 2} topological insulator single crystals. The measurements reveal an insulating behavior and the carriers were found to be electrons (n-type) from Hall measurement. Magneto-resistance (MR) measurements in the field range (B) of 15 T to -15 T carried out at 4.2 K showed a cusp like weak anti-localization behavior for lower fields (-5 T 5 T. Upon increasing temperature, MR transforms to linear dependence of B at 40, 50 and 100 K. On further increasing temperatures (> 200 K), a parabolic MR is observed. Temperaturemore » dependent Hall data also showed a transition from a nonlinear to linear behavior upon increasing temperatures. Disorder induced changes in the electronic transport characteristics of bulk and surface electrons are believed to cause such changes in the magneto-transport behavior of this system.« less

  19. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets.

    PubMed

    Wang, Xiaolin; Du, Yi; Dou, Shixue; Zhang, Chao

    2012-06-29

    Topological insulators, a new class of condensed matter having bulk insulating states and gapless metallic surface states, have demonstrated fascinating quantum effects. However, the potential practical applications of the topological insulators are still under exploration worldwide. We demonstrate that nanosheets of a Bi(2)Te(3) topological insulator several quintuple layers thick display giant and linear magnetoresistance. The giant and linear magnetoresistance achieved is as high as over 600% at room temperature, with a trend towards further increase at higher temperatures, as well as being weakly temperature-dependent and linear with the field, without any sign of saturation at measured fields up to 13 T. Furthermore, we observed a magnetic field induced gap below 10 K. The observation of giant and linear magnetoresistance paves the way for 3D topological insulators to be useful for practical applications in magnetoelectronic sensors such as disk reading heads, mechatronics, and other multifunctional electromagnetic applications.

  20. The Short-Term Effect of Ambient Temperature on Mortality in Wuhan, China: A Time-Series Study Using a Distributed Lag Non-Linear Model

    PubMed Central

    Zhang, Yunquan; Li, Cunlu; Feng, Renjie; Zhu, Yaohui; Wu, Kai; Tan, Xiaodong; Ma, Lu

    2016-01-01

    Less evidence concerning the association between ambient temperature and mortality is available in developing countries/regions, especially inland areas of China, and few previous studies have compared the predictive ability of different temperature indictors (minimum, mean, and maximum temperature) on mortality. We assessed the effects of temperature on daily mortality from 2003 to 2010 in Jiang’an District of Wuhan, the largest city in central China. Quasi-Poisson generalized linear models combined with both non-threshold and double-threshold distributed lag non-linear models (DLNM) were used to examine the associations between different temperature indictors and cause-specific mortality. We found a U-shaped relationship between temperature and mortality in Wuhan. Double-threshold DLNM with mean temperature performed best in predicting temperature-mortality relationship. Cold effect was delayed, whereas hot effect was acute, both of which lasted for several days. For cold effects over lag 0–21 days, a 1 °C decrease in mean temperature below the cold thresholds was associated with a 2.39% (95% CI: 1.71, 3.08) increase in non-accidental mortality, 3.65% (95% CI: 2.62, 4.69) increase in cardiovascular mortality, 3.87% (95% CI: 1.57, 6.22) increase in respiratory mortality, 3.13% (95% CI: 1.88, 4.38) increase in stroke mortality, and 21.57% (95% CI: 12.59, 31.26) increase in ischemic heart disease (IHD) mortality. For hot effects over lag 0–7 days, a 1 °C increase in mean temperature above the hot thresholds was associated with a 25.18% (95% CI: 18.74, 31.96) increase in non-accidental mortality, 34.10% (95% CI: 25.63, 43.16) increase in cardiovascular mortality, 24.27% (95% CI: 7.55, 43.59) increase in respiratory mortality, 59.1% (95% CI: 41.81, 78.5) increase in stroke mortality, and 17.00% (95% CI: 7.91, 26.87) increase in IHD mortality. This study suggested that both low and high temperature were associated with increased mortality in Wuhan, and that mean temperature had better predictive ability than minimum and maximum temperature in the association between temperature and mortality. PMID:27438847

  1. Projecting temperature-related years of life lost under different climate change scenarios in one temperate megacity, China.

    PubMed

    Li, Yixue; Li, Guoxing; Zeng, Qiang; Liang, Fengchao; Pan, Xiaochuan

    2018-02-01

    Temperature has been associated with population health, but few studies have projected the future temperature-related years of life lost attributable to climate change. To project future temperature-related disease burden in Tianjin, we selected years of life lost (YLL) as the dependent variable to explore YLL attributable to climate change. A generalized linear model (GLM) and distributed lag non-linear model were combined to assess the non-linear and delayed effects of temperature on the YLL of non-accidental mortality. Then, we calculated the YLL changes attributable to future climate scenarios in 2055 and 2090. The relationships of daily mean temperature with the YLL of non-accident mortality were basically U-shaped. Both the daily mean temperature increase on high-temperature days and its drop on low-temperature days caused an increase of YLL and non-accidental deaths. The temperature-related YLL will worsen if future climate change exceeds 2 °C. In addition, the adverse effects of extreme temperature on YLL occurred more quickly than that of the overall temperature. The impact of low temperature was greater than that of high temperature. Men were vulnerable to high temperature compared with women. This analysis highlights that the government should formulate environmental policies to reach the Paris Agreement goal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Variation in vulnerability to extreme-temperature-related mortality in Japan: A 40-year time-series analysis.

    PubMed

    Onozuka, Daisuke; Hagihara, Akihito

    2015-07-01

    Although the impact of extreme heat and cold on mortality has been documented in recent years, few studies have investigated whether variation in susceptibility to extreme temperatures has changed in Japan. We used data on daily total mortality and mean temperatures in Fukuoka, Japan, for 1973-2012. We used time-series analysis to assess the effects of extreme hot and low temperatures on all-cause mortality, stratified by decade, gender, and age, adjusting for time trends. We used a multivariate meta-analysis with a distributed lag non-linear model to estimate pooled non-linear lag-response relationships associated with extreme temperatures on mortality. The relative risk of mortality increased during heat extremes in all decades, with a declining trend over time. The mortality risk was higher during cold extremes for the entire study period, with a dispersed pattern across decades. Meta-analysis showed that both heat and cold extremes increased the risk of mortality. Cold effects were delayed and lasted for several days, whereas heat effects appeared quickly and did not last long. Our study provides quantitative evidence that extreme heat and low temperatures were significantly and non-linearly associated with the increased risk of mortality with substantial variation. Our results suggest that timely preventative measures are important for extreme high temperatures, whereas several days' protection should be provided for extreme low temperatures. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Synchronized smoldering combustion

    NASA Astrophysics Data System (ADS)

    Mikalsen, R. F.; Hagen, B. C.; Frette, V.

    2018-03-01

    Synchronized, pulsating temperatures are observed experimentally in smoldering fires. The entire sample volume (1.8 l) participates in the pulsations (pulse period 2–4 h). The synchrony lasts up to 25 h and is followed by a spontaneous transition to either disordered combustion or self-extinguishment. The synchronization is obtained when the fuel bed is cooled to the brink of extinguishment. Calculations for adiabatic conditions, including heat generation from combustion (nonlinear in temperature) and heat storage in sample (linear in temperature), predict diverging sample temperature. Experimentally, heat losses to surroundings (linear in temperature) prevent temperatures to increase without bounds and lead to pulsations.

  4. Linear dependence of surface expansion speed on initial plasma temperature in warm dense matter

    DOE PAGES

    Bang, Woosuk; Albright, Brian James; Bradley, Paul Andrew; ...

    2016-07-12

    Recent progress in laser-driven quasi-monoenergetic ion beams enabled the production of uniformly heated warm dense matter. Matter heated rapidly with this technique is under extreme temperatures and pressures, and promptly expands outward. While the expansion speed of an ideal plasma is known to have a square-root dependence on temperature, computer simulations presented here show a linear dependence of expansion speed on initial plasma temperature in the warm dense matter regime. The expansion of uniformly heated 1–100 eV solid density gold foils was modeled with the RAGE radiation-hydrodynamics code, and the average surface expansion speed was found to increase linearly withmore » temperature. The origin of this linear dependence is explained by comparing predictions from the SESAME equation-of-state tables with those from the ideal gas equation-of-state. In conclusion, these simulations offer useful insight into the expansion of warm dense matter and motivate the application of optical shadowgraphy for temperature measurement.« less

  5. Effects of cold and hot temperature on dehydration: a mechanism of cardiovascular burden.

    PubMed

    Lim, Youn-Hee; Park, Min-Seon; Kim, Yoonhee; Kim, Ho; Hong, Yun-Chul

    2015-08-01

    The association between temperature (cold or heat) and cardiovascular mortality has been well documented. However, few studies have investigated the underlying mechanism of the cold or heat effect. The main goal of this study was to examine the effect of temperature on dehydration markers and to explain the pathophysiological disturbances caused by changes of temperature. We investigated the relationship between outdoor temperature and dehydration markers (blood urea nitrogen (BUN)/creatinine ratio, urine specific gravity, plasma tonicity and haematocrit) in 43,549 adults from Seoul, South Korea, during 1995-2008. We used piece-wise linear regression to find the flexion point of apparent temperature and estimate the effects below or above the apparent temperature. Levels of dehydration markers decreased linearly with an increase in the apparent temperature until a point between 22 and 27 °C, which was regarded as the flexion point of apparent temperature, and then increased with apparent temperature. Because the associations between temperature and cardiovascular mortality are known to be U-shaped, our findings suggest that temperature-related changes in hydration status underlie the increased cardiovascular mortality and morbidity during high- or low-temperature conditions.

  6. Bibliography on Cold Regions Science and Technology. Volume 40, Part 1, 1986

    DTIC Science & Technology

    1986-12-01

    witer migration in an unaaturated frozen soil, morin clay, waa determined in horizontally cloaed »oil columns under linear temperature gradients...Peninsula At both ice fronts there is signiPcant tidal height energy in the first seven tidal species, indicating strong non- linear interaction, not all...dry soil weight, and increases with the increase in the molality linearly because of the linear freezing point depression. The curves of the

  7. Modification of the acid/base properties of γ-Al2O3 by oxide additives: An ethanol TPD investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Ja Hun; Lee, Jaekyoung; Szanyi, Janos

    2016-02-26

    The electronic properties of oxide-modified γ Al2O3 surfaces were investigated by using ethanol TPD. Ethanol TPD showed remarkable sensitivity toward the surface structures and electronic properties of the aluminas modified by various transition metal oxides. Maximum desorption rates for the primary product of ethanol adsorption, ethylene, were observed at 225 °C on non-modified γ-Al2O3. Desorption temperature of ethanol over a γ Al2O3 samples with different amounts of BaO linearly increased with increasing loading. On the contrary, ethanol desorption temperature on Pt modified γ-Al2O3 after calcined at 500 oC linearly decreased with increasing Pt loading. These results clearly suggested that themore » acid/base properties of the γ-Al2O3 surface can be strongly affected by ad-atoms. For confirming these arguments, we performed ethanol TPD experiments on various oxide modified γ-Al2O3 and normalized the maximum desorption temperatures based on the same number of oxide dopants. These normalized ethanol desorption temperatures linearly correlate with the electronegativity of the metal atom in the oxide. This linear relationship clearly demonstrates that the acidic properties of alumina surfaces can be systematically changed by ad-atoms.« less

  8. Effects of temperature on mortality in Hong Kong: a time series analysis

    NASA Astrophysics Data System (ADS)

    Yi, Wen; Chan, Albert P. C.

    2015-07-01

    Although interest in assessing the impacts of hot temperature and mortality in Hong Kong has increased, less evidence on the effect of cold temperature on mortality is available. We examined both the effects of heat and cold temperatures on daily mortality in Hong Kong for the last decade (2002-2011). A quasi-Poisson model combined with a distributed lag non-linear model was used to assess the non-linear and delayed effects of temperatures on cause-specific and age-specific mortality. Non-linear effects of temperature on mortality were identified. The relative risk of non-accidental mortality associated with cold temperature (11.1 °C, 1st percentile of temperature) relative to 19.4 °C (25th percentile of temperature) was 1.17 (95 % confidence interval (CI): 1.04, 1.29) for lags 0-13. The relative risk of non-accidental mortality associated with high temperature (31.5 °C, 99th percentile of temperature) relative to 27.8 °C (75th percentile of temperature) was 1.09 (95 % CI: 1.03, 1.17) for lags 0-3. In Hong Kong, extreme cold and hot temperatures increased the risk of mortality. The effect of cold lasted longer and greater than that of heat. People older than 75 years were the most vulnerable group to cold temperature, while people aged 65-74 were the most vulnerable group to hot temperature. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures.

  9. Effects of temperature on mortality in Hong Kong: a time series analysis.

    PubMed

    Yi, Wen; Chan, Albert P C

    2015-07-01

    Although interest in assessing the impacts of hot temperature and mortality in Hong Kong has increased, less evidence on the effect of cold temperature on mortality is available. We examined both the effects of heat and cold temperatures on daily mortality in Hong Kong for the last decade (2002-2011). A quasi-Poisson model combined with a distributed lag non-linear model was used to assess the non-linear and delayed effects of temperatures on cause-specific and age-specific mortality. Non-linear effects of temperature on mortality were identified. The relative risk of non-accidental mortality associated with cold temperature (11.1 °C, 1st percentile of temperature) relative to 19.4 °C (25th percentile of temperature) was 1.17 (95% confidence interval (CI): 1.04, 1.29) for lags 0-13. The relative risk of non-accidental mortality associated with high temperature (31.5 °C, 99th percentile of temperature) relative to 27.8 °C (75th percentile of temperature) was 1.09 (95% CI: 1.03, 1.17) for lags 0-3. In Hong Kong, extreme cold and hot temperatures increased the risk of mortality. The effect of cold lasted longer and greater than that of heat. People older than 75 years were the most vulnerable group to cold temperature, while people aged 65-74 were the most vulnerable group to hot temperature. Our findings may have implications for developing intervention strategies for extreme cold and hot temperatures.

  10. Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas.

    PubMed

    Gu, Xiao-Jun; Emerson, David R

    2014-06-01

    Understanding the thermal behavior of a rarefied gas remains a fundamental problem. In the present study, we investigate the predictive capabilities of the regularized 13 and 26 moment equations. In this paper, we consider low-speed problems with small gradients, and to simplify the analysis, a linearized set of moment equations is derived to explore a classic temperature problem. Analytical solutions obtained for the linearized 26 moment equations are compared with available kinetic models and can reliably capture all qualitative trends for the temperature-jump coefficient and the associated temperature defect in the thermal Knudsen layer. In contrast, the linearized 13 moment equations lack the necessary physics to capture these effects and consistently underpredict kinetic theory. The deviation from kinetic theory for the 13 moment equations increases significantly for specular reflection of gas molecules, whereas the 26 moment equations compare well with results from kinetic theory. To improve engineering analyses, expressions for the effective thermal conductivity and Prandtl number in the Knudsen layer are derived with the linearized 26 moment equations.

  11. Phonons on fcc (100), (110), and (111) surfaces using Lennard-Jones potentials. II. Temperature dependence of surface phonons studied with molecular dynamics

    NASA Astrophysics Data System (ADS)

    Koleske, D. D.; Sibener, S. J.

    In this paper we present temperature dependent studies of the surface phonon dispersion relations for fcc (100), (110), and (111) faces using molecular dynamics (MD) simulations and Lennard-Jones potentials. This study was conducted in order to investigate how anharmonic potential terms influence the dynamical properties of the surface. This was accomplished by examining the temperature dependence of the Q-resolved phonon spectral density function. All phonon frequencies were found to decrease linearly in T as the temperature was increased, while at low temperatures the phonon linewidths increased linearly with T. At higher temperatures, some of the phonon linewidths changed from having a linear to a quadratic dependence on T. The temperature at which this T to T2 change occurs is surface dependent and occurs at the lowest temperature on the (110) surface. The T2 dependence arises from the increasing importance of higher-order phonon-phonon scattering terms. The phonons which exhibit T2 dependence tend to be modes which propagate perpendicularly or nearly perpendicularly to the direction of maximum root-mean-squared displacement (RMSD). This is especially true for the linewidth of the S 1 mode at overlineX on the (110) surface where, at T ≈ 15-23% of the melting temperature, the RMSD perpendicular to the atomic rows become larger than the RMSD normal to the surface. Our results indicate that the dynamics on the (110) surface may be significantly influenced by anharmonic potential terms at temperatures as low as 15% of the melting temperature.

  12. Effect of Temperature and Nutrient Manipulations on eelgrass ...

    EPA Pesticide Factsheets

    Global climate change will have a large impact on the three predominate drivers of estuarine seagrass productivity, temperature, light and nutrients. I experimentally evaluate the response of Pacific Northwest Z. marina to interactive effects of temperature and nutrient conditions. Experimental manipulations were conducted hydroponically in acrylic chambers and spanned a range of temperatures and nutrient concentrations. Preliminary single factor experiments were conducted to evaluate physiological tolerances to temperature and nitrogen concentrations. Eelgrass exhibited a linear increase in specific growth with increasing NH4 concentration (range from 10 to 1000 µM); in contrast, there was no significant relationship between specific growth rate and increasing NO3 concentration over the same concentration range. Leaf growth metrics all exhibited strong linear relationships with increasing water temperature (temperature range 4-25 ºC). In the factorial experiment, plants were exposed to 3 temperatures (10, 18 and 25 ºC) and 3 nitrate concentrations (10, 30 and 100 µM) with 3 replicate chambers per treatment combination. Most metrics (leaf elongation, growth, specific growth, wasting index) exhibited a significant temperature effect indicating the importance of temperature on metabolic rates. Tissue stable isotope ratios and C:N values exhibited a significant nutrient effect and in some cases a significant temperature effect. Whole plant non structur

  13. A study on rheological characteristics of roller milled fenugreek fractions.

    PubMed

    Sakhare, Suresh D; Inamdar, Aashitosh A; Prabhasankar, P

    2016-01-01

    Fenugreek seeds were fractionated by roller milling to get various fractions. The roller milled fractions and whole fenugreek flour (WFF) were evaluated for the flow behavior and time-dependent flow properties using a rotational viscometer at the temperatures of 10-60 (0)C. The samples subjected to a programmed shear rate increase linearly from 0 to 300 s(-1) in 3 min and successive decrease linearly shear rate from 300 s(-1) to 0 in 3 min. The roller milled fractions and WFF paste exhibited non-Newtonian pseudoplastic behavior. Difference in hysteresis loop area was observed among the roller milled fractions and WFF, being more noticeable at lower temperatures. Power law and Casson models were used to predict flow properties of samples. The power law model described well the flow behavior of the roller milled fractions and WFF at temperatures tested. Except flour (FL) fraction, consistency coefficient, m, increased with the temperature both in the forward and backward measurements. The roller milled fractions and WFF exhibited rheopectic behavior that increased viscosity with increasing the shear speed and the temperature. For all the sample tested, initial shear stress increased with increase in shear rate and temperature.

  14. Temperature and neuronal circuit function: compensation, tuning and tolerance.

    PubMed

    Robertson, R Meldrum; Money, Tomas G A

    2012-08-01

    Temperature has widespread and diverse effects on different subcellular components of neuronal circuits making it difficult to predict precisely the overall influence on output. Increases in temperature generally increase the output rate in either an exponential or a linear manner. Circuits with a slow output tend to respond exponentially with relatively high Q(10)s, whereas those with faster outputs tend to respond in a linear fashion with relatively low temperature coefficients. Different attributes of the circuit output can be compensated by virtue of opposing processes with similar temperature coefficients. At the extremes of the temperature range, differences in the temperature coefficients of circuit mechanisms cannot be compensated and the circuit fails, often with a reversible loss of ion homeostasis. Prior experience of temperature extremes activates conserved processes of phenotypic plasticity that tune neuronal circuits to be better able to withstand the effects of temperature and to recover more rapidly from failure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. A time series analysis of the relationship of ambient temperature and common bacterial enteric infections in two Canadian provinces

    NASA Astrophysics Data System (ADS)

    Fleury, Manon; Charron, Dominique F.; Holt, John D.; Allen, O. Brian; Maarouf, Abdel R.

    2006-07-01

    The incidence of enteric infections in the Canadian population varies seasonally, and may be expected to be change in response to global climate changes. To better understand any potential impact of warmer temperature on enteric infections in Canada, we investigated the relationship between ambient temperature and weekly reports of confirmed cases of three pathogens in Canada: Salmonella, pathogenic Escherichia coli and Campylobacter, between 1992 and 2000 in two Canadian provinces. We used generalized linear models (GLMs) and generalized additive models (GAMs) to estimate the effect of seasonal adjustments on the estimated models. We found a strong non-linear association between ambient temperature and the occurrence of all three enteric pathogens in Alberta, Canada, and of Campylobacter in Newfoundland-Labrador. Threshold models were used to quantify the relationship of disease and temperature with thresholds chosen from 0 to -10°C depending on the pathogen modeled. For Alberta, the log relative risk of Salmonella weekly case counts increased by 1.2%, Campylobacter weekly case counts increased by 2.2%, and E. coli weekly case counts increased by 6.0% for every degree increase in weekly mean temperature. For Newfoundland-Labrador the log relative risk increased by 4.5% for Campylobacter for every degree increase in weekly mean temperature.

  16. Non-linear interactions between CO_2 radiative and physiological effects on Amazonian evapotranspiration in an Earth system model

    NASA Astrophysics Data System (ADS)

    Halladay, Kate; Good, Peter

    2017-10-01

    We present a detailed analysis of mechanisms underlying the evapotranspiration response to increased CO_2 in HadGEM2-ES, focussed on western Amazonia. We use three simulations from CMIP5 in which atmospheric CO_2 increases at 1% per year reaching approximately four times pre-industrial levels after 140 years. Using 3-hourly data, we found that evapotranspiration (ET) change was dominated by decreased stomatal conductance (g_s), and to a lesser extent by decreased canopy water and increased moisture gradient (specific humidity difference between surface and near-surface). There were large, non-linear decreases in ET in the simulation in which radiative and physiological forcings could interact. This non-linearity arises from non-linearity in the conductance term (includes aerodynamic and stomatal resistance and partitioning between the two, which is determined by canopy water availability), the moisture gradient, and negative correlation between these two terms. The conductance term is non-linear because GPP responds non-linearly to temperature and GPP is the dominant control on g_s in HadGEM2-ES. In addition, canopy water declines, mainly due to increases in potential evaporation, which further decrease the conductance term. The moisture gradient responds non-linearly owing to the non-linear response of temperature to CO_2 increases, which increases the Bowen ratio. Moisture gradient increases resulting from ET decline increase ET and thus constitute a negative feedback. This analysis highlights the importance of the g_s parametrisation in determining the ET response and the potential differences between offline and online simulations owing to feedbacks on ET via the atmosphere, some of which would not occur in an offline simulation.

  17. Hot spots of wheat yield decline with rising temperatures.

    PubMed

    Asseng, Senthold; Cammarano, Davide; Basso, Bruno; Chung, Uran; Alderman, Phillip D; Sonder, Kai; Reynolds, Matthew; Lobell, David B

    2017-06-01

    Many of the irrigated spring wheat regions in the world are also regions with high poverty. The impacts of temperature increase on wheat yield in regions of high poverty are uncertain. A grain yield-temperature response function combined with a quantification of model uncertainty was constructed using a multimodel ensemble from two key irrigated spring wheat areas (India and Sudan) and applied to all irrigated spring wheat regions in the world. Southern Indian and southern Pakistani wheat-growing regions with large yield reductions from increasing temperatures coincided with high poverty headcounts, indicating these areas as future food security 'hot spots'. The multimodel simulations produced a linear absolute decline of yields with increasing temperature, with uncertainty varying with reference temperature at a location. As a consequence of the linear absolute yield decline, the relative yield reductions are larger in low-yielding environments (e.g., high reference temperature areas in southern India, southern Pakistan and all Sudan wheat-growing regions) and farmers in these regions will be hit hardest by increasing temperatures. However, as absolute yield declines are about the same in low- and high-yielding regions, the contributed deficit to national production caused by increasing temperatures is higher in high-yielding environments (e.g., northern India) because these environments contribute more to national wheat production. Although Sudan could potentially grow more wheat if irrigation is available, grain yields would be low due to high reference temperatures, with future increases in temperature further limiting production. © 2016 John Wiley & Sons Ltd.

  18. Characterization of Mixed Polypeptide Colloidal Particles by Light Scattering

    NASA Astrophysics Data System (ADS)

    Shuman, Hannah E.; Gaeckle, Grace K.; Gavin, John; Holland, Nolan B.; Streletzky, Kiril A.

    2014-03-01

    Temperature-dependent polymer surfactants have been developed by connecting three elastin-like polypeptide (ELP) chains to a charged protein domain (foldon), forming a three-armed star polymer. At low temperatures the polymer is soluble, while at higher temperatures it forms micelles. The behavior of mixtures of the three-armed star ELP (E20-Foldon) and H40-Linear ELP chains was analyzed under different salt and protein concentrations and various foldon to linear ELP ratio using Depolarized Dynamic Light Scattering. It was expected that under certain conditions the pure E20-Foldon would form spherical micelles, which upon adding the linear ELP would change in size and possibly shape. The pure E20-Foldon indeed formed largely spherical micelles with Rh of 10-20nm in solutions with 15-100mM salt and protein concentration between 10 μM and 100 μM. For the mixtures of 50 μM E20-Foldon and varying concentrations of H40-Linear in 25mM of salt, it was discovered that low and high H40-Linear concentration (4 μM and 50 μM) had only one transition. For the mixtures with of 10 and 25 μM of H40-Linear the two distinct transition temperatures were observed by spectrophotometry. The first transition corresponded to significantly elongated diffusive particles of apparent Rh of 30-50nm, while the second transition corresponded to slightly anisotropic diffusive particles with apparent Rh of about 20nm. At all H40-Linear concentrations studied, diffusive particles were seen above the second transition. Their radius and ability to depolarize light increased with the increase of H40-Linear concentration.

  19. Daily temperature change in relation to the risk of childhood bacillary dysentery among different age groups and sexes in a temperate city in China.

    PubMed

    Li, K; Zhao, K; Shi, L; Wen, L; Yang, H; Cheng, J; Wang, X; Su, H

    2016-02-01

    In recent years, many studies have found that ambient temperature is significantly associated with bacillary dysentery (BD). However, there is limited evidence on the relationship between temperature and childhood BD in temperate areas. To investigate the relationship between daily mean temperature (MT) and childhood BD in China. Data on daily MT and childhood BD between 2006 and 2012 were collected from the Bureau of Meteorology and the Centre for Disease Control and Prevention in Hefei, Anhui Province, China. A Poisson generalized linear regression model combined with a distributed lag non-linear model was used to analyse the effects of temperature on childhood BD across different age and sex subgroups. An increase in temperature was significantly associated with childhood BD, and each 1 °C increase corresponded to an increase of 1.58% [95% confidence interval (CI) 0.46-2.71%] in the number of cases of BD. Children aged 0-5 years and girls were particularly sensitive to the effects of temperature. High temperatures may increase the risk of childhood BD in Hefei. Children aged 0-5 years and girls appear to be particularly sensitive to the effects of high temperature. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  20. The High Temperature Resistivity of Ba2YCu3O7-x

    NASA Astrophysics Data System (ADS)

    Xingkui, Zhang; Shining, Zhu; Hao, Wang; Shiyuan, Zhang; Su, Ye; Ningshen, Zhou; Ziran, Xu

    The high temperature resistivity (ρ), thermogravimetry (TG) and derivative thermogravimetry (DTG) have been used to characterize superconductor Ba2YCu3O7-x (BYCO) in O2, air and N2. The resistivity is linear from room temperature to 350°C and then deviate from linearity with oxygen evolution, the derivative of resistivity dρ/dT increases abruptly near orthorhombic to tetragonal phase transition. These phenomena can give good explanations for a two-band Drude model.

  1. Impact of temperature variation between adjacent days on childhood hand, foot and mouth disease during April and July in urban and rural Hefei, China

    NASA Astrophysics Data System (ADS)

    Cheng, Jian; Zhu, Rui; Xu, Zhiwei; Wu, Jinju; Wang, Xu; Li, Kesheng; Wen, Liying; Yang, Huihui; Su, Hong

    2016-06-01

    Previous studies have found that both high temperature and low temperature increase the risk of childhood hand, foot and mouth disease (HFMD). However, little is known about whether temperature variation between neighboring days has any effects on childhood HFMD. A Poisson generalized linear regression model, combined with a distributed lag non-linear model, was applied to examine the relationship between temperature change and childhood HFMD in Hefei, China, from 1st January 2010 to 31st December 2012. Temperature change was defined as the difference of current day's mean temperature and previous day's mean temperature. Late spring and early summer (April-July) were chosen as the main study period due to it having the highest childhood HFMD incidence. There was a statistical association between temperature change between neighboring days and childhood HFMD. The effects of temperature change on childhood HFMD increased below a temperature change of 0 °C (temperature drop). The temperature change has the greatest adverse effect on childhood HFMD at 7 days lag, with 4 % (95 % confidence interval 2-7 %) increase per 3 °C drop of temperature. Male children and urban children appeared to be more vulnerable to the effects of temperature change. Temperature change between adjacent days might be an alternative temperature indictor for exploring the temperature-HFMD relationship.

  2. Impact of temperature variation between adjacent days on childhood hand, foot and mouth disease during April and July in urban and rural Hefei, China.

    PubMed

    Cheng, Jian; Zhu, Rui; Xu, Zhiwei; Wu, Jinju; Wang, Xu; Li, Kesheng; Wen, Liying; Yang, Huihui; Su, Hong

    2016-06-01

    Previous studies have found that both high temperature and low temperature increase the risk of childhood hand, foot and mouth disease (HFMD). However, little is known about whether temperature variation between neighboring days has any effects on childhood HFMD. A Poisson generalized linear regression model, combined with a distributed lag non-linear model, was applied to examine the relationship between temperature change and childhood HFMD in Hefei, China, from 1st January 2010 to 31st December 2012. Temperature change was defined as the difference of current day's mean temperature and previous day's mean temperature. Late spring and early summer (April-July) were chosen as the main study period due to it having the highest childhood HFMD incidence. There was a statistical association between temperature change between neighboring days and childhood HFMD. The effects of temperature change on childhood HFMD increased below a temperature change of 0 °C (temperature drop). The temperature change has the greatest adverse effect on childhood HFMD at 7 days lag, with 4 % (95 % confidence interval 2-7 %) increase per 3 °C drop of temperature. Male children and urban children appeared to be more vulnerable to the effects of temperature change. Temperature change between adjacent days might be an alternative temperature indictor for exploring the temperature-HFMD relationship.

  3. Science and software support for spacecraft solar occultation experiments

    NASA Technical Reports Server (NTRS)

    Hessameddin, G.; Becher, J.

    1982-01-01

    The temperature dependence of absorption coefficients of ozone was studied between 7567 A and 3630 A. When the gas was cooled from room temperature to -108 C, an overall increase in the absorption coefficients was noticed. The maximum increase of 5% occurred at lambda = 6020 A. In general, the absorption is linearly dependent on temperature.

  4. A thermo-elastoplastic model for soft rocks considering structure

    NASA Astrophysics Data System (ADS)

    He, Zuoyue; Zhang, Sheng; Teng, Jidong; Xiong, Yonglin

    2017-11-01

    In the fields of nuclear waste geological deposit, geothermy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the superloading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the superloading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase.

  5. Effects of temperature and salinity on light scattering by water

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  6. A dual-parameter tilted fiber Bragg grating-based sensor for liquid level and temperature monitoring

    NASA Astrophysics Data System (ADS)

    Osuch, Tomasz; Jurek, Tomasz; Markowski, Konrad; Jedrzejewski, Kazimierz

    2016-09-01

    In this paper, the concept and experimental characterization of tilted fiber Bragg grating (TFBG) based sensor for temperature and liquid level measurement are presented. It is shown that, when liquid level increases the peak amplitudes of cladding modes linearly decreases (in dB). In turn, changes in temperature causes a shift of the TFBG transmission spectrum, which can be accurately measured by monitoring the Bragg wavelength corresponding to the liquid level independent core mode. The main advantages of proposed sensor are simple design as well as linear responses to liquid level and temperature.

  7. Temperature and frequency dependence of ultrasonic attenuation in selected tissues

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croissette, D. H. L.; Heyser, R. C.

    1979-01-01

    Ultrasonic attenuation over the frequency range of 1.5-10 MHz has been measured as a function of temperature for porcine liver, backfat, kidney and spleen as well as for a single specimen of human liver. The attenuation in these excised specimens increases nearly linearly with frequency. Over the temperature range of approximately 4-37 C the attenuation decreases with increasing temperature for most soft tissue studied.

  8. Thermophysical Properties and Temperature of the Start of Titanium Recrystallization in Different Structural States

    NASA Astrophysics Data System (ADS)

    Pavlenko, D. V.; Tkach, D. V.; Danilova-Tret'yak, S. M.; Evseeva, L. E.

    2017-05-01

    The results of measurements of the thermal diffusivity, thermal conductivity, and heat capacity of VT1-0-grade titanium samples in as-cast, deformed submicrocrystalline, and sintered states are presented. It has been established that the decrease in the thermal conductivity and thermal diffusivity of titanium in the submicrocrystalline and sintered states is associated with the increase in the quantity of defects in the material volume, whereas the increase in the temperature of polymorphic transformation of titanium is connected with the dissolution of oxygen in its lattice. The results of investigation of the coefficient of thermal linear expansion of titanium in the macrocrystalline and submicrocrystalline states are presented. The decrease in the coefficient of thermal linear expansion of titanium of submicrocrystalline structure has been established, which may point to the decrease in its melting temperature. It is shown that annealing of samples in a submicrocrystalline state leads to the growth of the temperature coefficient of linear expansion, bringing its value closer to the temperature coefficient of linear expansion of titanium in the equilibrium state. Studies by the method of back reflection photography in a KROS chamber made it possible to estimate the temperature of the start of VT1-0-grade titanium recrystallization after intense plastic deformation by the twist extrusion method. The decrease in the temperature of the start of recrystallization for titanium in the deformed submicrocrystalline state has been established. Based on the trends revealed, optimum regimes of thermal treatment of VT1-0-grade titanium for removing internal stresses and preserving the submicrocrystalline structure have been established.

  9. Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2014-01-01

    Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.

  10. Insulation Resistance and Leakage Currents in Low-Voltage Ceramic Capacitors with Cracks

    NASA Technical Reports Server (NTRS)

    Teverovsky, Alexander A.

    2016-01-01

    Measurement of insulation resistance (IR) in multilayer ceramic capacitors (MLCCs) is considered a screening technique that ensures the dielectric is defect-free. This work analyzes the effectiveness of this technique for revealing cracks in ceramic capacitors. It is shown that absorption currents prevail over the intrinsic leakage currents during standard IR measurements at room temperature. Absorption currents, and consequently IR, have a weak temperature dependence, increase linearly with voltage (before saturation), and are not sensitive to the presence of mechanical defects. In contrary, intrinsic leakage currents increase super-linearly with voltage and exponentially with temperature (activation energy is in the range from 0.6 eV to 1.1 eV). Leakage currents associated with the presence of cracks have a weaker dependence on temperature and voltage compared to the intrinsic leakage currents. For this reason, intrinsic leakage currents prevail at high temperatures and voltages, thus masking the presence of defects.

  11. Fabrication of CFRP/Al Active Laminates

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi; Haga, Osamu; Ohira, Junichiro; Takemoto, Kyosuke; Imori, Masataka

    This paper describes fabrication and evaluation of the active laminate. It was made by hot-pressing of an aluminum plate as a high CTE material, a unidirectional CFRP prepreg as a low CTE material and an electric resistance heater, a KFRP prepreg as a low CTE material and an insulator between them, and copper foils as electrodes. In this study, fabricating conditions and performances such as curvature change and output force were examined. Under optimized fabricating conditions, it became clear that 1) the curvature of the active laminate linearly changes as a function of temperature, between room temperature and its hot pressing temperature without hysteresis by electric resistance heating of carbon fiber in the CFRP layer and cooling, and 2) the output force against a fixed punch almost linearly increases with increasing temperature during heating from 313K up to around the glass transition temperature of the epoxy matrix.

  12. The velocity, refractive index, and equation of state of liquid ammonia at high temperatures and high pressures.

    PubMed

    Li, Fangfei; Li, Min; Cui, Qiliang; Cui, Tian; He, Zhi; Zhou, Qiang; Zou, Guangtian

    2009-10-07

    The high temperature and high pressure Brillouin scattering studies of liquid ammonia have been performed in a diamond anvil cell. Acoustic velocity, refractive index, adiabatic bulk modulus, and the equation of state of liquid ammonia were determined at temperatures up to 410 K and at pressures up to the solidification point. Velocity and refractive index increase smoothly with increasing pressure along isothermals but decrease slightly with the temperature increase. The bulk modulus increases linearly with pressure and its slope dB/dP decreases slightly with increasing temperature from 6.67 at 297 K to 5.94 at 410 K.

  13. Experimental investigation on thermal conductivity and viscosity of maghemite (γ –Fe2O3) water-based nanofluids

    NASA Astrophysics Data System (ADS)

    Nurdin, I.; Johan, M. R.; Ang, B. C.

    2018-03-01

    Thermal conductivity and kinematic viscosity of maghemite nanofluids were experimentally investigated at a small volume fraction of maghemite nanoparticles and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. Results show that the thermal conductivity of maghemite nanofluids linearly increase with increasing particle volume fraction and temperature, while kinematic viscosity increase with increasing particle volume fraction and decrease with increasing temperature. The highest enhancement of thermal conductivity and kinematic viscosity are 18.84% and 13.66% respectively, at particle volume fraction 0.6% and temperature 35.

  14. Protein substitution affects glass transition temperature and thermal stability.

    PubMed

    Budhavaram, Naresh K; Miller, Jonathan A; Shen, Ying; Barone, Justin R

    2010-09-08

    When proteins are removed from their native state they suffer from two deficiencies: (1) glassy behavior with glass transition temperatures (Tg) well above room temperature and (2) thermal instability. The glassy behavior originates in multiple hydrogen bonds between amino acids on adjacent protein molecules. Proteins, like most biopolymers, are thermally unstable. Substituting ovalbumin with linear and cyclic substituents using a facile nucleophilic addition reaction can affect Tg and thermal stability. More hydrophobic linear substituents lowered Tg by interrupting intermolecular interactions and increasing free volume. More hydrophilic and cyclic substituents increased thermal stability by increasing intermolecular interactions. In some cases, substituents instituted cross-linking between protein chains that enhanced thermal stability. Internal plasticization using covalent substitution and external plasticization using low molecular weight polar liquids show the same protein structural changes and a signature of plasticization is identified.

  15. Non-linear and non-local behaviour in spontaneously electrical solids.

    PubMed

    Roman, M; Taj, S; Gutowski, M; McCoustra, M R S; Dunn, A C; Keolopile, Z G; Rosu-Finsen, A; Cassidy, A M; Field, D

    2018-02-14

    Using reflection-absorption infrared spectroscopy (RAIRS), we show that solids displaying spontaneous dipole orientation possess quite general non-local and non-linear characteristics, exemplified through their internal electric fields. The most graphic illustration of this, uncovered originally through electron beam studies, may be found in films of cis-methyl formate (cis-MF), for which data demonstrated the counter-intuitive property that the degree of dipole order in the film does not monotonically decrease as the temperature of deposition rises, but rather increases sharply above ∼77 K. Here we show how RAIRS provides independent evidence to support this conclusion. These new data confirm (i) that the behaviour of spontelectrics is governed by an expression for the degree of dipole orientation, which is continuous in temperature, but with a discontinuity in the derivative, and (ii) that the temperature of deposition associated with this discontinuity matches the temperature above which dipole order switches from the expected reduction with temperature to an increase with temperature.

  16. Electron temperature gradient mode instability and stationary vortices with elliptic and circular boundary conditions in non-Maxwellian plasmas

    NASA Astrophysics Data System (ADS)

    Haque, Q.; Zakir, U.; Qamar, A.

    2015-12-01

    Linear and nonlinear dynamics of electron temperature gradient mode along with parallel electron dynamics is investigated by considering hydrodynamic electrons and non-Maxwellian ions. It is noticed that the growth rate of ηe-mode driven linear instability decreases by increasing the value of spectral index and increases by reducing the ion/electron temperature ratio along the magnetic field lines. The eigen mode dispersion relation is also found in the ballooning mode limit. Stationary solutions in the form of dipolar vortices are obtained for both circular and elliptic boundary conditions. It is shown that the dynamics of both circular and elliptic vortices changes with the inclusion of inhomogeneity and non-Maxwellian effects.

  17. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows.

    PubMed

    West, J W; Mullinix, B G; Bernard, J K

    2003-01-01

    Lactating cows were exposed to moderate and hot, humid weather to determine the effect of increasing ambient temperature, relative humidity, or temperature-humidity index (THI) on intake, milk yield, and milk temperature. Minimum and maximum temperatures averaged 17.9 and 29.5 degrees C (cool period) and 22.5 and 34.4 degrees C (hot period), and minimum and maximum THI averaged 63.8 and 76.6 (cool period) and 72.1 and 83.6 (hot period). Environmental conditions had minor effects on intake and milk yield during the cool period. During the hot period, the THI 2 d earlier and mean air temperature 2 d earlier had the greatest impact on milk yield and DMI, respectively. Both breeds maintained milk temperature within normal ranges during the cool period, but Holstein and Jersey p.m. milk temperatures averaged 39.6 and 39.2 degrees C during the hot period. Current day mean air temperature during the hot period had the greatest impact on cow p.m. milk temperature, and minimum air temperature had the greatest influence on a.m. milk temperature. Dry matter intake and milk yield declined linearly with respective increases in air temperature or THI during the hot period and milk temperature increased linearly with increasing air temperature. Dry matter intake and milk yield both exhibited a curvilinear relationship with milk temperature. Environmental modifications should target the effects of high temperatures on cow body temperature and should modify the environment at critical times during the day when cows are stressed, including morning hours when ambient temperatures are typically cooler and cows are not assumed to be stressed.

  18. Hyperscaling violating black hole solutions and magneto-thermoelectric DC conductivities in holography

    NASA Astrophysics Data System (ADS)

    Ge, Xian-Hui; Tian, Yu; Wu, Shang-Yu; Wu, Shao-Feng

    2017-08-01

    We derive new black hole solutions in Einstein-Maxwell-axion-dilaton theory with a hyperscaling violation exponent. We then examine the corresponding anomalous transport exhibited by cuprate strange metals in the normal phase of high-temperature superconductors via gauge-gravity duality. Linear-temperature-dependence resistivity and quadratic-temperature-dependence inverse Hall angle can be achieved. In the high-temperature regime, the heat conductivity and Hall Lorenz ratio are proportional to the temperature. The Nernst signal first increases as temperature goes up, but it then decreases with increasing temperature in the high-temperature regime.

  19. Abnormal temperature dependence of conductance of single Cd-doped ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Li, Q. H.; Wan, Q.; Wang, Y. G.; Wang, T. H.

    2005-06-01

    Positive temperature coefficient of resistance is observed on single Cd-doped ZnO nanowires. The current along the nanowire increases linearly with the bias and saturates at large biases. The conductance is greatly enhanced either by ultraviolet illumination or infrared illumination. However, the conductance decreases with increasing temperature, in contrast to the reported temperature behavior either for ZnO nanostructures or for CdO nanoneedles. The increase of the conductance under illumination is related to surface effect and the decrease with increasing temperature to bulk effect. These results show that Cd doping does not change surface effect but affects bulk effect. Such a bulk effect could be used to realize on-chip temperature-independent varistors.

  20. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac catheterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hampel, Regina, E-mail: regina.hampel@helmholtz-mu

    Background: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease. Objectives: To investigate short-term temperature effects on metabolites related to cardiovascular disease. Methods: Concentrations of 45 acylcarnitines, 15 amino acids, ketone bodies and total free fatty acids were available in 2869 participants from the CATHeterization GENetics cohort recruited at the Duke University Cardiac Catheterization Clinic (Durham, NC) between 2001 and 2007. Ten metabolites were selected based on quality criteria and cluster analysis. Daily averages of meteorological variables were obtained from the North American Regionalmore » Reanalysis project. Immediate, lagged, and cumulative temperature effects on metabolite concentrations were analyzed using (piecewise) linear regression models. Results: Linear temperature effects were found for glycine, C16-OH:C14:1-DC, and aspartic acid/asparagine. A 5 °C increase in temperature was associated with a 1.8% [95%-confidence interval: 0.3%; 3.3%] increase in glycine (5-day average), a 3.2% [0.1%; 6.3%] increase in C16-OH:C14:1-DC (lag of four days), and a −1.4% [−2.4%; −0.3%] decrease in aspartic acid/asparagine (lag of two days). Non-linear temperature effects were observed for alanine and total ketone bodies with breakpoint of 4 °C and 20 °C, respectively. Both a 5 °C decrease in temperature on colder days (<4 °C)and a 5 °C increase in temperature on warmer days (≥4 °C) were associated with a four day delayed increase in alanine by 6.6% [11.7; 1.8%] and 1.9% [0.3%; 3.4%], respectively. For ketone bodies we found immediate (0-day lag) increases of 4.2% [−0.5%; 9.1%] and 12.3% [0.1%; 26.0%] associated with 5 °C decreases on colder (<20 °C) days and 5 °C increases on warmer days (≥20 °C), respectively. Conclusions: We observed multiple effects of air temperature on metabolites several of which are reported to be involved in cardiovascular disease. Our findings might help to understand the link between air temperature and cardiovascular disease. - Highlights: • Certain metabolites are assumed to be novel biomarkers for cardiovascular disease. • First study investigating associations between air temperature and metabolites. • Short-term effects of temperature on amino acids, ketone bodies and acylcarnitines. • Our findings may help to understand the link between temperature and cardiovascular disease.« less

  1. Reduction effect of surface temperature of baked bricks with different pore shapes during absorption-evaporation test

    NASA Astrophysics Data System (ADS)

    Oguchi, Chiaki T.; Shinozuka, Katsumi

    2017-04-01

    To study the effect of decreasing in surface temperature of baked bricks with various pore shapes, the present study performed several experiments such as water absorbance test and heating test. For the preparation of experimental specimens, bricks with artificial spherical pores, artificial linear pores and non-additional artificial pores were made. The bricks were examined their properties of bulk density, Equotip hardness and absorbing properties by putting in the water. Wet bricks were also put in the incubator set at 50 °C, and monitored the increasing of surface temperature of each brick. Brick with linear pores shows higher water absorption rate in a short time than those with spherical pores. They evaporated moisture faster than those with a spherical pores. They kept the temperature by 11.7 °C lower than the setting temperature, whereas the bricks with a spherical pores kept the temperature by 10.5 °C . Bricks with linear pores has about 10% higher effectiveness of decreasing in surface temperature than those with spheroidal pores.

  2. Characterizing the effect of summer temperature on heatstroke-related emergency ambulance dispatches in the Kanto area of Japan

    NASA Astrophysics Data System (ADS)

    Ng, Chris Fook Sheng; Ueda, Kayo; Ono, Masaji; Nitta, Hiroshi; Takami, Akinori

    2014-07-01

    Despite rising concern on the impact of heat on human health, the risk of high summer temperature on heatstroke-related emergency dispatches is not well understood in Japan. A time-series study was conducted to examine the association between apparent temperature and daily heatstroke-related ambulance dispatches (HSAD) within the Kanto area of Japan. A total of 12,907 HSAD occurring from 2000 to 2009 in five major cities—Saitama, Chiba, Tokyo, Kawasaki, and Yokohama—were analyzed. Generalized additive models and zero-inflated Poisson regressions were used to estimate the effects of daily maximum three-hour apparent temperature (AT) on dispatch frequency from May to September, with adjustment for seasonality, long-term trend, weekends, and public holidays. Linear and non-linear exposure effects were considered. Effects on days when AT first exceeded its summer median were also investigated. City-specific estimates were combined using random effects meta-analyses. Exposure-response relationship was found to be fairly linear. Significant risk increase began from 21 °C with a combined relative risk (RR) of 1.22 (95 % confidence interval, 1.03-1.44), increasing to 1.49 (1.42-1.57) at peak AT. When linear exposure was assumed, combined RR was 1.43 (1.37-1.50) per degree Celsius increment. Overall association was significant the first few times when median AT was initially exceeded in a particular warm season. More than two-thirds of these initial hot days were in June, implying the harmful effect of initial warming as the season changed. Risk increase that began early at the fairly mild perceived temperature implies the need for early precaution.

  3. Characterizing the effect of summer temperature on heatstroke-related emergency ambulance dispatches in the Kanto area of Japan.

    PubMed

    Ng, Chris Fook Sheng; Ueda, Kayo; Ono, Masaji; Nitta, Hiroshi; Takami, Akinori

    2014-07-01

    Despite rising concern on the impact of heat on human health, the risk of high summer temperature on heatstroke-related emergency dispatches is not well understood in Japan. A time-series study was conducted to examine the association between apparent temperature and daily heatstroke-related ambulance dispatches (HSAD) within the Kanto area of Japan. A total of 12,907 HSAD occurring from 2000 to 2009 in five major cities-Saitama, Chiba, Tokyo, Kawasaki, and Yokohama-were analyzed. Generalized additive models and zero-inflated Poisson regressions were used to estimate the effects of daily maximum three-hour apparent temperature (AT) on dispatch frequency from May to September, with adjustment for seasonality, long-term trend, weekends, and public holidays. Linear and non-linear exposure effects were considered. Effects on days when AT first exceeded its summer median were also investigated. City-specific estimates were combined using random effects meta-analyses. Exposure-response relationship was found to be fairly linear. Significant risk increase began from 21 °C with a combined relative risk (RR) of 1.22 (95% confidence interval, 1.03-1.44), increasing to 1.49 (1.42-1.57) at peak AT. When linear exposure was assumed, combined RR was 1.43 (1.37-1.50) per degree Celsius increment. Overall association was significant the first few times when median AT was initially exceeded in a particular warm season. More than two-thirds of these initial hot days were in June, implying the harmful effect of initial warming as the season changed. Risk increase that began early at the fairly mild perceived temperature implies the need for early precaution.

  4. Extremely cold and hot temperatures increase the risk of ischaemic heart disease mortality: epidemiological evidence from China.

    PubMed

    Guo, Yuming; Li, Shanshan; Zhang, Yanshen; Armstrong, Ben; Jaakkola, Jouni J K; Tong, Shilu; Pan, Xiaochuan

    2013-02-01

    To examine the effects of extremely cold and hot temperatures on ischaemic heart disease (IHD) mortality in five cities (Beijing, Tianjin, Shanghai, Wuhan and Guangzhou) in China; and to examine the time relationships between cold and hot temperatures and IHD mortality for each city. A negative binomial regression model combined with a distributed lag non-linear model was used to examine city-specific temperature effects on IHD mortality up to 20 lag days. A meta-analysis was used to pool the cold effects and hot effects across the five cities. 16 559 IHD deaths were monitored by a sentinel surveillance system in five cities during 2004-2008. The relationships between temperature and IHD mortality were non-linear in all five cities. The minimum-mortality temperatures in northern cities were lower than in southern cities. In Beijing, Tianjin and Guangzhou, the effects of extremely cold temperatures were delayed, while Shanghai and Wuhan had immediate cold effects. The effects of extremely hot temperatures appeared immediately in all the cities except Wuhan. Meta-analysis showed that IHD mortality increased 48% at the 1st percentile of temperature (extremely cold temperature) compared with the 10th percentile, while IHD mortality increased 18% at the 99th percentile of temperature (extremely hot temperature) compared with the 90th percentile. Results indicate that both extremely cold and hot temperatures increase IHD mortality in China. Each city has its characteristics of heat effects on IHD mortality. The policy for response to climate change should consider local climate-IHD mortality relationships.

  5. Climate change at upper treeline: How do trees on the edge react to increasing temperatures?

    NASA Astrophysics Data System (ADS)

    Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof

    2017-04-01

    Treeline ecotones are thought to be particularly sensitive to climate warming, and an alteration of their growth conditions may have important implications for the ecosystem services they supply in mountain regions. We use a novel approach to quantify effects of a changing climate on tree growth, using case studies in the European Alps. We compiled tree-ring data from almost 600 trees of four species at treeline in three climate regions of Switzerland. Temperature loggers installed along transects provided data for a precise interpolation of temperatures experienced by the sampled trees. To assess the influence of temperature on annual growth, we used linear mixed-effects models, allowing us to quantify effect sizes and to account for between-tree growth variability. After removing biological growth trends, we isolated temporal trends of ring-width indices. Furthermore, we fitted non-linear regression models to radial growth rates of individual years with temperature and tree age as predicting covariates for a fine-scale investigation of the temperature dependency of tree growth. For all species, climate-growth linear mixed-effects models indicated strong positive responses of ring-width indices to temperature in early summer and previous year's autumn, featuring considerable between-tree variability. All species showed positive ring-width index trends at treeline but different interactions with elevation: Larix decidua exhibited a declining ring-width index trend with decreasing elevation, whereas Picea abies, Pinus cembra and Pinus mugo showed increasing and/or stable trends. Not only reflected our findings the effects of ameliorated growth conditions, they might have also revealed suspected negative and positive feedbacks of climate change on growth, and increased the knowledge about the functional form and parameterization of the temperature dependency of tree growth.

  6. Non-linear effects of mean temperature and relative humidity on dengue incidence in Guangzhou, China.

    PubMed

    Wu, Xiaocheng; Lang, Lingling; Ma, Wenjun; Song, Tie; Kang, Min; He, Jianfeng; Zhang, Yonghui; Lu, Liang; Lin, Hualiang; Ling, Li

    2018-07-01

    Dengue fever is an important infectious disease in Guangzhou, China; previous studies on the effects of weather factors on the incidence of dengue fever did not consider the linearity of the associations. This study evaluated the effects of daily mean temperature, relative humidity and rainfall on the incidence of dengue fever. A generalized additive model with splines smoothing function was performed to examine the effects of daily mean, minimum and maximum temperatures, relative humidity and rainfall on incidence of dengue fever during 2006-2014. Our analysis detected a non-linear effect of mean, minimum and maximum temperatures and relative humidity on dengue fever with the thresholds at 28°C, 23°C and 32°C for daily mean, minimum and maximum temperatures, 76% for relative humidity, respectively. Below the thresholds, there was a significant positive effect, the excess risk in dengue fever for each 1°C in the mean temperature at lag7-14days was 10.21%, (95% CI: 6.62% to 13.92%), 7.10% (95% CI: 4.99%, 9.26%) for 1°C increase in daily minimum temperature in lag 11days, and 2.27% (95% CI: 0.84%, 3.72%) for 1°C increase in daily maximum temperature in lag 10days; and each 1% increase in relative humidity of lag7-14days was associated with 1.95% (95% CI: 1.21% to 2.69%) in risk of dengue fever. Future prevention and control measures and epidemiology studies on dengue fever should consider these weather factors based on their exposure-response relationship. Copyright © 2018. Published by Elsevier B.V.

  7. Feeding rumen-protected gamma-aminobutyric acid enhances the immune response and antioxidant status of heat-stressed lactating dairy cows.

    PubMed

    Cheng, Jianbo; Zheng, Nan; Sun, Xianzhi; Li, Songli; Wang, Jiaqi; Zhang, Yangdong

    2016-08-01

    This experiment was conducted to investigate the effects of rumen-protected gamma-aminobutyric acid (GABA) on immune function and antioxidant status in heat-stressed dairy cows. Sixty Holstein dairy cows were randomly assigned to 1 of 4 treatments according to a completely randomized block design. The treatments consisted of 0 (control), 40, 80, or 120mg of GABA/kg DM from rumen-protected GABA. The trial lasted 10 weeks. The average temperature-humidity indices at 0700, 1400 and 2200h were 78.4, 80.2 and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA. As the GABA increased, the immunoglobulin (Ig) A and IgG contents and the proportions of CD4(+) and CD8(+) T lymphocytes increased linearly (P<0.05), whereas concentrations of interleukin (IL)-2, IL-4, IL-6 and tumor necrosis factor-α (TNF-α) decreased linearly (P<0.05). The activities of superoxide dismutase (SOD), glutathione-peroxidase (GSH-PX) and total antioxidant capacity (T-AOC) increased linearly (P<0.05), whereas malondialdehyde (MDA) content decreased linearly (P<0.05) with increasing GABA. These results indicate that rumen-protected GABA supplementation to heat-stressed dairy cows can improve their immune function and antioxidant activity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Modeling of the thermal physical process and study on the reliability of linear energy density for selective laser melting

    NASA Astrophysics Data System (ADS)

    Xiang, Zhaowei; Yin, Ming; Dong, Guanhua; Mei, Xiaoqin; Yin, Guofu

    2018-06-01

    A finite element model considering volume shrinkage with powder-to-dense process of powder layer in selective laser melting (SLM) is established. Comparison between models that consider and do not consider volume shrinkage or powder-to-dense process is carried out. Further, parametric analysis of laser power and scan speed is conducted and the reliability of linear energy density as a design parameter is investigated. The results show that the established model is an effective method and has better accuracy allowing for the temperature distribution, and the length and depth of molten pool. The maximum temperature is more sensitive to laser power than scan speed. The maximum heating rate and cooling rate increase with increasing scan speed at constant laser power and increase with increasing laser power at constant scan speed as well. The simulation results and experimental result reveal that linear energy density is not always reliable using as a design parameter in the SLM.

  9. Effect of Permeability of Tipping Paper on Cigarette Burning Temperature and the Property of Mainstream Smoke

    NASA Astrophysics Data System (ADS)

    Yao, Zhen-Yu; Shen, Yan; Huang, Hai-Qun; Xu, Ji-Cang

    2016-05-01

    Cigarette smoke analysis of tipping paper with different permeability was carried out. The infrared thermal imager was used to measure burning temperature of cigarette with different permeability tipping paper. The results indicated that with the increase of tipping paper permeability, Tar, CO and nicotine in cigarette mainstream were significantly linear decreased, puff count was increased. Tipping paper permeability had a great influence on cigarette burning temperature. With the increase of tipping paper permeability, the third puff burning temperature and the average peak temperature values were dropped obviously, but the changes of smoldering temperature were not obvious. In addition, smoldering average temperature was significantly lower than the third puff burning temperature and peak temperature.

  10. Stability and linearity of luminescence imaging of water during irradiation of proton-beams and X-ray photons lower energy than the Cerenkov light threshold

    NASA Astrophysics Data System (ADS)

    Yamamoto, Seiichi; Koyama, Shuji; Yabe, Takuya; Komori, Masataka; Tada, Junki; Ito, Shiori; Toshito, Toshiyuki; Hirata, Yuho; Watanabe, Kenichi

    2018-03-01

    Luminescence of water during irradiations of proton-beams or X-ray photons lower energy than the Cerenkov-light threshold is promising for range estimation or the distribution measurements of beams. However it is not yet obvious whether the intensities and distributions are stable with the water conditions such as temperature or addition of solvable materials. It remains also unclear whether the luminescence of water linearly increases with the irradiated proton or X-ray energies. Consequently we measured the luminescence of water during irradiations of proton-beam or X-ray photons lower energy than the Cerenkov-light threshold with different water conditions and energies to evaluate the stability and linearity of luminescence of water. We placed a water phantom set with a proton therapy or X-ray system, luminescence images of water with different conditions and energies were measured with a high-sensitivity cooled charge coupled device (CCD) camera during proton or X-ray irradiations to the water phantom. In the stability measurements, imaging was made for different temperatures of water and addition of inorganic and organic materials to water. In the linearity measurements for the proton, we irradiated with four different energies below Cerenkov light threshold. In the linearity measurements for the X-ray, we irradiated X-ray with different supplied voltages. We evaluated the depth profiles for the luminescence images and evaluated the light intensities and distributions. The results showed that the luminescence of water was quite stable with the water conditions. There were no significant changes of intensities and distributions with the different temperatures. Results from the linearity experiments showed that the luminescence of water linearly increased with their energies. We confirmed that luminescence of water is stable with conditions of water. We also confirmed that the luminescence of water linearly increased with their energies.

  11. Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan

    2016-06-01

    This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09043a

  12. Spatial and temporal variation in the association between temperature and salmonellosis in NZ.

    PubMed

    Lal, Aparna; Hales, Simon; Kirk, Martyn; Baker, Michael G; French, Nigel P

    2016-04-01

    Modelling the relationship between weather, climate and infectious diseases can help identify high-risk periods and provide understanding of the determinants of longer-term trends. We provide a detailed examination of the non-linear and delayed association between temperature and salmonellosis in three New Zealand cities (Auckland, Wellington and Christchurch). Salmonella notifications were geocoded to the city of residence for the reported case. City-specific associations between weekly maximum temperature and the onset date for reported salmonella infections (1997-2007) were modelled using non-linear distributed lag models, while controlling for season and long-term trends. Relatively high temperatures were positively associated with infection risk in Auckland (n=3,073) and Christchurch (n=880), although the former showed evidence of a more immediate relationship with exposure to high temperatures. There was no significant association between temperature and salmonellosis risk in Wellington. Projected increases in temperature with climate change may have localised health impacts, suggesting that preventative measures will need to be region-specific. This evidence contributes to the increasing concern over the public health impacts of climate change. © 2015 Public Health Association of Australia.

  13. The association between ambient temperature and childhood asthma: a systematic review

    NASA Astrophysics Data System (ADS)

    Xu, Zhiwei; Crooks, James Lewis; Davies, Janet Mary; Khan, Al Fazal; Hu, Wenbiao; Tong, Shilu

    2018-03-01

    The objectives of this study are to review available information on the association between ambient temperature and childhood asthma, and to elucidate the possible underlying mechanisms of this relationship. A systematic review was conducted based on the papers retrieved from four databases, including PubMed, ProQuest, ScienceDirect, and Scopus. Papers examining the association of absolute temperature or temperature variation with childhood asthma published from 1 January 2000 to 31 December 2016 were included. Thirteen papers have quantified the effect of absolute temperature on childhood asthma, and six papers have examined the effect of intra- or inter-day temperature variation on childhood asthma. All studies were conducted in urban areas. Aeroallergen sensitizations were only considered in the analyses of one study. Discrepancy existed in the significance of the relationship between absolute temperature and childhood asthma, and also in the shape of this relationship (i.e. linear or non-linear) and whether temperature effects were lagged. Increasing evidence is suggesting non-linear relationship between absolute temperature and childhood asthma. Future research should investigate the burden of childhood asthma specifically attributable to extreme temperatures and temperature variation using advanced statistical approach, particularly in rural areas, after properly considering aeroallergens and air pollution. Projecting future burden of childhood asthma under climate change scenarios is also warranted.

  14. The association between ambient temperature and childhood asthma: a systematic review.

    PubMed

    Xu, Zhiwei; Crooks, James Lewis; Davies, Janet Mary; Khan, Al Fazal; Hu, Wenbiao; Tong, Shilu

    2018-03-01

    The objectives of this study are to review available information on the association between ambient temperature and childhood asthma, and to elucidate the possible underlying mechanisms of this relationship. A systematic review was conducted based on the papers retrieved from four databases, including PubMed, ProQuest, ScienceDirect, and Scopus. Papers examining the association of absolute temperature or temperature variation with childhood asthma published from 1 January 2000 to 31 December 2016 were included. Thirteen papers have quantified the effect of absolute temperature on childhood asthma, and six papers have examined the effect of intra- or inter-day temperature variation on childhood asthma. All studies were conducted in urban areas. Aeroallergen sensitizations were only considered in the analyses of one study. Discrepancy existed in the significance of the relationship between absolute temperature and childhood asthma, and also in the shape of this relationship (i.e. linear or non-linear) and whether temperature effects were lagged. Increasing evidence is suggesting non-linear relationship between absolute temperature and childhood asthma. Future research should investigate the burden of childhood asthma specifically attributable to extreme temperatures and temperature variation using advanced statistical approach, particularly in rural areas, after properly considering aeroallergens and air pollution. Projecting future burden of childhood asthma under climate change scenarios is also warranted.

  15. Precise measurement of coupling strength and high temperature quantum effect in a nonlinearly coupled qubit-oscillator system

    NASA Astrophysics Data System (ADS)

    Ge, Li; Zhao, Nan

    2018-04-01

    We study the coherence dynamics of a qubit coupled to a harmonic oscillator with both linear and quadratic interactions. As long as the linear coupling strength is much smaller than the oscillator frequency, the long time behavior of the coherence is dominated by the quadratic coupling strength g 2. The coherence decays and revives at a period , with the width of coherence peak decreasing as the temperature increases, hence providing a way to measure g 2 precisely without cooling. Unlike the case of linear coupling, here the coherence dynamics never reduces to the classical limit in which the oscillator is classical. Finally, the validity of linear coupling approximation is discussed and the coherence under Hahn-echo is evaluated.

  16. Associations among milk production and rectal temperature on pregnancy maintenance in lactating recipient dairy cows.

    PubMed

    Vasconcelos, J L M; Cooke, R F; Jardina, D T G; Aragon, F L; Veras, M B; Soriano, S; Sobreira, N; Scarpa, A B

    2011-09-01

    The objective of this study was to evaluate the associations among milk production, rectal temperature, and pregnancy maintenance in lactating recipient dairy cows. Data were collected during an 11-mo period from 463 Holstein cows (203 primiparous and 260 multiparous) assigned to a fixed-time embryo transfer (ET) protocol. Only cows detected with a visible corpus luteum immediately prior to ET were used. Rectal temperatures were collected from all cows on the same day of ET. Milk production at ET was calculated by averaging individual daily milk production during the 7d preceding ET. Pregnancy diagnosis was performed by transrectal ultrasonography 21d after ET. Cows were ranked and assigned to groups according to median milk production (median=35kg/d; HPROD=above median; LPROD=below median) and rectal temperature (≤39.0°C=LTEMP; >39.0°C=HTEMP). A milk production×temperature group interaction was detected (P=0.04) for pregnancy analysis because HTEMP cows ranked as LPROD were 3.1 time more likely to maintain pregnancy compared with HTEMP cows ranked as HPROD (P=0.03). Milk production did not affect (P=0.55) odds of pregnancy maintenance within LTEMP cows, however, and no differences in odds of pregnancy maintenance were detected between HTEMP and LTEMP within milk production groups (P>0.11). Within HTEMP cows, increased milk production decreased the probability of pregnancy maintenance linearly, whereas within LTEMP cows, increased milk production increased the probability of pregnancy maintenance linearly. Within HPROD, increased rectal temperature decreased the probability of pregnancy maintenance linearly, whereas within LPROD cows, no associations between rectal temperatures and probability of cows to maintain pregnancy were detected. In summary, high-producing dairy cows with rectal temperatures below 39.0°C did not experience reduced pregnancy maintenance to ET compared to cohorts with reduced milk production. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Linearly chirped tapered fiber-Bragg-grating-based Fabry-Perot cavity and its application in simultaneous strain and temperature measurement.

    PubMed

    Markowski, Konrad; Jędrzejewski, Kazimierz; Marzęcki, Michał; Osuch, Tomasz

    2017-04-01

    A novel concept of a Fabry-Perot (F-P) cavity composed of two linearly chirped fiber Bragg gratings written in a thermally fused fiber taper is presented. Both chirped gratings are written in counter-directional chirp configuration, where chirps resulting from the optical fiber taper profile and linearly increasing grating periods cancel each other out, forming a high-quality F-P resonator. A new strain-sensing mechanism is proposed in the presented structure, which is based on strain-induced detuning of the F-P resonator. Due to the different strain and temperature responses of the cavity, the resonator can be used for the simultaneous measurement of these physical quantities, or it can be used as a temperature-independent strain sensor.

  18. The effect of particle volume fraction and temperature on the enhancement of thermal conductivity of maghemite (γ-Fe2O3) water-based nanofluids

    NASA Astrophysics Data System (ADS)

    Nurdin, Irwan; Satriananda

    2017-03-01

    Thermal conductivity of maghemite nanofluids were experimentally investigated at different maghemite nanoparticles volume fraction and temperatures. Maghemite nanofluids were prepared by suspending maghemite nanoparticles in water as base fluids. The thermal conductivity ratio of maghemite nanofluids was linearly increase with increasing particle volume fraction and temperature. The highest enhancement of thermal conductivity is 42.5% which is obtained at particle volume fraction 2.5% and temperature 60 °C.

  19. Application of Satellite Solar-Induced Chlorophyll Fluorescence to Understanding Large-Scale Variations in Vegetation Phenology and Function Over Northern High Latitude Forests

    NASA Technical Reports Server (NTRS)

    Jeong, Su-Jong; Schimel, David; Frankenberg, Christian; Drewry, Darren T.; Fisher, Joshua B.; Verma, Manish; Berry, Joseph A.; Lee, Jung-Eun; Joiner, Joanna

    2016-01-01

    This study evaluates the large-scale seasonal phenology and physiology of vegetation over northern high latitude forests (40 deg - 55 deg N) during spring and fall by using remote sensing of solar-induced chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI) and observation-based estimate of gross primary productivity (GPP) from 2009 to 2011. Based on GPP phenology estimation in GPP, the growing season determined by SIF time-series is shorter in length than the growing season length determined solely using NDVI. This is mainly due to the extended period of high NDVI values, as compared to SIF, by about 46 days (+/-11 days), indicating a large-scale seasonal decoupling of physiological activity and changes in greenness in the fall. In addition to phenological timing, mean seasonal NDVI and SIF have different responses to temperature changes throughout the growing season. We observed that both NDVI and SIF linearly increased with temperature increases throughout the spring. However, in the fall, although NDVI linearly responded to temperature increases, SIF and GPP did not linearly increase with temperature increases, implying a seasonal hysteresis of SIF and GPP in response to temperature changes across boreal ecosystems throughout their growing season. Seasonal hysteresis of vegetation at large-scales is consistent with the known phenomena that light limits boreal forest ecosystem productivity in the fall. Our results suggest that continuing measurements from satellite remote sensing of both SIF and NDVI can help to understand the differences between, and information carried by, seasonal variations vegetation structure and greenness and physiology at large-scales across the critical boreal regions.

  20. Exchange field and Hc dependence on the ferromagnetic material in exchange couples with CoO (abstract)

    NASA Astrophysics Data System (ADS)

    Takano, Kentaro; Berkowitz, A. E.

