Sample records for linear temperature trends

  1. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone.

    PubMed

    Chen, Xiaoqiu; Tian, Youhua; Xu, Lin

    2015-10-01

    Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.

  2. Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China's temperate zone

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoqiu; Tian, Youhua; Xu, Lin

    2015-10-01

    Using leaf unfolding and leaf coloration data of a widely distributed herbaceous species, Taraxacum mongolicum, we detected linear trend and temperature response of the growing season at 52 stations from 1990 to 2009. Across the research region, the mean growing season beginning date marginal significantly advanced at a rate of -2.1 days per decade, while the mean growing season end date was significantly delayed at a rate of 3.1 days per decade. The mean growing season length was significantly prolonged at a rate of 5.1 days per decade. Over the 52 stations, linear trends of the beginning date correlate negatively with linear trends of spring temperature, whereas linear trends of the end date and length correlate positively with linear trends of autumn temperature and annual mean temperature. Moreover, the growing season linear trends are also closely related to the growing season responses to temperature and geographic coordinates plus elevation. Regarding growing season responses to temperature, a 1 °C increase in regional mean spring temperature results in an advancement of 2.1 days in regional mean growing season beginning date, and a 1 °C increase in regional mean autumn temperature causes a delay of 2.3 days in regional mean growing season end date. A 1 °C increase in regional annual mean temperature induces an extension of 8.7 days in regional mean growing season length. Over the 52 stations, response of the beginning date to spring temperature depends mainly on local annual mean temperature and geographic coordinates plus elevation. Namely, a 1 °C increase in spring temperature induces a larger advancement of the beginning date at warmer locations with lower latitudes and further west longitudes than at colder locations with higher latitudes and further east longitudes, while a 1 °C increase in spring temperature causes a larger advancement of the beginning date at higher than at lower elevations.

  3. Non-linear trends and fluctuations in temperature during different growth stages of summer maize in the North China Plain from 1960 to 2014

    NASA Astrophysics Data System (ADS)

    Wang, Cailin; Wu, Jidong; Wang, Xu; He, Xin; Li, Ning

    2017-12-01

    North China Plain has undergone severe warming trends since the 1950s, but whether this trend is the same during different growth phases for crops remains unknown. Thus, we analyzed the non-linear changes in the minimum temperature (T min ), mean temperature (T mean ) and maximum temperature (T max ) using the Ensemble Empirical Mode Decomposition method during each growth stage of summer maize based on daily temperature data from 1960 to 2014. Our results strongly suggest that the trends and fluctuations in temperature change are non-linear. These changes can be categorized into four types of trend change according to the combinations of decreasing and increasing trends, and 8 fluctuation modes dominated by the fluctuations of expansion and shrinkage. The amplitude of the fluctuation is primarily expansion in the sowing-jointing stage and shrinkage in the jointing-maturity stage. Moreover, the temperature changes are inconsistent within each growth stage and are not consistent with the overall warming trend observed over the last 55 years. A transition period occurred in both the 1980s and the 1990s for temperatures during the sowing-tasseling stage. Furthermore, the cooling trend of the T max was significant in the sowing-emergence stage, while this cooling trend was not obvious for both T mean and T min in the jointing-tasseling stage. These results showed that temperature change was significantly different in different stages of the maize growth season. The results can serve as a scientific basis for a better understanding of the actual changes in the regional surface air temperature and agronomic heat resources.

  4. Assessing non-linear variation of temperature and precipitation for different growth periods of maize and their impacts on phenology in the Midwest of Jilin Province, China

    NASA Astrophysics Data System (ADS)

    Guo, Enliang; Zhang, Jiquan; Wang, Yongfang; Alu, Si; Wang, Rui; Li, Danjun; Ha, Si

    2018-05-01

    In the past two decades, the regional climate in China has undergone significant change, resulting in crop yield reduction and complete failure. The goal of this study is to detect the variation of temperature and precipitation for different growth periods of maize and assess their impact on phenology. The daily meteorological data in the Midwest of Jilin Province during 1960-2014 were used in the study. The ensemble empirical mode decomposition method was adopted to analyze the non-linear trend and fluctuation in temperature and precipitation, and the sensitivity of the length of the maize growth period to temperature and precipitation was analyzed by the wavelet cross-transformation method. The results show that the trends of temperature and precipitation change are non-linear for different growth periods of maize, and the average temperature in the sowing-jointing stage was different from that in the other growth stages, showing a slight decrease trend, while the variation amplitude of maximum temperature is smaller than that of the minimum temperature. This indicates that the temperature difference between day and night shows a gradually decreasing trend. Precipitation in the growth period also showed a decreasing non-linear trend, while the inter-annual variability with period of quasi-3-year and quasi-6-year dominated the variation of temperature and precipitation. The whole growth period was shortened by 10.7 days, and the sowing date was advanced by approximately 11 days. We also found that there was a significant resonance period among temperature, precipitation, and phenology. Overall, a negative correlation between phenology and temperature is evident, while a positive correlation with precipitation is exhibited. The results illustrate that the climate suitability for maize has reduced over the past decades.

  5. Climate change at upper treeline: How do trees on the edge react to increasing temperatures?

    NASA Astrophysics Data System (ADS)

    Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof

    2017-04-01

    Treeline ecotones are thought to be particularly sensitive to climate warming, and an alteration of their growth conditions may have important implications for the ecosystem services they supply in mountain regions. We use a novel approach to quantify effects of a changing climate on tree growth, using case studies in the European Alps. We compiled tree-ring data from almost 600 trees of four species at treeline in three climate regions of Switzerland. Temperature loggers installed along transects provided data for a precise interpolation of temperatures experienced by the sampled trees. To assess the influence of temperature on annual growth, we used linear mixed-effects models, allowing us to quantify effect sizes and to account for between-tree growth variability. After removing biological growth trends, we isolated temporal trends of ring-width indices. Furthermore, we fitted non-linear regression models to radial growth rates of individual years with temperature and tree age as predicting covariates for a fine-scale investigation of the temperature dependency of tree growth. For all species, climate-growth linear mixed-effects models indicated strong positive responses of ring-width indices to temperature in early summer and previous year's autumn, featuring considerable between-tree variability. All species showed positive ring-width index trends at treeline but different interactions with elevation: Larix decidua exhibited a declining ring-width index trend with decreasing elevation, whereas Picea abies, Pinus cembra and Pinus mugo showed increasing and/or stable trends. Not only reflected our findings the effects of ameliorated growth conditions, they might have also revealed suspected negative and positive feedbacks of climate change on growth, and increased the knowledge about the functional form and parameterization of the temperature dependency of tree growth.

  6. Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue.

    PubMed

    Saccomandi, Paola; Varalda, Ambra; Gassino, Riccardo; Tosi, Daniele; Massaroni, Carlo; Caponero, Michele A; Pop, Raoul; Korganbayev, Sanzhar; Perrone, Guido; Diana, Michele; Vallan, Alberto; Costamagna, Guido; Marescaux, Jacques; Schena, Emiliano

    2017-09-01

    The response of a fiber optic sensor [linearly chirped fiber Bragg grating (LCFBG)] to a linear thermal gradient applied on its sensing length (i.e., 1.5 cm) has been investigated. After these bench tests, we assessed their feasibility for temperature monitoring during thermal tumor treatment. In particular, we performed experiments during ex vivo laser ablation (LA) in pig liver and in vivo thermal ablation in animal models (pigs). We investigated the following: (i) the relationship between the full width at half maximum of the LCFBG spectrum and the temperature difference among the extremities of the LCFBG and (ii) the relationship between the mean spectrum wavelength and the mean temperature acting on the LCFBG sensing area. These relationships showed a linear trend during both bench tests and LA in animal models. Thermal sensitivity was significant although different values were found with regards to bench tests and animal experiments. The linear trend and significant sensitivity allow hypothesizing a future use of this kind of sensor to monitor both temperature gradient and mean temperature within a tissue undergoing thermal treatment. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  7. The Uncertainty of Long-term Linear Trend in Global SST Due to Internal Variation

    NASA Astrophysics Data System (ADS)

    Lian, Tao

    2016-04-01

    In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of local multi-scale internal variation. One can thus use the record of a specified period to arbitrarily determine the value and the sign of the long-term linear trend in regional SST, and further leading to controversial conclusions on how global SST responds to global warming in the recent history. Analyzing the linear trend coefficient estimated by the ordinary least-square method indicates that the linear trend consists of two parts: One related to the long-term change, and the other related to the multi-scale internal variation. The sign of the long-term change can be correctly reproduced only when the magnitude of the linear trend coefficient is greater than a theoretical threshold which scales the influence from the multi-scale internal variation. Otherwise, the sign of the linear trend coefficient will depend on the phase of the internal variation, or in the other words, the period being used. An improved least-square method is then proposed to reduce the theoretical threshold. When apply the new method to a global SST reconstruction from 1881 to 2013, we find that in a large part of Pacific, the southern Indian Ocean and North Atlantic, the influence from the multi-scale internal variation on the sign of the linear trend coefficient can-not be excluded. Therefore, the resulting warming or/and cooling linear trends in these regions can-not be fully assigned to global warming.

  8. Estimation of river and stream temperature trends under haphazard sampling

    USGS Publications Warehouse

    Gray, Brian R.; Lyubchich, Vyacheslav; Gel, Yulia R.; Rogala, James T.; Robertson, Dale M.; Wei, Xiaoqiao

    2015-01-01

    Long-term temporal trends in water temperature in rivers and streams are typically estimated under the assumption of evenly-spaced space-time measurements. However, sampling times and dates associated with historical water temperature datasets and some sampling designs may be haphazard. As a result, trends in temperature may be confounded with trends in time or space of sampling which, in turn, may yield biased trend estimators and thus unreliable conclusions. We address this concern using multilevel (hierarchical) linear models, where time effects are allowed to vary randomly by day and date effects by year. We evaluate the proposed approach by Monte Carlo simulations with imbalance, sparse data and confounding by trend in time and date of sampling. Simulation results indicate unbiased trend estimators while results from a case study of temperature data from the Illinois River, USA conform to river thermal assumptions. We also propose a new nonparametric bootstrap inference on multilevel models that allows for a relatively flexible and distribution-free quantification of uncertainties. The proposed multilevel modeling approach may be elaborated to accommodate nonlinearities within days and years when sampling times or dates typically span temperature extremes.

  9. Recent trends of groundwater temperatures in Austria

    NASA Astrophysics Data System (ADS)

    Benz, Susanne A.; Bayer, Peter; Winkler, Gerfried; Blum, Philipp

    2018-06-01

    Climate change is one of if not the most pressing challenge modern society faces. Increasing temperatures are observed all over the planet and the impact of climate change on the hydrogeological cycle has long been shown. However, so far we have insufficient knowledge on the influence of atmospheric warming on shallow groundwater temperatures. While some studies analyse the implication climate change has for selected wells, large-scale studies are so far lacking. Here we focus on the combined impact of climate change in the atmosphere and local hydrogeological conditions on groundwater temperatures in 227 wells in Austria, which have in part been observed since 1964. A linear analysis finds a temperature change of +0.7 ± 0.8 K in the years from 1994 to 2013. In the same timeframe surface air temperatures in Austria increased by 0.5 ± 0.3 K, displaying a much smaller variety. However, most of the extreme changes in groundwater temperatures can be linked to local hydrogeological conditions. Correlation between groundwater temperatures and nearby surface air temperatures was additionally analysed. They vary greatly, with correlation coefficients of -0.3 in central Linz to 0.8 outside of Graz. In contrast, the correlation of nationwide groundwater temperatures and surface air temperatures is high, with a correlation coefficient of 0.83. All of these findings indicate that while atmospheric climate change can be observed in nationwide groundwater temperatures, individual wells are often primarily dominated by local hydrogeological conditions. In addition to the linear temperature trend, a step-wise model was also applied that identifies climate regime shifts, which were observed globally in the late 70s, 80s, and 90s. Hinting again at the influence of local conditions, at most 22 % of all wells show these climate regime shifts. However, we were able to identify an additional shift in 2007, which was observed by 37 % of all wells. Overall, the step-wise representation provides a slightly more accurate picture of observed temperatures than the linear trend.

  10. Mesospheric temperature trends derived from standard phase-height measurements

    NASA Astrophysics Data System (ADS)

    Peters, Dieter H. W.; Entzian, Günter; Keckhut, Philippe

    2017-10-01

    New homogeneous time series of daily standard phase-height (SPH) and daily plasma scale-height (PSH) have been derived from a 50-year long-radio-wave measurement of the broadcasting station Allouis (France, 162 kHz). The signal was received at Kühlungsborn (54°N, 12°E, Mecklenburg, Germany) and the present series is a third release. The daily time series of SPH shows in its spectrum dominant modes which are typical for the solar cycle (SC), for El Niño-Southern Oscillation (ENSO) and for quasi-biannual oscillation (QBO), indicating solar and lower atmospheric influences. Surprisingly, the time series of daily PSH shows a band of dominant cycles larger than 16 years. In order to exclude the influence of the winter anomaly in the determination of column-integrated mesospheric temperature trends the phase-height-temperature procedure is confined to summer months. The derived thickness temperature of the mesosphere decreased statistically significant over the period 1959-2008 after pre-whitening with summer mean of solar sun spot numbers. The trend value is in the order of about -1.05 K/decade if the stratopause trend is excluded. The linear regression is more pronounced, -1.35 K/decade for the period of 1963-1985 (2 SCs), but weaker, -0.51 K/decade during 1986-2008 (last 2 SCs). The linear regression is in very good agreement with a mean column-integrated mesospheric trend derived from OHP-Lidar temperatures on a monthly mean basis for the last two SCs. This clearly shows that the thickness temperature of the mesosphere derived from phase-height measurement is a useful proxy for the long-term summer temperature change in the mesosphere from 1959 until 2008.

  11. Extreme temperature indices analyses: A case study of five meteorological stations in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Hasan, Husna; Salleh, Nur Hanim Mohd

    2015-10-01

    Extreme temperature events affect many human and natural systems. Changes in extreme temperature events can be detected and monitored by developing the indices based on the extreme temperature data. As an effort to provide the understanding of these changes to the public, a study of extreme temperature indices is conducted at five meteorological stations in Peninsular Malaysia. In this study, changes in the means and extreme events of temperature are assessed and compared using the daily maximum and minimum temperature data for the period of 2004 to 2013. The absolute extreme temperature indices; TXx, TXn, TXn and TNn provided by Expert Team on Climate Change Detection and Indices (ETCCDI) are utilized and linear trends of each index are extracted using least square likelihood method. The results indicate that there exist significant decreasing trend in the TXx index for Kota Bharu station and increasing trend in TNn index for Chuping and Kota Kinabalu stations. The comparison between the trend in mean and extreme temperatures show the same significant tendency for Kota Bharu and Kuala Terengganu stations.

  12. Length-dependent thermal transport in one-dimensional self-assembly of planar π-conjugated molecules

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Xiong, Yucheng; Zu, Fengshuo; Zhao, Yang; Wang, Xiaomeng; Fu, Qiang; Jie, Jiansheng; Yang, Juekuan; Xu, Dongyan

    2016-06-01

    This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport.This work reports a thermal transport study in quasi-one-dimensional organic nanostructures self-assembled from conjugated planar molecules via π-π interactions. Thermal resistances of single crystalline copper phthalocyanine (CuPc) and perylenetetracarboxylic diimide (PTCDI) nanoribbons are measured via a suspended thermal bridge method. We experimentally observed the deviation from the linear length dependence for the thermal resistance of single crystalline β-phase CuPc nanoribbons, indicating possible subdiffusion thermal transport. Interestingly, a gradual transition to the linear length dependence is observed with the increase of the lateral dimensions of CuPc nanoribbons. The measured thermal resistance of single crystalline CuPc nanoribbons shows an increasing trend with temperature. However, the trend of temperature dependence of thermal resistance is reversed after electron irradiation, i.e., decreasing with temperature, indicating that the single crystalline CuPc nanoribbons become `amorphous'. Similar behavior is also observed for PTCDI nanoribbons after electron irradiation, proving that the electron beam can induce amorphization of single crystalline self-assembled nanostructures of planar π-conjugated molecules. The measured thermal resistance of the `amorphous' CuPc nanoribbon demonstrates a roughly linear dependence on the nanoribbon length, suggesting that normal diffusion dominates thermal transport. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr09043a

  13. Casas Muertas and Oficina No. 1: internal migrations and malaria trends in Venezuela 1905-1945.

    PubMed

    Chaves, Luis Fernando

    2007-06-01

    To compare internal migration and temperature as factors behind the decreasing trend in malaria deaths observed in Venezuela from 1905 to 1945, linear autoregressive models are fitted to a historical dataset. The model that only incorporates internal migration is the one with the best fit. The decreasing trend in malaria deaths in Venezuela, from 1905 to 1945, is not explained by a trend in mean annual temperature, but it is associated with an increase in the proportion of population in the Capital District, during a time period when the area was the principal attractor of migrations within the country.

  14. Trends in mean and extreme temperatures over Ibadan, Southwest Nigeria

    NASA Astrophysics Data System (ADS)

    Abatan, Abayomi A.; Osayomi, Tolulope; Akande, Samuel O.; Abiodun, Babatunde J.; Gutowski, William J.

    2018-02-01

    In recent times, Ibadan has been experiencing an increase in mean temperature which appears to be linked to anthropogenic global warming. Previous studies have indicated that the warming may be accompanied by changes in extreme events. This study examined trends in mean and extreme temperatures over Ibadan during 1971-2012 at annual and seasonal scales using the high-resolution atmospheric reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) twentieth-century dataset (ERA-20C) at 15 grid points. Magnitudes of linear trends in mean and extreme temperatures and their statistical significance were calculated using ordinary least squares and Mann-Kendall rank statistic tests. The results show that Ibadan has witnessed an increase in annual and seasonal mean minimum temperatures. The annual mean maximum temperature exhibited a non-significant decline in most parts of Ibadan. While trends in cold extremes at annual scale show warming, trends in coldest night show greater warming than in coldest day. At the seasonal scale, we found that Ibadan experienced a mix of positive and negative trends in absolute extreme temperature indices. However, cold extremes show the largest trend magnitudes, with trends in coldest night showing the greatest warming. The results compare well with those obtained from a limited number of stations. This study should inform decision-makers and urban planners about the ongoing warming in Ibadan.

  15. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets.

    PubMed

    Wang, Xiaolin; Du, Yi; Dou, Shixue; Zhang, Chao

    2012-06-29

    Topological insulators, a new class of condensed matter having bulk insulating states and gapless metallic surface states, have demonstrated fascinating quantum effects. However, the potential practical applications of the topological insulators are still under exploration worldwide. We demonstrate that nanosheets of a Bi(2)Te(3) topological insulator several quintuple layers thick display giant and linear magnetoresistance. The giant and linear magnetoresistance achieved is as high as over 600% at room temperature, with a trend towards further increase at higher temperatures, as well as being weakly temperature-dependent and linear with the field, without any sign of saturation at measured fields up to 13 T. Furthermore, we observed a magnetic field induced gap below 10 K. The observation of giant and linear magnetoresistance paves the way for 3D topological insulators to be useful for practical applications in magnetoelectronic sensors such as disk reading heads, mechatronics, and other multifunctional electromagnetic applications.

  16. Variation in vulnerability to extreme-temperature-related mortality in Japan: A 40-year time-series analysis.

    PubMed

    Onozuka, Daisuke; Hagihara, Akihito

    2015-07-01

    Although the impact of extreme heat and cold on mortality has been documented in recent years, few studies have investigated whether variation in susceptibility to extreme temperatures has changed in Japan. We used data on daily total mortality and mean temperatures in Fukuoka, Japan, for 1973-2012. We used time-series analysis to assess the effects of extreme hot and low temperatures on all-cause mortality, stratified by decade, gender, and age, adjusting for time trends. We used a multivariate meta-analysis with a distributed lag non-linear model to estimate pooled non-linear lag-response relationships associated with extreme temperatures on mortality. The relative risk of mortality increased during heat extremes in all decades, with a declining trend over time. The mortality risk was higher during cold extremes for the entire study period, with a dispersed pattern across decades. Meta-analysis showed that both heat and cold extremes increased the risk of mortality. Cold effects were delayed and lasted for several days, whereas heat effects appeared quickly and did not last long. Our study provides quantitative evidence that extreme heat and low temperatures were significantly and non-linearly associated with the increased risk of mortality with substantial variation. Our results suggest that timely preventative measures are important for extreme high temperatures, whereas several days' protection should be provided for extreme low temperatures. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Spatial and temporal variation in the association between temperature and salmonellosis in NZ.

    PubMed

    Lal, Aparna; Hales, Simon; Kirk, Martyn; Baker, Michael G; French, Nigel P

    2016-04-01

    Modelling the relationship between weather, climate and infectious diseases can help identify high-risk periods and provide understanding of the determinants of longer-term trends. We provide a detailed examination of the non-linear and delayed association between temperature and salmonellosis in three New Zealand cities (Auckland, Wellington and Christchurch). Salmonella notifications were geocoded to the city of residence for the reported case. City-specific associations between weekly maximum temperature and the onset date for reported salmonella infections (1997-2007) were modelled using non-linear distributed lag models, while controlling for season and long-term trends. Relatively high temperatures were positively associated with infection risk in Auckland (n=3,073) and Christchurch (n=880), although the former showed evidence of a more immediate relationship with exposure to high temperatures. There was no significant association between temperature and salmonellosis risk in Wellington. Projected increases in temperature with climate change may have localised health impacts, suggesting that preventative measures will need to be region-specific. This evidence contributes to the increasing concern over the public health impacts of climate change. © 2015 Public Health Association of Australia.

  18. Trends in extremes of temperature, dew point, and precipitation from long instrumental series from central Europe

    NASA Astrophysics Data System (ADS)

    Kürbis, K.; Mudelsee, M.; Tetzlaff, G.; Brázdil, R.

    2009-09-01

    For the analysis of trends in weather extremes, we introduce a diagnostic index variable, the exceedance product, which combines intensity and frequency of extremes. We separate trends in higher moments from trends in mean or standard deviation and use bootstrap resampling to evaluate statistical significances. The application of the concept of the exceedance product to daily meteorological time series from Potsdam (1893 to 2005) and Prague-Klementinum (1775 to 2004) reveals that extremely cold winters occurred only until the mid-20th century, whereas warm winters show upward trends. These changes were significant in higher moments of the temperature distribution. In contrast, trends in summer temperature extremes (e.g., the 2003 European heatwave) can be explained by linear changes in mean or standard deviation. While precipitation at Potsdam does not show pronounced trends, dew point does exhibit a change from maximum extremes during the 1960s to minimum extremes during the 1970s.

  19. Long-term variations of the upper atmosphere parameters on Rome ionosonde observations and their interpretation

    NASA Astrophysics Data System (ADS)

    Perrone, Loredana; Mikhailov, Andrey; Cesaroni, Claudio; Alfonsi, Lucilla; Santis, Angelo De; Pezzopane, Michael; Scotto, Carlo

    2017-09-01

    A recently proposed self-consistent approach to the analysis of thermospheric and ionospheric long-term trends has been applied to Rome ionosonde summer noontime observations for the (1957-2015) period. This approach includes: (i) a method to extract ionospheric parameter long-term variations; (ii) a method to retrieve from observed foF1 neutral composition (O, O2, N2), exospheric temperature, Tex and the total solar EUV flux with λ < 1050 Å; and (iii) a combined analysis of the ionospheric and thermospheric parameter long-term variations using the theory of ionospheric F-layer formation. Atomic oxygen, [O] and [O]/[N2] ratio control foF1 and foF2 while neutral temperature, Tex controls hmF2 long-term variations. Noontime foF2 and foF1 long-term variations demonstrate a negative linear trend estimated over the (1962-2010) period which is mainly due to atomic oxygen decrease after ˜1990. A linear trend in (δhmF2)11y estimated over the (1962-2010) period is very small and insignificant reflecting the absence of any significant trend in neutral temperature. The retrieved neutral gas density, ρ atomic oxygen, [O] and exospheric temperature, Tex long-term variations are controlled by solar and geomagnetic activity, i.e. they have a natural origin. The residual trends estimated over the period of ˜5 solar cycles (1957-2015) are very small (<0.5% per decade) and statistically insignificant.

  20. An assessment of precipitation and surface air temperature over China by regional climate models

    NASA Astrophysics Data System (ADS)

    Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu

    2016-12-01

    An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.

  1. Long-term warming trends in Korea and contribution of urbanization

    NASA Astrophysics Data System (ADS)

    Park, B.; Min, S. K.; Kim, Y. H.; Kim, M. K.; Choi, Y.; Boo, K. O.

    2016-12-01

    This study provides a systematic investigation of the long-term temperature trends over Korean peninsula in comparison with global temperature trends and presents an updated assessment of the contribution of urban effect. Linear trends are analyzed for three different periods over South Korea in order to consider inhomogeneity due to changes in number of stations: recent 103 years (1912-2014, 6 stations), 61 years (1954-2014, 12 stations) and 42 years (1973-2014, 48 stations). HadCRUT4, MLOST and GISS datasets are used to obtain temperature trends in global mean and each country scales for the same periods. The temperature over South Korea has increased by 1.90°C, 1.35°C, and 0.99°C during 103, 61, and 42 years, respectively. This is equivalent to 1.4-2.6 times larger warming than the global mean trends. The countries located in the Northern mid latitudes exhibit slightly weaker warming trends to Korea (about 1.5 times stronger than of global means), suggesting a considerable impact of urbanization on the local warming over Korea. Updated analyses of the urbanization effect on temperature trends over South Korea suggest that 10-45% of the warming trends are due to urbanization effect, with stronger contributions during the recent decades. First, we compared the recent 42-year temperature trends between city and rural stations using the two approaches based on previous studies. Results show that urbanization effect has contributed to 30-45% of the temperature trends. Secondly, the contribution of urbanization to the temperature increase over Korea has been indirectly estimated using 56 ensemble members of 20CRv2 reanalysis data that include no influence of urbanization. Analysis results for the three periods indicate that urbanization effect could have contributed to the local warming over Korea by 10-25%.

  2. Trends and Solar Cycle Effects in Temperature Versus Altitude From the Halogen Occultation Experiment for the Mesosphere and Upper Stratosphere

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis E.

    2009-01-01

    Fourteen-year time series of mesospheric and upper stratospheric temperatures from the Halogen Occultation Experiment (HALOE) are analyzed and reported. The data have been binned according to ten-degree wide latitude zones from 40S to 40N and at 10 altitudes from 43 to 80 km-a total of 90 separate time series. Multiple linear regression (MLR) analysis techniques have been applied to those time series. This study focuses on resolving their 11-yr solar cycle (or SC-like) responses and their linear trend terms. Findings for T(z) from HALOE are compared directly with published results from ground-based Rayleigh lidar and rocketsonde measurements. SC-like responses from HALOE compare well with those from lidar station data at low latitudes. The cooling trends from HALOE also agree reasonably well with those from the lidar data for the concurrent decade. Cooling trends of the lower mesosphere from HALOE are not as large as those from rocketsondes and from lidar station time series of the previous two decades, presumably because the changes in the upper stratospheric ozone were near zero during the HALOE time period and did not affect those trends.

  3. Wet-bulb, dew point, and air temperature trends in Spain

    NASA Astrophysics Data System (ADS)

    Moratiel, R.; Soriano, B.; Centeno, A.; Spano, D.; Snyder, R. L.

    2017-10-01

    This study analyses trends of mean ( T m), maximum ( T x), minimum ( T n), dew point ( T d), and wet-bulb temperatures ( T w) on an annual, seasonal, and monthly time scale over Spain during the period 1981-2010. The main purpose was to determine how temperature and humidity changes are impacting on T w, which is probably a better measure of climate change than temperature alone. In this study, 43 weather stations were used to detect data trends using the nonparametric Mann-Kendall test and the Sen method to estimate the slope of trends. Significant linear trends observed for T m, T x, and T n versus year were 56, 58, and 47 % of the weather stations, respectively, with temperature ranges between 0.2 and 0.4 °C per decade. The months with bigger trends were April, May, June, and July with the highest trend for T x. The spatial behaviour of T d and T w was variable, with various locations showing trends from -0.6 to +0.3 °C per decade for T d and from -0.4 to +0.5 °C per decade for T w. Both T d and T w showed negative trends for July, August, September, November, and December. Comparing the trends versus time of each variable versus each of the other variables exhibited poor relationships, which means you cannot predict the trend of one variable from the trend of another variable. The trend of T x was not related to the trend of T n. The trends of T x, T m, and T n versus time were unrelated to the trends versus time of either T d or T w. The trend of T w showed a high coefficient of determination with the trend of T d with an annual value of R 2 = 0.86. Therefore, the T w trend is more related to changes in humidity than temperature.

  4. Linearized-moment analysis of the temperature jump and temperature defect in the Knudsen layer of a rarefied gas.

    PubMed

    Gu, Xiao-Jun; Emerson, David R

    2014-06-01

    Understanding the thermal behavior of a rarefied gas remains a fundamental problem. In the present study, we investigate the predictive capabilities of the regularized 13 and 26 moment equations. In this paper, we consider low-speed problems with small gradients, and to simplify the analysis, a linearized set of moment equations is derived to explore a classic temperature problem. Analytical solutions obtained for the linearized 26 moment equations are compared with available kinetic models and can reliably capture all qualitative trends for the temperature-jump coefficient and the associated temperature defect in the thermal Knudsen layer. In contrast, the linearized 13 moment equations lack the necessary physics to capture these effects and consistently underpredict kinetic theory. The deviation from kinetic theory for the 13 moment equations increases significantly for specular reflection of gas molecules, whereas the 26 moment equations compare well with results from kinetic theory. To improve engineering analyses, expressions for the effective thermal conductivity and Prandtl number in the Knudsen layer are derived with the linearized 26 moment equations.

  5. Tropical climate trends inferred from coral δ18O: a comparison of CMIP5 forward-model results with paleoclimatic observations

    NASA Astrophysics Data System (ADS)

    Thompson, D. M.; Evans, M. N.; Cole, J. E.; Ault, T. R.; Emile-Geay, J.

    2011-12-01

    The response of the tropical Pacific Ocean to anthropogenic climate change remains highly uncertain, in part because of the disagreement among 20th-century trends derived from observations and coupled general circulation models (CGCMs). We use a model of reef coral oxygen isotopic composition (δ18O) to compare the observational coral network with synthetic corals ('pseudocorals') modeled from CGCM sea-surface temperature (SST) and sea-surface salinity (SSS). When driven with historical data, we found that a linear temperature and salinity driven model for δ18Ocoral was able to capture the spatial and temporal pattern of ENSO and the linear trend observed in 23 Indo-Pacific coral records between 1958 and 1990. However, we found that none of the pseudocoral networks obtained from a subset of 20th-century AR4 CGCM runs reproduced the magnitude of the secular trend, the change in mean state, or the change in ENSO-related variance observed in the coral network from 1890 to 1990 (Thompson et al., 2011). We believe differences between corals and AR4 CGCM simulated pseudocorals arose from uncertainties in the observed coral network or linear bivariate coral model, undersensitivity of AR4 CGCMs to radiative forcing during the 20th century, and/or biases in the simulated AR4 CGCM SSS fields. Here we apply the same approach to an extended temperature and salinity reanalysis product (SODA v2.2.4, 1871-2008) and CMIP 5 historical simulations to further address 20th-century tropical climate trends and assess remaining uncertainties in both the proxies and models. We explore whether model improvements in the tropical Pacific have led to a stronger agreement between simulated and observed tropical climate trends. [Thompson, D. M., T. R. Ault, M. N. Evans, J. E. Cole, and J. Emile-Geay (2011), Comparison of observed and simulated tropical climate trends using a forward model of coral δ18O, Geophys. Res. Lett., 38, L14706, doi:10.1029/2011GL048224.

  6. Evolution of Diurnal Asymmetry of Surface Temperature over Different Climatic Zones

    NASA Astrophysics Data System (ADS)

    Rajendran, V.; C T, D.; Chakravorty, A.; AghaKouchak, A.

    2016-12-01

    The increase in drought, flood, diseases, crop failure etc. in the recent past has created an alarm amongst the researchers. One of the main reasons behind the intensification of these environmental hazards is the recent revelation of climate change, which is generally attributed to the human induced global warming, represented by an increase in global mean temperature. However, in order to formulate policies to mitigate and prevent the threats due to global warming, its key driving factors should be analysed at high spatial and temporal resolution. Diurnal Temperature Range (DTR) is one of the indicators of global warming. The study of the evolution of the DTR is crucial, since it affects agriculture, health, ecosystems, transport, etc. Recent studies reveal that diurnal asymmetry has decreased globally, whereas a few regional studies report a contradictory pattern and attributed them to localized feedback processes. However, an evident conclusion cannot be made using the linear trend approaches employed in the past studies and the evolution of diurnal asymmetry should be investigated using non-linear trend approach for better perception. Hence, the regional evolution of DTR trend has been analysed using the spatially-temporally Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method over India and observed a positive trend in over-all mean of DTR, while its rate of increase has declined in the recent decades. Further, the grids showing negative trend in DTR is observed in arid deserts and warm-temperate grasslands and positive trend over the west coast and sub-tropical forest in the North-East. This transition predominantly began from the west coast and is stretched with an increase in magnitude. These changes are more pronounced during winter and post-monsoon seasons, especially in the arid desert and warm-temperate grasslands, where the rate of increase in minimum temperature is higher than that of the maximum temperature. These analyses suggest that the DTR changes are influenced by both, local and global factors working in tandem, since a warmed up ocean produces contradictory DTR trends in different climatic zones. It can be inferred from this study that the impact of a global change in a region will depend on the regional climate.

  7. Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.

    NASA Astrophysics Data System (ADS)

    Yang, H. W.; Ouarda, T.

    2015-12-01

    This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.

  8. Increasing trend in the average temperature in Finland, 1847-2012

    NASA Astrophysics Data System (ADS)

    Mikkonen, Santtu; Laine, Marko; Mäkelä, Hanna M.; Gregow, Hilppa; Tuomenvirta, Heikki; Lahtinen, Matti; Laaksonen, Ari

    2014-05-01

    The global average temperature has increased by about 0.8 ° C since the mid-19th century. It has been shown that this increase is statistically significant and that it can, for the most part, be attributed to human-induced climate change (IPCC 2007). A temperature increase is obvious also in regional and local temperatures in many parts of the world. However, compared with the global average temperature, the regional and local temperatures exhibit higher levels of noise, which has largely been removed from the global temperature due to the higher level of averaging. Because Finland is located in northern latitudes, it is subject to the polar amplification of climate change-induced warming, which is due to the enhanced melting of snow and ice and other feedback mechanisms. Therefore, warming in Finland is expected to be approximately 50% higher than the global average. Conversely, the location of Finland between the Atlantic Ocean and continental Eurasia causes the weather to be very variable, and thus the temperature signal is rather noisy. The change in mean temperature in Finland was investigated with Dynamic Linear Models (DLM) in order to define the sign and the magnitude of the trend in the temperature time series within the last 165 years. The data consisted of gridded monthly mean temperatures. The grid has a 10 km spatial resolution, and it was created by interpolating a homogenized temperature series measured at Finnish weather stations. Seasonal variation in temperature and the autocorrelation structure of the time series were taken account in the DLM models. We found that the Finnish temperature time series exhibits a statistically significant increasing trend, which is consistent with human-induced global warming. The mean temperature has risen clearly over 2° C in the years 1847-2012, which amounts to 0.16 ° C/decade. The warming rate before 1940's was close to the linear trend for the whole period, whereas the temperature change in the mid-20th century was negligible. However, the warming after the late 1960s has been remarkably fast. The model indicates that within the last 40 years the rate of change has been as high as 0.30 ° C/decade. The increase in temperature has been highest in spring and in late autumn but the change in summer months has not been so evident. The observed warming is somewhat higher than the global trend, which confirms the assumption that warming is stronger in higher latitudes.

  9. Extended phase diagram of R NiC2 family: Linear scaling of the Peierls temperature

    NASA Astrophysics Data System (ADS)

    Roman, Marta; Strychalska-Nowak, Judyta; Klimczuk, Tomasz; Kolincio, Kamil K.

    2018-01-01

    Physical properties for the late-lanthanide-based R NiC2 (R =Dy , Ho, Er, and Tm) ternary compounds are reported. All the compounds show antiferromagnetic ground state with the Néel temperature ranging from 3.4 K for HoNiC2 to 8.5 K for ErNiC2. The results of the transport and galvanomagnetic properties confirm a charge density wave state at and above room temperature with transition temperatures TCDW=284 , 335, 366, and 394 K for DyNiC2, HoNiC2, ErNiC2, and TmNiC2, respectively. The Peierls temperature TCDW scales linearly with the unit cell volume. A similar linear dependence has been observed for the temperature of the lock-in transition T1 as well. Beyond the intersection point of the trend lines, the lock-in transition is no longer observed. In this Rapid Communication we demonstrate an extended phase diagram for the R NiC2 family.

  10. Response to Comment on "Does the Earth Have an Adaptive Infrared Iris?"

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Chou, Ming-Dah; Lindzen, Richard S.; Hou, Arthur Y.

    2001-01-01

    In his comment on Lindzen et al., Harrison found that the amount of high-level clouds, A, and the sea-surface temperature beneath clouds, T, averaged over a large oceanic domain in the western Pacific have secular linear trends of opposite signs over a period of 20 months. He found that when the linear trends are subtracted from the data, the correlation between the residual A and T is much reduced. His estimates of the confidence levels for the correlation indicate, moreover, that this correlation is not statistically significant. The domain-averaged A and, to a lesser degree, T, have distinct intra-seasonal and seasonal variations. These variations are influenced by the large-scale wind and temperature distributions and by the seasonal variation of insolation. To separate the local effect from the effect of slowly changing large-scale conditions, rather than subtracting 20-month linear trends from the series, which has the potential to spuriously extrapolate intra-seasonal and seasonal variations to even longer time scales, we subtracted 30-day running means of A and T from each time series; in effect, the data were high-pass filtered. The number of points (days), N, is reduced by this process from the original value of 510 to 480.

  11. Ambient temperature and FIT performance in the Emilia-Romagna colorectal cancer screening programme.

    PubMed

    De Girolamo, Gianfranco; Goldoni, Carlo A; Corradini, Rossella; Giuliani, Orietta; Falcini, Fabio; Sassoli De'Bianchi, Priscilla; Naldoni, Carlo; Zauli Sajani, Stefano

    2016-12-01

    To assess the impact of ambient temperature on faecal immunochemical test (FIT) performance in the colorectal cancer screening programme of Emilia-Romagna (Italy). A population-based retrospective cohort study on data from 2005 to 2011. Positive rate, detection rate, and positive predictive value rate for cancers and adenomas, and incidence rate of interval cancers after negative tests were analysed using Poisson regression models. In addition to ambient temperature, gender, age, screening history, and Local Health Unit were also considered. In 1,521,819 tests analysed, the probability of a positive result decreased linearly with increasing temperature. Point estimates and 95% Confidence Intervals were estimated for six temperature classes (<5, 5 |-10, 10 |-15, 15 |-20, 20|-25 and ≥25℃), and referred to the 5|-10℃ class. The positive rate ratio was significantly related to temperature increase: 0.99 (0.97-1.02), 1, 0.98 (0.96-1.00), 0.96 (0.94-0.99), 0.93 (0.91-0.96), 0.92 (0.89-0.95). A linear trend was also evident for advanced adenoma detection rate ratio: 1.00 (0.96-1.04), 1, 0.98 (0.93-1.02), 0.96 (0.92-1.00), 0.92 (0.88-0.96), 0.94 (0.88-1.01). The effect was less linear, but still important, for cancer detection rates: 0.95 (0.85-1.06), 1, 1.00 (0.90-1.10), 0.94 (0.85-1.05), 0.81 (0.72-0.92), 0.93 (0.80-1.09). No association or linear trend was found for positive predictive values or risk of interval cancer, despite an excess of +16% in the highest temperature class for interval cancer. Ambient temperatures can affect screening performance. Continued monitoring is needed to verify the effect of introducing FIT tubes with a new buffer, which should guarantee a higher stability of haemoglobin. © The Author(s) 2016.

  12. Spatiotemporal pattern of vegetation remote sensing phenology and its response to climatic factors on the Qinghai-Tibet Plateau

    NASA Astrophysics Data System (ADS)

    An, S.; Chen, X.

    2015-12-01

    Based on the MODIS MCD12Q2 remote sensing phenology product, we analyzed spatiotemporal variations of vegetation green-up, maturity, senescence and brown-off dates, and their relation to spatiotemporal patterns of air temperature and precipitation on the Qinghai-Tibet Plateau (QTP). From 2001 to 2012, phenological time series at about 11.7%~15.1% pixels indicate significant linear trends (P<0.1) with strong spatial consistency. Namely, pixels with significant phenological advancement and growing season lengthening are mainly distributed in the middle and eastern parts of the QTP, while pixels with significant phenological delay and growing season shortening are mainly distributed in the western and southern parts as well as the eastern edge of the QTP. Similar spatial patterns for positive and negative linear trends of the minimum and maximum EVI, and the time-integrated EVI during the growing season were detected in the above two regions, respectively. With regard to climatic factors, mean annual temperature shows an increased trend over the QTP except for the eastern edge, whereas annual precipitation displays an increased trend in the middle and eastern parts but a decreased trend in the western and southern parts as well as the eastern edge of the QTP. These findings suggest that phenological advancement, growing season lengthening, and vegetation activity enhancement in the middle and eastern parts might be attributed to coincident temperature and precipitation increase. By contrast, phenological delay, growing season shortening, and vegetation activity reduction in the western and southern parts as well as the eastern edge might be caused by opposite changes of temperature and precipitation, and strong evaporation induced water shortage. Furthermore, a partial correlation analysis indicates that green-up, maturity, and brown-off dates were influenced by preceding temperature and precipitation, while senescence date was affected by preceding precipitation.

  13. Rising air and stream-water temperatures in Chesapeake Bay region, USA

    USGS Publications Warehouse

    Rice, Karen C.; Jastram, John D.

    2015-01-01

    Monthly mean air temperature (AT) at 85 sites and instantaneous stream-water temperature (WT) at 129 sites for 1960–2010 are examined for the mid-Atlantic region, USA. Temperature anomalies for two periods, 1961–1985 and 1985–2010, relative to the climate normal period of 1971–2000, indicate that the latter period was statistically significantly warmer than the former for both mean AT and WT. Statistically significant temporal trends across the region of 0.023 °C per year for AT and 0.028 °C per year for WT are detected using simple linear regression. Sensitivity analyses show that the irregularly sampled WT data are appropriate for trend analyses, resulting in conservative estimates of trend magnitude. Relations between 190 landscape factors and significant trends in AT-WT relations are examined using principal components analysis. Measures of major dams and deciduous forest are correlated with WT increasing slower than AT, whereas agriculture in the absence of major dams is correlated with WT increasing faster than AT. Increasing WT trends are detected despite increasing trends in streamflow in the northern part of the study area. Continued warming of contributing streams to Chesapeake Bay likely will result in shifts in distributions of aquatic biota and contribute to worsened eutrophic conditions in the bay and its estuaries.

  14. Analysis of trend in temperature and rainfall time series of an Indian arid region: comparative evaluation of salient techniques

    NASA Astrophysics Data System (ADS)

    Machiwal, Deepesh; Gupta, Ankit; Jha, Madan Kumar; Kamble, Trupti

    2018-04-01

    This study investigated trends in 35 years (1979-2013) temperature (maximum, Tmax and minimum, Tmin) and rainfall at annual and seasonal (pre-monsoon, monsoon, post-monsoon, and winter) scales for 31 grid points in a coastal arid region of India. Box-whisker plots of annual temperature and rainfall time series depict systematic spatial gradients. Trends were examined by applying eight tests, such as Kendall rank correlation (KRC), Spearman rank order correlation (SROC), Mann-Kendall (MK), four modified MK tests, and innovative trend analysis (ITA). Trend magnitudes were quantified by Sen's slope estimator, and a new method was adopted to assess the significance of linear trends in MK-test statistics. It was found that the significant serial correlation is prominent in the annual and post-monsoon Tmax and Tmin, and pre-monsoon Tmin. The KRC and MK tests yielded similar results in close resemblance with the SROC test. The performance of two modified MK tests considering variance-correction approaches was found superior to the KRC, MK, modified MK with pre-whitening, and ITA tests. The performance of original MK test is poor due to the presence of serial correlation, whereas the ITA method is over-sensitive in identifying trends. Significantly increasing trends are more prominent in Tmin than Tmax. Further, both the annual and monsoon rainfall time series have a significantly increasing trend of 9 mm year-1. The sequential significance of linear trend in MK test-statistics is very strong (R 2 ≥ 0.90) in the annual and pre-monsoon Tmin (90% grid points), and strong (R 2 ≥ 0.75) in monsoon Tmax (68% grid points), monsoon, post-monsoon, and winter Tmin (respectively 65, 55, and 48% grid points), as well as in the annual and monsoon rainfalls (respectively 68 and 61% grid points). Finally, this study recommends use of variance-corrected MK test for the precise identification of trends. It is emphasized that the rising Tmax may hamper crop growth due to enhanced metabolic-activities and shortened crop-duration. Likewise, increased Tmin may result in lesser crop and biomass yields owing to the increased respiration.