    1997-04-01

    As recording density increases, magnetoresistive (MR) sensors are becoming increasingly important in read heads. NixCo(1-x)O is receiving technological attention for biasing magnetoresistive sensors as a robust alternative to FeMn. The interfacial exchange coupling between a ferromagnetic (FM) layer and an antiferromagnetic (AFM) is observed as an exchange field and an enhanced coercive field of the FM layer. The AFM/FM coupling is sensitive to the interfacial structure and the AFM and FM magnetic parameters. In this work, we deposited various FM layers on similar 300 Å CoO base layers to study the dependence of the FM exchange integral parameter J on the exchange HE and coercive HC fields. CoO was selected as the AFM material because (i) its simple spin and crystal structures facilitate the structural characterization and modeling of its magnetic properties, and (ii) it's modest Néel temperature of 300 K facilitates the use of a superconducting quantum interference device for the magnetic measurements at temperatures ranging from 5 to 400 K. The 300 Å CoO films were reactively sputtered on silicon substrates and capped with various 300 Å FM films, Ni, Co, Fe, and permalloy (Ni81Fe19). The 300 Å CoO base layer films were polycrystalline with columnar grains. The CoO deposition conditions were reproduced to ensure similar structural and magnetic interfacial AF environments. The observed HE temperature dependence cannot be explained by current theoretical models. The temperature dependence of the exchange fields have the common features (i) a blocking temperature Tb=300 K, which corresponds to the bulk Néel temperature of CoO, (ii) a rise in the exchange field with decreasing temperature, (iii) an intermediate temperature region of constant HE (plateau value), and (iv) a second region of linearly increasing HE with decreasing temperatures down to 0 K. The plateau value of the HE decreased inversely with increasing FM magnetization as predicted by theory. The low-temperature increase of HE is more significant in the FM with higher exchange integral J values. The crossover temperature from the plateau to the low-temperature rise in HE appears to be dependent on FM's J value. The increase in the interfacial coupling strength could suggest the magnetic ordering of a secondary phase localized at the interfacial atoms. The temperature dependence of HC enhancement does not share the nonlinear temperature behavior of HE. For T<300 K, HC increases linearly with decreasing temperatures down to 10 K. Although the HC enhancement may have magnetoelastic contributions, the disappearance of the linear enhancement at 300 K, the Néel temperature of CoO, indicates that the dominant mechanism is the interfacial magnetic coupling.

  1. Nonlinear and threshold of the association between meteorological factors and bacillary dysentery in Beijing, China.

    PubMed

    Li, Z J; Zhang, X J; Hou, X X; Xu, S; Zhang, J S; Song, H B; Lin, H L

    2015-12-01

    Previous studies examining the weather-bacillary dysentery association were of a large time scale (monthly or weekly) and examined the linear relationship without checking the linearity assumption. We examined this association in Beijing at a daily scale based on the exposure-response curves using generalized additive models. Our analyses suggested that there were thresholds for effects of temperature and relative humidity, with an approximately linear effect for temperature >12·5 °C [excess risk (ER) for 1 °C increase: 1·06%, 95% confidence interval (CI) 0·63-1·49 on lag day 3] and for relative humidity >40% (ER for 1% increase: 0·18%, 95% CI 0·12-0·24 at lag day 4); and there were linear effects of rainfall (ER for 1-mm increase: 0·22%, 95% CI 0·12-0·32), negative effects for wind speed (ER: -2·91%, 95% CI -4·28 to -1·52 at lag day 3) and sunshine duration (ER: -0·25% 95% CI -0·43 to -0·07 at lag day 4). This study suggests that there are thresholds for the effects of temperature and relative humidity on bacillary dysentery, and these findings should be considered in its prevention and control programmes.

  2. Self-diffusion in a stochastically heated two-dimensional dusty plasma

    NASA Astrophysics Data System (ADS)

    Sheridan, T. E.

    2016-09-01

    Diffusion in a two-dimensional dusty plasma liquid (i.e., a Yukawa liquid) is studied experimentally. The dusty plasma liquid is heated stochastically by a surrounding three-dimensional toroidal dusty plasma gas which acts as a thermal reservoir. The measured dust velocity distribution functions are isotropic Maxwellians, giving a well-defined kinetic temperature. The mean-square displacement for dust particles is found to increase linearly with time, indicating normal diffusion. The measured diffusion coefficients increase approximately linearly with temperature. The effective collision rate is dominated by collective dust-dust interactions rather than neutral gas drag, and is comparable to the dusty-plasma frequency.

  3. Anisotropies in the linear polarization of vacancy photoluminescence in diamond induced by crystal rotations and strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Braukmann, D.; Popov, V. P.; Glaser, E. R.; Kennedy, T. A.; Bayer, M.; Debus, J.

    2018-03-01

    We study the linear polarization properties of the photoluminescence of ensembles of neutral and negatively charged nitrogen vacancies and neutral vacancies in diamond crystals as a function of their symmetry and their response to strong external magnetic fields. The linear polarization degree, which exceeds 10% at room temperature, and rotation of the polarization plane of their zero-phonon lines significantly depend on the crystal rotation around specific axes demonstrating anisotropic angular evolutions. The sign of the polarization plane rotation is changed periodically through the crystal rotation, which indicates a switching between electron excited states of orthogonal linear polarizations. At external magnetic fields of up to 10 T, the angular dependencies of the linear polarization degree experience a remarkable phase shift. Moreover, the rotation of the linear polarization plane increases linearly with rising magnetic field at 6 K and room temperature, for the negatively charged nitrogen vacancies, which is attributed to magneto-optical Faraday rotation.

  4. The effect on engine performance of change in jacket-water outlet temperature

    NASA Technical Reports Server (NTRS)

    Garlock, E A; Ellis, Greer

    1933-01-01

    Tests made on a Curtiss D-12 engine in the Altitude Laboratory at the Bureau of Standards show the following effects on engine performance of change in jacket-water outlet temperature: 1) Friction at all altitudes is a linear function of the jacket-water temperature, decreasing with increasing temperature. 2) The brake horsepower below an altitude of about 9,000 feet decreases, and at higher altitudes increases, with jacket-water temperature. 3) The brake specific fuel consumption tends to decrease, at all altitudes, with increasing jacket-water temperature. 4) The percentage change in brake power output is roughly equal to the algebraic sum of the percentage change in volumetric efficiency and mechanical efficiency.

  5. A comparative examination of the adsorption mechanism of an anionic textile dye (RBY 3GL) onto the powdered activated carbon (PAC) using various the isotherm models and kinetics equations with linear and non-linear methods

    NASA Astrophysics Data System (ADS)

    Açıkyıldız, Metin; Gürses, Ahmet; Güneş, Kübra; Yalvaç, Duygu

    2015-11-01

    The present study was designed to compare the linear and non-linear methods used to check the compliance of the experimental data corresponding to the isotherm models (Langmuir, Freundlich, and Redlich-Peterson) and kinetics equations (pseudo-first order and pseudo-second order). In this context, adsorption experiments were carried out to remove an anionic dye, Remazol Brillant Yellow 3GL (RBY), from its aqueous solutions using a commercial activated carbon as a sorbent. The effects of contact time, initial RBY concentration, and temperature onto adsorbed amount were investigated. The amount of dye adsorbed increased with increased adsorption time and the adsorption equilibrium was attained after 240 min. The amount of dye adsorbed enhanced with increased temperature, suggesting that the adsorption process is endothermic. The experimental data was analyzed using the Langmuir, Freundlich, and Redlich-Peterson isotherm equations in order to predict adsorption isotherm. It was determined that the isotherm data were fitted to the Langmuir and Redlich-Peterson isotherms. The adsorption process was also found to follow a pseudo second-order kinetic model. According to the kinetic and isotherm data, it was found that the determination coefficients obtained from linear method were higher than those obtained from non-linear method.

  6. Impact of temperature on childhood pneumonia estimated from satellite remote sensing.

    PubMed

    Xu, Zhiwei; Liu, Yang; Ma, Zongwei; Li, Shenghui; Hu, Wenbiao; Tong, Shilu

    2014-07-01

    The effect of temperature on childhood pneumonia in subtropical regions is largely unknown so far. This study examined the impact of temperature on childhood pneumonia in Brisbane, Australia. A quasi-Poisson generalized linear model combined with a distributed lag non-linear model was used to quantify the main effect of temperature on emergency department visits (EDVs) for childhood pneumonia in Brisbane from 2001 to 2010. The model residuals were checked to identify added effects due to heat waves or cold spells. Both high and low temperatures were associated with an increase in EDVs for childhood pneumonia. Children aged 2-5 years, and female children were particularly vulnerable to the impacts of heat and cold, and Indigenous children were sensitive to heat. Heat waves and cold spells had significant added effects on childhood pneumonia, and the magnitude of these effects increased with intensity and duration. There were changes over time in both the main and added effects of temperature on childhood pneumonia. Children, especially those female and Indigenous, should be particularly protected from extreme temperatures. Future development of early warning systems should take the change over time in the impact of temperature on children's health into account. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Polyimide Film of Increased Tear Strength

    NASA Technical Reports Server (NTRS)

    St. Clair, A. K.; Hinkley, J. A.; Ezzell, S. A.

    1986-01-01

    High-temperature linear aromatic polyimide with improved resistance to tearing made by new process that incorporates elastomer into polyimide. Linear aromatic condensation polyimides are materials of prime choice for use as films and coatings on advanced spacecraft and aircraft where durability at temperatures in range of 200 to 300 degree C required. Elastomer-containing polyimide film with improved toughness proves useful for applications where resistance to tearing and long-term thermal stability necessary. Desired resistance to tearing achieved by careful control of amount and chemical composition of added elastomer.

  8. Ambient temperature and FIT performance in the Emilia-Romagna colorectal cancer screening programme.

    PubMed

    De Girolamo, Gianfranco; Goldoni, Carlo A; Corradini, Rossella; Giuliani, Orietta; Falcini, Fabio; Sassoli De'Bianchi, Priscilla; Naldoni, Carlo; Zauli Sajani, Stefano

    2016-12-01

    To assess the impact of ambient temperature on faecal immunochemical test (FIT) performance in the colorectal cancer screening programme of Emilia-Romagna (Italy). A population-based retrospective cohort study on data from 2005 to 2011. Positive rate, detection rate, and positive predictive value rate for cancers and adenomas, and incidence rate of interval cancers after negative tests were analysed using Poisson regression models. In addition to ambient temperature, gender, age, screening history, and Local Health Unit were also considered. In 1,521,819 tests analysed, the probability of a positive result decreased linearly with increasing temperature. Point estimates and 95% Confidence Intervals were estimated for six temperature classes (<5, 5 |-10, 10 |-15, 15 |-20, 20|-25 and ≥25℃), and referred to the 5|-10℃ class. The positive rate ratio was significantly related to temperature increase: 0.99 (0.97-1.02), 1, 0.98 (0.96-1.00), 0.96 (0.94-0.99), 0.93 (0.91-0.96), 0.92 (0.89-0.95). A linear trend was also evident for advanced adenoma detection rate ratio: 1.00 (0.96-1.04), 1, 0.98 (0.93-1.02), 0.96 (0.92-1.00), 0.92 (0.88-0.96), 0.94 (0.88-1.01). The effect was less linear, but still important, for cancer detection rates: 0.95 (0.85-1.06), 1, 1.00 (0.90-1.10), 0.94 (0.85-1.05), 0.81 (0.72-0.92), 0.93 (0.80-1.09). No association or linear trend was found for positive predictive values or risk of interval cancer, despite an excess of +16% in the highest temperature class for interval cancer. Ambient temperatures can affect screening performance. Continued monitoring is needed to verify the effect of introducing FIT tubes with a new buffer, which should guarantee a higher stability of haemoglobin. © The Author(s) 2016.

  9. A linearization time-domain CMOS smart temperature sensor using a curvature compensation oscillator.

    PubMed

    Chen, Chun-Chi; Chen, Hao-Wen

    2013-08-28

    This paper presents an area-efficient time-domain CMOS smart temperature sensor using a curvature compensation oscillator for linearity enhancement with a -40 to 120 °C temperature range operability. The inverter-based smart temperature sensors can substantially reduce the cost and circuit complexity of integrated temperature sensors. However, a large curvature exists on the temperature-to-time transfer curve of the inverter-based delay line and results in poor linearity of the sensor output. For cost reduction and error improvement, a temperature-to-pulse generator composed of a ring oscillator and a time amplifier was used to generate a thermal sensing pulse with a sufficient width proportional to the absolute temperature (PTAT). Then, a simple but effective on-chip curvature compensation oscillator is proposed to simultaneously count and compensate the PTAT pulse with curvature for linearization. With such a simple structure, the proposed sensor possesses an extremely small area of 0.07 mm2 in a TSMC 0.35-mm CMOS 2P4M digital process. By using an oscillator-based scheme design, the proposed sensor achieves a fine resolution of 0.045 °C without significantly increasing the circuit area. With the curvature compensation, the inaccuracy of -1.2 to 0.2 °C is achieved in an operation range of -40 to 120 °C after two-point calibration for 14 packaged chips. The power consumption is measured as 23 mW at a sample rate of 10 samples/s.

  10. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures

    USGS Publications Warehouse

    Fullerton, Aimee H.; Torgersen, Christian E.; Lawler, Joshua J.; Faux, Russell N.; Steel, E. Ashley; Beechie, Timothy J.; Ebersole, Joseph L.; Leibowitz, Scott J.

    2015-01-01

    Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and leveling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature versus distance) for 53 rivers in the Pacific Northwest (USA) using an extensive dataset of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically, and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient, and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform, or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling was influenced locally by climate or cool water inputs, respectively. Potential drivers of shape for complex profiles were specific to each river. These thermal patterns indicate diverse thermal habitats that may promote resilience of aquatic biota to climate change. Without this spatial context, climate change models may incorrectly estimate loss of thermally suitable habitat.

  11. The effect of atmospheric temperature and pressure on the occurrence of acute myocardial infarction in Kaunas.

    PubMed

    Radišauskas, Ričardas; Vaičiulis, Vidmantas; Ustinavičienė, Rūta; Bernotienė, Gailutė

    2013-01-01

    OBJECTIVE. The aim of the study was to evaluate the impact of meteorological variables (atmospheric temperature and pressure) on the daily occurrence of acute myocardial infarction (AMI). MATERIAL AND METHODS. The study used the daily values of atmospheric temperature and pressure in 2000-2007. The meteorological data were obtained from the Lithuanian Hydrometeorological Service for Kaunas. The relative risks of event occurrence were computed for 5°C atmospheric temperature and for 10-hPa atmospheric pressure variations by means of the Poisson regression model. RESULTS. The occurrence of AMI and atmospheric temperature showed an inverse linear relationship, while the occurrence of AMI and atmospheric pressure, a positive linear relationship. Among the youngest subjects (25-44 years old), no relationships were detected. Contrary, among the subjects aged 45-64 years and those aged 65 years and older, the occurrence of AMI significantly decreased with higher temperature (P=0.001 and P=0.002, respectively). A decrease in atmospheric temperature by 10ºC reduced the risk of AMI by 8.7% in the age groups of 45-64 and 65 years and older and by 19% in the age group of 25 years and older. Among the first AMI cases, the risk increased by 7.5% in the age group of 45-64-year olds and by 6.4% in the age group of 25-64-year olds. The relationship between atmospheric temperature and pressure, and AMI occurrence was found to be linear but inverse. An increase in atmospheric pressure by 10 hPa resulted in an increase in risk by 4% among the subjects aged 65 years and more and by 3% among the subjects aged 25 years and more. CONCLUSIONS. Atmospheric temperature and pressure variations had the greatest effect on middle-aged and aging subjects (starting from 45 years). At younger age, the effect of such factors on the AMI risk was considerably lower.

  12. Differentiating fatty and non-fatty tissue using photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Pan, Leo; Rohling, Robert; Abolmaesumi, Purang; Salcudean, Septimiu; Tang, Shuo

    2014-03-01

    In this paper, we demonstrate a temporal-domain intensity-based photoacoustic imaging method that can differentiate between fatty and non-fatty tissues. PA pressure intensity is partly dependent on the tissue's speed of sound, which increases as temperature increases in non-fatty tissue and decreases in fatty tissue. Therefore, by introducing a temperature change in the tissue and subsequently monitoring the change of the PA intensity, it is possible to distinguish between the two types of tissue. A commercial ultrasound system with a 128-element 5-14 MHz linear array transducer and a tunable ND:YAG laser were used to produce PA images. Ex-vivo bovine fat and porcine liver tissues were precooled to below 10°C and then warmed to room-temperature over ~1 hour period. A thermocouple monitored the temperature rise while PA images were acquired at 0.5°C intervals. The averaged intensity of the illuminated tissue region at each temperature interval was plotted and linearly fitted. Liver samples showed a mean increase of 2.82 %/°C, whereas bovine fat had a mean decrease of 6.24 %/°C. These results demonstrate that this method has the potential to perform tissue differentiation in the temporal-domain.

  13. Temperature in lowland Danish streams: contemporary patterns, empirical models and future scenarios

    NASA Astrophysics Data System (ADS)

    Lagergaard Pedersen, Niels; Sand-Jensen, Kaj

    2007-01-01

    Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold-water and oxygen-demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air-water regression model (r2: 0.903-0.947). The predictions improved in all instances (r2: 0.927-0.964) by a non-linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0.933-0.969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un-shaded sites, relative humidity, precipitation and discharge. Application of the non-linear logistic model for a warming scenario of 4-5 °C higher air temperatures in Denmark in 2070-2100 yielded predictions of temperatures rising 1.6-3.0 °C during winter and summer and 4.4-6.0 °C during spring in un-shaded streams with low groundwater input. Groundwater-fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright

  14. Recent trends of groundwater temperatures in Austria

    NASA Astrophysics Data System (ADS)

    Benz, Susanne A.; Bayer, Peter; Winkler, Gerfried; Blum, Philipp

    2018-06-01

    Climate change is one of if not the most pressing challenge modern society faces. Increasing temperatures are observed all over the planet and the impact of climate change on the hydrogeological cycle has long been shown. However, so far we have insufficient knowledge on the influence of atmospheric warming on shallow groundwater temperatures. While some studies analyse the implication climate change has for selected wells, large-scale studies are so far lacking. Here we focus on the combined impact of climate change in the atmosphere and local hydrogeological conditions on groundwater temperatures in 227 wells in Austria, which have in part been observed since 1964. A linear analysis finds a temperature change of +0.7 ± 0.8 K in the years from 1994 to 2013. In the same timeframe surface air temperatures in Austria increased by 0.5 ± 0.3 K, displaying a much smaller variety. However, most of the extreme changes in groundwater temperatures can be linked to local hydrogeological conditions. Correlation between groundwater temperatures and nearby surface air temperatures was additionally analysed. They vary greatly, with correlation coefficients of -0.3 in central Linz to 0.8 outside of Graz. In contrast, the correlation of nationwide groundwater temperatures and surface air temperatures is high, with a correlation coefficient of 0.83. All of these findings indicate that while atmospheric climate change can be observed in nationwide groundwater temperatures, individual wells are often primarily dominated by local hydrogeological conditions. In addition to the linear temperature trend, a step-wise model was also applied that identifies climate regime shifts, which were observed globally in the late 70s, 80s, and 90s. Hinting again at the influence of local conditions, at most 22 % of all wells show these climate regime shifts. However, we were able to identify an additional shift in 2007, which was observed by 37 % of all wells. Overall, the step-wise representation provides a slightly more accurate picture of observed temperatures than the linear trend.

  15. Effect of Water Quality and Temperature on the Efficiency of Two Kinds of Hydrophilic Polymers in Soil.

    PubMed

    Dehkordi, Davoud Khodadadi

    2018-06-01

      In this study, evaluation of two-superabsorbent effects, Super-AB-A-300 and Super-AB-A-200 in a sandy soil on the water retention capability and saturated hydraulic conductivity (Ks) at different water quality and soil temperature were done. The Super-AB-A-200 was less effective in water uptake than Super-AB-A-300. The efficiency of these polymers in water retention was negatively influenced by the water quality and temperature. The efficiency of these polymer treatments in water uptake reduced significantly (P < 0.05) with increasing soil temperature. In the control soil, the Ks stayed nearly constant with increasing soil temperature. As compared to the untreated control, the treated soil demonstrated a significant (P < 0.05) linear increase of Ks with increasing soil temperature. In the control soil, the water holding properties curve did not change with increasing soil temperature.

  16. Projection of temperature-related mortality due to cardiovascular disease in beijing under different climate change, population, and adaptation scenarios.

    PubMed

    Zhang, Boya; Li, Guoxing; Ma, Yue; Pan, Xiaochuan

    2018-04-01

    Human health faces unprecedented challenges caused by climate change. Thus, studies of the effect of temperature change on total mortality have been conducted in numerous countries. However, few of those studies focused on temperature-related mortality due to cardiovascular disease (CVD) or considered future population changes and adaptation to climate change. We present herein a projection of temperature-related mortality due to CVD under different climate change, population, and adaptation scenarios in Beijing, a megacity in China. To this end, 19 global circulation models (GCMs), 3 representative concentration pathways (RCPs), 3 socioeconomic pathways, together with generalized linear models and distributed lag non-linear models, were used to project future temperature-related CVD mortality during periods centered around the years 2050 and 2070. The number of temperature-related CVD deaths in Beijing is projected to increase by 3.5-10.2% under different RCP scenarios compared with that during the baseline period. Using the same GCM, the future daily maximum temperatures projected using the RCP2.6, RCP4.5, and RCP8.5 scenarios showed a gradually increasing trend. When population change is considered, the annual rate of increase in temperature-related CVD deaths was up to fivefold greater than that under no-population-change scenarios. The decrease in the number of cold-related deaths did not compensate for the increase in that of heat-related deaths, leading to a general increase in the number of temperature-related deaths due to CVD in Beijing. In addition, adaptation to climate change may enhance rather than ameliorate the effect of climate change, as the increase in cold-related CVD mortality greater than the decrease in heat-related CVD mortality in the adaptation scenarios will result in an increase in the total number of temperature-related CVD mortalities. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Finite difference modelling of the temperature rise in non-linear medical ultrasound fields.

    PubMed

    Divall, S A; Humphrey, V F

    2000-03-01

    Non-linear propagation of ultrasound can lead to increased heat generation in medical diagnostic imaging due to the preferential absorption of harmonics of the original frequency. A numerical model has been developed and tested that is capable of predicting the temperature rise due to a high amplitude ultrasound field. The acoustic field is modelled using a numerical solution to the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation, known as the Bergen Code, which is implemented in cylindrical symmetric form. A finite difference representation of the thermal equations is used to calculate the resulting temperature rises. The model allows for the inclusion of a number of layers of tissue with different acoustic and thermal properties and accounts for the effects of non-linear propagation, direct heating by the transducer, thermal diffusion and perfusion in different tissues. The effect of temperature-dependent skin perfusion and variation in background temperature between the skin and deeper layers of the body are included. The model has been tested against analytic solutions for simple configurations and then used to estimate temperature rises in realistic obstetric situations. A pulsed 3 MHz transducer operating with an average acoustic power of 200 mW leads to a maximum steady state temperature rise inside the foetus of 1.25 degrees C compared with a 0.6 degree C rise for the same transmitted power under linear propagation conditions. The largest temperature rise occurs at the skin surface, with the temperature rise at the foetus limited to less than 2 degrees C for the range of conditions considered.

  18. Core turbulence behavior moving from ion-temperature-gradient regime towards trapped-electron-mode regime in the ASDEX Upgrade tokamak and comparison with gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Happel, T.; Navarro, A. Bañón; Conway, G. D.; Angioni, C.; Bernert, M.; Dunne, M.; Fable, E.; Geiger, B.; Görler, T.; Jenko, F.; McDermott, R. M.; Ryter, F.; Stroth, U.

    2015-03-01

    Additional electron cyclotron resonance heating (ECRH) is used in an ion-temperature-gradient instability dominated regime to increase R / L Te in order to approach the trapped-electron-mode instability regime. The radial ECRH deposition location determines to a large degree the effect on R / L Te . Accompanying scale-selective turbulence measurements at perpendicular wavenumbers between k⊥ = 4-18 cm-1 (k⊥ρs = 0.7-4.2) show a pronounced increase of large-scale density fluctuations close to the ECRH radial deposition location at mid-radius, along with a reduction in phase velocity of large-scale density fluctuations. Measurements are compared with results from linear and non-linear flux-matched gyrokinetic (GK) simulations with the gyrokinetic code GENE. Linear GK simulations show a reduction of phase velocity, indicating a pronounced change in the character of the dominant instability. Comparing measurement and non-linear GK simulation, as a central result, agreement is obtained in the shape of radial turbulence level profiles. However, the turbulence intensity is increasing with additional heating in the experiment, while gyrokinetic simulations show a decrease.

  19. Speed of sound as a function of temperature for ultrasonic propagation in soybean oil

    NASA Astrophysics Data System (ADS)

    Oliveira, P. A.; Silva, R. M. B.; Morais, G. C.; Alvarenga, A. V.; Costa-Félix, R. P. B.

    2016-07-01

    Ultrasound has been used for characterization of liquid in several productive sectors and research. This work presents the studied about the behavior of the speed of sound in soybean oil with increasing temperature. The pulse echo technique allowed observing that the speed of sound decreases linearly with increasing temperature in the range 20 to 50 °C at 1 MHz. As result, a characteristic function capable to reproduce the speed of sound behavior in soybean oil, as a function of temperature was established, with the respective measurement uncertainty.

  20. Statistical Modelling of Temperature and Moisture Uptake of Biochars Exposed to Selected Relative Humidity of Air.

    PubMed

    Bastistella, Luciane; Rousset, Patrick; Aviz, Antonio; Caldeira-Pires, Armando; Humbert, Gilles; Nogueira, Manoel

    2018-02-09

    New experimental techniques, as well as modern variants on known methods, have recently been employed to investigate the fundamental reactions underlying the oxidation of biochar. The purpose of this paper was to experimentally and statistically study how the relative humidity of air, mass, and particle size of four biochars influenced the adsorption of water and the increase in temperature. A random factorial design was employed using the intuitive statistical software Xlstat. A simple linear regression model and an analysis of variance with a pairwise comparison were performed. The experimental study was carried out on the wood of Quercus pubescens , Cyclobalanopsis glauca , Trigonostemon huangmosun , and Bambusa vulgaris , and involved five relative humidity conditions (22, 43, 75, 84, and 90%), two mass samples (0.1 and 1 g), and two particle sizes (powder and piece). Two response variables including water adsorption and temperature increase were analyzed and discussed. The temperature did not increase linearly with the adsorption of water. Temperature was modeled by nine explanatory variables, while water adsorption was modeled by eight. Five variables, including factors and their interactions, were found to be common to the two models. Sample mass and relative humidity influenced the two qualitative variables, while particle size and biochar type only influenced the temperature.

  1. County-level analysis of the impact of temperature and population increases on California wildfire data

    USGS Publications Warehouse

    Baltar, M.; Keeley, Jon E.; Schoenberg, F.P.

    2013-01-01

    The extent to which the apparent increase in wildfire incidence and burn area in California from 1990 to 2006 is affected by population and temperature increases is examined. Using generalized linear models with random effects, we focus on the estimated impacts of increases in mean daily temperatures and populations in different counties on wildfire in those counties, after essentially controlling for the overall differences between counties in their overall mean temperatures and populations. We find that temperature increase appears to have a significant positive impact on both total burn area and number of observed wildfires. Population growth appears to have a much less pronounced impact on total burn area than do annual temperature increases, and population growth appears to be negatively correlated with the total number of observed wildfires. These effects are especially pronounced in the winter season and in Southern California counties.

  2. Time-dependent Fracture Behaviour of Polyampholyte Hydrogels

    NASA Astrophysics Data System (ADS)

    Sun, Tao Lin; Luo, Feng; Nakajima, Tasuku; Kurokawa, Takayuki; Gong, Jian Ping

    Recently, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and self-healing hydrogels with excellent multiple mechanical functions. The randomness makes ionic bonds with a wide distribution of strength, via inter and intra chain complexation. As the breaking and reforming of ionic bonds are time dependent, the hydrogels exhibit rate dependent mechanical behaviour. We systematically studied the tearing energy by tearing test with various tearing velocity under different temperature, and the linear viscoelastic behaviour over a wide range of frequency and temperature. Results have shown that the tearing energy markedly increase with the crack velocity and decrease with the measured temperature. In accordance with the prediction of Williams, Landel, and Ferry (WLF) rate-temperature equivalence, a master curve of tearing energy dependence of crack velocity can be well constructed using the same shift factor from the linear viscoelastic data. The scaling relation of tearing energy as a function of crack velocity can be predicted well by the rheological data according to the developed linear fracture mechanics.

  3. The lagged effect of cold temperature and wind chill on cardiorespiratory mortality in Scotland

    PubMed Central

    Carder, M; McNamee, R; Beverland, I; Elton, R; Cohen, G; Boyd, J; Agius, R

    2005-01-01

    Aims: To investigate the lagged effects of cold temperature on cardiorespiratory mortality and to determine whether "wind chill" is a better predictor of these effects than "dry bulb" temperature. Methods: Generalised linear Poisson regression models were used to investigate the relation between mortality and "dry bulb" and "wind chill" temperatures in the three largest Scottish cities (Glasgow, Edinburgh, and Aberdeen) between January 1981 and December 2001. Effects of temperature on mortality (lags up to one month) were quantified. Analyses were conducted for the whole year and by season (cool and warm seasons). Main results: Temperature was a significant predictor of mortality with the strongest association observed between temperature and respiratory mortality. There was a non-linear association between mortality and temperature. Mortality increased as temperatures fell throughout the range, but the rate of increase was steeper at temperatures below 11°C. The association between temperature and mortality persisted at lag periods beyond two weeks but the effect size generally decreased with increasing lag. For temperatures below 11°C, a 1°C drop in the daytime mean temperature on any one day was associated with an increase in mortality of 2.9% (95% CI 2.5 to 3.4), 3.4% (95% CI 2.6 to 4.1), 4.8% (95% CI 3.5 to 6.2) and 1.7% (95% CI 1.0 to 2.4) over the following month for all cause, cardiovascular, respiratory, and "other" cause mortality respectively. The effect of temperature on mortality was not observed to be significantly modified by season. There was little indication that "wind chill" temperature was a better predictor of mortality than "dry bulb" temperature. Conclusions: Exposure to cold temperature is an important public health problem in Scotland, particularly for those dying from respiratory disease. PMID:16169916

  4. Elongational viscosity of photo-oxidated LDPE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolón-Garrido, Víctor H., E-mail: victor.h.rolongarrido@tu-berlin.de, E-mail: manfred.wagner@tu-berlin.de; Wagner, Manfred H., E-mail: victor.h.rolongarrido@tu-berlin.de, E-mail: manfred.wagner@tu-berlin.de

    2014-05-15

    Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method.more » The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.« less

  5. Photo-oxidation of LDPE: Effects on elongational viscosity

    NASA Astrophysics Data System (ADS)

    Rolón-Garrido, Víctor H.; Wagner, Manfred H.

    2013-04-01

    Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, time-deformation separability is confirmed for all samples, independent of the degree of photo-oxidation.

  6. Elongational viscosity of photo-oxidated LDPE

    NASA Astrophysics Data System (ADS)

    Rolón-Garrido, Víctor H.; Wagner, Manfred H.

    2014-05-01

    Sheets of low-density polyethylene (LDPE) were photo-oxidatively treated at room temperature, and subsequently characterized rheologically in the melt state by shear and uniaxial extensional experiments. For photo-oxidation, a xenon lamp was used to irradiate the samples for times between 1 day and 6 weeks. Linear-viscoelastic characterization was performed in a temperature range of 130 to 220°C to obtain the master curve at 170°C, the reference temperature at which the elongational viscosities were measured. Linear viscoelasticity is increasingly affected by increasing photo-oxidation due to crosslinking of LDPE, as corroborated by an increasing gel fraction as determined by a solvent extraction method. The elongational measurements reveal a strong enhancement of strain hardening until a saturation level is achieved. The elongational data are analyzed in the frame work of two constitutive equations, the rubber-like liquid and the molecular stress function models. Within the experimental window, timedeformation separability is confirmed for all samples, independent of the degree of photo-oxidation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Dae Jung; Lee, Dong-Hun; Kim, Kihong

    We study theoretically the linear mode conversion between electromagnetic waves and Langmuir waves in warm, stratified, and unmagnetized plasmas, using a numerically precise calculation based on the invariant imbedding method. We verify that the principle of reciprocity for the forward and backward mode conversion coefficients holds precisely regardless of temperature. We also find that the temperature dependence of the mode conversion coefficient is substantially stronger than that previously reported. Depending on the wave frequency and the incident angle, the mode conversion coefficient is found to increase or decrease with the increase of temperature.

  8. Temperature response surfaces for mortality risk of tree species with future drought

    DOE PAGES

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; ...

    2017-11-17

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.« less

  9. Temperature response surfaces for mortality risk of tree species with future drought

    NASA Astrophysics Data System (ADS)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.

    2017-11-01

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.

  10. Temperature response surfaces for mortality risk of tree species with future drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P . ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occurs, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.« less

  11. Temperature response surfaces for mortality risk of tree species with future drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlingsmore » of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7–9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for reducing emissions of carbon to the atmosphere from anthropogenic sources and slowing warming as rapidly as possible to maximize forest persistence.« less

  12. Towards bridging the gap between climate change projections and maize producers in South Africa

    NASA Astrophysics Data System (ADS)

    Landman, Willem A.; Engelbrecht, Francois; Hewitson, Bruce; Malherbe, Johan; van der Merwe, Jacobus

    2018-05-01

    Multi-decadal regional projections of future climate change are introduced into a linear statistical model in order to produce an ensemble of austral mid-summer maximum temperature simulations for southern Africa. The statistical model uses atmospheric thickness fields from a high-resolution (0.5° × 0.5°) reanalysis-forced simulation as predictors in order to develop a linear recalibration model which represents the relationship between atmospheric thickness fields and gridded maximum temperatures across the region. The regional climate model, the conformal-cubic atmospheric model (CCAM), projects maximum temperatures increases over southern Africa to be in the order of 4 °C under low mitigation towards the end of the century or even higher. The statistical recalibration model is able to replicate these increasing temperatures, and the atmospheric thickness-maximum temperature relationship is shown to be stable under future climate conditions. Since dry land crop yields are not explicitly simulated by climate models but are sensitive to maximum temperature extremes, the effect of projected maximum temperature change on dry land crops of the Witbank maize production district of South Africa, assuming other factors remain unchanged, is then assessed by employing a statistical approach similar to the one used for maximum temperature projections.

  13. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands

    USGS Publications Warehouse

    Muller, E.M.; Rogers, Caroline S.; Spitzack, Anthony S.; van Woesik, R.

    2007-01-01

    Anomalously high water temperatures may enhance the likelihood of coral disease outbreaks by increasing the abundance or virulence of pathogens, or by increasing host susceptibility. This study tested the compromised-host hypothesis, and documented the relationship between disease and temperature, through monthly monitoring of Acropora palmata colonies from May 2004 to December 2006, in Hawksnest Bay, St John, US Virgin Islands (USVI). Disease prevalence and the rate of change in prevalence showed a positive linear relationship with water temperature and rate of change in water temperature, respectively, but only in 2005 during prolonged periods of elevated temperature. Both bleached and unbleached colonies showed a positive relationship between disease prevalence and temperature in 2005, but the average area of disease-associated mortality increased only for bleached corals, indicating host susceptibility, rather than temperature per se, influenced disease severity on A. palmata.

  14. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands

    USGS Publications Warehouse

    Muller, E.M.; Rogers, C.S.; Spitzack, Anthony S.; van Woesik, R.

    2008-01-01

    Anomalously high water temperatures may enhance the likelihood of coral disease outbreaks by increasing the abundance or virulence of pathogens, or by increasing host susceptibility. This study tested the compromised-host hypothesis, and documented the relationship between disease and temperature, through monthly monitoring of Acropora palmata colonies from May 2004 to December 2006, in Hawksnest Bay, St John, US Virgin Islands (USVI). Disease prevalence and the rate of change in prevalence showed a positive linear relationship with water temperature and rate of change in water temperature, respectively, but only in 2005 during prolonged periods of elevated temperature. Both bleached and unbleached colonies showed a positive relationship between disease prevalence and temperature in 2005, but the average area of disease-associated mortality increased only for bleached corals, indicating host susceptibility, rather than temperature per se, influenced disease severity on A. palmata. ?? 2007 Springer-Verlag.

  15. Bleaching increases likelihood of disease on Acropora palmata (Lamarck) in Hawksnest Bay, St John, US Virgin Islands

    NASA Astrophysics Data System (ADS)

    Muller, E. M.; Rogers, C. S.; Spitzack, A. S.; van Woesik, R.

    2008-03-01

    Anomalously high water temperatures may enhance the likelihood of coral disease outbreaks by increasing the abundance or virulence of pathogens, or by increasing host susceptibility. This study tested the compromised-host hypothesis, and documented the relationship between disease and temperature, through monthly monitoring of Acropora palmata colonies from May 2004 to December 2006, in Hawksnest Bay, St John, US Virgin Islands (USVI). Disease prevalence and the rate of change in prevalence showed a positive linear relationship with water temperature and rate of change in water temperature, respectively, but only in 2005 during prolonged periods of elevated temperature. Both bleached and unbleached colonies showed a positive relationship between disease prevalence and temperature in 2005, but the average area of disease-associated mortality increased only for bleached corals, indicating host susceptibility, rather than temperature per se, influenced disease severity on A. palmata.

  16. Frequency and temperature dependence of electrical breakdown at 21, 30, and 39 GHz.

    PubMed

    Braun, H H; Döbert, S; Wilson, I; Wuensch, W

    2003-06-06

    A TeV-range e(+)e(-) linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39 GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  17. Frequency and Temperature Dependence of Electrical Breakdown at 21, 30, and 39GHz

    NASA Astrophysics Data System (ADS)

    Braun, H. H.; Döbert, S.; Wilson, I.; Wuensch, W.

    2003-06-01

    A TeV-range e+e- linear collider has emerged as one of the most promising candidates to extend the high energy frontier of experimental elementary particle physics. A high accelerating gradient for such a collider is desirable to limit its overall length. Accelerating gradient is mainly limited by electrical breakdown, and it has been generally assumed that this limit increases with increasing frequency for normal-conducting accelerating structures. Since the choice of frequency has a profound influence on the design of a linear collider, the frequency dependence of breakdown has been measured using six exactly scaled single-cell cavities at 21, 30, and 39GHz. The influence of temperature on breakdown behavior was also investigated. The maximum obtainable surface fields were found to be in the range of 300 to 400 MV/m for copper, with no significant dependence on either frequency or temperature.

  18. The temperature-dependence of adenylate cyclase from baker's yeast.

    PubMed Central

    Londesborough, J; Varimo, K

    1979-01-01

    The Michaelis constant of membrane-bound adenylate cyclase increased from 1.1 to 1.8 mM between 7 and 38 degrees C (delta H = 13 kJ/mol). Over this temperature range, the maximum velocity increased 10-fold, and the Arrhenius plot was nearly linear, with an average delta H* of 51 kJ/mol. The temperature-dependence of the reaction rate at 2 mM-ATP was examined in more detail: for Lubrol-dispersed enzyme, Arrhenius plots were nearly linear with average delta H* values of 45 and 68 kJ/mol, respectively, for untreated and gel-filtered enzymes; for membrane-bound enzyme, delta H changed from 40 kJ/mol above about 21 degrees C to 62 kJ/mol below 21 degrees C, but this behaviour does not necessarily indicate an abrupt, lipid-induced, transition in the reaction mechanism. PMID:391221

  19. Polaron physics and crossover transition in magnetite probed by pressure-dependent infrared spectroscopy.

    PubMed

    Ebad-Allah, J; Baldassarre, L; Sing, M; Claessen, R; Brabers, V A M; Kuntscher, C A

    2013-01-23

    The optical properties of magnetite at room temperature were studied by infrared reflectivity measurements as a function of pressure up to 8 GPa. The optical conductivity spectrum consists of a Drude term, two sharp phonon modes, a far-infrared band at around 600 cm(-1) and a pronounced mid-infrared absorption band. With increasing pressure both absorption bands shift to lower frequencies and the phonon modes harden in a linear fashion. Based on the shape of the MIR band, the temperature dependence of the dc transport data, and the occurrence of the far-infrared band in the optical conductivity spectrum, the polaronic coupling strength in magnetite at room temperature should be classified as intermediate. For the lower energy phonon mode an abrupt increase of the linear pressure coefficient occurs at around 6 GPa, which could be attributed to minor alterations of the charge distribution among the different Fe sites.

  20. Molecular Interactions in 1,4-Dioxane, Tetrahydrofuran, and Ethyl Acetate Solutions of 1,1'-Bis(4-isopropyloxyacetylphenoxy)cyclohexane on Reological, Density, and Acoustic Behavior

    NASA Astrophysics Data System (ADS)

    Dhaduk, B. B.; Patel, Ch. B.; Parsania, P. H.

    2017-12-01

    Various thermo-acoustical parameters of 1,4-dioxane, tetrahydofuran and ethylacetae solutions of 1,1'-bis(4-isopropyloxyacetylphenoxy)cyclohexane were determined at different temperatures using density, viscosity and ultrasonic speed and correlated with concentration. Linear increase of ultrasonic speed, specific acoustical impedance, Rao's molar sound function, Van der Waals constant and free volume with concentration C and decreased with temperature. Linear decrease of adiabatic compressibility, internal pressure, intermolecular free path length, classical absorption coefficient, and viscous relaxation time with concentration and increased with temperature indicated existence of strong molecular interactions in solutions and further supported by positive values of solvation number. Gibbs free energy of activation decreased with C in all three systems. It is decreased with T in 1,4-dioxane, while increased in tetrahydrofuran and ethyl acetate. Both enthalpy of activation and entropy of activation are increased gradually with C in 1,4-dioxane, while they are negative and remained practically independent of concentration in 1,4-dioxane and tetrahydofuran systems.

  1. Investigation of process and product parameters for physicochemical properties of rice and mung bean (Vigna radiata) flour based extruded snacks.

    PubMed

    Sharma, Chetan; Singh, Baljit; Hussain, Syed Zameer; Sharma, Savita

    2017-05-01

    PR 106 and SML 668 cultivars of rice and mung bean respectively, were studied for their potential to serve as a nutritious snack with improved protein quality and quantity. The effect of extrusion conditions, including feed moisture content (14-18%), screw speed (400-550 rpm) and barrel temperature (130-170°C) on the physicochemical properties (bulk density, water absorption index (WAI), water solubility index (WSI) and hardness) was investigated. The replacement of rice flour at 30% level with mung bean flour for making extruded snacks was evaluated. Pasting temperature increased (84-93 °C) while peak viscosity (2768-408 cP), hold viscosity (2018-369 cP), breakdown (750-39 cP), setback (2697-622 cP) and final viscosity (4715-991 cP) decreased with increasing mung bean flour addition. Increasing feed moisture lowered the specific mechanical energy (SME), WAI and WSI of extrudates whereas increased bulk density and hardness. Higher screw speed had linear positive effect on SME of extruder and negative linear effect on WAI. Positive curvilinear quadratic effect of screw speed was also observed on WSI and density. Higher barrel temperature linearly decreased the SME, density and hardness of extrudates. Developed extrusion cooked rice-mung bean snacks with increased protein content and improved protein quality along with higher dietary fibre and minerals have good potential in effectively delivering the nutrition to the population.

  2. Temperature-dependent regulation of vocal pattern generator.

    PubMed

    Yamaguchi, Ayako; Gooler, David; Herrold, Amy; Patel, Shailja; Pong, Winnie W

    2008-12-01

    Vocalizations of Xenopus laevis are generated by central pattern generators (CPGs). The advertisement call of male X. laevis is a complex biphasic motor rhythm consisting of fast and slow trills (a train of clicks). We found that the trill rate of these advertisement calls is sensitive to temperature and that this rate modification of the vocal rhythms originates in the central pattern generators. In vivo the rates of fast and slow trills increased linearly with an increase in temperature. In vitro a similar linear relation between temperature and compound action potential frequency in the laryngeal nerve was found when fictive advertisement calls were evoked in the isolated brain. Temperature did not limit the contractile properties of laryngeal muscles within the frequency range of vocalizations. We next took advantage of the temperature sensitivity of the vocal CPG in vitro to localize the source of the vocal rhythms. We focused on the dorsal tegmental area of the medulla (DTAM), a brain stem nucleus that is essential for vocal production. We found that bilateral cooling of DTAM reduced both fast and slow trill rates. Thus we conclude that DTAM is a source of biphasic vocal rhythms.

  3. Thermodynamics for the interaction of epsilon-dinitrophenyl-L-lysine and bovine colostral anti-dinitrophenyl immunoglobulin G2.

    PubMed Central

    Mukkur, T K

    1978-01-01

    The effect of varying the temperature over a wide range (4--60 degrees C) on the binding of epsilon-dinitrophenyl-L-lysine to bovine colostral anti-dinitrophenyl immunoglobulin G2 yielded a non-linear van't Hoff plot. The extent of curvature was indicative of a large positive heat-capacity change, and the thermodynamic parameters, calculated by using a non-linear least squares computer procedure, revealed an enthalpy--entropy-compensation mechanism for hapten-antibody binding. The enthalpy factor was found to be the primary contributor for the complex-formation at low temperatures, but at increasing temperatures the entropy factor assumed greater importance. At physiological temperature (39 degrees C), the entropy factor was the major contributor to the free energy of reaction. PMID:687378

  4. GeSn growth kinetics in reduced pressure chemical vapor deposition from Ge2H6 and SnCl4

    NASA Astrophysics Data System (ADS)

    Aubin, J.; Hartmann, J. M.

    2018-01-01

    We have investigated the low temperature epitaxy of high Sn content GeSn alloys in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition tool from Applied Materials. Gaseous digermane (Ge2H6) and liquid tin tetrachloride (SnCl4) were used as the Ge and Sn precursors, respectively. The impact of temperature (in the 300-350 °C range), Ge2H6 and SnCl4 mass-flows on the GeSn growth kinetics at 100 Torr has been thoroughly explored. Be it at 300 °C or 325 °C, a linear GeSn growth rate increase together with a sub-linear Sn concentration increase occurred as the SnCl4 mass-flow increased, irrespective of the Ge2H6 mass flow (fixed or varying). The Sn atoms seemed to catalyze H desorption from the surface, resulting in higher GeSn growth rates for high SnCl4 mass-flows (in the 4-21 nm min-1 range). The evolution of the Sn content x with the F (SnCl4) 2 ·/F (Ge2H6) mass-flow ratio was fitted by x2/(1 - x) = n ·F (SnCl4) 2 ·/F (Ge2H6), with n = 0.25 (325 °C) and 0.60 (300 °C). We have otherwise studied the impact of temperature, in the 300-350 °C range, on the GeSn growth kinetics. The GeSn growth rate exponentially increased with the temperature, from 15 up to 32 nm min-1. The associated activation energy was low, i.e. Ea = 10 kcal mol-1. Meanwhile, the Sn content decreased linearly as the growth temperature increased, from 15% at 300 °C down to 6% at 350 °C.

  5. Heat Transfer in Complex Fluids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehrdad Massoudi

    Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely themore » stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction rate is increased leading to an increase in the heat of the reaction. As a result the flow is chemically heated and its temperature increase. The results shown here indicate that for all values of {zeta} used the chemical effects are significant and the temperature is always higher than both the surface temperature and the free surface temperature. The heat transfer is always from the flow toward both the inclined surface and the free stream. It is also noticed that for all values of m chosen in this study, the temperature is higher than the surface and the free stream temperature. The heat transfer at the inclined surface and at the free stream increase slowly for negative values of m to about m=0.5, but it begins to significantly increase for m greater than 0.5.« less

  6. Constitutive modelling of creep in a long fiber random glass mat thermoplastic composite

    NASA Astrophysics Data System (ADS)

    Dasappa, Prasad

    The primary objective of this proposed research is to characterize and model the creep behaviour of Glass Mat Thermoplastic (GMT) composites under thermo-mechanical loads. In addition, tensile testing has been performed to study the variability in mechanical properties. The thermo-physical properties of the polypropylene matrix including crystallinity level, transitions and the variation of the stiffness with temperature have also been determined. In this work, the creep of a long fibre GMT composite has been investigated for a relatively wide range of stresses from 5 to 80 MPa and temperatures from 25 to 90°C. The higher limit for stress is approximately 90% of the nominal tensile strength of the material. A Design of Experiments (ANOVA) statistical method was applied to determine the effects of stress and temperature in the random mat material which is known for wild experimental scatter. Two sets of creep tests were conducted. First, preliminary short-term creep tests consisting of 30 minutes creep followed by recovery were carried out over a wide range of stresses and temperatures. These tests were carried out to determine the linear viscoelastic region of the material. From these tests, the material was found to be linear viscoelastic up-to 20 MPa at room temperature and considerable non-linearities were observed with both stress and temperature. Using Time-Temperature superposition (TTS) a long term master curve for creep compliance for up-to 185 years at room temperature has been obtained. Further, viscoplastic strains were developed in these tests indicating the need for a non-linear viscoelastic viscoplastic constitutive model. The second set of creep tests was performed to develop a general non-linear viscoelastic viscoplastic constitutive model. Long term creep-recovery tests consisting of 1 day creep followed by recovery has been conducted over the stress range between 20 and 70 MPa at four temperatures: 25°C, 40°C, 60°C and 80°C. Findley's model, which is the reduced form of the Schapery non-linear viscoelastic model, was found to be sufficient to model the viscoelastic behaviour. The viscoplastic strains were modeled using the Zapas and Crissman viscoplastic model. A parameter estimation method which isolates the viscoelastic component from the viscoplastic part of the non-linear model has been developed. The non-linear parameters in the Findley's non-linear viscoelastic model have been found to be dependent on both stress and temperature and have been modeled as a product of functions of stress and temperature. The viscoplastic behaviour for temperatures up to 40°C was similar indicating similar damage mechanisms. Moreover, the development of viscoplastic strains at 20 and 30 MPa were similar over all the entire temperature range considered implying similar damage mechanisms. It is further recommended that the material should not be used at temperature greater than 60°C at stresses over 50 MPa. To further study the viscoplastic behaviour of continuous fibre glass mat thermoplastic composite at room temperature, multiple creep-recovery experiments of increasing durations between 1 and 24 hours have been conducted on a single specimen. The purpose of these tests was to experimentally and numerically decouple the viscoplastic strains from total creep response. This enabled the characterization of the evolution of viscoplastic strains as a function of time, stress and loading cycles and also to co-relate the development of viscoplastic strains with progression of failure mechanisms such as interfacial debonding and matrix cracking which were captured in-situ. A viscoplastic model developed from partial data analysis, as proposed by Nordin, had excellent agreement with experimental results for all stresses and times considered. Furthermore, the viscoplastic strain development is accelerated with increasing number of cycles at higher stress levels. These tests further validate the technique proposed for numerical separation of viscoplastic strains employed in obtaining the non-linear viscoelastic viscoplastic model parameters. These tests also indicate that the viscoelastic strains during creep are affected by the previous viscoplastic strain history. (Abstract shortened by UMI.)

  7. Species-specific declines in the linear extension of branching corals at a subtropical reef, Lord Howe Island

    NASA Astrophysics Data System (ADS)

    Anderson, Kristen D.; Heron, Scott F.; Pratchett, Morgan S.

    2015-06-01

    Reef-building corals are extremely sensitive to changing temperature regimes, such that sustained increases in ocean temperatures are generally expected to have negative effects on coral growth and survivorship. At high-latitude reefs, however, projected increases in ocean temperature may actually increase coral growth (relaxing constraints imposed by cool winter temperatures), though this will depend upon on the rate and extent of declines in aragonite saturation, which is already much lower at high latitudes. This study quantified linear extension rates of six scleractinian corals, Acropora yongei, Isopora cuneata, Pocillopora damicornis, Porites heronensis, Seriatopora hystrix, and Stylophora pistillata, at Lord Howe Island in 2010/11. Contemporary growth rates were compared to equivalent data collected in 1994/95. There was marked interspecific variation in growth rates, with A. yongei growing almost twice the rate of all other species. Temporal changes in annual growth also varied among species. Growth rates of both A. yongei and Pocillopora damicornis were 30 % of that recorded in 1994/95. However, growth rates of Porites heronensis had not changed. Declines in the growth rates of these branching species may be attributable to declines in aragonite saturation or increases in summertime temperatures above limits for optimal growth, but either way it appears that climate change is having negative effects on corals, even at subtropical locations.

  8. High-temperature testing of high performance fiber reinforced concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Vejmelková, Eva; Pavlíková, Milena; Trník, Anton; Čítek, David; Kolísko, Jiří; Černý, Robert; Pavlík, Zbyšek

    2016-06-01

    The effect of high-temperature exposure on properties of High Performance Fiber Reinforced Concrete (HPFRC) is researched in the paper. At first, reference measurements are done on HPFRC samples without high-temperature loading. Then, the HPFRC samples are exposed to the temperatures of 200, 400, 600, 800, and 1000 °C. For the temperature loaded samples, measurement of residual mechanical and basic physical properties is done. Linear thermal expansion coefficient as function of temperature is accessed on the basis of measured thermal strain data. Additionally, simultaneous difference scanning calorimetry (DSC) and thermogravimetry (TG) analysis is performed in order to observe and explain material changes at elevated temperature. It is found that the applied high temperature loading significantly increases material porosity due to the physical, chemical and combined damage of material inner structure, and negatively affects also the mechanical strength. Linear thermal expansion coefficient exhibits significant dependence on temperature and changes of material structure. The obtained data will find use as input material parameters for modelling the damage of HPFRC structures exposed to the fire and high temperature action.

  9. Relation of Total and Cardiovascular Death Rates to Climate System, Temperature, Barometric Pressure, and Respiratory Infection.

    PubMed

    Schwartz, Bryan G; Qualls, Clifford; Kloner, Robert A; Laskey, Warren K

    2015-10-15

    A distinct seasonal pattern in total and cardiovascular death rates has been reported. The factors contributing to this pattern have not been fully explored. Seven locations (average total population 71,354,000) were selected where data were available including relatively warm, cold, and moderate temperatures. Over the period 2004 to 2009, there were 2,526,123 all-cause deaths, 838,264 circulatory deaths, 255,273 coronary heart disease deaths, and 135,801 ST-elevation myocardial infarction (STEMI) deaths. We used time series and multivariate regression modeling to explore the association between death rates and climatic factors (temperature, dew point, precipitation, barometric pressure), influenza levels, air pollution levels, hours of daylight, and day of week. Average seasonal patterns for all-cause and cardiovascular deaths were very similar across the 7 locations despite differences in climate. After adjusting for multiple covariates and potential confounders, there was a 0.49% increase in all-cause death rate for every 1°C decrease. In general, all-cause, circulatory, coronary heart disease and STEMI death rates increased linearly with decreasing temperatures. The temperature effect varied by location, including temperature's linear slope, cubic fit, positional shift on the temperature axis, and the presence of circulatory death increases in locally hot temperatures. The variable effect of temperature by location suggests that people acclimatize to local temperature cycles. All-cause and circulatory death rates also demonstrated sizable associations with influenza levels, dew point temperature, and barometric pressure. A greater understanding of how climate, temperature, and barometric pressure influence cardiovascular responses would enhance our understanding of circulatory and STEMI deaths. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Association between dengue fever incidence and meteorological factors in Guangzhou, China, 2005-2014.

    PubMed

    Xiang, Jianjun; Hansen, Alana; Liu, Qiyong; Liu, Xiaobo; Tong, Michael Xiaoliang; Sun, Yehuan; Cameron, Scott; Hanson-Easey, Scott; Han, Gil-Soo; Williams, Craig; Weinstein, Philip; Bi, Peng

    2017-02-01

    This study aims to (1) investigate the associations between climatic factors and dengue; and (2) identify the susceptible subgroups. De-identified daily dengue cases in Guangzhou for 2005-2014 were obtained from the Chinese Center for Disease Control and Prevention. Weather data were downloaded from the China Meteorological Data Sharing Service System. Distributed lag non-linear models (DLNM) were used to graphically demonstrate the three-dimensional temperature-dengue association. Generalised estimating equation models (GEE) with piecewise linear spline functions were used to quantify the temperature-dengue associations. Threshold values were estimated using a broken-stick model. Middle-aged and older people, people undertaking household duties, retirees, and those unemployed were at high risk of dengue. Reversed U-shaped non-linear associations were found between ambient temperature, relative humidity, extreme wind velocity, and dengue. The optimal maximum temperature (T max ) range for dengue transmission in Guangzhou was 21.6-32.9°C, and 11.2-23.7°C for minimum temperature (T min ). A 1°C increase of T max and T min within these ranges was associated with 11.9% and 9.9% increase in dengue at lag0, respectively. Although lag effects of temperature were observed for up to 141 days for T max and 150 days for T min , the maximum lag effects were observed at 32 days and 39 days respectively. Average relative humidity was negatively associated with dengue when it exceeded 78.9%. Maximum wind velocity (>10.7m/s) inhibited dengue transmission. Climatic factors had significant impacts on dengue in Guangzhou. Lag effects of temperature on dengue lasted the local whole epidemic season. To reduce the likely increasing dengue burden, more efforts are needed to strengthen the capacity building of public health systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Effect of rapid thermal annealing on the electrical, optical and structural properties of ZnO-doped In2O3 films grown by linear facing target sputtering.

    PubMed

    Cho, Chung-Ki; Kim, Han-Ki

    2012-04-01

    We investigated the effect of rapid thermal annealing on the electrical, optical, and structural properties of ZnO-doped In2O3 (ZIO) films grown at different Ar/O2 flow ratios (15/0 and 15/1 sccm) by using linear facing target sputtering. It was found that the ZIO films grown at different Ar/O2, flow ratios showed different electrical and optical behavior with increasing rapid thermal annealing temperature. Synchrotron X-ray scattering examination showed that the different electrical and optical properties of the ZIO films could be attributed to the difference in preferred orientation with an increase in rapid thermal annealing temperature.

  12. An energy balance model exploration of the impacts of interactions between surface albedo, cloud cover and water vapor on polar amplification

    NASA Astrophysics Data System (ADS)

    Södergren, A. Helena; McDonald, Adrian J.; Bodeker, Gregory E.

    2017-11-01

    We examine the effects of non-linear interactions between surface albedo, water vapor and cloud cover (referred to as climate variables) on amplified warming of the polar regions, using a new energy balance model. Our simulations show that the sum of the contributions to surface temperature changes due to any variable considered in isolation is smaller than the temperature changes from coupled feedback simulations. This non-linearity is strongest when all three climate variables are allowed to interact. Surface albedo appears to be the strongest driver of this non-linear behavior, followed by water vapor and clouds. This is because increases in longwave radiation absorbed by the surface, related to increases in water vapor and clouds, and increases in surface absorbed shortwave radiation caused by a decrease in surface albedo, amplify each other. Furthermore, our results corroborate previous findings that while increases in cloud cover and water vapor, along with the greenhouse effect itself, warm the polar regions, water vapor also significantly warms equatorial regions, which reduces polar amplification. Changes in surface albedo drive large changes in absorption of incoming shortwave radiation, thereby enhancing surface warming. Unlike high latitudes, surface albedo change at low latitudes are more constrained. Interactions between surface albedo, water vapor and clouds drive larger increases in temperatures in the polar regions compared to low latitudes. This is in spite of the fact that, due to a forcing, cloud cover increases at high latitudes and decreases in low latitudes, and that water vapor significantly enhances warming at low latitudes.

  13. How does the isomerization rate affect the photoisomerization-induced transport properties of a doped molecular glass-former?

    NASA Astrophysics Data System (ADS)

    Accary, J.-B.; Teboul, V.

    2013-07-01

    We investigate the effect of the isomerization rate f on the microscopic mechanisms at the origin of the massive mass transport found in glass-formers doped with isomerizing azobenzene molecules that result in surface relief gratings formation. To this end we simulate the isomerization of dispersed probe molecules embedded into a molecular host glass-former. The host diffusion coefficient first increases linearly with f and then saturates. The saturated value of the diffusion coefficient and of the viscosity does not depend on f but increases with temperature while the linear response for these transport coefficients depends only slightly on the temperature. We interpret this saturation as arising from the appearance of increasingly soft regions around the probes for high isomerization rates, a result in qualitative agreement with experiments. These two different physical behaviors, linear response and saturation, are reminiscent of the two different unexplained mass transport mechanisms observed for small or large light intensities (for small intensities the molecules move towards the dark regions while for large intensities they move towards the illuminated regions).

  14. Effect of high pressure on the electrical resistivity of optimally doped YBa2Cu3O7-δ single crystals with unidirectional planar defects

    NASA Astrophysics Data System (ADS)

    Vovk, R. V.; Vovk, N. R.; Khadzhai, G. Ya.; Goulatis, I. L.; Chroneos, A.

    2013-08-01

    In the present work the effect of hydrostatic pressure up to 10 kbar on in-plane electrical resistivity of well-structured YBa2Cu3O7-δ (δ<0.15, Тс≈91 K, ΔТс≈0.3 K) single crystals was investigated. The influence of the twin boundaries on the electrical resistivity was minimized. The resistivities temperature dependences in the interval Тс up to 300 K can be approximated by taking into account the linear term at high temperatures and the fluctuation conductivity (Maki-Thompson model) near Тс. The parameters of the linear dependence of R(T) are decreasing as the pressure is increasing. Тс increases linearly when the pressure increases with the derivative dTc/dP≈0.080 K/kbar. Among the Maki-Thompson model parameters the inter-layer distance, d, can be considered to be independent from pressure, the transverse coherence length, ξc(0)∼0.1d.

  15. Linear thermal expansion coefficient determination using in situ curvature and temperature dependent X-ray diffraction measurements applied to metalorganic vapor phase epitaxy-grown AlGaAs

    NASA Astrophysics Data System (ADS)

    Maaßdorf, A.; Zeimer, U.; Grenzer, J.; Weyers, M.

    2013-07-01

    AlxGa1-xAs grown on GaAs is known to be almost perfectly lattice matched with a maximum lattice mismatch of 0.14% at room temperature and even less at temperatures of 700 °C-800 °C. However, as layer structures for edge-emitting diode lasers exhibit an increasing overall thickness of several microns of AlxGa1-xAs, e.g., diode lasers comprising a super-large optical cavity, the accumulated elastic strain energy increases as well. Depending on the growth temperature the formation energy of dislocations can be reached, which is limiting the pseudomorphic growth. In this regard, the thermal expansion coefficient difference between layer and substrate is an important parameter. We utilize in situ curvature measurements during growth of AlxGa1-xAs by metal-organic vapour phase epitaxy to determine the thermal expansion coefficient α. The curvature change with increasing layer thickness, as well as with wafer temperature at constant layer thickness is used to assess α. This is compared to ex situ temperature dependent X-ray diffraction measurements to obtain α. All determined values for α are in good agreement, yielding αAlAs=4.1×10-6 K-1 for a given GaAs linear thermal expansion coefficient of αGaAs=5.73×10-6 K-1.

  16. Genetic variability and phenotypic plasticity of metric thoracic traits in an invasive drosophilid in America.

    PubMed

    Bitner-Mathé, Blanche Christine; David, Jean Robert

    2015-08-01

    Thermal phenotypic plasticity of 5 metric thoracic traits (3 related to size and 2 to pigmentation) was investigated in Zaprionus indianus with an isofemale line design. Three of these traits are investigated for the first time in a drosophilid, i.e. thorax width and width of pigmented longitudinal white and black stripes. The reaction norms of white and black stripes were completely different: white stripes were insensitive to growth temperature while the black stripes exhibited a strong linear decrease with increasing temperatures. Thorax width exhibited a concave reaction norm, analogous but not identical to those of wing length and thorax length: the temperatures of maximum value were different, the highest being for thorax width. All traits exhibited a significant heritable variability and a low evolvability. Sexual dimorphism was very variable among traits, being nil for white stripes and thorax width, and around 1.13 for black stripes. The ratio thorax length to thorax width (an elongation index) was always >1, showing that males have a more rounded thorax at all temperatures. Black stripes revealed a significant increase of sexual dimorphism with increasing temperature. Shape indices, i.e. ratios between size traits all exhibited a linear decrease with temperature, the least sensitive being the elongation index. All these results illustrate the complexity of developmental processes but also the analytical strength of biometrical plasticity studies in an eco-devo perspective.

  17. Thermal effects on shearing resistance of fractures in Tak granite

    NASA Astrophysics Data System (ADS)

    Khamrat, S.; Thongprapha, T.; Fuenkajorn, K.

    2018-06-01

    Triaxial shear tests have been performed on tension-induced fractures and smooth saw-cut surfaces in Tak granite under temperatures up to 773 K. The objective is to gain an understanding of the movement of shallow faults that cause seismic activities in the Tak batholith in the north of Thailand. The results indicate that the peak and residual shear strengths and fracture dilations notably decrease as the temperatures increase. The thermal effect is enhanced under higher confining pressures. The areas of the sheared-off asperities increase with temperature and confining pressure. A power equation can describe the increase of shear strengths with normal stress where the normal stress exponent is a linear function of the temperature. The strain energy principle is applied to incorporate the principal stresses and strains into a strength criterion. A linear relation between the distortional strain energy (Wd) and the mean strain energy (Wm) of the fractures is obtained. The Wd-Wm slope depends on the fracture roughness and strength of the asperities, which can be defined as a function of shear and mean strains and dilation of the fractures. This may allow predicting the peak strength of the shallow faults in the Tak batholith.

  18. Effect of Strain Rate on Mechanical Properties of Wrought Sintered Tungsten at Temperatures above 2500 F

    NASA Technical Reports Server (NTRS)

    Sikora, Paul F.; Hall, Robert W.

    1961-01-01

    Specimens of wrought sintered commercially pure tungsten were made from 1/8-inch swaged rods. All the specimens were recrystallized at 4050 F for 1 hour prior to testing at temperatures from 2500 to 4000 F at various strain rates from 0.002 to 20 inches per inch per minute. Results showed that, at a constant temperature, increasing the strain rate increased the ultimate tensile strength significantly. The effects of both strain rate and temperature on the ultimate tensile strength of tungsten may be correlated by the linear parameter method of Manson and Haferd and may be used to predict the ultimate tensile strength at higher temperatures, 4500 and 5000 F. As previously reported, ductility, as measured by reduction of area in a tensile test, decreases with increasing temperature above about 3000 F. Increasing the strain rate at temperatures above 3000 F increases the ductility. Fractures are generally transgranular at the higher strain rates and intergranular at the lower strain rates.

  19. Short-term effects of meteorological factors on hand, foot and mouth disease among children in Shenzhen, China: Non-linearity, threshold and interaction.

    PubMed

    Zhang, Zhen; Xie, Xu; Chen, Xiliang; Li, Yuan; Lu, Yan; Mei, Shujiang; Liao, Yuxue; Lin, Hualiang

    2016-01-01

    Various meteorological factors have been associated with hand, foot and mouth disease (HFMD) among children; however, fewer studies have examined the non-linearity and interaction among the meteorological factors. A generalized additive model with a log link allowing Poisson auto-regression and over-dispersion was applied to investigate the short-term effects daily meteorological factors on children HFMD with adjustment of potential confounding factors. We found positive effects of mean temperature and wind speed, the excess relative risk (ERR) was 2.75% (95% CI: 1.98%, 3.53%) for one degree increase in daily mean temperature on lag day 6, and 3.93% (95% CI: 2.16% to 5.73%) for 1m/s increase in wind speed on lag day 3. We found a non-linear effect of relative humidity with thresholds with the low threshold at 45% and high threshold at 85%, within which there was positive effect, the ERR was 1.06% (95% CI: 0.85% to 1.27%) for 1 percent increase in relative humidity on lag day 5. No significant effect was observed for rainfall and sunshine duration. For the interactive effects, we found a weak additive interaction between mean temperature and relative humidity, and slightly antagonistic interaction between mean temperature and wind speed, and between relative humidity and wind speed in the additive models, but the interactions were not statistically significant. This study suggests that mean temperature, relative humidity and wind speed might be risk factors of children HFMD in Shenzhen, and the interaction analysis indicates that these meteorological factors might have played their roles individually. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Spatial Characteristics of Small Green Spaces' Mitigating Effects on Microscopic Urban Heat Islands

    NASA Astrophysics Data System (ADS)

    Park, J.; Lee, D. K.; Jeong, W.; Kim, J. H.; Huh, K. Y.

    2015-12-01

    The purpose of the study is to find small greens' disposition, types and sizes to reduce air temperature effectively in urban blocks. The research sites were six high developed blocks in Seoul, Korea. Air temperature was measured with mobile loggers in clear daytime during summer, from August to September, at screen level. Also the measurement repeated over three times a day during three days by walking and circulating around the experimental blocks and the control blocks at the same time. By analyzing spatial characteristics, the averaged air temperatures were classified with three spaces, sunny spaces, building-shaded spaces and small green spaces by using Kruskal-Wallis Test; and small green spaces in 6 blocks were classified into their outward forms, polygonal or linear and single or mixed. The polygonal and mixed types of small green spaces mitigated averaged air temperature of each block which they belonged with a simple linear regression model with adjusted R2 = 0.90**. As the area and volume of these types increased, the effect of air temperature reduction (ΔT; Air temperature difference between sunny space and green space in a block) also increased in a linear relationship. The experimental range of this research is 100m2 ~ 2,000m2 of area, and 1,000m3 ~ 10,000m3 of volume of small green space. As a result, more than 300m2 and 2,300m3 of polygonal green spaces with mixed vegetation is required to lower 1°C; 650m2 and 5,000m3 of them to lower 2°C; about 2,000m2 and about 10,000m3 of them to lower 4°C air temperature reduction in an urban block.