  15. Trend analysis of long-term temperature time series in the Greater Toronto Area (GTA)

    NASA Astrophysics Data System (ADS)

    Mohsin, Tanzina; Gough, William A.

    2010-08-01

    As the majority of the world’s population is living in urban environments, there is growing interest in studying local urban climates. In this paper, for the first time, the long-term trends (31-162 years) of temperature change have been analyzed for the Greater Toronto Area (GTA). Annual and seasonal time series for a number of urban, suburban, and rural weather stations are considered. Non-parametric statistical techniques such as Mann-Kendall test and Theil-Sen slope estimation are used primarily for the assessing of the significance and detection of trends, and the sequential Mann test is used to detect any abrupt climate change. Statistically significant trends for annual mean and minimum temperatures are detected for almost all stations in the GTA. Winter is found to be the most coherent season contributing substantially to the increase in annual minimum temperature. The analyses of the abrupt changes in temperature suggest that the beginning of the increasing trend in Toronto started after the 1920s and then continued to increase to the 1960s. For all stations, there is a significant increase of annual and seasonal (particularly winter) temperatures after the 1980s. In terms of the linkage between urbanization and spatiotemporal thermal patterns, significant linear trends in annual mean and minimum temperature are detected for the period of 1878-1978 for the urban station, Toronto, while for the rural counterparts, the trends are not significant. Also, for all stations in the GTA that are situated in all directions except south of Toronto, substantial temperature change is detected for the periods of 1970-2000 and 1989-2000. It is concluded that the urbanization in the GTA has significantly contributed to the increase of the annual mean temperatures during the past three decades. In addition to urbanization, the influence of local climate, topography, and larger scale warming are incorporated in the analysis of the trends.

  16. Observed temperature trends in the Indian Ocean over 1960-1999 and associated mechanisms

    NASA Astrophysics Data System (ADS)

    Alory, Gaël; Wijffels, Susan; Meyers, Gary

    2007-01-01

    The linear trends in oceanic temperature from 1960 to 1999 are estimated using the new Indian Ocean Thermal Archive (IOTA), a compilation of historical temperature profiles. Widespread surface warming is found, as in other data sets, and reproduced in IPCC climate model simulations for the 20th century. This warming is particularly large in the subtropics, and extends down to 800 m around 40-50°S. Models suggest the deep-reaching subtropical warming is related to a 0.5° southward shift of the subtropical gyre driven by a strengthening of the westerly winds, and associated with an upward trend in the Southern Annular Mode index. In the tropics, IOTA shows a subsurface cooling corresponding to a shoaling of the thermocline and increasing vertical stratification. Most models suggest this trend in the tropical Indian thermocline is likely associated with the observed weakening of the Pacific trade winds and transmitted to the Indian Ocean by the Indonesian throughflow.

  17. Ion transport with charge-protected and non-charge-protected cations using the compensated Arrhenius formalism. Part 2. Relationship between ionic conductivity and diffusion.

    PubMed

    Petrowsky, Matt; Fleshman, Allison; Bopege, Dharshani N; Frech, Roger

    2012-08-09

    Temperature-dependent ionic conductivities and cation/anion self-diffusion coefficients are measured for four electrolyte families: TbaTf-linear primary alcohols, LiTf-linear primary alcohols, TbaTf-n-alkyl acetates, and LiTf-n-alkyl acetates. The Nernst-Einstein equation does not adequately describe the data. Instead, the compensated Arrhenius formalism is applied to both conductivity and diffusion data. General trends based on temperature and alkyl chain length are observed when conductivity is plotted against cation or anion diffusion coefficient, but there is no clear pattern to the data. However, plotting conductivity exponential prefactors against those for diffusion results in four distinct curves, one each for the alcohol and acetate families described above. Furthermore, the TbaTf-alcohol and TbaTf-acetate data are "in line" with each other. The conductivity prefactors for the LiTf-alcohol data are smaller than those for the TbaTf data. The LiTf-acetate data have the lowest conductivity prefactors. This trend in prefactors mirrors the observed trend in degree of ionic association for these electrolytes.

  18. Trend of annual temperature and frequency of extreme events in the MATOPIBA region of Brazil

    NASA Astrophysics Data System (ADS)

    Salvador, Mozar de A.; de Brito, J. I. B.

    2017-06-01

    During the 1980s, a new agricultural frontier arouse in Brazil, which occupied part of the states of Maranhão, Tocantins, Piauí, and Bahia. Currently, this new frontier is known as the MATOPIBA region. The region went through intense transformations in its social and environmental characteristics, with the emergence of extensive areas of intensive agriculture and large herds. The purpose of this research was to study the climatic variabilities of temperature in the MATOPIBA region through extreme climate indexes of ClimAp tool. Data from 11 weather stations were analyzed for yearly air temperature (maximum and minimum) in the period of 1970 to 2012. To verify the trend in the series, we used methods of linear regression analysis and Kendall-tau test. The annual analysis of maximum and minimum temperatures and of the temperature extremes indexes showed a strong positive trend in practically every series (with p value less than 0.05). These results indicated that the region went through to a significant heating process in the last 3 decades. The indices of extreme also showed a significant positive trend in most of the analyzed stations, indicating a higher frequency of warm days during the year.

  19. Techniques for analyses of trends in GRUAN data

    NASA Astrophysics Data System (ADS)

    Bodeker, G. E.; Kremser, S.

    2015-04-01

    The Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) provides reference quality RS92 radiosonde measurements of temperature, pressure and humidity. A key attribute of reference quality measurements, and hence GRUAN data, is that each datum has a well characterized and traceable estimate of the measurement uncertainty. The long-term homogeneity of the measurement records, and their well characterized uncertainties, make these data suitable for reliably detecting changes in global and regional climate on decadal time scales. Considerable effort is invested in GRUAN operations to (i) describe and analyse all sources of measurement uncertainty to the extent possible, (ii) quantify and synthesize the contribution of each source of uncertainty to the total measurement uncertainty, and (iii) verify that the evaluated net uncertainty is within the required target uncertainty. However, if the climate science community is not sufficiently well informed on how to capitalize on this added value, the significant investment in estimating meaningful measurement uncertainties is largely wasted. This paper presents and discusses the techniques that will need to be employed to reliably quantify long-term trends in GRUAN data records. A pedagogical approach is taken whereby numerical recipes for key parts of the trend analysis process are explored. The paper discusses the construction of linear least squares regression models for trend analysis, boot-strapping approaches to determine uncertainties in trends, dealing with the combined effects of autocorrelation in the data and measurement uncertainties in calculating the uncertainty on trends, best practice for determining seasonality in trends, how to deal with co-linear basis functions, and interpreting derived trends. Synthetic data sets are used to demonstrate these concepts which are then applied to a first analysis of temperature trends in RS92 radiosonde upper air soundings at the GRUAN site at Lindenberg, Germany (52.21° N, 14.12° E).

  20. Techniques for analyses of trends in GRUAN data

    NASA Astrophysics Data System (ADS)

    Bodeker, G. E.; Kremser, S.

    2014-12-01

    The Global Climate Observing System (GCOS) Reference Upper Air Network (GRUAN) provides reference quality RS92 radiosonde measurements of temperature, pressure and humidity. A key attribute of reference quality measurements, and hence GRUAN data, is that each datum has a well characterised and traceable estimate of the measurement uncertainty. The long-term homogeneity of the measurement records, and their well characterised uncertainties, make these data suitable for reliably detecting changes in global and regional climate on decadal time scales. Considerable effort is invested in GRUAN operations to (i) describe and analyse all sources of measurement uncertainty to the extent possible, (ii) quantify and synthesize the contribution of each source of uncertainty to the total measurement uncertainty, and (iii) verify that the evaluated net uncertainty is within the required target uncertainty. However, if the climate science community is not sufficiently well informed on how to capitalize on this added value, the significant investment in estimating meaningful measurement uncertainties is largely wasted. This paper presents and discusses the techniques that will need to be employed to reliably quantify long-term trends in GRUAN data records. A pedagogical approach is taken whereby numerical recipes for key parts of the trend analysis process are explored. The paper discusses the construction of linear least squares regression models for trend analysis, boot-strapping approaches to determine uncertainties in trends, dealing with the combined effects of autocorrelation in the data and measurement uncertainties in calculating the uncertainty on trends, best practice for determining seasonality in trends, how to deal with co-linear basis functions, and interpreting derived trends. Synthetic data sets are used to demonstrate these concepts which are then applied to a first analysis of temperature trends in RS92 radiosonde upper air soundings at the GRUAN site at Lindenberg, Germany (52.21° N, 14.12° E).

  1. Statistical approach to the analysis of olive long-term pollen season trends in southern Spain.

    PubMed

    García-Mozo, H; Yaezel, L; Oteros, J; Galán, C

    2014-03-01

    Analysis of long-term airborne pollen counts makes it possible not only to chart pollen-season trends but also to track changing patterns in flowering phenology. Changes in higher plant response over a long interval are considered among the most valuable bioindicators of climate change impact. Phenological-trend models can also provide information regarding crop production and pollen-allergen emission. The interest of this information makes essential the election of the statistical analysis for time series study. We analysed trends and variations in the olive flowering season over a 30-year period (1982-2011) in southern Europe (Córdoba, Spain), focussing on: annual Pollen Index (PI); Pollen Season Start (PSS), Peak Date (PD), Pollen Season End (PSE) and Pollen Season Duration (PSD). Apart from the traditional Linear Regression analysis, a Seasonal-Trend Decomposition procedure based on Loess (STL) and an ARIMA model were performed. Linear regression results indicated a trend toward delayed PSE and earlier PSS and PD, probably influenced by the rise in temperature. These changes are provoking longer flowering periods in the study area. The use of the STL technique provided a clearer picture of phenological behaviour. Data decomposition on pollination dynamics enabled the trend toward an alternate bearing cycle to be distinguished from the influence of other stochastic fluctuations. Results pointed to show a rising trend in pollen production. With a view toward forecasting future phenological trends, ARIMA models were constructed to predict PSD, PSS and PI until 2016. Projections displayed a better goodness of fit than those derived from linear regression. Findings suggest that olive reproductive cycle is changing considerably over the last 30years due to climate change. Further conclusions are that STL improves the effectiveness of traditional linear regression in trend analysis, and ARIMA models can provide reliable trend projections for future years taking into account the internal fluctuations in time series. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Linear and nonlinear trending and prediction for AVHRR time series data

    NASA Technical Reports Server (NTRS)

    Smid, J.; Volf, P.; Slama, M.; Palus, M.

    1995-01-01

    The variability of AVHRR calibration coefficient in time was analyzed using algorithms of linear and non-linear time series analysis. Specifically we have used the spline trend modeling, autoregressive process analysis, incremental neural network learning algorithm and redundancy functional testing. The analysis performed on available AVHRR data sets revealed that (1) the calibration data have nonlinear dependencies, (2) the calibration data depend strongly on the target temperature, (3) both calibration coefficients and the temperature time series can be modeled, in the first approximation, as autonomous dynamical systems, (4) the high frequency residuals of the analyzed data sets can be best modeled as an autoregressive process of the 10th degree. We have dealt with a nonlinear identification problem and the problem of noise filtering (data smoothing). The system identification and filtering are significant problems for AVHRR data sets. The algorithms outlined in this study can be used for the future EOS missions. Prediction and smoothing algorithms for time series of calibration data provide a functional characterization of the data. Those algorithms can be particularly useful when calibration data are incomplete or sparse.

  3. Trend Estimation and Regression Analysis in Climatological Time Series: An Application of Structural Time Series Models and the Kalman Filter.

    NASA Astrophysics Data System (ADS)

    Visser, H.; Molenaar, J.

    1995-05-01

    The detection of trends in climatological data has become central to the discussion on climate change due to the enhanced greenhouse effect. To prove detection, a method is needed (i) to make inferences on significant rises or declines in trends, (ii) to take into account natural variability in climate series, and (iii) to compare output from GCMs with the trends in observed climate data. To meet these requirements, flexible mathematical tools are needed. A structural time series model is proposed with which a stochastic trend, a deterministic trend, and regression coefficients can be estimated simultaneously. The stochastic trend component is described using the class of ARIMA models. The regression component is assumed to be linear. However, the regression coefficients corresponding with the explanatory variables may be time dependent to validate this assumption. The mathematical technique used to estimate this trend-regression model is the Kaiman filter. The main features of the filter are discussed.Examples of trend estimation are given using annual mean temperatures at a single station in the Netherlands (1706-1990) and annual mean temperatures at Northern Hemisphere land stations (1851-1990). The inclusion of explanatory variables is shown by regressing the latter temperature series on four variables: Southern Oscillation index (SOI), volcanic dust index (VDI), sunspot numbers (SSN), and a simulated temperature signal, induced by increasing greenhouse gases (GHG). In all analyses, the influence of SSN on global temperatures is found to be negligible. The correlations between temperatures and SOI and VDI appear to be negative. For SOI, this correlation is significant, but for VDI it is not, probably because of a lack of volcanic eruptions during the sample period. The relation between temperatures and GHG is positive, which is in agreement with the hypothesis of a warming climate because of increasing levels of greenhouse gases. The prediction performance of the model is rather poor, and possible explanations are discussed.

  4. Twentieth century bipolar seesaw of the Arctic and Antarctic surface air temperatures

    NASA Astrophysics Data System (ADS)

    Chylek, Petr; Folland, Chris K.; Lesins, Glen; Dubey, Manvendra K.

    2010-04-01

    Understanding the phase relationship between climate changes in the Arctic and Antarctic regions is essential for our understanding of the dynamics of the Earth's climate system. In this paper we show that the 20th century de-trended Arctic and Antarctic temperatures vary in anti-phase seesaw pattern - when the Arctic warms the Antarctica cools and visa versa. This is the first time that a bi-polar seesaw pattern has been identified in the 20th century Arctic and Antarctic temperature records. The Arctic (Antarctic) de-trended temperatures are highly correlated (anti-correlated) with the Atlantic Multi-decadal Oscillation (AMO) index suggesting the Atlantic Ocean as a possible link between the climate variability of the Arctic and Antarctic regions. Recent accelerated warming of the Arctic results from a positive reinforcement of the linear warming trend (due to an increasing concentration of greenhouse gases and other possible forcings) by the warming phase of the multidecadal climate variability (due to fluctuations of the Atlantic Ocean circulation).

  5. Uncertainty in detecting trend: a new criterion and its applications to global SST

    NASA Astrophysics Data System (ADS)

    Lian, Tao

    2017-10-01

    In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of multi-scale internal variation. One can thus use a specific period in a much longer record to arbitrarily determine the sign of long-term trend, which is statistically significant, in regional SST. This could lead to a controversial conclusion on how global SST responded to the anthropogenic forcing in the recent history. In this study, the uncertainty in the linear trend due to multi-scale internal variation is theoretically investigated. It is found that the "estimated" trend will not change its sign only when its magnitude is greater than a theoretical threshold that scales the influence from the multi-scale internal variation. Otherwise, the sign of the "estimated" trend may depend on the period used. The new criterion is found to be superior over the existing methods when the de-trended time series is dominated by the oscillatory term. Applying this new criterion to a global SST reconstruction from 1881 to 2013 reveals that the influences from multi-scale internal variation on the sign of "estimated" linear trend cannot be excluded in most parts of the Pacific, the southern Indian Ocean and the northern Atlantic; therefore, the warming or/and cooling trends found in these regions cannot be interpreted as the consequences of anthropogenic forcing. It's also suggested that the recent hiatus can be explained by combined uncertainty from internal variations at the interannual and decadal time scales.

  6. Uncertainty in Detecting Trend: A New Criterion and Its Applications to Global SST

    NASA Astrophysics Data System (ADS)

    Lian, Tao

    2017-04-01

    In most parts of the global ocean, the magnitude of the long-term linear trend in sea surface temperature (SST) is much smaller than the amplitude of multi-scale internal variation. One can thus use a specific period in a much longer record to arbitrarily determine the sign of long-term trend, which is statistically significant, in regional SST. This could lead to a controversial conclusion on how global SST responded to the anthropogenic forcing in the recent history. In this study, the uncertainty in the linear trend due to multi-scale internal variation is theoretically investigated. It is found that the "estimated" trend will not change its sign only when its magnitude is greater than a theoretical threshold that scales the influence from the multi-scale internal variation. Otherwise, the sign of the "estimated" trend may depend on the period used. The new criterion is found to be superior over the existing methods when the de-trended time series is dominated by the oscillatory term. Applying this new criterion to a global SST reconstruction from 1881 to 2013 reveals that the influences from multi-scale internal variation on the sign of "estimated" linear trend cannot be excluded in most parts of the Pacific, the southern Indian Ocean and the northern Atlantic; therefore, the warming or/and cooling trends found in these regions cannot be interpreted as the consequences of anthropogenic forcing. It's also suggested that the recent hiatus can be explained by combined uncertainty from internal variations at the interannual and decadal time scales.

  7. Variability of temperature properties over Kenya based on observed and reanalyzed datasets

    NASA Astrophysics Data System (ADS)

    Ongoma, Victor; Chen, Haishan; Gao, Chujie; Sagero, Phillip Obaigwa

    2017-08-01

    Updated information on trends of climate extremes is central in the assessment of climate change impacts. This work examines the trends in mean, diurnal temperature range (DTR), maximum and minimum temperatures, 1951-2012 and the recent (1981-2010) extreme temperature events over Kenya. The study utilized daily observed and reanalyzed monthly mean, minimum, and maximum temperature datasets. The analysis was carried out based on a set of nine indices recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The trend of the mean and the extreme temperature was determined using Mann-Kendall rank test, linear regression analysis, and Sen's slope estimator. December-February (DJF) season records high temperature while June-August (JJA) experiences the least temperature. The observed rate of warming is + 0.15 °C/decade. However, DTR does not show notable annual trend. Both seasons show an overall warming trend since the early 1970s with abrupt and significant changes happening around the early 1990s. The warming is more significant in the highland regions as compared to their lowland counterparts. There is increase variance in temperature. The percentage of warm days and warm nights is observed to increase, a further affirmation of warming. This work is a synoptic scale study that exemplifies how seasonal and decadal analyses, together with the annual assessments, are important in the understanding of the temperature variability which is vital in vulnerability and adaptation studies at a local/regional scale. However, following the quality of observed data used herein, there remains need for further studies on the subject using longer and more data to avoid generalizations made in this study.

  8. Skillful prediction of hot temperature extremes over the source region of ancient Silk Road.

    PubMed

    Zhang, Jingyong; Yang, Zhanmei; Wu, Lingyun

    2018-04-27

    The source region of ancient Silk Road (SRASR) in China, a region of around 150 million people, faces a rapidly increased risk of extreme heat in summer. In this study, we develop statistical models to predict summer hot temperature extremes over the SRASR based on a timescale decomposition approach. Results show that after removing the linear trends, the inter-annual components of summer hot days and heatwaves over the SRASR are significantly related with those of spring soil temperature over Central Asia and sea surface temperature over Northwest Atlantic while their inter-decadal components are closely linked to those of spring East Pacific/North Pacific pattern and Atlantic Multidecadal Oscillation for 1979-2016. The physical processes involved are also discussed. Leave-one-out cross-validation for detrended 1979-2016 time series indicates that the statistical models based on identified spring predictors can predict 47% and 57% of the total variances of summer hot days and heatwaves averaged over the SRASR, respectively. When the linear trends are put back, the prediction skills increase substantially to 64% and 70%. Hindcast experiments for 2012-2016 show high skills in predicting spatial patterns of hot temperature extremes over the SRASR. The statistical models proposed herein can be easily applied to operational seasonal forecasting.

  9. Piezoelectric Non Linear Nanomechanical Temperature and Acceleration Insensitive Clocks (PENNTAC)

    DTIC Science & Technology

    2016-07-01

    requirements dictated by the Defense Advanced Research Agency (DARPA) program. Figure 7: Measured PN Response of the Non -linear 222 MHz AlN...wavelength (λ) are designed as supports for resonators in which the dimensions of the vibrating body are kept fixed. The Q extracted experimentally confirms...conditions. In this way, we are able to quantitatively predict Q due to anchor losses and qualitatively describe the trends observed experimentally

  10. Relationship Between Sea Surface Temperature and Surface Heat Balance Trends in the Tropical Oceans: The Crucial Role of Surface Wind Trends

    NASA Astrophysics Data System (ADS)

    Cook, K. H.; Vizy, E. K.; Sun, X.

    2016-12-01

    Multiple atmospheric and ocean reanalyses are analyzed for 1980-2015 to understand annual-mean adjustments of the surface heat balance over the tropical oceans as the climate warms. Linear trends are examined, with statistical significance evaluated. While surface heat budgets and sea surface temperatures are mutually adjusted fields, insights into the physical processes of this adjustment and the implications for temperature trends can be identified. Two second-generation reanalyses, ERA-Interim and JRA-55, agree well on the distributions and magnitudes of trends in the net heat flux from the atmosphere to the ocean. Trends in the net longwave and sensible heat fluxes are generally small, and trends in solar radiation absorbed are only influential regionally and vary among the reanalyses. The largest contribution is from latent heat flux trends. Contributions to these trends associated with surface temperature (thermal-driving), 10-m wind (dynamical-driving) and specific humidity (hydrological-driving) trends are estimated. The dynamically-driven latent heat flux dominates and explains much of the regionality of the multi-decadal heat flux trends. However, trends in the net surface heat flux alone do not match the observed SSTs trends well, indicating that the redistribution of heat within the ocean mixed layer is also important. Ocean mixed layer heat budgets in various ocean reanalyses are examined to understand this redistribution, and we again identify a crucial role for changes in the surface wind. Acceleration of the tropical easterlies is associated with strengthening of the equatorial undercurrents in both the tropical Pacific and Atlantic. In the Pacific, where the EUC is also shoaling, the result is enhanced warm-water advection into the central Pacific. This advective warming is superimposed on cooling due to enhanced evaporation and equatorial upwelling, which are also associated with wind trends, to determine the observed pattern of SST trends.

  11. Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Rejaur; Lateh, Habibah

    2017-04-01

    In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80-2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20-2.48 °C) was found in the southern, southeastern and northeastern parts during 1971-2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (-0.75 mm per year) and post-monsoon rainfall (-0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011-2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.

  12. Separating out the influence of climatic trend, fluctuations, and extreme events on crop yield: a case study in Hunan Province, China

    NASA Astrophysics Data System (ADS)

    Wang, Zhu; Shi, Peijun; Zhang, Zhao; Meng, Yongchang; Luan, Yibo; Wang, Jiwei

    2017-09-01

    Separating out the influence of climatic trend, fluctuations and extreme events on crop yield is of paramount importance to climate change adaptation, resilience, and mitigation. Previous studies lack systematic and explicit assessment of these three fundamental aspects of climate change on crop yield. This research attempts to separate out the impacts on rice yields of climatic trend (linear trend change related to mean value), fluctuations (variability surpassing the "fluctuation threshold" which defined as one standard deviation (1 SD) of the residual between the original data series and the linear trend value for each climatic variable), and extreme events (identified by absolute criterion for each kind of extreme events related to crop yield). The main idea of the research method was to construct climate scenarios combined with crop system simulation model. Comparable climate scenarios were designed to express the impact of each climate change component and, were input to the crop system model (CERES-Rice), which calculated the related simulated yield gap to quantify the percentage impacts of climatic trend, fluctuations, and extreme events. Six Agro-Meteorological Stations (AMS) in Hunan province were selected to study the quantitatively impact of climatic trend, fluctuations and extreme events involving climatic variables (air temperature, precipitation, and sunshine duration) on early rice yield during 1981-2012. The results showed that extreme events were found to have the greatest impact on early rice yield (-2.59 to -15.89%). Followed by climatic fluctuations with a range of -2.60 to -4.46%, and then the climatic trend (4.91-2.12%). Furthermore, the influence of climatic trend on early rice yield presented "trade-offs" among various climate variables and AMS. Climatic trend and extreme events associated with air temperature showed larger effects on early rice yield than other climatic variables, particularly for high-temperature events (-2.11 to -12.99%). Finally, the methodology use to separate out the influences of the climatic trend, fluctuations, and extreme events on crop yield was proved to be feasible and robust. Designing different climate scenarios and feeding them into a crop system model is a potential way to evaluate the quantitative impact of each climate variable.

  13. Changes in the timing of snowmelt and streamflow in Colorado: A response to recent warming

    USGS Publications Warehouse

    Clow, David W.

    2010-01-01

    Trends in the timing of snowmelt and associated runoff in Colorado were evaluated for the 1978-2007 water years using the regional Kendall test (RKT) on daily snow-water equivalent (SWE) data from snowpack telemetry (SNOTEL) sites and daily streamflow data from headwater streams. The RKT is a robust, nonparametric test that provides an increased power of trend detection by grouping data from multiple sites within a given geographic region. The RKT analyses indicated strong, pervasive trends in snowmelt and streamflow timing, which have shifted toward earlier in the year by a median of 2-3 weeks over the 29-yr study period. In contrast, relatively few statistically significant trends were detected using simple linear regression. RKT analyses also indicated that November-May air temperatures increased by a median of 0.9 degrees C decade-1, while 1 April SWE and maximum SWE declined by a median of 4.1 and 3.6 cm decade-1, respectively. Multiple linear regression models were created, using monthly air temperatures, snowfall, latitude, and elevation as explanatory variables to identify major controlling factors on snowmelt timing. The models accounted for 45% of the variance in snowmelt onset, and 78% of the variance in the snowmelt center of mass (when half the snowpack had melted). Variations in springtime air temperature and SWE explained most of the interannual variability in snowmelt timing. Regression coefficients for air temperature were negative, indicating that warm temperatures promote early melt. Regression coefficients for SWE, latitude, and elevation were positive, indicating that abundant snowfall tends to delay snowmelt, and snowmelt tends to occur later at northern latitudes and high elevations. Results from this study indicate that even the mountains of Colorado, with their high elevations and cold snowpacks, are experiencing substantial shifts in the timing of snowmelt and snowmelt runoff toward earlier in the year.

  14. Relationship between the Arctic oscillation and surface air temperature in multi-decadal time-scale

    NASA Astrophysics Data System (ADS)

    Tanaka, Hiroshi L.; Tamura, Mina

    2016-09-01

    In this study, a simple energy balance model (EBM) was integrated in time, considering a hypothetical long-term variability in ice-albedo feedback mimicking the observed multi-decadal temperature variability. A natural variability was superimposed on a linear warming trend due to the increasing radiative forcing of CO2. The result demonstrates that the superposition of the natural variability and the background linear trend can offset with each other to show the warming hiatus for some period. It is also stressed that the rapid warming during 1970-2000 can be explained by the superposition of the natural variability and the background linear trend at least within the simple model. The key process of the fluctuating planetary albedo in multi-decadal time scale is investigated using the JRA-55 reanalysis data. It is found that the planetary albedo increased for 1958-1970, decreased for 1970-2000, and increased for 2000-2012, as expected by the simple EBM experiments. The multi-decadal variability in the planetary albedo is compared with the time series of the AO mode and Barents Sea mode of surface air temperature. It is shown that the recent AO negative pattern showing warm Arctic and cold mid-latitudes is in good agreement with planetary albedo change indicating negative anomaly in high latitudes and positive anomaly in mid-latitudes. Moreover, the Barents Sea mode with the warm Barents Sea and cold mid-latitudes shows long-term variability similar to planetary albedo change. Although further studies are needed, the natural variabilities of both the AO mode and Barents Sea mode indicate some possible link to the planetary albedo as suggested by the simple EBM to cause the warming hiatus in recent years.

  15. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.

    PubMed

    Nakagawa, Kyuya; Tamiya, Shinri; Do, Gabsoo; Kono, Shinji; Ochiai, Takaaki

    2018-06-01

    Glassy phase formation in a frozen product determines various properties of the freeze-dried products. When an aqueous solution is subjected to freezing, a glassy phase forms as a consequence of freeze-concentration. During post-freezing annealing, the relaxation of the glassy phase and the ripening of ice crystals (i.e. Ostwald ripening) spontaneously occur, where the kinetics are controlled by the annealing and glass transition temperatures. This study was motivated to observe the progress of glassy state relaxation separate from ice coarsening during annealing. X-ray computed tomography (CT) was used to observe a frozen and post-freezing annealed solutions by using monochromatized X-ray from the synchrotron radiation. CT images were successfully obtained, and the frozen matrix were analyzed based on the gray level values that were equivalent to the linear X-ray attenuation coefficients of the observed matters. The CT images obtained from rapidly frozen sucrose and dextrin solutions with different concentrations gave clear linear relationships between the linear X-ray attenuation coefficients values and the solute concentrations. It was confirmed that the glassy state relaxation progressed as increasing annealing time, and this trend was larger in the order of the glass transition temperature of the maximally freeze-concentrated phase. The sucrose-water system required nearly 20 h of annealing time at -5 °C for the completion of the glassy phase relaxation, whereas dextrin-water systems required much longer periods because of their higher glass transition temperatures. The trends of ice coarsening, however, did not perfectly correspond to the trends of the relaxation, suggesting that the glassy phase relaxation and Ostwald ripening would jointly control the ice crystal growth/ripening kinetics, and the dominant mechanism differed by the annealing stage. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. On the Response of Halogen Occultation Experiment (HALOE) Stratospheric Oxone and Temperature to the 11-yr Solar Cycle Forcing

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.

    2008-01-01

    Results are presented on responses in 14-yr time series of stratospheric ozone and temperature from the Halogen Occultation Experiment (HALOE) of the Upper Atmosphere Research Satellite (UARS) to a solar cycle (SC-like) variation. The ozone time series are for ten, 20-degree wide, latitude bins from 45S to 45N and for thirteen "half-Umkehr" layers of about 2.5 km thickness and extending from 63 hPa to 0.7 hPa. The temperature time series analyses were restricted to pressure levels in the range of 2 hPa to 0.7 hPa. Multiple linear regression (MLR) techniques were applied to each of the 130 time series of zonally-averaged, sunrise plus sunset ozone points over that latitude/pressure domain. A simple, 11-yr periodic term and a linear trend term were added to the final MLR models after their seasonal and interannual terms had been determined. Where the amplitudes of the 11-yr terms were significant, they were in-phase with those of the more standard proxies for the solar uv-flux. The max minus min response for ozone is of order 2 to 3% from about 2 to 5 hPa and for the latitudes of 45S to 45N. There is also a significant max minus min response of order 1 K for temperature between 15S and 15N and from 2 to 0.7 hPa. The associated linear trends for ozone are near zero in the upper stratosphere. Negative ozone trends of 4 to 6%/decade were found at 10 to 20 hPa across the low to middle latitudes of both hemispheres. It is concluded that the analyzed responses from the HALOE data are of good quality and can be used to evaluate the responses of climate/chemistry models to a solar cycle forcing.

  17. Innovative trend analysis of annual and seasonal air temperature and rainfall in the Yangtze River Basin, China during 1960-2015

    NASA Astrophysics Data System (ADS)

    Cui, Lifang; Wang, Lunche; Lai, Zhongping; Tian, Qing; Liu, Wen; Li, Jun

    2017-11-01

    The variation characteristics of air temperature and precipitation in the Yangtze River Basin (YRB), China during 1960-2015 were analysed using a linear regression (LR) analysis, a Mann-Kendall (MK) test with Sen's slope estimator and Sen's innovative trend analysis (ITA). The results showed that the annual maximum, minimum and mean temperature significantly increased at the rate of 0.15°C/10yr, 0.23°C/10yr and 0.19°C/10yr, respectively, over the whole study area during 1960-2015. The warming magnitudes for the above variables during 1980-2015 were much higher than those during 1960-2015:0.38°C/10yr, 0.35°C/10yr and 0.36°C/10yr, respectively. The seasonal maximum, minimum and mean temperature significantly increased in the spring, autumn and winter seasons during 1960-2015. Although the summer temperatures also increased at some extent, only the minimum temperature showed a significant increasing trend. Meanwhile, the highest rate of increase of seasonal mean temperature occurred in winter (0.24°C/10yr) during 1960-2015 and spring (0.50°C/10yr) during 1980-2015, which indicated that the significant warming trend for the whole YRB could be attributed to the remarkable temperature increases in winter and spring months. However, both the annual and seasonal warming magnitudes showed large regional differences, and a higher warming rate was detected in the eastern YRB and the western source region of the Yangtze River on the Qinghai-Tibetan Plateau (QTP). Additionally, annual precipitation increased by approximately 12.02 mm/10yr during 1960-2015 but decreased at the rate of 19.63 mm/10yr during 1980-2015. There were decreasing trends for precipitation in all four seasons since 1980 in the YRB, and a significant increasing trend was only detected in summer since 1960 (12.37 mm/10yr). Overall, a warming-wetting trend was detected in the south-eastern and north-western YRB, while there was a warming-drying trend in middle regions.

  18. Climate change, weather and road deaths.

    PubMed

    Robertson, Leon

    2018-06-01

    In 2015, a 7% increase in road deaths per population in the USA reversed the 35-year downward trend. Here I test the hypothesis that weather influenced the change in trend. I used linear regression to estimate the effect of temperature and precipitation on miles driven per capita in urbanizedurbanised areas of the USA during 2010. I matched date and county of death with temperature on that date and number of people exposed to that temperature to calculate the risk per persons exposed to specific temperatures. I employed logistic regression analysis of temperature, precipitation and other risk factors prevalent in 2014 to project expected deaths in 2015 among the 100 most populous counties in the USA. Comparison of actual and projected deaths provided an estimate of deaths expected without the temperature increase. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  19. Time-varying trends of global vegetation activity

    NASA Astrophysics Data System (ADS)

    Pan, N.; Feng, X.; Fu, B.

    2016-12-01

    Vegetation plays an important role in regulating the energy change, water cycle and biochemical cycle in terrestrial ecosystems. Monitoring the dynamics of vegetation activity and understanding their driving factors have been an important issue in global change research. Normalized Difference Vegetation Index (NDVI), an indicator of vegetation activity, has been widely used in investigating vegetation changes at regional and global scales. Most studies utilized linear regression or piecewise linear regression approaches to obtain an averaged changing rate over a certain time span, with an implicit assumption that the trend didn't change over time during that period. However, no evidence shows that this assumption is right for the non-linear and non-stationary NDVI time series. In this study, we adopted the multidimensional ensemble empirical mode decomposition (MEEMD) method to extract the time-varying trends of NDVI from original signals without any a priori assumption of their functional form. Our results show that vegetation trends are spatially and temporally non-uniform during 1982-2013. Most vegetated area exhibited greening trends in the 1980s. Nevertheless, the area with greening trends decreased over time since the early 1990s, and the greening trends have stalled or even reversed in many places. Regions with browning trends were mainly located in southern low latitudes in the 1980s, whose area decreased before the middle 1990s and then increased at an accelerated rate. The greening-to-browning reversals were widespread across all continents except Oceania (43% of the vegetated areas), most of which happened after the middle 1990s. In contrast, the browning-to-greening reversals occurred in smaller area and earlier time. The area with monotonic greening and browning trends accounted for 33% and 5% of the vegetated area, respectively. By performing partial correlation analyses between NDVI and climatic elements (temperature, precipitation and cloud cover) and analyzing the MEEMD-extracted trends of these climatic elements, we discussed possible driving factors of the time-varying trends of NDVI in several specific regions where trend reversals occurred.

  20. 21st Century Trends in the Potential for Ozone Depletion

    NASA Astrophysics Data System (ADS)

    Hurwitz, M. M.; Newman, P. A.

    2009-05-01

    We find robust trends in the area where Antarctic stratospheric temperatures are below the threshold for polar stratospheric cloud (PSC) formation in Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. In late winter (September-October-November), cold area trends are consistent with the respective trends in equivalent effective stratospheric chlorine (EESC), i.e. negative cold area trends in 'realistic future' simulations where EESC decreases and the ozone layer recovers. In the early winter (April through June), regardless of EESC scenario, we find an increasing cold area trend in all simulations; multiple linear regression analysis shows that this early winter cooling trend is associated with the predicted increase in greenhouse gas concentrations in the future. We compare the seasonality of the potential for Antarctic ozone depletion in two versions of the GEOS CCM and assess the impact of the above-mentioned cold area trends on polar stratospheric chemistry.

  1. Detection of temperature trends within the course of the year using "shifting subseasons"

    NASA Astrophysics Data System (ADS)

    Cahynova, Monika; Pokorna, Lucie

    2015-04-01

    Recent global warming has not been ubiquitous - there are seasons, regions, and time periods with clearly discernible zero or downward air temperature trends. Regions that are not warming or are even cooling - also known as "warming holes" - have been previously detected mainly in autumn in the second half of the 20th century in large parts of North America as well as in Central and Eastern Europe. Daily maximum and minimum temperature (TX and TN, respectively) and daily temperature range (DTR) at 136 stations in Europe during the period 1961-2000 are employed to precisely locate the seasonal and subseasonal trends within the course of the year. Linear trends are calculated for moving "subseasons" of differing lengths (10, 20, 30, 60, and 90 days), each shifted by one day. Cluster analysis of the annual course of "shifting trends" reveals relatively well-defined regions with similar trend behavior. Over most of Europe, the observed warming is greatest in winter, and the highest trend magnitudes are reached by TN in Eastern Europe. Two regions stand out: in Iceland and the Eastern Mediterranean, the trends during the year are weak, positive in summer and mostly negative in winter, reaching statistical significance at only few stations. Significant autumn cooling centered on mid-November was found in Eastern and Southeastern Europe for both TX and TN; in many other regions trends are close to zero in the same period. Other clearly non-warming (or even cooling) periods occur in Western and Central Europe in February, April, and late June. Trends of DTR are largely inconclusive and no general picture can be drawn. Our results suggest that using different time scales, apart from the conventional three-month seasons or common months, is highly desirable for a proper location of trends within the course of the year.

  2. Variations of global gravity waves derived from 14 years of SABER temperature observations

    NASA Astrophysics Data System (ADS)

    Liu, Xiao; Yue, Jia; Xu, Jiyao; Garcia, Rolando R.; Russell, James M.; Mlynczak, Martin; Wu, Dong L.; Nakamura, Takuji

    2017-06-01

    The global gravity wave (GW) potential energy (PE) per unit mass is derived from SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) temperature profiles over the past 14 years (2002-2015). Since the SABER data cover longer than one solar cycle, multivariate linear regression is applied to calculate the trend (means linear trend from 2002 to 2015) of global GW PE and the responses of global GW PE to solar activity, to QBO (quasi-biennial oscillation) and to ENSO (El Niño-Southern Oscillation). We find a significant positive trend of GW PE at around 50°N during July from 2002 to 2015, in agreement with ground-based radar observations at a similar latitude but from 1990 to 2010. Both the monthly and the deseasonalized trends of GW PE are significant near 50°S. Specifically, the deseasonalized trend of GW PE has a positive peak of 12-15% per decade at 40°S-50°S and below 60 km, which suggests that eddy diffusion is increasing in some places. A significant positive trend of GW PE near 50°S could be due to the strengthening of the polar stratospheric jets, as documented from Modern Era Retrospective-analysis for Research and Applications wind data. The response of GW PE to solar activity is negative in the lower and middle latitudes. The response of GW PE to QBO (as indicated by 30 hPa zonal winds over the equator) is negative in the tropical upper stratosphere and extends to higher latitudes at higher altitudes. The response of GW PE to ENSO (as indicated by the Multivariate ENSO Index) is positive in the tropical upper stratosphere.

  3. Power and temperature dependent photoluminescence investigation of the linear polarization at normal and inverted interface transitions in InP/InAlAs and InGaAsP/InAlAs QW structures

    NASA Astrophysics Data System (ADS)

    Esmaielpour, Hamidreza; Whiteside, Vincent R.; Hirst, Louise C.; Forbes, David V.; Walters, Robert J.; Sellers, Ian R.

    We present an investigation of the interface effects for InGaAsP/InAlAs QW and InP/InAlAs QW structures capped with an InP layer. Continuous wave photoluminescence (PL) spectroscopy of these samples at 4 K shows features associated with the interfaces of an InAlAs layer grown on an InP layer (normal interface) and an InP layer grown on an InAlAs material (inverted interface). Power dependent PL of the InGaAsP QW indicates that there are two features related to the inverted interface, whereby the linear polarization of one increases and for the other decreases. In addition, a temperature dependent study of this sample shows that as the temperature increases: the linear polarization for both features decreases; at room temperature, there is negligible polarization effect. A power dependent PL study of the InP QW structure shows both normal and inverted interface transitions have opposing trends in linear polarization. Notably, the temperature dependent PL investigation displays a reduction of polarization degree for the inverted interface: as expected; while an increase of polarization for the normal interface was observed. In addition, power and temperature dependence of peak energy of the interface transitions for both samples will be presented.

  4. Statistical Analysis of Terrestrial Water Storage Change Over Southwestern United States

    NASA Astrophysics Data System (ADS)

    Eibedingil, I. G.; Mubako, S. T.; Hargrove, W. L.; Espino, A. C.

    2017-12-01

    A warming trend over recent decades has aggravated water resource challenges in the arid southwestern region of the United States (U.S.). An increase in temperature, coupled with decreasing snowpack and rainfall have impacted the region's cities, ecosystems, and agriculture. The region is the largest contributor of agricultural products to the U.S. market resulting from irrigation. Water use through irrigation is stressing already limited terrestrial water resources. Population growth in recent decades has also led to increased water demand. This study utilizes products of the Gravity Recovery and Climate Experiment (GRACE) twin satellites experiment in MATLAB and ArcGIS to examine terrestrial water storage changes in the southwestern region of the U.S., comprised of the eight states of Texas, California, Nevada, Utah, Arizona, Colorado, New Mexico, and Oklahoma. Linear trend analysis was applied to the equivalent water-height data of terrestrial water storage changes (TWSC), precipitation, and air temperature. Correlation analysis was performed on couplings of TWSC - precipitation and TWSC - air temperature to examine the impact of temperature and precipitation on the region's water resources. Our preliminary results show a decreasing trend of TWSC from April 2002 to July 2016 in almost all parts of the region. Precipitation shows a decreasing trend from March 2000 to March 2017 for most of the region, except for sparse areas of increased precipitation near the northwestern coast of California, and a belt running from Oklahoma through the middle of Texas to the El Paso/New Mexico border. From April 2002 to December 2014, air temperature exhibited a negative trend for most of the region, except a larger part of California and a small location in central Texas. Correlation between TWSC and precipitation was mostly positive, but a negative trend was observed when TWSC and air temperature were correlated. The study contributes to the understanding of terrestrial water storage trends and their relationship with climatic variables, crucial for implementing appropriate adaptation and mitigation policies and strategies, and managing water demand.

  5. Added effect of heat wave on mortality in Seoul, Korea.

    PubMed

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future studies.

  6. Effects of urbanization on climate of İstanbul and Ankara

    NASA Astrophysics Data System (ADS)

    Karaca, Mehmet; Tayanç, Mete; Toros, Hüseyi˙n.

    The purpose of this work is to study regional climate change and investigate the effects of urbanization on climates of two largest cities in Turkey: İstanbul and Ankara. Air temperature (mean, maximum and minimum) data of İstanbul and Ankara are analyzed to study regional climate change and to understand the possible effects of urbanization on the climate of these regions owing to industrialization and large flux of migration from rural parts of the country. For the trend analysis, linear regression and the sequential version of the Mann-Kendall test is used. A significant upward trend is found in the urban temperatures of southern İstanbul, which is the most highly populated and industrialized part of the city compared to its rural parts. Northern stations do not show any warming trend; instead, they have a cooling trend. Urbanization and industrialization in the southern part of İstanbul has a negative effect on regional cooling. In spite of Ankara's urban geometry and air pollution problem, the urban station in Ankara does not show any warming trend. A significant urban heat island intensity ( urban-rural) is not observed in Ankara.

  7. Detection and Attribution of Temperature Trends in the Presence of Natural Variability

    NASA Astrophysics Data System (ADS)

    Wallace, J. M.

    2014-12-01

    The fingerprint of human-induced global warming stands out clearly above the noise In the time series of global-mean temperature, but not local temperature. At extratropical latitudes over land the standard error of 50-year linear temperature trends at a fixed point is as large as the cumulative rise in global-mean temperature over the past century. Much of the samping variability in local temperature trends is "dynamically-induced", i.e., attributable to the fact that the seasonally-varying mean circulation varies substantially from one year to the next and anomalous circulation patterns are generally accompanied by anomalous temperature patterns. In the presence of such large sampling variability it is virtually impossible to identify the spatial signature of greenhouse warming based on observational data or to partition observed local temperature trends into natural and human-induced components. It follows that previous IPCC assessments, which have focused on the deterministic signature of human-induced climate change, are inherently limited as to what they can tell us about the attribution of the past record of local temperature change or about how much the temperature at a particular place is likely to rise in the next few decades in response to global warming. To obtain more informative assessments of regional and local climate variability and change it will be necessary to take a probabilistic approach. Just as the use of the ensembles has contributed to more informative extended range weather predictions, large ensembles of climate model simulations can provide a statistical context for interpreting observed climate change and for framing projections of future climate. For some purposes, statistics relating to the interannual variability in the historical record can serve as a surrogate for statistics relating to the diversity of climate change scenarios in large ensembles.