  1. Influence of temperature changes on migraine occurrence in Germany

    NASA Astrophysics Data System (ADS)

    Scheidt, Jörg; Koppe, Christina; Rill, Sven; Reinel, Dirk; Wogenstein, Florian; Drescher, Johannes

    2013-07-01

    Many factors trigger migraine attacks. Weather is often reported to be one of the most common migraine triggers. However, there is little scientific evidence about the underlying mechanisms and causes. In our pilot study, we used smartphone apps and a web form to collect around 4,700 migraine messages in Germany between June 2011 and February 2012. Taking interdiurnal temperature changes as an indicator for changes in the prevailing meteorological conditions, our analyses were focused on the relationship between temperature changes and the frequency of occurrence of migraine attacks. Linear trends were fitted to the total number of migraine messages with respect to temperature changes. Statistical and systematic errors were estimated. Both increases and decreases in temperature lead to a significant increase in the number of migraine messages. A temperature increase (decrease) of 5 °C resulted in an increase of 19 ± 7 % (24 ± 8 %) in the number of migraine messages.

  2. Alterations in MAST suit pressure with changes in ambient temperature.

    PubMed

    Sanders, A B; Meislin, H W; Daub, E

    1983-01-01

    A study was undertaken to test the hypothesis that change in ambient air temperature has an effect on MAST suit pressure according to the ideal gas law. Two different MAST suits were tested on Resusci-Annie dummies. The MAST suits were applied in a cold room at 4.4 degrees C and warmed to 44 degrees C. Positive linear correlations were found in nine trials, but the two suits differed in their rate of increase in pressure. Three trials using humans were conducted showing increased pressure with temperature but at a lesser rate than with dummies. A correlation of 0.5 to 1.0 mm Hg increase in MAST suit pressure for each 1.0 degrees C increase in ambient temperature was found. Implications are discussed for the use of the MAST suit in environmental conditions where the temperature changes.

  3. Effects of temperature and pressure on thermodynamic properties of Cd0.50 Zn0.50 Se alloy

    NASA Astrophysics Data System (ADS)

    Aarifeen, Najm ul; Afaq, A.

    2017-09-01

    Thermodynamic properties of \\text{C}{{\\text{d}}0.50} \\text{Z}{{\\text{n}}0.50} Se alloy are studied using quasi harmonic model for pressure range 0-10 GPa and temperature range 0-1000 K. The structural optimization is obtained by self consistent field calculations and full-potential linear muffin-tin orbital method with GGA+U as an exchange correlation functional where U=2.3427 eV is the hubbard potential. The effects of temperature and pressure on the bulk modulus, Helmholtz free energy, internal energy, entropy, Debye temperature, Grüneisen parameter, thermal expansion coefficient and heat capacities of the material are observed and discussed. The bulk modulus, Helmholtz free energy and Debye temperature are found to decrease with increasing temperature while there is an increasing behavior when the pressure rises. Whereas internal energy has increasing trend with rises in temperature and it almost remains insensitive to pressure. The entropy of the system increases (decreases) with a rise of pressure (temperature).

  4. Temporal heating profile influence on the immediate bond strength following laser tissue soldering.

    PubMed

    Rabi, Yaron; Katzir, Abraham

    2010-07-01

    Bonding of tissues by laser heating is considered as a future alternative to sutures and staples. Increasing the post-operative bond strength remains a challenging issue for laser tissue bonding, especially in organs that have to sustain considerable tension or pressure. In this study, we investigated the influence of different temporal heating profiles on the strength of soldered incisions. The thermal damage following each heating procedure was quantified, in order to assess the effect of each heating profile on the thermal damage. Incisions in porcine bowel tissue strips (1 cmx4 cm) were soldered, using a 44% liquid albumin mixed with indocyanine green and a temperature controlled laser (830 nm) tissue bonding system. Heating was done either with a linear or a step temporal heating profile. The incisions were bonded by soldering at three points, separated by 2 mm. Set-point temperatures of T(set) = 60, 70, 80, 90, 100, 110, 150 degrees C and dwell times of t(d) = 10, 20, 30, 40 seconds were investigated. The bond strength was measured immediately following each soldering by applying a gradually increased tension on the tissue edges until the bond break. Bonds formed by linear heating were stronger than the ones formed by step heating: at T(set) = 80 degrees C the bonds were 40% stronger and at T(set) = 90 degrees C the bonds strength was nearly doubled. The bond strength difference between the heating methods was larger as T(set) increased. Linear heating produced stronger bonds than step heating. The difference in the bond strength was more pronounced at high set-point temperatures and short dwell times. The bond strength could be increased with either higher set-point temperature or a longer dwell time.

  5. Tuning conductivity in boron nanowire by edge geometry

    NASA Astrophysics Data System (ADS)

    Bhuyan, Prabal Dev; Gupta, Sanjeev K.; Sonvane, Yogesh; Gajjar, P. N.

    2018-04-01

    In present study, we have investigated electronic and temperature dependent transport properties of carbyne like linear chain and ribbon like zigzag structures of Boron (B) nanowire. The linear chain structure showed higher electric and thermal conductivity, as it is sp-hybridized, than its counterpart ribbon (R) structure. However the conductivity of ribbon structure increases with increases in width due to edge geometry effect. The ribbon (3R) structure showed high electric and thermal conductivity of 8.0×1019 1/Ω m s and 0.59×1015 W/ m K respectively. Interestingly we have observed that B linear chain showed higher thermal conductivity of 0.23×1015 W/ m K than its ribbon R and 2R structure above 600K. Because of high Seebeck co-efficient of boron chain and ribbon (R) structures at low temperature, they could find applications in thermoelectric sensors. Our results show that tuning conductivity property of boron nanowire could be of great interest in research for future electric connector in nanodevices.

  6. [Effect of compaction pressure on the properties of dental machinable zirconia ceramic].

    PubMed

    Huang, Hui; Wei, Bin; Zhang, Fu-qiang; Sun, Jing; Gao, Lian

    2010-10-01

    To investigate the effect of compaction pressure on the linear shrinkage, sintering property and machinability of the dental zirconia ceramic. The nano-size zirconia powder was compacted at different isostatic pressure and sintered at different temperature. The linear shrinkage of sintered body was measured and the relative density was tested using the Archimedes method. The cylindrical surface of pre-sintering blanks was traversed using a hard metal tool. Surface and edge quality were checked visually using light stereo microscopy. The sintering behaviour depended on the compaction pressure. Increasing compaction pressure led to higher sintering rate and lower sintering temperature. Increasing compaction pressure also led to decreasing linear shrinkage of the sintered bodies, from 24.54% of 50 MPa to 20.9% of 400 MPa. Compaction pressure showed only a weak influence on machinability of zirconia blanks, but the higher compaction pressure resulted in the poor surface quality. The better sintering property and machinability of dental zirconia ceramic is found for 200-300 MPa compaction pressure.

  7. Thermal-electrical properties and resistance stability of silver coated yarns

    NASA Astrophysics Data System (ADS)

    Li, Yafang; Liu, Hao; Li, Xiaojiu

    2017-03-01

    Thermal-electrical properties and resistance stability of silver yarns was researched to evaluate the performance be a heating element. Three samples of silver coated yarns with different linear density and electrical resistivity, which obtained by market. Silver coated yarns were placed at the high temperature condition for ageing. The electrical resistances of yarns were increased with the ageing process. The infrared photography instrument was used to measurement the temperature variation of silver coated yarns by applied different current on. The result shows that the temperature rise with the power increases.

  8. A time series study on the effects of cold temperature on road traffic injuries in Seoul, Korea.

    PubMed

    Lee, Won-Kyung; Lee, Hye-Ah; Hwang, Seung-sik; Kim, Ho; Lim, Youn-Hee; Hong, Yun-Chul; Ha, Eun-Hee; Park, Hyesook

    2014-07-01

    Although traffic accidents are associated with weather, the influence of temperature on injuries from traffic accidents has not been evaluated sufficiently. The objective of this study was to evaluate the effect of temperature, especially cold temperatures, on injuries from traffic accidents in Seoul, Korea. We also explored the relationship of temperature with different types of traffic accident. The daily frequencies of injuries from traffic accidents in Seoul were summarized from the integrated database established by the Korea Road Traffic Authority. Weather data included temperature, barometric pressure, rainfall, snow, and fog from May 2007 to December 2011. The qualitative relationship between daily mean temperature and injuries from traffic accidents was evaluated using a generalized additive model with Poisson distribution. Further analysis was performed using piecewise linear regression if graph the showed non-linearity with threshold. The incidence of injuries was 216 per 100,000 person-months in Seoul. The effect of temperature on injuries from traffic accidents was minimal during spring and summer. However, injuries showed a more striking relationship with temperature in winter than in other seasons. In winter, the number of injuries increased as the temperature decreased to <0°C. The injuries increased by 2.1% per 1°C decrease under the threshold of the daily average temperature -5.7°C, which is 10-fold greater than the effect of temperature above the threshold. Some groups were more susceptible to injuries, such as young and male drivers, according to the types of traffic accident when the temperature decreased to below the freezing temperature. The incidence of injuries increased sharply when the temperature decreased below freezing temperature in winter. Temperature can be effectively used to inform high risk of road traffic injuries, thus helping to prevent road traffic injuries. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Temperature regime and carbon dioxide enrichment alter cotton boll development and fiber properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reddy, K.R.; Davidonis, G.H.; Johnson, A.S.

    Temperature and atmospheric carbon dioxide concentration [CO{sub 2}] affect cotton (Gossypium hirsutum L.) growth and development, but the interaction of these two factors on bill and fiber properties has not been studied. An experiment was conducted in naturally lit plant growth chambers to determine the influence of temperature and atmospheric [CO{sub 2}] on cotton (cv. DPL-51) boll and fiber growth parameters. Five temperature regimes were evaluated: the 1995 temperature at Mississippi State, MS; the 1995 temperature minus 2 C; and the 1995 temperature plus 2, 5, and 7 C. Daily and seasonal variation and amplitudes were maintained. Atmospheric [CO{sub 2}]more » treatments were 360 (ambient) and 720 {micro}L L{sup {minus}1}. Boll number, boll growth, and fiber properties were measured. Boll size and maturation periods decreased as temperature increased. Boll growth increased with temperature to 25 C and then declined at the highest temperature. Boll maturation period, size, and growth rates were not affected by atmospheric [CO{sub 2}]. The most temperature-sensitive aspect of cotton development is boll retention. Almost no bolls were retained to maturity at 1995 plus 5 or 7 C, but squares and bolls were continuously produced even at those high temperatures. Therefore, the upper limit for cotton boll survival is 32 C, or 5 C warmer than the 1995 US Mid-South ambient temperatures. The 720 {micro}L L{sup {minus}1} atmospheric [CO{sub 2}] had about 40% more squares and bolls across temperatures than the 360 {micro}L L{sup {minus}1} [CO{sub 2}]. Fibers were longer when bolls grew at less than optimal temperatures (25 C) for boll growth. As temperature increased, fiber length distributions were more uniform. Fiber fineness and maturity increased linearly with the increase in temperature up to 26 C, but decreased at 32 C. Short-fiber content declined linearly from 17 to 26 C, but was higher at higher temperature. As for boll growth and developmental parameters, elevated atmospheric [CO{sub 2}] did not affect any of the fiber parameters. Changes in temperature, however, had a dramatic effect on boll set and fiber properties. The relationships between temperature and boll growth and developmental rate functions and fiber properties provide the necessary functional parameters to build fiber models under optimum water and nutrient conditions.« less

  10. Dose Rate Effects in Linear Bipolar Transistors

    NASA Technical Reports Server (NTRS)

    Johnston, Allan; Swimm, Randall; Harris, R. D.; Thorbourn, Dennis

    2011-01-01

    Dose rate effects are examined in linear bipolar transistors at high and low dose rates. At high dose rates, approximately 50% of the damage anneals at room temperature, even though these devices exhibit enhanced damage at low dose rate. The unexpected recovery of a significant fraction of the damage after tests at high dose rate requires changes in existing test standards. Tests at low temperature with a one-second radiation pulse width show that damage continues to increase for more than 3000 seconds afterward, consistent with predictions of the CTRW model for oxides with a thickness of 700 nm.

  11. Heat propagation in dentin during instrumentation with different sonic scaler tips.

    PubMed

    Kocher, T; Plagmann, H C

    1996-04-01

    It is important to know how much heat is generated when a root surface is debrided with sonic scalers and if that heat can be released satisfactorily into the environment. The temperature changes that occurred in dentinal specimens treated with two different sonic scaler tips, used with and without coolant, were studied. Temperature increases of up to 4 degrees C were observed for both tips when a coolant was used. Heat propagation during instrumentation was dependent to a considerable degree on the temperature of the coolant. Sonic scalers should not be used without coolant, because the dentinal temperature may increase up to 35 degrees C, depending on the force of application. A high positive linear correlation was found between increase in temperature and force of application.

  12. Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment.

    PubMed

    Carrère, Hélène; Bougrier, Claire; Castets, Delphine; Delgenès, Jean Philippe

    2008-11-01

    Thermal treatments with temperature ranging from 60 to 210 degrees C were applied to 6 waste-activated sludge samples originating from high or medium load, extended aeration wastewater treatment processes that treated different wastewaters (urban, urban and industrial or slaughterhouse). COD sludge solubilisation was linearly correlated with the treatment temperature on the whole temperature range and independently of the sludge samples. Sludge batch mesophilic biodegradability increased with treatment temperature up to 190 degrees C. In this temperature range, biodegradability enhancement or methane production increase by thermal hydrolysis was shown to be a function of sludge COD solubilisation but also of sludge initial biodegradability. The lower the initial biodegradability means the higher efficiency of thermal treatment.

  13. Parametric Analysis of the feasibility of low-temperature geothermal heat recovery in sedimentary basins

    NASA Astrophysics Data System (ADS)

    Tomac, I.; Caulk, R.

    2016-12-01

    The current study explored the feasibility of heat recovery through the installation of heat exchangers in abandoned oil and gas wells. Finite Element Methods (FEM) were employed to determine the effects of various site specific parameters on production fluid temperature. Specifically, the study parameterized depth of well, subsurface temperature gradient, sedimentary rock conductivity, and flow rate. Results show that greater well depth is associated with greater heat flow, with the greatest returns occurring between depths of 1.5 km and 7 km. Beyond 7 km, the rate of return decreases due to a non-linear increase of heat flow combined with a continued linear increase of pumping cost. One cause for the drop of heat flow was the loss of heat as the fluid travels from depth to the surface. Further analyses demonstrated the benefit of an alternative heat exchanger configuration characterized by thermally insulated sections of the upward heat exchanger. These simulations predict production fluid temperature gains between 5 - 10 oC, which may be suitable for geothermal heat pump applications.

  14. Wireless remote weather monitoring system based on MEMS technologies.

    PubMed

    Ma, Rong-Hua; Wang, Yu-Hsiang; Lee, Chia-Yen

    2011-01-01

    This study proposes a wireless remote weather monitoring system based on Micro-Electro-Mechanical Systems (MEMS) and wireless sensor network (WSN) technologies comprising sensors for the measurement of temperature, humidity, pressure, wind speed and direction, integrated on a single chip. The sensing signals are transmitted between the Octopus II-A sensor nodes using WSN technology, following amplification and analog/digital conversion (ADC). Experimental results show that the resistance of the micro temperature sensor increases linearly with input temperature, with an average TCR (temperature coefficient of resistance) value of 8.2 × 10(-4) (°C(-1)). The resistance of the pressure sensor also increases linearly with air pressure, with an average sensitivity value of 3.5 × 10(-2) (Ω/kPa). The sensitivity to humidity increases with ambient temperature due to the effect of temperature on the dielectric constant, which was determined to be 16.9, 21.4, 27.0, and 38.2 (pF/%RH) at 27 °C, 30 °C, 40 °C, and 50 °C, respectively. The velocity of airflow is obtained by summing the variations in resistor response as airflow passed over the sensors providing sensitivity of 4.2 × 10(-2), 9.2 × 10(-2), 9.7 × 10(-2) (Ω/ms(-1)) with power consumption by the heating resistor of 0.2, 0.3, and 0.5 W, respectively. The passage of air across the surface of the flow sensors prompts variations in temperature among each of the sensing resistors. Evaluating these variations in resistance caused by the temperature change enables the measurement of wind direction.

  15. High temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, Terry L.

    1991-01-01

    The aerospace and electronics industries have an ever increasing need for higher performance materials. In recent years, linear aromatic polyimides have been proven to be a superior class of materials for various applications in these industries. The use of this class of polymers as adhesives is continuing to increase. Several NASA Langley developed polyimides show considerable promise as adhesives because of their high glass transition temperatures, thermal stability, resistance to solvents/water, and their potential for cost effective manufacture.

  16. CHO cell enlargement oscillates with a temperature-compensated period of 24 min

    NASA Technical Reports Server (NTRS)

    Pogue, R.; Morre, D. M.; Morre, D. J.

    2000-01-01

    The rate of increase in cell area of CHO cells when measured at intervals of 1 min using a light microscope equipped with a video measurement system, oscillated with a minimum period of about 24 min. The pattern of oscillations paralleled those of the 24 min period observed with the oxidation of NADH by an external cell surface or plasma membrane NADH oxidase. The increase in cell area was non-linear. Intervals of rapid increase in area alternated with intervals of rapid decrease in area. The length of the 24 min period was temperature-compensated (approximately the same when measured at 14 degrees C, 24 degrees C or 34 degrees C) while the rate of cell enlargement increased with temperature over this same range of temperatures.

  17. Studies on color-center formation in glass utilizing measurements made during 1 to 3 MeV electron irradiation

    NASA Technical Reports Server (NTRS)

    Swyler, K. J.; Levy, P. W.

    1976-01-01

    The coloring of NBS 710 glass was studied using a facility for making optical absorption measurements during and after electron irradiation. The induced absorption contains three Gaussian shaped bands. The color center growth curves contain two saturating exponential and one linear components. After irradiation the coloring decays can be described by three decreasing exponentials. At room temperature both the coloring curve plateau and coloring rate increases with increasing dose rate. Coloring measurements made at fixed dose rate but at increasing temperature indicate: (1) The coloring curve plateau decreases with increasing temperature and coloring is barely measurable near 400 C. (2) The plateau is reached more rapidly as the temperature increases. (3) The decay occurring after irradiation cannot be described by Arrhenius kinetics. At each temperature the coloring can be explained by simple kinetics. The temperature dependence of the decay can be explained if it is assumed that the thermal untrapping is controlled by a distribution of activation energies.

  18. Thermophysical property of undercooled liquid binary alloy composed of metallic and semiconductor elements

    NASA Astrophysics Data System (ADS)

    Wang, H. P.; Wei, B.

    2009-02-01

    The thermophysical properties of the liquid Ni-Si binary alloy system were investigated by the molecular dynamics method. The properties investigated include density, excessive volume, enthalpy, mixing enthalpy and specific heat at both superheated and undercooled states. It is found that the density decreases with an increase in the Si content, and so do the temperature coefficients. If the Si content is smaller than 30%, the density changes linearly with the temperature. If it is larger than 30%, the density is a quadratic function of the temperature. The simulated enthalpies of different composition alloys increase linearly with a rise in temperature. This indicates that the specific heats of Ni-Si alloys change little with temperature. The specific heat versus composition first decreases to a minimum value at 50% Si, then experiences a rise to a maximum value at 90% Si and finally falls again. According to the excessive volume and mixing enthalpy, it can be deduced that the Ni-Si alloy system seriously deviates from the ideal solution. Moreover, a comparison was also performed between the present results and the approximated values by the Neumann-Kopp rule. It reveals that this work provides reasonable data in a broad temperature range, especially for the metastable undercooled liquid state.

  19. Elasticity and Stability of Clathrate Hydrate: Role of Guest Molecule Motions.

    PubMed

    Jia, Jihui; Liang, Yunfeng; Tsuji, Takeshi; Murata, Sumihiko; Matsuoka, Toshifumi

    2017-05-02

    Molecular dynamic simulations were performed to determine the elastic constants of carbon dioxide (CO 2 ) and methane (CH 4 ) hydrates at one hundred pressure-temperature data points, respectively. The conditions represent marine sediments and permafrost zones where gas hydrates occur. The shear modulus and Young's modulus of the CO 2 hydrate increase anomalously with increasing temperature, whereas those of the CH 4 hydrate decrease regularly with increase in temperature. We ascribe this anomaly to the kinetic behavior of the linear CO 2 molecule, especially those in the small cages. The cavity space of the cage limits free rotational motion of the CO 2 molecule at low temperature. With increase in temperature, the CO 2 molecule can rotate easily, and enhance the stability and rigidity of the CO 2 hydrate. Our work provides a key database for the elastic properties of gas hydrates, and molecular insights into stability changes of CO 2 hydrate from high temperature of ~5 °C to low decomposition temperature of ~-150 °C.

  20. Evaluating linear response in active systems with no perturbing field: Application to the calculation of an effective temperature

    NASA Astrophysics Data System (ADS)

    Szamel, Grzegorz

    We present a method for the evaluation of time-dependent linear response functions for systems of active particles propelled by a persistent (colored) noise from unperturbed simulations. The method is inspired by the Malliavin weights sampling method proposed earlier for systems of (passive) Brownian particles. We illustrate our method by evaluating a linear response function for a single active particle in an external harmonic potential. As an application, we calculate the time-dependent mobility function and an effective temperature, defined through the Einstein relation between the self-diffusion and mobility coefficients, for a system of active particles interacting via a screened-Coulomb potential. We find that this effective temperature decreases with increasing persistence time of the self-propulsion. Initially, for not too large persistence times, it changes rather slowly, but then it decreases markedly when the persistence length of the self-propelled motion becomes comparable with the particle size. Supported by NSF and ERC.

  1. Global variation in the effects of ambient temperature on mortality: a systematic evaluation

    PubMed Central

    Guo, Yuming; Gasparrini, Antonio; Armstrong, Ben; Li, Shanshan; Tawatsupa, Benjawan; Tobias, Aurelio; Lavigne, Eric; de Sousa Zanotti Stagliorio Coelho, Micheline; Leone, Michela; Pan, Xiaochuan; Tong, Shilu; Tian, Linwei; Kim, Ho; Hashizume, Masahiro; Honda, Yasushi; Guo, Yue-Liang Leon; Wu, Chang-Fu; Punnasiri, Kornwipa; Yi, Seung-Muk; Michelozzi, Paola; Saldiva, Paulo Hilario Nascimento; Williams, Gail

    2014-01-01

    Background Studies have examined the effects of temperature on mortality in a single city, country or region. However, less evidence is available on the variation in the associations between temperature and mortality in multiple countries, analyzed simultaneously. Methods We obtained daily data on temperature and mortality in 306 communities from 12 countries/regions (Australia, Brazil, Thailand, China, Taiwan, Korea, Japan, Italy, Spain, United Kingdom, United States and Canada). Two-stage analyses were used to assess the non-linear and delayed relationship between temperature and mortality. In the first stage, a Poisson regression allowing over-dispersion with distributed lag non-linear model was used to estimate the community-specific temperature-mortality relationship. In the second stage, a multivariate meta-analysis was used to pool the non-linear and delayed effects of ambient temperature at the national level, in each country. Results The temperatures associated with the lowest mortality were around the 75th percentile of temperature in all the countries/regions, ranging from 66th (Taiwan) to 80th (UK) percentiles. The estimated effects of cold and hot temperatures on mortality varied by community and country. Meta-analysis results show that both cold and hot temperatures increased the risk of mortality in all the countries/regions. Cold effects were delayed and lasted for many days, while hot effects appeared quickly and did not last long. Conclusions People have some ability to adapt to their local climate type, but both cold and hot temperatures are still associated with the risk of mortality. Public health strategies to alleviate the impact of ambient temperatures are important, in particular in the context of climate change. PMID:25166878

  2. A dose-response evaluation of rumen-protected niacin in thermoneutral or heat-stressed lactating Holstein cows.

    PubMed

    Rungruang, S; Collier, J L; Rhoads, R P; Baumgard, L H; de Veth, M J; Collier, R J

    2014-01-01

    Twenty-four multiparous high-producing dairy cows (40.0±1.4kg/d) were used in a factorial design to evaluate effects of 2 environments [thermoneutral (TN) and heat stress (HS)] and a dose range of dietary rumen-protected niacin (RPN; 0, 4, 8, or 12g/d) on body temperature, sweating rate, feed intake, water intake, production parameters, and blood niacin concentrations. Temperature-humidity index values during TN never exceeded 68 (stress threshold), whereas temperature-humidity index values during HS were above 68 for 24h/d. The HS environment increased hair coat and skin, rectal, and vaginal temperatures; respiration rate; skin and hair coat evaporative heat loss; and water intake and decreased DMI (3.5kg/d), milk yield (4.1kg/d), 4% fat-corrected milk (2.7kg/d), and milk protein yield (181.7g/d). Sweating rate increased during HS (12.7g/m(2) per h) compared with TN, but this increase was only 10% of that reported in summer-acclimated cattle. Niacin supplementation did not affect sweating rate, dry-matter intake, or milk yield in either environment. Rumen-protected niacin increased plasma and milk niacin concentrations in a linear manner. Heat stress reduced niacin concentration in whole blood (7.86 vs. 6.89μg/mL) but not in milk. Reduced blood niacin concentration was partially corrected by dietary RPN. An interaction existed between dietary RPN and environment; dietary RPN linearly increased water intake in both environments, but the increase was greater during HS conditions. Increasing dietary RPN did not influence skin temperatures. During TN, supplementing 12g/d of RPN increased hair coat (unshaved skin; 30.3 vs. 31.3°C at 1600h) but not shaved skin (32.8 vs. 32.9°C at 1600h) temperature when compared with 0g/d at all time points, whereas the maximum temperature (18°C) of the room was lower than skin temperature. These data suggest that dietary RPN increased water intake during both TN and HS and hair coat temperature during TN; however, core body temperature was unaffected. Thus, encapsulated niacin did not improve thermotolerance of winter-acclimated lactating dairy cows exposed to moderate thermal stress in Arizona. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. Effects of Temperature during Moist Heat Treatment on Ruminal Degradability and Intestinal Digestibility of Protein and Amino Acids in Hempseed Cake.

    PubMed

    Karlsson, L; Ruiz-Moreno, M; Stern, M D; Martinsson, K

    2012-11-01

    The objective of this study was to evaluate ruminal degradability and intestinal digestibility of crude protein (CP) and amino acids (AA) in hempseed cake (HC) that were moist heat treated at different temperatures. Samples of cold-pressed HC were autoclaved for 30 min at 110, 120 or 130°C, and a sample of untreated HC was used as the control. Ruminal degradability of CP was estimated, using the in situ Dacron bag technique; intestinal CP digestibility was estimated for the 16 h in situ residue using a three-step in vitro procedure. AA content was determined for the HC samples (heat treated and untreated) of the intact feed, the 16 h in situ residue and the residue after the three-step procedure. There was a linear increase in RUP (p = 0.001) and intestinal digestibility of RUP (p = 0.003) with increasing temperature during heat treatment. The 130°C treatment increased RUP from 259 to 629 g/kg CP, while intestinal digestibility increased from 176 to 730 g/kg RUP, compared to the control. Hence, the intestinal available dietary CP increased more than eight times. Increasing temperatures during heat treatment resulted in linear decreases in ruminal degradability of total AA (p = 0.006) and individual AA (p<0.05) and an increase in intestinal digestibility that could be explained both by a linear and a quadratic model for total AA and most individual AA (p<0.05). The 130°C treatment decreased ruminal degradability of total AA from 837 to 471 g/kg, while intestinal digestibility increased from 267 to 813 g/kg of rumen undegradable AA, compared with the control. There were differences between ruminal AA degradability and between intestinal AA digestibility within all individual HC treatments (p<0.001). It is concluded that moist heat treatment at 130°C did not overprotect the CP of HC and could be used to shift the site of CP and AA digestion from the rumen to the small intestine. This may increase the value of HC as a protein supplement for ruminants.

  4. Effects of Temperature during Moist Heat Treatment on Ruminal Degradability and Intestinal Digestibility of Protein and Amino Acids in Hempseed Cake

    PubMed Central

    Karlsson, L.; Ruiz-Moreno, M.; Stern, M. D.; Martinsson, K.

    2012-01-01

    The objective of this study was to evaluate ruminal degradability and intestinal digestibility of crude protein (CP) and amino acids (AA) in hempseed cake (HC) that were moist heat treated at different temperatures. Samples of cold-pressed HC were autoclaved for 30 min at 110, 120 or 130°C, and a sample of untreated HC was used as the control. Ruminal degradability of CP was estimated, using the in situ Dacron bag technique; intestinal CP digestibility was estimated for the 16 h in situ residue using a three-step in vitro procedure. AA content was determined for the HC samples (heat treated and untreated) of the intact feed, the 16 h in situ residue and the residue after the three-step procedure. There was a linear increase in RUP (p = 0.001) and intestinal digestibility of RUP (p = 0.003) with increasing temperature during heat treatment. The 130°C treatment increased RUP from 259 to 629 g/kg CP, while intestinal digestibility increased from 176 to 730 g/kg RUP, compared to the control. Hence, the intestinal available dietary CP increased more than eight times. Increasing temperatures during heat treatment resulted in linear decreases in ruminal degradability of total AA (p = 0.006) and individual AA (p<0.05) and an increase in intestinal digestibility that could be explained both by a linear and a quadratic model for total AA and most individual AA (p<0.05). The 130°C treatment decreased ruminal degradability of total AA from 837 to 471 g/kg, while intestinal digestibility increased from 267 to 813 g/kg of rumen undegradable AA, compared with the control. There were differences between ruminal AA degradability and between intestinal AA digestibility within all individual HC treatments (p<0.001). It is concluded that moist heat treatment at 130°C did not overprotect the CP of HC and could be used to shift the site of CP and AA digestion from the rumen to the small intestine. This may increase the value of HC as a protein supplement for ruminants. PMID:25049517

  5. Increased Night Temperature Negatively Affects Grain Yield, Biomass and Grain Number in Chilean Quinoa

    PubMed Central

    Lesjak, Jurka; Calderini, Daniel F.

    2017-01-01

    Quinoa high nutritive value increases interest worldwide, especially as a crop that could potentially feature in different cropping systems, however, climate change, particularly rising temperatures, challenges this and other crop species. Currently, only limited knowledge exists regarding the grain yield and other key traits response to higher temperatures of this crop, especially to increased night temperatures. In this context, the main objective of this study was to evaluate the effect of increased night temperature on quinoa yield, grain number, individual grain weight and processes involved in crop growth under the environmental conditions (control treatment) and night thermal increase at two phases: flowering (T1) and grain filling (T2) in southern Chile. A commercial genotype, Regalona, and a quinoa accession (Cod. BO5, N°191, grain bank from Semillas Baer, hereby referred to as Accession) were used, due to their adaptability to Southern Chilean conditions and contrasting grain yield potential, grain weight and size of plants. Temperature was increased ≈4°C above the ambient from 8 pm until 9 am the next morning. Control treatments reached a high grain yield (600 and 397 g m-2, i.e., Regalona and Accession). Temperature increase reduced grain yield by 31% under T1 treatment and 12% when under T2 in Regalona and 23 and 26% in Accession, respectively. Aboveground biomass was negatively affected by the thermal treatments and a positive linear association was found between grain yield and aboveground biomass across treatments. By contrast, the harvest index was unaffected either by genotype, or by thermal treatments. Grain number was significantly affected between treatments and this key trait was linearly associated with grain yield. On the other hand, grain weight showed a narrow range of variation across treatments. Additionally, leaf area index was not affected, but significant differences were found in SPAD values at the end of T1 treatment, compared to control. Little change was found in the harvest index, individual grain weight, grain protein content or water soluble carbohydrates in response to the increased night temperature in this crop. PMID:28386266

  6. Association of digital cushion thickness with sole temperature measured with the use of infrared thermography.

    PubMed

    Oikonomou, G; Trojacanec, P; Ganda, E K; Bicalho, M L S; Bicalho, R C

    2014-07-01

    The main objective of this study was to investigate the association between digital cushion thickness and sole temperature measured by infrared thermography. Data were collected from 216 lactating Holstein cows at 4 to 10d in milk (DIM). Cows were locomotion scored and sole temperature was measured after claw trimming (a minimum delay of 3 min was allowed for the hoof to cool) using an infrared thermography camera. Temperature was measured at the typical ulcer site of the lateral digit of the left hind foot. Immediately after the thermographic image was obtained, the thickness of the digital cushion was measured by ultrasonography. Rumen fluid samples were collected with a stomach tube and sample pH was measured immediately after collection. Additionally, a blood sample was obtained and used for measurements of serum concentrations of β-hydroxybutyrate (BHBA), nonesterified fatty acids (NEFA), and haptoglobin. To evaluate the associations of digital cushion thickness with sole temperature, a linear regression model was built using the GLIMMIX procedure in SAS software (SAS Institute Inc., Cary, NC). Sole temperature was the response variable, and digital cushion thickness quartiles, locomotion score group, rumen fluid pH, rumen fluid sample volume, environmental temperature, age in days, and serum levels of NEFA, BHBA, and haptoglobin were fitted in the model. Only significant variables were retained in the final model. Simple linear regression scatter plots were used to illustrate associations between sole temperature (measured by infrared thermography at the typical ulcer site) and environmental temperature and between NEFA and BHBA serum levels and haptoglobin. One-way ANOVA was used to compare rumen fluid pH for different locomotion score groups and for different digital cushion quartiles. Results from the multivariable linear regression model showed that sole temperature increased as locomotion scores increased and decreased as digital cushion thickness increased. These results were adjusted for environmental temperature, which was significantly associated with sole temperature. Serum levels of NEFA, BHBA, and haptoglobin were not associated with sole temperature. However, significant correlations existed between serum levels of NEFA and haptoglobin and between serum levels of BHBA and haptoglobin. Rumen fluid pH was not associated with either locomotion score or digital cushion thickness. In conclusion, we show here that digital cushion thickness was associated with sole temperature in cows at 4 to 10 DIM. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  7. Characteristics of Coplanar Waveguide on Sapphire for High Temperature Applications (25 to 400 degrees C)

    NASA Technical Reports Server (NTRS)

    Ponchak, George E.; Jordan, Jennifer L.; Scardelletti, Maximilian; Stalker, Amy R.

    2007-01-01

    This paper presents the characteristics of coplanar waveguide transmission lines fabricated on R-plane sapphire substrates as a function of temperature across the temperature range of 25 to 400 C. Effective permittivity and attenuation are measured on a high temperature probe station. Two techniques are used to obtain the transmission line characteristics, a Thru-Reflect-Line calibration technique that yields the propagation coefficient and resonant stubs. To a first order fit of the data, the effective permittivity and the attenuation increase linearly with temperature.

  8. High-temperature performance of MoS2 thin-film transistors: Direct current and pulse current-voltage characteristics

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Rumyantsev, S. L.; Samnakay, R.; Shur, M. S.; Balandin, A. A.

    2015-02-01

    We report on fabrication of MoS2 thin-film transistors (TFTs) and experimental investigations of their high-temperature current-voltage characteristics. The measurements show that MoS2 devices remain functional to temperatures of at least as high as 500 K. The temperature increase results in decreased threshold voltage and mobility. The comparison of the direct current (DC) and pulse measurements shows that the direct current sub-linear and super-linear output characteristics of MoS2 thin-films devices result from the Joule heating and the interplay of the threshold voltage and mobility temperature dependences. At temperatures above 450 K, a kink in the drain current occurs at zero gate voltage irrespective of the threshold voltage value. This intriguing phenomenon, referred to as a "memory step," was attributed to the slow relaxation processes in thin films similar to those in graphene and electron glasses. The fabricated MoS2 thin-film transistors demonstrated stable operation after two months of aging. The obtained results suggest new applications for MoS2 thin-film transistors in extreme-temperature electronics and sensors.

  9. Temperature responsive transmitter

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L. (Inventor)

    1987-01-01

    A temperature responsive transmitter is provided in which frequency varies linearly with temperature. The transmitter includes two identically biased transistors connected in parallel. A capacitor, which reflects into the common bases to generate negative resistance effectively in parallel with the capacitor, is connected to the common emitters. A crystal is effectively in parallel with the capacitor and the negative resistance. Oscillations occur if the magnitude of the absolute value of the negative resistance is less than the positive resistive impedance of the capacitor and the inductance of the crystal. The crystal has a large linear temperature coefficient and a resonant frequency which is substantially less than the gain-bandwidth product of the transistors to ensure that the crystal primarily determines the frequency of oscillation. A high-Q tank circuit having an inductor and a capacitor is connected to the common collectors to increase the collector current flow which in turn enhances the radiation of the oscillator frequency by the inductor.

  10. Ignition characteristics of the iron-based alloy UNS S66286 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, James W.; Billard, Phillip A.; Hurley, James A.; Mcdermott, Kathleen M.; Vazquez, Isaura

    1988-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the iron based alloy UNS S66286. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to destruction from temperatures below the solidus temperature. In addition endothermic events occurred as the alloy was heated, many at reproducible temperatures. Many endothermic events occurred prior to abrupt increases in surface temperature and appeared to accelerate the rate of increase in specimen temperature to rates greater than what would be expected from increased temperature alone. It is suggested that the source of these endotherms may increase the oxidation rate of the alloy. Ignition parameters are defined and the temperatures at which these parameters occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (25 to 2000 psia).

  11. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation.

    PubMed

    Gritti, Fabrice

    2016-11-18

    An new class of gradient liquid chromatography (GLC) is proposed and its performance is analyzed from a theoretical viewpoint. During the course of such gradients, both the solvent strength and the column temperature are simultaneously changed in time and space. The solvent and temperature gradients propagate along the chromatographic column at their own and independent linear velocity. This class of gradient is called combined solvent- and temperature-programmed gradient liquid chromatography (CST-GLC). The general expressions of the retention time, retention factor, and of the temporal peak width of the analytes at elution in CST-GLC are derived for linear solvent strength (LSS) retention models, modified van't Hoff retention behavior, linear and non-distorted solvent gradients, and for linear temperature gradients. In these conditions, the theory predicts that CST-GLC is equivalent to a unique and apparent dynamic solvent gradient. The apparent solvent gradient steepness is the sum of the solvent and temperature steepness. The apparent solvent linear velocity is the reciprocal of the steepness-averaged sum of the reciprocal of the actual solvent and temperature linear velocities. The advantage of CST-GLC over conventional GLC is demonstrated for the resolution of protein digests (peptide mapping) when applying smooth, retained, and linear acetonitrile gradients in combination with a linear temperature gradient (from 20°C to 90°C) using 300μm×150mm capillary columns packed with sub-2 μm particles. The benefit of CST-GLC is demonstrated when the temperature gradient propagates at the same velocity as the chromatographic speed. The experimental proof-of-concept for the realization of temperature ramps propagating at a finite and constant linear velocity is also briefly described. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Summer outdoor temperature and occupational heat-related illnesses in Quebec (Canada)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adam-Poupart, Ariane; Smargiassi, Audrey; Institut national de santé publique du Québec

    2014-10-15

    Background: Predicted rise in global mean temperature and intensification of heat waves associated with climate change present an increasing challenge for occupational health and safety. Although important scientific knowledge has been gathered on the health effects of heat, very few studies have focused on quantifying the association between outdoor heat and mortality or morbidity among workers. Objective: To quantify the association between occupational heat-related illnesses and exposure to summer outdoor temperatures. Methods: We modeled 259 heat-related illnesses compensated by the Workers' Compensation Board of Quebec between May and September, from 1998 to 2010, with maximum daily summer outdoor temperatures inmore » 16 health regions of Quebec (Canada) using generalized linear models with negative binomial distributions, and estimated the pooled effect sizes for all regions combined, by sex and age groups, and for different time lags with random-effect models for meta-analyses. Results: The mean daily compensation count was 0.13 for all regions of Quebec combined. The relationship between daily counts of compensations and maximum daily temperatures was log-linear; the pooled incidence rate ratio (IRR) of daily heat-related compensations per 1 °C increase in daily maximum temperatures was 1.419 (95% CI 1.326 to 1.520). Associations were similar for men and women and by age groups. Increases in daily maximum temperatures at lags 1 and 2 and for two and three-day lag averages were also associated with increases in daily counts of compensations (IRRs of 1.206 to 1.471 for every 1 °C increase in temperature). Conclusion: This study is the first to quantify the association between occupational heat-related illnesses and exposure to summer temperatures in Canada. The model (risk function) developed in this study could be useful to improve the assessment of future impacts of predicted summer outdoor temperatures on workers and vulnerable groups, particularly in colder temperate zones. - Highlights: • 259 heat-related compensated illnesses were modeled with ambient temperature • An overall risk ratio of 1.419 (95% CI 1.326–1.520) for every 1 °C increase was found • Risk estimates were similar for men and women and by large age groups. • There were little lag effects (IRRs of 1.206 to 1.471 for every 1 °C increase)« less

  13. Modelling leaf photosynthetic and transpiration temperature-dependent responses in Vitis vinifera cv. Semillon grapevines growing in hot, irrigated vineyard conditions

    PubMed Central

    Greer, Dennis H.

    2012-01-01

    Background and aims Grapevines growing in Australia are often exposed to very high temperatures and the question of how the gas exchange processes adjust to these conditions is not well understood. The aim was to develop a model of photosynthesis and transpiration in relation to temperature to quantify the impact of the growing conditions on vine performance. Methodology Leaf gas exchange was measured along the grapevine shoots in accordance with their growth and development over several growing seasons. Using a general linear statistical modelling approach, photosynthesis and transpiration were modelled against leaf temperature separated into bands and the model parameters and coefficients applied to independent datasets to validate the model. Principal results Photosynthesis, transpiration and stomatal conductance varied along the shoot, with early emerging leaves having the highest rates, but these declined as later emerging leaves increased their gas exchange capacities in accordance with development. The general linear modelling approach applied to these data revealed that photosynthesis at each temperature was additively dependent on stomatal conductance, internal CO2 concentration and photon flux density. The temperature-dependent coefficients for these parameters applied to other datasets gave a predicted rate of photosynthesis that was linearly related to the measured rates, with a 1 : 1 slope. Temperature-dependent transpiration was multiplicatively related to stomatal conductance and the leaf to air vapour pressure deficit and applying the coefficients also showed a highly linear relationship, with a 1 : 1 slope between measured and modelled rates, when applied to independent datasets. Conclusions The models developed for the grapevines were relatively simple but accounted for much of the seasonal variation in photosynthesis and transpiration. The goodness of fit in each case demonstrated that explicitly selecting leaf temperature as a model parameter, rather than including temperature intrinsically as is usually done in more complex models, was warranted. PMID:22567220

  14. Flow Rates Measurement and Uncertainty Analysis in Multiple-Zone Water-Injection Wells from Fluid Temperature Profiles

    PubMed Central

    Reges, José E. O.; Salazar, A. O.; Maitelli, Carla W. S. P.; Carvalho, Lucas G.; Britto, Ursula J. B.

    2016-01-01

    This work is a contribution to the development of flow sensors in the oil and gas industry. It presents a methodology to measure the flow rates into multiple-zone water-injection wells from fluid temperature profiles and estimate the measurement uncertainty. First, a method to iteratively calculate the zonal flow rates using the Ramey (exponential) model was described. Next, this model was linearized to perform an uncertainty analysis. Then, a computer program to calculate the injected flow rates from experimental temperature profiles was developed. In the experimental part, a fluid temperature profile from a dual-zone water-injection well located in the Northeast Brazilian region was collected. Thus, calculated and measured flow rates were compared. The results proved that linearization error is negligible for practical purposes and the relative uncertainty increases as the flow rate decreases. The calculated values from both the Ramey and linear models were very close to the measured flow rates, presenting a difference of only 4.58 m³/d and 2.38 m³/d, respectively. Finally, the measurement uncertainties from the Ramey and linear models were equal to 1.22% and 1.40% (for injection zone 1); 10.47% and 9.88% (for injection zone 2). Therefore, the methodology was successfully validated and all objectives of this work were achieved. PMID:27420068

  15. Thermal management optimization of an air-cooled Li-ion battery module using pin-fin heat sinks for hybrid electric vehicles

    NASA Astrophysics Data System (ADS)

    Mohammadian, Shahabeddin K.; Zhang, Yuwen

    2015-01-01

    Three dimensional transient thermal analysis of an air-cooled module that contains prismatic Li-ion cells next to a special kind of aluminum pin fin heat sink whose heights of pin fins increase linearly through the width of the channel in air flow direction was studied for thermal management of Lithium-ion battery pack. The effects of pin fins arrangements, discharge rates, inlet air flow velocities, and inlet air temperatures on the battery were investigated. The results showed that despite of heat sinks with uniform pin fin heights that increase the standard deviation of the temperature field, using this kind of pin fin heat sink compare to the heat sink without pin fins not only decreases the bulk temperature inside the battery, but also decreases the standard deviation of the temperature field inside the battery as well. Increasing the inlet air temperature leads to decreasing the standard deviation of the temperature field while increases the maximum temperature of the battery. Furthermore, increasing the inlet air velocity first increases the standard deviation of the temperature field till reaches to the maximum point, and after that decreases. Also, increasing the inlet air velocity leads to decrease in the maximum temperature of the battery.

  16. AC conductivity and dielectric behavior of bulk Furfurylidenemalononitrile

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Ali, H. A. M.

    2012-06-01

    AC conductivity and dielectric behavior for bulk Furfurylidenemalononitrile have been studied over a temperature range (293-333 K) and frequency range (50-5×106 Hz). The frequency dependence of ac conductivity, σac, has been investigated by the universal power law, σac(ω)=Aωs. The variation of the frequency exponent (s) with temperature was analyzed in terms of different conduction mechanisms, and it was found that the correlated barrier hopping (CBH) model is the predominant conduction mechanism. The temperature dependence of σac(ω) showed a linear increase with the increase in temperature at different frequencies. The ac activation energy was determined at different frequencies. Dielectric data were analyzed using complex permittivity and complex electric modulus for bulk Furfurylidenemalononitrile at various temperatures.

  17. Solvent Properties of Water in Aqueous Solutions of Elastin-Like Polypeptide

    PubMed Central

    Ferreira, Luisa A.; Cole, James T.; Reichardt, Christian; Holland, Nolan B.; Uversky, Vladimir N.; Zaslavsky, Boris Y.

    2015-01-01

    The phase-transition temperatures of an elastin-like polypeptide (ELP) with the (GVGVP)40 sequence and solvent dipolarity/polarizability, hydrogen-bond donor acidity, and hydrogen-bond acceptor basicity in its aqueous solutions were quantified in the absence and presence of different salts (Na2SO4, NaCl, NaClO4, and NaSCN) and various osmolytes (sucrose, sorbitol, trehalose, and trimethylamine N-oxide (TMAO)). All osmolytes decreased the ELP phase-transition temperature, whereas NaCl and Na2SO4 decreased, and NaSCN and NaClO4 increased it. The determined phase-transition temperatures may be described as a linear combination of the solvent’s dipolarity/polarizability and hydrogen-bond donor acidity. The linear relationship established for the phase-transition temperature in the presence of salts differs quantitatively from that in the presence of osmolytes, in agreement with different (direct and indirect) mechanisms of the influence of salts and osmolytes on the ELP phase-transition temperature. PMID:26075870

  18. Increasing trend in the average temperature in Finland, 1847-2012

    NASA Astrophysics Data System (ADS)

    Mikkonen, Santtu; Laine, Marko; Mäkelä, Hanna M.; Gregow, Hilppa; Tuomenvirta, Heikki; Lahtinen, Matti; Laaksonen, Ari

    2014-05-01

    The global average temperature has increased by about 0.8 ° C since the mid-19th century. It has been shown that this increase is statistically significant and that it can, for the most part, be attributed to human-induced climate change (IPCC 2007). A temperature increase is obvious also in regional and local temperatures in many parts of the world. However, compared with the global average temperature, the regional and local temperatures exhibit higher levels of noise, which has largely been removed from the global temperature due to the higher level of averaging. Because Finland is located in northern latitudes, it is subject to the polar amplification of climate change-induced warming, which is due to the enhanced melting of snow and ice and other feedback mechanisms. Therefore, warming in Finland is expected to be approximately 50% higher than the global average. Conversely, the location of Finland between the Atlantic Ocean and continental Eurasia causes the weather to be very variable, and thus the temperature signal is rather noisy. The change in mean temperature in Finland was investigated with Dynamic Linear Models (DLM) in order to define the sign and the magnitude of the trend in the temperature time series within the last 165 years. The data consisted of gridded monthly mean temperatures. The grid has a 10 km spatial resolution, and it was created by interpolating a homogenized temperature series measured at Finnish weather stations. Seasonal variation in temperature and the autocorrelation structure of the time series were taken account in the DLM models. We found that the Finnish temperature time series exhibits a statistically significant increasing trend, which is consistent with human-induced global warming. The mean temperature has risen clearly over 2° C in the years 1847-2012, which amounts to 0.16 ° C/decade. The warming rate before 1940's was close to the linear trend for the whole period, whereas the temperature change in the mid-20th century was negligible. However, the warming after the late 1960s has been remarkably fast. The model indicates that within the last 40 years the rate of change has been as high as 0.30 ° C/decade. The increase in temperature has been highest in spring and in late autumn but the change in summer months has not been so evident. The observed warming is somewhat higher than the global trend, which confirms the assumption that warming is stronger in higher latitudes.

  19. Cold temperature and low humidity are associated with increased occurrence of respiratory tract infections.

    PubMed

    Mäkinen, Tiina M; Juvonen, Raija; Jokelainen, Jari; Harju, Terttu H; Peitso, Ari; Bloigu, Aini; Silvennoinen-Kassinen, Sylvi; Leinonen, Maija; Hassi, Juhani

    2009-03-01

    The association between cold exposure and acute respiratory tract infections (RTIs) has remained unclear. The study examined whether the development of RTIs is potentiated by cold exposure and lowered humidity in a northern population. A population study where diagnosed RTI episodes, outdoor temperature and humidity among conscripts (n=892) were analysed. Altogether 643 RTI episodes were diagnosed during the follow-up period. Five hundred and ninety-five episodes were upper (URTI) and 87 lower (LRTI) RTIs. The mean average daily temperature preceding any RTIs was -3.7+/-10.6; for URTI and LRTI they were -4.1+/-10.6 degrees C and -1.1+/-10.0 degrees C, respectively. Temperature was associated with common cold (p=0.017), pharyngitis (p=0.011) and LRTI (p=0.048). Absolute humidity was associated with URTI (p<0.001). A 1 degrees C decrease in temperature increased the estimated risk for URTI by 4.3% (p<0.0001), for common cold by 2.1% (p=0.004), for pharyngitis by 2.8% (p=0.019) and for LRTI by 2.1% (p=0.039). A decrease of 1g/m(-3) in absolute humidity increased the estimated risk for URTI by 10.0% (p<0.001) and for pharyngitis by 10.8% (p=0.023). The average outdoor temperature decreased during the preceding three days of the onset of any RTIs, URTI, LRTI or common cold. The temperature for the preceding 14 days also showed a linear decrease for any RTI, URTI or common cold. Absolute humidity decreased linearly during the preceding three days before the onset of common cold, and during the preceding 14 days for all RTIs, common cold and LRTI. Cold temperature and low humidity were associated with increased occurrence of RTIs, and a decrease in temperature and humidity preceded the onset of the infections.

  20. Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: a time-series analysis.

    PubMed

    Breitner, Susanne; Wolf, Kathrin; Devlin, Robert B; Diaz-Sanchez, David; Peters, Annette; Schneider, Alexandra

    2014-07-01

    Air temperature has been shown to be associated with mortality; however, only very few studies have been conducted in Germany. This study examined the association between daily air temperature and cause-specific mortality in Bavaria, Southern Germany. Moreover, we investigated effect modification by age and ambient air pollution. We obtained data from Munich, Nuremberg as well as Augsburg, Germany, for the period 1990 to 2006. Data included daily cause-specific death counts, mean daily meteorology and air pollution concentrations (particulate matter with a diameter<10 μm [PM10] and maximum 8-h ozone). We used Poisson regression models combined with distributed lag non-linear models adjusting for long-term trend, calendar effects, and meteorological factors. Air pollutant concentrations were categorized into three levels, and an interaction term was included to quantify potential effect modification of the air temperature effects. The temperature-mortality relationships were non-linear for all cause-specific mortality categories showing U- or J-shaped curves. An increase from the 90th (20.0 °C) to the 99th percentile (24.8 °C) of 2-day average temperature led to an increase in non-accidental mortality by 11.4% (95% CI: 7.6%-15.3%), whereas a decrease from the 10th (-1.0 °C) to the 1st percentile (-7.5 °C) in the 15-day average temperature resulted in an increase of 6.2% (95% CI: 1.8%-10.8%). The very old were found to be most susceptible to heat effects. Results also suggested some effect modification by ozone, but not for PM10. Results indicate that both very low and very high air temperature increase cause-specific mortality in Bavaria. Results also pointed to the importance of considering effect modification by age and ozone in assessing temperature effects on mortality. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Instrumentation for sensing moisture content of material using a transient thermal pulse

    NASA Technical Reports Server (NTRS)

    Yang, L. C. (Inventor)

    1981-01-01

    Instrumentation is developed for sensing moisture content of material using a transient thermal pulse and is comprised of a sensing probe having a sensing element in the form of a ribbon excited by a constant current pulse to increase the temperature, and therefore the resistance, of the ribbon linearly. Moisture in web material limits the increase of temperature during the pulse in proportion to the moisture content. This increase in temperature produces a proportional increase in resistivity which is measured with a Wheatsone bridge as a change in voltage displayed by a measurement display unit. The probe is glued in a shallow groove of a lucite bar and connected to copper pins embedded in the bar.

  2. Pressure dependence of thermal physical properties of A-type R2O3 (R=Y, La): A first-principles study

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Xiao, B.; Sun, L.; Gao, Y. M.; Ma, S. Q.; Yi, D. W.

    2017-04-01

    The mechanical, electronic and thermal physical properties of A-type R2O3 (R=Y, La) under hydrostatic pressure are studied by first-principles calculations. The calculated band gap is 6.3 eV (5.9 eV) for Y2O3 (La2O3). Under hydrostatic pressure, both phases show anisotropic elasticity in different crystallographic directions. The isothermal bulk modulus of R2O3 decreases monotonically with the increasing of temperature from 300 K to 1500 K. The intrinsic ductile nature of both phases is confirmed by the obtained B/G ratio. The temperature dependence of linear TECs of La2O3 is stronger than that of Y2O3, and the linear TECs in [001] direction show larger values in both phases than those in [010] direction. At room temperature, the average linear TECs for Y2O3 and La2O3 are 8.40×10-6 K-1 and 8.42×10-6 K-1, respectively. Other thermal physical properties such as specific heats (CV, and CP), entropy (S), sound velocity and Debye temperature are also obtained.

  3. Electron drift velocity and mobility in graphene

    NASA Astrophysics Data System (ADS)

    Dong, Hai-Ming; Duan, Yi-Feng; Huang, Fei; Liu, Jin-Long

    2018-04-01

    We present a theoretical study of the electric transport properties of graphene-substrate systems. The drift velocity, mobility, and temperature of the electrons are self-consistently determined using the Boltzmann equilibrium equations. It is revealed that the electronic transport exhibits a distinctly nonlinear behavior. A very high mobility is achieved with the increase of the electric fields increase. The electron velocity is not completely saturated with the increase of the electric field. The temperature of the hot electrons depends quasi-linearly on the electric field. In addition, we show that the electron velocity, mobility, and electron temperature are sensitive to the electron density. These findings could be employed for the application of graphene for high-field nano-electronic devices.

  4. Effect of gamma irradiation on high temperature hardness of low-density polyethylene

    NASA Astrophysics Data System (ADS)

    Chen, Pei-Yun; Yang, Fuqian; Lee, Sanboh

    2015-11-01

    Gamma irradiation can cause the change of microstructure and molecular structure of polymer, resulting in the change of mechanical properties of polymers. Using the hardness measurement, the effect of gamma irradiation on the high temperature hardness of low-density polyethylene (LDPE) was investigated. The gamma irradiation caused the increase in the melting point, the enthalpy of fusion, and the portion of crystallinity of LDPE. The Vickers hardness of the irradiated LDPE increases with increasing the irradiation dose, annealing temperature, and annealing time. The activation energy for the rate process controlling the reaction between defects linearly decreases with the irradiation dose. The process controlling the hardness evolution in LDPE is endothermic because LDPE is semi-crystalline.

  5. Seasonal and Interannual Variations of Ice Sheet Surface Elevation at the Summit of Greenland: Observed and Modeled

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Jun, Li; Koblinsky, Chester J. (Technical Monitor)

    2001-01-01

    Observed seasonal and interannual variations in the surface elevation over the summit of the Greenland ice sheet are modeled using a new temperature-dependent formulation of firn-densification and observed accumulation variations. The observed elevation variations are derived from ERS (European Remote Sensing)-1 and ERS-2 radar altimeter data for the period between April 1992 and April 1999. A multivariate linear/sine function is fitted to an elevation time series constructed from elevation differences measured by radar altimetry at orbital crossovers. The amplitude of the seasonal elevation cycle is 0.25 m peak-to-peak, with a maximum in winter and a minimum in summer. Inter-annually, the elevation decreases to a minimum in 1995, followed by an increase to 1999, with an overall average increase of 4.2 cm a(exp -1) for 1992 to 1999. Our densification formulation uses an initial field-density profile, the AWS (automatic weather station) surface temperature record, and a temperature-dependent constitutive relation for the densification that is based on laboratory measurements of crystal growth rates. The rate constant and the activation energy commonly used in the Arrhenius-type constitutive relation for firn densification are also temperature dependent, giving a stronger temperature and seasonal amplitudes about 10 times greater than previous densification formulations. Summer temperatures are most important, because of the strong non-linear dependence on temperature. Much of firn densification and consequent surface lowering occurs within about three months of the summer season, followed by a surface build-up from snow accumulation until spring. Modeled interannual changes of the surface elevation, using the AWS measurements of surface temperature and accumulation and results of atmospheric modeling of precipitation variations, are in good agreement with the altimeter observations. In the model, the surface elevation decreases about 20 cm over the seven years due to more compaction driven by increasing summer temperatures. The minimum elevation in 1995 is driven mainly by a temporary accumulation decrease and secondarily by warmer temperatures. However, the overall elevation increase over the seven years is dominated by the accumulation increase in the later years.

  6. A new method for probabilistic assessment of regional climate impacts in dependence of cumulative GHG emission budgets

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Meinshausen, Malte; Braun, Nadine; Hare, Bill

    2010-05-01

    Given the expected and already observed impacts of climate change there is growing agreement that global mean temperature rise should be limited to below 2 or 1.5 degrees. The translation of such a temperature target into guidelines for global emission reduction over the coming decades has become one of the most important and urgent tasks. In fact, there are four recent studies (Meinshausen et al. 2009, Allen et al. 2009, Matthews et al. 2009 and Zickfeld et al. 2009) which take a very comprehensive approach to quantifying the current uncertainties related to the question of what are the "allowed amounts" of global emissions given specific limits of global warming. Here, we present an extension of this budget approach allowing to focus on specific regional impacts. The method is based on probabilistic projections of regional temperature and precipitation changes providing the input for available impact functions. Using the example of Greenland's surface mass balance (Gregory et al., 2006) we will demonstrate how the probability of specific impacts can be described in dependence of global GHG emission budgets taking into account the uncertainty of global mean temperature projections as well as uncertainties of regional climate patterns varying from AOGCM to AOGCM. The method utilizes the AOGCM based linear relation between global mean temperature changes and regionally averaged changes in temperature and precipitation. It allows to handle the variations of regional climate projections from AR4 AOGCM runs independent of the uncertainties of global mean temperature change that are estimated by a simple climate model (Meinshausen et al., 2009). While the linearity of this link function is already established for temperature and to a lesser degree (depending on the region) also for precipitation (Santer et al. 1990; Mitchell et al. 1999; Giorgi et al., 2008; Solomon et al., 2009), we especially focus on the quantification of the uncertainty (in particularly the inter-AOGCM variations) of the associated scaling coefficients. Our approach is based on a linear mixed effects model (e.g. Bates and Pinheiro, 2001). In comparison to other scaling approaches we do not fit separate models for the temperature and precipitation data but we apply a two-dimensional model, i.e., we explicitly account for the fact that models (scenarios or runs) showing an especially high temperature increase may also show high precipitation increases or vice versa. Coupling the two-dimensional distribution of the scaling coefficients with the uncertainty distributions of global mean temperature change given different GHG emission trajectories finally provides time series of two dimensional uncertainty distributions of regional changes in temperature and precipitation, where both components might be correlated. These samples provide the input for regional specific impact functions. In case of Greenland we use a function by Gregory et al., 2006 that allows us to calculate changes in sea level rise due to changes in Greenland's surface mass balance in dependence of regionally averaged changes in temperature and precipitation. The precipitation signal turns out to be relatively strong for Greenland with AOGCMs consistently showing increasing precipitation with increasing global mean temperature. In addition, temperature and precipitation increases turned out to be highly correlated for Greenland: Models showing an especially high temperature increase also show high precipitation increases reflected by a correlation coefficient of 0.88 for the inter-model variations of both components of the scaling coefficients. Taking these correlations into account is especially important because the surface mass balance of the Greenland ice sheet critically depends on the interaction of the temperature and precipitation component of climate change: Increasing precipitation may at least partly balance the loss due to increasing temperatures.

  7. With respect to coefficient of linear thermal expansion, bacterial vegetative cells and spores resemble plastics and metals, respectively.

    PubMed

    Nakanishi, Koichi; Kogure, Akinori; Fujii, Takenao; Kokawa, Ryohei; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu

    2013-10-09

    If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for furthering the understanding of the characteristics of cells. It is likely to be a powerful tool for investigating changes in the rate of expansion and also in understanding the physical properties of cells.

  8. With respect to coefficient of linear thermal expansion, bacterial vegetative cells and spores resemble plastics and metals, respectively

    PubMed Central

    2013-01-01

    Background If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. Results The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. Conclusions We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for furthering the understanding of the characteristics of cells. It is likely to be a powerful tool for investigating changes in the rate of expansion and also in understanding the physical properties of cells. PMID:24107328

  9. Pseudogap temperature T* of cuprate superconductors from the Nernst effect

    NASA Astrophysics Data System (ADS)

    Cyr-Choinière, O.; Daou, R.; Laliberté, F.; Collignon, C.; Badoux, S.; LeBoeuf, D.; Chang, J.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Yan, J.-Q.; Cheng, J.-G.; Zhou, J.-S.; Goodenough, J. B.; Pyon, S.; Takayama, T.; Takagi, H.; Doiron-Leyraud, N.; Taillefer, Louis

    2018-02-01

    We use the Nernst effect to delineate the boundary of the pseudogap phase in the temperature-doping phase diagram of hole-doped cuprate superconductors. New data for the Nernst coefficient ν (T ) of YBa2Cu3Oy (YBCO), La1.8 -xEu0.2SrxCuO4 (Eu-LSCO), and La1.6 -xNd0.4SrxCuO4 (Nd-LSCO) are presented and compared with previously published data on YBCO, Eu-LSCO, Nd-LSCO, and La2 -xSrxCuO4 (LSCO). The temperature Tν at which ν /T deviates from its high-temperature linear behavior is found to coincide with the temperature at which the resistivity ρ (T ) deviates from its linear-T dependence, which we take as the definition of the pseudogap temperature T★—in agreement with the temperature at which the antinodal spectral gap detected in angle-resolved photoemission spectroscopy (ARPES) opens. We track T★ as a function of doping and find that it decreases linearly vs p in all four materials, having the same value in the three LSCO-based cuprates, irrespective of their different crystal structures. At low p ,T★ is higher than the onset temperature of the various orders observed in underdoped cuprates, suggesting that these orders are secondary instabilities of the pseudogap phase. A linear extrapolation of T★(p ) to p =0 yields T★(p →0 ) ≃TN (0), the Néel temperature for the onset of antiferromagnetic order at p =0 , suggesting that there is a link between pseudogap and antiferromagnetism. With increasing p ,T★(p ) extrapolates linearly to zero at p ≃pc 2 , the critical doping below which superconductivity emerges at high doping, suggesting that the conditions which favor pseudogap formation also favor pairing. We also use the Nernst effect to investigate how far superconducting fluctuations extend above the critical temperature Tc, as a function of doping, and find that a narrow fluctuation regime tracks Tc, and not T★. This confirms that the pseudogap phase is not a form of precursor superconductivity, and fluctuations in the phase of the superconducting order parameter are not what causes Tc to fall on the underdoped side of the Tc dome.

  10. Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion interface - A microelectrode investigation

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Arvind; Srinivasan, Supramanian; Appleby, A. J.; Martin, Charles R.

    1992-01-01

    Results of a study of the temperature dependence of the oxygen reduction kinetics at the Pt/Nafion interface are presented. This study was carried out in the temperature range of 30-80 C and at 5 atm of oxygen pressure. The results showed a linear increase of the Tafel slope with temperature in the low current density region, but the Tafel slope was found to be independent of temperature in the high current density region. The values of the activation energy for oxygen reduction at the platinum/Nafion interface are nearly the same as those obtained at the platinum/trifluoromethane sulfonic acid interface but less than values obtained at the Pt/H3PO4 and Pt/HClO4 interfaces. The diffusion coefficient of oxygen in Nafion increases with temperature while its solubility decreases with temperature. These temperatures also depend on the water content of the membrane.

  11. The Effect of Temperature on Moisture Transport in Concrete.

    PubMed

    Wang, Yao; Xi, Yunping

    2017-08-09

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter D HT , which can be determined by the present test data. The test results indicated that D HT is not a constant but increases linearly with the temperature variation. A material model was developed for D HT based on the experimental results obtained in this study.

  12. Current-voltage characteristics of C70 solid near Meyer-Neldel temperature

    NASA Astrophysics Data System (ADS)

    Onishi, Koichi; Sezaimaru, Kouki; Nakashima, Fumihiro; Sun, Yong; Kirimoto, Kenta; Sakaino, Masamichi; Kanemitsu, Shigeru

    2017-06-01

    The current-voltage characteristics of the C70 solid with hexagonal closed-packed structures were measured in the temperature range of 250-450 K. The current-voltage characteristics can be described as a temporary expedient by a cubic polynomial of the voltage, i = a v 3 + b v 2 + c v + d . Moreover, the Meyer-Neldel temperature of the C70 solid was confirmed to be 310 K, at which a linear relationship between the current and voltage was observed. Also, at temperatures below the Meyer-Neldel temperature, the current increases with increasing voltage. On the other hand, at temperatures above the Meyer-Neldel temperature a negative differential conductivity effect was observed at high voltage side. The negative differential conductivity was related to the electric field and temperature effects on the mobility of charge carrier, which involve two variations in the carrier concentration and the activation energy for carrier hopping transport.

  13. Hydraulic fracturing and permeability enhancement in granite from subcritical/brittle to supercritical/ductile conditions

    NASA Astrophysics Data System (ADS)

    Watanabe, Noriaki; Egawa, Motoki; Sakaguchi, Kiyotoshi; Ishibashi, Takuya; Tsuchiya, Noriyoshi

    2017-06-01

    Hydraulic fracturing experiments were conducted at 200-450°C by injecting water into cylindrical granite samples containing a borehole at an initial effective confining pressure of 40 MPa. Intensive fracturing was observed at all temperatures, but the fracturing characteristics varied with temperature, perhaps due to differences in the water viscosity. At the lowest considered temperature (200°C), fewer fractures propagated linearly from the borehole, and the breakdown pressure was twice the confining pressure. However, these characteristics disappeared with increasing temperature; the fracture pattern shifted toward the formation of a greater number of shorter fractures over the entire body of the sample, and the breakdown pressure decreased greatly. Hydraulic fracturing significantly increased the permeability at all temperatures, and this permeability enhancement was likely to form a productive geothermal reservoir even at the highest considered temperature, which exceeded both the brittle-ductile transition temperature of granite and the critical temperature of water.

  14. The Effect of Temperature on Moisture Transport in Concrete

    PubMed Central

    Wang, Yao; Xi, Yunping

    2017-01-01

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter DHT, which can be determined by the present test data. The test results indicated that DHT is not a constant but increases linearly with the temperature variation. A material model was developed for DHT based on the experimental results obtained in this study. PMID:28792460

  15. Temperature-dependent dielectric and energy-storage properties of Pb(Zr,Sn,Ti)O3 antiferroelectric bulk ceramics

    NASA Astrophysics Data System (ADS)

    Chen, Xuefeng; Liu, Zhen; Xu, Chenhong; Cao, Fei; Wang, Genshui; Dong, Xianlin

    2016-05-01

    The dielectric and energy-storage properties of Pb0.99Nb0.02[(Zr0.60Sn0.40)0.95Ti0.05]0.98O3 (PNZST) bulk ceramics near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary are investigated as a function of temperature. Three characteristic temperatures T0, TC, T2 are obtained from the dielectric temperature spectrum. At different temperature regions (below T0, between T0 and TC, and above TC), three types of hysteresis loops are observed as square double loop, slim loop and linear loop, respectively. The switching fields and recoverable energy density all first increase and then decrease with increasing temperature, and reach their peak values at ˜T0. These results provide a convenient method to optimize the working temperature of antiferroelectric electronic devices through testing the temperature dependent dielectric properties of antiferroelectric ceramics.

  16. Skillful prediction of hot temperature extremes over the source region of ancient Silk Road.

    PubMed

    Zhang, Jingyong; Yang, Zhanmei; Wu, Lingyun

    2018-04-27

    The source region of ancient Silk Road (SRASR) in China, a region of around 150 million people, faces a rapidly increased risk of extreme heat in summer. In this study, we develop statistical models to predict summer hot temperature extremes over the SRASR based on a timescale decomposition approach. Results show that after removing the linear trends, the inter-annual components of summer hot days and heatwaves over the SRASR are significantly related with those of spring soil temperature over Central Asia and sea surface temperature over Northwest Atlantic while their inter-decadal components are closely linked to those of spring East Pacific/North Pacific pattern and Atlantic Multidecadal Oscillation for 1979-2016. The physical processes involved are also discussed. Leave-one-out cross-validation for detrended 1979-2016 time series indicates that the statistical models based on identified spring predictors can predict 47% and 57% of the total variances of summer hot days and heatwaves averaged over the SRASR, respectively. When the linear trends are put back, the prediction skills increase substantially to 64% and 70%. Hindcast experiments for 2012-2016 show high skills in predicting spatial patterns of hot temperature extremes over the SRASR. The statistical models proposed herein can be easily applied to operational seasonal forecasting.

  17. Device and method for determining freezing points

    NASA Technical Reports Server (NTRS)

    Mathiprakasam, Balakrishnan (Inventor)

    1986-01-01

    A freezing point method and device (10) are disclosed. The method and device pertain to an inflection point technique for determining the freezing points of mixtures. In both the method and device (10), the mixture is cooled to a point below its anticipated freezing point and then warmed at a substantially linear rate. During the warming process, the rate of increase of temperature of the mixture is monitored by, for example, thermocouple (28) with the thermocouple output signal being amplified and differentiated by a differentiator (42). The rate of increase of temperature data are analyzed and a peak rate of increase of temperature is identified. In the preferred device (10) a computer (22) is utilized to analyze the rate of increase of temperature data following the warming process. Once the maximum rate of increase of temperature is identified, the corresponding temperature of the mixture is located and earmarked as being substantially equal to the freezing point of the mixture. In a preferred device (10), the computer (22), in addition to collecting the temperature and rate of change of temperature data, controls a programmable power supply (14) to provide a predetermined amount of cooling and warming current to thermoelectric modules (56).

  18. Multifunctional Device based on phosphor-piezoelectric PZT: lighting, speaking, and mechanical energy harvesting.

    PubMed

    Lee, Sunghoon; Kang, Taewook; Lee, Wunho; Afandi, Mohammad M; Ryu, Jongho; Kim, Jongsu

    2018-01-10

    We demonstrated the tri-functional device based on all powder-processing methods by using ZnS powder as phosphor layer and piezoelectric material as dielectric layer. The fabricated device generated the electroluminescent (EL) light from phosphor and the sound from piezoelectric sheet under a supply of external electric power, and additionally harvested the reverse-piezoelectric energy to be converted into EL light. Under sinusoidal applied voltage, EL luminances were exponentially increased with a maximum luminous efficiency of 1.3 lm/W at 40 V and 1,000 Hz, and sound pressure levels (SPLs) were linearly increased. The EL luminances were linearly dependent on applied frequency while the SPLs showed the parabolic increase behavior below 1,000 Hz and then the flat response. The temperature dependence on EL luminances and SPLs was demonstrated; the former was drastically increased and the latter was slightly decreased with the increase of temperature. Finally, as an energy harvesting application, the piezoelectric-induced electroluminescence effect was demonstrated by applying only mechanical pressure to the device without any external electric power.

  19. Spin-Based Devices for Magneto-Optoelectronic Integrated Circuits

    DTIC Science & Technology

    2009-04-29

    bulk material and matches that in quantum wells. While these simple linear relationships hold for spin-polarized light-emitting diodes (spin-LEDs...temperature. The quantum efficiency and hence r| increases with decreasing temperature. The individual circuit elements, 33 therefore, exhibit the...Injection, Threshold Reduction and Output Circular Polarization Modulation in Quantum Well and Quantum Dot Semiconductor Spin Polarized Lasers working

  20. Plasticity mechanisms in HfN at elevated and room temperature.

    PubMed

    Vinson, Katherine; Yu, Xiao-Xiang; De Leon, Nicholas; Weinberger, Christopher R; Thompson, Gregory B

    2016-10-06

    HfN specimens deformed via four-point bend tests at room temperature and at 2300 °C (~0.7 T m ) showed increased plasticity response with temperature. Dynamic diffraction via transmission electron microscopy (TEM) revealed ⟨110⟩{111} as the primary slip system in both temperature regimes and ⟨110⟩{110} to be a secondary slip system activated at elevated temperature. Dislocation line lengths changed from a primarily linear to a curved morphology with increasing temperature suggestive of increased dislocation mobility being responsible for the brittle to ductile temperature transition. First principle generalized stacking fault energy calculations revealed an intrinsic stacking fault (ISF) along ⟨112⟩{111}, which is the partial dislocation direction for slip on these close packed planes. Though B1 structures, such as NaCl and HfC predominately slip on ⟨110⟩{110}, the ISF here is believed to facilitate slip on the {111} planes for this B1 HfN phase.

  1. Effects of Blending Alcohols with Poultry Fat Methyl Esters on Cold Flow Properties

    USDA-ARS?s Scientific Manuscript database

    The low temperature operability, kinematic viscosity, and acid value of poultry fat methyl esters were improved with addition of ethanol, isopropanol, and butanol in a linear fashion with increasing alcohol content. The flash point decreased and moisture content increased upon addition of alcohols t...

  2. Information measures for a local quantum phase transition: Lattice fermions in a one-dimensional harmonic trap

    NASA Astrophysics Data System (ADS)

    Zhang, Yicheng; Vidmar, Lev; Rigol, Marcos

    2018-02-01

    We use quantum information measures to study the local quantum phase transition that occurs for trapped spinless fermions in one-dimensional lattices. We focus on the case of a harmonic confinement. The transition occurs upon increasing the characteristic density and results in the formation of a band-insulating domain in the center of the trap. We show that the ground-state bipartite entanglement entropy can be used as an order parameter to characterize this local quantum phase transition. We also study excited eigenstates by calculating the average von Neumann and second Renyi eigenstate entanglement entropies, and compare the results with the thermodynamic entropy and the mutual information of thermal states at the same energy density. While at low temperatures we observe a linear increase of the thermodynamic entropy with temperature at all characteristic densities, the average eigenstate entanglement entropies exhibit a strikingly different behavior as functions of temperature below and above the transition. They are linear in temperature below the transition but exhibit activated behavior above it. Hence, at nonvanishing energy densities above the ground state, the average eigenstate entanglement entropies carry fingerprints of the local quantum phase transition.

  3. Non-linear trends and fluctuations in temperature during different growth stages of summer maize in the North China Plain from 1960 to 2014

    NASA Astrophysics Data System (ADS)

    Wang, Cailin; Wu, Jidong; Wang, Xu; He, Xin; Li, Ning

    2017-12-01

    North China Plain has undergone severe warming trends since the 1950s, but whether this trend is the same during different growth phases for crops remains unknown. Thus, we analyzed the non-linear changes in the minimum temperature (T min ), mean temperature (T mean ) and maximum temperature (T max ) using the Ensemble Empirical Mode Decomposition method during each growth stage of summer maize based on daily temperature data from 1960 to 2014. Our results strongly suggest that the trends and fluctuations in temperature change are non-linear. These changes can be categorized into four types of trend change according to the combinations of decreasing and increasing trends, and 8 fluctuation modes dominated by the fluctuations of expansion and shrinkage. The amplitude of the fluctuation is primarily expansion in the sowing-jointing stage and shrinkage in the jointing-maturity stage. Moreover, the temperature changes are inconsistent within each growth stage and are not consistent with the overall warming trend observed over the last 55 years. A transition period occurred in both the 1980s and the 1990s for temperatures during the sowing-tasseling stage. Furthermore, the cooling trend of the T max was significant in the sowing-emergence stage, while this cooling trend was not obvious for both T mean and T min in the jointing-tasseling stage. These results showed that temperature change was significantly different in different stages of the maize growth season. The results can serve as a scientific basis for a better understanding of the actual changes in the regional surface air temperature and agronomic heat resources.

  4. Surface tension and density of liquid In-Sn-Zn alloys

    NASA Astrophysics Data System (ADS)

    Pstruś, Janusz

    2013-01-01

    Using the dilatometric method, measurements of the density of liquid alloys of the ternary system In-Sn-Zn in four sections with a constant ratio Sn:In = 24:1, 3:1, 1:1, 1:3, for various Zn additions (5, 10, 14, 20, 3 5, 50 and 75 at.% Zn) were performed at the temperature ranges of 500-1150 K. Density decreases linearly for all compositions. The molar volume calculated from density data exhibits close to ideal dependence on composition. Measurements of the surface tension of liquid alloys have been conducted using the method of maximum pressure in the gas bubbles. There were observed linear dependences on temperature with a negative gradients dσ/dT. Generally, with two exceptions, there was observed the increase of surface tension with increasing content of zinc. Using the Butler's model, the surface tension isotherms were calculated for temperatures T = 673 and 1073 K. Calculations show that only for high temperatures and for low content of zinc (up to about 35 at.%), the modeling is in very good agreement with experiment. Using the mentioned model, the composition of the surface phase was defined at two temperatures T = 673 and 973 K. Regardless of the temperature and of the defined section, the composition of the bulk is very different in comparison with the composition of the surface.

  5. The effects of ambient temperature, humidity and season of year on urine composition in patients with nephrolithiasis.

    PubMed

    Eisner, Brian H; Sheth, Sonali; Herrick, Benjamin; Pais, Vernon M; Sawyer, Mark; Miller, Nicole; Hurd, Kimberly J; Humphreys, Mitchell R

    2012-12-01

    Study Type--Prognosis (cohort series) Level of Evidence 2b. What's known on the subject? and What does the study add? Epidemiologic studies have shown that warmer climates are associated with increased incidence of nephrolithiasis. Many hypothesize that this is due to dehydration and lower urine volumes. The current study of stone formers reports that greater temperatures are associated with significant increases in urine calcium which may shed light on the mechanism underlying the increased stone incidence associated with increased ambient temperature. • To understand the effects of temperature, humidity and season of year on 24-h urine composition in patients with nephrolithiasis. • A retrospective review was performed of patients evaluated at four metabolic stone clinics. • Multivariate linear regression models examined the relationship between mean temperature, average humidity, season of year and 24-h urine composition. • Multivariate models adjusted for known risk factors for stone disease. • Mean temperature and average humidity data were obtained from http://www.weatherunderground.com based on patient-provided addresses. • A total of 599 patients were included in the study, comprising 239 women and 360 men with a mean age of 53.6 years (sd 15.0). • Mean temperature was 16.9 °C (sd 4.8, range -21.1 to 38.3 °C) and average humidity was 58.1% (sd 23.5, range 11-100%). • On multivariate linear regression, increasing temperature was associated with increasing urine calcium (β = 11.3, 95% CI 2.2-20.0), super-saturation of calcium oxalate (β = 0.6, 95% CI 0.2-0.9), super-saturation of calcium phosphate (β = 0.14, 95% CI 0.03-0.2), and decreasing urine sodium (β = -5.2, 95% CI -10.3 to -0.1). • As seasons become warmer (i.e. from winter to autumn to spring to summer), changes were increased urine volume (β = 0.09, 95% CI 0.01-0.2) and decreased super-saturation of calcium phosphate (β = -0.2, 95% CI -0.3 to -0.03). • There were no associations between quintile of humidity and any 24-h urine constituents. • Increasing temperature may increase stone risk by increasing urine excretion of calcium, and the super-saturation of calcium oxalate and calcium phosphate. • These findings were independent of humidity and of season of year. • This appears to be related to a physiological impact of temperature itself, rather than to geographic location. © 2012 BJU INTERNATIONAL.

  6. Effect of cellulosic fiber scale on linear and non-linear mechanical performance of starch-based composites.

    PubMed

    Karimi, Samaneh; Abdulkhani, Ali; Tahir, Paridah Md; Dufresne, Alain

    2016-10-01

    Cellulosic nanofibers (NFs) from kenaf bast were used to reinforce glycerol plasticized thermoplastic starch (TPS) matrices with varying contents (0-10wt%). The composites were prepared by casting/evaporation method. Raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The aim of study was to investigate the effects of filler dimension and loading on linear and non-linear mechanical performance of fabricated materials. Obtained results clearly demonstrated that the NF-reinforced composites had significantly greater mechanical performance than the RF-reinforced counterparts. This was attributed to the high aspect ratio and nano dimension of the reinforcing agents, as well as their compatibility with the TPS matrix, resulting in strong fiber/matrix interaction. Tensile strength and Young's modulus increased by 313% and 343%, respectively, with increasing NF content from 0 to 10wt%. Dynamic mechanical analysis (DMA) revealed an elevational trend in the glass transition temperature of amylopectin-rich domains in composites. The most eminent record was +18.5°C shift in temperature position of the film reinforced with 8% NF. This finding implied efficient dispersion of nanofibers in the matrix and their ability to form a network and restrict mobility of the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Kinetic Study on the Removal of Iron from Gold Mine Tailings by Citric Acid

    NASA Astrophysics Data System (ADS)

    Mashifana, T.; Mavimbela, N.; Sithole, N.

    2018-03-01

    The Gold mining generates large volumes of tailings, with consequent disposal and environmental problems. Iron tends to react with sulphur to form pyrite and pyrrhotite which then react with rain water forming acid rain. The study focuses on the removal of iron (Fe) from Gold Mine tailings; Fe was leached using citric acid as a leaching reagent. Three parameters which have an effect on the removal of Fe from the gold mine tailings, namely; temperature (25 °C and 50 °C), reagent concentration (0.25 M, 0.5 M, 0.75 M and 1 M) and solid loading ratio (20 %, 30 % and 40 %) were investigated. It was found that the recovery of Fe from gold mine tailings increased with increasing temperature and reagent concentration, but decreased with increasing solid loading ratio. The optimum conditions for the recovery of Fe from gold mine tailings was found to be at a temperature of 50 ºC, reagent concentration of 1 M and solid loading of 20 %. Three linear kinetic models were investigated and Prout-Tompkins kinetic model was the best fit yielding linear graphs with the highest R2 values.

  8. A simple model to predict the biodiesel blend density as simultaneous function of blend percent and temperature.

    PubMed

    Gaonkar, Narayan; Vaidya, R G

    2016-05-01

    A simple method to estimate the density of biodiesel blend as simultaneous function of temperature and volume percent of biodiesel is proposed. Employing the Kay's mixing rule, we developed a model and investigated theoretically the density of different vegetable oil biodiesel blends as a simultaneous function of temperature and volume percent of biodiesel. Key advantage of the proposed model is that it requires only a single set of density values of components of biodiesel blends at any two different temperatures. We notice that the density of blend linearly decreases with increase in temperature and increases with increase in volume percent of the biodiesel. The lower values of standard estimate of error (SEE = 0.0003-0.0022) and absolute average deviation (AAD = 0.03-0.15 %) obtained using the proposed model indicate the predictive capability. The predicted values found good agreement with the recent available experimental data.

  9. Population Dynamics and Temperature-Dependent Development of Chrysomphalus aonidum (L.) to Aid Sustainable Pest Management Decisions.

    PubMed

    Campolo, O; Malacrinò, A; Laudani, F; Maione, V; Zappalà, L; Palmeri, V

    2014-10-01

    The increasing worldwide trades progressively led to decreased impact of natural barriers on wild species movement. The exotic scale Chrysomphalus aonidum (L.) (Hemiptera: Diaspididae), recently reported on citrus in southern Italy, may represent a new threat to Mediterranean citriculture. We studied C. aonidum population dynamics under field conditions and documented its development under various temperatures. To enable describing temperature-dependent development through the use of linear and non-linear models, low temperature thresholds and thermal constants for each developmental stage were estimated. Chrysomphalus aonidum was able to perform four generations on green parts (leaves, sprouts) of citrus trees and three on fruits. In addition, an overall higher population density was observed on samples collected in the southern part of the tree canopy. Temperature had a significant effect on the developmental rate; female needed 625 degree days (DD) to complete its development, while male needed 833 DD. The low threshold temperatures, together with data from population dynamics, demonstrated that C. aonidum is able to overwinter as second instar and as an adult. The results obtained, validated by those collected in the field, revealed few differences between predicted and observed dates of first occurrence of each C. aonidum instar in citrus orchards. Data on C. aonidum phenology and the definition of the thermal parameters (lower and upper threshold temperatures, optimum temperature, and the thermal constant) by non-linear models could allow the estimation of the occurrence in the field of each life stage and would be helpful in developing effective integrated control strategies.

  10. Ultrasonic Linear Motor with Two Independent Vibrations

    NASA Astrophysics Data System (ADS)

    Muneishi, Takeshi; Tomikawa, Yoshiro

    2004-09-01

    We propose a new structure of an ultrasonic linear motor in order to solve the problems of high-power ultrasonic linear motors that drive the XY-stage for electron beam equipment and to expand the application fields of the motor. We pay special attention to the following three points: (1) the vibration in two directions of the ultrasonic linear motor should not influence mutually each other, (2) the vibration in two directions should be divided into the stage traveling direction and the pressing direction of the ultrasonic linear motor, and (3) the rigidity of the stage traveling direction of the ultrasonic linear motor should be increased. As a result, the supporting method of ultrasonic linear motors is simplified. The efficiency of the motor is improved and temperature rise is reduced. The stage position drift is also improved.

  11. Enhancing the magnetization of Mn4C by heating

    NASA Astrophysics Data System (ADS)

    Si, Ping-Zhan; Qian, Hui-Dong; Ge, Hong-Liang; Park, Jihoon; Choi, Chul-Jin

    2018-05-01

    Little is known about the physical properties of Mn4C for which is unstable and difficult to prepare. We herein report on the unusual thermomagnetic properties of high purity Mn4C powders obtained by plasma melting and magnetic separation processes. The saturation magnetization of Mn4C increases linearly with increasing temperature in the range of 50 K-590 K and remains stable at temperatures below 50 K. The anomalous magnetization increases of Mn4C with increasing temperature can be considered in terms of the Néel's P-type ferrimagnetism. At temperatures above 590 K, the Mn4C decomposes into Mn23C6 and Mn, which would be partially oxidized into manganosite when exposed to air. The remanent magnetization of Mn4C varies little with temperature. The Curie temperature of Mn4C is around ˜870 K. The positive temperature coefficient (˜0.0072 Am2 kg-1 K-1) of magnetization in Mn4C makes it potentially important in controlling the thermodynamics of magnetization in magnetic materials.

  12. Effects of heat treatment on shape-setting and non-linearmechanical properties of Nitinol stent

    NASA Astrophysics Data System (ADS)

    Liu, Xiaopeng; Wang, Yinong; Qi, Min; Yang, Dazhi

    2007-07-01

    NiTi shape memory alloy is a temperature sensitive material with non-linear mechanical properties and good biocompatibility, which can be used for medical devices such as stent, catheter guide wire and orthodontic wire. The majority of nitinol stents are of the self-expanding type basing on the superelasticity. Nitinol stents are shape set into the open condition and compressed and inserted into the delivery catheter. Additional the shape-setting treatment can be used as a tool to accurately tune the transformation temperatures and mechanical properties. In this study, different heat treatments have been performed on the Ti-50.7at%Ni alloy wires. And results of shape-setting, austenite transformation finish temperature and non-linear mechanical property of NiTi shape memory alloy at body temperature have been investigated. The experimental results show that the proper shape-setting temperature should be chosen between 450-550 °C. And the shape-setting results were stabilization when the NiTi wires were constrain-treated at 500 and 550°C and ageing time longer than 10 minutes. The austenite finish temperatures increased with ageing time and increased first and then decreased with ageing temperature. The peak values were obtained at 400°C. When the heat treatments was performed at the same temperature, both the upper plateau stresses and lower plateau stresses decreased with the ageing time. Most of treated nitinol wires owned good recovery ability at body temperature and the permanent sets were less than 0.05% when short time ageing treatment was performed at 500°C.

  13. Predicting body temperature and activity of adult Polyommatus icarus using neural network models under current and projected climate scenarios.

    PubMed

    Howe, P D; Bryant, S R; Shreeve, T G

    2007-10-01

    We use field observations in two geographic regions within the British Isles and regression and neural network models to examine the relationship between microhabitat use, thoracic temperatures and activity in a widespread lycaenid butterfly, Polyommatus icarus. We also make predictions for future activity under climate change scenarios. Individuals from a univoltine northern population initiated flight with significantly lower thoracic temperatures than individuals from a bivoltine southern population. Activity is dependent on body temperature and neural network models of body temperature are better at predicting body temperature than generalized linear models. Neural network models of activity with a sole input of predicted body temperature (using weather and microclimate variables) are good predictors of observed activity and were better predictors than generalized linear models. By modelling activity under climate change scenarios for 2080 we predict differences in activity in relation to both regional differences of climate change and differing body temperature requirements for activity in different populations. Under average conditions for low-emission scenarios there will be little change in the activity of individuals from central-southern Britain and a reduction in northwest Scotland from 2003 activity levels. Under high-emission scenarios, flight-dependent activity in northwest Scotland will increase the greatest, despite smaller predicted increases in temperature and decreases in cloud cover. We suggest that neural network models are an effective way of predicting future activity in changing climates for microhabitat-specialist butterflies and that regional differences in the thermoregulatory response of populations will have profound effects on how they respond to climate change.

  14. Cobalt Oxide on N-Doped Carbon for 1-Butene Oligomerization to Produce Linear Octenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dongting; Xu, Zhuoran; Chada, Joseph P.

    Cobalt oxide supported on N-doped carbon catalysts were investigated for 1-butene oligomerization. The materials were synthesized by treating activated carbon with nitric acid and subsequently with NH3 at 200, 400, 600, and 800 °C, followed by impregnation with cobalt. The 1-butene oligomerization selectivity increased with ammonia treatment temperature of the carbon support. The oligomerization selectivity of cobalt oxide on N-doped carbon synthesized at 800 °C (800A-CoOx/N-C) is 2.6 times higher than previously reported cobalt oxide on N-doped carbon synthesized with NH4OH (2A-CoOx/N-C). Over 70% of the butene dimers were linear C8 olefins for all catalysts. The oligomerization selectivity increased withmore » 1-butene conversion. The catalysts were characterized by elemental analysis, N2 adsorption, X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), and X-ray photoelectron spectroscopy (XPS). The nitrogen content of the catalysts increases with ammonia treatment temperature as confirmed by elemental analysis. The surface content of pyridinic nitrogen with a binding energy of 398.4 ± 0.1 eV increased with ammonia treatment temperature as evidenced by deconvolution of N 1s XPS spectra.« less

  15. The association between diurnal temperature range and childhood bacillary dysentery

    NASA Astrophysics Data System (ADS)

    Wen, Li-ying; Zhao, Ke-fu; Cheng, Jian; Wang, Xu; Yang, Hui-hui; Li, Ke-sheng; Xu, Zhi-wei; Su, Hong

    2016-02-01

    Previous studies have found that mean, maximum, and minimum temperatures were associated with bacillary dysentery (BD). However, little is known about whether the within-day variation of temperature has any impact on bacillary dysentery. The current study aimed to identify the relationship between diurnal temperature range (DTR) and BD in Hefei, China. Daily data on BD counts among children aged 0-14 years from 1 January 2006 to 31 December 2012 were retrieved from Hefei Center for Disease Control and Prevention. Daily data on ambient temperature and relative humidity covering the same period were collected from the Hefei Bureau of Meteorology. A Poisson generalized linear regression model combined with a distributed lag non-linear model (DLNM) was used in the analysis after controlling the effects of season, long-term trends, mean temperature, and relative humidity. The results showed that there existed a statistically significant relationship between DTR and childhood BD. The DTR effect on childhood bacillary dysentery increased when DTR was over 8 °C. And it was greatest at 1-day lag, with an 8 % (95 % CI = 2.9-13.4 %) increase of BD cases per 5 °C increment of DTR. Male children and children aged 0-5 years appeared to be more vulnerable to the DTR effect. The data indicate that large DTR may increase the incidence of childhood BD. Caregivers and health practitioners should be made aware of the potential threat posed by large DTR. Therefore, DTR should be taken into consideration when making targeted health policies and programs to protect children from being harmed by climate impacts.

  16. The association between diurnal temperature range and childhood bacillary dysentery.

    PubMed

    Wen, Li-ying; Zhao, Ke-fu; Cheng, Jian; Wang, Xu; Yang, Hui-hui; Li, Ke-sheng; Xu, Zhi-wei; Su, Hong

    2016-02-01

    Previous studies have found that mean, maximum, and minimum temperatures were associated with bacillary dysentery (BD). However, little is known about whether the within-day variation of temperature has any impact on bacillary dysentery. The current study aimed to identify the relationship between diurnal temperature range (DTR) and BD in Hefei, China. Daily data on BD counts among children aged 0-14 years from 1 January 2006 to 31 December 2012 were retrieved from Hefei Center for Disease Control and Prevention. Daily data on ambient temperature and relative humidity covering the same period were collected from the Hefei Bureau of Meteorology. A Poisson generalized linear regression model combined with a distributed lag non-linear model (DLNM) was used in the analysis after controlling the effects of season, long-term trends, mean temperature, and relative humidity. The results showed that there existed a statistically significant relationship between DTR and childhood BD. The DTR effect on childhood bacillary dysentery increased when DTR was over 8 °C. And it was greatest at 1-day lag, with an 8% (95% CI = 2.9-13.4%) increase of BD cases per 5 °C increment of DTR. Male children and children aged 0-5 years appeared to be more vulnerable to the DTR effect. The data indicate that large DTR may increase the incidence of childhood BD. Caregivers and health practitioners should be made aware of the potential threat posed by large DTR. Therefore, DTR should be taken into consideration when making targeted health policies and programs to protect children from being harmed by climate impacts.

  17. Complete Stokes polarimetry of magneto-optical Faraday effect in a terbium gallium garnet crystal at cryogenic temperatures.

    PubMed

    Majeed, Hassaan; Shaheen, Amrozia; Anwar, Muhammad Sabieh

    2013-10-21

    We report the complete determination of the polarization changes caused in linearly polarized incident light due to propagation in a magneto-optically active terbium gallium garnet (TGG) single crystal, at temperatures ranging from 6.3 to 300 K. A 28-fold increase in the Verdet constant of the TGG crystal is seen as its temperature decreases to 6.3 K. In contrast with polarimetry of light emerging from a Faraday material at room temperature, polarimetry at cryogenic temperatures cannot be carried out using the conventional fixed polarizer-analyzer technique because the assumption that ellipticity is negligible becomes increasingly invalid as temperature is lowered. It is shown that complete determination of light polarization in such a case requires the determination of its Stokes parameters, otherwise inaccurate measurements will result with negative implications for practical devices.

  18. The Canopy Conductance of a Humid Grassland

    NASA Astrophysics Data System (ADS)

    Lu, C. T.; Hsieh, C. I.

    2015-12-01

    Penman-Monteith equation is widely used for estimating latent heat flux. The key parameter for implementing this equation is the canopy conductance (gc). Recent research (Blaken and Black, 2004) showed that gc could be well parameterized by a linear function of An/ (D0* X0c), where An represents net assimilation, D0 is leaf level saturation deficit, and X0c is CO2 mole fraction. In this study, we tried to use the same idea for estimating gcfor a humid grassland. The study site was located in County Cork, southwest Ireland (51o59''N 8o46''W), and perennial ryegrass (Lolium perenne L.) was the dominant grass species in this area. An eddy covariance system was used to measure the latent heat flux above this humid grassland. The measured gc was calculated by rearranging Penman-Monteith equation combined with the measured latent heat flux. Our data showed that the gc decreased as the vapor pressure deficit and temperature increased. And it increased as the net radiation increased. Therefore, we found out that the best parameterization of gc was a linear function of the product of the vapor deficit, temperature, and net radiation. Also, we used the gc which was estimated by this linear function to predict the latent heat flux by Penman-Monteith equation and compared the predictions with those where the gc was chosen to be a fixed value. Our analysis showed that this simple linear function for gc can improve the latent heat flux predictions (R square increased from 0.48 to 0.66).

  19. Heat flux microsensor measurements and calibrations

    NASA Technical Reports Server (NTRS)

    Terrell, James P.; Hager, Jon M.; Onishi, Shinzo; Diller, Thomas E.

    1992-01-01

    A new thin-film heat flux gage has been fabricated specifically for severe high temperature operation using platinum and platinum-10 percent rhodium for the thermocouple elements. Radiation calibrations of this gage were performed at the AEDC facility over the available heat flux range (approx. 1.0 - 1,000 W/cu cm). The gage output was linear with heat flux with a slight increase in sensitivity with increasing surface temperature. Survivability of gages was demonstrated in quench tests from 500 C into liquid nitrogen. Successful operation of gages to surface temperatures of 750 C has been achieved. No additional cooling of the gages is required because the gages are always at the same temperature as the substrate material. A video of oxyacetylene flame tests with real-time heat flux and temperature output is available.

  20. Simulation of herbicide degradation in different soils by use of Pedo-transfer functions (PTF) and non-linear kinetics.

    PubMed

    von Götz, N; Richter, O

    1999-03-01

    The degradation behaviour of bentazone in 14 different soils was examined at constant temperature and moisture conditions. Two soils were examined at different temperatures. On the basis of these data the influence of soil properties and temperature on degradation was assessed and modelled. Pedo-transfer functions (PTF) in combination with a linear and a non-linear model were found suitable to describe the bentazone degradation in the laboratory as related to soil properties. The linear PTF can be combined with a rate related to the temperature to account for both soil property and temperature influence at the same time.

  1. A fiber Bragg grating--bimetal temperature sensor for solar panel inverters.

    PubMed

    Ismail, Mohd Afiq; Tamchek, Nizam; Hassan, Muhammad Rosdi Abu; Dambul, Katrina D; Selvaraj, Jeyrai; Rahim, Nasrudin Abd; Sandoghchi, Reza; Adikan, Faisal Rafiq Mahamd

    2011-01-01

    This paper reports the design, characterization and implementation of a fiber Bragg grating (FBG)-based temperature sensor for an insulted-gate Bipolar transistor (IGBT) in a solar panel inverter. The FBG is bonded to the higher coefficient of thermal expansion (CTE) side of a bimetallic strip to increase its sensitivity. Characterization results show a linear relationship between increasing temperature and the wavelength shift. It is found that the sensitivity of the sensor can be categorized into three characterization temperature regions between 26 °C and 90 °C. The region from 41 °C to 90 °C shows the highest sensitivity, with a value of 14 pm/°C. A new empirical model that considers both temperature and strain effects has been developed for the sensor. Finally, the FBG-bimetal temperature sensor is placed in a solar panel inverter and results confirm that it can be used for real-time monitoring of the IGBT temperature.

  2. Linear viscoelasticity and thermorheological simplicity of n-hexadecane fluids under oscillatory shear via non-equilibrium molecular dynamics simulations.

    PubMed

    Tseng, Huan-Chang; Wu, Jiann-Shing; Chang, Rong-Yeu

    2010-04-28

    A small amplitude oscillatory shear flows with the classic characteristic of a phase shift when using non-equilibrium molecular dynamics simulations for n-hexadecane fluids. In a suitable range of strain amplitude, the fluid possesses significant linear viscoelastic behavior. Non-linear viscoelastic behavior of strain thinning, which means the dynamic modulus monotonously decreased with increasing strain amplitudes, was found at extreme strain amplitudes. Under isobaric conditions, different temperatures strongly affected the range of linear viscoelasticity and the slope of strain thinning. The fluid's phase states, containing solid-, liquid-, and gel-like states, can be distinguished through a criterion of the viscoelastic spectrum. As a result, a particular condition for the viscoelastic behavior of n-hexadecane molecules approaching that of the Rouse chain was obtained. Besides, more importantly, evidence of thermorheologically simple materials was presented in which the relaxation modulus obeys the time-temperature superposition principle. Therefore, using shift factors from the time-temperature superposition principle, the estimated Arrhenius flow activation energy was in good agreement with related experimental values. Furthermore, one relaxation modulus master curve well exhibited both transition and terminal zones. Especially regarding non-equilibrium thermodynamic states, variations in the density, with respect to frequencies, were revealed.

  3. High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries

    DOEpatents

    Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

    2014-04-22

    A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

  4. Thermoelectric Behavior of PbSe Single Crystals

    DOE PAGES

    Kogo, Gilbert; Pradhan, Aswini K.; Roy, Utpal N.

    2016-12-05

    The electrical conductivity and Seebeck coefficient of PbSe single crystals grown by the Bridgman technique display metallic behavior. The Seebeck coefficient increases linearly with increasing temperature and showed positive Seebeck values, typically valid for a p-type PbSe crystal. The electronic thermal conductivity decreases with increase in temperature. The power factor increases gradually with temperature until the maximum value of 6.51 × 10 -3 W/mK2 at 260 K, other values are 5.95 × 10 -3 W/mK 2 at 300 K, and 5.40 × 10 -3 W/mK 2 at 320 K. Our results demonstrate that as-grown PbSe crystal is generically p-type duemore » to excess in Pb and can be a potential candidate for thermoelectric power generation.« less

  5. Effect of temperature rise and hydrostatic pressure on microbending loss and refractive index change in double-coated optical fiber

    NASA Astrophysics Data System (ADS)

    Seraji, Faramarz E.; Toutian, Golnoosh

    This paper presents an analysis of the effect of temperature rise and hydrostatic pressure on microbending loss, refractive index change, and stress components of a double-coated optical fiber by considering coating material parameters such as Young's modulus and the Poisson ratio. It is shown that, when temperature rises, the microbending loss and refractive index changes would decrease with increase of thickness of primary coating layer and will increase after passing through a minima. Increase of thickness of secondary coating layer causes the microbending loss and refractive index changes to decrease. We have shown that the temperature rise affecting the fiber makes the microbending loss and refractive index decrease, linearly. At a particular temperature, the microbending loss takes negative values, due to tensile pressure applied on the fiber. The increase of Young's modulus and the Poisson ratio of primary coating would lower the microbending loss and refractive index change whereas in the secondary coating layer, the condition reverses.

  6. Adaptive heat pump and battery storage demand side energy management

    NASA Astrophysics Data System (ADS)

    Sobieczky, Florian; Lettner, Christian; Natschläger, Thomas; Traxler, Patrick

    2017-11-01

    An adaptive linear model predictive control strategy is introduced for the problem of demand side energy management, involving a photovoltaic device, a battery, and a heat pump. Moreover, the heating influence of solar radiation via the glass house effect is considered. Global sunlight radiation intensity and the outside temperature are updated by weather forecast data. The identification is carried out after adapting to a time frame witch sufficiently homogeneous weather. In this way, in spite of the linearity an increase in precision and cost reduction of up to 46% is achieved. It is validated for an open and closed loop version of the MPC problem using real data of the ambient temperature and the global radiation.

  7. A Note on the Relationship between Temperature and Water Vapor in Quasi-Equilibrium and Climate States

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Shie, C.-L.; Tao, W.-K.; Simpson, J.; Sui, C.-H.

    2005-01-01

    An ideal and simple formulation is successfully derived that well represents a quasi-linear relationship found between the domain-averaged water vapor, q (mm), and temperature, T (K), fields obtained from a series of quasi-equilibrium (long-term) simulations for the Tropics using the two-dimensional Goddard Cumulus Ensemble (GCE) model. Earlier model work showed that the forced maintenance of two different wind profiles in the Tropics leads to two different equilibrium states. Investigating this finding required investigation of the slope of the moisture-temperature relations, which turns out to be linear in the Tropics. The extra-tropical climate equilibriums become more complex, but insight on modeling sensitivity can be obtained by linear stepwise regression of the integrated temperature and humidity. A globally curvilinear moisture-temperature distribution, similar to the famous Clausius-Clapeyron curve (i.e., saturated water vapor pressure versus temperature), is then found in this study. Such a genuine finding clarifies that the dynamics are crucial to the climate (shown in the earlier work) but the thermodynamics adjust. The range of validity of this result is further examined herein. The GCE-modeled tropical domain-averaged q and T fields form a linearly-regressed "q-T" slope that genuinely resides within an ideal range of slopes obtained from the aforementioned formulation. A quantity (denoted as dC2/dC1) representing the derivative between the static energy densities due to temperature (C2) and water vapor (C1) for various quasi-equilibrium states can also be obtained. A dC2/dC1 value near unity obtained for the GCE-modeled tropical simulations implies that the static energy densities due to moisture and temperature only differ by a pure constant for various equilibrium states. An overall q-T relation also including extra-tropical regions is, however, found to have a curvilinear relationship. Accordingly, warm/moist regions favor change in water vapor faster than temperature, while cold/dry regions favor an increase in temperature quicker than water vapor.

  8. The role of nanoparticle rigidity on the diffusion of linear polystyrene in a polymer nanocomposite

    DOE PAGES

    Miller, Brad; Imel, Adam E.; Holley, Wade; ...

    2015-11-12

    The impact of the inclusion of a nanoparticle in a polymer matrix on the dynamics of the polymer chains is an area of recent interest. In this article, we describe the role of nanoparticle rigidity or softness on the impact of the presence of that nanoparticle on the diffusive behavior of linear polymer chains. The neutron reflectivity results clearly show that the inclusion of 10 nm soft nanoparticles in a polymer matrix (R g ~ 20 nm) increases the diffusion coefficient of the linear polymer chain. Surprisingly, thermal analysis shows that these nanocomposites exhibit an increase in their glass transitionmore » temperature, which is incommensurate with an increase in free volume. Therefore, it appears that this effect is more complex than a simple plasticizing effect. Results from small-angle neutron scattering of the nanoparticles in solution show a structure that consists of a gel like core with a corona of free chain ends and loops. Furthermore, the increase in linear polymer diffusion may be related to an increase in constraint release mechanisms in the reptation of the polymer chain, in a similar manner to that which has been reported for the diffusion of linear polymer chains in the presence of star polymers.« less

  9. The role of nanoparticle rigidity on the diffusion of linear polystyrene in a polymer nanocomposite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Brad; Imel, Adam E.; Holley, Wade

    The impact of the inclusion of a nanoparticle in a polymer matrix on the dynamics of the polymer chains is an area of recent interest. In this article, we describe the role of nanoparticle rigidity or softness on the impact of the presence of that nanoparticle on the diffusive behavior of linear polymer chains. The neutron reflectivity results clearly show that the inclusion of 10 nm soft nanoparticles in a polymer matrix (R g ~ 20 nm) increases the diffusion coefficient of the linear polymer chain. Surprisingly, thermal analysis shows that these nanocomposites exhibit an increase in their glass transitionmore » temperature, which is incommensurate with an increase in free volume. Therefore, it appears that this effect is more complex than a simple plasticizing effect. Results from small-angle neutron scattering of the nanoparticles in solution show a structure that consists of a gel like core with a corona of free chain ends and loops. Furthermore, the increase in linear polymer diffusion may be related to an increase in constraint release mechanisms in the reptation of the polymer chain, in a similar manner to that which has been reported for the diffusion of linear polymer chains in the presence of star polymers.« less

  10. Characterizing the relationship between temperature and mortality in tropical and subtropical cities: a distributed lag non-linear model analysis in Hue, Viet Nam, 2009-2013.

    PubMed

    Dang, Tran Ngoc; Seposo, Xerxes T; Duc, Nguyen Huu Chau; Thang, Tran Binh; An, Do Dang; Hang, Lai Thi Minh; Long, Tran Thanh; Loan, Bui Thi Hong; Honda, Yasushi

    2016-01-01

    The relationship between temperature and mortality has been found to be U-, V-, or J-shaped in developed temperate countries; however, in developing tropical/subtropical cities, it remains unclear. Our goal was to investigate the relationship between temperature and mortality in Hue, a subtropical city in Viet Nam. We collected daily mortality data from the Vietnamese A6 mortality reporting system for 6,214 deceased persons between 2009 and 2013. A distributed lag non-linear model was used to examine the temperature effects on all-cause and cause-specific mortality by assuming negative binomial distribution for count data. We developed an objective-oriented model selection with four steps following the Akaike information criterion (AIC) rule (i.e. a smaller AIC value indicates a better model). High temperature-related mortality was more strongly associated with short lags, whereas low temperature-related mortality was more strongly associated with long lags. The low temperatures increased risk in all-category mortality compared to high temperatures. We observed elevated temperature-mortality risk in vulnerable groups: elderly people (high temperature effect, relative risk [RR]=1.42, 95% confidence interval [CI]=1.11-1.83; low temperature effect, RR=2.0, 95% CI=1.13-3.52), females (low temperature effect, RR=2.19, 95% CI=1.14-4.21), people with respiratory disease (high temperature effect, RR=2.45, 95% CI=0.91-6.63), and those with cardiovascular disease (high temperature effect, RR=1.6, 95% CI=1.15-2.22; low temperature effect, RR=1.99, 95% CI=0.92-4.28). In Hue, the temperature significantly increased the risk of mortality, especially in vulnerable groups (i.e. elderly, female, people with respiratory and cardiovascular diseases). These findings may provide a foundation for developing adequate policies to address the effects of temperature on health in Hue City.

  11. Characterizing the relationship between temperature and mortality in tropical and subtropical cities: a distributed lag non-linear model analysis in Hue, Viet Nam, 2009–2013

    PubMed Central

    Dang, Tran Ngoc; Seposo, Xerxes T.; Duc, Nguyen Huu Chau; Thang, Tran Binh; An, Do Dang; Hang, Lai Thi Minh; Long, Tran Thanh; Loan, Bui Thi Hong; Honda, Yasushi

    2016-01-01

    Background The relationship between temperature and mortality has been found to be U-, V-, or J-shaped in developed temperate countries; however, in developing tropical/subtropical cities, it remains unclear. Objectives Our goal was to investigate the relationship between temperature and mortality in Hue, a subtropical city in Viet Nam. Design We collected daily mortality data from the Vietnamese A6 mortality reporting system for 6,214 deceased persons between 2009 and 2013. A distributed lag non-linear model was used to examine the temperature effects on all-cause and cause-specific mortality by assuming negative binomial distribution for count data. We developed an objective-oriented model selection with four steps following the Akaike information criterion (AIC) rule (i.e. a smaller AIC value indicates a better model). Results High temperature-related mortality was more strongly associated with short lags, whereas low temperature-related mortality was more strongly associated with long lags. The low temperatures increased risk in all-category mortality compared to high temperatures. We observed elevated temperature-mortality risk in vulnerable groups: elderly people (high temperature effect, relative risk [RR]=1.42, 95% confidence interval [CI]=1.11–1.83; low temperature effect, RR=2.0, 95% CI=1.13–3.52), females (low temperature effect, RR=2.19, 95% CI=1.14–4.21), people with respiratory disease (high temperature effect, RR=2.45, 95% CI=0.91–6.63), and those with cardiovascular disease (high temperature effect, RR=1.6, 95% CI=1.15–2.22; low temperature effect, RR=1.99, 95% CI=0.92–4.28). Conclusions In Hue, the temperature significantly increased the risk of mortality, especially in vulnerable groups (i.e. elderly, female, people with respiratory and cardiovascular diseases). These findings may provide a foundation for developing adequate policies to address the effects of temperature on health in Hue City. PMID:26781954

  12. Influences of temperature and impurity on excited state of bound polaron in the parabolic quantum dots

    NASA Astrophysics Data System (ADS)

    Xiao, Jing-Lin

    2014-06-01

    On the condition of strong electron-LO phonon coupling in parabolic quantum dot (QD), the first excited state energy, the excitation energy and the transition frequency between the first excited and the ground states of the bound polaron are calculated by using the linear combination operator and the unitary transformation methods. The variation of the above quantities with the temperature, the Coulombic impurity potential and the QD confinement strength are studied in detail. We find that (1) These physical quantities will increase with increasing temperature. (2) They are increasing functions of the confinement strength due to the existence of the Coulombic impurity potential between the electron and the hydrogen-like impurity. (3) We obtain three ways of tuning them via controlling the temperature, the Coulombic impurity potential and the confinement strength.

  13. The role of grain size and shape in strengthening of dispersion hardened nickel alloys.

    NASA Technical Reports Server (NTRS)

    Wilcox, B. A.; Clauer, A. H.

    1972-01-01

    Thermomechanical processing was used to develop various microstructures in Ni, Ni-2ThO2, Ni-20Cr, Ni-20Cr-2ThO2, Ni-20Cr-10W and Ni-20Cr-10W-2ThO2, and the influence of microstructure on room temperature and elevated temperature strength was investigated. The yield strength at 25 C increased with substructure refinement according to the Hall-Petch relation. It was found that substructure refinement was a much more potent means of strengthening at room temperature than was dispersion hardening. At elevated temperature (1093 C), the most important microstructural feature affecting strength of dispersion hardened nickel alloys was the grain aspect ratio, i.e. grain length, L, divided by grain width,l. The yield strength and creep strength increased linearly with increasing L/l.

  14. Preparation and characterization of a novel willemite bioceramic.

    PubMed

    Zhang, Meili; Zhai, Wanyin; Chang, Jiang

    2010-04-01

    Willemite (Zn(2)SiO(4)) ceramics were prepared by sintering the willemite green compacts. The effects of sintering temperature on the linear shrinkage, porosity and mechanical strength of the ceramics were examined. With the sintering temperature increased, the linear shrinkage of the ceramics increased and the porosity decreased. When sintered at 1,300 degrees C, willemite ceramics showed mechanical properties of the same order of magnitude as values for human cortical bone, as measured by bending strength (91.2 +/- 4.2 MPa) and Young's modulus (37.5 +/- 1.5 GPa). In addition, the adhesion and proliferation of rabbit bone marrow stromal cells (BMSCs) on willemite ceramics was investigated. The results showed that the ceramics supported cell adhesion and stimulated the proliferation. All these findings suggest that willemite ceramics possess suitable mechanical properties and favorable biocompatibility and might be a promising biomaterial for bone implant applications.

  15. On the climate impacts from the volcanic and solar forcings

    NASA Astrophysics Data System (ADS)

    Varotsos, Costas A.; Lovejoy, Shaun

    2016-04-01

    The observed and the modelled estimations show that the main forcings on the atmosphere are of volcanic and solar origins, which act however in an opposite way. The former can be very strong and decrease at short time scales, whereas, the latter increase with time scale. On the contrary, the observed fluctuations in temperatures increase at long scales (e.g. centennial and millennial), and the solar forcings do increase with scale. The common practice is to reduce forcings to radiative equivalents assuming that their combination is linear. In order to clarify the validity of the linearity assumption and determine its range of validity, we systematically compare the statistical properties of solar only, volcanic only and combined solar and volcanic forcings over the range of time scales from one to 1000 years. Additionally, we attempt to investigate plausible reasons for the discrepancies observed between the measured and modeled anomalies of tropospheric temperatures in the tropics. For this purpose, we analyse tropospheric temperature anomalies for both the measured and modeled time series. The results obtained show that the measured temperature fluctuations reveal white noise behavior, while the modeled ones exhibit long-range power law correlations. We suggest that the persistent signal, should be removed from the modeled values in order to achieve better agreement with observations. Keywords: Scaling, Nonlinear variability, Climate system, Solar radiation

  16. The effect of temperature on ferroelectric properties of CaCu3Ti4O12 ceramic

    NASA Astrophysics Data System (ADS)

    Kumar, Sandeep; Ahlawat, Neetu; Punia, Suman

    2014-04-01

    CaCu3Ti4O12 (CCTO) ceramic was synthesized by conventional solid-state reaction technique and sintered at 1353K for 10 hours. The dielectric properties of CCTO were analyzed in 1Hz-5 MHz frequency range, from room temperature to 413K. The ferroelectric properties of CCTO were analyzed at various frequencies viz. 50 Hz, 100 Hz and 200 Hz at temperatures (298K to 413K). Result of these investigation points that with increasing temperature the values of coercive field (Ec) and remnant polarization (Pr) decrease while maximum polarization (Pmax) increases non-linearly. P-E hysteresis loop of CCTO goes to slimed and a ferroelectric to Para-electric phase transition is observed at 403K.

  17. Aroma volatility from aqueous sucrose solutions at low and subzero temperatures.

    PubMed

    Covarrubias-Cervantes, Marco; Champion, Dominique; Debeaufort, Frédéric; Voilley, Andrée

    2004-11-17

    The gas-liquid partition coefficients of ethyl acetate and ethyl hexanoate have been measured in water and aqueous sucrose solutions from 25 to -10 degrees C by dynamic headspace. Experiments were carried out on sucrose solutions at temperatures where no ice formation was possible. Results showed that when sucrose concentration increased, aroma volatility increased except for ethyl hexanoate and in the highest sucrose concentration solution (57.5%). A quasi-linear temperature decrease on aroma volatility was observed in sucrose solutions from 25 to around 4 and 0 degrees C. Then, from 0 to -10 degrees C, aroma volatility did not decrease: ethyl acetate volatility remained constant but that of ethyl hexanoate increased. Enthalpy of vaporization and activity coefficients of the aroma compounds were calculated.

  18. The effects of tomato powder supplementation on performance and lipid peroxidation in quail.

    PubMed

    Sahin, N; Orhan, C; Tuzcu, M; Sahin, K; Kucuk, O

    2008-02-01

    Recent studies have suggested a protective role for lycopene, an antioxidant carotenoid, in the prevention of stress including environmental stress. Tomatoes and tomato products are the major dietary source of lycopene. The objective of the present study was to investigate the effect of dietary tomato powder supplementation on the performance and lipid peroxidation of meat in Japanese quail (Coturnix coturnix japonica) exposed to a high ambient temperature of 34 degrees C. A total of 180 ten-day-old male quails were randomly allocated into 6 groups consisting of 10 replicates of 3 birds. Birds were kept in wire cages in a temperature-controlled room at either 22 degrees C (thermoneutral) or 34 degrees C (heat stress) for 8 h/ d (0900 to 1700 h during the study). Birds were fed either a basal diet or the basal diet supplemented with 2.5 or 5.0% of tomato powder. Tomato powder supplementation linearly increased feed intake, live weight gain, and feed conversion (P = 0.01) under heat stress conditions but did not show the same effect at thermoneutral conditions (P > 0.05). Heat stress significantly increased malondialdehyde concentration and decreased vitamin concentrations in the serum, liver, and muscles of quail. Serum lycopene and vitamin C, E, and A (P = 0.01) concentrations increased linearly in birds at all groups. Malondialdehyde levels in serum, liver (P = 0.001), and muscles linearly decreased in all birds of both thermoneutral and heat stress groups as dietary tomato powder supplementation increased. The results of the study indicate that tomato powder modulates the oxidation-antioxidation system of the muscles in Japanese quail exposed to high ambient temperature.

  19. Effect of processor temperature on film dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Shiv P.; Das, Indra J., E-mail: idas@iupui.edu

    2012-07-01

    Optical density (OD) of a radiographic film plays an important role in radiation dosimetry, which depends on various parameters, including beam energy, depth, field size, film batch, dose, dose rate, air film interface, postexposure processing time, and temperature of the processor. Most of these parameters have been studied for Kodak XV and extended dose range (EDR) films used in radiation oncology. There is very limited information on processor temperature, which is investigated in this study. Multiple XV and EDR films were exposed in the reference condition (d{sub max.}, 10 Multiplication-Sign 10 cm{sup 2}, 100 cm) to a given dose. Anmore » automatic film processor (X-Omat 5000) was used for processing films. The temperature of the processor was adjusted manually with increasing temperature. At each temperature, a set of films was processed to evaluate OD at a given dose. For both films, OD is a linear function of processor temperature in the range of 29.4-40.6 Degree-Sign C (85-105 Degree-Sign F) for various dose ranges. The changes in processor temperature are directly related to the dose by a quadratic function. A simple linear equation is provided for the changes in OD vs. processor temperature, which could be used for correcting dose in radiation dosimetry when film is used.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, T.L.; Gustin, M.S.; Fernandez, G.C.J.

    The objective of this study was to evaluate the role of physiological and environmental factors in governing the flux of elemental mercury from plants to the atmosphere. Five species (Lepidium latifolium, Artemisia douglasiana, Caulanthus sp., Fragaria vesca, and Eucalyptus globulus) with different ecological and physiological attributes and growing in soils with high levels of mercury contamination were examined. Studies were conducted in a whole-plant, gas-exchange chamber providing precise control of environmental conditions, and mercury flux was estimated using the mass balance approach. Mercury flux increased linearly as a function of temperature within the range of 20 to 40 C, andmore » the mean temperature coefficient (Q{sub 10}) was 2.04. The temperature dependence of mercury flux was attributed to changes in the contaminant`s vapor pressure in the leaf interior. Mercury flux from foliage increased linearly as a function of irradiance within the range of 500 to 1,500 {micro}mol m/s, and the light enhancement of mercury flux was within a factor of 2.0 to 2.5 for all species. Even though the leaf-to-atmosphere diffusive path for mercury vapor from foliage is similar to that of water vapor, stomatal conductance played a secondary role in governing mercury flux. In a quantitative comparison with other studies in both laboratory and field settings, a strong linear relationship is evident between mercury vapor flux and the natural logarithm of soil mercury concentration, and this relationship may have predictive value in developing regional- and continental-scale mercury budgets. The most critical factors governing mercury flux from plants are mercury concentration in the soil, leaf area index, temperature, and irradiance.« less

  1. Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.

    PubMed

    Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V

    2017-05-01

    This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  2. Kernel reconstruction methods for Doppler broadening - Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    NASA Astrophysics Data System (ADS)

    Ducru, Pablo; Josey, Colin; Dibert, Karia; Sobes, Vladimir; Forget, Benoit; Smith, Kord

    2017-04-01

    This article establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (Tj). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T0 to a higher temperature T - namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (Tj). The choice of the L2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (Tj) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [Tmin ,Tmax ]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [ 300 K , 3000 K ] with only 9 reference temperatures.

  3. Risky Adaptation: The Effect of Temperature Extremes on HIV Prevalence

    NASA Astrophysics Data System (ADS)

    Baker, R.

    2016-12-01

    Previous work has linked rainfall shock to an increase in HIV prevalence in Sub-Saharan Africa. In this paper we take advantage of repeated waves of the Demographic and Health Survey (DHS) and a new high resolution climate dataset for the African continent to test the non-linear relationship between temperature and HIV. We find a strong and significant relationship between recent high temperatures and increases in HIV prevalence in a region. We then test the effect of temperature on risk factors that may contribute to this increase. High temperatures are linked to an increase in sexual violence, number of partners and a decrease in condom usage - all of which may contribute to the uptake in HIV rate. This paper contributes to the literature on adaptation from two standpoints. First, we suggest that some behavioral changes that are classed as adaptations, in the sense that they allow for consumption smoothing in the face of extreme temperatures, may carry unexpected risks to the individuals involved. Second, we find preliminary evidence that the relationship between temperature and these risky behaviors is diminished in regions prone to higher temperatures, suggesting some adaptation is possible in the long run.

  4. Numerical solution of mixed convection flow of an MHD Jeffery fluid over an exponentially stretching sheet in the presence of thermal radiation and chemical reaction

    NASA Astrophysics Data System (ADS)

    Shateyi, Stanford; Marewo, Gerald T.

    2018-05-01

    We numerically investigate a mixed convection model for a magnetohydrodynamic (MHD) Jeffery fluid flowing over an exponentially stretching sheet. The influence of thermal radiation and chemical reaction is also considered in this study. The governing non-linear coupled partial differential equations are reduced to a set of coupled non-linear ordinary differential equations by using similarity functions. This new set of ordinary differential equations are solved numerically using the Spectral Quasi-Linearization Method. A parametric study of physical parameters involved in this study is carried out and displayed in tabular and graphical forms. It is observed that the velocity is enhanced with increasing values of the Deborah number, buoyancy and thermal radiation parameters. Furthermore, the temperature and species concentration are decreasing functions of the Deborah number. The skin friction coefficient increases with increasing values of the magnetic parameter and relaxation time. Heat and mass transfer rates increase with increasing values of the Deborah number and buoyancy parameters.

  5. Confronting the “Indian summer monsoon response to black carbon aerosol” with the uncertainty in its radiative forcing and beyond

    DOE PAGES

    Kovilakam, Mahesh; Mahajan, Salil

    2016-06-28

    While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India andmore » adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.« less

  6. Confronting the “Indian summer monsoon response to black carbon aerosol” with the uncertainty in its radiative forcing and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovilakam, Mahesh; Mahajan, Salil

    While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. In this paper, we analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India andmore » adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. Finally, the increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.« less

  7. Thermal annealing induced the tunable optical properties of silver thin films with linear variable thickness

    NASA Astrophysics Data System (ADS)

    Hong, Ruijin; Shao, Wen; Ji, Jialin; Tao, Chunxian; Zhang, Dawei

    2018-06-01

    Silver thin films with linear variable thickness were deposited at room temperature. The corresponding tunability of optical properties and Raman scattering intensity were realized by thermal annealing process. With the thickness increasing, the topography of as-annealed silver thin films was observed to develop from discontinued nanospheres into continuous structure with a redshift of the surface plasmon resonance wavelength in visible region. Both the various nanosphere sizes and states of aggregation of as-annealed silver thin films contributed to significantly increasing the sensitivity of surface enhanced Raman scattering (SERS).

  8. Estimating lake-water evaporation from data of large-aperture scintillometer in the Badain Jaran Desert, China, with two comparable methods

    NASA Astrophysics Data System (ADS)

    Han, Peng-Fei; Wang, Xu-Sheng; Jin, Xiaomei; Hu, Bill X.

    2018-06-01

    Accurate quantification of evaporation (E0) from open water is vital in arid regions for water resource management and planning, especially for lakes in the desert. The scintillometers are increasingly recognized by researchers for their ability to determine sensible (H) and latent heat fluxes (LE) accurately over distances of hundreds of meters to several kilometers, though scintillometers are mainly used to monitor the land surface processes. In this paper, it is installed on both sides of the shore over a lake. Compared to the data of evaporationpan, the scintillometer was successfully applied to Sumu Barun Jaran in Badain Jaran Desert using the classical method and the proposed linearized β method. Due to the difficulty in measuring water surface temperature and the easiness to monitor the water temperature at different depths, it is worth thinking that if is feasible to utilize the shallow water temperature instead of the water surface temperature and how much errors it will cause. Water temperature at 10 and 20 cm depths were used to replace the lakewater surface temperature in the two methods to analyze the changes of sensible and latent heat fluxes in hot and cold seasons at halfhour time scales. Based on the classical method, the values of H were almost barely affected, and the average value of LE using water temperature at 20 cm depth is 0.8-9.5 % smaller than that at 10 cm depth in cold seasons. In hot seasons, compared to the results at 10 cm depth, the average value of H increased by 20-30 %, and LE decreased by about 20 % at 20 cm depth. In the proposed linearized β method of scintillometer, only the slope of the saturation pressure curve (Δ) is related to the water surface temperature, which was estimated using available equations of saturated vapor pressure versus temperature of the air. Compared to the values of estimated by the air temperature, while the water surface temperature are replaced by water temperature at 10 and 20 cm depths, in different seasons, the errors of 2-25 % in Δ were caused. Thus was calculated by the original equation in the proposed linearized β method of scintillometer. Interestingly, the water temperature at 10 and 20 cm depths had little effect on H, LE (E0) in different seasons. The reason is that the drying power of the air (EA) accounted for about 85 % of the evaporation (i.e. the changes of Δ have only about 3 % impact on evaporation), which indicated that the driving force from unsaturated to saturated vapor pressure at 2 m height (i.e. the aerodynamic portion) has the main role on evaporation. Therefore, the proposed linearized β method of scintillometer is recommended to quantify the H, LE (E0) over open water, especially when the water surface temperature cannot be accurately measured.

  9. Flow behaviour and constitutive modelling of a ferritic stainless steel at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Zhao, Jingwei; Jiang, Zhengyi; Zu, Guoqing; Du, Wei; Zhang, Xin; Jiang, Laizhu

    2016-05-01

    The flow behaviour of a ferritic stainless steel (FSS) was investigated by a Gleeble 3500 thermal-mechanical test simulator over the temperature range of 900-1100 °C and strain rate range of 1-50 s-1. Empirical and phenomenological constitutive models were established, and a comparative study was made on the predictability of them. The results indicate that the flow stress decreases with increasing the temperature and decreasing the strain rate. High strain rate may cause a drop in flow stress after a peak value due to the adiabatic heating. The Zener-Hollomon parameter depends linearly on the flow stress, and decreases with raising the temperature and reducing the strain rate. Significant deviations occur in the prediction of flow stress by the Johnson-Cook (JC) model, indicating that the JC model cannot accurately track the flow behaviour of the FSS during hot deformation. Both the multiple-linear and the Arrhenius-type models can track the flow behaviour very well under the whole hot working conditions, and have much higher accuracy in predicting the flow behaviour than that of the JC model. The multiple-linear model is recommended in the current work due to its simpler structure and less time needed for solving the equations relative to the Arrhenius-type model.

  10. Soil thaw effects on river discharge recessions of a subarctic catchment

    NASA Astrophysics Data System (ADS)

    Ploum, Stefan; Lyon, Steve; Teuling, Ryan; van der Velde, Ype

    2017-04-01

    Thawing permafrost in circumpolar regions is likely to change subsurface hydrology. In high latitude areas continuous permafrost is expected to partially thaw leading to sporadic permafrost with deeper groundwater flow paths. Moreover, freeze-thaw cycles of the shallow subsurface are likely to increase. River discharge recession analysis can be particularly useful to understand the hydrological effects of a thawing Arctic. Here we examine river discharge recessions of the Abiskojokka, a 560 km2 watershed with sporadic permafrost, using a river discharge record of 30 years (1985 - 2015). Snow observation records were used to separate river recessions in snowmelt and snowfree periods. We found significant differences between recessions during the snowmelt and snowfree seasons. During the snowmelt, recessions were close to linear (b=1.11), while during the snowfree period, recessions were more non-linear (b=1.54). Typically, non-linearity has been found to increase with discharge magnitude, while we observed the opposite (snowfree periods tend to have lower discharges than the snowmelt periods). We explain these contrasting results by hypothesizing that increased connectivity (increasing magnitude and number of water flow paths) between groundwater and stream leads to higher non-linearity. In temperate catchments without frozen soils, connectivity tends to increase with increasing discharge. In contrast, in Arctic systems, where soils are frozen, connectivity between groundwater and stream is limited. Therefore, thawing of frozen soils is expected to increase connectivity and thus non-linearity of river discharges. We tested this hypothesis with a detailed analysis of all spring flood recessions. Years with cold soil temperatures (b=1.08) and years with a below median snowpack depth were found to have progressively linear slopes (b=1.08 and 1.01 respectively). On the other hand, years with warm soil conditions show increasingly non-linear recessions (b=1.67). Although limited in spatial extent, these results further support our connectivity hypothesis, which predicts increasing non-linearity of river discharges (higher discharge peaks and lower low flows under the same precipitation regime) as permafrost thaws.

  11. Effects of temperature on mortality in Chiang Mai city, Thailand: a time series study

    PubMed Central

    2012-01-01

    Background The association between temperature and mortality has been examined mainly in North America and Europe. However, less evidence is available in developing countries, especially in Thailand. In this study, we examined the relationship between temperature and mortality in Chiang Mai city, Thailand, during 1999–2008. Method A time series model was used to examine the effects of temperature on cause-specific mortality (non-external, cardiopulmonary, cardiovascular, and respiratory) and age-specific non-external mortality (<=64, 65–74, 75–84, and > =85 years), while controlling for relative humidity, air pollution, day of the week, season and long-term trend. We used a distributed lag non-linear model to examine the delayed effects of temperature on mortality up to 21 days. Results We found non-linear effects of temperature on all mortality types and age groups. Both hot and cold temperatures resulted in immediate increase in all mortality types and age groups. Generally, the hot effects on all mortality types and age groups were short-term, while the cold effects lasted longer. The relative risk of non-external mortality associated with cold temperature (19.35°C, 1st percentile of temperature) relative to 24.7°C (25th percentile of temperature) was 1.29 (95% confidence interval (CI): 1.16, 1.44) for lags 0–21. The relative risk of non-external mortality associated with high temperature (31.7°C, 99th percentile of temperature) relative to 28°C (75th percentile of temperature) was 1.11 (95% CI: 1.00, 1.24) for lags 0–21. Conclusion This study indicates that exposure to both hot and cold temperatures were related to increased mortality. Both cold and hot effects occurred immediately but cold effects lasted longer than hot effects. This study provides useful data for policy makers to better prepare local responses to manage the impact of hot and cold temperatures on population health. PMID:22613086

  12. Thermal inactivation of Salmonella spp. in pork burger patties.

    PubMed

    Gurman, P M; Ross, T; Holds, G L; Jarrett, R G; Kiermeier, A

    2016-02-16

    Predictive models, to estimate the reduction in Escherichia coli O157:H7 concentration in beef burgers, have been developed to inform risk management decisions; no analogous model exists for Salmonella spp. in pork burgers. In this study, "Extra Lean" and "Regular" fat pork minces were inoculated with Salmonella spp. (Salmonella 4,[5],12,i:-, Salmonella Senftenberg and Salmonella Typhimurium) and formed into pork burger patties. Patties were cooked on an electric skillet (to imitate home cooking) to one of seven internal temperatures (46, 49, 52, 55, 58, 61, 64 °C) and Salmonella enumerated. A generalised linear logistic regression model was used to develop a predictive model for the Salmonella concentration based on the internal endpoint temperature. It was estimated that in pork mince with a fat content of 6.1%, Salmonella survival will be decreased by -0.2407log10 CFU/g for a 1 °C increase in internal endpoint temperature, with a 5-log10 reduction in Salmonella concentration estimated to occur when the geometric centre temperature reaches 63 °C. The fat content influenced the rate of Salmonella inactivation (P=0.043), with Salmonella survival increasing as fat content increased, though this effect became negligible as the temperature approached 62 °C. Fat content increased the time required for patties to achieve a specified internal temperature (P=0.0106 and 0.0309 for linear and quadratic terms respectively), indicating that reduced fat pork mince may reduce the risk of salmonellosis from consumption of pork burgers. Salmonella serovar did not significantly affect the model intercepts (P=0.86) or slopes (P=0.10) of the fitted logistic curve. This predictive model can be applied to estimate the reduction in Salmonella in pork burgers after cooking to a specific endpoint temperature and hence to assess food safety risk. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.

  13. Helicon plasma ion temperature measurements and observed ion cyclotron heating in proto-MPEX

    NASA Astrophysics Data System (ADS)

    Beers, C. J.; Goulding, R. H.; Isler, R. C.; Martin, E. H.; Biewer, T. M.; Caneses, J. F.; Caughman, J. B. O.; Kafle, N.; Rapp, J.

    2018-01-01

    The Prototype-Material Plasma Exposure eXperiment (Proto-MPEX) linear plasma device is a test bed for exploring and developing plasma source concepts to be employed in the future steady-state linear device Material Plasma Exposure eXperiment (MPEX) that will study plasma-material interactions for the nuclear fusion program. The concept foresees using a helicon plasma source supplemented with electron and ion heating systems to reach necessary plasma conditions. In this paper, we discuss ion temperature measurements obtained from Doppler broadening of spectral lines from argon ion test particles. Plasmas produced with helicon heating alone have average ion temperatures downstream of the Helicon antenna in the range of 3 ± 1 eV; ion temperature increases to 10 ± 3 eV are observed with the addition of ion cyclotron heating (ICH). The temperatures are higher at the edge than the center of the plasma either with or without ICH. This type of profile is observed with electrons as well. A one-dimensional RF antenna model is used to show where heating of the plasma is expected.

  14. MEMS fiber-optic Fabry-Perot pressure sensor for high temperature application

    NASA Astrophysics Data System (ADS)

    Fang, G. C.; Jia, P. G.; Cao, Q.; Xiong, J. J.

    2016-10-01

    We design and demonstrate a fiber-optic Fabry-Perot pressure sensor (FOFPPS) for high-temperature sensing by employing micro-electro-mechanical system (MEMS) technology. The FOFPPS is fabricated by anodically bonding the silicon wafer and the Pyrex glass together and fixing the facet of the optical fiber in parallel with the silicon surface by glass frit and organic adhesive. The silicon wafer can be reduced through dry etching technology to construct the sensitive diaphragm. The length of the cavity changes with the deformation of the diaphragm due to the loaded pressure, which leads to a wavelength shift of the interference spectrum. The pressure can be gauged by measuring the wavelength shift. The pressure experimental results show that the sensor has linear pressure sensitivities ranging from 0 kPa to 600 kPa at temperature range between 20°C to 300°C. The pressure sensitivity at 300°C is approximately 27.63 pm/kPa. The pressure sensitivities gradually decrease with increasing the temperature. The sensor also has a linear thermal drift when temperature changes from 20°C - 300°C.

  15. Climatic effects on mosquito abundance in Mediterranean wetlands

    PubMed Central

    2014-01-01

    Background The impact of climate change on vector-borne diseases is highly controversial. One of the principal points of debate is whether or not climate influences mosquito abundance, a key factor in disease transmission. Methods To test this hypothesis, we analysed ten years of data (2003–2012) from biweekly surveys to assess inter-annual and seasonal relationships between the abundance of seven mosquito species known to be pathogen vectors (West Nile virus, Usutu virus, dirofilariasis and Plasmodium sp.) and several climatic variables in two wetlands in SW Spain. Results Within-season abundance patterns were related to climatic variables (i.e. temperature, rainfall, tide heights, relative humidity and photoperiod) that varied according to the mosquito species in question. Rainfall during winter months was positively related to Culex pipiens and Ochlerotatus detritus annual abundances. Annual maximum temperatures were non-linearly related to annual Cx. pipiens abundance, while annual mean temperatures were positively related to annual Ochlerotatus caspius abundance. Finally, we modelled shifts in mosquito abundances using the A2 and B2 temperature and rainfall climate change scenarios for the period 2011–2100. While Oc. caspius, an important anthropophilic species, may increase in abundance, no changes are expected for Cx. pipiens or the salt-marsh mosquito Oc. detritus. Conclusions Our results highlight that the effects of climate are species-specific, place-specific and non-linear and that linear approaches will therefore overestimate the effect of climate change on mosquito abundances at high temperatures. Climate warming does not necessarily lead to an increase in mosquito abundance in natural Mediterranean wetlands and will affect, above all, species such as Oc. caspius whose numbers are not closely linked to rainfall and are influenced, rather, by local tidal patterns and temperatures. The final impact of changes in vector abundance on disease frequency will depend on the direct and indirect effects of climate and other parameters related to pathogen amplification and spillover on humans and other vertebrates. PMID:25030527

  16. Temperature effect on the recovery process in stretched Bombyx mori silk fibers

    NASA Astrophysics Data System (ADS)

    Aksakal, Baki

    2016-01-01

    The recovery process in stretched Bombyx mori silk fibers at different strain levels from 3% to 17% was investigated at room conditions during long period of time from 5 min to 20 days and more. How the temperature affects the recovery process in the silk fibers stretched at room conditions was examined at temperatures from 25 to 125 °C. The results of the recovery process at 25 °C revealed that although the recovery process from strain values higher than 3% strain continued slowly which caused quite high remaining deformation, a complete recovery from 3% strain was observed after 3 days. However, better recovery process was observed with increasing temperature which led to lower remaining deformations. For instance, a complete recovery from 6% strain was observed after 144 h and 3 h for the recovery process at 100 °C and 125 °C, respectively which indicates an important result that the deformations induced by stretching the silk fibers up to 6% strain are reversible and increasing temperature affects the velocity of this process significantly. The recovery process expressed in the strain (ε) and logarithm time coordinates showed a linear dependence for which a linear equation was proposed. Thus, this linear equation enables to estimate the required time for a complete recovery from different strain levels and remaining deformation at any stage of the recovery at different temperatures. The ATR-FTIR spectra of the stretched silk fibers during the recovery process revealed some changes in the absorbance ratios and shifts in the positions of the bands assigned to Cα-C, N-H stretching vibrations, and the Amide III mode. It was suggested that new formation of the hydrogen bonds between polypeptide chains especially in amorphous regions and the changes in the intra-sheet hydrogen bonds in β-sheet crystalline regions greatly contribute to the recovery process.