  8. Trends in evaporation of a large subtropical lake

    NASA Astrophysics Data System (ADS)

    Hu, Cheng; Wang, Yongwei; Wang, Wei; Liu, Shoudong; Piao, Meihua; Xiao, Wei; Lee, Xuhui

    2017-07-01

    How rising temperature and changing solar radiation affect evaporation of natural water bodies remains poor understood. In this study, evaporation from Lake Taihu, a large (area 2400 km2) freshwater lake in the Yangtze River Delta, China, was simulated by the CLM4-LISSS offline lake model and estimated with pan evaporation data. Both methods were calibrated against lake evaporation measured directly with eddy covariance in 2012. Results show a significant increasing trend of annual lake evaporation from 1979 to 2013, at a rate of 29.6 mm decade-1 according to the lake model and 25.4 mm decade-1 according to the pan method. The mean annual evaporation during this period shows good agreement between these two methods (977 mm according to the model and 1007 mm according to the pan method). A stepwise linear regression reveals that downward shortwave radiation was the most significant contributor to the modeled evaporation trend, while air temperature was the most significant contributor to the pan evaporation trend. Wind speed had little impact on the modeled lake evaporation but had a negative contribution to the pan evaporation trend offsetting some of the temperature effect. Reference evaporation was not a good proxy for the lake evaporation because it was on average 20.6 % too high and its increasing trend was too large (56.5 mm decade-1).

  9. Statistical assessment of changes in extreme maximum temperatures over Saudi Arabia, 1985-2014

    NASA Astrophysics Data System (ADS)

    Raggad, Bechir

    2018-05-01

    In this study, two statistical approaches were adopted in the analysis of observed maximum temperature data collected from fifteen stations over Saudi Arabia during the period 1985-2014. In the first step, the behavior of extreme temperatures was analyzed and their changes were quantified with respect to the Expert Team on Climate Change Detection Monitoring indices. The results showed a general warming trend over most stations, in maximum temperature-related indices, during the period of analysis. In the second step, stationary and non-stationary extreme-value analyses were conducted for the temperature data. The results revealed that the non-stationary model with increasing linear trend in its location parameter outperforms the other models for two-thirds of the stations. Additionally, the 10-, 50-, and 100-year return levels were found to change with time considerably and that the maximum temperature could start to reappear in the different T-year return period for most stations. This analysis shows the importance of taking account the change over time in the estimation of return levels and therefore justifies the use of the non-stationary generalized extreme value distribution model to describe most of the data. Furthermore, these last findings are in line with the result of significant warming trends found in climate indices analyses.

  10. Modeling annual extreme temperature using generalized extreme value distribution: A case study in Malaysia

    NASA Astrophysics Data System (ADS)

    Hasan, Husna; Salam, Norfatin; Kassim, Suraiya

    2013-04-01

    Extreme temperature of several stations in Malaysia is modeled by fitting the annual maximum to the Generalized Extreme Value (GEV) distribution. The Augmented Dickey Fuller (ADF) and Phillips Perron (PP) tests are used to detect stochastic trends among the stations. The Mann-Kendall (MK) test suggests a non-stationary model. Three models are considered for stations with trend and the Likelihood Ratio test is used to determine the best-fitting model. The results show that Subang and Bayan Lepas stations favour a model which is linear for the location parameters while Kota Kinabalu and Sibu stations are suitable with a model in the logarithm of the scale parameters. The return level is the level of events (maximum temperature) which is expected to be exceeded once, on average, in a given number of years, is obtained.

  11. Comparison of climate related changes in two Arctic fjords, Hornsund and Porsanger

    NASA Astrophysics Data System (ADS)

    Aniskiewicz, Paulina; Stramska, Małgorzata

    2017-04-01

    In the Arctic zone the climate change is amplified in comparison to globally averaged trends, and the observed trends are variable spatially. Our research is focused on two Artic fjords: Porsanger and Horsund. Porsanger fjord is located in the coastal waters of the Barents Sea. Hornsund is one of fjords located in the western part of Svalbard archipelago. In this presentation we have used data provided by the Norwegian Meteorological Institute for three meteorological stations. Two of them are located in the Porsanger fjord (Lakselv - in the inner part, Honningsvåg - in the outer zone). The third station provides data from the Hornsund fjord. Using these data we have estimated the 33-year trends (1983-2015) of air temperature and relative humidity in each station using linear regression analysis (statistically significant at 95In the inner part of the Porsanger fjord (Lakselv) the multiyear trend of increasing annual mean air temperature has been estimated at 0.006°C per year. The monthly trends were statistically significant in May, September and November. The strongest seasonal warming has been observed in spring and autumn. The trends of increasing annual mean humidity was about 0.2In Hornsund the air temperature trend (0.2°C per year) is significantly larger than in Porsanger. The trends of air temperature were statistically significant for eight months (except March, April, June and July) and three seasons (besides spring). The trends of relative humidity were not statistically significant. Thanks to this research we can discuss how atmospheric conditions and climate related trends change in time and seasons of the year in two different Arctic regions. The project has been financed from the funds of the Leading National Research Centre (KNOW) received by the Centre for Polar Studies for the period 2014-2018. This work was also funded by the Norway Grants (NCBR contract No. 201985, project NORDFLUX). Partial support comes from the Institute of Oceanology (IO PAN).

  12. Modelling uncertainties and possible future trends of precipitation and temperature for 10 sub-basins in Columbia River Basin (CRB)

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, A.; Rana, A.; Qin, Y.; Moradkhani, H.

    2014-12-01

    Trends and changes in future climatic parameters, such as, precipitation and temperature have been a central part of climate change studies. In the present work, we have analyzed the seasonal and yearly trends and uncertainties of prediction in all the 10 sub-basins of Columbia River Basin (CRB) for future time period of 2010-2099. The work is carried out using 2 different sets of statistically downscaled Global Climate Model (GCMs) projection datasets i.e. Bias correction and statistical downscaling (BCSD) generated at Portland State University and The Multivariate Adaptive Constructed Analogs (MACA) generated at University of Idaho. The analysis is done for with 10 GCM downscaled products each from CMIP5 daily dataset totaling to 40 different downscaled products for robust analysis. Summer, winter and yearly trend analysis is performed for all the 10 sub-basins using linear regression (significance tested by student t test) and Mann Kendall test (0.05 percent significance level), for precipitation (P), temperature maximum (Tmax) and temperature minimum (Tmin). Thereafter, all the parameters are modelled for uncertainty, across all models, in all the 10 sub-basins and across the CRB for future scenario periods. Results have indicated in varied degree of trends for all the sub-basins, mostly pointing towards a significant increase in all three climatic parameters, for all the seasons and yearly considerations. Uncertainty analysis have reveled very high change in all the parameters across models and sub-basins under consideration. Basin wide uncertainty analysis is performed to corroborate results from smaller, sub-basin scale. Similar trends and uncertainties are reported on the larger scale as well. Interestingly, both trends and uncertainties are higher during winter period than during summer, contributing to large part of the yearly change.

  13. Trends in cooling degree-days for five locations in Croatia

    NASA Astrophysics Data System (ADS)

    Cvitan, L.

    2010-09-01

    The cooling degree-days (CDD) and number of cooling days (CD) over the period 1901-2008 are analyzed at five stations that represent different climatic regions in Croatia. The stations under consideration are: Osijek in the southern lowland of Pannonian Plain, Zagreb - Grič at the furthest south-eastern edge of the Julian Alps, Gospić in highland - hinterland of the Dinaric Alps, Crikvenica on the north-eastern Adriatic coast and Hvar on the mid - Adriatic island with the same name. Calculation of CDDs and counting of CDs are performed for the 18° C, 21° C and 23° C temperature thresholds that represent daily mean air temperature. Daily mean temperature (M) is calculated by using daily temperatures measured at 7 a.m. (t7), 2 p.m. (t14) and 9 p.m. (t21), in the following way: M=(t7+t14+2t21)/4. Linear trends over the period 1901-2008 are determined for each month as well as for the whole year (annual trend). Statistical significances of the trends are tested using the non-parametric Mann - Kendal test. For the months with the greatest potential cooling demands - June, July and August, the increasing trend is detected for almost all analyzed values at five locations. Namely, only for the August CD (threshold 18° C) for Hvar area and for the June and August CDDs (threshold 23° C) for Gospić area are detected slightly decreasing trends. Most slightly decreasing trends are discovered for September for both parameters at Osijek, Zagreb and Gospić area. Annual trends in both parameters for all locations are increasing, except the annual Gospić CDD (threshold 23° C) trend that is slightly decreasing. According to the Mann - Kendal test neither of the annual trends in CDD and CD for three temperature thresholds are statistically significant at 0.05 significance level in Gospić and Osijek. On the contrary, all of the mentioned annual trends are significant in Zagreb and Crikvenica, and almost all in Hvar (except trends in CD for the 21° C and 23° C thresholds). Months with the significant trends in most of analyzed values are: May and June in Osijek, May, June and July in Zagreb, June in Gospić, June, July and August in Crikvenica and July in Hvar.

  14. Unabated global surface temperature warming: evaluating the evidence

    NASA Astrophysics Data System (ADS)

    Karl, T. R.; Arguez, A.

    2015-12-01

    New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.

  15. Comments on "Long-Term Variations of Exospheric Temperature Inferred From foF1 Observations: A Comparison to ISR Ti Trend Estimates" by Perrone and Mikhailov

    NASA Astrophysics Data System (ADS)

    Zhang, Shun-Rong; Holt, John M.; Erickson, Philip J.; Goncharenko, Larisa P.

    2018-05-01

    Perrone and Mikhailov (2017, https://doi.org/10.1002/2017JA024193) and Mikhailov et al. (2017, https://doi.org/10.1002/2017JA023909) have recently examined thermospheric and ionospheric long-term trends using a data set of four thermospheric parameters (Tex, [O], [N2], and [O2]) and solar EUV flux. These data were derived from one single ionospheric parameter, foF1, using a nonlinear fitting procedure involving a photochemical model for the F1 peak. The F1 peak is assumed at the transition height ht with the linear recombination for atomic oxygen ions being equal to the quadratic recombination for molecular ions. This procedure has a number of obvious problems that are not addressed or not sufficiently justified. The potentially large ambiguities and biases in derived parameters make them unsuitable for precise quantitative ionospheric and thermospheric long-term trend studies. Furthermore, we assert that Perrone and Mikhailov (2017, https://doi.org/10.1002/2017JA024193) conclusions regarding incoherent scatter radar (ISR) ion temperature analysis for long-term trend studies are incorrect and in particular are based on a misunderstanding of the nature of the incoherent scatter radar measurement process. Large ISR data sets remain a consistent and statistically robust method for determining long term secular plasma temperature trends.

  16. Thermophysical Properties and Temperature of the Start of Titanium Recrystallization in Different Structural States

    NASA Astrophysics Data System (ADS)

    Pavlenko, D. V.; Tkach, D. V.; Danilova-Tret'yak, S. M.; Evseeva, L. E.

    2017-05-01

    The results of measurements of the thermal diffusivity, thermal conductivity, and heat capacity of VT1-0-grade titanium samples in as-cast, deformed submicrocrystalline, and sintered states are presented. It has been established that the decrease in the thermal conductivity and thermal diffusivity of titanium in the submicrocrystalline and sintered states is associated with the increase in the quantity of defects in the material volume, whereas the increase in the temperature of polymorphic transformation of titanium is connected with the dissolution of oxygen in its lattice. The results of investigation of the coefficient of thermal linear expansion of titanium in the macrocrystalline and submicrocrystalline states are presented. The decrease in the coefficient of thermal linear expansion of titanium of submicrocrystalline structure has been established, which may point to the decrease in its melting temperature. It is shown that annealing of samples in a submicrocrystalline state leads to the growth of the temperature coefficient of linear expansion, bringing its value closer to the temperature coefficient of linear expansion of titanium in the equilibrium state. Studies by the method of back reflection photography in a KROS chamber made it possible to estimate the temperature of the start of VT1-0-grade titanium recrystallization after intense plastic deformation by the twist extrusion method. The decrease in the temperature of the start of recrystallization for titanium in the deformed submicrocrystalline state has been established. Based on the trends revealed, optimum regimes of thermal treatment of VT1-0-grade titanium for removing internal stresses and preserving the submicrocrystalline structure have been established.

  17. Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate.

    PubMed

    Omumbo, Judith A; Lyon, Bradfield; Waweru, Samuel M; Connor, Stephen J; Thomson, Madeleine C

    2011-01-17

    Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard.

  18. Qualitative comparison of air temperature trends based on ncar/ncep reanalysis, model simulations and aerological observations data

    NASA Astrophysics Data System (ADS)

    Rubinstein, K. G.; Khan, V. M.; Sterin, A. M.

    In the present study we discuss two points. The first one is related with applicability of reanalysis data to investigating long-term climate variability. We present results of comparison of long term air temperature trends for the troposphere and the low stratosphere calculated using monthly averaged NCAR/NCEP reanalysis data on one hand and direct rawinsond observations from 443 stations on the other. The trends and other statistical characteristics are calculated for two overlapping time periods, namely 1964 through 1998, and 1979 through 1998. These two intervals were chosen in order to examine the influence of satellite observations on the reanalysis data, given that most satellite data have appeared after 1979. Vertical profiles of air temperature trends are also analyzed using the two types of data for different seasons. A special criterion is applied to evaluate the degree of coincidence by sign between the air temperatures trends derived from the two types of data. Vertical sections of the linear trend averaged over the 10-degrees zones for the both hemispheres are analyzed. It is shown that the two types of data exhibit good coincidence in the terms of the trend sign for the low and middle troposphere and low stratosphere over the areas well covered by the rawinsond observation net. Significant differences of the air temperature trend values are observed near the land surface and in the tropopause layer. The absolute value of the cooling rate of the tropical low stratosphere based on the rawinsond data is larger then that based on the reanalysis data. The presence of a positive trend in the low troposphere in the belt from ˜ 40N to ˜ 70N is evident in the two data sets. A comparative analysis of the trends for the both periods of observation shows that introducing satellite information in the reanalysis data resulted in an increase of the number of stations where the signs of the trend derived from the two sets of data coincide, especially in the southeastern part of Eurasia. The second part of the present study is related with another question. How do well climate model simulations match temperature observations throughout the atmosphere? Estimates of monthly-mean troposphere and stratospheric temperature trends over the past twenty years, from different hydrodynamical models (INM - model of Institute of Numerical Mathematics, RHMC - model of Hydrometeorological Center of Russia) are compared both with each other and with the observed trend analyses using aerological observations. We verified if the agreement is good between models and observations in term of cooling in the lower stratosphere and the tropospheric warming, which are strong indicators of climate change. Spatial inconsistencies between the observed and modelled vertical patterns of temperature change are identified. This work was partially supported by RFFI foundation N 03-05-64312, NATO grant EST.CLG.978911 and INTAS grant 03515296.

  19. Effects of climate change and wildfire on stream temperatures and salmonid thermal habitat in a mountain river network

    Treesearch

    Daniel J. Isaak; Charles H. Luce; Bruce E. Rieman; David E. Nagel; Erin E. Peterson; Dona L. Horan; Sharon Parkes; Gwynne L. Chandler

    2010-01-01

    Mountain streams provide important habitats for many species, but their faunas are especially vulnerable to climate change because of ectothermic physiologies and movements that are constrained to linear networks that are easily fragmented. Effectively conserving biodiversity in these systems requires accurate downscaling of climatic trends to local habitat conditions...

  20. Striking Seasonality in the Secular Warming of the Northern Continents: Structure and Mechanisms

    NASA Astrophysics Data System (ADS)

    Nigam, S.; Thomas, N. P.

    2017-12-01

    The linear trend in twentieth-century surface air temperature (SAT)—a key secular warming signal— exhibits striking seasonal variations over Northern Hemisphere continents; SAT trends are pronounced in winter and spring but notably weaker in summer and fall. The SAT trends in historical twentieth-century climate simulations informing the Intergovernmental Panel for Climate Change's Fifth Assessment show varied (and often unrealistic) strength and structure, and markedly weaker seasonal variation. The large intra-ensemble spread of winter SAT trends in some historical simulations was surprising, especially in the context of century-long linear trends, with implications for the detection of the secular warming signal. The striking seasonality of observed secular warming over northern continents warrants an explanation and the representation of related processes in climate models. Here, the seasonality of SAT trends over North America is shown to result from land surface-hydroclimate interactions and, to an extent, also from the secular change in low-level atmospheric circulation and related thermal advection. It is argued that the winter dormancy and summer vigor of the hydrologic cycle over middle- to high-latitude continents permit different responses to the additional incident radiative energy from increasing greenhouse gas concentrations. The seasonal cycle of climate, despite its monotony, provides an expanded phase space for the exposition of the dynamical and thermodynamical processes generating secular warming, and an exceptional cost-effective opportunity for benchmarking climate projection models.

  1. Search for Trends and Periodicities in Inter-hemispheric Sea Surface Temperature Difference

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; Tiwari, R. K.

    2018-02-01

    Understanding the role of coupled solar and internal ocean dynamics on hemispheric climate variability is critical to climate modelling. We have analysed here 165 year long annual northern hemispheric (NH) and southern hemispheric (SH) sea surface temperature (SST) data employing spectral and statistical techniques to identify the imprints of solar and ocean-atmospheric processes, if any. We reconstructed the eigen modes of NH-SST and SH-SST to reveal non-linear oscillations superimposed on the monotonic trend. Our analysis reveals that the first eigen mode of NH-SST and SH-SST representing long-term trend of SST variability accounts for 15-23% variance. Interestingly, these components are matching with first eigen mode (99% variance) of the total solar irradiance (TSI) suggesting possible impact of solar activity on long-term SST variation. Furthermore, spectral analysis of SSA reconstructed signal revealed statistically significant periodicities of 63 ± 5, 22 ± 2, 10 ± 1, 7.6, 6.3, 5.2, 4.7, and 4.2 years in both NH-SST and SH-SST data. The major harmonics centred at 63 ± 5, 22 ± 2, and 10 ± 1 years are similar to solar periodicities and hence may represent solar forcing, while the components peaking at around 7.6, 6.3, 5.2, 4.7, and 4.2 years apparently falls in the frequency bands of El-Nino-Southern Oscillations linked to the oceanic internal processes. Our analyses also suggest evidence for the amplitude modulation of 9-11 and 21-22 year solar cycles, respectively, by 104 and 163 years in northern and southern hemispheric SST data. The absence of the above periodic oscillations in CO2 fails to suggest its role on observed inter-hemispheric SST difference. The cross-plot analysis also revealed strong influence of solar activity on linear trend of NH- and SH-SST in addition to small contribution from CO2. Our study concludes that (1) the long-term trends in northern and southern hemispheric SST variability show considerable synchronicity with cyclic warming and cooling phases and (2) the difference in cyclic forcing and non-linear modulations stemming from solar variability as a possible source of hemispheric SST differences.

  2. Global Surface Temperature Anomalies and Attribution

    NASA Astrophysics Data System (ADS)

    Pietrafesa, L. J.

    2017-12-01

    We study Non-Stationary, Non-Linear time series of global surface temperatures from 1850 to 2016, and via an empirical, mathematical methodology, we reveal the buried, internal modes of variability of planetary temperatures over the past 167 years, and find periods of cooling and warming, both in the ocean and the atmosphere over land, with multiple modes of variability; seasonal, annual, inter-annual, multi-year, decadal, multi-decadal, centennial and overall warming trends in the ocean, atmosphere and the combination therein. The oceanic rate of warming is less than two thirds of that of the atmosphere. While our findings on overall trends of fossil fuel burning and planetary temperatures are only visually correlative, by employing a mathematical methodology well known in ergonomics, this study causally links the upward rise in planetary surface temperature from the latter part of the 19th Century and into the 21st Century, to the contemporaneous upward rise in fossil fuel burning and suggests that if present fossil fuel burning is not curtailed there will be continued warming of the planet in the future.

  3. Whole season compared to growth-stage resolved temperature trends: implications for US maize yield

    NASA Astrophysics Data System (ADS)

    Butler, E. E.; Mueller, N. D.; Huybers, P. J.

    2014-12-01

    The effect of temperature on maize yield has generally been considered using a single value for the entire growing season. We compare the effect of temperature trends on yield between two distinct models: a single temperature sensitivity for the whole season and a variable sensitivity across four distinct agronomic development stages. The more resolved variable-sensitivity model indicates roughly a factor of two greater influence of temperature on yield than that implied by the single-sensitivity model. The largest discrepancies occur in silking, which is demonstrated to be the most sensitive stage in the variable-sensitivity model. For instance, whereas median yields are observed to be only 53% of typical values during the hottest 1% of silking-stage temperatures, the single-sensitivity model over predicts median yields of 68% whereas the variable-sensitivity model more correctly predicts median yields of 61%. That the variable sensitivity model is also not capable of capturing the full extent of yield losses suggests that further refinement to represent the non-linear response would be useful. Results from the variable sensitivity model also indicate that management decisions regarding planting times, which have generally shifted toward earlier dates, have led to greater yield benefit than that implied by the single-sensitivity model. Together, the variation of both temperature trends and yield variability within growing stages calls for closer attention to how changes in management interact with changes in climate to ultimately affect yields.

  4. Seasonal and ascending trends in the incidence of carriage of extended-spectrum ß-lactamase-producing Escherichia coli and Klebsiella species in 2 German hospitals.

    PubMed

    Kaier, Klaus; Frank, Uwe; Conrad, Andreas; Meyer, Elisabeth

    2010-11-01

    Extended-spectrum ß-lactamase (ESBL)-producing strains of bacteria have become a major public health concern. In the present study, the incidence of carriage of ESBL-producing strains was analyzed for general trends and seasonality. Monthly data on ESBL-producing strains were collected retrospectively at 2 large university hospitals in Germany. The mean monthly temperatures for the 2 settings were collected from Germany's national meteorological service. Multivariable time series analyses were performed to explain variations in the monthly incidence densities of carriage of ESBL-producing bacteria (number of cases involving ESBL-producing Escherichia coli and/or Klebsiella species per 1,000 patient days). For the final models, we incorporated variables for the ascending linear trends and other variables representing the mean monthly temperature. Our models demonstrated that there was an increasing trend in the incidences of carriage of ESBL-producing bacteria. In addition, the incidences of carriage of all ESBL-producing bacteria responded positively to the mean temperature, meaning that during the summer, more cases involving ESBL-producing bacteria were detected than during the winter. The same methodology was also applied to the incidence of methicillin-resistant Staphylococcus aureus carriage, but no association was found with the mean temperature. In the present study, we demonstrated that the monthly incidence of carriage of ESBL-producing bacteria was highly correlated with the mean monthly temperature, a fact that should be considered in experimental studies as an additional parameter influencing the incidence of ESBL-producing bacteria.