  17. Effects of rumen-protected γ-aminobutyric acid on performance and nutrient digestibility in heat-stressed dairy cows.

    PubMed

    Cheng, J B; Bu, D P; Wang, J Q; Sun, X Z; Pan, L; Zhou, L Y; Liu, W

    2014-09-01

    This experiment was conducted to investigate the effects of rumen-protected γ-aminobutyric acid (GABA) on performance and nutrient digestibility in heat-stressed dairy cows. Sixty Holstein dairy cows (141±15 d in milk, 35.9±4.3kg of milk/d, and parity 2.0±1.1) were randomly assigned to 1 of 4 treatments according to a completely randomized block design. Treatments consisted of 0 (control), 40, 80, or 120mg of true GABA/kg of dry matter (DM). The trial lasted 10wk. The average temperature-humidity indices at 0700, 1400, and 2200h were 78.4, 80.2, and 78.7, respectively. Rectal temperatures decreased linearly at 0700, 1400, and 2200h with increasing GABA concentration. Supplementation of GABA had no effect on respiration rates at any time point. Dry matter intake, energy-corrected milk, 4% fat-corrected milk, and milk fat yield tended to increase linearly with increasing GABA concentration. Supplementation of GABA affected, in a quadratic manner, milk protein and lactose concentrations, and milk protein yield, and the peak values were reached at a dose of 40mg of GABA/kg. Milk urea nitrogen concentration responded quadratically. Total solids content increased linearly with increasing GABA concentration. Supplementation of GABA had no effect on milk yield, lactose production, total solids, milk fat concentration, somatic cell score, or feed efficiency. Apparent total-tract digestibilities of DM, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber were similar among treatments. These results indicate that rumen-protected GABA supplementation to dairy cows can alleviate heat stress by reducing rectal temperature, increase DM intake and milk production, and improve milk composition. The appropriate supplemental GABA level for heat-stressed dairy cows is 40mg/kg of DM. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  18. Polycrystalline gamma plutonium's elastic moduli versus temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Migliori, Albert; Betts, J; Trugman, A

    2009-01-01

    Resonant ultrasound spectroscopy was used to measure the elastic properties of pure polycrystalline {sup 239}Pu in the {gamma} phase. Shear and longitudinal elastic moduli were measured simultaneously and the bulk modulus was computed from them. A smooth, linear, and large decrease of all elastic moduli with increasing temperature was observed. They calculated the Poisson ratio and found that it increases from 0.242 at 519 K to 0.252 at 571 K. These measurements on extremely well characterized pure Pu are in agreement with other reported results where overlap occurs.

  19. Evaluation, construction and endurance testing of compression sealed pyrolytic boron nitride slot insulation

    NASA Technical Reports Server (NTRS)

    Grant, W. L.

    1969-01-01

    A high-temperature statorette, consisting of an iron-27 percent cobalt magnetic lamination stack and nickel-clad silver conductors, was tested with pyrolytic boron nitride slot insulation. Temperatures were measured in each test to determine characteristics of slot linear heat conductance from statorette conductors. Testing was carried out to temperatures of approximately 1500 F in a vacuum environment of 10-8 torr. Three assemblies were built and tested, each having a different room temperature slot clearance. The final statorette assembly was subjected to a 100-hour vacuum aging test at 1400 F followed by 25 thermal cycles. Temperature data from the three assemblies showed that decreasing slot clearance and increasing compression loading did enhance heat transfer. The temperature difference between slot and lamination at 1400 F increased 4 F during the thermal aging and an additional 10 F during the 25 thermal cycles.

  20. Experimental Values of the Surface Tension of Supercooled Water

    NASA Technical Reports Server (NTRS)

    Hacker, P. T.

    1951-01-01

    The results of surface-tension measurements for supercooled water are presented. A total of 702 individual measurements of surface tension of triple-distilled water were made in the temperature range, 27 to -22.2 C, with 404 of these measurements at temperatures below 0 C. The increase in magnitude of surface tension with decreasing temperature, as indicated by measurements above 0 C, continues to -22.2 C. The inflection point in the surface-tension - temperature relation in the vicinity of 0 C, as indicated by the International Critical Table values for temperatures down to -8 C, is substantiated by the measurements in the temperature range, 0 to -22.2 C. The surface tension increases at approximately a linear rate from a value of 76.96+/-0.06 dynes per centimeter at -8 C to 79.67+/-0.06 dynes per centimeter at -22.2 C.

  1. Investigation of the annealing temperature dependence of the spin pumping in Co20Fe60B20/Pt systems

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Aitoukaci, K.; Zighem, F.; Gabor, M. S.; Petrisor, T.; Mos, R. B.; Tiusan, C.

    2018-03-01

    Co20Fe60B20/Pt systems with variable thicknesses of Co20Fe60B20 and of Pt have been sputtered and then annealed at various temperatures (Ta) up to 300 °C. Microstrip line ferromagnetic resonance (MS-FMR) has been used to investigate Co20Fe60B20 and Pt thickness dependencies of the magnetic damping enhancement due to the spin pumping. Using diffusion and ballistic models for spin pumping, the spin mixing conductance and the spin diffusion length have been deduced from the Co20Fe60B20 and the Pt thickness dependencies of the Gilbert damping parameter α of the Co20Fe60B20/Pt heterostructures, respectively. Within the ballistic simple model, both the spin mixing conductance at the CoFeB/Pt interface and the spin-diffusion length of Pt increase with the increasing annealing temperature and show a strong enhancement at 300 °C annealing temperature. In contrast, the spin mixing conductance, which increases with Ta, shows a different trend to the spin diffusion length when using the diffusion model. Moreover, MS-FMR measurements revealed that the effective magnetization varies linearly with the Co20Fe60B20 inverse thickness due to the perpendicular interface anisotropy, which is found to decrease as the annealing temperature increases. It also revealed that the angular dependence of the resonance field is governed by small uniaxial anisotropy which is found to vary linearly with the Co20Fe60B20 inverse thickness of the annealed films, in contrast to that of the as grown ones.

  2. Temporal Changes in Mortality Related to Extreme Temperatures for 15 Cities in Northeast Asia: Adaptation to Heat and Maladaptation to Cold.

    PubMed

    Chung, Yeonseung; Noh, Heesang; Honda, Yasushi; Hashizume, Masahiro; Bell, Michelle L; Guo, Yue-Liang Leon; Kim, Ho

    2017-05-15

    Understanding how the temperature-mortality association worldwide changes over time is crucial to addressing questions of human adaptation under climate change. Previous studies investigated the temporal changes in the association over a few discrete time frames or assumed a linear change. Also, most studies focused on attenuation of heat-related mortality and studied the United States or Europe. This research examined continuous temporal changes (potentially nonlinear) in mortality related to extreme temperature (both heat and cold) for 15 cities in Northeast Asia (1972-2009). We used a generalized linear model with splines to simultaneously capture 2 types of nonlinearity: nonlinear association between temperature and mortality and nonlinear change over time in the association. We combined city-specific results to generate country-specific results using Bayesian hierarchical modeling. Cold-related mortality remained roughly constant over decades and slightly increased in the late 2000s, with a larger increase for cardiorespiratory deaths than for deaths from other causes. Heat-related mortality rates have decreased continuously over time, with more substantial decrease in earlier decades, for older populations and for cardiorespiratory deaths. Our findings suggest that future assessment of health effects of climate change should account for the continuous changes in temperature-related health risk and variations by factors such as age, cause of death, and location. © Crown copyright 2017.

  3. Thermopower of CexR1-xB6 (R=La, Pr and Nd)

    NASA Astrophysics Data System (ADS)

    Kim, Moo‑Sung; Nakai, Yuki; Tou, Hideki; Sera, Masafumi; Iga, Fumitoshi; Takabatake, Toshiro; Kunii, Satoru

    2006-06-01

    The thermopower, S, of CexR1-xB6 (R=La, Pr, Nd) was investigated. S with a positive sign shows a typical behavior observed in the Ce Kondo system, an increase with decreasing temperature at high temperatures and a maximum at low temperatures. The S values of all the systems at high temperatures are roughly linearly dependent on the Ce concentration, indicating the conservation of the single-impurity character of the Kondo effect in a wide x range. However, the maximum value of S, Smax, and the temperature, Tmax, at which Smax is observed exhibit different x dependences between CexLa1-xB6 and CexR1-xB6 (R=Pr, Nd). In CexLa1-xB6, Tmax, which is ˜8 K in CeB6, decreases with decreasing x and converges to ˜1 K in a very dilute alloy and Smax shows an increase below x ˜ 0.1 after decreasing with decreasing x. In CexR1-xB6 (R=Pr, Nd), Tmax shows a weak x dependence but Smax shows a roughly linear decrease in x. These results are discussed from the standpoint of the chemical pressure effect and the Ce-Ce interaction. S in the long-range ordered phase shows very different behaviors between CexPr1-xB6 and CexNd1-xB6.

  4. Magnetization-induced second-harmonic generation in electrochemically synthesized magnetic films of ternary metal Prussian blue analogs

    NASA Astrophysics Data System (ADS)

    Ikeda, Katsuyoshi; Ohkoshi, Shin-ichi; Hashimoto, Kazuhito

    2003-02-01

    We observed magnetic field effects on transmitted second-harmonic generation (SHG) in electrochemically synthesized (FexIICr1-xII)1.5[CrIII(CN)6]ṡ7.5H2O magnetic films. These films showed a variety of temperature dependences for SH intensities below magnetic phase transition temperatures (TC). The SH intensity for x=0.25 increased monotonically with decreasing temperature and that for x=0.13 exhibited a minimum value around the magnetic compensation temperature under a zero magnetic field. These temperature dependences resembled those of the absolute value of magnetization, indicating that the magnetic strain of the films is responsible for the increase in SH below TC. In addition, the polarization of SH light was rotated by an applied external magnetic field. The observed SH rotation angle of 1.3° was much larger than the Faraday rotation angle of 0.079° at 388 nm. This SH rotation can be understood by the mechanism of magnetization-induced SHG caused by interaction between the electric polarization along the out-of-plane of film and spontaneous magnetization. The magnetic linear term [χijkLmagn(1)] contributed particularly to the SH rotation. The value of the magnetic linear tensor component relative to the crystallographic tensor component [|χyyyXmagn(1)|/|χzyycr], which induced the SH rotation, was 0.023 at 50 K under 10 kOe.

  5. Influence of salinity and temperature on acute toxicity of cadmium to Mysidopsis bahia molenock

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voyer, R.A.; Modica, G.

    1990-01-01

    Acute toxicity tests were conducted to compare estimates of toxicity, as modified by salinity and temperature, based on response surface techniques with those derived using conventional test methods, and to compare effect of a single episodic exposure to cadmium as a function of salinity with that of continuous exposure. Regression analysis indicated that mortality following continuous 96-hr exposure is related to linear and quadratic effects of salinity and cadmium at 20 C, and to the linear and quadratic effects of cadmium only at 25C. LC50s decreased with increases in temperature and decreases in salinity. Based on the regression model developed,more » 96-hr LC50s ranged from 15.5 to 28.0 micro Cd/L at 10 and 30% salinities, respectively, at 25C; and from 47 to 85 microgram Cd/L at these salinities at 20C.« less

  6. Analysis of mutagenic DNA repair in a thermoconditional mutant of Saccharomyces cerevisiae. III. Dose-response pattern of mutation induction in UV-irradiated rev2ts cells.

    PubMed

    Siede, W; Eckardt, F

    1986-01-01

    Recent studies regarding the influence of cycloheximide on the temperature-dependent increase in survival and mutation frequencies of a thermoconditional rev2 mutant lead to the suggestion that the REV2-coded mutagenic repair function is UV-inducible. In the present study we show that stationary-phase rev2ts cells are characterized by a biphasic linear-quadratic dose-dependence of mutation induction ("mutation kinetics") of ochre alleles at 23 degrees C (permissive temperature) but linear kinetics at the restrictive temperature of 36 degrees C. Mathematical analysis using a model based on Poisson statistics and a further mathematical procedure, the calculation of "apparent survival", support the assumption that the quadratic component of the reverse mutation kinetics investigated can be attributed to a UV-inducible component of mutagenic DNA repair controlled by the REV2 gene.

  7. Climate change impacts on projections of excess mortality at ...

    EPA Pesticide Factsheets

    We project the change in ozone-related mortality burden attributable to changes in climate between a historical (1995-2005) and near-future (2025-2035) time period while incorporating a non-linear and synergistic effect of ozone and temperature on mortality. We simulate air quality from climate projections varying only biogenic emissions and holding anthropogenic emissions constant, thus attributing changes in ozone only to changes in climate and independent of changes in air pollutant emissions. We estimate non-linear, spatially varying, ozone-temperature risk surfaces for 94 US urban areas using observeddata. Using the risk surfaces and climate projections we estimate daily mortality attributable to ozone exceeding 40 p.p.b. (moderate level) and 75 p.p.b. (US ozone NAAQS) for each time period. The average increases in city-specific median April-October ozone and temperature between time periods are 1.02 p.p.b. and 1.94 °F; however, the results variedby region . Increases in ozone because of climate change result in an increase in ozone mortality burden. Mortality attributed to ozone exceeding 40 p.p.b. increases by 7.7% (1 .6-14.2%). Mortality attributed to ozone exceeding 75 p.p.b. increases by 14.2% (1.628.9%). The absolute increase in excess ozone mortality is larger for changes in moderate ozone levels, reflecting the larger number of days with moderate ozone levels. In this study we evaluate changes in ozone related mortality due to changes in biogenic f

  8. Quantifying the influence of temperature on hand, foot and mouth disease incidence in Wuhan, Central China.

    PubMed

    Huang, Jiao; Chen, Shi; Wu, Yang; Tong, Yeqing; Wang, Lei; Zhu, Min; Hu, Shuhua; Guan, Xuhua; Wei, Sheng

    2018-01-31

    Hand, foot and mouth disease (HFMD) is a substantial burden throughout Asia, but the effects of temperature pattern on HFMD risk are inconsistent. To quantify the effect of temperature on HFMD incidence, Wuhan was chosen as the study site because of its high temperature variability and high HFMD incidence. Daily series of HFMD counts and meteorological variables during 2010-2015 were obtained. Distributed lag non-linear models were applied to characterize the temperature-HFMD relationship and to assess its variability across different ages, genders, and types of child care. Totally, 80,219 patients of 0-5 years experienced HFMD in 2010-2015 in Wuhan. The cumulative relative risk of HFMD increased linearly with temperature over 7 days (lag0-7), while it presented as an approximately inverted V-shape over 14 days (lag0-14). The cumulative relative risk at lag0-14 peaked at 26.4 °C with value of 2.78 (95%CI: 2.08-3.72) compared with the 5 th percentile temperature (1.7 °C). Subgroup analyses revealed that children attended daycare were more vulnerable to temperature variation than those cared for at home. This study suggests that public health actions should take into consideration local weather conditions and demographic characteristics.

  9. High temperature electrical resistivity and Seebeck coefficient of Ge2Sb2Te5 thin films

    NASA Astrophysics Data System (ADS)

    Adnane, L.; Dirisaglik, F.; Cywar, A.; Cil, K.; Zhu, Y.; Lam, C.; Anwar, A. F. M.; Gokirmak, A.; Silva, H.

    2017-09-01

    High-temperature characterization of the thermoelectric properties of chalcogenide Ge2Sb2Te5 (GST) is critical for phase change memory devices, which utilize self-heating to quickly switch between amorphous and crystalline states and experience significant thermoelectric effects. In this work, the electrical resistivity and Seebeck coefficient are measured simultaneously as a function of temperature, from room temperature to 600 °C, on 50 nm and 200 nm GST thin films deposited on silicon dioxide. Multiple heating and cooling cycles with increasingly maximum temperature allow temperature-dependent characterization of the material at each crystalline state; this is in contrast to continuous measurements which return the combined effects of the temperature dependence and changes in the material. The results show p-type conduction (S > 0), linear S(T), and a positive Thomson coefficient (dS/dT) up to melting temperature. The results also reveal an interesting linearity between dS/dT and the conduction activation energy for mixed amorphous-fcc GST, which can be used to estimate one parameter from the other. A percolation model, together with effective medium theory, is adopted to correlate the conductivity of the material with average grain sizes obtained from XRD measurements. XRD diffraction measurements show plane-dependent thermal expansion for the cubic and hexagonal phases.

  10. Thermodynamics of Cadmium Sorption on Different Soils of West Bengal, India

    PubMed Central

    Paul, Ranjit Kumar; Das, D. K.; Boruah, Romesh K.; Sonar, Indira

    2014-01-01

    A sorption study was conducted on different soils collected from five agroecological zones of West Bengal, India, to understand the soil environmental behavior and fate of cadmium. For this purpose batch adsorption experiments were carried out at the native soil pH and at three different temperatures (25°C, 35°C, and 45°C). The adsorption data fitted by a linear least squares technique to the different sorption isotherms. Most data obtained give the good fit to both Freundlich and modified Langmuir isotherms, but they are not consistent with the linear Langmuir adsorption model. Thermodynamic parameters, namely, thermodynamics equilibrium constant at a particular temperature T  (K T 0), Gibbs free energy at a particular temperature T  (ΔG T 0), and change of enthalpy (ΔH 0) and change of entropy at temperature T  (ΔS T 0), were also determined by applying sorption value and concentrations of Cd in equilibrium solution within the temperature range. The thermodynamic parameters revealed that Cd sorption increases as the values of K T 0, ΔG T 0, ΔH 0, and ΔS T 0 were increased on reaction temperatures. The spontaneous sorption reaction can be concluded due to high values of ΔG T 0. The positive values of ΔH 0 indicated that the Cd sorption is an endothermic one. Under these present conditions, the soil and its components possibly supply a number of sites having different adsorption energies for cadmium sorption. PMID:24683322

  11. Impact of temperature variability on childhood hand, foot and mouth disease in Huainan, China.

    PubMed

    Xu, J; Zhao, D; Su, H; Xie, M; Cheng, J; Wang, X; Li, K; Yang, H; Wen, L; Wang, B

    2016-05-01

    The short-term temperature variation has been shown to be significantly associated with human health. However, little is known about whether temperature change between neighbouring days (TCN) and diurnal temperature range (DTR) have any effect on childhood hand, foot and mouth disease (HFMD). This study aims to explore whether temperature variability has any effect on childhood HFMD. Ecological study. The association between meteorological variables and HFMD cases in Huainan, China, from January 1st 2012 to December 31st 2014 was analysed using Poisson generalized linear regression combined with distributed lag non-linear model (DLNM) after controlling for long-term trend and seasonality, mean temperature and relative humidity. An adverse effect of TCN on childhood HFMD was observed, and the impact of TCN was the greatest at five days lag, with a 10% (95% CI: 4%-15%) increase of daily number of HFMD cases per 3 °C (10th percentile) decrease of TCN. Male children, children aged 0-5 years, scattered children and children in high-risk areas appeared to be more vulnerable to the TCN effect than others. However, there was no significant association between DTR and childhood HFMD. Our findings indicate that TCN drops may increase the incidence of childhood HFMD in Huainan, highlighting the importance of protecting children from forthcoming TCN drops, particularly for those who are male, young, scattered and from high-risk areas. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  12. High-Beta Electromagnetic Turbulence in LAPD Plasmas

    NASA Astrophysics Data System (ADS)

    Rossi, G.; Carter, T. A.; Pueschel, M. J.; Jenko, F.; Told, D.; Terry, P. W.

    2015-11-01

    The introduction of a new LaB6 cathode plasma source in the Large Plasma Device has enabled the study of pressure-gradient-driven turbulence and transport variations at significantly higher plasma β. Density fluctuations are observed to decrease with increasing β while magnetic fluctuations increase. Furthermore, the perpendicular magnetic fluctuations are seen to saturate while parallel (compressional) magnetic fluctuations increase continuously with β. These observations are compared to linear and nonlinear simulations with the GENE code. The results are consistent with the linear excitation of a Gradient-driven Drift Coupling mode (GDC) which relies on grad-B drift due to parallel magnetic fluctuations and can be driven by density or temperature gradients.

  13. Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang Jie; Fundamental Department, Aviation University, Changchun 130022; Li Ming

    2011-04-15

    In this paper, a W-Ta thin-film thermocouple has been integrated on a diamond anvil cell by thin-film deposition and photolithography methods. The thermocouple was calibrated and its thermal electromotive force was studied under high pressure. The results indicate that the thermal electromotive force of the thermocouple exhibits a linear relationship with temperature and is not associated with pressure. The resistivity measurement of ZnS powders under high pressure at different temperatures shows that the phase transition pressure decreases as the temperature increases.

  14. Preparation of W-Ta thin-film thermocouple on diamond anvil cell for in-situ temperature measurement under high pressure.

    PubMed

    Yang, Jie; Li, Ming; Zhang, Honglin; Gao, Chunxiao

    2011-04-01

    In this paper, a W-Ta thin-film thermocouple has been integrated on a diamond anvil cell by thin-film deposition and photolithography methods. The thermocouple was calibrated and its thermal electromotive force was studied under high pressure. The results indicate that the thermal electromotive force of the thermocouple exhibits a linear relationship with temperature and is not associated with pressure. The resistivity measurement of ZnS powders under high pressure at different temperatures shows that the phase transition pressure decreases as the temperature increases. © 2011 American Institute of Physics

  15. Voltage Quench Dynamics of a Kondo System.

    PubMed

    Antipov, Andrey E; Dong, Qiaoyuan; Gull, Emanuel

    2016-01-22

    We examine the dynamics of a correlated quantum dot in the mixed valence regime. We perform numerically exact calculations of the current after a quantum quench from equilibrium by rapidly applying a bias voltage in a wide range of initial temperatures. The current exhibits short equilibration times and saturates upon the decrease of temperature at all times, indicating Kondo behavior both in the transient regime and in the steady state. The time-dependent current saturation temperature connects the equilibrium Kondo temperature to a substantially increased value at voltages outside of the linear response. These signatures are directly observable by experiments in the time domain.

  16. Physics of thermal transport and increased electron temperature turbulence in the edge pedestal of ELM-free, H-mode regimes on DIII-D

    NASA Astrophysics Data System (ADS)

    Sung, Choongki

    2017-10-01

    It has been observed, for the first time, that suppression of Edge Localized Modes (ELMs) in tokamak plasmas is accompanied by an increase in electron temperature turbulence. A correlation electron cyclotron emission technique has been utilized to quantify the observed increase: 40% increase in Quiescent H-mode (QH-mode) and 70% increase in 3D field ELM suppressed H-mode. Since reliable ELM-free H-mode operation is essential for future burning plasma experiments, it is crucial to develop a validated predictive capability for these plasmas. Linear stability analysis using TGLF has provided an explanation for the observations and has indicated that the underlying physical mechanisms are different in the two regimes. In QH-mode, profile gradients and the associated linear growth rate are decreased compared to ELMing H-mode. However, the ExB shearing rate is reduced by an even greater factor such that turbulent transport is no longer suppressed by flow shear. In contrast, during 3D field ELM suppressed H-mode, gradients are increased and TGLF predicts that a large increase in linear growth rate is primarily responsible for the increased turbulence. Power balance analysis using ONETWO is also consistent with the changes in electron thermal transport being due to the increased turbulence. These new findings are significant since they i) provide a physics explanation of these changes via TGLF analysis and enable validation of the model in the key pedestal region, and ii) support the hypothesis that turbulent transport partially replaces ELM-dominated transport during ELM-free operation. These results form a basis to develop a predictive understanding of pedestal regulation in ELM suppressed regimes. Supported by the US DOE under DE-FG02-08ER54984, DE-FC02-04ER54698.

  17. Food Crops Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Butler, E.; Huybers, P.

    2009-12-01

    Projections of future climate show a warming world and heterogeneous changes in precipitation. Generally, warming temperatures indicate a decrease in crop yields where they are currently grown. However, warmer climate will also open up new areas at high latitudes for crop production. Thus, there is a question whether the warmer climate with decreased yields but potentially increased growing area will produce a net increase or decrease of overall food crop production. We explore this question through a multiple linear regression model linking temperature and precipitation to crop yield. Prior studies have emphasised temporal regression which indicate uniformly decreased yields, but neglect the potentially increased area opened up for crop production. This study provides a compliment to the prior work by exploring this spatial variation. We explore this subject with a multiple linear regression model from temperature, precipitation and crop yield data over the United States. The United States was chosen as the training region for the model because there are good crop data available over the same time frame as climate data and presumably the yield from crops in the United States is optimized with respect to potential yield. We study corn, soybeans, sorghum, hard red winter wheat and soft red winter wheat using monthly averages of temperature and precipitation from NCEP reanalysis and yearly yield data from the National Agriculture Statistics Service for 1948-2008. The use of monthly averaged temperature and precipitation, which neglect extreme events that can have a significant impact on crops limits this study as does the exclusive use of United States agricultural data. The GFDL 2.1 model under a 720ppm CO2 scenario provides temperature and precipitation fields for 2040-2100 which are used to explore how the spatial regions available for crop production will change under these new conditions.

  18. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China.

    PubMed

    Xue, Jie; Gui, Dongwei

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth's hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  19. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China

    PubMed Central

    Xue, Jie

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth’s hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River. PMID:26244113

  20. Kernel reconstruction methods for Doppler broadening — Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    DOE PAGES

    Ducru, Pablo; Josey, Colin; Dibert, Karia; ...

    2017-01-25

    This paper establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (T j). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T 0 to a higher temperature T — namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernelmore » of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (T j). The choice of the L 2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (T j) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [T min,T max]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [300 K,3000 K] with only 9 reference temperatures.« less

  1. Ion temperature gradient driven transport in tokamaks with square shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joiner, N.; Dorland, W.

    2010-06-15

    Advanced tokamak schemes which may offer significant improvement to plasma confinement on the usual large aspect ratio Dee-shaped flux surface configuration are of great interest to the fusion community. One possibility is to introduce square shaping to the flux surfaces. The gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] is used to study linear stability and the resulting nonlinear thermal transport of the ion temperature gradient driven (ITG) mode in tokamak equilibria with square shaping. The maximum linear growth rate of ITG modes is increased by negative squareness (diamond shaping) and reduced by positive values (square shaping).more » The dependence of thermal transport produced by saturated ITG instabilities on squareness is not as clear. The overall trend follows that of the linear instability, heat and particle fluxes increase with negative squareness and decrease with positive squareness. This is contradictory to recent experimental results [Holcomb et al., Phys. Plasmas 16, 056116 (2009)] which show a reduction in transport with negative squareness. This may be reconciled as a reduction in transport (consistent with the experiment) is observed at small negative values of the squareness parameter.« less

  2. Linear and nonlinear analysis of kinetic Alfven waves in quantum magneto-plasmas with arbitrary temperature degeneracy

    NASA Astrophysics Data System (ADS)

    Sadiq, Nauman; Ahmad, Mushtaq; Farooq, M.; Jan, Qasim

    2018-06-01

    Linear and nonlinear kinetic Alfven waves (KAWs) are studied in collisionless, non-relativistic two fluid quantum magneto-plasmas by considering arbitrary temperature degeneracy. A general coupling parameter is applied to discuss the range of validity of the proposed model in nearly degenerate and nearly non-degenerate plasma limits. Linear analysis of KAWs shows an increase (decrease) in frequency with the increase in parameter ζ ( δ ) for the nearly non-degenerate (nearly degenerate) plasma limit. The energy integral equation in the form of Sagdeev potential is obtained by using the approach of the Lorentz transformation. The analysis reveals that the amplitude of the Sagdeev potential curves and soliton structures remains the same, but the potential depth and width of soliton structure change for both the limiting cases. It is further observed that only density hump structures are formed in the sub-alfvenic region for value Kz 2 > 1 . The effects of parameters ζ, δ on the nonlinear properties of KAWs are shown in graphical plots. New results for comparison with earlier work have also been highlighted. The significance of this work to astrophysical plasmas is also emphasized.

  3. Magnetic field and pressure dependant resistivity behaviour of MnAs

    NASA Astrophysics Data System (ADS)

    Satya, A. T.; Amaladass, E. P.; Mani, Awadhesh

    2018-04-01

    The studies on the effect of magnetic field and external pressure on temperature dependant electrical resistivity behaviour of polycrystalline MnAs have been reported. At ambient pressure, ρ(T) shows a first order magnetic transition associated with change in sign of the temperature coefficient of resistivity from positive in the ferromagnetic (FM) phase to negative in the paramagnetic (PM) phase. The magneto resistance is negative and shows a peak at the FM transition temperature (T C ). The first order hysteresis width decreases with increase in magnetic field and the intersection of extrapolated linear variations of T C with field for the cooling and warming cycles enabled determination of the tricritical point. At high pressures, ρ(T) displays non monotonic variation exhibiting a low temperature minimum ({T}\\min L) and a high temperature maximum ({T}\\max H) accompanying broad thermal hysteresis above {T}\\min L. It is surmised that spin disorder scattering is responsible for the resistivity behaviour above {T}\\min L and the essential features of ρ(T) are qualitatively explained using Kasuya theoretical model. Below the {T}\\min L, ρ(T) follows linear logarithmic temperature dependence similar to the effect occurring due to Kondo type of scattering of conduction electrons with localised moments.

  4. Influence of temperature on linear stability in buoyancy-driven fingering of reaction-diffusion fronts.

    PubMed

    Levitán, D; D'Onofrio, A

    2012-09-01

    A vertical Hele-Shaw cell was used to study the influence of temperature on Rayleigh-Taylor instabilities on reaction-diffusion fronts. The propagation of the chemical front can thus be observed, and experimental results can be obtained via image treatment. A chemical front produced by the coupling between molecular diffusion and the auto-catalysis of the chlorite-tetrathionate reaction, descends through the cell, consuming the reactants below while the product is formed above. Buoyancy-driven instabilities are formed due to the density difference between reactants and products, and the front takes a fingering pattern, whose growth rate has temperature dependence. In this study, the effect of temperature on the linear regime of the instability (that is, when the effects of such instability start to appear) was analyzed. To measure the instability, Fourier transform analysis is performed, in order to obtain the different wave numbers and their power as a function of time. Thus, the growth rate for each wave number and the most unstable wave number is obtained for each of the temperatures under study. Based on repeated experiments, a decrease in the growth rate for the most unstable wave number can be observed with the increase of temperature.

  5. Production of high transient heat and particle fluxes in a linear plasma device

    NASA Astrophysics Data System (ADS)

    De Temmerman, G.; Zielinski, J. J.; van der Meiden, H.; Melissen, W.; Rapp, J.

    2010-08-01

    We report on the generation of high transient heat and particle fluxes in a linear plasma device by pulsed operation of the plasma source. A capacitor bank is discharged into the source to transiently increase the discharge current up to 1.7 kA, allowing peak densities and temperature of 70×1020 m-3 and 6 eV corresponding to a surface power density of about 400 MW m-2.

  6. LaRC-RP41: A Tough, High-Performance Composite Matrix

    NASA Technical Reports Server (NTRS)

    Pater, Ruth H.; Johnston, Norman J.; Smith, Ricky E.; Snoha, John J.; Gautreaux, Carol R.; Reddy, Rakasi M.

    1991-01-01

    New polymer exhibits increased toughness and resistance to microcracking. Cross-linking PMR-15 and linear LaRC-TPI combined to provide sequential semi-2-IPN designated as LaRC-RP41. Synthesized from PMR-15 imide prepolymer undergoing cross-linking in immediate presence of LaRC-TPI polyamic acid, also undergoing simultaneous imidization and linear chain extension. Potentially high-temperature matrix resin, adhesive, and molding resin. Applications include automobiles, electronics, aircraft, and aerospace structures.

  7. Thermal behavior of gamma-irradiated low-density polyethylene/paraffin wax blend

    NASA Astrophysics Data System (ADS)

    Abdou, Saleh M.; Elnahas, H. H.; El-Zahed, H.; Abdeldaym, A.

    2016-05-01

    The thermal properties of low-density polyethylene (LDPE)/paraffin wax blends were studied using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and melt flow index (MFI). Blends of LDPE/wax in ratios of 100/0, 98/2, 96/4, 94/6, 92/8, 90/10 and 85/15 (w/w) were prepared by melt-mixing at the temperature of 150°C. It was found that increasing the wax content more than 15% leads to phase separation. DSC results showed that for all blends both the melting temperature (Tm) and the melting enthalpy (ΔHm) decrease linearly with an increase in wax content. TGA analysis showed that the thermal stability of all blends decreases linearly with increasing wax content. No clear correlation was observed between the melting point and thermal stability. Horowitz and Metzger method was used to determine the thermal activation energy (Ea). MFI increased exponentially by increasing the wax content. The effect of gamma irradiation on the thermal behavior of the blends was also investigated at different gamma irradiation doses. Significant correlations were found between the thermal parameters (Tm, ΔHm, T5%, Ea and MFI) and the amount of wax content and gamma irradiation.

  8. Particle transport in low-collisionality H-mode plasmas on DIII-D

    DOE PAGES

    Mordijck, Saskia; Wang, Xin; Doyle, Edward J.; ...

    2015-10-05

    In this article we show that changing from an ion temperature gradient (ITG) to trapped electron mode (TEM) dominant turbulence regime (based on linear gyrokinetic simulations) results experimentally in a strong density pump-out (defined as a reduction in line-averaged density) in low collisionality, low power H-mode plasmas. We vary the turbulence drive by changing the heating from pre-dominantly ion heatedusing neutral beam injection to electron heated using electron cyclotron heating, which changes the T e/T i ratio and the temperature gradients. Perturbed gas puff experiments show an increase in transport outside ρ = 0.6, through a strong increase in themore » perturbed diffusion coefficient and a decrease in the inward pinch. Linear gyrokinetic simulations with TGLF show an increase in the particle flux outside the mid-radius. In conjunction an increase in intermediate-scale length density fluctuations is observed, which indicates an increase in turbulence intensity at typical TEM wavelengths. However, although the experimental changes in particle transport agree with a change from ITG to TEM turbulence regimes, we do not observe a reduction in the core rotation at mid-radius, nor a rotation reversal.« less

  9. Inactivation of Bacillus subtilis spores by high pressure CO2 with high temperature.

    PubMed

    Rao, Lei; Xu, Zhenzhen; Wang, Yongtao; Zhao, Feng; Hu, Xiaosong; Liao, Xiaojun

    2015-07-16

    The objective of this study was to investigate the inactivation of the Bacillus subtilis spores by high pressure CO2 combined with high temperature (HPCD+HT) and to analyze the clumping effect of the spores on their HPCD+HT resistance. The spores of B. subtilis were subjected to heat at 0.1 MPa and HPCD at 6.5-25 MPa, and 82 °C, 86 °C, and 91 °C for 0-120 min. The spores were effectively inactivated by HPCD+HT, but a protective effect on the spores was also found, which was closely correlated to the pressure, temperature and time. The spores treated by HPCD+HT at 6.5 and 10 MPa exhibited a two-stage inactivation curve of shoulder and log-linear regions whereas the spores at 15-25 MPa exhibited a three-stage inactivation curve of shoulder, log-linear and tailing regions, and these curves were well fitted to the Geeraerd model. Approximately 90% of pyridine-2,6-dicarboxylic acid (DPA) was released after HPCD+HT and the 90% DPA release time depend on the pressure and temperature. Moreover, the spore clumping in suspensions was examined by dynamic light scattering. The particle size of the spore suspensions increased with the increase of pressure, temperature and time, indicating the spore clumping. 0.1% Tween 80 as a surfactant inhibited the spore clumping and increased the inactivation ratio of the spores by HPCD+HT. These results indicated that the spore clumping enhanced the spores' resistance to HPCD+HT and induced a protective effect. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Effect of electrical stimulation and cooking temperature on the within-sample variation of cooking loss and shear force of lamb.

    PubMed

    Lewis, P K; Babiker, S A

    1983-01-01

    Electrical stimulation decreased the shear force and increased the cooking loss in seven paired lamb Longissimus dorsi (LD) muscles. This treatment did not have any effect on the within-sample variation. Cooking in 55°, 65° and 75°C water baths for 90 min caused a linear increase in the cooking loss and shear force. There was no stimulation-cooking temperature interaction observed. Cooking temperature also had no effect on the within-sample variation. A possible explanation as to why electrical stimulation did not affect the within-sample variation is given. Copyright © 1983. Published by Elsevier Ltd.

  11. Electric resistivity and thermoelectricity of Ni-Nb-Zr and Ni-Nb-Zr-H glassy alloys

    NASA Astrophysics Data System (ADS)

    Fukuhara, Mikio; Inoue, Akihisa

    2010-09-01

    Electric resistivity ρ and thermoelectric power S of Ni 36Nb 24Zr 40 and (Ni 0.36Nb 0.24Zr 0.4) 90H 10 glassy alloys were investigated in temperature region between 1.5 and 300 K. After resistivity curves of both alloys increase gradually with decreasing temperature down to around 6 K, they dropped suddenly and then reached zero resistivity at 2.1 K, leading to superconductivity. Linear curve with negative TCR of ρ vs T2 and slight increase of S/ T in temperature region down to around 6 K clearly reveal Fermi-liquid phenomenon in electronic state for both alloys independent of hydrogen content.

  12. Predicting Long-term Temperature Increase for Time-Dependent SAR Levels with a Single Short-term Temperature Response

    PubMed Central

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M.

    2015-01-01

    Purpose Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). Methods After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and Impulse-Response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes’ bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. Results The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time, and can be adjusted to be more or less conservative than the corresponding finite difference simulation. Conclusion With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. (200/200 words) PMID:26096947

  13. Predicting long-term temperature increase for time-dependent SAR levels with a single short-term temperature response.

    PubMed

    Carluccio, Giuseppe; Bruno, Mary; Collins, Christopher M

    2016-05-01

    Present a novel method for rapid prediction of temperature in vivo for a series of pulse sequences with differing levels and distributions of specific energy absorption rate (SAR). After the temperature response to a brief period of heating is characterized, a rapid estimate of temperature during a series of periods at different heating levels is made using a linear heat equation and impulse-response (IR) concepts. Here the initial characterization and long-term prediction for a complete spine exam are made with the Pennes' bioheat equation where, at first, core body temperature is allowed to increase and local perfusion is not. Then corrections through time allowing variation in local perfusion are introduced. The fast IR-based method predicted maximum temperature increase within 1% of that with a full finite difference simulation, but required less than 3.5% of the computation time. Even higher accelerations are possible depending on the time step size chosen, with loss in temporal resolution. Correction for temperature-dependent perfusion requires negligible additional time and can be adjusted to be more or less conservative than the corresponding finite difference simulation. With appropriate methods, it is possible to rapidly predict temperature increase throughout the body for actual MR examinations. © 2015 Wiley Periodicals, Inc.

  14. Heavy fermion behavior explained by bosons

    NASA Technical Reports Server (NTRS)

    Kallio, A.; Poykko, S.; Apaja, V.

    1995-01-01

    Conventional heavy fermion (HF) theories require existence of massive fermions. We show that heavy fermion phenomena can also be simply explained by existence of bosons with moderate mass but temperature dependent concentration below the formation temperature T(sub B), which in turn is close to room temperature. The bosons B(++) are proposed to be in chemical equilibrium with a system of holes h(+): B(++) = h(+) + h(+). This equilibrium is governed by a boson breaking function f(T), which determines the decreasing boson density and the increasing fermion density with increasing temperature. Since HF-compounds are hybridized from minimum two elements, we assume in addition existence of another fermion component h(sub s)(+) with temperature independent density. This spectator component is thought to be the main agent in binding the bosons in analogy with electronic or muonic molecules. Using a linear boson breaking function we can explain temperature dependence of the giant linear specific heat coefficient gamma(T) coming essentially from bosons. The maxima in resistivity, Hall coefficient, and susceptibility are explained by boson localization effects due to the Wigner crystallization. The antiferromagnetic transitions in turn are explained by similar localization of the pairing fermion system when their density n(sub h)(T(sub FL)) becomes lower than n(sub WC), the critical density of Wigner crystallization. The model applies irrespective whether a compound is superconducting or not. The same model explains the occurrence of low temperature antiferromagnetism also in high-T(sub c) superconductors. The double transition in UPt3 is proposed to be due to the transition of the pairing fermion liquid from spin polarized to unpolarized state.

  15. Linear and nonlinear magneto-optical absorption in a triangular quantum well

    NASA Astrophysics Data System (ADS)

    Tung, Luong V.; Vinh, Pham T.; Dinh, Le; Phuc, Huynh V.

    2018-05-01

    In this work, we study the linear and nonlinear magneto-optical absorption spectrum in a triangular quantum well (TrQW) created by the applied electric field via investigating the phonon-assisted cyclotron resonance (PACR) effect. The results are calculated for a specific Ga0.7Al0.3As/GaAs quantum well. The magneto-optical absorption coefficient (MOAC) and the full width at half maximum (FWHM) are found to be significantly dependent on the magnetic field, the electric field and the temperature. Our results showed that the MOAC and FWHM increase with the magnetic, electric fields and temperature. The obtained results also suggest a useful way to control the magneto-optical properties of TrQW by changing these parameters.

  16. Hall effect in high- Tc Y 1Ba 2Cu 3O 7-δ superconductor

    NASA Astrophysics Data System (ADS)

    Vezzoli, G. C.; Burke, T.; Moon, B. M.; Lalevic, B.; Safari, A.; Sundar, H. G. K.; Bonometti, R.; Alexander, C.; Rau, C.; Waters, K.

    1989-04-01

    We have performed point-by-point and continuous Hall effect experiments as a function of temperature in polycrystalline Y 1Ba 2Cu 3O 7-δ. We have shown that the positive Hall constant shows an abrupt increase upon decreasing temperature at a value just above Tc. This temperature corresponds to where the resistance versus temperature data deviates from linearity. At very high fields of 6.8 and 15 T we observe a subsequent decrease in RH. We interpret these data as supportive of a contribution toward the superconductivity mechanism arising from internal excitions or change transfer excitations such that the bound exciton concentration increases near Tc at the expense of positive carries which are reflected in both bound and free holes.

  17. Influence of oxygen partial pressure on surface tension and its temperature coefficient of molten iron

    NASA Astrophysics Data System (ADS)

    Ozawa, S.; Suzuki, S.; Hibiya, T.; Fukuyama, H.

    2011-01-01

    Influences of oxygen partial pressure, PO2, of ambient atmosphere and temperature on surface tension and its temperature coefficient for molten iron were experimentally investigated by an oscillating droplet method using an electromagnetic levitation furnace. We successfully measured the surface tension of molten iron over a very wide temperature range of 780 K including undercooling condition in a well controlled PO2 atmosphere. When PO2 is fixed at 10-2 Pa at the inlet of the chamber, a "boomerang shape" temperature dependence of surface tension was experimentally observed; surface tension increased and then decreased with increasing temperature. The pure surface tension of molten iron was deduced from the negative temperature coefficient in the boomerang shape temperature dependence. When the surface tension was measured under the H2-containing gas atmosphere, surface tension did not show a linear relationship against temperature. The temperature dependence of the surface tension shows anomalous kink at around 1850 K due to competition between the temperature dependence of PO2 and that of the equilibrium constant of oxygen adsorption.

  18. The Arrhenius equation revisited.

    PubMed

    Peleg, Micha; Normand, Mark D; Corradini, Maria G

    2012-01-01

    The Arrhenius equation has been widely used as a model of the temperature effect on the rate of chemical reactions and biological processes in foods. Since the model requires that the rate increase monotonically with temperature, its applicability to enzymatic reactions and microbial growth, which have optimal temperature, is obviously limited. This is also true for microbial inactivation and chemical reactions that only start at an elevated temperature, and for complex processes and reactions that do not follow fixed order kinetics, that is, where the isothermal rate constant, however defined, is a function of both temperature and time. The linearity of the Arrhenius plot, that is, Ln[k(T)] vs. 1/T where T is in °K has been traditionally considered evidence of the model's validity. Consequently, the slope of the plot has been used to calculate the reaction or processes' "energy of activation," usually without independent verification. Many experimental and simulated rate constant vs. temperature relationships that yield linear Arrhenius plots can also be described by the simpler exponential model Ln[k(T)/k(T(reference))] = c(T-T(reference)). The use of the exponential model or similar empirical alternative would eliminate the confusing temperature axis inversion, the unnecessary compression of the temperature scale, and the need for kinetic assumptions that are hard to affirm in food systems. It would also eliminate the reference to the Universal gas constant in systems where a "mole" cannot be clearly identified. Unless proven otherwise by independent experiments, one cannot dismiss the notion that the apparent linearity of the Arrhenius plot in many food systems is due to a mathematical property of the model's equation rather than to the existence of a temperature independent "energy of activation." If T+273.16°C in the Arrhenius model's equation is replaced by T+b, where the numerical value of the arbitrary constant b is substantially larger than T and T(reference), the plot of Ln k(T) vs. 1/(T+b) will always appear almost perfectly linear. Both the modified Arrhenius model version having the arbitrary constant b, Ln[k(T)/k(T(reference)) = a[1/ (T(reference)+b)-1/ (T+b)], and the exponential model can faithfully describe temperature dependencies traditionally described by the Arrhenius equation without the assumption of a temperature independent "energy of activation." This is demonstrated mathematically and with computer simulations, and with reprocessed classical kinetic data and published food results.

  19. Fast pyrolysis product distribution of biopretreated corn stalk by methanogen.

    PubMed

    Wang, Tipeng; Ye, Xiaoning; Yin, Jun; Jin, Zaixing; Lu, Qiang; Zheng, Zongming; Dong, Changqing

    2014-10-01

    After pretreated by methanogen for 5, 15 and 25 days, corn stalk (CS) were pyrolyzed at 250, 300, 350, 400, 450 and 500 °C by Py-GC/MS and product distribution in bio-oil was analyzed. Results indicated that methanogen pretreatment changed considerably the product distribution: the contents of sugar and phenols increased; the contents of linear carbonyls and furans decreased; the contents of linear ketones and linear acids changed slightly. Methanogen pretreatment improved significantly the pyrolysis selectivity of CS to phenols especially 4-VP. At 250 °C, the phenols content increased from 42.25% for untreated CS to 79.32% for biopretreated CS for 5 days; the 4-VP content increased from 28.6% to 60.9%. Increasing temperature was contributed to convert more lignin into 4-VP, but decreased its content in bio-oil due to more other chemicals formed. The effects of biopretreatment time on the chemicals contents were insignificant. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Enhancement of the sensitivity of a temperature sensor based on fiber Bragg gratings via weak value amplification.

    PubMed

    Salazar-Serrano, L J; Barrera, D; Amaya, W; Sales, S; Pruneri, V; Capmany, J; Torres, J P

    2015-09-01

    We present a proof-of-concept experiment aimed at increasing the sensitivity of Fiber-Bragg-gratings temperature sensors by making use of a weak-value-amplification scheme. The technique requires only linear optics elements for its implementation and appears as a promising method for increasing the sensitivity than state-of the-art sensors can currently provide. The device implemented here is able to generate a shift of the centroid of the spectrum of a pulse of ∼0.035  nm/°C, a nearly fourfold increase in sensitivity over the same fiber-Bragg-grating system interrogated using standard methods.

  1. Can we detect a nonlinear response to temperature in European plant phenology?

    NASA Astrophysics Data System (ADS)

    Jochner, Susanne; Sparks, Tim H.; Laube, Julia; Menzel, Annette

    2016-10-01

    Over a large temperature range, the statistical association between spring phenology and temperature is often regarded and treated as a linear function. There are suggestions that a sigmoidal relationship with definite upper and lower limits to leaf unfolding and flowering onset dates might be more realistic. We utilised European plant phenological records provided by the European phenology database PEP725 and gridded monthly mean temperature data for 1951-2012 calculated from the ENSEMBLES data set E-OBS (version 7.0). We analysed 568,456 observations of ten spring flowering or leafing phenophases derived from 3657 stations in 22 European countries in order to detect possible nonlinear responses to temperature. Linear response rates averaged for all stations ranged between -7.7 (flowering of hazel) and -2.7 days °C-1 (leaf unfolding of beech and oak). A lower sensitivity at the cooler end of the temperature range was detected for most phenophases. However, a similar lower sensitivity at the warmer end was not that evident. For only ˜14 % of the station time series (where a comparison between linear and nonlinear model was possible), nonlinear models described the relationship significantly better than linear models. Although in most cases simple linear models might be still sufficient to predict future changes, this linear relationship between phenology and temperature might not be appropriate when incorporating phenological data of very cold (and possibly very warm) environments. For these cases, extrapolations on the basis of linear models would introduce uncertainty in expected ecosystem changes.

  2. Is greater temperature change within a day associated with increased emergency admissions for schizophrenia?

    PubMed

    Zhao, Desheng; Zhang, Xulai; Xie, Mingyu; Cheng, Jian; Zhang, Heng; Wang, Shusi; Li, Kesheng; Yang, Huihui; Wen, Liying; Wang, Xu; Su, Hong

    2016-10-01

    Diurnal temperature range (DTR), as an important index of climate change, has been increasingly used to evaluate the impacts of temperature variability on human health. However, little is known about the effects of DTR on schizophrenia. The present study aims to examine the relationship between DTR and schizophrenia admissions, and further, to explore whether the association varied by individual characteristics and study periods. A Poisson generalized linear regression combined with distributed lag non-linear model (DLNM) was applied to analyze daily DTR and schizophrenia data from Hefei, China during 2005 to 2014, after adjusting for long-term and seasonal trends, mean temperature, relative humidity and other confounding factors. An acute adverse effect of extremely high DTR on schizophrenia was observed, with a 2.7% (95% CI: 1.007-1.047) increase of daily schizophrenia admissions after exposure to extremely high DTR (95th percentile vs. 50th percentile). The risk for schizophrenia onset due to large DTR exposure increased from the first five years (2005-2009) to the second five years (2010-2014). Additionally, the patient aged 15-29 and 50-64years, male patients, patients born in spring/autumn, and married patients appeared to be more vulnerable to DTR effect. However, there was no significant association between moderately high DTR (75th percentile) and schizophrenia. This study suggests that extremely high DTR is a potential trigger for schizophrenia admissions in Hefei, China. Our findings may provide valuable information to decisions-makers and guidance to health practitioners. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Structure of gel phase saturated lecithin bilayers: temperature and chain length dependence.

    PubMed Central

    Sun, W J; Tristram-Nagle, S; Suter, R M; Nagle, J F

    1996-01-01

    Systematic low-angle and wide-angle x-ray scattering studies have been performed on fully hydrated unoriented multilamamellar vesicles of saturated lecithins with even chain lengths N = 16, 18, 20, 22, and 24 as a function of temperature T in the normal gel (L beta') phase. For all N, the area per chain Ac increases linearly with T with an average slope dAc/dT = 0.027 A2/degree C, and the lamellar D-spacings also increase linearly with an average slope dD/dT = 0.040 A/degree C. At the same T, longer chain length lecithins have more densely packed chains, i.e., smaller Ac's, than shorter chain lengths. The chain packing of longer chain lengths is found to be more distorted from hexagonal packing than that of smaller N, and the distortion epsilon of all N approaches the same value at the respective transition temperatures. The thermal volume expansion of these lipids is accounted for by the expansion in the hydrocarbon chain region. Electron density profiles are constructed using four orders of low-angle lamellar peaks. These show that most of the increase in D with increasing T is due to thickening of the bilayers that is consistent with a decrease in tilt angle theta and with little change in water spacing with either T or N. Because of the opposing effects of temperature on area per chain Ac and tilt angle 0, the area expansivity alpha A is quite small. A qualitative theoretical model based on competing head and chain interactions accounts for our results. PMID:8842227

  4. Linear extension rates of massive corals from the Dry Tortugas National Park (DRTO), Florida

    USGS Publications Warehouse

    Muslic, Adis; Flannery, Jennifer A.; Reich, Christopher D.; Umberger, Daniel K.; Smoak, Joseph M.; Poore, Richard Z.

    2013-01-01

    Colonies of three coral species, Montastraea faveolata, Diploria strigosa, and Siderastrea siderea, located in the Dry Tortugas National Park (DRTO), Florida, were sampled and analyzed to evaluate annual linear extension rates. Montastraea faveolata had the highest average linear extension and variability in (DRTO: C2 = 0.67 centimeters/year (cm yr-1) ± 0.04, B3 = 0.85 cm yr-1 ± 0.07), followed by D. strigosa (DRTO: C1 = 0.73 cm yr-1 ± 0.04; MK = 0.59 cm yr-1 ± 0.06) and S. siderea (DRTO: A1 = 0.41 cm yr-1 ± 0.03). Intercolony comparison of M. faveolata from DRTO yielded a significant correlation (r = 0.34, df = 67, P = 0.005) and similar long-term patterns. DRTO S. siderea core A1 showed an overall increasing trend (r = 0.61, df = 119, P < 0.0001) in extension rates that correlated significantly with International Comprehensive Ocean/Atmosphere Data Set annual sea-surface temperature (r = 0.42, df = 115, P < 0.0001) and an air temperature record from Key West (r = 0.37, df = 111, P < 0.0001). In conclusion, annual linear extension rates are species specific and potentially influence by long-term variability in sea-surface temperature.

  5. Role of Hydrogen Bonding on Nonlinear Mechano-Optical Behavior of L-Phenylalanine-based Poly(ester urea)s.

    NASA Astrophysics Data System (ADS)

    Chen, Keke; Yu, Jiayi; Guzman, Gustavo; Es-Haghi, S. Shams; Becker, Matthew L.; Cakmak, Miko

    The uniaxial mechano-optical behavior of a series of amorphous L-phenylalanine-based poly(ester urea) (PEU) films was studied in the rubbery state using a custom real-time measurement system. When the materials were subjected to deformation at temperatures near the glass transition temperature (Tg) , the photoelastic behavior was manifested by a small increase in birefringence with a significant increase in true stress. At temperatures above Tg, PEUs with a shorter diol chain length exhibited a liquid-liquid (Tll) transition at about 1.06 Tg (K), above which the material transforms from a heterogeneous ``liquid of fixed-structure'' to a ``true liquid'' state. The initial photoelastic behavior disappears with increasing temperature, as the initial slope of the stress optical curves becomes temperature independent. Fourier transform infrared spectra of PEUs revealed that the average strength of hydrogen bonding diminishes with increasing temperature. For PEUs with the longest diol chain length, the area associated with N-H stretching region exhibits a linear temperature dependence. The presence of hydrogen bonding enhances the ``stiff'' segmental correlations between adjacent chains in the PEU structure. As a result, the photoelastic constant decreases with increasing hydrogen bonding strength. This work was supported by the Ohio Department of Development's Innovation Platform Program and The National Science Foundation.

  6. Hot filament-dissociation of (CH3)3SiH and (CH3)4Si, probed by vacuum ultra violet laser time of flight mass spectroscopy.

    PubMed

    Sharma, Ramesh C; Koshi, Mitsuo

    2006-11-01

    The decomposition of trimethylsilane and tetramethylsilane has been investigated for the first time, using hot wire (catalytic) at various temperatures. Trimethylsilane is catalytic-dissociated in these species SiH(2), CH(3)SiH, CH(3), CH(2)Si. Time of flight mass spectroscopy signal of these species are linearly increasing with increasing catalytic-temperature. Time of flight mass spectroscopy (TOFMS) signals of (CH(3))(3)SiH and photodissociated into (CH(3))(2)SiH are decreasing with increasing hot filament temperature. TOFMS signal of (CH(3))(4)Si is decreasing with increasing hot wire temperature, but (CH(3))(3)Si signal is almost constant with increasing the temperature. We calculated activation energies of dissociated species of the parental molecules for fundamental information of reaction kinetics for the first time. Catalytic-dissociation of trimethylsilane, and tetramethylsilane single source time of flight coupled single photon VUV (118 nm) photoionization collisionless radicals at temperature range of tungsten filament 800-2360 K. The study is focused to understand the fundamental information on reaction kinetics of these molecules at hot wire temperature, and processes of catalytic-chemical vapour deposition (Cat-CVD) technique which could be implemented in amorphous and crystalline SiC semiconductors thin films.

  7. Unsteady Convection Flow and Heat Transfer over a Vertical Stretching Surface

    PubMed Central

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient. PMID:25264737

  8. Unsteady convection flow and heat transfer over a vertical stretching surface.

    PubMed

    Cai, Wenli; Su, Ning; Liu, Xiangdong

    2014-01-01

    This paper investigates the effect of thermal radiation on unsteady convection flow and heat transfer over a vertical permeable stretching surface in porous medium, where the effects of temperature dependent viscosity and thermal conductivity are also considered. By using a similarity transformation, the governing time-dependent boundary layer equations for momentum and thermal energy are first transformed into coupled, non-linear ordinary differential equations with variable coefficients. Numerical solutions to these equations subject to appropriate boundary conditions are obtained by the numerical shooting technique with fourth-fifth order Runge-Kutta scheme. Numerical results show that as viscosity variation parameter increases both the absolute value of the surface friction coefficient and the absolute value of the surface temperature gradient increase whereas the temperature decreases slightly. With the increase of viscosity variation parameter, the velocity decreases near the sheet surface but increases far away from the surface of the sheet in the boundary layer. The increase in permeability parameter leads to the decrease in both the temperature and the absolute value of the surface friction coefficient, and the increase in both the velocity and the absolute value of the surface temperature gradient.

  9. Rheological investigation of body cream and body lotion in actual application conditions

    NASA Astrophysics Data System (ADS)

    Kwak, Min-Sun; Ahn, Hye-Jin; Song, Ki-Won

    2015-08-01

    The objective of the present study is to systematically evaluate and compare the rheological behaviors of body cream and body lotion in actual usage situations. Using a strain-controlled rheometer, the steady shear flow properties of commercially available body cream and body lotion were measured over a wide range of shear rates, and the linear viscoelastic properties of these two materials in small amplitude oscillatory shear flow fields were measured over a broad range of angular frequencies. The temperature dependency of the linear viscoelastic behaviors was additionally investigated over a temperature range most relevant to usual human life. The main findings obtained from this study are summarized as follows: (1) Body cream and body lotion exhibit a finite magnitude of yield stress. This feature is directly related to the primary (initial) skin feel that consumers usually experience during actual usage. (2) Body cream and body lotion exhibit a pronounced shear-thinning behavior. This feature is closely connected with the spreadability when cosmetics are applied onto the human skin. (3) The linear viscoelastic behaviors of body cream and body lotion are dominated by an elastic nature. These solid-like properties become a criterion to assess the selfstorage stability of cosmetic products. (4) A modified form of the Cox-Merz rule provides a good ability to predict the relationship between steady shear flow and dynamic viscoelastic properties for body cream and body lotion. (5) The storage modulus and loss modulus of body cream show a qualitatively similar tendency to gradually decrease with an increase in temperature. In the case of body lotion, with an increase in temperature, the storage modulus is progressively decreased while the loss modulus is slightly increased and then decreased. This information gives us a criterion to judge how the characteristics of cosmetic products are changed by the usual human environments.

  10. Microstructure related properties of gadolinium fluoride films deposited by molybdenum boat evaporation

    NASA Astrophysics Data System (ADS)

    Chang, Y. H.; Wang, C. Y.; Qi, L. Q.; Liu, H.

    2017-08-01

    In order to optimize the performance of fluoride thin films in wavelength of Deep Ultraviolet (DUV), GdF3 single layers are prepared by thermal evaporation at different deposition temperatures on Fused Silica. Optical and structure properties of each sample are characterized. The results that the refrac-tive index increased gradually and the crystallization status becomes stronger with the temperature rising, the inhomogeneous of the thin films present linearity. The decrease total optical loss with deposited temper-ature is attributed to the higher packing density and lower optical absorption.

  11. Relationship between rectal temperature at first treatment for bovine respiratory disease complex in feedlot calves and the probability of not finishing the production cycle.

    PubMed

    Theurer, Miles E; White, Brad J; Larson, Robert L; Holstein, Krista K; Amrine, David E

    2014-12-01

    OBJECTIVE-To determine the relationship between rectal temperature at first treatment for bovine respiratory disease complex (BRDC) in feedlot calves and the probability of not finishing the production cycle. DESIGN-Retrospective data analysis. ANIMALS-344,982 calves identified as having BRDC from 19 US feedlots from 2000 to 2009. PROCEDURES-For each calf, data for rectal temperature at initial treatment for BRDC and various performance and outcome variables were analyzed. A binary variable was created to identify calves that did not finish (DNF) the production cycle (died or culled prior to cohort slaughter). A mixed general linear model and receiver operating characteristic curve were created to evaluate associations of rectal temperature, number of days in the feedlot at time of BRDC diagnosis, body weight, quarter of year at feedlot arrival, sex, and all 2-way interactions with rectal temperature with the probability that calves DNF. RESULTS-27,495 of 344,982 (7.97%) calves DNF. Mean rectal temperature at first treatment for BRDC was 40.0°C (104°F). As rectal temperature increased, the probability that a calf DNF increased; however, that relationship was not linear and was influenced by quarter of year at feedlot arrival, sex, and number of days in the feedlot at time of BRDC diagnosis. Area under the receiver operating characteristic curve for correct identification of a calf that DNF was 0.646. CONCLUSIONS AND CLINICAL RELEVANCE-Rectal temperature of feedlot calves at first treatment for BRDC had limited value as a prognostic indicator of whether those calves would finish the production cycle.

  12. Using an integral projection model to assess the effect of temperature on the growth of gilthead seabream Sparus aurata.

    PubMed

    Heather, F J; Childs, D Z; Darnaude, A M; Blanchard, J L

    2018-01-01

    Accurate information on the growth rates of fish is crucial for fisheries stock assessment and management. Empirical life history parameters (von Bertalanffy growth) are widely fitted to cross-sectional size-at-age data sampled from fish populations. This method often assumes that environmental factors affecting growth remain constant over time. The current study utilized longitudinal life history information contained in otoliths from 412 juveniles and adults of gilthead seabream, Sparus aurata, a commercially important species fished and farmed throughout the Mediterranean. Historical annual growth rates over 11 consecutive years (2002-2012) in the Gulf of Lions (NW Mediterranean) were reconstructed to investigate the effect of temperature variations on the annual growth of this fish. S. aurata growth was modelled linearly as the relationship between otolith size at year t against otolith size at the previous year t-1. The effect of temperature on growth was modelled with linear mixed effects models and a simplified linear model to be implemented in a cohort Integral Projection Model (cIPM). The cIPM was used to project S. aurata growth, year to year, under different temperature scenarios. Our results determined current increasing summer temperatures to have a negative effect on S. aurata annual growth in the Gulf of Lions. They suggest that global warming already has and will further have a significant impact on S. aurata size-at-age, with important implications for age-structured stock assessments and reference points used in fisheries.

  13. Comparison of winter wheat yield sensitivity to climate variables under irrigated and rain-fed conditions

    NASA Astrophysics Data System (ADS)

    Xiao, Dengpan; Shen, Yanjun; Zhang, He; Moiwo, Juana P.; Qi, Yongqing; Wang, Rende; Pei, Hongwei; Zhang, Yucui; Shen, Huitao

    2016-09-01

    Crop simulation models provide alternative, less time-consuming, and cost-effective means of determining the sensitivity of crop yield to climate change. In this study, two dynamic mechanistic models, CERES (Crop Environment Resource Synthesis) and APSIM (Agricultural Production Systems Simulator), were used to simulate the yield of wheat ( Triticum aestivum L.) under well irrigated (CFG) and rain-fed (YY) conditions in relation to different climate variables in the North China Plain (NCP). The study tested winter wheat yield sensitivity to different levels of temperature, radiation, precipitation, and atmospheric carbon dioxide (CO2) concentration under CFG and YY conditions at Luancheng Agro-ecosystem Experimental Stations in the NCP. The results from the CERES and APSIM wheat crop models were largely consistent and suggested that changes in climate variables influenced wheat grain yield in the NCP. There was also significant variation in the sensitivity of winter wheat yield to climate variables under different water (CFG and YY) conditions. While a temperature increase of 2°C was the threshold beyond which temperature negatively influenced wheat yield under CFG, a temperature rise exceeding 1°C decreased winter wheat grain yield under YY. A decrease in solar radiation decreased wheat grain yield under both CFG and YY conditions. Although the sensitivity of winter wheat yield to precipitation was small under the CFG, yield decreased significantly with decreasing precipitation under the rainfed YY treatment. The results also suggest that wheat yield under CFG linearly increased by ≈3.5% per 60 ppm (parts per million) increase in CO2 concentration from 380 to 560 ppm, and yield under YY increased linearly by ≈7.0% for the same increase in CO2 concentration.

  14. Hourly predictive Levenberg-Marquardt ANN and multi linear regression models for predicting of dew point temperature

    NASA Astrophysics Data System (ADS)

    Zounemat-Kermani, Mohammad

    2012-08-01

    In this study, the ability of two models of multi linear regression (MLR) and Levenberg-Marquardt (LM) feed-forward neural network was examined to estimate the hourly dew point temperature. Dew point temperature is the temperature at which water vapor in the air condenses into liquid. This temperature can be useful in estimating meteorological variables such as fog, rain, snow, dew, and evapotranspiration and in investigating agronomical issues as stomatal closure in plants. The availability of hourly records of climatic data (air temperature, relative humidity and pressure) which could be used to predict dew point temperature initiated the practice of modeling. Additionally, the wind vector (wind speed magnitude and direction) and conceptual input of weather condition were employed as other input variables. The three quantitative standard statistical performance evaluation measures, i.e. the root mean squared error, mean absolute error, and absolute logarithmic Nash-Sutcliffe efficiency coefficient ( {| {{{Log}}({{NS}})} |} ) were employed to evaluate the performances of the developed models. The results showed that applying wind vector and weather condition as input vectors along with meteorological variables could slightly increase the ANN and MLR predictive accuracy. The results also revealed that LM-NN was superior to MLR model and the best performance was obtained by considering all potential input variables in terms of different evaluation criteria.

  15. Enhancement of redox- and phase-stability of thermoelectric CaMnO3-δ by substitution

    NASA Astrophysics Data System (ADS)

    Thiel, Philipp; Populoh, Sascha; Yoon, Songhak; Weidenkaff, Anke

    2015-09-01

    Redox Reactivity and structural phase transitions have a major impact on transport and me-chemical properties of thermoelectric CaMnO3-δ. In this study series of Ca1-xAxMn1-yByO3-δ (0≤x,y≤0.8) compounds, each with A-site (Dy3+, Yb3+) or B-site (Nb5+, Ta5+ and Mo6+, W6+) substitution, were synthesized and crystallographically analyzed. It was found that the high-temperature oxygen content is widely independent from the substituent. Subsequently, with increasing temperature the differences in the Seebeck coefficient vanish above 1200 K. With increasing substitution the orthorhombic distortion of the perovskite-like phase increases. The orthorhombic distortion and the upper temperature limit of the stability of the orthorhombic crystal structure show an almost linear dependency. Accordingly, the mechanical stability of all-oxides thermoelectric converters at temperatures exceeding 1000 K will be increased employing materials with high substitution level and substituents inducing a high orthorhombic distortion.

  16. The acoustic velocity, refractive index, and equation of state of liquid ammonia dihydrate under high pressure and high temperature.

    PubMed

    Ma, Chunli; Wu, Xiaoxin; Huang, Fengxian; Zhou, Qiang; Li, Fangfei; Cui, Qiliang

    2012-09-14

    High-pressure and high-temperature Brillouin scattering studies have been performed on liquid of composition corresponding to the ammonia dihydrate stoichiometry (NH(3)·2H(2)O) in a diamond anvil cell. Using the measured Brillouin frequency shifts from 180° back- and 60° platelet-scattering geometries, the acoustic velocity, refractive index, density, and adiabatic bulk modulus have been determined under pressure up to freezing point along the 296, 338, 376, and 407 K isotherms. Along these four isotherms, the acoustic velocities increase smoothly with increasing pressure but decrease with the increased temperature. However, the pressure dependence of the refractive indexes on the four isotherms exhibits a change in slope around 1.5 GPa. The bulk modulus increases linearly with pressure and its slope, dB/dP, decreases from 6.83 at 296 K to 4.41 at 407 K. These new datasets improve our understanding of the pressure- and temperature-induced molecular structure changes in the ammonia-water binary system.

  17. The oxidation of aluminum at high temperature studied by Thermogravimetric Analysis and Differential Scanning Calorimetry.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coker, Eric Nicholas

    2013-10-01

    The oxidation in air of high-purity Al foil was studied as a function of temperature using Thermogravimetric Analysis with Differential Scanning Calorimetry (TGA/DSC). The rate and/or extent of oxidation was found to be a non-linear function of the temperature. Between 650 and 750 ÀC very little oxidation took place; at 850 ÀC oxidation occurred after an induction period, while at 950 ÀC oxidation occurred without an induction period. At oxidation temperatures between 1050 and 1150 ÀC rapid passivation of the surface of the aluminum foil occurred, while at 1250 ÀC and above, an initial rapid mass increase was observed, followedmore » by a more gradual increase in mass. The initial rapid increase was accompanied by a significant exotherm. Cross-sections of oxidized specimens were characterized by scanning electron microscopy (SEM); the observed alumina skin thicknesses correlated qualitatively with the observed mass increases.« less

  18. Switching times of nanoscale FePt: Finite size effects on the linear reversal mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, M. O. A.; Chantrell, R. W.

    2015-04-20

    The linear reversal mechanism in FePt grains ranging from 2.316 nm to 5.404 nm has been simulated using atomistic spin dynamics, parametrized from ab-initio calculations. The Curie temperature and the critical temperature (T{sup *}), at which the linear reversal mechanism occurs, are observed to decrease with system size whilst the temperature window T{sup *}

  19. Raman scattering of 2H-MoS2 at simultaneous high temperature and high pressure (up to 600 K and 18.5 GPa)

    NASA Astrophysics Data System (ADS)

    Jiang, JianJun; Li, HePing; Dai, LiDong; Hu, HaiYing; Zhao, ChaoShuai

    2016-03-01

    The Raman spectroscopy of natural molybdenite powder was investigated at simultaneous conditions of high temperature and high pressure in a heatable diamond anvil cell (DAC), to obtain the temperature and pressure dependence of the main Raman vibrational modes (E1g, E2 g 1 ,A1g, and 2LA(M)). Over our experimental temperature and pressure range (300-600 K and 1 atm-18.5 GPa), the Raman modes follow a systematic blue shift with increasing pressure, and red shift with increasing temperature. The results were calculated by three-variable linear fitting. The mutual correlation index of temperature and pressure indicates that the pressure may reduce the temperature dependence of Raman modes. New Raman bands due to structural changes emerged at about 3-4 GPa lower than seen in previous studies; this may be caused by differences in the pressure hydrostaticity and shear stress in the sample cell that promote the interlayer sliding.

  20. Observational Evidence of Changes in Soil Temperatures across Eurasian Continent

    NASA Astrophysics Data System (ADS)

    Zhang, T.

    2015-12-01

    Soil temperature is one of the key climate change indicators and plays an important role in plant growth, agriculture, carbon cycle and ecosystems as a whole. In this study, variability and changes in ground surface and soil temperatures up to 3.20 m were investigated based on data and information obtained from hydrometeorological stations across Eurasian continent since the early 1950s. Ground surface and soil temperatures were measured daily by using the same standard method and by the trained professionals across Eurasian continent, which makes the dataset unique and comparable over a large study region. Using the daily soil temperature profiles, soil seasonal freeze depth was also obtained through linear interpolation. Preliminary results show that soil temperatures at various depths have increased dramatically, almost twice as much as air temperature increase over the same period. Regionally, soil temperature increase was more dramatically in high northern latitudes than mid/lower latitude regions. Air temperature changes alone may not be able to fully explain the magnitude of changes in soil temperatures. Further study indicates that snow cover establishment started later in autumn and snow cover disappearance occurred earlier in spring, while winter snow depth became thicker with a decreasing trend of snow density. Changes in snow cover conditions may play an important role in changes of soil temperatures over the Eurasian continent.

  1. Thermal generation of spin current in epitaxial CoFe{sub 2}O{sub 4} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Er-Jia, E-mail: ejguophysics@gmail.com, E-mail: klaeui@uni-mainz.de; Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830; Herklotz, Andreas

    2016-01-11

    The longitudinal spin Seebeck effect (LSSE) has been investigated in high-quality epitaxial CoFe{sub 2}O{sub 4} (CFO) thin films. The thermally excited spin currents in the CFO films are electrically detected in adjacent Pt layers due to the inverse spin Hall effect. The LSSE signal exhibits a linear increase with increasing temperature gradient, yielding a LSSE coefficient of ∼100 nV/K at room temperature. The temperature dependence of the LSSE is investigated from room temperature down to 30 K, showing a significant reduction at low temperatures, revealing that the total amount of thermally generated magnons decreases. Furthermore, we demonstrate that the spin Seebeck effectmore » is an effective tool to study the magnetic anisotropy induced by epitaxial strain, especially in ultrathin films with low magnetic moments.« less

  2. Soybean cell enlargement oscillates with a temperature-compensated period length of ca. 24 min

    NASA Technical Reports Server (NTRS)

    Morre, D. J.; Pogue, R.; Morre, D. M.

    2001-01-01

    Rate of enlargement of epidermal cells from soybean, when measured at intervals of 1 min using a light microscope equipped with a video measurement system, oscillated with a period length of about 24 min. This oscillation parallels the 24-min periodicity observed for the oxidation of NADH by the external plasma membrane NADH oxidase. The increase in length was not only non-linear, but intervals of rapid increase in area alternated with intervals of rapid decrease in area. The length of the period was temperature compensated, and was approximately the same when measured at 14, 24 and 34 degrees C even though the rate of cell enlargement varied over this same range of temperatures. These observations represent the first demonstration of an oscillatory growth behavior correlated with a biochemical activity where the period length of both is independent of temperature (temperature compensated) as is the hallmark of clock-related biological phenomena.

  3. Evaluation of Temperature-Dependent Effective Material Properties and Performance of a Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Chien, Heng-Chieh; Chu, En-Ting; Hsieh, Huey-Lin; Huang, Jing-Yi; Wu, Sheng-Tsai; Dai, Ming-Ji; Liu, Chun-Kai; Yao, Da-Jeng

    2013-07-01

    We devised a novel method to evaluate the temperature-dependent effective properties of a thermoelectric module (TEM): Seebeck coefficient ( S m), internal electrical resistance ( R m), and thermal conductance ( K m). After calculation, the effective properties of the module are converted to the average material properties of a p- n thermoelectric pillar pair inside the module: Seebeck coefficient ( S TE), electrical resistivity ( ρ TE), and thermal conductivity ( k TE). For a commercial thermoelectric module (Altec 1091) chosen to verify the novel method, the measured S TE has a maximum value at bath temperature of 110°C; ρ TE shows a positive linear trend dependent on the bath temperature, and k TE increases slightly with increasing bath temperature. The results show the method to have satisfactory measurement performance in terms of practicability and reliability; the data for tests near 23°C agree with published values.

  4. Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells.

    PubMed

    Misra, Subhradeep; Stern, Michael; Joshua, Arjun; Umansky, Vladimir; Bar-Joseph, Israel

    2018-01-26

    We study the exciton gas-liquid transition in GaAs/AlGaAs coupled quantum wells. Below a critical temperature, T_{C}=4.8  K, and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T≲1.1  K, similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1≲T<4.8  K. Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at T

  5. Experimental Study of the Exciton Gas-Liquid Transition in Coupled Quantum Wells

    NASA Astrophysics Data System (ADS)

    Misra, Subhradeep; Stern, Michael; Joshua, Arjun; Umansky, Vladimir; Bar-Joseph, Israel

    2018-01-01

    We study the exciton gas-liquid transition in GaAs /AlGaAs coupled quantum wells. Below a critical temperature, TC=4.8 K , and above a threshold laser power density the system undergoes a phase transition into a liquid state. We determine the density-temperature phase diagram over the temperature range 0.1-4.8 K. We find that the latent heat increases linearly with temperature at T ≲1.1 K , similarly to a Bose-Einstein condensate transition, and becomes constant at 1.1 ≲T <4.8 K . Resonant Rayleigh scattering measurements reveal that the disorder in the sample is strongly suppressed and the diffusion coefficient sharply increases with decreasing temperature at T

  6. A parametric heat transfer study for cryogenic ball bearings in SSME HPOTP

    NASA Technical Reports Server (NTRS)

    Chyu, Mingking K.

    1989-01-01

    A numerical modeling is to examine the effects of coolant convective heat transfer coefficient and frictional heating on the local temperature characteristics of a ball element in Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump (HPOTP) bearing. The present modeling uses a control-volume based, finite-difference method to solve the non-dimensionalized heat conduction equation in spherical coordinate system. The dimensionless temperature is found as a function of Biot number, heat flux ratio between the two race contacts, and location in the ball. The current results show that, for a given cooling capability, the ball temperature generally increases almost linearly with the heat input from the race-contacts. This increase is always very high at one of the two contacts. An increase in heat transfer coefficient generally reduces the ball temperature and alleviates the temperature gradient, except for the regions very close to the race contacts. For a 10-fold increase of heat transfer coefficient, temperature decrease is 35 percent for the average over entire ball, and 10 percent at the inner-race contact. The corresponding change of temperature gradient displays opposing trends between the regions immediately adjacent to the contacts and the remaining portion of the ball. The average temperature gradient in the vicinity of both contacts increases approximately 70 to 100 percent. A higher temperature gradient produces excessive thermal stress locally which may be detrimental to the material integrity. This, however, is the only unfavorable issue for an increase of heat transfer coefficient.

  7. Chemical quality of water in abandoned zinc mines in northeastern Oklahoma and southeastern Kansas

    USGS Publications Warehouse

    Playton, Stephen J.; Davis, Robert Ellis; McClaflin, Roger G.

    1978-01-01

    Onsite measurements of pH, specific conductance, and water temperature show that water temperatures in seven mine shafts in northeastern Oklahoma and southeastern Kansas is stratified. With increasing sampling depth, specific conductance and water temperature tend to increase, and pH tends to decrease. Concentrations of dissolved solids and chemical constituents in mine-shaft water, such as total, and dissolved metals and dissolved sulfate also increase with depth. The apparently unstable condition created by cooler, denser water overlying warmer, less-dense water is offset by the greater density of the lower water strata due to higher dissolved solids content.Correlation analysis showed that several chemical constituents and properties of mine-shaft water, including dissolved solids, total hardness, and dissolved sulfate, calcium, magnesium, and lithium, are linearly related to specific conductance. None of the constituents or properties of mine-shaft water tested had a significant linear relationship to pH. However, when values of dissolved aluminum, zinc, and nickel were transformed to natural or Napierian logarithms, significant linear correlation to pH resulted. During the course of the study - September 1975 to June 1977 - the water level in a well penetrating the mine workings rose at an average rate of 1.2 feet per month.  Usually, the rate of water-level rise was greater than average after periods of relatively high rainfall, and lower than average during periods of relatively low rainfall.Water in the mine shafts is unsuited for most uses without treatment.  The inability of current domestic water treatment practices to remove high concentrations of toxic metals, such as cadmium and lead, precludes use of the water for a public supply.

  8. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroshi L.; Tamura, Mina

    2016-09-01

    In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.

  9. Controlling the Size and Shape of the Elastin-Like Polypeptide based Micelles

    NASA Astrophysics Data System (ADS)

    Streletzky, Kiril; Shuman, Hannah; Maraschky, Adam; Holland, Nolan

    Elastin-like polypeptide (ELP) trimer constructs make reliable environmentally responsive micellar systems because they exhibit a controllable transition from being water-soluble at low temperatures to aggregating at high temperatures. It has been shown that depending on the specific details of the ELP design (length of the ELP chain, pH and salt concentration) micelles can vary in size and shape between spherical micelles with diameter 30-100 nm to elongated particles with an aspect ratio of about 10. This makes ELP trimers a convenient platform for developing potential drug delivery and bio-sensing applications as well as for understanding micelle formation in ELP systems. Since at a given salt concentration, the headgroup area for each foldon should be constant, the size of the micelles is expected to be proportional to the volume of the linear ELP available per foldon headgroup. Therefore, adding linear ELPs to a system of ELP-foldon should result in changes of the micelle volume allowing to control micelle size and possibly shape. The effects of addition of linear ELPs on size, shape, and molecular weight of micelles at different salt concentrations were studied by a combination of Dynamic Light Scattering and Static Light Scattering. The initial results on 50 µM ELP-foldon samples (at low salt) show that Rh of mixed micelles increases more than 5-fold as the amount of linear ELP raised from 0 to 50 µM. It was also found that a given mixture of linear and trimer constructs has two temperature-based transitions and therefore displays three predominant size regimes.

  10. Spin injection and spin transport in paramagnetic insulators

    DOE PAGES

    Okamoto, Satoshi

    2016-02-22

    We investigate the spin injection and the spin transport in paramagnetic insulators described by simple Heisenberg interactions using auxiliary particle methods. Some of these methods allow access to both paramagnetic states above magnetic transition temperatures and magnetic states at low temperatures. It is predicted that the spin injection at an interface with a normal metal is rather insensitive to temperatures above the magnetic transition temperature. On the other hand below the transition temperature, it decreases monotonically and disappears at zero temperature. We also analyze the bulk spin conductance. We show that the conductance becomes zero at zero temperature as predictedmore » by linear spin wave theory but increases with temperature and is maximized around the magnetic transition temperature. These findings suggest that the compromise between the two effects determines the optimal temperature for spintronics applications utilizing magnetic insulators.« less

  11. Evaluating linear response in active systems with no perturbing field

    NASA Astrophysics Data System (ADS)

    Szamel, Grzegorz

    2017-03-01

    We present a method for the evaluation of time-dependent linear response functions for systems of active particles propelled by a persistent (colored) noise from unperturbed simulations. The method is inspired by the Malliavin weights sampling method proposed by Warren and Allen (Phys. Rev. Lett., 109 (2012) 250601) for out-of-equilibrium systems of passive Brownian particles. We illustrate our method by evaluating two linear response functions for a single active particle in an external harmonic potential. As an application, we calculate the time-dependent mobility function and an effective temperature, defined through the Einstein relation between the self-diffusion and mobility coefficients, for a system of many active particles interacting via a screened Coulomb potential. We find that this effective temperature decreases with increasing persistence time of the self-propulsion. Initially, for not too large persistence times, it changes rather slowly, but then it decreases markedly when the persistence length of the self-propelled motion becomes comparable with the particle size.

  12. Temperature and body weight affect fouling of pig pens.

    PubMed

    Aarnink, A J A; Schrama, J W; Heetkamp, M J W; Stefanowska, J; Huynh, T T T

    2006-08-01

    Fouling of the solid lying area in pig housing is undesirable for reasons of animal welfare, animal health, environmental pollution, and labor costs. In this study the influence of temperature on the excreting and lying behavior of growing-finishing pigs of different BW (25, 45, 65, 85, or 105 kg) was studied. Ten groups of 5 pigs were placed in partially slatted pens (60% solid concrete, 40% metal-slatted) in climate respiration chambers. After an adaptation period, temperatures were raised daily for 9 d. Results showed that above certain inflection temperatures (IT; mean 22.6 degrees C, SE = 0.78) the number of excretions (relative to the total number of excretions) on the solid floor increased with temperature (mean increase 9.7%/ degrees C, SE = 1.41). Below the IT, the number of excretions on the solid floor was low and not influenced by temperature (mean 13.2%, SE = 3.5). On average, the IT for excretion on the solid floor decreased with increasing BW, from approximately 25 degrees C at 25 kg to 20 degrees C at 100 kg of BW (P < 0.05). Increasing temperature also affected the pattern and postural lying. The temperature at which a maximum number of pigs lay on the slatted floor (i.e., the IT for lying) decreased from approximately 27 degrees C at 25 kg to 23 degrees C at 100 kg of BW (P < 0.001). At increasing temperatures, pigs lay more on their sides and less against other pigs (P < 0.001). Temperature affects lying and excreting behavior of growing-finishing pigs in partially slatted pens. Above certain IT, pen fouling increases linearly with temperature. Inflection temperatures decrease at increasing BW.

  13. Air oxidation of Zircaloy-4 in the 600-1000 °C temperature range: Modeling for ASTEC code application

    NASA Astrophysics Data System (ADS)

    Coindreau, O.; Duriez, C.; Ederli, S.

    2010-10-01

    Progress in the treatment of air oxidation of zirconium in severe accident (SA) codes are required for a reliable analysis of severe accidents involving air ingress. Air oxidation of zirconium can actually lead to accelerated core degradation and increased fission product release, especially for the highly-radiotoxic ruthenium. This paper presents a model to simulate air oxidation kinetics of Zircaloy-4 in the 600-1000 °C temperature range. It is based on available experimental data, including separate-effect experiments performed at IRSN and at Forschungszentrum Karlsruhe. The kinetic transition, named "breakaway", from a diffusion-controlled regime to an accelerated oxidation is taken into account in the modeling via a critical mass gain parameter. The progressive propagation of the locally initiated breakaway is modeled by a linear increase in oxidation rate with time. Finally, when breakaway propagation is completed, the oxidation rate stabilizes and the kinetics is modeled by a linear law. This new modeling is integrated in the severe accident code ASTEC, jointly developed by IRSN and GRS. Model predictions and experimental data from thermogravimetric results show good agreement for different air flow rates and for slow temperature transient conditions.

  14. Young's Moduli of Cold and Vacuum Plasma Sprayed Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Pawlik, R.; Loewenthal, W.

    2009-01-01

    Monolithic metallic copper alloy and NiCrAlY coatings were fabricated by either the cold spray (CS) or the vacuum plasma spray (VPS) deposition processes. Dynamic elastic modulus property measurements were conducted on these monolithic coating specimens between 300 K and 1273 K using the impulse excitation technique. The Young's moduli decreased almost linearly with increasing temperature at all temperatures except in the case of the CS Cu-23%Cr-5%Al and VPS NiCrAlY, where deviations from linearity were observed above a critical temperature. It was observed that the Young's moduli for VPS Cu-8%Cr were larger than literature data compiled for Cu. The addition of 1%Al to Cu- 8%Cr significantly increased its Young's modulus by 12 to 17% presumably due to a solid solution effect. Comparisons of the Young s moduli data between two different measurements on the same CS Cu- 23%Cr-5%Al specimen revealed that the values measured in the first run were about 10% higher than those in the second run. It is suggested that this observation is due to annealing of the initial cold work microstructure resulting form the cold spray deposition process.

  15. Molecular dynamics study of the vaporization of an ionic drop.

    PubMed

    Galamba, N

    2010-09-28

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (Na(n)Cl(n))(n=2-4). The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  16. Temperature Dependence Of Current-Voltage Characteristics Of Au/p-GaAsN Schottky Barrier Diodes, With Small N Content

    NASA Astrophysics Data System (ADS)

    Rangel-Kuoppa, Victor-Tapio; Reentilä, Outi; Sopanen, Markku; Lipsanen, Harri

    2011-12-01

    The temperature dependent current-voltage (IVT) measurements on Au Schottky barrier diodes made on intrinsically p-type GaAs1-xNx were carried out. Three samples with small N content (x = 0.5%, 0.7% and 1%) were studied. The temperature range was 10-320 K. All contacts were found to be of Schottky type. The ideality factor and the apparent barrier height calculated by using thermionic emission (TE) theory show a strong temperature dependence. The current voltage (IV) curves are fitted based on the TE theory, yielding a zero-bias carrier height (ΦB0) and a ideality factor (n) that decrease and increase with decreasing temperature, respectively. The linear fitting of ΦB0 vs n and its subsequent evaluation for n = 1 give a zero-bias ΦB0 in the order of 0.35-0.4 eV. From the reverse-bias IV study, it is found that the experimental carrier density (NA) values increase with increasing temperature and are in agreement with the intrinsic carrier concentration for GaAs.

  17. The influence of adhesive on fiber Bragg grating strain sensor

    NASA Astrophysics Data System (ADS)

    Chen, Jixuan; Gong, Huaping; Jin, Shangzhong; Li, Shuhua

    2009-08-01

    A fiber Bragg grating (FBG) sensor was fixed on the uniform strength beam with three adhesives, which were modified acrylate, glass glue and epoxy resin. The influence of adhesive on FBG strain sensor was investigated. The strain of FBG sensor was varied by loading weight to the uniform strength beam. The wavelength shift of the FBG sensor fixed by the three kinds of adhesive were measured with different weight at the temperatures 0°C, 10°C, 20°C, 30°C, 40°C. The linearity, sensitivity and their stability at different temperature of FBG sensor which fixed by every kind of adhesives were analyzed. The results show that, the FBG sensor fixed by the modified acrylate has a high linearity, and the linear correlation coefficient is 0.9996. It also has a high sensitivity which is 0.251nm/kg. The linearity and the sensitivity of the FBG sensor have a high stability at different temperatures. The FBG sensor fixed by the glass glue also has a high linearity, and the linear correlation coefficient is 0.9986, but it has a low sensitivity which is only 0.041nm/kg. The linearity and the sensitivity of the FBG sensor fixed by the glass glue have a high stability at different temperatures. When the FBG sensor is fixed by epoxy resin, the sensitivity and linearity is affected significantly by the temperature. When the temperature changes from 0°C to 40°C, the sensitivity decreases from 0.302nm/kg to 0.058nm/kg, and the linear correlation coefficient decreases from 0.9999 to 0.9961.

  18. Effect of temperature on In_{{\\varvec{x}}} Ga_{1-{{\\varvec{x}}}} As/GaAs quantum dots

    NASA Astrophysics Data System (ADS)

    Borji, Mahdi Ahmadi; Reyahi, Ali; Rajaei, Esfandiar; Ghahremani, Mohsen

    2017-08-01

    In this paper, the strain, band-edge, and energy levels of pyramidal In_x Ga_{1-x} As/GaAs quantum dots are investigated by 1-band effective mass approach. It is shown that while temperature has no remarkable effect on the strain tensor, the band gap lowers and the radiation wavelength elongates by increasing temperature. Also, band gap and energy do not linearly decrease by temperature rise. Our results appear to agree with former researches. This can be used in designing laser devices and sensors when applied in different working temperatures. Furthermore, when the device works for a long time, self-heating occurs which changes the characteristics of the output.

  19. The effect of temperature and loading frequency on the converse piezoelectric response of soft PZT ceramics

    NASA Astrophysics Data System (ADS)

    Dapeng, Zhu; Qinghui, Jiang; Yingwei, Li

    2017-12-01

    The converse piezoelectric coefficient d 33 of soft PZT ceramics was measured from 20 °C to 150 °C under different loading frequency. Results showed that in the tested temperature range, the evolution of d 33 obeys the Rayleigh-law behavior. The influence of temperature on d 33 is a little complicated. For instance, the maximum d 33 was observed at 150 °C when the applied electric field E was at 0.1 kV mm-1. When E increased to 0.3 kV mm-1 and 0.4 kV mm-1, the maximum d 33 was observed at 120 °C and 100 °C, respectively. Such behaviors are rationalized by the evolution of the Rayleigh parameters d init and α. For d init, it increases as temperature increases. While for α, it first increases and then decreases with the increase of temperature due to the evolution of the spontaneous strain and the volume of the switched domains. In the tested loading frequency, d 33 decreased linearly with the logarithm of the frequency of electric field. With the increase of temperature, the influence of frequency on d 33 gradually weakened, implying that at high temperature, the motion of domain walls became active and the pinning effect of defects nearly disappeared.

  20. Added effect of heat wave on mortality in Seoul, Korea.

    PubMed

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future studies.

  1. Can we detect a nonlinear response to temperature in European plant phenology?

    PubMed

    Jochner, Susanne; Sparks, Tim H; Laube, Julia; Menzel, Annette

    2016-10-01

    Over a large temperature range, the statistical association between spring phenology and temperature is often regarded and treated as a linear function. There are suggestions that a sigmoidal relationship with definite upper and lower limits to leaf unfolding and flowering onset dates might be more realistic. We utilised European plant phenological records provided by the European phenology database PEP725 and gridded monthly mean temperature data for 1951-2012 calculated from the ENSEMBLES data set E-OBS (version 7.0). We analysed 568,456 observations of ten spring flowering or leafing phenophases derived from 3657 stations in 22 European countries in order to detect possible nonlinear responses to temperature. Linear response rates averaged for all stations ranged between -7.7 (flowering of hazel) and -2.7 days °C -1 (leaf unfolding of beech and oak). A lower sensitivity at the cooler end of the temperature range was detected for most phenophases. However, a similar lower sensitivity at the warmer end was not that evident. For only ∼14 % of the station time series (where a comparison between linear and nonlinear model was possible), nonlinear models described the relationship significantly better than linear models. Although in most cases simple linear models might be still sufficient to predict future changes, this linear relationship between phenology and temperature might not be appropriate when incorporating phenological data of very cold (and possibly very warm) environments. For these cases, extrapolations on the basis of linear models would introduce uncertainty in expected ecosystem changes.

  2. Numerical studies on the force characteristic of superconducting linear synchronous motor with HTS bulk magnet

    NASA Astrophysics Data System (ADS)

    Tang, Junjie; Li, Jing; Li, Xiang; Han, Le

    2018-03-01

    High temperature superconductor (HTS) bulks have significant potential use in linear motor application act as quasi-permanent magnet to replace traditional magnets. Force characteristic between HTS bulk magnet and traveling magnetic field was investigated with numerical simulation and experimental measurement in this paper. Influences of bulk height and number on the force characteristic were studied by the finite element model considering the nonlinear E-J relationship. Study was also made on addition of a back iron plate to the bulk magnet. Besides, force characteristic of bulk was compared with the permanent magnet results. The small initial decrease of the thrust could be explained by inside superconducting current redistribution. It was found that efficiency of linear motor did not increase by adding more bulk magnets. The bulk magnet will be remagnetized instead of erasing trapped field with the increase of the traveling magnetic field strength. The conclusions are helpful in prediction and design the linear motor with HTS bulk magnet.

  3. Robust red-emission spectra and yields in firefly bioluminescence against temperature changes

    NASA Astrophysics Data System (ADS)

    Mochizuki, Toshimitsu; Wang, Yu; Hiyama, Miyabi; Akiyama, Hidefumi

    2014-05-01

    We measured the quantitative spectra of firefly (Photinus pyralis) bioluminescence at various temperatures to investigate the temperature dependence of the luciferin-luciferase reaction at 15-34 °C. The quantitative spectra were decomposed very well into red (1.9 eV), orange (2.0 eV), and green (2.2 eV) Gaussian components. The intensity of the green component was the only temperature sensitive quantity that linearly decreased as the temperature increased at pH 7 and 8. We found the quantitative bioluminescence spectra to be robust below 2.0 eV against temperature and other experimental conditions. The revealed robustness of the red emissions should be useful for quantitative applications such as adenosine-5'-triphosphate detection.

  4. Reconstructing paleoclimate fields using online data assimilation with a linear inverse model

    NASA Astrophysics Data System (ADS)

    Perkins, Walter A.; Hakim, Gregory J.

    2017-05-01

    We examine the skill of a new approach to climate field reconstructions (CFRs) using an online paleoclimate data assimilation (PDA) method. Several recent studies have foregone climate model forecasts during assimilation due to the computational expense of running coupled global climate models (CGCMs) and the relatively low skill of these forecasts on longer timescales. Here we greatly diminish the computational cost by employing an empirical forecast model (linear inverse model, LIM), which has been shown to have skill comparable to CGCMs for forecasting annual-to-decadal surface temperature anomalies. We reconstruct annual-average 2 m air temperature over the instrumental period (1850-2000) using proxy records from the PAGES 2k Consortium Phase 1 database; proxy models for estimating proxy observations are calibrated on GISTEMP surface temperature analyses. We compare results for LIMs calibrated using observational (Berkeley Earth), reanalysis (20th Century Reanalysis), and CMIP5 climate model (CCSM4 and MPI) data relative to a control offline reconstruction method. Generally, we find that the usage of LIM forecasts for online PDA increases reconstruction agreement with the instrumental record for both spatial fields and global mean temperature (GMT). Specifically, the coefficient of efficiency (CE) skill metric for detrended GMT increases by an average of 57 % over the offline benchmark. LIM experiments display a common pattern of skill improvement in the spatial fields over Northern Hemisphere land areas and in the high-latitude North Atlantic-Barents Sea corridor. Experiments for non-CGCM-calibrated LIMs reveal region-specific reductions in spatial skill compared to the offline control, likely due to aspects of the LIM calibration process. Overall, the CGCM-calibrated LIMs have the best performance when considering both spatial fields and GMT. A comparison with the persistence forecast experiment suggests that improvements are associated with the linear dynamical constraints of the forecast and not simply persistence of temperature anomalies.

  5. Temperature Effects and Compensation-Control Methods

    PubMed Central

    Xia, Dunzhu; Chen, Shuling; Wang, Shourong; Li, Hongsheng

    2009-01-01

    In the analysis of the effects of temperature on the performance of microgyroscopes, it is found that the resonant frequency of the microgyroscope decreases linearly as the temperature increases, and the quality factor changes drastically at low temperatures. Moreover, the zero bias changes greatly with temperature variations. To reduce the temperature effects on the microgyroscope, temperature compensation-control methods are proposed. In the first place, a BP (Back Propagation) neural network and polynomial fitting are utilized for building the temperature model of the microgyroscope. Considering the simplicity and real-time requirements, piecewise polynomial fitting is applied in the temperature compensation system. Then, an integral-separated PID (Proportion Integration Differentiation) control algorithm is adopted in the temperature control system, which can stabilize the temperature inside the microgyrocope in pursuing its optimal performance. Experimental results reveal that the combination of microgyroscope temperature compensation and control methods is both realizable and effective in a miniaturized microgyroscope prototype. PMID:22408509

  6. Remote temperature-set-point controller

    DOEpatents

    Burke, W.F.; Winiecki, A.L.

    1984-10-17

    An instrument is described for carrying out mechanical strain tests on metallic samples with the addition of means for varying the temperature with strain. The instrument includes opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  7. Remote temperature-set-point controller

    DOEpatents

    Burke, William F.; Winiecki, Alan L.

    1986-01-01

    An instrument for carrying out mechanical strain tests on metallic samples with the addition of an electrical system for varying the temperature with strain, the instrument including opposing arms and associated equipment for holding a sample and varying the mechanical strain on the sample through a plurality of cycles of increasing and decreasing strain within predetermined limits, circuitry for producing an output signal representative of the strain during the tests, apparatus including a set point and a coil about the sample for providing a controlled temperature in the sample, and circuitry interconnected between the strain output signal and set point for varying the temperature of the sample linearly with strain during the tests.

  8. Increased coronary heart disease and stroke hospitalisations from ambient temperatures in Ontario

    PubMed Central

    Bai, Li; Li, Qiongsi; Wang, Jun; Lavigne, Eric; Gasparrini, Antonio; Copes, Ray; Yagouti, Abderrahmane; Burnett, Richard T; Goldberg, Mark S; Cakmak, Sabit; Chen, Hong

    2018-01-01

    Objective To assess the associations between ambient temperatures and hospitalisations for coronary heart disease (CHD) and stroke. Methods Our study comprised all residents living in Ontario, Canada, 1996–2013. For each of 14 health regions, we fitted a distributed lag non-linear model to estimate the cold and heat effects on hospitalisations from CHD, acute myocardial infarction (AMI), stroke and ischaemic stroke, respectively. These effects were pooled using a multivariate meta-analysis. We computed attributable hospitalisations for cold and heat, defined as temperatures above and below the optimum temperature (corresponding to the temperature of minimum morbidity) and for moderate and extreme temperatures, defined using cut-offs at the 2.5th and 97.5th temperature percentiles. Results Between 1996 and 2013, we identified 1.4 million hospitalisations from CHD and 355 837 from stroke across Ontario. On cold days with temperature corresponding to the 1st percentile of temperature distribution, we found a 9% increase in daily hospitalisations for CHD (95% CI 1% to 16%), 29% increase for AMI (95% CI 15% to 45%) and 11% increase for stroke (95% CI 1% to 22%) relative to days with an optimal temperature. High temperatures (the 99th percentile) also increased CHD hospitalisations by 6% (95% CI 1% to 11%) relative to the optimal temperature. These estimates translate into 2.49% of CHD hospitalisations attributable to cold and 1.20% from heat. Additionally, 1.71% of stroke hospitalisations were attributable to cold. Importantly, moderate temperatures, rather than extreme temperatures, yielded the most of the cardiovascular burdens from temperatures. Conclusions Ambient temperatures, especially in moderate ranges, may be an important risk factor for cardiovascular-related hospitalisations. PMID:29101264

  9. Systematic study of doping dependence on linear magnetoresistance in p-PbTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schneider, J. M.; Chitta, V. A.; Oliveira, N. F.

    2014-10-20

    We report on a large linear magnetoresistance effect observed in doped p-PbTe films. While undoped p-PbTe reveals a sublinear magnetoresistance, p-PbTe films doped with BaF{sub 2} exhibit a transition to a nearly perfect linear magnetoresistance behaviour that is persistent up to 30 T. The linear magnetoresistance slope ΔR/ΔB is to a good approximation, independent of temperature. This is in agreement with the theory of Quantum Linear Magnetoresistance. We also performed magnetoresistance simulations using a classical model of linear magnetoresistance. We found that this model fails to explain the experimental data. A systematic study of the doping dependence reveals that the linearmore » magnetoresistance response has a maximum for small BaF{sub 2} doping levels and diminishes rapidly for increasing doping levels. Exploiting the huge impact of doping on the linear magnetoresistance signal could lead to new classes of devices with giant magnetoresistance behavior.« less

  10. Temperature Thresholds and Thermal Requirements for the Development of the Rice Leaf Folder, Cnaphalocrocis medinalis

    PubMed Central

    Padmavathi, Chintalapati; Katti, Gururaj; Sailaja, V.; Padmakumari, A.P.; Jhansilakshmi, V.; Prabhakar, M.; Prasad, Y.G.

    2013-01-01

    The rice leaf folder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Pyralidae) is a predominant foliage feeder in all the rice ecosystems. The objective of this study was to examine the development of leaf folder at 7 constant temperatures (18, 20, 25, 30, 32, 34, 35° C) and to estimate temperature thresholds and thermal constants for the forecasting models based on heat accumulation units, which could be developed for use in forecasting. The developmental periods of different stages of rice leaf folder were reduced with increases in temperature from 18 to 34° C. The lower threshold temperatures of 11.0, 10.4, 12.8, and 11.1° C, and thermal constants of 69, 270, 106, and 455 degree days, were estimated by linear regression analysis for egg, larva, pupa, and total development, respectively. Based on the thermodynamic non-linear optimSSI model, intrinsic optimum temperatures for the development of egg, larva, and pupa were estimated at 28.9, 25.1 and 23.7° C, respectively. The upper and lower threshold temperatures were estimated as 36.4° C and 11.2° C for total development, indicating that the enzyme was half active and half inactive at these temperatures. These estimated thermal thresholds and degree days could be used to predict the leaf folder activity in the field for their effective management. PMID:24205891

  11. Permeation of oxygen through high purity, large grain silver

    NASA Technical Reports Server (NTRS)

    Outlaw, R. A.; Peregoy, W. K.; Hoflund, Gar B.

    1987-01-01

    The permeation of high purity, large grain Ag membranes by oxygen has been studied over the temperature range 400 to 800 C. The permeability was found to be quite linear and repeatable, but the magnitude was 3.2 times smaller than that determined by past research. Since previous investigators studied substantially less pure Ag and conducted experiments within much poorer vacuum environments (which indicates that their grain boundary density was much greater), the data presented here suggest oxygen transport through the membrane is primarily by grain boundary diffusion. The diffusivity measurements were found to exhibit two distinct linear regions, one above and one below a critical temperature of 630 C. The high-temperature data have an activation energy (11.1 kcal/mole) similar to that reported by others, but the low-temperature data have a higher activation energy (15.3 kcal/mole), which can be explained by impurity trapping in the grain boundaries. Vacuum desorption of the oxygen-saturated Ag was found to occur at a threshold of 630 C, which is consistent with the onset of increased mobility within the grain boundaries.

  12. The cold effect of ambient temperature on ischemic and hemorrhagic stroke hospital admissions: A large database study in Beijing, China between years 2013 and 2014-Utilizing a distributed lag non-linear analysis.

    PubMed

    Luo, Yanxia; Li, Haibin; Huang, Fangfang; Van Halm-Lutterodt, Nicholas; Qin Xu; Wang, Anxin; Guo, Jin; Tao, Lixin; Li, Xia; Liu, Mengyang; Zheng, Deqiang; Chen, Sipeng; Zhang, Feng; Yang, Xinghua; Tan, Peng; Wang, Wei; Xie, Xueqin; Guo, Xiuhua

    2018-01-01

    The effects of ambient temperature on stroke death in China have been well addressed. However, few studies are focused on the attributable burden for the incident of different types of stroke due to ambient temperature, especially in Beijing, China. We purpose to assess the influence of ambient temperature on hospital stroke admissions in Beijing, China. Data on daily temperature, air pollution, and relative humidity measurements and stroke admissions in Beijing were obtained between 2013 and 2014. Distributed lag non-linear model was employed to determine the association between daily ambient temperature and stroke admissions. Relative risk (RR) with 95% confidence interval (CI) and Attribution fraction (AF) with 95% CI were calculated based on stroke subtype, gender and age group. A total number of 147, 624 stroke admitted cases (including hemorrhagic and ischemic types of stroke) were documented. A non-linear acute effect of cold temperature on ischemic and hemorrhagic stroke hospital admissions was evaluated. Compared with the 25th percentile of temperature (1.2 °C), the cumulative RR of extreme cold temperature (first percentile of temperature, -9.6 °C) was 1.51 (95% CI: 1.08-2.10) over lag 0-14 days for ischemic type and 1.28 (95% CI: 1.03-1.59) for hemorrhagic stroke over lag 0-3 days. Overall, 1.57% (95% CI: 0.06%-2.88%) of ischemic stroke and 1.90% (95% CI: 0.40%-3.41%) of hemorrhagic stroke was attributed to the extreme cold temperature over lag 0-7 days and lag 0-3 days, respectively. The cold temperature's impact on stroke admissions was found to be more obvious in male gender and the youth compared to female gender and the elderly. Exposure to extreme cold temperature is associated with increasing both ischemic and hemorrhagic stroke admissions in Beijing, China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Resistance thermometer has linear resistance-temperature coefficient at low temperatures

    NASA Technical Reports Server (NTRS)

    Kuzyk, W.

    1966-01-01

    Resistance thermometer incorporating a germanium resistance element with a platinum resistance element in a wheatstone bridge circuit has a linear temperature-resistance coefficient over a range from approximately minus 140 deg C to approximately minus 253 deg C.

  14. Temperament affects sympathetic nervous function in a normal population.

    PubMed

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho; Yu, Bum-Hee

    2012-09-01

    Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population.

  15. Temperament Affects Sympathetic Nervous Function in a Normal Population

    PubMed Central

    Kim, Bora; Lee, Jae-Hon; Kang, Eun-Ho

    2012-01-01

    Objective Although specific temperaments have been known to be related to autonomic nervous function in some psychiatric disorders, there are few studies that have examined the relationship between temperaments and autonomic nervous function in a normal population. In this study, we examined the effect of temperament on the sympathetic nervous function in a normal population. Methods Sixty eight healthy subjects participated in the present study. Temperament was assessed using the Korean version of the Cloninger Temperament and Character Inventory (TCI). Autonomic nervous function was determined by measuring skin temperature in a resting state, which was recorded for 5 minutes from the palmar surface of the left 5th digit using a thermistor secured with a Velcro® band. Pearson's correlation analysis and multiple linear regression were used to examine the relationship between temperament and skin temperature. Results A higher harm avoidance score was correlated with a lower skin temperature (i.e. an increased sympathetic tone; r=-0.343, p=0.004) whereas a higher persistence score was correlated with a higher skin temperature (r=0.433, p=0.001). Hierarchical linear regression analysis revealed that harm avoidance was able to predict the variance of skin temperature independently, with a variance of 7.1% after controlling for sex, blood pressure and state anxiety and persistence was the factor predicting the variance of skin temperature with a variance of 5.0%. Conclusion These results suggest that high harm avoidance is related to an increased sympathetic nervous function whereas high persistence is related to decreased sympathetic nervous function in a normal population. PMID:22993530

  16. The effects of hot nights on mortality in Barcelona, Spain

    NASA Astrophysics Data System (ADS)

    Royé, D.

    2017-12-01

    Heat-related effects on mortality have been widely analyzed using maximum and minimum temperatures as exposure variables. Nevertheless, the main focus is usually on the former with the minimum temperature being limited in use as far as human health effects are concerned. Therefore, new thermal indices were used in this research to describe the duration of night hours with air temperatures higher than the 95% percentile of the minimum temperature (hot night hours) and intensity as the summation of these air temperatures in degrees (hot night degrees). An exposure-response relationship between mortality due to natural, respiratory, and cardiovascular causes and summer night temperatures was assessed using data from the Barcelona region between 2003 and 2013. The non-linear relationship between the exposure and response variables was modeled using a distributed lag non-linear model. The estimated associations for both exposure variables and mortality shows a relationship with high and medium values that persist significantly up to a lag of 1-2 days. In mortality due to natural causes, an increase of 1.1% per 10% (CI95% 0.6-1.5) for hot night hours and 5.8% per each 10° (CI95% 3.5-8.2%) for hot night degrees is observed. The effects of hot night hours reach their maximum with 100% and lead to an increase by 9.2% (CI95% 5.3-13.1%). The hourly description of night heat effects reduced to a single indicator in duration and intensity is a new approach and shows a different perspective and significant heat-related effects on human health.

  17. [Evaluation of Artificial Hip Joint with Radiofrequency Heating Issues during MRI Examination: A Comparison between 1.5 T and 3 T].

    PubMed

    Yamazaki, Masaru; Ideta, Takahiro; Kudo, Sadahiro; Nakazawa, Masami

    2016-06-01

    In magnetic resonance imaging (MRI), when radiofrequency (RF) is irradiated to a subject with metallic implant, it can generate heat by RF irradiation. Recently 3 T MRI scanner has spread widely and imaging for any regions of whole body has been conducted. However specific absorption rate (SAR) of 3 T MRI becomes approximately four times as much as the 1.5 T, which can significantly affect the heat generation of metallic implants. So, we evaluated RF heating of artificial hip joints in different shapes and materials in 1.5 T and 3 T MRI. Three types of artificial hip joints made of stainless alloy, titanium alloy and cobalt chrome alloy were embedded in the human body-equivalent phantom respectively and their temperature change were measured for twenty minutes by 1.5 T and 3 T MRI. The maximum temperature rise was observed at the bottom head in all of three types of artificial hip joints, the rise being 12°C for stainless alloy, 11.9°C for titanium alloy and 6.1°C for cobalt chrome alloy in 1.5 T. The temperature rise depended on SAR and the increase of SAR had a good linear relationship with the temperature rise. It was found from the result that the RF heating of metallic implants can take place in various kinds of material and the increase of SAR has a good linear relationship with the temperature rise. This experience shows that reduction of SAR can decrease temperature of metallic implants.

  18. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    PubMed Central

    Mantzouki, Evanthia; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Budzyńska, Agnieszka; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Messyasz, Beata; Pełechata, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Karakaya, Nusret; Häggqvist, Kerstin; Beklioğlu, Meryem; Filiz, Nur; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Boscaini, Adriano; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Köker, Latife; Albay, Meriç; Maronić, Dubravka Špoljarić; Stević, Filip; Pfeiffer, Tanja Žuna; Fonvielle, Jeremy; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Trapote, Mari Carmen; Obrador, Biel; Grabowska, Magdalena; Chmura, Damian; Úbeda, Bárbara; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Picazo, Antonio; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Udovič, Marija Gligora; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Kangro, Kersti; Ibelings, Bas W.

    2018-01-01

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains. PMID:29652856

  19. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.

    PubMed

    Mantzouki, Evanthia; Lürling, Miquel; Fastner, Jutta; de Senerpont Domis, Lisette; Wilk-Woźniak, Elżbieta; Koreivienė, Judita; Seelen, Laura; Teurlincx, Sven; Verstijnen, Yvon; Krztoń, Wojciech; Walusiak, Edward; Karosienė, Jūratė; Kasperovičienė, Jūratė; Savadova, Ksenija; Vitonytė, Irma; Cillero-Castro, Carmen; Budzyńska, Agnieszka; Goldyn, Ryszard; Kozak, Anna; Rosińska, Joanna; Szeląg-Wasielewska, Elżbieta; Domek, Piotr; Jakubowska-Krepska, Natalia; Kwasizur, Kinga; Messyasz, Beata; Pełechaty, Aleksandra; Pełechaty, Mariusz; Kokocinski, Mikolaj; García-Murcia, Ana; Real, Monserrat; Romans, Elvira; Noguero-Ribes, Jordi; Duque, David Parreño; Fernández-Morán, Elísabeth; Karakaya, Nusret; Häggqvist, Kerstin; Demir, Nilsun; Beklioğlu, Meryem; Filiz, Nur; Levi, Eti E.; Iskin, Uğur; Bezirci, Gizem; Tavşanoğlu, Ülkü Nihan; Özhan, Koray; Gkelis, Spyros; Panou, Manthos; Fakioglu, Özden; Avagianos, Christos; Kaloudis, Triantafyllos; Çelik, Kemal; Yilmaz, Mete; Marcé, Rafael; Catalán, Nuria; Bravo, Andrea G.; Buck, Moritz; Colom-Montero, William; Mustonen, Kristiina; Pierson, Don; Yang, Yang; Raposeiro, Pedro M.; Gonçalves, Vítor; Antoniou, Maria G.; Tsiarta, Nikoletta; McCarthy, Valerie; Perello, Victor C.; Feldmann, Tõnu; Laas, Alo; Panksep, Kristel; Tuvikene, Lea; Gagala, Ilona; Mankiewicz-Boczek, Joana; Yağcı, Meral Apaydın; Çınar, Şakir; Çapkın, Kadir; Yağcı, Abdulkadir; Cesur, Mehmet; Bilgin, Fuat; Bulut, Cafer; Uysal, Rahmi; Obertegger, Ulrike; Boscaini, Adriano; Flaim, Giovanna; Salmaso, Nico; Cerasino, Leonardo; Richardson, Jessica; Visser, Petra M.; Verspagen, Jolanda M. H.; Karan, Tünay; Soylu, Elif Neyran; Maraşlıoğlu, Faruk; Napiórkowska-Krzebietke, Agnieszka; Ochocka, Agnieszka; Pasztaleniec, Agnieszka; Antão-Geraldes, Ana M.; Vasconcelos, Vitor; Morais, João; Vale, Micaela; Köker, Latife; Akçaalan, Reyhan; Albay, Meriç; Špoljarić Maronić, Dubravka; Stević, Filip; Žuna Pfeiffer, Tanja; Fonvielle, Jeremy; Straile, Dietmar; Rothhaupt, Karl-Otto; Hansson, Lars-Anders; Urrutia-Cordero, Pablo; Bláha, Luděk; Geriš, Rodan; Fránková, Markéta; Koçer, Mehmet Ali Turan; Alp, Mehmet Tahir; Remec-Rekar, Spela; Elersek, Tina; Triantis, Theodoros; Zervou, Sevasti-Kiriaki; Hiskia, Anastasia; Haande, Sigrid; Skjelbred, Birger; Madrecka, Beata; Nemova, Hana; Drastichova, Iveta; Chomova, Lucia; Edwards, Christine; Sevindik, Tuğba Ongun; Tunca, Hatice; Önem, Burçin; Aleksovski, Boris; Krstić, Svetislav; Vucelić, Itana Bokan; Nawrocka, Lidia; Salmi, Pauliina; Machado-Vieira, Danielle; de Oliveira, Alinne Gurjão; Delgado-Martín, Jordi; García, David; Cereijo, Jose Luís; Gomà, Joan; Trapote, Mari Carmen; Vegas-Vilarrúbia, Teresa; Obrador, Biel; Grabowska, Magdalena; Karpowicz, Maciej; Chmura, Damian; Úbeda, Bárbara; Gálvez, José Ángel; Özen, Arda; Christoffersen, Kirsten Seestern; Warming, Trine Perlt; Kobos, Justyna; Mazur-Marzec, Hanna; Pérez-Martínez, Carmen; Ramos-Rodríguez, Eloísa; Arvola, Lauri; Alcaraz-Párraga, Pablo; Toporowska, Magdalena; Pawlik-Skowronska, Barbara; Niedźwiecki, Michał; Pęczuła, Wojciech; Leira, Manel; Hernández, Armand; Moreno-Ostos, Enrique; Blanco, José María; Rodríguez, Valeriano; Montes-Pérez, Jorge Juan; Palomino, Roberto L.; Rodríguez-Pérez, Estela; Carballeira, Rafael; Camacho, Antonio; Picazo, Antonio; Rochera, Carlos; Santamans, Anna C.; Ferriol, Carmen; Romo, Susana; Soria, Juan Miguel; Dunalska, Julita; Sieńska, Justyna; Szymański, Daniel; Kruk, Marek; Kostrzewska-Szlakowska, Iwona; Jasser, Iwona; Žutinić, Petar; Gligora Udovič, Marija; Plenković-Moraj, Anđelka; Frąk, Magdalena; Bańkowska-Sobczak, Agnieszka; Wasilewicz, Michał; Özkan, Korhan; Maliaka, Valentini; Kangro, Kersti; Grossart, Hans-Peter; Paerl, Hans W.; Carey, Cayelan C.; Ibelings, Bas W.

    2018-04-13

    Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins). Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a) and cytotoxins (e.g., cylindrospermopsin) due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI) increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  20. Frequency dependence of the maximum operating temperature for quantum-cascade lasers up to 5.4 THz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienold, M.; Humboldt Universität zu Berlin, Institut für Physik, Newtonstr. 15, 12489 Berlin; Deutsches Zentrum für Luft und Raumfahrt, Rutherfordstr. 2, 12489 Berlin

    2015-11-16

    We report on the observation of an approximately linear reduction in the maximum operating temperature with an increasing emission frequency for terahertz quantum-cascade lasers between 4.2 and 5.4 THz. These lasers are based on the same design type, but vary in period length and barrier height for the cascade structure. The sample emitting at the highest frequency around 5.4 THz can be operated in pulsed mode up to 56 K. We identify an additional relaxation channel for electrons by longitudinal optical phonon scattering from the upper to the lower laser level and increasing optical losses toward higher frequencies as major processes,more » leading to the observed temperature behavior.« less

  1. Systematic error of diode thermometer.

    PubMed

    Iskrenovic, Predrag S

    2009-08-01

    Semiconductor diodes are often used for measuring temperatures. The forward voltage across a diode decreases, approximately linearly, with the increase in temperature. The applied method is mainly the simplest one. A constant direct current flows through the diode, and voltage is measured at diode terminals. The direct current that flows through the diode, putting it into operating mode, heats up the diode. The increase in temperature of the diode-sensor, i.e., the systematic error due to self-heating, depends on the intensity of current predominantly and also on other factors. The results of systematic error measurements due to heating up by the forward-bias current have been presented in this paper. The measurements were made at several diodes over a wide range of bias current intensity.

  2. Temperature dependence of threshold current in GaAs/AlGaAs quantum well lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blood, P.; Colak, S.; Kucharska, A.I.

    1988-02-22

    We have calculated the threshold current and its temperature (T) dependence in the range 200--400 K for AlGaAs quantum well lasers with 25-A-wide GaAs wells using a model which includes lifetime broadening of the transitions and broadening of the density of states function by fluctuations in the well width. The threshold current varies approximately linearly with T and the principal effect of broadening is to increase the threshold current causing a reduction in the fractional change of current with temperature. The apparent value of the parameter T/sub 0/ is increased to approx. =400 K, compared with approx. =320 K withoutmore » broadening. The calculations are compared with experimental data.« less

  3. 3- to 13-micron spectra of Io

    NASA Technical Reports Server (NTRS)

    Noll, Keith S.; Hammel, H. B.; Young, Leslie; Joiner, Joanna; Hackwell, J.; Lynch, D. K.; Russell, R.

    1993-01-01

    The Broadband Array Spectrograph System with the NASA Infrared Telescope Facility was used to obtain 3- to 13-micron spectra of Io on June 14-16, 1991. The extinction correction and its error for each standard star (Alpha Boo, Alpha Lyr, and Mu UMa) were found individually by performing an unweighted linear fit of instrumental magnitude as a function of airmass. The model results indicate two significant trends: (1) modest differences between the two hemispheres at lower background temperatures and (2) a tendency to higher temperatures, smaller areas, and less power from the warm component at higher background temperatures with an increased contrast between the two hemispheres. The increased flux from 8 to 13 microns is due primarily to a greater area on the Loki (trailing) hemisphere for the warm component, although temperature also plays a role.

  4. Brownian ratchets: How stronger thermal noise can reduce diffusion

    NASA Astrophysics Data System (ADS)

    Spiechowicz, Jakub; Kostur, Marcin; Łuczka, Jerzy

    2017-02-01

    We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a non-monotonic dependence of the diffusion coefficient on temperature: for low temperature, it initially increases as the temperature grows, passes through its local maximum, next starts to diminish reaching its local minimum, and finally it monotonically increases in accordance with the Einstein linear relation. Particularly interesting is the temperature interval in which diffusion is suppressed by the thermal noise, and we explain this effect in terms of transition rates of a three-state stochastic model.

  5. Brownian ratchets: How stronger thermal noise can reduce diffusion.

    PubMed

    Spiechowicz, Jakub; Kostur, Marcin; Łuczka, Jerzy

    2017-02-01

    We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a non-monotonic dependence of the diffusion coefficient on temperature: for low temperature, it initially increases as the temperature grows, passes through its local maximum, next starts to diminish reaching its local minimum, and finally it monotonically increases in accordance with the Einstein linear relation. Particularly interesting is the temperature interval in which diffusion is suppressed by the thermal noise, and we explain this effect in terms of transition rates of a three-state stochastic model.

  6. Effect of wall cooling on the stability of compressible subsonic flows over smooth humps and backward-facing steps

    NASA Technical Reports Server (NTRS)

    Al-Maaitah, Ayman A.; Nayfeh, Ali, H.; Ragab, Saad A.

    1989-01-01

    The effect of wall cooling on the two-dimensional linear stability of subsonic flows over two-dimensional surface imperfections is investigated. Results are presented for flows over smooth humps and backward-facing steps with Mach numbers up to 0.8. The results show that, whereas cooling decreases the viscous instability, it increases the shear-layer instability and hence it increases the growth rates in the separation region. The coexistence of more than one instability mechanism makes a certain degree of wall cooling most effective. For the Mach numbers 0.5 and 0.8, the optimum wall temperatures are about 80 pct and 60 pct of the adiabatic wall temperature, respectively. Increasing the Mach number decreases the effectiveness of cooling slightly and reduces the optimum wall temperature.

  7. Pace of shifts in climate regions increases with global temperature

    NASA Astrophysics Data System (ADS)

    Mahlstein, Irina; Daniel, John S.; Solomon, Susan

    2013-08-01

    Human-induced climate change causes significant changes in local climates, which in turn lead to changes in regional climate zones. Large shifts in the world distribution of Köppen-Geiger climate classifications by the end of this century have been projected. However, only a few studies have analysed the pace of these shifts in climate zones, and none has analysed whether the pace itself changes with increasing global mean temperature. In this study, pace refers to the rate at which climate zones change as a function of amount of global warming. Here we show that present climate projections suggest that the pace of shifting climate zones increases approximately linearly with increasing global temperature. Using the RCP8.5 emissions pathway, the pace nearly doubles by the end of this century and about 20% of all land area undergoes a change in its original climate. This implies that species will have increasingly less time to adapt to Köppen zone changes in the future, which is expected to increase the risk of extinction.

  8. Different Variations of Néel Temperature TN and Kondo Temperature TK in the Alloy System Ce(Ru1-xOsx)2Al10 under Uniaxial Pressure

    NASA Astrophysics Data System (ADS)

    Takeuchi, Takashi; Hayashi, Kyosuke; Umeo, Kazunori; Takabatake, Toshiro

    2018-05-01

    We report magnetic, transport, and specific-heat measurements for single crystals of the antiferromagnetic (AFM) Kondo semiconductor alloy series Ce(Ru1-xOsx)2Al10 (0 ≤ x ≤ 1), which crystallize into an orthorhombic structure. The specific-heat and resistivity data show that the isoelectronic substitution does not damage the hybridization gap or the AFM transition. The Kondo temperature TK increases linearly with x, whereas the Néel temperature TN exhibits a maximum value of 29.2 K for x = 0.71. Under increasing uniaxial pressure P || a, TN increases for x = 0 but decreases for x = 1, while TK increases in the entire range of x. Under P || b, in contrast, TN increases steadily in the whole range of x while TK remains unchanged for each x. The strongly anisotropic change in TN indicates the presence of another mechanism to enhance TN in this system in addition to the anisotropic hybridization of the 4f state with conduction bands.

  9. Reflective photoluminescence fiber temperature probe based on the CdSe/ZnS quantum dot thin film

    NASA Astrophysics Data System (ADS)

    Wang, Helin; Yang, Aijun; Chen, Zhongshi; Geng, Yan

    2014-08-01

    A reflective fiber temperature sensor based on the optical temperature dependent characteristics of a quantum dots (QDs) thin film is developed by depositing the CdSe/ZnS core/shell quantum dots on the SiO2 glass substrates. As the temperature is changed from 30 to 200°C, the peak wavelengths of PL spectra from the sensing head increase linearly with the temperature, while the peak intensity and the full width at half maximum (FWHM) of PL spectra vary exponentially according to the specific physical law. Using the obtained temperature-dependent peak-wavelength shift, the average resolution of the designed fiber temperature sensor can reach 0.12 nm/°C, while it reaches 0.056 nm/°C according to the FWHM of PL spectrum.

  10. Noncontact Temperature Measurements of Organic Layers in an Organic Light-Emitting Diode Using Wavenumber-Temperature Relations of Raman Bands

    NASA Astrophysics Data System (ADS)

    Sugiyama, Takuro; Furukawa, Yukio

    2008-05-01

    We have measured the temperatures of the organic layers in operating organic light-emitting diodes (OLEDs) by Raman spectroscopy. The wavenumbers of the Raman bands due to N,N'-di-naphthaleyl-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPD) and copper phthalocyanine (CuPc) have been measured as a function of temperature in the range of 25-191 °C. The observed positions of strong bands around 1607 cm-1 (NPD) and 1531 cm-1 (CuPc) shifted downward linearly with increasing temperature in the ranges lower than 92 and 191 °C, respectively. We have determined the temperatures of the NPD and CuPc layers in an operating OLED from the wavenumber-temperature relations of these bands.

  11. The Effect of Composition on Diffusion of Au in Fe and Fe-Ni Alloys

    NASA Astrophysics Data System (ADS)

    Johanesen, K. E.; Watson, H. C.; Fei, Y.

    2005-12-01

    Understanding siderophile element diffusion in Fe-Ni alloys will lead to tighter constraints on processes such as meteoritic body cooling rates, and inner core-outer core communication. Recent studies have determined the effect of temperature and pressure on diffusion in this system, but the effect of composition has not yet been explored adequately. The effect of Ni content on Au diffusion in an Fe-Ni system was explored for Fe-Ni alloys with concentrations of 0, 20, and 30 wt. % Ni. Diffusion couple experiments were conducted using a piston cylinder press at 1 GPa and temperatures ranging from 1150°C to 1400°C. Concentration profiles were measured by electron microprobe and were fitted to the linear diffusion solution for an semi-infinite diffusion couple to extract diffusion coefficients (D) using a non-linear least squares fit routine. As predicted, D increases with Ni content and also with temperature. The diffusivities ranged from 2.06×10-9 at 1150°C to 5.76×10-8 at 1350°C for 0 wt. % Ni; 5.17×10-9 at 1150° C to 1.93×10-7 at 1400°C for 20 wt. % Ni; and 2.41×10-8 at 1150°C to 2.13×10-7 at 1400°C for 30 wt. % Ni. As temperature increases, the effect of Ni on diffusion rates increases, implying a possible change in diffusion mechanism between 1250°C and 1300°C. Ni appears to have a negligible effect at lower temperatures, which would indicate that Ni may not need to be considered when modeling siderophile trace element diffusion rates in iron meteorites.

  12. Composition and structure of Pinus koraiensis mixed forest respond to spatial climatic changes.

    PubMed

    Zhang, Jingli; Zhou, Yong; Zhou, Guangsheng; Xiao, Chunwang

    2014-01-01

    Although some studies have indicated that climate changes can affect Pinus koraiensis mixed forest, the responses of composition and structure of Pinus koraiensis mixed forests to climatic changes are unknown and the key climatic factors controlling the composition and structure of Pinus koraiensis mixed forest are uncertain. Field survey was conducted in the natural Pinus koraiensis mixed forests along a latitudinal gradient and an elevational gradient in Northeast China. In order to build the mathematical models for simulating the relationships of compositional and structural attributes of the Pinus koraiensis mixed forest with climatic and non-climatic factors, stepwise linear regression analyses were performed, incorporating 14 dependent variables and the linear and quadratic components of 9 factors. All the selected new models were computed under the +2°C and +10% precipitation and +4°C and +10% precipitation scenarios. The Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month were observed to be key climatic factors controlling the stand densities and total basal areas of Pinus koraiensis mixed forest. Increased summer temperatures and precipitations strongly enhanced the stand densities and total basal areas of broadleaf trees but had little effect on Pinus koraiensis under the +2°C and +10% precipitation scenario and +4°C and +10% precipitation scenario. These results show that the Max Temperature of Warmest Month, Mean Temperature of Warmest Quarter and Precipitation of Wettest Month are key climatic factors which shape the composition and structure of Pinus koraiensis mixed forest. Although the Pinus koraiensis would persist, the current forests dominated by Pinus koraiensis in the region would all shift and become broadleaf-dominated forests due to the dramatic increase of broadleaf trees under the future global warming and increased precipitation.

  13. Temperature Dependency of the Correlation between Secondary Organic Aerosol and Monoterpenes Concentrations at a Boreal Forest Site in Finland

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Zhang, W.; Rinne, J.

    2016-12-01

    Climate feedbacks represent the large uncertainty in the climate projection partly due to the difficulties to quantify the feedback mechanisms in the biosphere-atmosphere interaction. Recently, a negative climate feedback mechanism whereby higher temperatures and CO2-levels boost continental biomass production, leading to increased biogenic secondary organic aerosol (SOA) and cloud condensation nuclei concentrations, tending to cause cooling, has been attached much attention. To quantify the relationship between biogenic organic compounds (BVOCs) and SOA, a five-year data set (2008, 2010-2011,2013-2014) for SOA and monoterpenes concentrations (the dominant fraction of BVOCs) measured at the SMEAR II station in Hyytiälä, Finland, is analyzed. Our results show that there is a moderate linear correlation between SOA and monoterpenes concentration with the correlation coefficient (R) as 0.66. To rule out the influence of anthropogenic aerosols, the dataset is further filtered by selecting the data at the wind direction of cleaner air mass, leading to an improved R as 0.68. As temperature is a critical factor for vegetation growth, BVOC emissions, and condensation rate, the correlation between SOA and monoterpenes concentration at different temperature windows are studied. The result shows a higher R and slope of linear regression as temperature increases. To identify the dominant oxidant responsible for the BVOC-SOA conversion, the correlations between SOA concentration and the monoterpenes oxidation rates by O3 and OH are compared, suggesting more SOA is contributed by O3 oxidation process. Finally, the possible processes and factors such as the atmospheric boundary layer depth, limiting factor in the monoterpenes oxidation process, as well as temperature sensitivity in the condensation process contributing to the temperature dependence of correlation between BVOA and SOA are investigated.

  14. Factors affecting the thermal environment of Agassiz’s Desert Tortoise (Gopherus agassizii) cover sites in the Central Mojave Desert during periods of temperature extremes

    USGS Publications Warehouse

    Mack, Jeremy S.; Berry, Kristin H.; Miller, David; Carlson, Andrea S.

    2015-01-01

    Agassiz's Desert Tortoises (Gopherus agassizii) spend >95% of their lives underground in cover sites that serve as thermal buffers from temperatures, which can fluctuate >40°C on a daily and seasonal basis. We monitored temperatures at 30 active tortoise cover sites within the Soda Mountains, San Bernardino County, California, from February 2004 to September 2006. Cover sites varied in type and structural characteristics, including opening height and width, soil cover depth over the opening, aspect, tunnel length, and surficial geology. We focused our analyses on periods of extreme temperature: in summer, between July 1 and September 1, and winter, between November 1 and February 15. With the use of multivariate regression tree analyses, we found cover-site temperatures were influenced largely by tunnel length and subsequently opening width and soil cover. Linear regression models further showed that increasing tunnel length increased temperature stability and dampened seasonal temperature extremes. Climate change models predict increased warming for southwestern North America. Cover sites that buffer temperature extremes and fluctuations will become increasingly important for survival of tortoises. In planning future translocation projects and conservation efforts, decision makers should consider habitats with terrain and underlying substrate that sustain cover sites with long tunnels and expanded openings for tortoises living under temperature extremes similar to those described here or as projected in the future.

  15. Linear Friction Welding Process Model for Carpenter Custom 465 Precipitation-Hardened Martensitic Stainless Steel

    DTIC Science & Technology

    2014-04-11

    Fig. 9(a) and (b). In addition, the temperature dependencies of the true and room-temperature-based mean values of the linear thermal expansion ...Variation of (a) thermal conductivity, (b) specific heat, (c) true linear thermal expansion coefficient, and (d) room-temperature-based mean thermal ...defined as follows: (a) alloy-grade and thermal -mechanical treatment of the workpiece materials to be joined, (b) frequency of reciprocating motion

  16. Radiative and Physiological Effects of Increased CO2. How does this interaction affect Climate in the Mediterranean Region?

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari

    2007-01-01

    the radiative and physiological effects of doubled atmospheric carbon dioxide concentration (CO2) on climate are described using climate simulations. When CO2 was increased for vegetation only assuming no radiative effect, the response was a decrease in stomatal conductance followed by a temperature increase. This temperature increase was stronger when the vegetation physiological down-regulation was allowed in the model. The radiative forcing alone did not affect the global mean photosynthesis, however, some stimulation was observed in cold places. The interactions between the physiological and the radiative effects of doubled CO2 are not linearly additive and when acting together they tend to reduce the warming in the Mediterranean region.

  17. Treatment of greywater by forward osmosis technology: role of the operating temperature.

    PubMed

    Wang, Ce; Li, Yongmei; Wang, Yanqiang

    2018-06-04

    Effects of operating conditions were investigated in terms of water flux, reverse salt flux (RSF) and pollutant rejection in a forward osmosis (FO) membrane system treating synthetic greywater. Changing cross-flow velocity had a slight impact on the performance of the FO membrane. Elevating operating temperature was more effective than increasing draw solution concentration to enhance the water flux. Further observation on the effect of heating mode showed that when the temperature was increased from 20 to 30°C, heating the feed solution (FS) side was better than heating the draw solution (DS) side or heating both sides; further increasing the temperature to 40 and 50°C, heating both the FS and DS achieved much higher water flux compared with only increasing the FS or DS temperature. Under isothermal conditions, a higher water flux and a lower RSF were achieved at 40°C than at other temperatures. Changing either FS or DS temperature had similar influences on water flux and RSF. The FO process revealed high rejection of nitrate (95.7%-100%), ammonia nitrogen (98.8%-100%), total nitrogen (97.4%-99.9%), linear alkylbenzene sulfonate (100%) and Mg (97.5%-100%). A mathematical model that could well simulate the water flux evolution in the present FO system was recommended.

  18. Maté drinking and esophageal squamous cell carcinoma in South America: pooled results from two large multicenter case-control studies.

    PubMed

    Lubin, Jay H; De Stefani, Eduardo; Abnet, Christian C; Acosta, Gisele; Boffetta, Paolo; Victora, Cesar; Graubard, Barry I; Muñoz, Nubia; Deneo-Pellegrini, Hugo; Franceschi, Silvia; Castellsagué, Xavier; Ronco, Alvaro L; Dawsey, Sanford M

    2014-01-01

    Maté tea is a nonalcoholic infusion widely consumed in southern South America, and may increase risk of esophageal squamous cell carcinoma (ESCC) and other cancers due to polycyclic aromatic hydrocarbons (PAH) and/or thermal injury. We pooled two case-control studies: a 1988 to 2005 Uruguay study and a 1986 to 1992 multinational study in Argentina, Brazil, Paraguay, and Uruguay, including 1,400 cases and 3,229 controls. We computed ORs and fitted a linear excess OR (EOR) model for cumulative maté consumption in liters/day-year (LPDY). The adjusted OR for ESCC with 95% confidence interval (CI) by ever compared with never use of maté was 1.60 (1.2-2.2). ORs increased linearly with LPDY (test of nonlinearity; P = 0.69). The estimate of slope (EOR/LPDY) was 0.009 (0.005-0.014) and did not vary with daily intake, indicating maté intensity did not influence the strength of association. EOR/LPDY estimates for consumption at warm, hot, and very hot beverage temperatures were 0.004 (-0.002-0.013), 0.007 (0.003-0.013), and 0.016 (0.009-0.027), respectively, and differed significantly (P < 0.01). EOR/LPDY estimates were increased in younger (<65) individuals and never alcohol drinkers, but these evaluations were post hoc, and were homogeneous by sex. ORs for ESCC increased linearly with cumulative maté consumption and were unrelated to intensity, so greater daily consumption for shorter duration or lesser daily consumption for longer duration resulted in comparable ORs. The strength of association increased with higher maté temperatures. Increased understanding of cancer risks with maté consumption enhances the understanding of the public health consequences given its purported health benefits.

  19. Climate change, weather and road deaths.

    PubMed

    Robertson, Leon

    2018-06-01

    In 2015, a 7% increase in road deaths per population in the USA reversed the 35-year downward trend. Here I test the hypothesis that weather influenced the change in trend. I used linear regression to estimate the effect of temperature and precipitation on miles driven per capita in urbanizedurbanised areas of the USA during 2010. I matched date and county of death with temperature on that date and number of people exposed to that temperature to calculate the risk per persons exposed to specific temperatures. I employed logistic regression analysis of temperature, precipitation and other risk factors prevalent in 2014 to project expected deaths in 2015 among the 100 most populous counties in the USA. Comparison of actual and projected deaths provided an estimate of deaths expected without the temperature increase. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Modelling the influence of the sporulation temperature upon the bacterial spore heat resistance, application to heating process calculation.

    PubMed

    Leguérinel, I; Couvert, O; Mafart, P

    2007-02-28

    Environmental conditions of sporulation influence bacterial heat resistance. For different Bacillus species a linear Bigelow type relationship between the logarithm of D values determined at constant heating temperature and the temperature of sporulation was observed. The absence of interaction between sporulation and heating temperatures allows the combination of this new relationship with the classical Bigelow model. The parameters zT and zT(spo) of this global model were fitted to different sets of data regarding different Bacillus species: B. cereus, B. subtilis, B. licheniformis, B. coagulans and B. stearothermophilus. The origin of raw products or food process conditions before a heat treatment can lead to warm temperature conditions of sporulation and to a dramatic increase of the heat resistance of the generated spores. In this case, provided that the temperature of sporulation can be assessed, this model can be easily implemented to rectify F values on account of possible increase of thermal resistance of spores and to ensure the sterilisation efficacy.