  5. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China.

    PubMed

    Xue, Jie; Gui, Dongwei

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth's hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River.

  6. Linear and nonlinear characteristics of the runoff response to regional climate factors in the Qira River basin, Xinjiang, Northwest China

    PubMed Central

    Xue, Jie

    2015-01-01

    The inland river watersheds of arid Northwest China represent an example of how, in recent times, climatic warming has increased the complexity of Earth’s hydrological processes. In the present study, the linear and nonlinear characteristics of the runoff response to temperature and precipitation were investigated in the Qira River basin, located on the northern slope of the Kunlun Mountains. The results showed that average temperature on annual and seasonal scales has displayed a significantly increasing trend, but this has not been reflected in accumulated precipitation and runoff. Using path analysis, a positive link between precipitation and runoff was found both annually and in the summer season. Conversely, it was found that the impact of temperature on runoff has been negative since the 1960s, attributable to higher evaporation and infiltration in the Qira River basin. Over the past 50 years, abrupt changes in annual temperature, precipitation and runoff occurred in 1997, 1987 and 1995, respectively. Combined with analysis using the correlation dimension method, it was found that the temperature, precipitation and runoff, both annually and seasonally, possessed chaotic dynamic characteristics, implying that complex hydro-climatic processes must be introduced into other variables within models to describe the dynamics. In addition, as determined via rescaled range analysis, a consistent annual and seasonal decreasing trend in runoff under increasing temperature and precipitation conditions in the future should be taken into account. This work may provide a theoretical perspective that can be applied to the proper use and management of oasis water resources in the lower reaches of river basins like that of the Qira River. PMID:26244113

  7. Annual changes in seasonal river water temperatures in the eastern and western United States

    USGS Publications Warehouse

    Wagner, Tyler; Midway, Stephen R.; Whittier, Joanna B.; DeWeber, Jefferson T.; Paukert, Craig P.

    2017-01-01

    Changes in river water temperatures are anticipated to have direct effects on thermal habitat and fish population vital rates, and therefore, understanding temporal trends in water temperatures may be necessary for predicting changes in thermal habitat and how species might respond to such changes. However, many investigations into trends in water temperatures use regression methods that assume long-term monotonic changes in temperature, when in fact changes are likely to be nonmonotonic. Therefore, our objective was to highlight the need and provide an example of an analytical method to better quantify the short-term, nonmonotonic temporal changes in thermal habitat that are likely necessary to determine the effects of changing thermal conditions on fish populations and communities. To achieve this objective, this study uses Bayesian dynamic linear models (DLMs) to examine seasonal trends in river water temperatures from sites located in the eastern and western United States, regions that have dramatically different riverine habitats and fish communities. We estimated the annual rate of change in water temperature and found little evidence of seasonal changes in water temperatures in the eastern U.S. We found more evidence of warming for river sites located in the western U.S., particularly during the fall and winter seasons. Use of DLMs provided a more detailed view of temporal dynamics in river thermal habitat compared to more traditional methods by quantifying year-to-year changes and associated uncertainty, providing managers with the information needed to adapt decision making to short-term changes in habitat conditions that may be necessary for conserving aquatic resources in the face of a changing climate.

  8. Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands

    NASA Astrophysics Data System (ADS)

    Quan, Jinling; Zhan, Wenfeng; Chen, Yunhao; Wang, Mengjie; Wang, Jinfei

    2016-03-01

    Previous time series methods have difficulties in simultaneous characterization of seasonal, gradual, and abrupt changes of remotely sensed land surface temperature (LST). This study proposed a model to decompose LST time series into trend, seasonal, and noise components. The trend component indicates long-term climate change and land development and is described as a piecewise linear function with iterative breakpoint detection. The seasonal component illustrates annual insolation variations and is modeled as a sinusoidal function on the detrended data. This model is able to separate the seasonal variation in LST from the long-term (including gradual and abrupt) change. Model application to nighttime Moderate Resolution Imaging Spectroradiometer (MODIS)/LST time series during 2000-2012 over Beijing yielded an overall root-mean-square error of 1.62 K between the combination of the decomposed trend and seasonal components and the actual MODIS/LSTs. LST decreased (~ -0.086 K/yr, p < 0.1) in 53% of the study area, whereas it increased with breakpoints in 2009 (~0.084 K/yr before and ~0.245 K/yr after 2009) between the fifth and sixth ring roads. The decreasing trend was stronger over croplands than over urban lands (p < 0.05), resulting in an increasing trend in surface urban heat island intensity (SUHII, 0.022 ± 0.006 K/yr). This was mainly attributed to the trends in urban-rural differences in rainfall and albedo. The SUHII demonstrated a concave seasonal variation primarily due to the seasonal variations of urban-rural differences in temperature cooling rate (related to canyon structure, vegetation, and soil moisture) and surface heat dissipation (affected by humidity and wind).

  9. Regional trends for bud burst and flowering of woody plants in Norway as related to climate change

    NASA Astrophysics Data System (ADS)

    Nordli, Ø.; Wielgolaski, F. E.; Bakken, A. K.; Hjeltnes, S. H.; Måge, F.; Sivle, A.; Skre, O.

    2008-09-01

    Data series for bud burst, beginning of flowering and petal fall for 20 species of deciduous trees and conifers at four sites in different regions of southern Norway have been analysed and related to temperature series. On average, the spring phenophases occurred 7 days earlier during the period 1971-2005. The most significant linear trends were observed for the earliest phases. The trends in this period were compared with trends in other periods, the longest one starting in 1927. Those starting in cold decades and ending in 2005 were in most instances statistically significant, whereas hardly any significant trend appeared for series starting in warm decades. This fact showed that the results of trend studies are very sensitive to the choice of starting year. There were significant decadal variations in 40% of the series. The dates of occurrence of the phenophases, varying from the first days of May to the first days of June, correlated with seasonal temperature series, in most cases strongest to mean temperatures for the seasons March-May and April-May. The North Atlantic Oscillation Index (NAOI) for January and February appeared to have some predictive power for the date of occurrence of the recorded phases. The basis for this may be that the oscillations described by the index are of importance for the fulfilment of physiological chilling requirements needed to break bud dormancy. The same genotypes of the trees were grown in region West Norway and in Central Norwegian region; during the period 1965-2005 the trends towards earlier bud burst were more pronounced and steeper at the western site.

  10. Is climate change intensifying the drying-trend in the Caribbean?

    NASA Astrophysics Data System (ADS)

    Herrera, D. A.; Ault, T.; Fasullo, J.; Carrillo, C. M.

    2017-12-01

    Since 1950, the Caribbean (11ºN-25ºN; 85ºW-60ºW) has seen a significant drying trend characterized by several recent droughts, some of them contemporaneous with El Niño events. Moreover, the most recent drought from 2013 to 2016 was both the most severe and widespread event since at least 1950, and was associated with high temperatures, likely driven in part by climate change. This work examines the role of increased evaporative demand resulting from warmer temperatures on the drying trend observed in the Caribbean since 1950, using observations and model simulations. Large-scale dynamics associated with drought are also analyzed using sea surface temperature, geopotential height, wind, and precipitation anomalies, as well as radiative fluxes anomalies. Furthermore, land surface model soil moisture and high-resolution self-calibrated Palmer Drought Severity Index (scPDSI) datasets are used to quantify drought severity at local scales. The anthropogenic contribution to drought severity is estimated as the difference between the scPDSI calculated using linearly-detrended temperatures, and the scPDSI computed with the observed trend, with unadjusted precipitation, net radiation, and wind speed. Soil moisture anomalies driven by climate change are derived by comparing a large ensemble of forced simulations against a pre-industrial control. The resulting analysis indicates that anthropogenic forcing has intensified the drying trend in the Caribbean by -0.4 scPDSI-units over 60 years, and has increased the dry-land area by 10%. These findings are consistent with observed potential evapotranspiration (PET) anomalies, which are 30% higher than PET-anomalies estimated using detrended temperatures. These results suggest that climate change is already increasing the risk of drought in the Caribbean by enhancing the atmospheric demand of moisture through temperature, and provide insights into the role of climate change in future drought risk in the region.

  11. Long-term trends in shortgrass steppe vegetation during a 21-year period of increasing temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alward, R.D.; Milchunas, D.G.; Detling, J.K.

    Long-term weather records from the Central Plains Experimental Range revealed a general warming trend in average annual temperatures from 1971 through 1991. This was largely the result of a significant increase in mean annual minimum temperature (T{sub min}). Permanently marked vegetation quadrants were monitored for much of this same period. We constructed linear correlational models to assess relationships of annual and seasonal temperature and precipitation with plant densities and aboveground net primary productivity (ANPP) within a grazing exclosure. Response variables correlated with T{sub min} included: (i) tiller densities of the dominant grass, Bouteloua gracilis, and other warm season grasses, (ii)more » forb densities and ANPP, and (iii) total ANPP. Responses correlated with T{sub max} included: (i) total basal cover and (ii) densities and ANPP of several species. Plant species diversity was correlated with spring precipitation. Some species responded to the interactive effects of spring temperatures and precipitation. This investigation suggests that shortgrass steppe vegetation may be sensitive to climate change and supports predictions that asymmetric changes in diurnal temperatures may be an important component of climate change.« less

  12. Hardness and compression resistance of natural rubber and synthetic rubber mixtures

    NASA Astrophysics Data System (ADS)

    Arguello, J. M.; Santos, A.

    2016-02-01

    This project aims to mechanically characterize through compression resistance and shore hardness tests, the mixture of hevea brasiliensis natural rubber with butadiene synthetic rubber (BR), styrene-butadiene rubber (SBR) and ethylene-propylene-diene monomer rubber (EPDM). For each of the studied mixtures were performed 10 tests, each of which increased by 10% the content of synthetic rubber in the mixture; each test consisted of carrying out five tests of compression resistance and five tests of shore hardness. The specimens were vulcanized on a temperature of 160°C, during an approximate time of 15 minutes, and the equipment used in the performance of the mechanical tests were a Shimadzu universal machine and a digital durometer. The results show that the A shore hardness increases directly proportional, with a linear trend, with the content of synthetic BR, SBR or EPDM rubber present in the mixture, being the EPDM the most influential. With respect to the compression resistance is observed that the content of BR or SBR increase this property directly proportional through a linear trend; while the EPDM content also increases but with a polynomial trend.

  13. A positive relationship between spring temperature and productivity in 20 songbird species in the boreal zone.

    PubMed

    Meller, Kalle; Piha, Markus; Vähätalo, Anssi V; Lehikoinen, Aleksi

    2018-03-01

    Anthropogenic climate warming has already affected the population dynamics of numerous species and is predicted to do so also in the future. To predict the effects of climate change, it is important to know whether productivity is linked to temperature, and whether species' traits affect responses to climate change. To address these objectives, we analysed monitoring data from the Finnish constant effort site ringing scheme collected in 1987-2013 for 20 common songbird species together with climatic data. Warm spring temperature had a positive linear relationship with productivity across the community of 20 species independent of species' traits (realized thermal niche or migration behaviour), suggesting that even the warmest spring temperatures remained below the thermal optimum for reproduction, possibly due to our boreal study area being closer to the cold edge of all study species' distributions. The result also suggests a lack of mismatch between the timing of breeding and peak availability of invertebrate food of the study species. Productivity was positively related to annual growth rates in long-distance migrants, but not in short-distance migrants. Across the 27-year study period, temporal trends in productivity were mostly absent. The population sizes of species with colder thermal niches had decreasing trends, which were not related to temperature responses or temporal trends in productivity. The positive connection between spring temperature and productivity suggests that climate warming has potential to increase the productivity in bird species in the boreal zone, at least in the short term.

  14. [Comparison of red edge parameters of winter wheat canopy under late frost stress].

    PubMed

    Wu, Yong-feng; Hu, Xin; Lü, Guo-hua; Ren, De-chao; Jiang, Wei-guo; Song, Ji-qing

    2014-08-01

    In the present study, late frost experiments were implemented under a range of subfreezing temperatures (-1 - -9 degrees C) by using a field movable climate chamber (FMCC) and a cold climate chamber, respectively. Based on the spectra of winter wheat canopy measured at noon on the first day after the frost experiments, red edge parameters REP, Dr, SDr, Dr(min), Dr/Dr(min) and Dr/SDr were extracted using maximum first derivative spectrum method (FD), linear four-point interpolation method (FPI), polynomial fitting method (POLY), inverted Gaussian fitting method (IG) and linear extrapolation technique (LE), respectively. The capacity of the red edge parameters to detect late frost stress was explicated from the aspects of the early, sensitivity and stability through correlation analysis, linear regression modeling and fluctuation analysis. The result indicates that except for REP calculated from FPI and IG method in Experiment 1, REP from the other methods was correlated with frost temperatures (P < 0.05). Thereinto, significant levels (P) of POLY and LE methods all reached 0.01. Except for POLY method in Experiment 2, Dr/SDr from the other methods were all significantly correlated with frost temperatures (P < 0.01). REP showed a trend to shift to short-wave band with decreasing temperatures. The lower the temperature, the more obvious the trend is. Of all the REP, REP calculated by LE method had the highest correlation with frost temperatures which indicated that LE method is the best for REP extraction. In Experiment 1 and 2, only Dr(min) and Dr/Dr(min), calculated by FD method simultaneously achieved the requirements for the early (their correlations with frost temperatures showed a significant level P < 0.01), sensitivity (abso- lute value of the slope of fluctuation coefficient is greater than 2.0) and stability (their correlations with frost temperatures al- ways keep a consistent direction). Dr/SDr calculated from FD and IG methods always had a low sensitivity in Experiment 2. In Experiment 1, the sensitivity of Dr/SDr from FD was moderate and IG was high. REP calculated from LE method had a lowest sensitivity in the two experiments. Totally, Dr(min) and Dr/Dr(min) calculated by FD method have the strongest detection capacity for frost temperature, which will be helpful to conducting the research on early diagnosis of late frost injury to winter wheat.

  15. [Comparison of application of Cochran-Armitage trend test and linear regression analysis for rate trend analysis in epidemiology study].

    PubMed

    Wang, D Z; Wang, C; Shen, C F; Zhang, Y; Zhang, H; Song, G D; Xue, X D; Xu, Z L; Zhang, S; Jiang, G H

    2017-05-10

    We described the time trend of acute myocardial infarction (AMI) from 1999 to 2013 in Tianjin incidence rate with Cochran-Armitage trend (CAT) test and linear regression analysis, and the results were compared. Based on actual population, CAT test had much stronger statistical power than linear regression analysis for both overall incidence trend and age specific incidence trend (Cochran-Armitage trend P value

  16. Influences of removing linear and nonlinear trends from climatic variables on temporal variations of annual reference crop evapotranspiration in Xinjiang, China.

    PubMed

    Li, Yi; Yao, Ning; Chau, Henry Wai

    2017-08-15

    Reference crop evapotranspiration (ET o ) is a key parameter in field irrigation scheduling, drought assessment and climate change research. ET o uses key prescribed (or fixed or reference) land surface parameters for crops. The linear and nonlinear trends in different climatic variables (CVs) affect ET o change. This research aims to reveal how ET o responds after the related CVs were linearly and nonlinearly detrended over 1961-2013 in Xinjiang, China. The ET o -related CVs included minimum (T min ), average (T ave ), and maximum air temperatures (T max ), wind speed at 2m (U 2 ), relative humidity (RH) and sunshine hour (n). ET o was calculated using the Penman-Monteith equation. A total of 29 ET o scenarios, including the original scenario, 14 scenarios in Group I (ET o was recalculated after removing linear trends from single or more CVs) and 14 scenarios in Group II (ET o was recalculated after removing nonlinear trends from the CVs), were generated. The influence of U 2 was stronger than influences of the other CVs on ET o for both Groups I and II either in northern, southern or the entirety of Xinjiang. The weak influences of increased T min , T ave and T max on increasing ET o were masked by the strong effects of decreased U 2 &n and increased RH on decreasing ET o . The effects of the trends in CVs, especially U 2 , on changing ET o were clearly shown. Without the general decreases of U 2 , ET o would have increased in the past 53years. Due to the non-monotone variations of the CVs and ET o , the results of nonlinearly detrending CVs on changing ET o in Group II should be more plausible than the results of linearly detrending CVs in Group I. The decreasing ET o led to a general relief in drought, which was indicated by the recalculated aridity index. Therefore, there would be a slightly lower risk of water utilization in Xinjiang, China. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Raised temperatures over the Kericho tea estates: revisiting the climate in the East African highlands malaria debate

    PubMed Central

    2011-01-01

    Background Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. Methods Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. Results An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. Conclusion This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard. PMID:21241505

  18. Observed changes in relative humidity and dew point temperature in coastal regions of Iran

    NASA Astrophysics Data System (ADS)

    Hosseinzadeh Talaee, P.; Sabziparvar, A. A.; Tabari, Hossein

    2012-12-01

    The analysis of trends in hydroclimatic parameters and assessment of their statistical significance have recently received a great concern to clarify whether or not there is an obvious climate change. In the current study, parametric linear regression and nonparametric Mann-Kendall tests were applied for detecting annual and seasonal trends in the relative humidity (RH) and dew point temperature ( T dew) time series at ten coastal weather stations in Iran during 1966-2005. The serial structure of the data was considered, and the significant serial correlations were eliminated using the trend-free pre-whitening method. The results showed that annual RH increased by 1.03 and 0.28 %/decade at the northern and southern coastal regions of the country, respectively, while annual T dew increased by 0.29 and 0.15°C per decade at the northern and southern regions, respectively. The significant trends were frequent in the T dew series, but they were observed only at 2 out of the 50 RH series. The results showed that the difference between the results of the parametric and nonparametric tests was small, although the parametric test detected larger significant trends in the RH and T dew time series. Furthermore, the differences between the results of the trend tests were not related to the normality of the statistical distribution.

  19. Statistical significance of seasonal warming/cooling trends

    NASA Astrophysics Data System (ADS)

    Ludescher, Josef; Bunde, Armin; Schellnhuber, Hans Joachim

    2017-04-01

    The question whether a seasonal climate trend (e.g., the increase of summer temperatures in Antarctica in the last decades) is of anthropogenic or natural origin is of great importance for mitigation and adaption measures alike. The conventional significance analysis assumes that (i) the seasonal climate trends can be quantified by linear regression, (ii) the different seasonal records can be treated as independent records, and (iii) the persistence in each of these seasonal records can be characterized by short-term memory described by an autoregressive process of first order. Here we show that assumption ii is not valid, due to strong intraannual correlations by which different seasons are correlated. We also show that, even in the absence of correlations, for Gaussian white noise, the conventional analysis leads to a strong overestimation of the significance of the seasonal trends, because multiple testing has not been taken into account. In addition, when the data exhibit long-term memory (which is the case in most climate records), assumption iii leads to a further overestimation of the trend significance. Combining Monte Carlo simulations with the Holm-Bonferroni method, we demonstrate how to obtain reliable estimates of the significance of the seasonal climate trends in long-term correlated records. For an illustration, we apply our method to representative temperature records from West Antarctica, which is one of the fastest-warming places on Earth and belongs to the crucial tipping elements in the Earth system.

  20. A thermo-elastoplastic model for soft rocks considering structure

    NASA Astrophysics Data System (ADS)

    He, Zuoyue; Zhang, Sheng; Teng, Jidong; Xiong, Yonglin

    2017-11-01

    In the fields of nuclear waste geological deposit, geothermy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the superloading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the superloading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase.

  1. Europe experienced a "warming hole" in autumn in the second half of the 20th century

    NASA Astrophysics Data System (ADS)

    Cahynova, M.; Pokorna, L.; Huth, R.

    2012-12-01

    Recent global warming has not been ubiquitous - there might be seasons, regions, and time periods with clearly discernible zero or downward air temperature trends. Regions that are not warming or are even cooling - also known as "warming holes" - have been previously detected mainly in autumn in the second half of the 20th century in large parts of North America as well as in central and eastern Europe. In this study we use daily maximum and minimum temperature (TX and TN, respectively) and daily temperature range (DTR) at 136 stations from the ECA&D database in Europe and the Mediterranean in the period 1961-2000 to precisely locate their seasonal and sub-seasonal trends in space and within the course of the year, and to assess the effect of circulation changes on these observed trends. Linear trends are calculated for moving "seasons" of differing lengths (10, 20, 30, 60, and 90 days), each shifted by one day. Thus we obtain 365 values of "moving trends" for each station and each variant of season length. The day-to-day variability of these trends is greatest for short "seasons" of 10 and 20 days. Trends of the 90-day seasons are the most stable throughout the year and also bear the lowest trend magnitudes. Cluster analysis of the annual course of "moving trends" reveals relatively well-defined regions with similar trend behavior. Over most of Europe, the observed warming is greatest in winter, and the highest trend magnitudes are reached by TN in eastern Europe. Two regions stand out of this general picture: in Iceland and the Mediterranean, winter shows almost no trends, while in summer we see a pronounced warming. Significant autumn cooling centered on mid-November was found in eastern and southeastern Europe for both TX and TN; in many other regions trends are close to zero in the same period. Other clearly non-warming (or even cooling) periods occur in western and central Europe in April and June. Trends of DTR are largely inconclusive and no general picture can be drawn. Changes in atmospheric circulation may be one of the factors that influence the observed temperature trends. We use one daily circulation type classification from the European project "COST733", calculated over 11 pre-defined spatial domains, and a simple decomposition method to assess the effect of circulation changes on "moving trends" of temperature and DTR. Our results vary greatly between stations and times of the year; all in all, circulation changes are only responsible for a minor part of the observed trends. At most stations, the only substantial circulation effect is found in winter. Our results suggest that using different time scales apart from the conventional three-month seasons is highly desirable for a proper location of trends within the course of the year.

  2. Estimating the impact of mineral aerosols on crop yields in food insecure regions using statistical crop models

    NASA Astrophysics Data System (ADS)

    Hoffman, A.; Forest, C. E.; Kemanian, A.