  1. Henry's law constant for phosphine in seawater: determination and assessment of influencing factors

    NASA Astrophysics Data System (ADS)

    Fu, Mei; Yu, Zhiming; Lu, Guangyuan; Song, Xiuxian

    2013-07-01

    The Henry's Law constant ( k) for phosphine in seawater was determined by multiple phase equilibration combined with headspace gas chromatography. The effects of pH, temperature, and salinity on k were studied. The k value for phosphine in natural seawater was 6.415 at room temperature (approximately 23°C). This value increases with increases in temperature and salinity, but no obvious change was observed at different pH levels. At the same temperature, there was no significant difference between the k for phosphine in natural seawater and that in artificial seawater. This implies that temperature and salinity are major determining factors for k in marine environment. Double linear regression with Henry's Law constants for phosphine as a function of temperature and salinity confirmed our observations. These results provide a basis for the measurement of trace phosphine concentrations in seawater, and will be helpful for future research on the status of phosphine in the oceanic biogeochemical cycle of phosphorus.

  2. Different mechanisms for Arabidopsis thaliana hybrid necrosis cases inferred from temperature responses.

    PubMed

    Muralidharan, S; Box, M S; Sedivy, E L; Wigge, P A; Weigel, D; Rowan, B A

    2014-11-01

    Temperature is a major determinant of plant growth, development and success. Understanding how plants respond to temperature is particularly relevant in a warming climate. Plant immune responses are often suppressed above species-specific critical temperatures. This is also true for intraspecific hybrids of Arabidopsis thaliana that express hybrid necrosis due to inappropriate activation of the immune system caused by epistatic interactions between alleles from different genomes. The relationship between temperature and defence is unclear, largely due to a lack of studies that assess immune activation over a wide range of temperatures. To test whether the temperature-based suppression of ectopic immune activation in hybrids exhibits a linear or non-linear relationship, we characterised the molecular and morphological phenotypes of two different necrotic A. thaliana hybrids over a range of ecologically relevant temperatures. We found both linear and non-linear responses for expression of immunity markers and for morphological defects depending on the underlying genetic cause. This suggests that the influence of temperature on the trade-off between immunity and growth depends on the specific defence components involved. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Estimating extreme stream temperatures by the standard deviate method

    NASA Astrophysics Data System (ADS)

    Bogan, Travis; Othmer, Jonathan; Mohseni, Omid; Stefan, Heinz

    2006-02-01

    It is now widely accepted that global climate warming is taking place on the earth. Among many other effects, a rise in air temperatures is expected to increase stream temperatures indefinitely. However, due to evaporative cooling, stream temperatures do not increase linearly with increasing air temperatures indefinitely. Within the anticipated bounds of climate warming, extreme stream temperatures may therefore not rise substantially. With this concept in mind, past extreme temperatures measured at 720 USGS stream gauging stations were analyzed by the standard deviate method. In this method the highest stream temperatures are expressed as the mean temperature of a measured partial maximum stream temperature series plus its standard deviation multiplied by a factor KE (standard deviate). Various KE-values were explored; values of KE larger than 8 were found physically unreasonable. It is concluded that the value of KE should be in the range from 7 to 8. A unit error in estimating KE translates into a typical stream temperature error of about 0.5 °C. Using a logistic model for the stream temperature/air temperature relationship, a one degree error in air temperature gives a typical error of 0.16 °C in stream temperature. With a projected error in the enveloping standard deviate dKE=1.0 (range 0.5-1.5) and an error in projected high air temperature d Ta=2 °C (range 0-4 °C), the total projected stream temperature error is estimated as d Ts=0.8 °C.

  4. Nonlinear current-voltage characteristics based on semiconductor nanowire networks enable a new concept in thermoelectric device optimization

    NASA Astrophysics Data System (ADS)

    Diaz Leon, Juan J.; Norris, Kate J.; Hartnett, Ryan J.; Garrett, Matthew P.; Tompa, Gary S.; Kobayashi, Nobuhiko P.

    2016-08-01

    Thermoelectric (TE) devices that produce electric power from heat are driven by a temperature gradient (Δ T = T_{{hot}} - T_{{cold}}, T hot: hot side temperature, T cold: cold side temperature) with respect to the average temperature ( T). While the resistance of TE devices changes as Δ T and/or T change, the current-voltage ( I- V) characteristics have consistently been shown to remain linear, which clips generated electric power ( P gen) within the given open-circuit voltage ( V OC) and short-circuit current ( I SC). This P gen clipping is altered when an appropriate nonlinearity is introduced to the I- V characteristics—increasing P gen. By analogy, photovoltaic cells with a large fill factor exhibit nonlinear I- V characteristics. In this paper, the concept of a unique TE device with nonlinear I- V characteristics is proposed and experimentally demonstrated. A single TE device with nonlinear I- V characteristics is fabricated by combining indium phosphide (InP) and silicon (Si) semiconductor nanowire networks. These TE devices show P gen that is more than 25 times larger than those of comparable devices with linear I- V characteristics. The plausible causes of the nonlinear I- V characteristics are discussed. The demonstrated concept suggests that there exists a new pathway to increase P gen of TE devices made of semiconductors.

  5. Time series analysis of the association between ambient temperature and cerebrovascular morbidity in the elderly in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Zhang, Xian-Jing; Ma, Wei-Ping; Zhao, Nai-Qing; Wang, Xi-Ling

    2016-01-01

    Research on the association between ambient temperature and cerebrovascular morbidity is scarce in China. In this study, we applied mixed generalized additive model (MGAM) to daily counts of cerebrovascular disease of Shanghai residents aged 65 years or older from 2007-2011, stratified by gender. Weighted daily mean temperature up to lags of one week was smoothed by natural cubic spline, and was added into the model to assess both linear and nonlinear effects of temperature. We found that when the mean temperature increased by 1 °C, the male cases of cerebrovascular disease reduced by 0.95% (95% Confidence Interval (CI): 0.80%, 1.10%) or reduced by 0.34% (95% CI: -0.68, 1.36%) in conditions of temperature was below or above 27 °C. However, for every 1 °C increase in temperature, the female cases of cerebrovascular disease increased by 0.34% (95% CI: -0.26%, 0.94%) or decreased by 0.92% (95% CI: 0.72, 1.11%) in conditions of temperature was below or above 8 °C, respectively. Temperature and cerebrovascular morbidity is negatively associated in Shanghai. MGAM is recommended in assessing the association between environmental hazards and health outcomes in time series studies.

  6. Temperature-dependent dielectric and energy-storage properties of Pb(Zr,Sn,Ti)O{sub 3} antiferroelectric bulk ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xuefeng; Liu, Zhen; Xu, Chenhong

    2016-05-15

    The dielectric and energy-storage properties of Pb{sub 0.99}Nb{sub 0.02}[(Zr{sub 0.60}Sn{sub 0.40}){sub 0.95}Ti{sub 0.05}]{sub 0.98}O{sub 3} (PNZST) bulk ceramics near the antiferroelectric (AFE)-ferroelectric (FE) phase boundary are investigated as a function of temperature. Three characteristic temperatures T{sub 0}, T{sub C}, T{sub 2} are obtained from the dielectric temperature spectrum. At different temperature regions (below T{sub 0}, between T{sub 0} and T{sub C}, and above T{sub C}), three types of hysteresis loops are observed as square double loop, slim loop and linear loop, respectively. The switching fields and recoverable energy density all first increase and then decrease with increasing temperature, and reachmore » their peak values at ∼T{sub 0}. These results provide a convenient method to optimize the working temperature of antiferroelectric electronic devices through testing the temperature dependent dielectric properties of antiferroelectric ceramics.« less

  7. Complex coupled metabolic and prokaryotic community responses to increasing temperatures in anaerobic marine sediments: critical temperatures and substrate changes

    PubMed Central

    Roussel, Erwan G.; Cragg, Barry A.; Webster, Gordon; Sass, Henrik; Tang, Xiaohong; Williams, Angharad S.; Gorra, Roberta; Weightman, Andrew J.; Parkes, R. John

    2015-01-01

    The impact of temperature (0–80°C) on anaerobic biogeochemical processes and prokaryotic communities in marine sediments (tidal flat) was investigated in slurries for up to 100 days. Temperature had a non-linear effect on biogeochemistry and prokaryotes with rapid changes over small temperature intervals. Some activities (e.g. methanogenesis) had multiple ‘windows’ within a large temperature range (∼10 to 80°C). Others, including acetate oxidation, had maximum activities within a temperature zone, which varied with electron acceptor [metal oxide (up to ∼34°C) and sulphate (up to ∼50°C)]. Substrates for sulphate reduction changed from predominantly acetate below, and H2 above, a 43°C critical temperature, along with changes in activation energies and types of sulphate-reducing Bacteria. Above ∼43°C, methylamine metabolism ceased with changes in methanogen types and increased acetate concentrations (>1 mM). Abundances of uncultured Archaea, characteristic of deep marine sediments (e.g. MBGD Euryarchaeota, ‘Bathyarchaeota’) changed, indicating their possible metabolic activity and temperature range. Bacterial cell numbers were consistently higher than archaeal cells and both decreased above ∼15°C. Substrate addition stimulated activities, widened some activity temperature ranges (methanogenesis) and increased bacterial (×10) more than archaeal cell numbers. Hence, additional organic matter input from climate-related eutrophication may amplify the impact of temperature increases on sedimentary biogeochemistry. PMID:26207045

  8. Experimental and numerical study on frost heave of saturated rock under uniform freezing conditions

    NASA Astrophysics Data System (ADS)

    Lv, Zhitao; Xia, Caichu; Li, Qiang

    2018-04-01

    A series of freezing experiments are conducted on saturated sandstone and mortar specimens to investigate the frost heave of saturated rock under uniform freezing conditions. The experimental results show that the frost heave of saturated rock is isotropic under uniform freezing conditions. During the freezing process, three stages are observed in the curves of variation of total frost heaving strain versus time: the thermal contraction stage, the frost heaving stage and the steady stage. Moreover, the amount of final stable frost heave first increases and then decreases with decrease in freezing temperature, and the maximum final stable frost heave occurs at different freezing temperature in saturated sandstone and mortar. Furthermore, a coupled thermal-mechanical (TM) model of frost heave of saturated rock is proposed in which a constraint coefficient \\zeta is used to consider the susceptibility of the internal rock grain structure to the expansion of pore ice. Then, numerical simulations are implemented with COMSOL to solve the governing equations of the TM model. Comparisons of the numerical results with the experimental results are performed to demonstrate the reliability of the model. The influences of elastic modulus and porosity on frost heave are also investigated, and the results show that the total frost heaving strain decreases non-linearly with increasing elastic modulus, and the decrease is significant when the elastic modulus is less than 3000 MPa, or approximately five times the elastic modulus of ice. In addition, the total frost heaving strain increases linearly with increasing porosity. Finally, an empirical equation between total frost heaving strain and freezing temperature is proposed and the equation well describes the variation of total frost heaving strain with freezing temperature.

  9. Numerical simulation of the effect of groundwater salinity on artificial freezing wall in coastal area

    NASA Astrophysics Data System (ADS)

    Hu, Rui; Liu, Quan

    2017-04-01

    During the engineering projects with artificial ground freezing (AFG) techniques in coastal area, the freezing effect is affected by groundwater salinity. Based on the theories of artificially frozen soil and heat transfer in porous material, and with the assumption that only the variations of total dissolved solids (TDS) impact on freezing point and thermal conductivity, a numerical model of an AFG project in a saline aquifer was established and validated by comparing the simulated temperature field with the calculated temperature based on the analytic solution of rupak (reference) for single-pipe freezing temperature field T. The formation and development of freezing wall were simulated with various TDS. The results showed that the variety of TDS caused the larger temperature difference near the frozen front. With increasing TDS in the saline aquifer (1 35g/L), the average thickness of freezing wall decreased linearly and the total formation time of the freezing wall increased linearly. Compared with of the scenario of fresh-water (<1g/L), the average thickness of frozen wall decreased by 6% and the total formation time of the freezing wall increased by 8% with each increasing TDS of 7g/L. Key words: total dissolved solids, freezing point, thermal conductivity, freezing wall, numerical simulation Reference D.J.Pringel, H.Eicken, H.J.Trodahl, etc. Thermal conductivity of landfast Antarctic and Arctic sea ice[J]. Journal of Geophysical Research, 2007, 112: 1-13. Lukas U.Arenson, Dave C.Sego. The effect of salinity on the freezing of coarse- grained sand[J]. Canadian Geotechnical Journal, 2006, 43: 325-337. Hui Bing, Wei Ma. Laboratory investigation of the freezing point of saline soil[J]. Cold Regions Science and Technology, 2011, 67: 79-88.

  10. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the generated CO2 has been analyzed with respect to its stable carbon isotope composition by mass spectrometry. All samples exhibited a similar trend: The ^13C signatures of initially produced CO2 revealed to be relatively light and linearly increasing with temperature until approaching the bulk stable carbon isotope composition of the coal at a certain temperature, where the isotope signature kept virtually constant during further temperature increase. The temperature introducing the range of constant isotope compositions of the produced gas increased with coal rank. Additionally, all coal samples were treated by Rock Eval pyrolysis up to 550 ˚ C in order to investigate temperature dependent generation of CO and CO2. The results exhibited a linear decrease of the CO2/CO ratio at increasing temperature. Both experimental approaches demonstrated dependencies between the qualitative and the isotope composition of the generated syngas on the one hand and the applied combustion temperature on the other hand and, consequently, the principal applicability of the considered geochemical parameters as temperature proxies for coals of significantly different rank and origin. Although the investigated samples revealed similar trends, the absolute characteristics of the correlation functions (e.g. linear gradients) between geochemical parameters and combustion temperatures differed on an individual sample base, implying a significant additional dependence of the considered geochemical parameters on the coal composition. As a consequence, corresponding experimental approaches are currently continued and refined by involving multi component compound specific isotope analysis, high temperature Rock Eval pyrolysis as well as an enforced consideration of initial coal and oxidant compositions.

  11. Effects of diurnal variations in temperature on non-accidental mortality among the elderly population of Montreal, Québec, 1984-2007.

    PubMed

    Vutcovici, Maria; Goldberg, Mark S; Valois, Marie-France

    2014-07-01

    The association between ambient temperature and mortality has been studied extensively. Recent data suggest an independent role of diurnal temperature variations in increasing daily mortality. Elderly adults-a growing subgroup of the population in developed countries-may be more susceptible to the effects of temperature variations. The aim of this study was to determine whether variations in diurnal temperature were associated with daily non-accidental mortality among residents of Montreal, Québec, who were 65 years of age and over during the period between 1984 and 2007. We used distributed lag non-linear Poisson models constrained over a 30-day lag period, adjusted for temporal trends, mean daily temperature, and mean daily concentrations of nitrogen dioxide and ozone to estimate changes in daily mortality with diurnal temperature. We found, over the 30 day lag period, a cumulative increase in daily mortality of 5.12% [95% confidence interval (CI): 0.02-10.49%] for a change from 5.9 °C to 11.1 °C (25th to 75th percentiles) in diurnal temperature, and a 11.27% (95%CI: 2.08-21.29%) increase in mortality associated with an increase of diurnal temperature from 11.1 to 17.5 °C (75th to 99th percentiles). The results were relatively robust to adjustment for daily mean temperature. We found that, in Montreal, diurnal variations in temperature are associated with a small increase in non-accidental mortality among the elderly population. More studies are needed in different geographical locations to confirm this effect.

  12. Comparison of different modelling approaches of drive train temperature for the purposes of wind turbine failure detection

    NASA Astrophysics Data System (ADS)

    Tautz-Weinert, J.; Watson, S. J.

    2016-09-01

    Effective condition monitoring techniques for wind turbines are needed to improve maintenance processes and reduce operational costs. Normal behaviour modelling of temperatures with information from other sensors can help to detect wear processes in drive trains. In a case study, modelling of bearing and generator temperatures is investigated with operational data from the SCADA systems of more than 100 turbines. The focus is here on automated training and testing on a farm level to enable an on-line system, which will detect failures without human interpretation. Modelling based on linear combinations, artificial neural networks, adaptive neuro-fuzzy inference systems, support vector machines and Gaussian process regression is compared. The selection of suitable modelling inputs is discussed with cross-correlation analyses and a sensitivity study, which reveals that the investigated modelling techniques react in different ways to an increased number of inputs. The case study highlights advantages of modelling with linear combinations and artificial neural networks in a feedforward configuration.

  13. Conformational lock and dissociative thermal inactivation of lentil seedling amine oxidase.

    PubMed

    Moosavi-Nejad, S Zahra; Moosavi-Movahedi, Ali-Akbar; Rezaei-Tavirani, Mostafa; Floris, Giovanni; Medda, Rosaria

    2003-03-31

    The kinetics of thermal inactivation of copper-containing amine oxidase from lentil seedlings were studied in a 100 mM potassium phosphate buffer, pH 7, using putrescine as the substrate. The temperature range was between 47-60 degrees C. The thermal inactivation curves were not linear at 52 and 57 degrees C; three linear phases were shown. The first phase gave some information about the number of dimeric forms of the enzyme that were induced by the higher temperatures using the "conformational lock" pertaining theory to oligomeric enzyme. The "conformational lock" caused two additional dimeric forms of the enzyme when the temperature increased to 57 degrees C. The second and third phases were interpreted according to a dissociative thermal inactivation model. These phases showed that lentil amine oxidase was reversibly-dissociated before the irreversible thermal inactivation. Although lentil amine oxidase is not a thermostable enzyme, its dimeric structure can form "conformational lock," conferring a structural tolerance to the enzyme against heat stress.

  14. Analytical analysis of solar thermal collector with glass and Fresnel lens glazing

    NASA Astrophysics Data System (ADS)

    Zulkifle, Idris; Ruslan, Mohd Hafidz Hj; Othman, Mohd Yusof Hj; Ibarahim, Zahari

    2018-04-01

    Solar thermal collector is a system that converts solar radiation to heat. The heat will raise the temperature higher than the ambient temperature. Absorber and glazing are two important components in order to increase the temperature of the collector. The thermal absorber will release heat by convection and as radiation to the surrounding. These losses will be reduced by glazing. Other than that, glazing is beneficial for protecting the collector from dust and water. This study discusses about modelling of solar thermal collector effects of different mass flow rates with different glazing for V-groove flat plate solar collectors. The glazing used was the glass and linear Fresnel lens. Concentration ratio in this modelling was 1.3 for 0.1m solar collector thickness. Results show that solar collectors with linear Fresnel lens has the highest efficiency value of 71.18% compared to solar collectors with glass which has efficiency 54.10% with same operation conditions.

  15. Thermal expansion characteristics of Fe-9Cr-0.12C-0.56Mn-0.24V-1.38W-0.06Ta (wt.%) reduced activation ferritic-martensitic steel

    NASA Astrophysics Data System (ADS)

    Subramanian, Raju; Tripathy, Haraprasanna; Rai, Arun Kumar; Hajra, Raj Narayan; Saibaba, Saroja; Jayakumar, Tammana; Rajendra Kumar, Ellappan

    2015-04-01

    The lattice and bulk thermal expansion behavior of an Indian version of reduced activation ferritic-martensitic (INRAFM) steel has been quantified using high temperature X-ray diffraction and dilatometry. The lattice parameter of tempered α-ferrite phase exhibited a smooth quadratic increase with temperature, while that of γ-austenite remained fairly linear up to 1273 K. The results suggest that α-ferrite + Carbides → γ-austenite transformation occurs upon continuous heating in the temperature range, 1146 ⩽ T ⩽ 1173 K. Further, this transformation is found to be accompanied by a reduction in average atomic volume. The mean linear thermal expansion coefficients of tempered α-ferrite and γ-austenite phases are estimated to be about 1.48 × 10-5 and 2.4 × 10-5 K-1 respectively. The magnetic contribution to relative thermal dilatation (Δl/l298)mag is found to be small and negative, as compared to phonon contribution.

  16. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement.

    PubMed

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-30

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of -20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system.

  17. All-Digital Time-Domain CMOS Smart Temperature Sensor with On-Chip Linearity Enhancement

    PubMed Central

    Chen, Chun-Chi; Chen, Chao-Lieh; Lin, Yi

    2016-01-01

    This paper proposes the first all-digital on-chip linearity enhancement technique for improving the accuracy of the time-domain complementary metal-oxide semiconductor (CMOS) smart temperature sensor. To facilitate on-chip application and intellectual property reuse, an all-digital time-domain smart temperature sensor was implemented using 90 nm Field Programmable Gate Arrays (FPGAs). Although the inverter-based temperature sensor has a smaller circuit area and lower complexity, two-point calibration must be used to achieve an acceptable inaccuracy. With the help of a calibration circuit, the influence of process variations was reduced greatly for one-point calibration support, reducing the test costs and time. However, the sensor response still exhibited a large curvature, which substantially affected the accuracy of the sensor. Thus, an on-chip linearity-enhanced circuit is proposed to linearize the curve and achieve a new linearity-enhanced output. The sensor was implemented on eight different Xilinx FPGA using 118 slices per sensor in each FPGA to demonstrate the benefits of the linearization. Compared with the unlinearized version, the maximal inaccuracy of the linearized version decreased from 5 °C to 2.5 °C after one-point calibration in a range of −20 °C to 100 °C. The sensor consumed 95 μW using 1 kSa/s. The proposed linearity enhancement technique significantly improves temperature sensing accuracy, avoiding costly curvature compensation while it is fully synthesizable for future Very Large Scale Integration (VLSI) system. PMID:26840316

  18. Effects of Pouring Temperature and Electromagnetic Stirring on Porosity and Mechanical Properties of A357 Aluminum Alloy Rheo-Diecasting

    NASA Astrophysics Data System (ADS)

    Guo, An; Zhao, Junwen; Xu, Chao; Li, Hu; Han, Jing; Zhang, Xu

    2018-05-01

    Semisolid slurry of A357 aluminum alloy was prepared using a temperature-controllable electromagnetic stirrer and rheo-diecast at different temperatures. The effects of pouring temperature and electromagnetic stirring (EMS) on the porosity in rheo-diecast samples, as well as the relation between porosity and mechanical properties, were investigated. The results show that pouring temperature and EMS had minor influences on rheo-diecast microstructure but marked influence on the porosity. With decreasing slurry pouring temperature, the porosity decreased first and then increased, whereas the maximum pore ratio (ratio of shape factor to diameter of the largest pore) increased first and then decreased. The maximum pore ratio determines the level of tensile strength and elongation, and higher mechanical properties can be obtained with smaller and rounder pores in samples. The mechanical properties of the rheo-diecast samples increased linearly with increasing maximum pore ratio. The maximum pore ratio was 1.43 µm-1, and the minimum porosity level was 0.37% under EMS condition for the rheo-diecast samples obtained at a pouring temperature of 608 °C. With this porosity condition, the maximum tensile strength and elongation were achieved at 274 MPa and 4.9%, respectively. It was also revealed that EMS improves mechanical properties by reduction in porosity and an increase in maximum pore ratio.

  19. Projection of Future Mortality Due to Temperature and Population Changes under Representative Concentration Pathways and Shared Socioeconomic Pathways

    PubMed Central

    Lee, Jae Young; Kim, Ejin; Lee, Woo-Seop; Chae, Yeora; Kim, Ho

    2018-01-01

    The Paris Agreement aims to limit the global temperature increase to below 2 °C above pre-industrial levels and to pursue efforts to limit the increase to even below 1.5 °C. Now, it should be asked what benefits are in pursuing these two targets. In this study, we assessed the temperature–mortality relationship using a distributed lag non-linear model in seven major cities of South Korea. Then, we projected future temperature-attributable mortality under different Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP) scenarios for those cities. Mortality was projected to increase by 1.53 under the RCP 4.5 (temperature increase by 2.83 °C) and 3.3 under the RCP 8.5 (temperature increase by 5.10 °C) until the 2090s, as compared to baseline (1991–2015) mortality. However, future mortality is expected to increase by less than 1.13 and 1.26 if the 1.5 °C and 2 °C increase targets are met, respectively, under the RCP 4.5. Achieving the more ambitious target of 1.5 °C will reduce mortality by 12%, when compared to the 2 °C target. When we estimated future mortality due to both temperature and population changes, the future mortality was found to be increased by 2.07 and 3.85 for the 1.5 °C and 2 °C temperature increases, respectively, under the RCP 4.5. These increases can be attributed to a growing proportion of elderly population, who is more vulnerable to high temperatures. Meeting the target of 1.5 °C will be particularly beneficial for rapidly aging societies, including South Korea. PMID:29690535

  20. Projection of Future Mortality Due to Temperature and Population Changes under Representative Concentration Pathways and Shared Socioeconomic Pathways.

    PubMed

    Lee, Jae Young; Kim, Ejin; Lee, Woo-Seop; Chae, Yeora; Kim, Ho

    2018-04-21

    The Paris Agreement aims to limit the global temperature increase to below 2 °C above pre-industrial levels and to pursue efforts to limit the increase to even below 1.5 °C. Now, it should be asked what benefits are in pursuing these two targets. In this study, we assessed the temperature⁻mortality relationship using a distributed lag non-linear model in seven major cities of South Korea. Then, we projected future temperature-attributable mortality under different Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP) scenarios for those cities. Mortality was projected to increase by 1.53 under the RCP 4.5 (temperature increase by 2.83 °C) and 3.3 under the RCP 8.5 (temperature increase by 5.10 °C) until the 2090s, as compared to baseline (1991⁻2015) mortality. However, future mortality is expected to increase by less than 1.13 and 1.26 if the 1.5 °C and 2 °C increase targets are met, respectively, under the RCP 4.5. Achieving the more ambitious target of 1.5 °C will reduce mortality by 12%, when compared to the 2 °C target. When we estimated future mortality due to both temperature and population changes, the future mortality was found to be increased by 2.07 and 3.85 for the 1.5 °C and 2 °C temperature increases, respectively, under the RCP 4.5. These increases can be attributed to a growing proportion of elderly population, who is more vulnerable to high temperatures. Meeting the target of 1.5 °C will be particularly beneficial for rapidly aging societies, including South Korea.

  1. Non-linear dual-phase-lag model for analyzing heat transfer phenomena in living tissues during thermal ablation.

    PubMed

    Kumar, P; Kumar, Dinesh; Rai, K N

    2016-08-01

    In this article, a non-linear dual-phase-lag (DPL) bio-heat transfer model based on temperature dependent metabolic heat generation rate is derived to analyze the heat transfer phenomena in living tissues during thermal ablation treatment. The numerical solution of the present non-linear problem has been done by finite element Runge-Kutta (4,5) method which combines the essence of Runge-Kutta (4,5) method together with finite difference scheme. Our study demonstrates that at the thermal ablation position temperature predicted by non-linear and linear DPL models show significant differences. A comparison has been made among non-linear DPL, thermal wave and Pennes model and it has been found that non-linear DPL and thermal wave bio-heat model show almost same nature whereas non-linear Pennes model shows significantly different temperature profile at the initial stage of thermal ablation treatment. The effect of Fourier number and Vernotte number (relaxation Fourier number) on temperature profile in presence and absence of externally applied heat source has been studied in detail and it has been observed that the presence of externally applied heat source term highly affects the efficiency of thermal treatment method. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. An assessment of precipitation and surface air temperature over China by regional climate models

    NASA Astrophysics Data System (ADS)

    Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu

    2016-12-01

    An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.

  3. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore.

    PubMed

    Hii, Yien Ling; Rocklöv, Joacim; Ng, Nawi; Tang, Choon Siang; Pang, Fung Yin; Sauerborn, Rainer

    2009-11-11

    Dengue is currently a major public health burden in Asia Pacific Region. This study aims to establish an association between dengue incidence, mean temperature and precipitation, and further discuss how weather predictors influence the increase in intensity and magnitude of dengue in Singapore during the period 2000-2007. Weekly dengue incidence data, daily mean temperature and precipitation and the midyear population data in Singapore during 2000-2007 were retrieved and analysed. We employed a time series Poisson regression model including time factors such as time trends, lagged terms of weather predictors, considered autocorrelation, and accounted for changes in population size by offsetting. The weekly mean temperature and cumulative precipitation were statistically significant related to the increases of dengue incidence in Singapore. Our findings showed that dengue incidence increased linearly at time lag of 5-16 and 5-20 weeks succeeding elevated temperature and precipitation, respectively. However, negative association occurred at lag week 17-20 with low weekly mean temperature as well as lag week 1-4 and 17-20 with low cumulative precipitation. As Singapore experienced higher weekly mean temperature and cumulative precipitation in the years 2004-2007, our results signified hazardous impacts of climate factors on the increase in intensity and magnitude of dengue cases. The ongoing global climate change might potentially increase the burden of dengue fever infection in near future.

  4. Finite element modeling of temperature load effects on the vibration of local modes in multi-cable structures

    NASA Astrophysics Data System (ADS)

    Treyssède, Fabien

    2018-01-01

    Understanding thermal effects on the vibration of local (cable-dominant) modes in multi-cable structures is a complicated task. The main difficulty lies in the modification by temperature change of cable tensions, which are then undetermined. This paper applies a finite element procedure to investigate the effects of thermal loads on the linear dynamics of prestressed self-weighted multi-cable structures. Provided that boundary conditions are carefully handled, the discretization of cables with nonlinear curved beam elements can properly represent the thermoelastic behavior of cables as well as their linearized dynamics. A three-step procedure that aims to replace applied pretension forces with displacement continuity conditions is used. Despite an increase in the computational cost related to beam rotational degrees of freedom, such an approach has several advantages. Nonlinear beam finite elements are usually available in commercial codes. The overall method follows a thermoelastic geometrically non-linear analysis and hereby includes the main sources of non-linearities in multi-cable structures. The effects of cable bending stiffness, which can be significant, are also naturally accounted for. The accuracy of the numerical approach is assessed thanks to an analytical model for the vibration of a single inclined cable under temperature change. Then, the effects of thermal loads are investigated for two cable bridges, highlighting how natural frequencies can be affected by temperature. Although counterintuitive, a reverse relative change of natural frequency may occur for certain local modes. This phenomenon can be explained by two distinct mechanisms, one related to the physics intrinsic to cables and the other related to the thermal deflection of the superstructure. Numerical results show that cables cannot be isolated from the rest of the structure and the importance of modeling the whole structure for a quantitative analysis of temperature effects on the dynamics of cable bridges.

  5. Effect of temperature on photosynthesis and growth in marine Synechococcus spp.

    PubMed

    Mackey, Katherine R M; Paytan, Adina; Caldeira, Ken; Grossman, Arthur R; Moran, Dawn; McIlvin, Matthew; Saito, Mak A

    2013-10-01

    In this study, we develop a mechanistic understanding of how temperature affects growth and photosynthesis in 10 geographically and physiologically diverse strains of Synechococcus spp. We found that Synechococcus spp. are able to regulate photochemistry over a range of temperatures by using state transitions and altering the abundance of photosynthetic proteins. These strategies minimize photosystem II (PSII) photodamage by keeping the photosynthetic electron transport chain (ETC), and hence PSII reaction centers, more oxidized. At temperatures that approach the optimal growth temperature of each strain when cellular demand for reduced nicotinamide adenine dinucleotide phosphate (NADPH) is greatest, the phycobilisome (PBS) antenna associates with PSII, increasing the flux of electrons into the ETC. By contrast, under low temperature, when slow growth lowers the demand for NADPH and linear ETC declines, the PBS associates with photosystem I. This favors oxidation of PSII and potential increase in cyclic electron flow. For Synechococcus sp. WH8102, growth at higher temperatures led to an increase in the abundance of PBS pigment proteins, as well as higher abundance of subunits of the PSII, photosystem I, and cytochrome b6f complexes. This would allow cells to increase photosynthetic electron flux to meet the metabolic requirement for NADPH during rapid growth. These PBS-based temperature acclimation strategies may underlie the larger geographic range of this group relative to Prochlorococcus spp., which lack a PBS.

  6. Environmental and Physiological Factors Associated With Stamina in Dogs Exercising in High Ambient Temperatures

    PubMed Central

    Robbins, Patrick J.; Ramos, Meghan T.; Zanghi, Brian M.; Otto, Cynthia M.

    2017-01-01

    This IACUC approved study was performed to evaluate the environmental, physiological, and hematological components that contribute to stamina following successive bouts of exercise that included searching (5-min), agility (5-min), and ball retrieve (<10-min). Regularly exercised dogs (N = 12) were evaluated on five separate occasions. The population consisted of eight males and four females ranging in age from 8 to 23 months, which included six Labrador retrievers, three German shepherds, and one each English springer spaniel, German wirehaired pointer, and Dutch shepherd. The exercise period was up to 30 min with 5 min of intermittent rest between the exercise bouts or until a designated trainer determined that the dog appeared fatigued (e.g., curled tongue while panting, seeking shade, or voluntary reluctance to retrieve). At the end of the exercise period, pulse rate (PR), core temperature, blood lactate, and venous blood gas were collected. The median outdoor temperature was 28.9°C (84°F) (IQR; 27.2–30°C/81–86°F) and median humidity was 47% (IQR; 40–57%). Median duration of exercise was 27 min (IQR; 25–29). No dog showed signs of heat stress that required medical intervention. The components used to measure stamina in this study were total activity, post-exercise core body temperature (CBT), and increase in CBT. When controlling for breed, total activity, as measured by omnidirectional accelerometer device, could be predicted from a linear combination of the independent variables: pre-exercise activity (p = 0.008), post-exercise activity (p < 0.001), outdoor temperature (p = 0.005), reduction in base excess in extracellular fluid compartment (BEecf) (p = 0.044), and decrease in TCO2 (p = 0.005). When controlling for breed and sex, increase in CBT could be predicted from a linear combination of the independent variables: study day (p = 0.005), increase in PR (p < 0.001), increase in lactate (p = 0.001), reduction in BEecf (p = 0.031), increase in glucose (p = 0.044), increase in hematocrit (p = 0.032), and increase in hemoglobin (p = 0.038). This study suggests that the influence of outdoor temperature, pre- and post-exercise activity, and the metabolic parameters are important components of stamina associated with exertion. PMID:28955711

  7. Vulnerability of Permafrost Soil Carbon to Climate Warming: Evaluating Controls on Microbial Community Composition

    USDA-ARS?s Scientific Manuscript database

    Abstract: Despite the fact that permafrost soils contain up to half of the carbon (C) in terrestrial pools, we have a poor understanding of the controls on decomposition in thawed permafrost. Global climate models assume that decomposition increases linearly with temperature, yet decomposition in th...

  8. Water temperature behaviour in the River Loire since 1976 and 1881

    NASA Astrophysics Data System (ADS)

    Moatar, Florentina; Gailhard, Joël

    2006-05-01

    Analysis of monthly mean river temperatures, recorded on an hourly basis in the middle reaches of the Loire since 1976, allows reconstruction by multiple linear regression of the annual, spring and summer water temperatures from equivalent information on air temperatures and river discharge. Since 1881, the average annual and summer temperatures of the Loire have risen by approximately 0.8 °C, this increase accelerating since the late 1980s due to the rise in air temperature and also to lower discharge rates. In addition, the thermal regime in the Orleans to Blois reach is considerably affected by the inflow of groundwater from the Calcaires de Beauce aquifer, as shown by the summer energy balance. To cite this article: F. Moatar, J. Gailhard, C. R. Geoscience 338 (2006).

  9. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    PubMed Central

    Bothwell, Lori D.; Giardina, Christian P.; Litton, Creighton M.

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5) across a broad range of ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming. PMID:25493213

  10. Development of core ion temperature gradients and edge sheared flows in a helicon plasma device investigated by laser induced fluorescence measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thakur, S. C.; Tynan, G. R.; Center for Energy Research, University of California at San Diego, San Diego, California 92093

    2016-08-15

    We report experimental observation of ion heating and subsequent development of a prominent ion temperature gradient in the core of a linear magnetized plasma device, and the controlled shear de-correlation experiment. Simultaneously, we also observe the development of strong sheared flows at the edge of the device. Both the ion temperature and the azimuthal velocity profiles are quite flat at low magnetic fields. As the magnetic field is increased, the core ion temperature increases, producing centrally peaked ion temperature profiles and therefore strong radial gradients in the ion temperature. Similarly, we observe the development of large azimuthal flows at themore » edge, with increasing magnetic field, leading to strong radially sheared plasma flows. The ion velocities and temperatures are derived from laser induced fluorescence measurements of Doppler resolved velocity distribution functions of argon ions. These features are consistent with the previous observations of simultaneously existing radially separated multiple plasma instabilities that exhibit complex plasma dynamics in a very simple plasma system. The ion temperature gradients in the core and the radially sheared azimuthal velocities at the edge point to mechanisms that can drive the multiple plasma instabilities, that were reported earlier.« less

  11. Note: Wide-operating-range control for thermoelectric coolers.

    PubMed

    Peronio, P; Labanca, I; Ghioni, M; Rech, I

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  12. Note: Wide-operating-range control for thermoelectric coolers

    NASA Astrophysics Data System (ADS)

    Peronio, P.; Labanca, I.; Ghioni, M.; Rech, I.

    2017-11-01

    A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

  13. Temperature sensitivity of soil organic carbon mineralization along an elevation gradient in the Wuyi Mountains, China.

    PubMed

    Wang, Guobing; Zhou, Yan; Xu, Xia; Ruan, Honghua; Wang, Jiashe

    2013-01-01

    Soil organic carbon (SOC) actively participates in the global carbon (C) cycle. Despite much research, however, our understanding of the temperature sensitivity of soil organic carbon (SOC) mineralization is still very limited. To investigate the responses of SOC mineralization to temperature, we sampled surface soils (0-10 cm) from evergreen broad-leaf forest (EBF), coniferous forest (CF), sub-alpine dwarf forest (SDF), and alpine meadow (AM) along an elevational gradient in the Wuyi Mountains, China. The soil samples were incubated at 5, 15, 25, and 35°C with constant soil moisture for 360 days. The temperature sensitivity of SOC mineralization (Q(10)) was calculated by comparing the time needed to mineralize the same amount of C at any two adjacent incubation temperatures. Results showed that the rates of SOC mineralization and the cumulative SOC mineralized during the entire incubation significantly increased with increasing incubation temperatures across the four sites. With the increasing extent of SOC being mineralized (increasing incubation time), the Q(10) values increased. Moreover, we found that both the elevational gradient and incubation temperature intervals significantly impacted Q(10) values. Q(10) values of the labile and recalcitrant organic C linearly increased with elevation. For the 5-15, 15-25, and 25-35°C intervals, surprisingly, the overall Q(10) values for the labile C did not decrease as the recalcitrant C did. Generally, our results suggest that subtropical forest soils may release more carbon than expected in a warmer climate.

  14. Analytical studies into radiation-induced starch damage in black and white peppers

    NASA Astrophysics Data System (ADS)

    Sharif, M. M.; Farkas, J.

    1993-07-01

    Temperature dependency of the apparent viscosity of heat-gelatinized suspensions of untreated and irradiated pepper samples has been investigated. There was a close linear correlation between the logaritm of "fluidity" /reciprocal of the apparent viscosity) and the reciprocal absolute temperature of the measurement. The slope of the regression line(the temperature dependence of fluidity) increased with the radiation dose. Gelatinization thermograms of aqueous suspensions of ground pepper samples were obtained by differential scanning calorimetry. Temperature characteristics of heat-gelatinization endotherms showed no significant differences between untreated and irradiated samples. A colorimetric method for damaged starch, the estimation of reducing power, and the alcohol-induced turbidity of aqueous extracts showed statistically significant increases of starch damage at doses higher than 4 kGy. These indices of starch-depolymerization have been changed less dramatically by irradiation than the apparent viscosity of the heat-gelatinized suspensions.

  15. Thermodynamic and mechanical properties of TiC from ab initio calculation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dang, D. Y.; Fan, J. L.; Gong, H. R., E-mail: gonghr@csu.edu.cn

    2014-07-21

    The temperature-dependent thermodynamic and mechanical properties of TiC are systematically investigated by means of a combination of density-functional theory, quasi-harmonic approximation, and thermal electronic excitation. It is found that the quasi-harmonic Debye model should be pertinent to reflect thermodynamic properties of TiC, and the elastic properties of TiC decease almost linearly with the increase of temperature. Calculations also reveal that TiC possesses a pronounced directional pseudogap across the Fermi level, mainly due to the strong hybridization of Ti 3d and C 2p states. Moreover, the strong covalent bonding of TiC would be enhanced (reduced) with the decrease (increase) of temperature,more » while the change of volume (temperature) should have negligible effect on density of states at the Fermi level. The calculated results agree well with experimental observations in the literature.« less

  16. Polar symmetric flow of a viscous compressible atmosphere; an application to Mars

    NASA Technical Reports Server (NTRS)

    Pirraglia, J. A.

    1974-01-01

    The atmosphere is assumed to be driven by a polar symmetric temperature field and the equations of motion in pressure ratio coordinates are linearized by considering the zero order in terms of a thermal Rossby number R delta I/(2a omega) sq where delta T is a measure of the latitudinal temperature gradient. When the eddy viscosity is greater than 1 million sq cm/sec, the boundary layer extends far up into the atmosphere, making the geostrophic approximation invalid for the bulk of the atmosphere. A temperature model for Mars was used which was based on Mariner 9 infrared spectral data with a 30% increase in the depth averaged temperature from the winter pole to the subsolar point. The results obtained for the increase in surface pressure from the subsolar point to the winter pole, as a function of eddy viscosity and with no-slip conditions imposed at the surface, are given.

  17. Rapid thermal annealing of Amorphous Hydrogenated Carbon (a-C:H) films

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.; Pouch, John J.; Warner, Joseph D.

    1987-01-01

    Amorphous hydrogenated carbon (a-C:H) films were deposited on silicon and quartz substrates by a 30 kHz plasma discharge technique using methane. Rapid thermal processing of the films was accomplished in nitrogen gas using tungsten halogen light. The rapid thermal processing was done at several fixed temperatures (up to 600 C), as a function of time (up to 1800 sec). The films were characterized by optical absorption and by ellipsometry in the near UV and the visible. The bandgap, estimated from extrapolation of the linear part of a Tauc plot, decreases both with the annealing temperature and the annealing time, with the temperature dependence being the dominating factor. The density of states parameter increases up to 25 percent and the refractive index changes up to 20 percent with temperature increase. Possible explanations of the mechanisms involved in these processes are discussed.

  18. The Scaling of Broadband Shock-Associated Noise with Increasing Temperature

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2013-01-01

    A physical explanation for the saturation of broadband shock-associated noise (BBSAN) intensity with increasing jet stagnation temperature has eluded investigators. An explanation is proposed for this phenomenon with the use of an acoustic analogy. To isolate the relevant physics, the scaling of BBSAN peak intensity level at the sideline observer location is examined. The equivalent source within the framework of an acoustic analogy for BBSAN is based on local field quantities at shock wave shear layer interactions. The equivalent source combined with accurate calculations of the propagation of sound through the jet shear layer, using an adjoint vector Green's function solver of the linearized Euler equations, allows for predictions that retain the scaling with respect to stagnation pressure and allows for saturation of BBSAN with increasing stagnation temperature. The sources and vector Green's function have arguments involving the steady Reynolds- Averaged Navier-Stokes solution of the jet. It is proposed that saturation of BBSAN with increasing jet temperature occurs due to a balance between the amplication of the sound propagation through the shear layer and the source term scaling.

  19. Characterization of Ternary NiTiPd High-Temperature Shape-Memory Alloys under Load-Biased Thermal Cycling

    NASA Technical Reports Server (NTRS)

    Bigelow, Glen S.; Padula, Santo A.; Noebe, Ronald D.; Garg, Anita; Gaydosh, Darrell

    2010-01-01

    While NiTiPd alloys have been extensively studied for proposed use in high-temperature shape-memory applications, little is known about the shape-memory response of these materials under stress. Consequently, the isobaric thermal cyclic responses of five (Ni,Pd)49.5Ti50.5 alloys with constant stoichiometry and Pd contents ranging from 15 to 46 at. pct were investigated. From these tests, transformation temperatures, transformation strain (which is proportional to work output), and unrecovered strain per cycle (a measure of dimensional instability) were determined as a function of stress for each alloy. It was found that increasing the Pd content over this range resulted in a linear increase in transformation temperature, as expected. At a given stress level, work output decreased while the amount of unrecovered strain produced during each load-biased thermal cycle increased with increasing Pd content, during the initial thermal cycles. However, continued thermal cycling at constant stress resulted in a saturation of the work output and nearly eliminated further unrecovered strain under certain conditions, resulting in stable behavior amenable to many actuator applications.

  20. Climate change and temperature rise: implications on food- and water-borne diseases.

    PubMed

    El-Fadel, Mutasem; Ghanimeh, Sophia; Maroun, Rania; Alameddine, Ibrahim

    2012-10-15

    This study attempts to quantify climate-induced increases in morbidity rates associated with food- and water-borne illnesses in the context of an urban coastal city, taking Beirut-Lebanon as a study area. A Poisson generalized linear model was developed to assess the impacts of temperature on the morbidity rate. The model was used with four climatic scenarios to simulate a broad spectrum of driving forces and potential social, economic and technologic evolutions. The correlation established in this study exhibits a decrease in the number of illnesses with increasing temperature until reaching a threshold of 19.2 °C, beyond which the number of morbidity cases increases with temperature. By 2050, the results show a substantial increase in food- and water-borne related morbidity of 16 to 28% that can reach up to 42% by the end of the century under A1FI (fossil fuel intensive development) or can be reversed to ~0% under B1 (lowest emissions trajectory), highlighting the need for early mitigation and adaptation measures. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. The rise and fall of infectious disease in a warmer world

    USGS Publications Warehouse

    Lafferty, Kevin D.; Mordecai, Erin A.

    2016-01-01

    Now-outdated estimates proposed that climate change should have increased the number of people at risk of malaria, yet malaria and several other infectious diseases have declined. Although some diseases have increased as the climate has warmed, evidence for widespread climate-driven disease expansion has not materialized, despite increased research attention. Biological responses to warming depend on the non-linear relationships between physiological performance and temperature, called the thermal response curve. This leads performance to rise and fall with temperature. Under climate change, host species and their associated parasites face extinction if they cannot either thermoregulate or adapt by shifting phenology or geographic range. Climate change might also affect disease transmission through increases or decreases in host susceptibility and infective stage (and vector) production, longevity, and pathology. Many other factors drive disease transmission, especially economics, and some change in time along with temperature, making it hard to distinguish whether temperature drives disease or just correlates with disease drivers. Although it is difficult to predict how climate change will affect infectious disease, an ecological approach can help meet the challenge.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korneeva, Anna; Shaydurov, Vladimir

    In the paper, the data analysis is considered for thin-film thermoresistors coated on to a radio-electronic printed circuit board to determine possible zones of its overheating. A mathematical model consists in an underdetermined system of linear algebraic equations with an infinite set of solutions. For computing a more real solution, two additional conditions are used: the smoothness of a solution and the positiveness of an increase of temperature during overheating. Computational experiments demonstrate that an overheating zone is determined exactly with a tolerable accuracy of temperature in it.

  3. Multi-Wavelength Interferometric Observations of YSO Disks

    NASA Astrophysics Data System (ADS)

    Ragland, Sam; Akeson, R.; Armandroff, T.; Colavita, M.; Cotton, W.; Danchi, W.; Hillenbrand, L.; Millan-Gabet, R.; Ridgway, S. T.; Traub, W.; Wizinowich, P.

    2010-01-01

    We initiated a multi-color interferometric study of YSO disks in the K, L and N bands using the Keck Interferometer. The initial results on two Herbig Ae/Be stars will be presented. Our observations are sensitive to the radial distribution of temperature in the inner region of the YSO disks. The geometric models show that the apparent size increases linearly with wavelength, suggesting that the disk is extended with a temperature gradient. We will discuss our results in conjunction with the previous measurements of these targets.

  4. Temperature dependence of spin-orbit torques in Cu-Au alloys

    NASA Astrophysics Data System (ADS)

    Wen, Yan; Wu, Jun; Li, Peng; Zhang, Qiang; Zhao, Yuelei; Manchon, Aurelien; Xiao, John Q.; Zhang, Xixiang

    2017-03-01

    We investigated current driven spin-orbit torques in C u40A u60/N i80F e20/Ti layered structures with in-plane magnetization. We have demonstrated a reliable and convenient method to separate dampinglike torque and fieldlike torque by using the second harmonic technique. It is found that the dampinglike torque and fieldlike torque depend on temperature very differently. Dampinglike torque increases with temperature, while fieldlike torque decreases with temperature, which are different from results obtained previously in other material systems. We observed a nearly linear dependence between the spin Hall angle and longitudinal resistivity, suggesting that skew scattering may be the dominant mechanism of spin-orbit torques.

  5. The temperature and tension characteristics of the FBGs embedded in the polythene sheath of an optical cable

    NASA Astrophysics Data System (ADS)

    Chen, Guanghui; Zhao, Ming; Sha, Jianbo; Zhang, Jun; Wu, Bingyan; Lin, Chen; Zhang, Mingliang; Gao, Kan

    2015-10-01

    The five of FBG were embedded in the PE sheath of a tether optical cable, which has about 18mm diameter and 7000mm length. The temperature and tension characteristics of the FBGs embedded in the polythene (PE) sheath had been demonstrated quantitatively. The Bragg wavelength of the embedded FBG shift linearly with the change of pulling force loaded on the tether optical cable and its tension sensitivity is about 3.75 pm/kg. The results of temperature experiment suggest the embedded FBG have been sensitized by PE material, so that its temperature sensitivity increase from 9.37pm/°C to about 12.51pm/°C.

  6. Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot.

    PubMed

    Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping

    2015-11-05

    Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs.

  7. Temperature dependence of Coulomb oscillations in a few-layer two-dimensional WS2 quantum dot

    PubMed Central

    Song, Xiang-Xiang; Zhang, Zhuo-Zhi; You, Jie; Liu, Di; Li, Hai-Ou; Cao, Gang; Xiao, Ming; Guo, Guo-Ping

    2015-01-01

    Standard semiconductor fabrication techniques are used to fabricate a quantum dot (QD) made of WS2, where Coulomb oscillations were found. The full-width-at-half-maximum of the Coulomb peaks increases linearly with temperature while the height of the peaks remains almost independent of temperature, which is consistent with standard semiconductor QD theory. Unlike graphene etched QDs, where Coulomb peaks belonging to the same QD can have different temperature dependences, these results indicate the absence of the disordered confining potential. This difference in the potential-forming mechanism between graphene etched QDs and WS2 QDs may be the reason for the larger potential fluctuation found in graphene QDs. PMID:26538164

  8. Thermal expansion method for lining tantalum alloy tubing with tungsten

    NASA Technical Reports Server (NTRS)

    Watson, G. K.; Whittenberger, J. D.; Mattson, W. F.

    1973-01-01

    A differential-thermal expansion method was developed to line T-111 (tantalum - 8 percent tungsten - 2 percent hafnium) tubing with a tungsten diffusion barrier as part of a fuel element fabrication study for a space power nuclear reactor concept. This method uses a steel mandrel, which has a larger thermal expansion than T-111, to force the tungsten against the inside of the T-111 tube. Variables investigated include lining temperature, initial assembly gas size, and tube length. Linear integrity increased with increasing lining temperature and decreasing gap size. The method should have more general applicability where cylinders must be lined with a thin layer of a second material.

  9. [Indoor simulation on dew formation on plant leaves].

    PubMed

    Gao, Zhi-Yong; Wang, You-Ke; Wei, Xin-Guang; Liu, Shou-Yang; He, Zi-Li; Zhou, Yu-Hong

    2014-03-01

    Dew forming on plant leaves through water condensation plays a significant ecological role in arid and semi-arid areas as an ignorable fraction of water resources. In this study, an artificial intelligent climate chamber and an automatic temperature-control system for leaves were implemented to regulate the ambient temperature, the leaf surface temperature and the leaf inclination for dew formation. The impact of leaf inclination, ambient temperature and dew point-leaf temperature depression on the rate and quantity of dew accumulation on leaf surface were analyzed. The results indicated that the accumulation rate and the maximum volume of dew on leaves decreased with increasing the leaf inclination while increased with the increment of dew point-leaf temperature depression, ambient temperature and relative humidity. Under the horizontal configuration, dew accumulated linearly on leaf surface over time until the maximum volume (0.80 mm) was reached. However, dew would fall down after reaching the maximum volume when the leaf inclination existed (45 degrees or 90 degrees), significantly slowing down the accumulative rate, and the zigzag pattern for the dynamic of dew accumulation appeared.

  10. Temperature Dependence of the Spin-Hall Conductivity of a Two-Dimensional Impure Rashba Electron Gas in the Presence of Electron-Phonon and Electron-Electron Interactions

    NASA Astrophysics Data System (ADS)

    Yavari, H.; Mokhtari, M.; Bayervand, A.

    2015-03-01

    Based on Kubo's linear response formalism, temperature dependence of the spin-Hall conductivity of a two-dimensional impure (magnetic and nonmagnetic impurities) Rashba electron gas in the presence of electron-electron and electron-phonon interactions is analyzed theoretically. We will show that the temperature dependence of the spin-Hall conductivity is determined by the relaxation rates due to these interactions. At low temperature, the elastic lifetimes ( and are determined by magnetic and nonmagnetic impurity concentrations which are independent of the temperature, while the inelastic lifetimes ( and related to the electron-electron and electron-phonon interactions, decrease when the temperature increases. We will also show that since the spin-Hall conductivity is sensitive to temperature, we can distinguish the intrinsic and extrinsic contributions.

  11. Global non-linear effect of temperature on economic production.

    PubMed

    Burke, Marshall; Hsiang, Solomon M; Miguel, Edward

    2015-11-12

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  12. Global non-linear effect of temperature on economic production

    NASA Astrophysics Data System (ADS)

    Burke, Marshall; Hsiang, Solomon M.; Miguel, Edward

    2015-11-01

    Growing evidence demonstrates that climatic conditions can have a profound impact on the functioning of modern human societies, but effects on economic activity appear inconsistent. Fundamental productive elements of modern economies, such as workers and crops, exhibit highly non-linear responses to local temperature even in wealthy countries. In contrast, aggregate macroeconomic productivity of entire wealthy countries is reported not to respond to temperature, while poor countries respond only linearly. Resolving this conflict between micro and macro observations is critical to understanding the role of wealth in coupled human-natural systems and to anticipating the global impact of climate change. Here we unify these seemingly contradictory results by accounting for non-linearity at the macro scale. We show that overall economic productivity is non-linear in temperature for all countries, with productivity peaking at an annual average temperature of 13 °C and declining strongly at higher temperatures. The relationship is globally generalizable, unchanged since 1960, and apparent for agricultural and non-agricultural activity in both rich and poor countries. These results provide the first evidence that economic activity in all regions is coupled to the global climate and establish a new empirical foundation for modelling economic loss in response to climate change, with important implications. If future adaptation mimics past adaptation, unmitigated warming is expected to reshape the global economy by reducing average global incomes roughly 23% by 2100 and widening global income inequality, relative to scenarios without climate change. In contrast to prior estimates, expected global losses are approximately linear in global mean temperature, with median losses many times larger than leading models indicate.

  13. Thermodiffusion Coefficient Analysis of n-Dodecane /n-Hexane Mixture at Different Mass Fractions and Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Lizarraga, Ion; Bou-Ali, M. Mounir; Santamaría, C.

    2018-03-01

    In this study, the thermodiffusion coefficient of n-dodecane/n-hexane binary mixture at 25 ∘C mean temperature was determined for several pressure conditions and mass fractions. The experimental technique used to determine the thermodiffusion coefficient was the thermograviational column of cylindrical configuration. In turn, thermophysical properties, such as density, thermal expansion, mass expansion and dynamic viscosity up to 10 MPa were also determined. The results obtained in this work showed a linear relation between the thermophysical properties and the pressure. Thermodiffusion coefficient values confirm a linear effect when the pressure increases. Additionally, a new correlation based on the thermodiffusion coefficient for n C12/n C6 binary mixture at 25 ∘C temperature for any mass fraction and pressures, which reproduces the data within the experimental error, was proposed.

  14. Increasing temperature reduces the coupling between available nitrogen and phosphorus in soils of Chinese grasslands

    NASA Astrophysics Data System (ADS)

    Geng, Yan; Baumann, Frank; Song, Chao; Zhang, Mi; Shi, Yue; Kühn, Peter; Scholten, Thomas; He, Jin-Sheng

    2017-03-01

    Changes in climatic conditions along geographical gradients greatly affect soil nutrient cycling processes. Yet how climate regimes such as changes in temperature influence soil nitrogen (N) and phosphorus (P) concentrations and their stoichiometry is not well understood. This study investigated the spatial pattern and variability of soil N and P availability as well as their coupling relationships at two soil layers (0-10 and 10-20 cm) along a 4000-km climate transect in two grassland biomes of China, the Inner Mongolian temperate grasslands and the Tibetan alpine grasslands. Our results found that in both grasslands, from cold to warm sites the amounts of soil total N, total P and available P all decreased. By contrast, the amount of available N was positively related to mean annual temperature in the Tibetan grasslands. Meanwhile, with increasing temperature ratio of available N to P significantly increased but the linear relationship between them was considerably reduced. Thus, increasing temperature may not only induce a stoichiometric shift but also loose the coupling between available N and P. This N-P decoupling under warmer conditions was more evident in the Tibetan alpine grasslands where P limitation might become more widespread relative to N as temperatures continue to rise.

  15. Effects of a high mean stress on the high cycle fatigue life of PWA 1480 and correlation of data by linear elastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Majumdar, S.; Kwasny, R.

    1985-01-01

    High-cycle fatigue tests using 5-mm-diameter smooth specimens were performed on the single crystal alloy PWA 1480 (001 axis) at 70F (room temperature) in air and at 100F (538C) in vacuum (10 to the -6 power torr). Tests were conducted at zero mean stress as well as at high tensile mean stress. The results indicate that, although a tensile mean stress, in general, reduces life, the reduction in fatigue strength, for a given mean stress at a life of one million cycles, is much less than what is predicted by the usual linear Goodman plot. Further, the material appears to be significantly more resistant to mean stress effects at 1000F than at 70F. Metallographic examinations of failed specimens indicate that failures in all cases are initiated from micropores of sizes of the order of 30 to 40 microns. Since the macroscopic stress-strain response in all cases was observed to be linear elastic, linear elastic fracture mechanics (LEFM) analyses were carried out to determine the crack growth curves of the material assuming that crack initiation from a micropore (a sub o = 40 microns) occurs very early in life. The results indicate that the calculated crack growth rates at an R (defined as the ratio between minimum stress to maximum stress) value of zero are approximately the same at 70F as at 1000F. However, the calculated crack growth rates at other R ratios, both positive and negative, tend to be higher at 70F than at 1000F. Calculated threshold effects at large R values tend to be independent of temperature in the temperature regime studied. They are relatively constant with increasing R ratio up to a value of about 0.6, beyond which the calculated threshold stress intensity factor range decreases rapidly with increasing R ratios.

  16. Development of High Performance CFRP/Metal Active Laminates

    NASA Astrophysics Data System (ADS)

    Asanuma, Hiroshi; Haga, Osamu; Imori, Masataka

    This paper describes development of high performance CFRP/metal active laminates mainly by investigating the kind and thickness of the metal. Various types of the laminates were made by hot-pressing of an aluminum, aluminum alloys, a stainless steel and a titanium for the metal layer as a high CTE material, a unidirectional CFRP prepreg as a low CTE/electric resistance heating material, a unidirectional KFRP prepreg as a low CTE/insulating material. The aluminum and its alloy type laminates have almost the same and the highest room temperature curvatures and they linearly change with increasing temperature up to their fabrication temperature. The curvature of the stainless steel type jumps from one to another around its fabrication temperature, whereas the titanium type causes a double curvature and its change becomes complicated. The output force of the stainless steel type attains the highest of the three under the same thickness. The aluminum type successfully increased its output force by increasing its thickness and using its alloys. The electric resistance of the CFRP layer can be used to monitor the temperature, that is, the curvature of the active laminate because the curvature is a function of temperature.

  17. Optical and spectroscopic investigation on Calcium Borotellurite glass system

    NASA Astrophysics Data System (ADS)

    Paz, E. C.; Lodi, T. A.; Gomes, B. R. A.; Melo, G. H. A.; Pedrochi, F.; Steimacher, A.

    2016-05-01

    In this work, the glass formation in Calcium Borotellurite (CBTx) system and their optical properties were studied. Six glass samples were prepared by melt-quenching technique and the samples obtained are transparent, lightly yellowish, without any visible crystallites. The results showed that TeO2 addition increases the density, the electronic polarizability and, consequently, the refractive index. The increase of electronic polarizability and optical basicity suggest that TeO2 addition increases the non-bridging oxygen (NBO) concentration. The increase of TeO2 shifts the band edge to longer wavelength owing to increase in non-bridging oxygen ions, resulting in a linear decrease of optical energy gap. The addition of TeO2 increases the temperature coefficient of the optical path length (dS/dT) in room temperature, which are comparable to phosphate and lower than Low Silica Calcium Alumino Silicate (LSCAS) glasses. The values of dS/dT present an increase as a function of temperature for all the samples measured. The results suggest that CBTx is a good candidate for rare-earth doping and several optical applications.

  18. Study of microstructure and fracture properties of blunt notched and sharp cracked high density polyethylene specimens.

    PubMed

    Pan, Huanyu; Devasahayam, Sheila; Bandyopadhyay, Sri

    2017-07-21

    This paper examines the effect of a broad range of crosshead speed (0.05 to 100 mm/min) and a small range of temperature (25 °C and 45 °C) on the failure behaviour of high density polyethylene (HDPE) specimens containing a) standard size blunt notch and b) standard size blunt notch plus small sharp crack - all tested in air. It was observed that the yield stress properties showed linear increase with the natural logarithm of strain rate. The stress intensity factors under blunt notch and sharp crack conditions also increased linearly with natural logarithm of the crosshead speed. The results indicate that in the practical temperature range of 25 °C and 45 °C under normal atmosphere and increasing strain rates, HDPE specimens with both blunt notches and sharp cracks possess superior fracture properties. SEM microstructure studies of fracture surfaces showed craze initiation mechanisms at lower strain rate, whilst at higher strain rates there is evidence of dimple patterns absorbing the strain energy and creating plastic deformation. The stress intensity factor and the yield strength were higher at 25 °C compared to those at 45 °C.

  19. Diffusive charge transport in graphene on SiO 2

    NASA Astrophysics Data System (ADS)

    Chen, J.-H.; Jang, C.; Ishigami, M.; Xiao, S.; Cullen, W. G.; Williams, E. D.; Fuhrer, M. S.

    2009-07-01

    We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO 2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density ( σ(n)∝n) in graphene, with a scattering magnitude that agrees quantitatively with theoretical estimates; increased dielectric screening reduces the scattering from charged impurities, but increases the scattering from short-range scatterers. We evaluate the effects of the corrugations (ripples) of graphene on SiO 2 on transport by measuring the height-height correlation function. The results show that the corrugations cannot mimic long-range (charged impurity) scattering effects, and have too small an amplitude-to-wavelength ratio to significantly affect the observed mobility via short-range scattering. Temperature-dependent measurements show that longitudinal acoustic phonons in graphene produce a resistivity that is linear in temperature and independent of carrier density; at higher temperatures, polar optical phonons of the SiO 2 substrate give rise to an activated, carrier density-dependent resistivity. Together the results paint a complete picture of charge carrier transport in graphene on SiO 2 in the diffusive regime.

  20. Magnetic properties and magnetocaloric effect in Pt doped Ni-Mn-Ga

    NASA Astrophysics Data System (ADS)

    Singh, Sanjay; D'Souza, S. W.; Mukherjee, K.; Kushwaha, P.; Barman, S. R.; Agarwal, Sandeep; Mukhopadhyay, P. K.; Chakrabarti, Aparna; Sampathkumaran, E. V.

    2014-06-01

    Large magnetocaloric effect is observed in Ni1.8Pt0.2MnGa close to room temperature. The entropy change shows a crossover from positive to negative sign at the martensite transition. It is negative above 1.6 T and its magnitude increases linearly with magnetic field. An increase in the saturation magnetic moment is observed with Pt doping in Ni2MnGa. Ab initio theoretical calculations show that the increase in magnetic moment with Pt doping in Ni2MnGa is associated with increase in the Mn and Pt local moments in the ferromagnetic ground state. The Curie temperature calculated from the exchange interaction parameters is in good agreement with experiment, showing the absence of any antiferromagnetic correlation due to Pt doping.

  1. Graphene, a material for high temperature devices – intrinsic carrier density, carrier drift velocity, and lattice energy

    PubMed Central

    Yin, Yan; Cheng, Zengguang; Wang, Li; Jin, Kuijuan; Wang, Wenzhong

    2014-01-01

    Heat has always been a killing matter for traditional semiconductor machines. The underlining physical reason is that the intrinsic carrier density of a device made from a traditional semiconductor material increases very fast with a rising temperature. Once reaching a temperature, the density surpasses the chemical doping or gating effect, any p-n junction or transistor made from the semiconductor will fail to function. Here, we measure the intrinsic Fermi level (|EF| = 2.93 kBT) or intrinsic carrier density (nin = 3.87 × 106 cm−2K−2·T2), carrier drift velocity, and G mode phonon energy of graphene devices and their temperature dependencies up to 2400 K. Our results show intrinsic carrier density of graphene is an order of magnitude less sensitive to temperature than those of Si or Ge, and reveal the great potentials of graphene as a material for high temperature devices. We also observe a linear decline of saturation drift velocity with increasing temperature, and identify the temperature coefficients of the intrinsic G mode phonon energy. Above knowledge is vital in understanding the physical phenomena of graphene under high power or high temperature. PMID:25044003

  2. Ignition characteristics of the nickel-based alloy UNS N07001 in pressurized oxygen

    NASA Technical Reports Server (NTRS)

    Bransford, J. W.; Billiard, P. A.

    1990-01-01

    The development of ignition and combustion in pressurized oxygen atmospheres was studied for the nickel-based alloy UNS N07001. Ignition of the alloy was achieved by heating the top surface of a cylindrical specimen with a continuous-wave CO2 laser. Two heating procedures were used. In the first, laser power was adjusted to maintain an approximately linear increase in surface temperature. In the second, laser power was periodically increased until autoheating (self-heating) was established. It was found that the alloy would autoheat to combustion from temperatures below the solidus temperature. In addition, the alloy had a tendency to develop combustion zones (hot spots) at high oxygen pressures when the incremental (step) heating test mode was used. Unique points on the temperature-time curves that describe certain events are defined and the temperatures at which these events occur are given for the oxygen pressure range of 1.72 to 13.8 MPa (250 to 2000 psia).

  3. Raman spectroscopic study of calcite III to aragonite transformation under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2017-10-01

    In our study, a series of Raman experiments on the phase transition of calcite at high pressure and high temperature were investigated using a hydrothermal diamond anvil cell and Raman spectroscopy technique. It was found that calcite I transformed to calcite II and calcite III at pressures of 1.62 and 2.12 GPa and room temperature. With increasing temperature, the phase transition of calcite III to aragonite occurred. Aragonite was retained upon slowly cooling of the system, indicating that the transition of calcite III to aragonite was irreversible. Based on the available data, the phase boundary between calcite III and aragonite was determined by the following relation: P(GPa) = 0.013 × T(°C) + 1.22 (100°C ≤ T ≤ 170°C). It showed that the transition pressure linearly rose with increasing temperature. A better understanding of the stability of calcite III and aragonite is of great importance to further explore the thermodynamic behavior of carbonates and carbon cycling in the mantle.

  4. Non-linear dielectric signatures of entropy changes in liquids subject to time dependent electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richert, Ranko

    2016-03-21

    A model of non-linear dielectric polarization is studied in which the field induced entropy change is the source of polarization dependent retardation time constants. Numerical solutions for the susceptibilities of the system are obtained for parameters that represent the dynamic and thermodynamic behavior of glycerol. The calculations for high amplitude sinusoidal fields show a significant enhancement of the steady state loss for frequencies below that of the low field loss peak. Also at relatively low frequencies, the third harmonic susceptibility spectrum shows a “hump,” i.e., a maximum, with an amplitude that increases with decreasing temperature. Both of these non-linear effectsmore » are consistent with experimental evidence. While such features have been used to conclude on a temperature dependent number of dynamically correlated particles, N{sub corr}, the present result demonstrates that the third harmonic susceptibility display a peak with an amplitude that tracks the variation of the activation energy in a model that does not involve dynamical correlations or spatial scales.« less

  5. Selective Catalytic Combustion Sensors for Reactive Organic Analysis

    NASA Technical Reports Server (NTRS)

    Innes, W. B.

    1971-01-01

    Sensors involving a vanadia-alumina catalyst bed-thermocouple assembly satisfy requirements for simple, reproducible and rapid continuous analysis or reactive organics. Responses generally increase with temperature to 400 C and increase to a maximum with flow rate/catalyst volume. Selectivity decreases with temperature. Response time decreases with flow rate and increases with catalyst volume. At chosen optimum conditions calculated response which is additive and linear agrees better with photochemical reactivity than other methods for various automotive sources, and response to vehicle exhaust is insensitive to flow rate. Application to measurement of total reactive organics in vehicle exhaust as well as for gas chromatography detection illustrate utility. The approach appears generally applicable to high thermal effect reactions involving first order kinetics.

  6. Effect of postprandial thermogenesis on the cutaneous vasodilatory response during exercise.

    PubMed

    Hayashi, Keiji; Ito, Nozomi; Ichikawa, Yoko; Suzuki, Yuichi

    2014-08-01

    To examine the effect of postprandial thermogenesis on the cutaneous vasodilatory response, 10 healthy male subjects exercised for 30 min on a cycle ergometer at 50% of peak oxygen uptake, with and without food intake. Mean skin temperature, mean body temperature (Tb), heart rate, oxygen uptake, carbon dioxide elimination, and respiratory quotient were all significantly higher at baseline in the session with food intake than in the session without food intake. To evaluate the cutaneous vasodilatory response, relative laser Doppler flowmetry values were plotted against esophageal temperature (Tes) and Tb. Regression analysis revealed that the [Formula: see text] threshold for cutaneous vasodilation tended to be higher with food intake than without it, but there were no significant differences in the sensitivity. To clarify the effect of postprandial thermogenesis on the threshold for cutaneous vasodilation, the between-session difference in the Tes threshold and the Tb threshold were plotted against the between-session difference in baseline Tes and baseline Tb, respectively. Linear regression analysis of the resultant plot showed significant positive linear relationships (Tes: r = 0.85, P < 0.01; Tb: r = 0.67, P < 0.05). These results suggest that postprandial thermogenesis increases baseline body temperature, which raises the body temperature threshold for cutaneous vasodilation during exercise.