    2016-12-01

    A significant number of food-insecure nations exist in regions of the world where dust plays a large role in the climate system. While the impacts of common climate variables (e.g. temperature, precipitation, ozone, and carbon dioxide) on crop yields are relatively well understood, the impact of mineral aerosols on yields have not yet been thoroughly investigated. This research aims to develop the data and tools to progress our understanding of mineral aerosol impacts on crop yields. Suspended dust affects crop yields by altering the amount and type of radiation reaching the plant, modifying local temperature and precipitation. While dust events (i.e. dust storms) affect crop yields by depleting the soil of nutrients or by defoliation via particle abrasion. The impact of dust on yields is modeled statistically because we are uncertain which impacts will dominate the response on national and regional scales considered in this study. Multiple linear regression is used in a number of large-scale statistical crop modeling studies to estimate yield responses to various climate variables. In alignment with previous work, we develop linear crop models, but build upon this simple method of regression with machine-learning techniques (e.g. random forests) to identify important statistical predictors and isolate how dust affects yields on the scales of interest. To perform this analysis, we develop a crop-climate dataset for maize, soybean, groundnut, sorghum, rice, and wheat for the regions of West Africa, East Africa, South Africa, and the Sahel. Random forest regression models consistently model historic crop yields better than the linear models. In several instances, the random forest models accurately capture the temperature and precipitation threshold behavior in crops. Additionally, improving agricultural technology has caused a well-documented positive trend that dominates time series of global and regional yields. This trend is often removed before regression with traditional crop models, but likely at the cost of removing climate information. Our random forest models consistently discover the positive trend without removing any additional data. The application of random forests as a statistical crop model provides insight into understanding the impact of dust on yields in marginal food producing regions.

  3. Recent trends in rainfall and temperature over North West India during 1871-2016

    NASA Astrophysics Data System (ADS)

    Saxena, Rani; Mathur, Prasoon

    2018-03-01

    Rainfall and temperature are the most important environmental factors influencing crop growth, development, and yield. The northwestern (NW) part of India is one of the main regions of food grain production of the country. It comprises of six meteorological subdivisions (Haryana, Punjab, West Rajasthan, East Rajasthan, Gujarat and Saurashtra, Kutch and Diu). In this study, attempts were made to study variability and trends in rainfall and temperature during 30-year climate normal periods (CN) and 10-year decadal excess or deficit rainfall frequency during the historical period from 1871 to 2016. The Mann-Kendall and Spearman's rank correlation (Spearman's rho) tests were used to determine significance of trends. Least square linear fitting method was adopted to find out the slopes of the trend lines. The long-term mean annual rainfall over North West India is 587.7 mm (standard deviation of 153.0 mm and coefficient of variation 26.0). There was increasing trend in minimum and maximum temperatures during post monsoon season in entire study period and current climate normal period (1991-2016) due to which the sowing of rabi season crops may be delayed and there may be germination problem too. There was a non-significant decreasing trend in rainfall during monsoon season and an increasing trend in rainfall during post monsoon over North West India during entire study period. During current CN5 (1991-2016), all the subdivision (except the Saurashtra region) showed a decreasing trend in rainfall during monsoon season which is a matter of concern for kharif crops and those rabi crops which are grown as rainfed on conserved soil moisture. The decadal annual and seasonal frequencies of excess and deficit years results revealed that the annual total deficit rainfall years (24) exceeded total excess rainfall years (22) in North West India during the entire study period. While during the current decadal period (2011 to 2016), single year was the excess year and 2 years were deficit rainfall years in all subdivisions (except East Rajasthan) on annual basis.

  4. Time evolution of atmospheric parameters and their influence on sea level pressure over the head Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Patra, Anindita; Bhaskaran, Prasad K.; Jose, Felix

    2018-06-01

    A zonal dipole in the observed trends of wind speed and significant wave height over the Head Bay of Bengal region was recently reported in the literature attributed due to the variations in sea level pressure (SLP). The SLP in turn is governed by prevailing atmospheric conditions such as local temperature, humidity, rainfall, atmospheric pressure, wind field distribution, formation of tropical cyclones, etc. The present study attempts to investigate the inter-annual variability of atmospheric parameters and its role on the observed zonal dipole trend in sea level pressure, surface wind speed and significant wave height. It reports on the aspects related to linear trend as well as its spatial variability for several atmospheric parameters: air temperature, geopotential height, omega (vertical velocity), and zonal wind, over the head Bay of Bengal, by analyzing National Centers for Environmental Prediction (NCEP) Reanalysis 2 dataset covering a period of 38 years (1979-2016). Significant warming from sea level to 200 mb pressure level and thereafter cooling above has been noticed during all the seasons. Warming within the troposphere exhibits spatial difference between eastern and western side of the domain. This led to fall in lower tropospheric geopotential height and its east-west variability, exhibiting a zonal dipole pattern across the Head Bay. In the upper troposphere, uplift in geopotential height was found as a result of cooling in higher levels (10-100 mb). Variability in omega also substantiated the observed variations in geopotential height. The study also finds weakening in the upper level westerlies and easterlies. Interestingly, a linear trend in lower tropospheric u-wind component also reveals an east-west dipole pattern over the study region. Further, the study corroborates the reported dipole in trends of sea level pressure, wind speed and significant wave height by evaluating the influence of atmospheric variability on these parameters.

  5. Estimation of sampling error uncertainties in observed surface air temperature change in China

    NASA Astrophysics Data System (ADS)

    Hua, Wei; Shen, Samuel S. P.; Weithmann, Alexander; Wang, Huijun

    2017-08-01

    This study examines the sampling error uncertainties in the monthly surface air temperature (SAT) change in China over recent decades, focusing on the uncertainties of gridded data, national averages, and linear trends. Results indicate that large sampling error variances appear at the station-sparse area of northern and western China with the maximum value exceeding 2.0 K2 while small sampling error variances are found at the station-dense area of southern and eastern China with most grid values being less than 0.05 K2. In general, the negative temperature existed in each month prior to the 1980s, and a warming in temperature began thereafter, which accelerated in the early and mid-1990s. The increasing trend in the SAT series was observed for each month of the year with the largest temperature increase and highest uncertainty of 0.51 ± 0.29 K (10 year)-1 occurring in February and the weakest trend and smallest uncertainty of 0.13 ± 0.07 K (10 year)-1 in August. The sampling error uncertainties in the national average annual mean SAT series are not sufficiently large to alter the conclusion of the persistent warming in China. In addition, the sampling error uncertainties in the SAT series show a clear variation compared with other uncertainty estimation methods, which is a plausible reason for the inconsistent variations between our estimate and other studies during this period.

  6. Identifying potential effects of climate change on the development of water resources in Pinios River Basin, Central Greece

    NASA Astrophysics Data System (ADS)

    Arampatzis, G.; Panagopoulos, A.; Pisinaras, V.; Tziritis, E.; Wendland, F.

    2018-05-01

    The aim of the present study is to assess the future spatial and temporal distribution of precipitation and temperature, and relate the corresponding change to water resources' quantitative status in Pinios River Basin (PRB), Thessaly, Greece. For this purpose, data from four Regional Climate Models (RCMs) for the periods 2021-2100 driven by several General Circulation Models (GCMs) were collected and bias-correction was performed based on linear scaling method. The bias-correction was made based on monthly precipitation and temperature data collected for the period 1981-2000 from 57 meteorological stations in total. The results indicate a general trend according to which precipitation is decreasing whilst temperature is increasing to an extent that varies depending on each particular RCM-GCM output. On the average, annual precipitation change for the period 2021-2100 was about - 80 mm, ranging between - 149 and + 35 mm, while the corresponding change for temperature was 2.81 °C, ranging between 1.48 and 3.72 °C. The investigation of potential impacts to the water resources demonstrates that water availability is expected to be significantly decreased in the already water-stressed PRB. The water stresses identified are related to the potential decreasing trend in groundwater recharge and the increasing trend in irrigation demand, which constitutes the major water consumer in PRB.

  7. Relation of Temperature and Humidity to the Risk of Recurrent Gout Attacks

    PubMed Central

    Neogi, Tuhina; Chen, Clara; Niu, Jingbo; Chaisson, Christine; Hunter, David J.; Choi, Hyon; Zhang, Yuqing

    2014-01-01

    Gout attack risk may be affected by weather (e.g., because of volume depletion). We therefore examined the association of temperature and humidity with the risk of recurrent gout attacks by conducting an internet-based case-crossover study in the United States (in 2003–2010) among subjects with a diagnosis of gout who had 1 or more attacks during 1 year of follow-up. We examined the association of temperature and humidity over the prior 48 hours with the risk of gout attacks using a time-stratified approach and conditional logistic regression. Among 632 subjects with gout, there was a significant dose-response relationship between mean temperature in the prior 48 hours and the risk of subsequent gout attack (P = 0.01 for linear trend). Higher temperatures were associated with approximately 40% higher risk of gout attack compared with moderate temperatures. There was a reverse J-shaped relationship between mean relative humidity and the risk of gout attacks (P = 0.03 for quadratic trend). The combination of high temperature and low humidity had the greatest association (odds ratio = 2.04, 95% confidence interval: 1.26, 3.30) compared with moderate temperature and relative humidity. Thus, high ambient temperature and possibly extremes of humidity were associated with an increased risk of gout attack, despite the likelihood that individuals are often in climate-controlled indoor environments. PMID:24993733

  8. Identification and analysis of recent temporal temperature trends for Dehradun, Uttarakhand, India

    NASA Astrophysics Data System (ADS)

    Piyoosh, Atul Kant; Ghosh, Sanjay Kumar

    2018-05-01

    Maximum and minimum temperatures (T max and T min) are indicators of changes in climate. In this study, observed and gridded T max and T min data of Dehradun are analyzed for the period 1901-2014. Observed data obtained from India Meteorological Department and National Institute of Hydrology, whereas gridded data from Climatic Research Unit (CRU) were used. Efficacy of elevation-corrected CRU data was checked by cross validation using data of various stations at different elevations. In both the observed and gridded data, major change points were detected using Cumulative Sum chart. For T max, change points occur in the years 1974 and 1997, while, for T min, in 1959 and 1986. Statistical significance of trends was tested in three sub-periods based on change points using Mann-Kendall (MK) test, Sen's slope estimator, and linear regression (LR) method. It has been found that both the T max and T min have a sequence of rising, falling, and rising trends in sub-periods. Out of three different methods used for trend tests, MK and SS have indicated similar results, while LR method has also shown similar results for most of the cases. Root-mean-square error for actual and anomaly time series of CRU data was found to be within one standard deviation of observed data which indicates that the CRU data are very close to the observed data. The trends exhibited by CRU data were also found to be similar to the observed data. Thus, CRU temperature data may be quite useful for various studies in the regions of scarcity of observational data.

  9. Linear extension rates of massive corals from the Dry Tortugas National Park (DRTO), Florida

    USGS Publications Warehouse

    Muslic, Adis; Flannery, Jennifer A.; Reich, Christopher D.; Umberger, Daniel K.; Smoak, Joseph M.; Poore, Richard Z.

    2013-01-01

    Colonies of three coral species, Montastraea faveolata, Diploria strigosa, and Siderastrea siderea, located in the Dry Tortugas National Park (DRTO), Florida, were sampled and analyzed to evaluate annual linear extension rates. Montastraea faveolata had the highest average linear extension and variability in (DRTO: C2 = 0.67 centimeters/year (cm yr-1) ± 0.04, B3 = 0.85 cm yr-1 ± 0.07), followed by D. strigosa (DRTO: C1 = 0.73 cm yr-1 ± 0.04; MK = 0.59 cm yr-1 ± 0.06) and S. siderea (DRTO: A1 = 0.41 cm yr-1 ± 0.03). Intercolony comparison of M. faveolata from DRTO yielded a significant correlation (r = 0.34, df = 67, P = 0.005) and similar long-term patterns. DRTO S. siderea core A1 showed an overall increasing trend (r = 0.61, df = 119, P < 0.0001) in extension rates that correlated significantly with International Comprehensive Ocean/Atmosphere Data Set annual sea-surface temperature (r = 0.42, df = 115, P < 0.0001) and an air temperature record from Key West (r = 0.37, df = 111, P < 0.0001). In conclusion, annual linear extension rates are species specific and potentially influence by long-term variability in sea-surface temperature.

  10. Multidecadal-scale adjustment of the ocean mixed layer heat budget in the tropics: examining ocean reanalyses

    NASA Astrophysics Data System (ADS)

    Cook, Kerry H.; Vizy, Edward K.; Sun, Xiaoming

    2018-03-01

    Distributions of ocean mixed layer temperature trends and trends in the net heat flux from the atmosphere differ, indicating the important role of the transport of heat within the ocean for determining temperature trends. Annual-mean, linear trends in the components of the tropical ocean mixed layer heat budget for 1980-2015 are diagnosed in 4 ocean reanalyses to improve our physical understanding of multidecadal-scale SST trends. The well-known temperature trend in the tropical Pacific, with cooling in the east and warming in the west, is reproduced in each reanalysis with high statistical significance. Cooling in the east is associated with negative trends in the net heat flux from the atmosphere and enhanced equatorial upwelling related to a strengthening of the subtropical cells. Negative trends in the net heat flux also occur in the western tropical Pacific, but advective warming associated with a strengthening and shoaling of the equatorial undercurrent overwhelms these negative trends. The strengthening of the equatorial undercurrent is consistent with enhanced easterly wind stress, which is applied to the ocean reanalyses, and differential sea level trends that enhance the negative zonal height gradient across the Pacific. The Pacific North Equatorial countercurrent is also strengthening in all 4 reanalyses in association with a strengthening of the sea level trough at 10°N in the central and eastern Pacific. All 4 ocean reanalyses produce warming of 0.1-0.3 K/decade in the North Atlantic with statistical significance levels ranging from below 90-99%. The Atlantic is similar to the Pacific in having the equatorial undercurrent strengthening, but indications of shoaling are less consistent in the reanalyses and the North Equatorial Countercurrent in the Atlantic is not strengthening. Large-scale ocean mixed layer warming trends in the Indian Ocean in the reanalyses are interrupted by some regional cooling close to the equator. Net surface heat flux trends are mostly negative, indicating increasing heat fluxes from the ocean to the atmosphere. Wind stress trends applied to the ocean reanalyses are weak, but trends in the Indian Ocean equatorial undercurrent are strong. Since the Indian monsoon climate introduces strong seasonality, the annual analysis may not be adequate for studying physical processes in this ocean basin.

  11. Long-Term Warming Trends in Korea and Contribution of Urbanization: An Updated Assessment

    NASA Astrophysics Data System (ADS)

    Park, Bo-Joung; Kim, Yeon-Hee; Min, Seung-Ki; Kim, Maeng-Ki; Choi, Youngeun; Boo, Kyung-On; Shim, Sungbo

    2017-10-01

    This study conducted an updated analysis of the long-term temperature trends over South Korea and reassessed the contribution of the urbanization effect to the local warming trends. Linear trends were analyzed for three different periods over South Korea in order to consider possible inhomogeneity due to changes in the number of available stations: recent 103 years (1912-2014), 61 years (1954-2014), and 42 years (1973-2014). The local temperature has increased by 1.90°C, 1.35°C, and 0.99°C during the three periods, respectively, which are found 1.4-2.6 times larger than the global land mean trends. The countries located in the northern middle and high latitudes exhibit similar warming trends (about 1.5 times stronger than the global mean), suggesting a weak influence of urbanization on the local warming over South Korea. Urbanization contribution is assessed using two methods. First, results from "city minus rural" methods showed that 30-45% of the local warming trends during recent four decades are likely due to the urbanization effect, depending on station classification methods and analysis periods. Results from an "observation minus reanalysis" method using the Twentieth Century Reanalysis (20CR) data sets (v2 and v2c) indicated about 25-30% contribution of the urbanization effect to the local warming trend during the recent six decades. However, the urbanization contribution was estimated as low as 3-11% when considering the century-long period. Our results confirm large uncertainties in the estimation of urbanization contribution when using shorter-term periods and suggest that the urbanization contribution to the century-long warming trends could be much lower.

  12. Estimating linear temporal trends from aggregated environmental monitoring data

    USGS Publications Warehouse

    Erickson, Richard A.; Gray, Brian R.; Eager, Eric A.

    2017-01-01

    Trend estimates are often used as part of environmental monitoring programs. These trends inform managers (e.g., are desired species increasing or undesired species decreasing?). Data collected from environmental monitoring programs is often aggregated (i.e., averaged), which confounds sampling and process variation. State-space models allow sampling variation and process variations to be separated. We used simulated time-series to compare linear trend estimations from three state-space models, a simple linear regression model, and an auto-regressive model. We also compared the performance of these five models to estimate trends from a long term monitoring program. We specifically estimated trends for two species of fish and four species of aquatic vegetation from the Upper Mississippi River system. We found that the simple linear regression had the best performance of all the given models because it was best able to recover parameters and had consistent numerical convergence. Conversely, the simple linear regression did the worst job estimating populations in a given year. The state-space models did not estimate trends well, but estimated population sizes best when the models converged. We found that a simple linear regression performed better than more complex autoregression and state-space models when used to analyze aggregated environmental monitoring data.

  13. With respect to coefficient of linear thermal expansion, bacterial vegetative cells and spores resemble plastics and metals, respectively.

    PubMed

    Nakanishi, Koichi; Kogure, Akinori; Fujii, Takenao; Kokawa, Ryohei; Deuchi, Keiji; Kuwana, Ritsuko; Takamatsu, Hiromu

    2013-10-09

    If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for furthering the understanding of the characteristics of cells. It is likely to be a powerful tool for investigating changes in the rate of expansion and also in understanding the physical properties of cells.

  14. With respect to coefficient of linear thermal expansion, bacterial vegetative cells and spores resemble plastics and metals, respectively

    PubMed Central

    2013-01-01

    Background If a fixed stress is applied to the three-dimensional z-axis of a solid material, followed by heating, the amount of thermal expansion increases according to a fixed coefficient of thermal expansion. When expansion is plotted against temperature, the transition temperature at which the physical properties of the material change is at the apex of the curve. The composition of a microbial cell depends on the species and condition of the cell; consequently, the rate of thermal expansion and the transition temperature also depend on the species and condition of the cell. We have developed a method for measuring the coefficient of thermal expansion and the transition temperature of cells using a nano thermal analysis system in order to study the physical nature of the cells. Results The tendency was seen that among vegetative cells, the Gram-negative Escherichia coli and Pseudomonas aeruginosa have higher coefficients of linear expansion and lower transition temperatures than the Gram-positive Staphylococcus aureus and Bacillus subtilis. On the other hand, spores, which have low water content, overall showed lower coefficients of linear expansion and higher transition temperatures than vegetative cells. Comparing these trends to non-microbial materials, vegetative cells showed phenomenon similar to plastics and spores showed behaviour similar to metals with regards to the coefficient of liner thermal expansion. Conclusions We show that vegetative cells occur phenomenon of similar to plastics and spores to metals with regard to the coefficient of liner thermal expansion. Cells may be characterized by the coefficient of linear expansion as a physical index; the coefficient of linear expansion may also characterize cells structurally since it relates to volumetric changes, surface area changes, the degree of expansion of water contained within the cell, and the intensity of the internal stress on the cellular membrane. The coefficient of linear expansion holds promise as a new index for furthering the understanding of the characteristics of cells. It is likely to be a powerful tool for investigating changes in the rate of expansion and also in understanding the physical properties of cells. PMID:24107328

  15. Black Sea thermohaline properties: Long‐term trends and variations

    PubMed Central

    Stips, A.; Garcia‐Gorriz, E.; Macias Moy, D.

    2017-01-01

    Abstract The current knowledge about spatial and temporal dynamics of the Black Sea's thermohaline structure is incomplete because of missing data and sparse distribution of existing measurements in space and time. This study presents 56 year continuous simulations of the Black Sea's hydrodynamics using the 3D General Estuarine Transport Model (GETM), without incorporating any relaxation toward climatological or observational data fields. This property of the model allows us to estimate independent temporal trends, in addition to resolving the spatial structure. The simulations suggest that the intermediate layer temperature is characterized by a weak positive trend (warming), whereas the surface temperature does not show a clear linear trend. Different salinity trends have been established at the surface (negative), upper (weaker negative) and main halocline (positive). Three distinct dynamic periods are identified (1960–1970, 1970–1995, 1995–2015), which exhibit pronounced changes in the Black Sea's thermohaline properties and basin circulation. Strengthening of the main cyclonic circulation, accompanied by intensification of the mesoscale anticyclonic eddy formation is found. Both events strongly affect the sea surface salinity but contribute in opposing directions. Specifically, strong composite large‐scale circulation leads to an increase in sea surface salinity, while enhanced formation of mesoscale anticyclones decreases it. Salinity evolution with time is thus the result of the competition of these two opposing yet interdependent processes. PMID:28989833

  16. Decadal variations in atmospheric water vapor time series estimated using GNSS, ERA-Interim, and synoptic data

    NASA Astrophysics Data System (ADS)

    Alshawaf, Fadwa; Dick, Galina; Heise, Stefan; Balidakis, Kyriakos; Schmidt, Torsten; Wickert, Jens

    2017-04-01

    Ground-based GNSS (Global Navigation Satellite Systems) have efficiently been used since the 1990s as a meteorological observing system. Recently scientists used GNSS time series of precipitable water vapor (PWV) for climate research although they may not be sufficiently long. In this work, we compare the trend estimated from GNSS time series with that estimated from European Center for Medium-RangeWeather Forecasts Reanalysis (ERA-Interim) data and meteorological measurements.We aim at evaluating climate evolution in Central Europe by monitoring different atmospheric variables such as temperature and PWV. PWV time series were obtained by three methods: 1) estimated from ground-based GNSS observations using the method of precise point positioning, 2) inferred from ERA-Interim data, and 3) determined based on daily surface measurements of temperature and relative humidity. The other variables are available from surface meteorological stations or received from ERA-Interim. The PWV trend component estimated from GNSS data strongly correlates (>70%) with that estimated from the other data sets. The linear trend is estimated by straight line fitting over 30 years of seasonally-adjusted PWV time series obtained using the meteorological measurements. The results show a positive trend in the PWV time series with an increase of 0.2-0.7 mm/decade with a mean standard deviations of 0.016 mm/decade. In this paper, we present the results at three GNSS stations. The temporal increment of the PWV correlates with the temporal increase in the temperature levels.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Foy, Benjamin; Lu, Zifeng; Streets, David G.