  7. Noninvasive Thermometry Assisted by a Dual Function Ultrasound Transducer for Mild Hyperthermia

    PubMed Central

    Lai, Chun-Yen; Kruse, Dustin E.; Caskey, Charles F.; Stephens, Douglas N.; Sutcliffe, Patrick L.; Ferrara, Katherine W.

    2010-01-01

    Mild hyperthermia is increasingly important for the activation of temperature-sensitive drug delivery vehicles. Noninvasive ultrasound thermometry based on a 2-D speckle tracking algorithm was examined in this study. Here, a commercial ultrasound scanner, a customized co-linear array transducer, and a controlling PC system were used to generate mild hyperthermia. Because the co-linear array transducer is capable of both therapy and imaging at widely separated frequencies, RF image frames were acquired during therapeutic insonation and then exported for off-line analysis. For in vivo studies in a mouse model, before temperature estimation, motion correction was applied between a reference RF frame and subsequent RF frames. Both in vitro and in vivo experiments were examined; in the in vitro and in vivo studies, the average temperature error had a standard deviation of 0.7°C and 0.8°C, respectively. The application of motion correction improved the accuracy of temperature estimation, where the error range was −1.9 to 4.5°C without correction compared with −1.1 to 1.0°C following correction. This study demonstrates the feasibility of combining therapy and monitoring using a commercial system. In the future, real-time temperature estimation will be incorporated into this system. PMID:21156363

  8. Microstructural dependence on relevant physical-mechanical properties on SiO2-Na2O-CaO-P2O5 biological glasses.

    PubMed

    Rajendran, V; Begum, A Nishara; Azooz, M A; el Batal, F H

    2002-11-01

    Bioactive glasses of the system SiO2-Na2O-CaO-P2O5 have been prepared by the normal melting and annealing technique. The elastic moduli, attenuation, Vickers hardness, fracture toughness and fracture surface energy have been obtained using the known method at room temperature. The temperature dependence of elastic moduli and attenuation measurements have been extended over a wide range of temperature from 150 to 500 K. The SiO2 content dependence of velocities, attenuation, elastic moduli, and other parameters show an interesting observation at 45 wt% of SiO2 by exhibiting an anomalous behaviour. A linear relation is developed for Tg, which explores the influence of Na2O on SiO2-Na2O-CaO-P2O5 bioactive glasses. The measured hardness, fracture toughness and fracture surface energy show a linear relation with Young's modulus. It is also interesting to note that the observed results are functions of polymerisation and the number of non-bridging oxygens (NBO) prevailing in the network with change in SiO2 content. The temperature dependence of velocities, attenuation and elastic moduli show the existence of softening in the glass network structure as temperature increases.

  9. Fine scale spatial and temporal variation in temperature and arrhythmia episodes in the VA Normative Aging Study

    PubMed Central

    Zanobetti, Antonella; Coull, Brent A.; Kloog, Itai; Sparrow, David; Vokonas, Pantel S.; Gold, Diane R.; Schwartz, Joel D.

    2017-01-01

    Many studies have demonstrated that cold and hot temperatures are associated with increased deaths and hospitalization rates; new findings indicate also an association with more specific cardiac risk factors. Most of these existing studies have relied on few weather stations to characterize exposures; few have used residence-specific estimates of temperature, or examined the exposure-response function. We investigated the association of arrhythmia episodes with spatial and temporal variation in temperature. We also evaluated the association between monitored ambient temperature (central) and the same outcome. This longitudinal analysis included 701 older men participating in the VA Normative Aging Study. Arrhythmia episodes were measured as ventricular ectopy (VE) (bigeminy, trigemini or couplets episodes) by 4min electrocardiogram (ECG) monitoring in repeated visits during 2000–2010. The outcome was defined as having or not VE episodes during a study visit. We applied a mixed effect logistic regression model with a random intercept for subject, controlling for seasonality, weekday, medication use, smoking, diabetes status, body mass index and age. We also examined effect modification by personal characteristics, confounding by air pollution, and the exposure-response function. For 1° C increase in the same day residence-specific temperature, the odds of having VE episodes was 1.10 (95%CI: 1.04–1.17). The odds associated with 1° C increase in central temperature was 1.05 (95%CI: 1.02–1.09). The exposure-response function was non-linear for averages of temperature, presenting a J-shaped pattern, suggesting greater risk at lower and higher temperatures. Increased warm temperature and decreased cold temperature may increase the risk of ventricular arrhythmias. PMID:28001123

  10. Water Intake by Outdoor Temperature Among Children Aged 1-10 Years: Implications for Community Water Fluoridation in the U.S.

    PubMed

    Beltrán-Aguilar, Eugenio D; Barker, Laurie; Sohn, Woosung; Wei, Liang

    2015-01-01

    The U.S. water fluoridation recommendations, which have been in place since 1962, were based in part on findings from the 1950s that children's water intake increased with outdoor temperature. We examined whether or not water intake is associated with outdoor temperature. Using linked data from the National Health and Nutrition Examination Survey (NHANES) 1999-2004 and the National Oceanic and Atmospheric Administration, we examined reported 24-hour total and plain water intake in milliliters per kilogram of body weight per day of children aged 1-10 years by maximum outdoor temperature on the day of reported water intake, unadjusted and adjusted for age, sex, race/ethnicity, and poverty status. We applied linear regression methods that were used in previously reported analyses of data from NHANES 1988-1994 and from the 1950s. We found that total water intake was not associated with temperature. Plain water intake was weakly associated with temperature in unadjusted (coefficient 5 0.2, p=0.015) and adjusted (coefficient 5 0.2, p=0.013) linear regression models. However, these models explained little of the individual variation in plain water intake (unadjusted: R(2)=0.005; adjusted: R(2)=0.023). Optimal fluoride concentration in drinking water to prevent caries need not be based on outdoor temperature, given the lack of association between total water intake and outdoor temperature, the weak association between plain water intake and outdoor temperature, and the minimal amount of individual variance in plain water intake explained by outdoor temperature. These findings support the change in the U.S. Public Health Service recommendation for fluoride concentration in drinking water for the prevention of dental caries from temperature-related concentrations to a single concentration that is not related to outdoor temperature.

  11. Photon induced non-linear quantized double layer charging in quaternary semiconducting quantum dots.

    PubMed

    Nair, Vishnu; Ananthoju, Balakrishna; Mohapatra, Jeotikanta; Aslam, M

    2018-03-15

    Room temperature quantized double layer charging was observed in 2 nm Cu 2 ZnSnS 4 (CZTS) quantum dots. In addition to this we observed a distinct non-linearity in the quantized double layer charging arising from UV light modulation of double layer. UV light irradiation resulted in a 26% increase in the integral capacitance at the semiconductor-dielectric (CZTS-oleylamine) interface of the quantum dot without any change in its core size suggesting that the cause be photocapacitive. The increasing charge separation at the semiconductor-dielectric interface due to highly stable and mobile photogenerated carriers cause larger electrostatic forces between the quantum dot and electrolyte leading to an enhanced double layer. This idea was supported by a decrease in the differential capacitance possible due to an enhanced double layer. Furthermore the UV illumination enhanced double layer gives us an AC excitation dependent differential double layer capacitance which confirms that the charging process is non-linear. This ultimately illustrates the utility of a colloidal quantum dot-electrolyte interface as a non-linear photocapacitor. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Relevant microclimate for determining the development rate of malaria mosquitoes and possible implications of climate change.

    PubMed

    Paaijmans, Krijn P; Imbahale, Susan S; Thomas, Matthew B; Takken, Willem

    2010-07-09

    The relationship between mosquito development and temperature is one of the keys to understanding the current and future dynamics and distribution of vector-borne diseases such as malaria. Many process-based models use mean air temperature to estimate larval development times, and hence adult vector densities and/or malaria risk. Water temperatures in three different-sized water pools, as well as the adjacent air temperature in lowland and highland sites in western Kenya were monitored. Both air and water temperatures were fed into a widely-applied temperature-dependent development model for Anopheles gambiae immatures, and subsequently their impact on predicted vector abundance was assessed. Mean water temperature in typical mosquito breeding sites was 4-6 degrees C higher than the mean temperature of the adjacent air, resulting in larval development rates, and hence population growth rates, that are much higher than predicted based on air temperature. On the other hand, due to the non-linearities in the relationship between temperature and larval development rate, together with a marginal buffering in the increase in water temperature compared with air temperature, the relative increases in larval development rates predicted due to climate change are substantially less. Existing models will tend to underestimate mosquito population growth under current conditions, and may overestimate relative increases in population growth under future climate change. These results highlight the need for better integration of biological and environmental information at the scale relevant to mosquito biology.

  13. Instability of a shear layer between multicomponent fluids at supercritical pressure

    NASA Astrophysics Data System (ADS)

    Fu, Qing-fei; Zhang, Yun-xiao; Mo, Chao-jie; Yang, Li-jun

    2018-04-01

    The temporal instability of a thin shear layer lying between streams of two components of fluids has been studied. The effects of density profile of the layer on the instability behavior were mainly considered. The detailed density profile was obtained through Linear Gradient Theory. The eigenvalue problem was calculated, and the temporal instability curves were obtained for the thermodynamic parameters, e.g. pressure and temperature. The results show that, increase of pressure leads to the increase of the maximum growth rate. However, increasing pressure has opposite effects on the disturbances with small and large wave length. The increase of temperature causes the decrease of disturbance growth rate. The instability behavior of the shear layers was determined mainly by the interval between the inflections of the velocity and density profiles, and the maximum density gradient. The total effects, determined by coupling density stratification, and interval between the inflections of the velocity and density profiles, were quite distinct for different ranges of temperature and pressure.

  14. Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue.

    PubMed

    Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano

    2017-09-01

    The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  15. Study on a high capacity two-stage free piston Stirling cryocooler working around 30 K

    NASA Astrophysics Data System (ADS)

    Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Dai, Wei; Li, Ke; Pang, Xiaomin; Yu, Guoyao; Luo, Ercang

    2016-12-01

    This paper presents a two-stage high-capacity free-piston Stirling cryocooler driven by a linear compressor to meet the requirement of the high temperature superconductor (HTS) motor applications. The cryocooler system comprises a single piston linear compressor, a two-stage free piston Stirling cryocooler and a passive oscillator. A single stepped displacer configuration was adopted. A numerical model based on the thermoacoustic theory was used to optimize the system operating and structure parameters. Distributions of pressure wave, phase differences between the pressure wave and the volume flow rate and different energy flows are presented for a better understanding of the system. Some characterizing experimental results are presented. Thus far, the cryocooler has reached a lowest cold-head temperature of 27.6 K and achieved a cooling power of 78 W at 40 K with an input electric power of 3.2 kW, which indicates a relative Carnot efficiency of 14.8%. When the cold-head temperature increased to 77 K, the cooling power reached 284 W with a relative Carnot efficiency of 25.9%. The influences of different parameters such as mean pressure, input electric power and cold-head temperature are also investigated.

  16. Lower Critical Solution Temperature (LCST) and drug conjugation of polyacetal

    NASA Astrophysics Data System (ADS)

    de Silva, Chathuranga; Samanta, Sanjoy; Leophairatana, Porakrit; Koberstein, Jeffrey

    There has been an increasing focus in polymer research for materials that can efficiently deliver therapeutics to a pre-identified solid tumor target. Due to their unique properties, stimuli responsive polymers (SRPs) have been of particular interest. One such novel SRP is a polyacetal-based copolymer (PAC). PAC shows a remarkable temperature response (LCST) that is linearly dependent on composition. Here, we discuss the fundamental physical origins of this LCST behavior, exhibited by this polymer. Our results indicate that the observed LCST scales linearly with the number of carbon and oxygen atoms in the polymer repeat units, allowing for precise control over the LCST. We design PAC to include cancer therapeutics in its polymer-backbone, utilizing strategies to modify step-growth polymerization to obtain, for the first time, temperature-responsive main-chain drug conjugates. The temperature response in these main-chain drug conjugates allow for effective delivery of therapeutics to the tumor site, followed by acid-hydrolysis in acidic local tumor environments, to release pristine therapeutics directly at the tumor site. Due to these reasons, we foresee PAC to be in the forefront of soft-matter SRP drug-delivery systems.

  17. Drude-type conductivity of charged sphere colloidal crystals: Density and temperature dependence

    NASA Astrophysics Data System (ADS)

    Medebach, Martin; Jordán, Raquel Chuliá; Reiber, Holger; Schöpe, Hans-Joachim; Biehl, Ralf; Evers, Martin; Hessinger, Dirk; Olah, Julianna; Palberg, Thomas; Schönberger, Ernest; Wette, Patrick

    2005-09-01

    We report on extensive measurements in the low-frequency limit of the ac conductivity of colloidal fluids and crystals formed from charged colloidal spheres suspended in de-ionized water. Temperature was varied in a range of 5°C<Θ<35°C and the particle number density n between 0.2 and 25μm-3 for the larger, respectively, 2.75 and 210μm-3 for the smaller of two investigated species. At fixed Θ the conductivity increased linearly with increasing n without any significant change at the fluid-solid phase boundary. At fixed n it increased with increasing Θ and the increase was more pronounced for larger n. Lacking a rigorous electrohydrodynamic treatment for counterion-dominated systems we describe our data with a simple model relating to Drude's theory of metal conductivity. The key parameter is an effectively transported particle charge or valence Z*. All temperature dependencies other than that of Z* were taken from literature. Within experimental resolution Z* was found to be independent of n irrespective of the suspension structure. Interestingly, Z* decreases with temperature in near quantitative agreement with numerical calculations.

  18. The effect of welding parameters on penetration in GTA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirali, A.A.; Mills, K.C.

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parametersmore » on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.« less

  19. Climate Change in Alpine Regions - Regional Characteristics of a Global Phenomenon by the Example of Air Temperature

    NASA Astrophysics Data System (ADS)

    Lang, Erich; Stary, Ulrike

    2017-04-01

    For nearly 50 years the Austrian Research Centre for Forests (BFW) has been engaged in research in the Alpine region recording measuring data at extreme sites. Data series of this duration provide already a good insight into the evolution of climate parameters. Extrapolations derived from it are suitable for comparison with results from climate change models or supplement them with regard to their informative value. This is useful because climate change models describe a simplified picture of reality based on the size of the data grid they use. Analysis of time series of two air temperature measuring stations in different torrent catchment areas indicate that 1) predictions of temperature rise for the Alpine region in Austria will have to be revised upwards, and 2) only looking at the data of seasons (or shorter time periods), reveals the real dramatic effect of climate change. Considering e.g. the annual average data of air temperature of the years 1969-2016 at the climate station "Fleissner" (altitude 1210m a.s.l; Upper Mölltal, Carinthia) a significant upward trend is visible. Using a linear smoothing function an increase of the average annual air temperature of about 2.2°C within 50 years emerges. The calculated temperature rise thus confirms the general fear of an increase of more than 2.0°C till the middle of the 21st century. Looking at the seasonal change of air temperature, significant positive trends are shown in all four seasons. But the level of the respective temperature increase varies considerably and indicates the highest increase in spring (+3.3°C), and the lowest one in autumn (+1.3°C, extrapolated for a time period of 50 years). The maximum increase of air temperature at the measuring station "Pumpenhaus" (altitude 980m a.s.l), which is situated in the "Karnische Alpen" in the south of Austria, is even stronger. From a time series of 28 years (with data recording starting in 1989) the maximum rise of temperature was 5.4°C detected for the summer (calculated over a period of 50 years). The predicted overall rise in the annual average temperature within 50 years is +3.9°C, whereas the rise of temperature at the station "Fleissner", located in the "Hohen Tauern", is +2.3°C; both based on determined linear smoothing functions and for the same measuring period (1989-2016). As the effects of the calculated changes of air temperature on the alpine habitat (the entire ecosystem, natural hazards and tourism) and the characteristics of climate change vary strongly from a geographical point of view (as shown by the two examples of air temperature data), a comprehensive analysis of data series from climatic measurement stations (including precipitation, snow covering, radiation…) in the Alpine region is urgently necessary, to be able to work on targeted climate adaptation strategies for these sensitive areas.

  20. Temperature effect on betavoltaic microbatteries based on Si and GaAs under 63Ni and 147Pm irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Tang, Xiao-bin; Liu, Yun-Peng; Xu, Zhi-Heng; Liu, Min; Chen, Da

    2015-09-01

    The effect of temperature on the output performance of four different types of betavoltaic microbatteries was investigated experimental and theoretical. Si and GaAs were selected as the energy conversion devices in four types of betavoltaic microbatteries, and 63Ni and 147Pm were used as beta sources. Current density-voltage curves were determined at a temperature range of 213.15-333.15 K. A simplified method was used to calculate the theoretical parameters of the betavoltaic microbatteries considering the energy loss of beta particles for self-absorption of radioactive source, the electron backscatter effect of different types of semiconductor materials, and the absorption of dead layer. Both the experimental and theoretical results show that the short-circuit current density increases slightly and the open-circuit voltage (VOC) decreases evidently with the increase in temperature. Different combinations of energy conversion devices and beta sources cause different effects of temperature on the microbatteries. In the approximately linear range, the VOC sensitivities caused by temperature for 63Ni-Si, 63Ni-GaAs, 147Pm-Si, and 147Pm-GaAs betavoltaic microbatteries were -2.57, -5.30, -2.53, and -4.90 mV/K respectively. Both theoretical and experimental energy conversion efficiency decreased evidently with the increase in temperature.

  1. Is weather related to the number of assaults seen at emergency departments?

    PubMed

    Lemon, D J; Partridge, R

    2017-11-01

    It is often suggested that the weather can effect behaviour, increasing the likelihood of assaults and resulting in increased admissions to emergency departments (ED). Therefor a better understanding of the effect of climatic conditions could be useful to help EDs in capacity planning. Whilst other studies have looked at this, none have used data collected specifically to look at ED attendance for assaults or have taken account of potential behaviour modifiers. We use data from our ED violence surveillance system, the Cardiff Model (CM), married to daily meteorological data to construct negative-binomial regression models. The models are used to estimate changes in the assault rate with changes in temperature, adjusting for day of the week and alcohol consumption. We find that there is 1% increase in the assault rate for every degree increase in the maximum daily temperature (IRR=1.01, P-value=0.033). Additionally, different patterns in alcohol consumption at weekends also provide a significant contribution. However, when we generalise this model to represent temperature in terms of factors of standard deviation from the mean temperature, the IRR relationship changes, plateauing at unusually high temperatures (±1.5 SD above the mean). The results presented here suggest that whilst temperature does increase the risk of assaults in Dorset, there may be a limit to its effect. This implies the 'curve-linear' relationship for temperature as suggested by others. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Effects of climate change on water quality in the Yaquina ...

    EPA Pesticide Factsheets

    As part of a larger study to examine the effect of climate change (CC) on estuarine resources, we simulated the effect of rising sea level, alterations in river discharge, and increasing atmospheric temperatures on water quality in the Yaquina Estuary. Due to uncertainty in the effects of climate change, initial model simulations were performed for different steady river discharge rates that span the historical range in inflow, and for a range of increases in sea level and atmospheric temperature. Model simulations suggest that in the central portion of the estuary (19 km from mouth), a 60-cm increase in sea level will result in a 2-3 psu change in salinity across a broad range of river discharges. For the oligohaline portion of the estuary, salinity increases associated with a rise in sea level of 60 cm are only apparent at low river discharge rates (< 50 m3 s-1). Simulations suggest that the water temperatures near the mouth of the estuary will decrease due to rising sea level, while water temperatures in upriver portions of the estuary will increase due to rising atmospheric temperatures. We present results which demonstrate how the interaction of changes in river discharge, rising sea level, and atmospheric temperature associated with climate change produce non-linear patterns in the response of estuarine salinity and temperature, which vary with location inside the estuary and season. We also will discuss the importance of presenting results in a mann

  3. Analysis of Global Urban Temperature Trends and Urbanization Impacts

    NASA Astrophysics Data System (ADS)

    Lee, K. I.; Ryu, J.; Jeon, S. W.

    2018-04-01

    Due to urbanization, urban areas are shrinking green spaces and increasing concrete, asphalt pavement. So urban climates are different from non-urban areas. In addition, long-term macroscopic studies of urban climate change are becoming more important as global urbanization affects global warming. To do this, it is necessary to analyze the effect of urbanization on the temporal change in urban temperature with the same temperature data and standards for urban areas around the world. In this study, time series analysis was performed with the maximum, minimum, mean and standard values of surface temperature during the from 1980 to 2010 and analyzed the effect of urbanization through linear regression analysis with variables (population, night light, NDVI, urban area). As a result, the minimum value of the surface temperature of the urban area reflects an increase by a rate of 0.28K decade-1 over the past 31 years, the maximum value reflects an increase by a rate of 0.372K decade-1, the mean value reflects an increase by a rate of 0.208 decade-1, and the standard deviation reflects a decrease by rate of 0.023K decade-1. And the change of surface temperature in urban areas is affected by urbanization related to land cover such as decrease of greenery and increase of pavement area, but socioeconomic variables are less influential than NDVI in this study. This study are expected to provide an approach to future research and policy-planning for urban temperature change and urbanization impacts.

  4. A review of high-temperature adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.

    1981-01-01

    The development of high temperature adhesives and polyphenylquinoxalines (PPQ) is reported. Thermoplastic polyimides and linear PPQ adhesive are shown to have potential for bonding both metals and composite structures. A nadic terminated addition polyimide adhesive, LARC-13, and an acetylene terminated phenylquinoxaline (ATPQ) were developed. Both of the addition type adhesives are shown to be more readily processable than linear materials but less thermooxidatively stable and more brittle. It is found that the addition type adhesives are able to perform, at elevated temperatures up to 595 C where linear systems fail thermoplastically.

  5. Seasonal modeling of hand, foot, and mouth disease as a function of meteorological variations in Chongqing, China

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Zhao, Han; You, Fangxin; Zhou, Hailong; Goggins, William B.

    2017-08-01

    Hand, foot, and mouth disease (HFMD) is an enterovirus-induced infectious disease, mainly affecting children under 5 years old. Outbreaks of HFMD in recent years indicate the disease interacts with both the weather and season. This study aimed to investigate the seasonal association between HFMD and weather variation in Chongqing, China. Generalized additive models and distributed lag non-linear models based on a maximum lag of 14 days, with negative binomial distribution assumed to account for overdispersion, were constructed to model the association between reporting HFMD cases from 2009 to 2014 and daily mean temperature, relative humidity, total rainfall and sun duration, adjusting for trend, season, and day of the week. The year-round temperature and relative humidity, rainfall in summer, and sun duration in winter were all significantly associated with HFMD. An inverted-U relationship was found between mean temperature and HFMD above 19 °C in summer, with a maximum morbidity at 27 °C, while the risk increased linearly with the temperature in winter. A hockey-stick association was found for relative humidity in summer with increasing risks over 60%. Heavy rainfall, relative to no rain, was found to be associated with reduced HFMD risk in summer and 2 h of sunshine could decrease the risk by 21% in winter. The present study showed meteorological variables were differentially associated with HFMD incidence in two seasons. Short-term weather variation surveillance and forecasting could be employed as an early indicator for potential HFMD outbreaks.

  6. Wide Temperature Magnetization Characteristics of Transverse Magnetically Annealed Amorphous Tapes for High Frequency Aerospace Magnetics

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Schwarze, Gene E.

    1999-01-01

    100 kHz magnetization properties of sample transverse magnetically annealed, cobalt-based amorphous and iron-based nanocrystalline tape wound magnetic cores are presented over the temperature range of -150 C to 150 C, at selected values of B(sub peak). Frequency resolved characteristics are given over the range of 50 kHz to 1 MHz, but at B(sub peak) = 0.1 T and 50 C only. Basic exciting winding current and induced voltage data were taken on bare toroidal cores, in a standard type measurement setup. A linear permeability model, which represents the core by a parallel L-R circuit, is used to interpret and present the magnetization characteristics and several figures of merit applicable to inductor materials are reviewed. The 100 kHz permeability thus derived decreases with increasing temperature for the Fe-based, nanocrystalline material, but increases roughly linearly with temperature for the two Co-based materials, as long as B(sub peak) is sufficiently low to avoid saturation effects. Due to the high permeabilities, rather low values of the 'quality factor' Q, from about 20 to below unity, were obtained over the frequency range of 50 kHz to 1 MHz (50 C, B(sub peak) = 0.1 T). Therefore these cores must be gapped in order to make up high Q or high current inductors. However, being rugged, low core loss materials with flat B-H loop characteristics, they may provide new solutions to specialty inductor applications.

  7. Optimization of thermo-alkaline disintegration of sewage sludge for enhanced biogas yield.

    PubMed

    Shehu, Muhammad Sani; Abdul Manan, Zainuddin; Alwi, Sharifah Rafidah Wan

    2012-06-01

    Optimization of thermo-alkaline disintegration of sewage sludge for enhanced biogas yield was carried out using response surface methodology (RSM) and Box-Behnken design of experiment. The individual linear and quadratic effects as well as the interactive effects of temperature, NaOH concentration and time on the degree of disintegration were investigated. The optimum degree of disintegration achieved was 61.45% at 88.50 °C, 2.29 M NaOH (24.23%w/w total solids) and 21 min retention time. Linear and quadratic effects of temperature are most significant in affecting the degree of disintegration. The coefficient of determination (R(2)) of 99.5% confirms that the model used in predicting the degree of disintegration process has a very good fitness with the experimental variables. The disintegrated sludge increased the biogas yield by 36%v/v compared to non-disintegrated sludge. The RSM with Box-Behnken design is an effective tool in predicting the optimum degree of disintegration of sewage sludge for increased biogas yield. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. [Influence of humidex on incidence of bacillary dysentery in Hefei: a time-series study].

    PubMed

    Zhang, H; Zhao, K F; He, R X; Zhao, D S; Xie, M Y; Wang, S S; Bai, L J; Cheng, Q; Zhang, Y W; Su, H

    2017-11-10

    Objective: To investigate the effect of humidex combined with mean temperature and relative humidity on the incidence of bacillary dysentery in Hefei. Methods: Daily counts of bacillary dysentery cases and weather data in Hefei were collected from January 1, 2006 to December 31, 2013. Then, the humidex was calculated from temperature and relative humidity. A Poisson generalized linear regression combined with distributed lag non-linear model was applied to analyze the relationship between humidex and the incidence of bacillary dysentery, after adjusting for long-term and seasonal trends, day of week and other weather confounders. Stratified analyses by gender, age and address were also conducted. Results: The risk of bacillary dysentery increased with the rise of humidex. The adverse effect of high humidex (90 percentile of humidex) appeared in 2-days lag and it was the largest at 4-days lag ( RR =1.063, 95 %CI : 1.037-1.090). Subgroup analyses indicated that all groups were affected by high humidex at lag 2-5 days. Conclusion: High humidex could significantly increase the risk of bacillary dysentery, and the lagged effects were observed.

  9. Heat transfer and thermal management studies of lithium polymer batteries for electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Song, Li

    The thermal conductivities of the polymer electrolyte and composite cathode are important parameters characterizing heat transport in lithium polymer batteries. The thermal conductivities of lithium polymer electrolytes, including poly-ethylene oxide (PEO), PEO-LiClO4, PEO-LiCF3SO 3, PEO-LiN(CF3SO2)2, PEO-LiC(CF 3SO2)3, and the thermal conductivities of TiS 2 and V6O13 composite cathodes, were measured over the temperature range from 25°C to 150°C by a guarded heat flow meter. The thermal conductivities of the electrolytes were found to be relatively constant for the temperature and for electrolytes with various concentrations of the lithium salt. The thermal conductivities of the composite cathodes were found to increase with the temperature below the melting temperature of the polymer electrolyte and only slightly increase above the melting temperature. Three different lithium polymer cells, including Li/PEO-LiCF3 S O3/TiS2, Li/PEO-LiC(CF3 S O2)3/V6 O13, and Li/PEO-LiN(CF3 S O2)2/ Li1+x Mn2 O4 were prepared and their discharge curves, along with heat generation rates, were measured at various galvanostatic discharge current densities, and at different temperature (70°C, 80°C and 90°C), by a potentiostat/galvanostat and an isothermal microcalorimeter. The thermal stability of a lithium polymer battery was examined by a linear perturbation analysis. In contrast to the thermal conductivity, the ionic conductivity of polymer electrolytes for lithium-polymer cell increases greatly with increasing temperature, an instability could arise from this temperature dependence. The numerical calculations, using a two dimensional thermal model, were carried out for constant potential drop across the electrolyte, for constant mean current density and for constant mean cell output power. The numerical calculations were approximately in agreement with the linear perturbation analysis. A coupled mathematical model, including electrochemical and thermal components, was developed to study the heat transfer and thermal management of lithium polymer batteries. The results calculated from the model, including temperature distributions, and temperatures at different stages of discharge are significantly different from those calculated from the thermal model. The discharge curves and heat generation rates calculated by the electrochemical-thermal model were in agreement with the experimental results. Different thermal management approaches, including a variable conductance insulation enclosure were studied.

  10. [Biomass composition of thermotolerant yeasts of the genus Candida under elevated cultivation temperatures].

    PubMed

    Chistiakova, T I; Dediukhina, E G; Eroshin, V K

    1981-01-01

    The effect of growth temperature on the content of nucleic acids, the content and composition of protein, and the pool of free amino acids and lipids was studied under the conditions of chemostat cultivation of yeast strains at constant flow rates and pO2. The pool of free amino acids in all of the strains decreased with an increase in the temperature of growth. Changes in the content and composition of other cellular components depending on temperature were determined by individual characteristics of the strains. A linear relationship between the content of biomass components and the temperature of growth was found only in Candida scottii. The temperature of yeast cultivation may be used as a factor regulating the pool of free intracellular amino acids and the fatty acids composition of lipids.

  11. Climate change impacts on faecal indicator and waterborne pathogen concentrations and disease

    NASA Astrophysics Data System (ADS)

    Hofstra, Nynke; Vermeulen, Lucie C.; Wondmagegn, Berhanu Y.

    2013-04-01

    Changes in temperature and precipitation patterns may impact on the concentrations of the faecal indicator E. coli and waterborne pathogens, such as Cryptosporidium, in the surface water, and consequently - through drinking water, recreational water or consumption of irrigated vegetables - on the risk of waterborne disease. Although an increased temperature would generally increase the decline of pathogens and therefore decrease the surface water concentrations, increased precipitation and an increased incidence of extreme precipitation may increase surface water concentrations through increased (sub-)surface runoff and an increased risk of sewer overflows. And while the diluting effect of increased precipitation decreases the surface water concentration, decreased precipitation increases the percentage of sewage in the surface water and therefore increases the concentration. Moreover, (extreme) precipitation after drought may also increase the concentration. Changes in behaviour, such as increased recreation and irrigation with higher temperatures may impact on the disease risk. What the balance is between these positive and negative impacts of climate change on faecal indicator and waterborne pathogen concentrations and disease is not well known yet. A lack of available statistical or process-based models and suitable scenarios prevents quantitative analyses. We will present two examples of recent studies that aim to assess the impact of climate change on faecal indicator concentrations and waterborne disease. The first is a study on the relationship between climate variables and E. coli concentrations in the water of river systems in the Netherlands for the period 1985 - 2010. This study shows that each of the variables water temperature (negatively), precipitation and discharge (both positively) are significantly correlated with E. coli concentrations for most measurement locations. We will also present a linear regression model, including all of these variables. In the second example we assess the relationship between the weather variables precipitation and minimum and maximum temperature and the number of diarrhoeal cases in Ethiopia. We have digitised data from the Ethiopian health service and hospitals on the number of diarrhoeal cases for the period 2005 - 2010 and used meteorological data from their weather service. Very strong correlations can be found between the monthly weather variables and the number of diarrhoeal cases and a linear regression model including all variables explains a large part of the variability of the data. The studies indicate that climate change may increase the waterborne pathogen concentration in surface water and disease risk and should therefore not be ignored as a threat to microbial water quality.

  12. Light Scattering Study of Mixed Micelles Made from Elastin-Like Polypeptide Linear Chains and Trimers

    NASA Astrophysics Data System (ADS)

    Terrano, Daniel; Tsuper, Ilona; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    Temperature sensitive nanoparticles were generated from a construct (H20F) of three chains of elastin-like polypeptides (ELP) linked to a negatively charged foldon domain. This ELP system was mixed at different ratios with linear chains of ELP (H40L) which lacks the foldon domain. The mixed system is soluble at room temperature and at a transition temperature (Tt) will form swollen micelles with the hydrophobic linear chains hidden inside. This system was studied using depolarized dynamic light scattering (DDLS) and static light scattering (SLS) to determine the size, shape, and internal structure of the mixed micelles. The mixed micelle in equal parts of H20F and H40L show a constant apparent hydrodynamic radius of 40-45 nm at the concentration window from 25:25 to 60:60 uM (1:1 ratio). At a fixed 50 uM concentration of the H20F, varying H40L concentration from 5 to 80 uM resulted in a linear growth in the hydrodynamic radius from about 11 to about 62 nm, along with a 1000-fold increase in VH signal. A possible simple model explaining the growth of the swollen micelles is considered. Lastly, the VH signal can indicate elongation in the geometry of the particle or could possibly be a result from anisotropic properties from the core of the micelle. SLS was used to study the molecular weight, and the radius of gyration of the micelle to help identify the structure and morphology of mixed micelles and the tangible cause of the VH signal.

  13. Minimization of thermal impact by application of electrode cooling in a co-linear PEF treatment chamber.

    PubMed

    Meneses, Nicolas; Jaeger, Henry; Knorr, Dietrich

    2011-10-01

    A co-linear pulsed electric field (PEF) treatment chamber was analyzed and optimized considering electrical process conditions, temperature, and retention of heat-sensitive compounds during a continuous PEF treatment of peach juice. The applicability of a jacket heat-exchanger device surrounding the ground electrode was studied in order to provide active cooling and to avoid temperature peaks within the treatment chamber thus reducing the total thermal load to which the product is exposed. Simulation of the PEF process was performed using a finite element method prior to experimental verification. Inactivation of polyphenoloxydase (PPO) and peroxidase (POD) as well as the degradation of ascorbic acid (AA) in peach juice was quantified and used as indirect indicators for the temperature distribution. Peaks of product temperature within the treatment chamber were reduced, that is, from 98 to 75 °C and retention of the indicators PPO, POD, and AA increased by more than 10% after application of the active electrode cooling device. Practical Application:  The co-linear PEF treatment chamber is widely used for continuous PEF treatment of liquid products and also suitable for industrial scale application; however, Joule heating in combination with nonuniform electric field distribution may lead to unwanted thermal effects. The proposed design showed potential to reduce the thermal load, to which the food is exposed, allowing the retention of heat-sensitive components. The design is applicable at laboratory or industrial scale to perform PEF trials avoiding temperature peaks, which is also the basis for obtaining inactivation kinetic models with minimized thermal impact on the kinetic variables. © 2011 Institute of Food Technologists®

  14. Temperature dependence of ice-on-rock friction at realistic glacier conditions

    PubMed Central

    Savage, H.; Nettles, M.

    2017-01-01

    Using a new biaxial friction apparatus, we conducted experiments of ice-on-rock friction in order to better understand basal sliding of glaciers and ice streams. A series of velocity-stepping and slide–hold–slide tests were conducted to measure friction and healing at temperatures between −20°C and melting. Experimental conditions in this study are comparable to subglacial temperatures, sliding rates and effective pressures of Antarctic ice streams and other glaciers, with load-point velocities ranging from 0.5 to 100 µm s−1 and normal stress σn = 100 kPa. In this range of conditions, temperature dependences of both steady-state friction and frictional healing are considerable. The friction increases linearly with decreasing temperature (temperature weakening) from μ = 0.52 at −20°C to μ = 0.02 at melting. Frictional healing increases and velocity dependence shifts from velocity-strengthening to velocity-weakening behaviour with decreasing temperature. Our results indicate that the strength and stability of glaciers and ice streams may change considerably over the range of temperatures typically found at the ice–bed interface. This article is part of the themed issue ‘Microdynamics of ice’. PMID:28025297

  15. Understanding the effect of annealing temperature on crystalline structure, morphology, and photocatalytic activity of silver-loaded TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Viet, Pham Van; Phuong Trang, Duong Dao; Phat, Bui Dai; Hieu, Le Van; Thi, Cao Minh

    2018-05-01

    In this study, we classified the effect of the annealing temperature on silver-loaded TiO2 nanotubes (Ag/TNTs). X-ray diffraction results demonstrate that TNTs have a tendency of phase transformation owing to silver nanoparticles (Ag NPs). The Brunauer-Emmett-Teller method indicates that Ag/TNTs is a mesopore material and the surface area of Ag/TNTs decreases when the annealing temperature increases. This research concluded that the TNT structure begins to break at high annealing temperatures (>400 °C) and is completely broken at 500 °C. The average diameter of the Ag NPs in Ag/TNTs increases linearly with the annealing temperature. In addition, this study clearly explained the oxidation state transformation of Ag in Ag/TNTs under the impact of the annealing temperature, therein, the Ag0 state is transferred completely to Ag+ at 400 °C, and some Ag+ is oxidized to form Ag2+. The Ag/TNTs and Ag/TNTs annealed at 300 °C provided the good methylene blue photodegradation ability for 150 min under sunlight condition.

  16. Influences of climatic parameters on piglet preweaning mortality in Thailand.

    PubMed

    Nuntapaitoon, Morakot; Tummaruk, Padet

    2018-04-01

    The objective of the present study was to determine the influences of temperature, humidity, and temperature-humidity index (THI) on piglet preweaning mortality in a conventional open-housing system commercial swine herd in Thailand. The analyzed data included 11,157 litters from 3574 Landrace × Yorkshire crossbred sows. The daily temperature, humidity, and THI data were collected from a meteorological station near the herd. The associations between temperature, humidity, and THI for periods before and after farrowings and piglet preweaning mortality were analyzed. Piglet preweaning mortality (log transformation) and the proportion of litters with piglet preweaning mortality greater than 20% were analyzed by using general linear mixed models and generalized linear mixed models (GLIMMIX), respectively. On average, the piglet preweaning mortality and the proportion of litters with piglet preweaning mortality greater than 20% were 14.5% (14.2 to 14.8% CI) and 26.4% (25.5 to 27.2% CI), respectively. Piglet preweaning mortality was positively correlated with the mean temperature (r = 0.028, P = 0.003), humidity (r = 0.038, P < 0.001), and THI (r = 0.036, P < 0.001) during 0-7 days postpartum. In primiparous sows, piglet preweaning mortality increased from 12.1 to 18.5% (+ 6.4%, P < 0.001) when the mean temperature during 0-7 days postpartum increased from < 25.0 to ≥ 29 °C. However, the influence of the temperature during 0-7 days postpartum was insignificant in multiparous sows (P = 0.569, P = 0.593, and P = 0.539 in sows parity numbers 2, 3-5, and 6-9, respectively). Likewise, piglet preweaning mortality increased from 10.7 to 16.7% (+ 6.0%, P = 0.012) when humidity during 0-7 days postpartum increased from < 60 to ≥ 80% in primiparous sows but it was insignificant in sows parity numbers 3-5 (P = 0.095) and 6-9 (P = 0.219). Moreover, the proportion of the litters with piglet preweaning mortality greater than 20% in primiparous sows increased from 18.3 to 32.4% (+ 14.1%, P = 0.017) when the THI during 0-7 days postpartum increased from < 73 to ≥ 81. In conclusion, the negative influences of temperature, humidity, and THI on piglet preweaning mortality were more evident in primiparous than multiparous sows. These findings implied that strategies to reduce temperature for postpartum sows in the open-housing system in Thailand are inadequate, and the proper management of postpartum primiparous sows should be emphasized.

  17. Accounting for the decrease of photosystem photochemical efficiency with increasing irradiance to estimate quantum yield of leaf photosynthesis.

    PubMed

    Yin, Xinyou; Belay, Daniel W; van der Putten, Peter E L; Struik, Paul C

    2014-12-01

    Maximum quantum yield for leaf CO2 assimilation under limiting light conditions (Φ CO2LL) is commonly estimated as the slope of the linear regression of net photosynthetic rate against absorbed irradiance over a range of low-irradiance conditions. Methodological errors associated with this estimation have often been attributed either to light absorptance by non-photosynthetic pigments or to some data points being beyond the linear range of the irradiance response, both causing an underestimation of Φ CO2LL. We demonstrate here that a decrease in photosystem (PS) photochemical efficiency with increasing irradiance, even at very low levels, is another source of error that causes a systematic underestimation of Φ CO2LL. A model method accounting for this error was developed, and was used to estimate Φ CO2LL from simultaneous measurements of gas exchange and chlorophyll fluorescence on leaves using various combinations of species, CO2, O2, or leaf temperature levels. The conventional linear regression method under-estimated Φ CO2LL by ca. 10-15%. Differences in the estimated Φ CO2LL among measurement conditions were generally accounted for by different levels of photorespiration as described by the Farquhar-von Caemmerer-Berry model. However, our data revealed that the temperature dependence of PSII photochemical efficiency under low light was an additional factor that should be accounted for in the model.

  18. Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.

  19. Linearly exact parallel closures for slab geometry

    NASA Astrophysics Data System (ADS)

    Ji, Jeong-Young; Held, Eric D.; Jhang, Hogun

    2013-08-01

    Parallel closures are obtained by solving a linearized kinetic equation with a model collision operator using the Fourier transform method. The closures expressed in wave number space are exact for time-dependent linear problems to within the limits of the model collision operator. In the adiabatic, collisionless limit, an inverse Fourier transform is performed to obtain integral (nonlocal) parallel closures in real space; parallel heat flow and viscosity closures for density, temperature, and flow velocity equations replace Braginskii's parallel closure relations, and parallel flow velocity and heat flow closures for density and temperature equations replace Spitzer's parallel transport relations. It is verified that the closures reproduce the exact linear response function of Hammett and Perkins [Phys. Rev. Lett. 64, 3019 (1990)] for Landau damping given a temperature gradient. In contrast to their approximate closures where the vanishing viscosity coefficient numerically gives an exact response, our closures relate the heat flow and nonvanishing viscosity to temperature and flow velocity (gradients).

  20. Evolution of Diurnal Asymmetry of Surface Temperature over Different Climatic Zones

    NASA Astrophysics Data System (ADS)

    Rajendran, V.; C T, D.; Chakravorty, A.; AghaKouchak, A.

    2016-12-01

    The increase in drought, flood, diseases, crop failure etc. in the recent past has created an alarm amongst the researchers. One of the main reasons behind the intensification of these environmental hazards is the recent revelation of climate change, which is generally attributed to the human induced global warming, represented by an increase in global mean temperature. However, in order to formulate policies to mitigate and prevent the threats due to global warming, its key driving factors should be analysed at high spatial and temporal resolution. Diurnal Temperature Range (DTR) is one of the indicators of global warming. The study of the evolution of the DTR is crucial, since it affects agriculture, health, ecosystems, transport, etc. Recent studies reveal that diurnal asymmetry has decreased globally, whereas a few regional studies report a contradictory pattern and attributed them to localized feedback processes. However, an evident conclusion cannot be made using the linear trend approaches employed in the past studies and the evolution of diurnal asymmetry should be investigated using non-linear trend approach for better perception. Hence, the regional evolution of DTR trend has been analysed using the spatially-temporally Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method over India and observed a positive trend in over-all mean of DTR, while its rate of increase has declined in the recent decades. Further, the grids showing negative trend in DTR is observed in arid deserts and warm-temperate grasslands and positive trend over the west coast and sub-tropical forest in the North-East. This transition predominantly began from the west coast and is stretched with an increase in magnitude. These changes are more pronounced during winter and post-monsoon seasons, especially in the arid desert and warm-temperate grasslands, where the rate of increase in minimum temperature is higher than that of the maximum temperature. These analyses suggest that the DTR changes are influenced by both, local and global factors working in tandem, since a warmed up ocean produces contradictory DTR trends in different climatic zones. It can be inferred from this study that the impact of a global change in a region will depend on the regional climate.

  1. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore

    PubMed Central

    Hii, Yien Ling; Rocklöv, Joacim; Ng, Nawi; Tang, Choon Siang; Pang, Fung Yin; Sauerborn, Rainer

    2009-01-01

    Introduction Dengue is currently a major public health burden in Asia Pacific Region. This study aims to establish an association between dengue incidence, mean temperature and precipitation, and further discuss how weather predictors influence the increase in intensity and magnitude of dengue in Singapore during the period 2000–2007. Materials and methods Weekly dengue incidence data, daily mean temperature and precipitation and the midyear population data in Singapore during 2000–2007 were retrieved and analysed. We employed a time series Poisson regression model including time factors such as time trends, lagged terms of weather predictors, considered autocorrelation, and accounted for changes in population size by offsetting. Results The weekly mean temperature and cumulative precipitation were statistically significant related to the increases of dengue incidence in Singapore. Our findings showed that dengue incidence increased linearly at time lag of 5–16 and 5–20 weeks succeeding elevated temperature and precipitation, respectively. However, negative association occurred at lag week 17–20 with low weekly mean temperature as well as lag week 1–4 and 17–20 with low cumulative precipitation. Discussion As Singapore experienced higher weekly mean temperature and cumulative precipitation in the years 2004–2007, our results signified hazardous impacts of climate factors on the increase in intensity and magnitude of dengue cases. The ongoing global climate change might potentially increase the burden of dengue fever infection in near future. PMID:20052380

  2. Measurement of He neutral temperature in detached plasmas using laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Aramaki, M.; Tsujihara, T.; Kajita, S.; Tanaka, H.; Ohno, N.

    2018-01-01

    The reduction of the heat load onto plasma-facing components by plasma detachment is an inevitable scheme in future nuclear fusion reactors. Since the control of the plasma and neutral temperatures is a key issue to the detached plasma generation, we have developed a laser absorption spectroscopy system for the metastable helium temperature measurements and used together with a previously developed laser Thomson scattering system for the electron temperature and density measurements. The thermal relaxation process between the neutral and the electron in the detached plasma generated in the linear plasma device, NAGDIS-II was studied. It is shown that the electron temperature gets close to the neutral temperature by increasing the electron density. On the other hand, the pressure dependence of electron and neutral temperatures shows the cooling effect by the neutrals. The possibility of the plasma fluctuation measurement using the fluctuation in the absorption signal is also shown.

  3. Response of jammed packings to thermal fluctuations

    NASA Astrophysics Data System (ADS)

    Wu, Qikai; Bertrand, Thibault; Shattuck, Mark D.; O'Hern, Corey S.

    2017-12-01

    We focus on the response of mechanically stable (MS) packings of frictionless, bidisperse disks to thermal fluctuations, with the aim of quantifying how nonlinearities affect system properties at finite temperature. In contrast, numerous prior studies characterized the structural and mechanical properties of MS packings of frictionless spherical particles at zero temperature. Packings of disks with purely repulsive contact interactions possess two main types of nonlinearities, one from the form of the interaction potential (e.g., either linear or Hertzian spring interactions) and one from the breaking (or forming) of interparticle contacts. To identify the temperature regime at which the contact-breaking nonlinearities begin to contribute, we first calculated the minimum temperatures Tc b required to break a single contact in the MS packing for both single- and multiple-eigenmode perturbations of the T =0 MS packing. We find that the temperature required to break a single contact for equal velocity-amplitude perturbations involving all eigenmodes approaches the minimum value obtained for a perturbation in the direction connecting disk pairs with the smallest overlap. We then studied deviations in the constant volume specific heat C¯V and deviations of the average disk positions Δ r from their T =0 values in the temperature regime TC ¯V100 for linear spring interactions is independent of system size. This result emphasizes that contact-breaking nonlinearities are dominant over form nonlinearities in the low-temperature range Tc b

  4. Synchrony of forest responses to climate from the aspect of tree mortality in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lee, W. K.; Piao, D.; Choi, G. M.; Gang, H. U.

    2016-12-01

    Mortality is a key process in forest-stand dynamics. However, tree mortality is not well understood, particularly in relation to climatic factors. The objectives of this study were to: (i) determine the patterns of maximum stem number (MSN) per ha over dominant tree height from 5-year remeasurements of the permanent sample plots for temperate forests [Red pine (Pinus densiflora), Japanese larch (Larix kaempferi), Korean pine (Pinus koraiensis), Chinese cork oak (Quercus variabilis), and Mongolian oak (Quercus mongolica)] using Sterba's theory and Korean National Forest Inventory (NFI) data, (ii) develop a stand-level mortality (self-thinning) model using the MSN curve, and (iii) assess the impact of temperature on tree mortality in semi-variogram and linear regression models. The MSN curve represents the upper range of observed stem numbers per ha. The mortality model and validation statistic reveal significant differences between the observed data and the model predictions (R2 = 0.55-0.81), and no obvious dependencies or patterns that indicate systematic trends between the residuals and the independent variable. However, spatial autocorrelation was detected from residuals of coniferous species (Red pine, Japanese larch and Korean pine), but not of oak species (Chinese cork oak and Mongolian oak). Based on linear regression from residuals, we found that the mortality of coniferous forests tended to increase when the annual mean temperature increased. Conversely, oak mortality nonsignificantly decreased with increasing temperature. These findings indicate that enhanced tree mortality due to rising temperatures in response to climate change is possible, especially in coniferous forests, and are expected to contribute to policy decisions to support and forest management practices.

  5. Lung function association with outdoor temperature and relative humidity and its interaction with air pollution in the elderly.

    PubMed

    Lepeule, Johanna; Litonjua, Augusto A; Gasparrini, Antonio; Koutrakis, Petros; Sparrow, David; Vokonas, Pantel S; Schwartz, Joel

    2018-04-21

    While the effects of weather variability on cardio-respiratory mortality are well described, research examining the effects on morbidity, especially for vulnerable populations, is warranted. We investigated the associations between lung function and outdoor temperature (T in Celsius degrees (°C)) and relative humidity (RH), in a cohort of elderly men, the Normative Aging Study. Our study included 1103 participants whose forced vital capacity (FVC), forced expiratory volume in one second (FEV 1 ), and weather exposures were assessed one to five times during the period 1995-2011 (i.e. 3162 observations). Temperature and relative humidity were measured at one location 4 h to 7 days before lung function tests. We used linear mixed-effects models to examine the associations with outdoor T and RH. A 5-degree increase in the 3-day moving average T was associated with a significant 0.7% decrease (95%CI: -1.24, -0.20) in FVC and a 5% increase in the 7-day moving average RH was associated with a significant 0.2% decrease (95%CI: -0.40, -0.02) in FVC and FEV 1 . The associations with T were greater when combined with higher exposures of black carbon with a 1.6% decrease (95%CI -2.2; -0.9) in FVC and a 1% decrease (95%CI -1.7; -0.4) in FEV 1 . The relationships between T and RH and lung function were linear. No synergistic effect of T and RH was found. Heat and lung function are two predictors of mortality. Our findings suggest that increases in temperature and relative humidity are related to decreases in lung function, and such observations might be amplified by high black carbon levels. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Urban Streams as Transporters or Transformers of Carbon and Nutrients: Does Size Matter?

    NASA Astrophysics Data System (ADS)

    Wood, K. L.; Kaushal, S.

    2017-12-01

    Urbanization degrades water quality, channel form/ function, and related ecosystem services. Biological and hydrological responses to urbanization vary between sites potentially due to watershed size, channel size, and geomorphology along the broader urban watershed continuum. We investigated if/when the size of a stream can influence water quality in urban watersheds. We conducted high-frequency sampling of a small polluted headwater stream and a large restored stream in the Anacostia watershed, Washington D.C. metro area. Temperature, pH, conductivity, discharge, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) were measured 2-3 times a week at two locations near the University of Maryland campus. DOC showed strong positive linear relationships with discharge at both sites, but TDN showed significant but contrasting linear relationships in the small polluted headwater site vs. the larger restored stream. In the larger restored stream, TDN significantly decreased with increasing water temperatures, which potentially suggested biological uptake. In the headwater stream, TDN concentrations significantly increased with increasing temperature, which suggests a possible seasonal input from terrestrial or in-stream sources. Interestingly, there were significant relationships between DIC and DOC in the larger restored stream, which suggested that there may have been a biological coupling of carbon forms due to stream ecosystem metabolism. Differences in relationships between TDN, DIC, and DOC and discharge, pH, and water temperatures may indicate the effects of stream size and floodplain restoration on water chemistry responses to human inputs. Larger streams may show greater potential for biogeochemical transformations, and stream size may need to be better evaluated in efforts to prioritize restoration strategies.

  7. Theoretical modelling on thermal expansion of Al, Ag and Cu nanomaterials

    NASA Astrophysics Data System (ADS)

    Manu, Mehul; Dubey, Vikash

    2018-05-01

    A simple theoretical model is developed for the calculating the coefficient of volume thermal expansion (CTE) and volume thermal expansion (VTE) of Al, Ag and Cu nanomaterials by considering the cubo-octahedral structure with the change of temperature and the cluster size. At the room temperature, the coefficient of volume thermal expansion decreases sharply below 20-25 nm and the decrement of the coefficient of volume thermal expansion becomes slower above 20-25 nm. We also saw a variation in the volume thermal expansion with the variation of temperature and cluster size. At a fixed cluster size, the volume thermal expansion increases with an increase of temperature at below the melting temperature and show a linear relation of volume thermal expansion with the temperature. At a constant temperature, the volume thermal expansion decreases rapidly with an increase in cluster size below 20-25 nm and after 20-25 nm the decrement of volume thermal expansion becomes slower with the increase of the size of the cluster. Thermal expansion is due to the anharmonicity of the atom interaction. As the temperature rises the amplitude of crystal lattice vibration increases, but the equilibrium distance shifts as the atom spend more time at distance greater than the original spacing due as the repulsion at short distance greater than the corresponding attraction at farther distance. In considering the cubo- octahedral structure with the cluster order, the model prediction on the CTE and the VTE are in good agreement with the available experimental data which demonstrate the validity of our work.

  8. The proper weighting function for retrieving temperatures from satellite measured radiances

    NASA Technical Reports Server (NTRS)

    Arking, A.

    1976-01-01

    One class of methods for converting satellite measured radiances into atmospheric temperature profiles, involves a linearization of the radiative transfer equation: delta r = the sum of (W sub i) (delta T sub i) where (i=1...s) and where delta T sub i is the deviation of the temperature in layer i from that of a reference atmosphere, delta R is the difference in the radiance at satellite altitude from the corresponding radiance for the reference atmosphere, and W sub i is the discrete (or vector) form of the T-weighting (i.e., temperature weighting) function W(P), where P is pressure. The top layer of the atmosphere corresponds to i = 1, the bottom layer to i = s - 1, and i = s refers to the surface. Linearization in temperature (or some function of temperature) is at the heart of all linear or matrix methods. The weighting function that should be used is developed.

  9. Marshall N. Rosenbluth Outstanding Doctoral Thesis Award Talk: Simultaneous Measurement of Electron Temperature and Density Fluctuations in the Core of DIII-D Plasmas

    NASA Astrophysics Data System (ADS)

    White, A. E.

    2009-11-01

    Multi-field fluctuation measurements provide opportunities for rigorous comparison between experiment and nonlinear gyrokinetic turbulence simulations. A unique set of diagnostics on DIII-D allows for simultaneous study of local, long-wavelength (0 < kθρs< 0.5) electron temperature and density fluctuations in the core plasma (0.4 < ρ< 0.8). Previous experiments in L-mode indicate that normalized electron temperature fluctuation levels (40 < f < 400,kHz) increase with radius from ˜0.4% at ρ= 0.5 to ˜2% at ρ=0.8, similar to simultaneously measured density fluctuations. Electron cyclotron heating (ECH) is used to increase Te, which increases electron temperature fluctuation levels and electron heat transport in the experiments. In contrast, long wavelength density fluctuation levels change very little. The different responses are consistent with increased TEM drive relative to ITG-mode drive. A new capability at DIII-D is the measurement of phase angle between electron temperature and density fluctuations using coupled correlation electron cyclotron emission radiometer and reflectometer diagnostics. Linear and nonlinear GYRO runs have been used to design validation experiments that focus on measurements of the phase angle. GYRO shows that if Te and ∇Te increase 50% in a beam-heated L-mode plasma (ρ=0.5), then the phase angle between electron temperature and density fluctuations decreases 30%-50% and electron temperature fluctuation levels increase a factor of two more than density fluctuations. Comparisons between these predictions and experimental results will be presented.

  10. Temperature-dependent thermal conductivity of silicone-Al2O3 nanocomposites

    NASA Astrophysics Data System (ADS)

    Moreira, D. C.; Braga Junior, N. R.; Benevides, R. O.; Sphaier, L. A.; Nunes, L. C. S.

    2015-11-01

    This paper presents an experimental investigation of thermophysical properties of elastomeric nano-composites. Spherical alumina nanoparticles with a diameter of 150 nm were added to polydimethylsiloxane (PDMS), and batches of nanocomposites with different volume concentrations (up to 5 %) were produced. The thermal conductivity of the samples was acquired through the guarded heat flow meter method at nine temperature setpoints, ranging from 0 to 80 °C, and density measurements were carried out, in order to evaluate the composition of the samples. The results showed a significant increase in the thermal conductivity of PDMS with small additions of alumina nanoparticles. In addition, a notable linear decrease in conductivity was observed with increasing temperature. Finally, classical models were fitted to the experimental data and a discussion about the physical meaning of the adjusted parameters was carried out.

  11. TEMPERATURE-DEPENDENT VISCOELASTIC PROPERTIES OF THE HUMAN SUPRASPINATUS TENDON

    PubMed Central

    Huang, Chun-Yuh; Wang, Vincent M.; Flatow, Evan L.; Mow, Van C.

    2009-01-01

    Temperature effects on the viscoelastic properties of the human supraspinatus tendon were investigated using static stress-relaxation experiments and Quasi-Linear Viscoelastic (QLV) theory. Twelve supraspinatus tendons were randomly assigned to one of two test groups for tensile testing using the following sequence of temperatures: (1) 37°C, 27°C, and 17°C (Group I, n=6), or (2) 42°C, 32°C, and 22°C (Group II, n=6). QLV parameter C was found to increase at elevated temperatures, suggesting greater viscous mechanical behavior at higher temperatures. Elastic parameters A and B showed no significant difference among the six temperatures studied, implying that the viscoelastic stress response of the supraspinatus tendon is not sensitive to temperature over shorter testing durations. Using regression analysis, an exponential relationship between parameter C and test temperature was implemented into QLV theory to model temperature-dependent viscoelastic behavior. This modified approach facilitates the theoretical determination of the viscoelastic behavior of tendons at arbitrary temperatures. PMID:19159888

  12. New dual asymmetric CEC linear Fresnel concentrator for evacuated tubular receivers

    NASA Astrophysics Data System (ADS)

    Canavarro, Diogo; Chaves, Julio; Collares-Pereira, Manuel

    2017-06-01

    Linear Fresnel Reflector concentrators (LFR) are a potential solution for low-cost electricity production. Nevertheless in order to become more competitive with other CSP (Concentrated Solar Power) technologies, in particular with the Parabolic Trough concentrator, their overall solar to electricity efficiencies must increase. A possible path to achieve this goal is to increase the concentration factor, hence increasing the working temperatures for higher thermodynamic efficiency (more energy collection) and decrease the total number of rows of the solar field (less parasitic losses and corresponding cost reduction). This paper presents a dual asymmetric CEC-type (Compound Elliptical Concentrator) LFR (Linear Fresnel Concentrator) for evacuated tubular receivers. The concentrator is designed for a high concentration factor, presenting an asymmetric configuration enabling a very compact solution. The CEC-type secondary mirror is introduced to accommodate very high concentration values with a wide enough acceptance-angle (augmenting optical tolerances) for simple mechanical tracking solutions, achieving a higher CAP (Concentration Acceptance Product) in comparison with conventional LFR solutions. The paper presents an optical and thermal analysis of the concentrator using two different locations, Faro (Portugal) and Hurghada (Egypt).

  13. Chemical Potential Evaluation of Thermoelectric and Mechanical Properties of Zr2CoZ (Z = Si, Ge) Heusler Alloys

    NASA Astrophysics Data System (ADS)

    Yousuf, Saleem; Gupta, Dinesh C.

    2018-04-01

    The electronic, mechanical and thermoelectric properties of Zr2CoZ (Z = Si, Ge) Heusler alloys are investigated by the full-potential linearized augmented plane wave method. Using the Voigt-Reuss approximation, we calculated the various elastic constants, the shear and Young's moduli, and Poisson's ratio which predict the ductile nature of the alloys. Thermoelectric coefficients viz., Seebeck, electrical conductivity and figure of merit show Zr2CoZ alloys as n-type thermoelectric materials showing a linearly increasing Seebeck coefficient with temperature mainly because of the existence of almost flat conduction bands along L to D directions of a high symmetry Brillouin zone. The efficiency of conversion was measured as the figure of merit by taking into effect the lattice thermal part that achieves an upper-limit of 0.14 at 1200 K which may favour their use for waste heat recovery at higher temperatures.

  14. Impurity effects on electrical conductivity of doped bilayer graphene in the presence of a bias voltage

    NASA Astrophysics Data System (ADS)

    E, Lotfi; H, Rezania; B, Arghavaninia; M, Yarmohammadi

    2016-07-01

    We address the electrical conductivity of bilayer graphene as a function of temperature, impurity concentration, and scattering strength in the presence of a finite bias voltage at finite doping, beginning with a description of the tight-binding model using the linear response theory and Green’s function approach. Our results show a linear behavior at high doping for the case of high bias voltage. The effects of electron doping on the electrical conductivity have been studied via changing the electronic chemical potential. We also discuss and analyze how the bias voltage affects the temperature behavior of the electrical conductivity. Finally, we study the behavior of the electrical conductivity as a function of the impurity concentration and scattering strength for different bias voltages and chemical potentials respectively. The electrical conductivity is found to be monotonically decreasing with impurity scattering strength due to the increased scattering among electrons at higher impurity scattering strength.

  15. Influence of protein ingestion on human splanchnic and whole-body oxygen consumption, blood flow, and blood temperature.

    PubMed

    Brundin, T; Wahren, J

    1994-05-01

    Splanchnic and whole-body oxygen uptake, blood flow, and blood temperature were studied in 10 healthy subjects before and during 2 hours after oral ingestion of 900 kJ of fish protein. Indirect calorimetry and catheter techniques were used, including blood thermometry in arterial, pulmonary arterial, and hepatic venous blood. After the meal, pulmonary oxygen uptake increased from a basal value of 272 +/- 11 to 332 +/- 23 mL/min. During the first postprandial hour, splanchnic oxygen uptake increased from 62 +/- 5 to 93 +/- 9 mL/min (+50%, P < .05), thereby accounting for 62% +/- 17% of the simultaneous increase in whole-body oxygen consumption. During the second postprandial hour, splanchnic oxygen uptake increased no further, whereas in the extrasplanchnic tissues the oxygen consumption increased, now accounting for the entire simultaneous increase in pulmonary oxygen uptake. Cardiac output increased from basal 6.4 +/- 0.4 to 7.5 +/- 0.5 L/min. Splanchnic blood flow changed little while the arteriohepatic venous oxygen difference increased from 46 +/- 3 to 54 +/- 4 mL/L. Arterial and hepatic venous blood temperatures increased by almost 0.3 degrees C, reflecting a considerable accumulation of heat, indicating a conversion into a positive thermal balance. It is concluded that after protein ingestion, (1) oxygen uptake increases mainly in the splanchnic organs during the first hour, and thereafter exclusively in the extrasplanchnic tissues; (2) the blood flow increases mainly in extrasplanchnic tissues; and (3) the blood temperature increases almost linearly, indicating an upward adjustment of the temperature setpoint in the central thermosensors.

  16. Rheological study of the effect of polyethylene oxide (PEO) homopolymer on the gelation of PEO-PPO-PEO triblock copolymer in aqueous solution

    NASA Astrophysics Data System (ADS)

    Li, Xiaolei; Hyun, Kyu

    2018-05-01

    The effects of polyethylene oxide (PEO) homopolymer on the gelation behavior of a PEO100-PPO65-PEO100 triblock copolymer (Pluronic F127) were explored in aqueous solution under non-isothermal and isothermal conditions. Under non-isothermal conditions (temperature sweep test), two transition points were observed on increasing temperature, that is, at lower and upper gelation temperatures (LTgel and UTgel, respectively). Between LTgel and UTgel, F127 aqueous solutions maintained a hard gel state. Both molecular weight (MW) and PEO concentration affected these two gelation temperatures. In particular, relative molecular weight (MWrel ≡ molecular weight of PEO homopolymer/PEO segment of F127) affected LTgel. LTgel decreased on increasing PEO concentration at MWrel values of <1, but increased on increasing PEO concentration at MWrel values of >1. On the other hand, UTgel decreased with increasing PEO concentration regardless of MWrel. Under isothermal conditions (fixed temperature between LTgel and UTgel), the effects of PEO homopolymer on the mechanical properties of F127 hard gel were systemically investigated using small and large amplitude oscillatory shear tests. In the linear viscoelastic regime, total intra-cycle stress and elastic intra-cycle stress were similar, and viscous response increased on increasing PEO concentration. However, at large strain amplitudes, hard gels showed intra-cycle stiffening but inter-cycle softening behavior. In addition, on increasing PEO concentrations, viscous nonlinearities underwent strain-rate thickening followed by strain-rate thinning.

  17. Hydrothermal deformation of granular quartz sand

    NASA Astrophysics Data System (ADS)

    Karner, Stephen L.; Kronenberg, Andreas K.; Chester, Frederick M.; Chester, Judith S.; Hajash, Andrew

    2008-05-01

    Isotropic and triaxial compression experiments were performed on porous aggregates of St Peter quartz sand to explore the influence of temperature (to 225°C). During isotropic stressing, samples loaded at elevated temperature exhibit the same sigmoidal stress-strain curves and non-linear acoustic emission rates as have previously been observed from room temperature studies on sands, sandstones, and soils. However, results from our hydrothermal experiments show that the critical effective pressure (P*) associated with the onset of significant pore collapse and pervasive cataclastic flow is lower at increased temperature. Samples subjected to triaxial loading at elevated temperature show yield behavior resembling that observed from room temperature studies on granular rocks and soils. When considered in terms of distortional and mean stresses, the yield strength data for a given temperature define an elliptical envelope consistent with critical state and CAP models from soil mechanics. For the conditions we tested, triaxial yield data at low effective pressure are essentially temperature-insensitive whereas yield levels at high effective pressure are lowered as a function of elevated temperature. We interpret our yield data in a manner consistent with Arrhenius behavior expected for thermally assisted subcritical crack growth. Taken together, our results indicate that increased stresses and temperatures associated with subsurface burial will significantly alter the yield strength of deforming granular media in systematic and predictable ways.

  18. Split Stirling linear cryogenic cooler for a new generation of high temperature infrared imagers

    NASA Astrophysics Data System (ADS)

    Veprik, A.; Zechtzer, S.; Pundak, N.

    2010-04-01

    Split linear cryocoolers find use in a variety of infrared equipment installed in airborne, heliborne, marine and vehicular platforms along with hand held and ground fixed applications. An upcoming generation of portable, high-definition night vision imagers will rely on the high-temperature infrared detectors, operating at elevated temperatures, ranging from 95K to 200K, while being able to show the performance indices comparable with these of their traditional 77K competitors. Recent technological advances in industrial development of such high-temperature detectors initialized attempts for developing compact split Stirling linear cryogenic coolers. Their known advantages, as compared to the rotary integral coolers, are superior flexibility in the system packaging, constant and relatively high driving frequency, lower wideband vibration export, unsurpassed reliability and aural stealth. Unfortunately, such off-the-shelf available linear cryogenic coolers still cannot compete with rotary integral rivals in terms of size, weight and power consumption. Ricor developed the smallest in the range, 1W@95K, linear split Stirling cryogenic cooler for demanding infrared applications, where power consumption, compactness, vibration, aural noise and ownership costs are of concern.

  19. Numerical solution of non-linear dual-phase-lag bioheat transfer equation within skin tissues.

    PubMed

    Kumar, Dinesh; Kumar, P; Rai, K N

    2017-11-01

    This paper deals with numerical modeling and simulation of heat transfer in skin tissues using non-linear dual-phase-lag (DPL) bioheat transfer model under periodic heat flux boundary condition. The blood perfusion is assumed temperature-dependent which results in non-linear DPL bioheat transfer model in order to predict more accurate results. A numerical method of line which is based on finite difference and Runge-Kutta (4,5) schemes, is used to solve the present non-linear problem. Under specific case, the exact solution has been obtained and compared with the present numerical scheme, and we found that those are in good agreement. A comparison based on model selection criterion (AIC) has been made among non-linear DPL models when the variation of blood perfusion rate with temperature is of constant, linear and exponential type with the experimental data and it has been found that non-linear DPL model with exponential variation of blood perfusion rate is closest to the experimental data. In addition, it is found that due to absence of phase-lag phenomena in Pennes bioheat transfer model, it achieves steady state more quickly and always predict higher temperature than thermal and DPL non-linear models. The effect of coefficient of blood perfusion rate, dimensionless heating frequency and Kirchoff number on dimensionless temperature distribution has also been analyzed. The whole analysis is presented in dimensionless form. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Low-temperature thermal transport in the Kondo insulator SmB6

    NASA Astrophysics Data System (ADS)

    Boulanger, Marie-Eve; Laliberté, F.; Badoux, S.; Doiron-Leyraud, N.; Taillefer, L.; Phelan, W. A.; Koopayeh, S. M.; McQueen, T. M.

    The striking observation of quantum oscillations in the Kondo insulator SmB6 suggests that there may be chargeless fermionic excitations at low temperature in the bulk of this material. One way to detect such putative excitations is through their ability to carry entropy, which a measurement of thermal transport should in principle detect as a non-zero residual linear term in the T = 0 limit, i.e. κ0 / T > 0 . Here we report low-temperature measurements of the thermal conductivity κ in SmB6, down to 50 mK, performed on various single crystals in magnetic fields up to 15 T. By extrapolating, we obtain κ0 / T at each field. We observe no residual linear term at any field, i.e. κ0 / T = 0 at all H, in agreement with a previous study. In other words, we do not detect mobile fermionic excitations. However, unlike in the prior study, we observe a large enhancement of κ (T) with increasing field. We discuss possible interpretations of this field dependence.

Top