    The Ozone Monitoring Instrument (OMI) has been estimating NO2 columns from space for over 10 years, and these have been used to estimate emissions and emission trends for point and area sources all over the world. In this study we evaluate the trends in NO2 columns over 54 cities in the USA and Canada to identify the long term trends due to air quality policies, the impact of the Great Recession, and the weekday-weekend effect. A multiple linear regression model is used to fit annual, seasonal and weekly factors for individual swath retrievals along with the impact of temperature, windmore » speed and pixel size. For most cities, the correlation coefficients of the model fit ranges from 0.47 to 0.76. There have been strong reductions in NO2 columns, with annual decreases of up to 7% per year in most cities. During the years of the Great Recession, NO2 columns were as much as 30% lower than they would have been had they followed the linear annual trend. The analysis yielded insights into the timing of the reductions, with some cities in the northwest and in the east experiencing reductions in 2008 already, and most areas back to where they would have been based on the uniform trend by 2011. The analysis also finds that reductions in columns during the weekend vary significantly from city to city, with a range in reductions of 10%-30% on Saturdays, and 20%-50% on Sundays.« less

  18. Characterizing the effect of summer temperature on heatstroke-related emergency ambulance dispatches in the Kanto area of Japan

    NASA Astrophysics Data System (ADS)

    Ng, Chris Fook Sheng; Ueda, Kayo; Ono, Masaji; Nitta, Hiroshi; Takami, Akinori

    2014-07-01

    Despite rising concern on the impact of heat on human health, the risk of high summer temperature on heatstroke-related emergency dispatches is not well understood in Japan. A time-series study was conducted to examine the association between apparent temperature and daily heatstroke-related ambulance dispatches (HSAD) within the Kanto area of Japan. A total of 12,907 HSAD occurring from 2000 to 2009 in five major cities—Saitama, Chiba, Tokyo, Kawasaki, and Yokohama—were analyzed. Generalized additive models and zero-inflated Poisson regressions were used to estimate the effects of daily maximum three-hour apparent temperature (AT) on dispatch frequency from May to September, with adjustment for seasonality, long-term trend, weekends, and public holidays. Linear and non-linear exposure effects were considered. Effects on days when AT first exceeded its summer median were also investigated. City-specific estimates were combined using random effects meta-analyses. Exposure-response relationship was found to be fairly linear. Significant risk increase began from 21 °C with a combined relative risk (RR) of 1.22 (95 % confidence interval, 1.03-1.44), increasing to 1.49 (1.42-1.57) at peak AT. When linear exposure was assumed, combined RR was 1.43 (1.37-1.50) per degree Celsius increment. Overall association was significant the first few times when median AT was initially exceeded in a particular warm season. More than two-thirds of these initial hot days were in June, implying the harmful effect of initial warming as the season changed. Risk increase that began early at the fairly mild perceived temperature implies the need for early precaution.

  19. Characterizing the effect of summer temperature on heatstroke-related emergency ambulance dispatches in the Kanto area of Japan.

    PubMed

    Ng, Chris Fook Sheng; Ueda, Kayo; Ono, Masaji; Nitta, Hiroshi; Takami, Akinori

    2014-07-01

    Despite rising concern on the impact of heat on human health, the risk of high summer temperature on heatstroke-related emergency dispatches is not well understood in Japan. A time-series study was conducted to examine the association between apparent temperature and daily heatstroke-related ambulance dispatches (HSAD) within the Kanto area of Japan. A total of 12,907 HSAD occurring from 2000 to 2009 in five major cities-Saitama, Chiba, Tokyo, Kawasaki, and Yokohama-were analyzed. Generalized additive models and zero-inflated Poisson regressions were used to estimate the effects of daily maximum three-hour apparent temperature (AT) on dispatch frequency from May to September, with adjustment for seasonality, long-term trend, weekends, and public holidays. Linear and non-linear exposure effects were considered. Effects on days when AT first exceeded its summer median were also investigated. City-specific estimates were combined using random effects meta-analyses. Exposure-response relationship was found to be fairly linear. Significant risk increase began from 21 °C with a combined relative risk (RR) of 1.22 (95% confidence interval, 1.03-1.44), increasing to 1.49 (1.42-1.57) at peak AT. When linear exposure was assumed, combined RR was 1.43 (1.37-1.50) per degree Celsius increment. Overall association was significant the first few times when median AT was initially exceeded in a particular warm season. More than two-thirds of these initial hot days were in June, implying the harmful effect of initial warming as the season changed. Risk increase that began early at the fairly mild perceived temperature implies the need for early precaution.

  20. 20th-Century Climate Change over Africa: Seasonal Variation in Hydroclimate Trends and Sahara Desert Extent

    NASA Astrophysics Data System (ADS)

    Nigam, S.; Thomas, N. P.

    2017-12-01

    Twentieth-century trends in seasonal temperature and precipitation over the African continent are analyzed from observational data sets and historical climate simulations. Given the agricultural economy of the continent, a seasonal perspective is adopted as it is more pertinent than an annual-average one which can mask off-setting but agriculturally-sensitive seasonal hydroclimate variations. Examination of linear trends in seasonal surface air temperature (SAT) shows that heat stress has increased in several regions, including Sudan and Northern Africa where largest SAT trends occur in the warm season. Broadly speaking, the northern continent has warmed more than the southern one in all seasons. Precipitation trends are varied but notable declining trends are found in the countries along the Gulf of Guinea, especially in the source region of Niger river in West Africa, and in the Congo river basin. Rainfall over the African Great Lakes - one of the largest freshwater repositories - has however increased. We show that the Sahara Desert has expanded significantly over the 20th century - by 12-20% depending on the season. The desert expanded southward in summer, reflecting retreat of the northern edge of the Sahel rainfall belt; and to the north in winter, indicating potential impact of the widening of the Tropics. Specific mechanisms driving the expansion in each season are investigated. Finally, this observational analysis is used to evaluate the state-of-the-art climate models from a comparison of the 20th-century hydroclimate trends with those manifest in historical climate simulations. The evaluation shows that modeling regional hydroclimate change over the Africa continent remains challenging.

  1. Observations of, and sources of the spatial and temporal variability of ozone in the middle atmosphere on climatological time scales (OZMAP) and equatorial dynamics: Seasonal variations of ozone trends

    NASA Technical Reports Server (NTRS)

    Entzian, G.; Grasnick, K. H.; Taubenheim, J.

    1989-01-01

    The long term trends (least square linear regression with time) of ozone content at seven European, seven North American, three Japanese and two tropical stations during 21 years (1964 to 1984) are analyzed. In all regions negative trends are observed during the 1970s, but are partly compensated by limited periods of positive trends during the late 1960s and late 1970s. Solely the North American ozone data show negative trends in all 10 year periods. When the long term ozone trends are evaluated for each month of the year separately, a seasonal variation is revealed, which in Europe and North America has largest negative trends in late winter and spring. While in Europe the negative trends in winter/spring are partly compensated by positive trends in summer, in North America the summer values reach only zero, retaining the significant negative trend in annual mean values. In contrast to the antarctic ozone hole, the spring reduction of ozone in Europe and in North America is associated with stratospheric temperatures increasing in the analyzed period and therefore is consistent with the major natural ozone production and loss processes.

  2. Bird population trends are linearly affected by climate change along species thermal ranges.

    PubMed

    Jiguet, Frédéric; Devictor, Vincent; Ottvall, Richard; Van Turnhout, Chris; Van der Jeugd, Henk; Lindström, Ake

    2010-12-07

    Beyond the effects of temperature increase on local population trends and on species distribution shifts, how populations of a given species are affected by climate change along a species range is still unclear. We tested whether and how species responses to climate change are related to the populations locations within the species thermal range. We compared the average 20 year growth rates of 62 terrestrial breeding birds in three European countries along the latitudinal gradient of the species ranges. After controlling for factors already reported to affect bird population trends (habitat specialization, migration distance and body mass), we found that populations breeding close to the species thermal maximum have lower growth rates than those in other parts of the thermal range, while those breeding close to the species thermal minimum have higher growth rates. These results were maintained even after having controlled for the effect of latitude per se. Therefore, the results cannot solely be explained by latitudinal clines linked to the geographical structure in local spring warming. Indeed, we found that populations are not just responding to changes in temperature at the hottest and coolest parts of the species range, but that they show a linear graded response across their European thermal range. We thus provide insights into how populations respond to climate changes. We suggest that projections of future species distributions, and also management options and conservation assessments, cannot be based on the assumption of a uniform response to climate change across a species range or at range edges only.

  3. Research on the novel FBG detection system for temperature and strain field distribution

    NASA Astrophysics Data System (ADS)

    Liu, Zhi-chao; Yang, Jin-hua

    2017-10-01

    In order to collect the information of temperature and strain field distribution information, the novel FBG detection system was designed. The system applied linear chirped FBG structure for large bandwidth. The structure of novel FBG cover was designed as a linear change in thickness, in order to have a different response at different locations. It can obtain the temperature and strain field distribution information by reflection spectrum simultaneously. The structure of novel FBG cover was designed, and its theoretical function is calculated. Its solution is derived for strain field distribution. By simulation analysis the change trend of temperature and strain field distribution were analyzed in the conditions of different strain strength and action position, the strain field distribution can be resolved. The FOB100 series equipment was used to test the temperature in experiment, and The JSM-A10 series equipment was used to test the strain field distribution in experiment. The average error of experimental results was better than 1.1% for temperature, and the average error of experimental results was better than 1.3% for strain. There were individual errors when the strain was small in test data. It is feasibility by theoretical analysis, simulation calculation and experiment, and it is very suitable for application practice.

  4. Dependence of the critical temperature in overdoped copper oxides on superfluid density

    NASA Astrophysics Data System (ADS)

    Božović, I.; He, X.; Wu, J.; Bollinger, A. T.

    2016-08-01

    The physics of underdoped copper oxide superconductors, including the pseudogap, spin and charge ordering and their relation to superconductivity, is intensely debated. The overdoped copper oxides are perceived as simpler, with strongly correlated fermion physics evolving smoothly into the conventional Bardeen-Cooper-Schrieffer behaviour. Pioneering studies on a few overdoped samples indicated that the superfluid density was much lower than expected, but this was attributed to pair-breaking, disorder and phase separation. Here we report the way in which the magnetic penetration depth and the phase stiffness depend on temperature and doping by investigating the entire overdoped side of the La2-xSrxCuO4 phase diagram. We measured the absolute values of the magnetic penetration depth and the phase stiffness to an accuracy of one per cent in thousands of samples; the large statistics reveal clear trends and intrinsic properties. The films are homogeneous; variations in the critical superconducting temperature within a film are very small (less than one kelvin). At every level of doping the phase stiffness decreases linearly with temperature. The dependence of the zero-temperature phase stiffness on the critical superconducting temperature is generally linear, but with an offset; however, close to the origin this dependence becomes parabolic. This scaling law is incompatible with the standard Bardeen-Cooper-Schrieffer description.

  5. Impacts of urbanization and agricultural development on observed changes in surface air temperature over mainland China from 1961 to 2006

    NASA Astrophysics Data System (ADS)

    Han, Songjun; Tang, Qiuhong; Xu, Di; Yang, Zhiyong

    2018-03-01

    A large proportion of meteorological stations in mainland China are located in or near either urban or agricultural lands that were established throughout the period of rapid urbanization and agricultural development (1961-2006). The extent of the impacts of urbanization and agricultural development on observed air temperature changes across different climate regions remains elusive. This study evaluates the surface air temperature trends observed by 598 meteorological stations in relation to the urbanization and agricultural development over the arid northwest, semi-arid intermediate, and humid southeast regions of mainland China based on linear regressions of temperature trends on the fractions of urban and cultivated land within a 3-km radius of the stations. In all three regions, the stations surrounded by large urban land tend to experience rapid warming, especially at minimum temperature. This dependence is particularly significant in the southeast region, which experiences the most intense urbanization. In the northwest and intermediate regions, stations surrounded by large cultivated land encounter less warming during the main growing season, especially at the maximum temperature changes. These findings suggest that the observed surface warming has been affected by urbanization and agricultural development represented by urban and cultivated land fractions around stations in with land cover changes in their proximity and should thus be considered when analyzing regional temperature changes in mainland China.

  6. Evidence for Geographic Isolation and Signs of Endemism within a Protistan Morphospecies†

    PubMed Central

    Boenigk, Jens; Pfandl, Karin; Garstecki, Tobias; Harms, Hauke; Novarino, Gianfranco; Chatzinotas, Antonis

    2006-01-01

    The possible existence of endemism among microorganisms resulting from and preserved by geographic isolation is one of the most controversial topics in microbial ecology. We isolated 31 strains of “Spumella-like” flagellates from remote sampling sites from all continents, including Antarctica. These and another 23 isolates from a former study were characterized morphologically and by small-subunit rRNA gene sequence analysis and tested for the maximum temperature tolerance. Only a minority of the Spumella morpho- and phylotypes from the geographically isolated Antarctic continent follow the worldwide trend of a linear correlation between ambient (air) temperature during strain isolation and heat tolerance of the isolates. A high percentage of the Antarctic isolates, but none of the isolates from locations on all other continents, were obligate psychrophilic, although some of the latter were isolated at low ambient temperatures. The drastic deviation of Antarctic representatives of Spumella from the global trend of temperature adaptation of this morphospecies provides strong evidence for geographic transport restriction of a microorganism; i.e., Antarctic protistan communities are less influenced by transport of protists to and from the Antarctic continent than by local adaptation, a subtle form of endemism. PMID:16885260

  7. On the Observed Changes in Upper Stratospheric and Mesospheric Temperatures from UARS HALOE

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis E.

    2006-01-01

    Temperature versus pressure or T(p) time series from the Halogen Occultation Experiment (HALOE) on the Upper Atmosphere Research Satellite (UARS) have been extended and re-analyzed for the period of 1991-2005 and for the upper stratosphere and mesosphere in 10-degree wide latitude zones from 60S to 60N. Even though sampling from a solar occultation experiment is somewhat limited, it is shown to be quite adequate for developing both the seasonal and longer-term variations in T(p). Multiple linear regression (MLR) techniques were used in the re-analyses for the seasonal and the significant interannual, solar cycle (SC-like or decadal-scale), and linear trend terms. A simple SC-like term of 11-yr period was fitted to the time series residuals after accounting for the seasonal and interannual terms. Highly significant SC-like responses were found for both the upper mesosphere and the upper stratosphere. The phases of these SC-like terms were checked for their continuity with latitude and pressure-altitude, and in almost all cases they are directly in-phase with that of standard proxies for the solar flux variations. The analyzed, max minus min, responses at low latitudes are of order 1 K, while at middle latitudes they are as large as 3 K in the upper mesosphere. Highly significant, linear cooling trends were found at middle latitudes of the middle to upper mesosphere (about -2 K/decade), at tropical latitudes of the middle mesosphere (about -1 K/decade), and at 2 hPa (or order -1 K/decade).

  8. Time trends in minimum mortality temperatures in Castile-La Mancha (Central Spain): 1975-2003

    NASA Astrophysics Data System (ADS)

    Miron, Isidro J.; Criado-Alvarez, Juan José; Diaz, Julio; Linares, Cristina; Mayoral, Sheila; Montero, Juan Carlos

    2008-03-01

    The relationship between air temperature and human mortality is described as non-linear, with mortality tending to rise in response to increasingly hot or cold ambient temperatures from a given minimum mortality or optimal comfort temperature, which varies from some areas to others according to their climatic and socio-demographic characteristics. Changes in these characteristics within any specific region could modify this relationship. This study sought to examine the time trend in the maximum temperature of minimum organic-cause mortality in Castile-La Mancha, from 1975 to 2003. The analysis was performed by using daily series of maximum temperatures and organic-cause mortality rates grouped into three decades (1975-1984, 1985-1994, 1995-2003) to compare confidence intervals ( p < 0.05) obtained by estimating the 10-yearly mortality rates corresponding to the maximum temperatures of minimum mortality calculated for each decade. Temporal variations in the effects of cold and heat on mortality were ascertained by means of ARIMA models (Box-Jenkins) and cross-correlation functions (CCF) at seven lags. We observed a significant decrease in comfort temperature (from 34.2°C to 27.8°C) between the first two decades in the Province of Toledo, along with a growing number of significant lags in the summer CFF (1, 3 and 5, respectively). The fall in comfort temperature is attributable to the increase in the effects of heat on mortality, due, in all likelihood, to the percentage increase in the elderly population.

  9. Influence of temperature changes on migraine occurrence in Germany

    NASA Astrophysics Data System (ADS)

    Scheidt, Jörg; Koppe, Christina; Rill, Sven; Reinel, Dirk; Wogenstein, Florian; Drescher, Johannes

    2013-07-01

    Many factors trigger migraine attacks. Weather is often reported to be one of the most common migraine triggers. However, there is little scientific evidence about the underlying mechanisms and causes. In our pilot study, we used smartphone apps and a web form to collect around 4,700 migraine messages in Germany between June 2011 and February 2012. Taking interdiurnal temperature changes as an indicator for changes in the prevailing meteorological conditions, our analyses were focused on the relationship between temperature changes and the frequency of occurrence of migraine attacks. Linear trends were fitted to the total number of migraine messages with respect to temperature changes. Statistical and systematic errors were estimated. Both increases and decreases in temperature lead to a significant increase in the number of migraine messages. A temperature increase (decrease) of 5 °C resulted in an increase of 19 ± 7 % (24 ± 8 %) in the number of migraine messages.

  10. Internet search trends analysis tools can provide real-time data on kidney stone disease in the United States.

    PubMed

    Willard, Scott D; Nguyen, Mike M

    2013-01-01

    To evaluate the utility of using Internet search trends data to estimate kidney stone occurrence and understand the priorities of patients with kidney stones. Internet search trends data represent a unique resource for monitoring population self-reported illness and health information-seeking behavior. The Google Insights for Search analysis tool was used to study searches related to kidney stones, with each search term returning a search volume index (SVI) according to the search frequency relative to the total search volume. SVIs for the term, "kidney stones," were compiled by location and time parameters and compared with the published weather and stone prevalence data. Linear regression analysis was performed to determine the association of the search interest score with known epidemiologic variations in kidney stone disease, including latitude, temperature, season, and state. The frequency of the related search terms was categorized by theme and qualitatively analyzed. The SVI correlated significantly with established kidney stone epidemiologic predictors. The SVI correlated with the state latitude (R-squared=0.25; P<.001), the state mean annual temperature (R-squared=0.24; P<.001), and state combined sex prevalence (R-squared=0.25; P<.001). Female prevalence correlated more strongly than did male prevalence (R-squared=0.37; P<.001, and R-squared=0.17; P=.003, respectively). The national SVI correlated strongly with the average U.S. temperature by month (R-squared=0.54; P=.007). The search term ranking suggested that Internet users are most interested in the diagnosis, followed by etiology, infections, and treatment. Geographic and temporal variability in kidney stone disease appear to be accurately reflected in Internet search trends data. Internet search trends data might have broader applications for epidemiologic and urologic research. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Forest insects and climate change: long-term trends in herbivore damage.

    PubMed

    Klapwijk, Maartje J; Csóka, György; Hirka, Anikó; Björkman, Christer

    2013-10-01

    Long-term data sets, covering several decades, could help to reveal the effects of observed climate change on herbivore damage to plants. However, sufficiently long time series in ecology are scarce. The research presented here analyzes a long-term data set collected by the Hungarian Forest Research Institute over the period 1961-2009. The number of hectares with visible defoliation was estimated and documented for several forest insect pest species. This resulted in a unique time series that provides us with the opportunity to compare insect damage trends with trends in weather patterns. Data were analyzed for six lepidopteran species: Thaumetopoea processionea, Tortrix viridana, Rhyacionia buoliana, Malacosoma neustria, Euproctis chrysorrhoea, and Lymantria dispar. All these species exhibit outbreak dynamics in Hungary. Five of these species prefer deciduous tree species as their host plants, whereas R. buoliana is a specialist on Pinus spp. The data were analyzed using general linear models and generalized least squares regression in relation to mean monthly temperature and precipitation. Temperature increased considerably, especially over the last 25 years (+1.6°C), whereas precipitation exhibited no trend over the period. No change in weather variability over time was observed. There was increased damage caused by two species on deciduous trees. The area of damage attributed to R. buoliana decreased over the study period. There was no evidence of increased variability in damage. We conclude that species exhibiting a trend toward outbreak-level damage over a greater geographical area may be positively affected by changes in weather conditions coinciding with important life stages. Strong associations between the geographical extent of severe damage and monthly temperature and precipitation are difficult to confirm, studying the life-history traits of species could help to increase understanding of responses to climate change.

  12. Trend analysis of the long-term Swiss ozone measurements

    NASA Technical Reports Server (NTRS)

    Staehelin, Johannes; Bader, Juerg; Gelpke, Verena

    1994-01-01

    Trend analyses, assuming a linear trend which started at 1970, were performed from total ozone measurements from Arosa (Switzerland, 1926-1991). Decreases in monthly mean values were statistically significant for October through April showing decreases of about 2.0-4 percent per decade. For the period 1947-91, total ozone trends were further investigated using a multiple regression model. Temperature of a mountain peak in Switzerland (Mt. Santis), the F10.7 solar flux series, the QBO series (quasi biennial oscillation), and the southern oscillation index (SOI) were included as explanatory variables. Trends in the monthly mean values were statistically significant for December through April. The same multiple regression model was applied to investigate the ozone trends at various altitudes using the ozone balloon soundings from Payerne (1967-1989) and the Umkehr measurements from Arosa (1947-1989). The results show four different vertical trend regimes: On a relative scale changes were largest in the troposphere (increase of about 10 percent per decade). On an absolute scale the largest trends were obtained in the lower stratosphere (decrease of approximately 6 per decade at an altitude of about 18 to 22 km). No significant trends were observed at approximately 30 km, whereas stratospheric ozone decreased in the upper stratosphere.

  13. Linear Regression Quantile Mapping (RQM) - A new approach to bias correction with consistent quantile trends

    NASA Astrophysics Data System (ADS)

    Passow, Christian; Donner, Reik

    2017-04-01

    Quantile mapping (QM) is an established concept that allows to correct systematic biases in multiple quantiles of the distribution of a climatic observable. It shows remarkable results in correcting biases in historical simulations through observational data and outperforms simpler correction methods which relate only to the mean or variance. Since it has been shown that bias correction of future predictions or scenario runs with basic QM can result in misleading trends in the projection, adjusted, trend preserving, versions of QM were introduced in the form of detrended quantile mapping (DQM) and quantile delta mapping (QDM) (Cannon, 2015, 2016). Still, all previous versions and applications of QM based bias correction rely on the assumption of time-independent quantiles over the investigated period, which can be misleading in the context of a changing climate. Here, we propose a novel combination of linear quantile regression (QR) with the classical QM method to introduce a consistent, time-dependent and trend preserving approach of bias correction for historical and future projections. Since QR is a regression method, it is possible to estimate quantiles in the same resolution as the given data and include trends or other dependencies. We demonstrate the performance of the new method of linear regression quantile mapping (RQM) in correcting biases of temperature and precipitation products from historical runs (1959 - 2005) of the COSMO model in climate mode (CCLM) from the Euro-CORDEX ensemble relative to gridded E-OBS data of the same spatial and temporal resolution. A thorough comparison with established bias correction methods highlights the strengths and potential weaknesses of the new RQM approach. References: A.J. Cannon, S.R. Sorbie, T.Q. Murdock: Bias Correction of GCM Precipitation by Quantile Mapping - How Well Do Methods Preserve Changes in Quantiles and Extremes? Journal of Climate, 28, 6038, 2015 A.J. Cannon: Multivariate Bias Correction of Climate Model Outputs - Matching Marginal Distributions and Inter-variable Dependence Structure. Journal of Climate, 29, 7045, 2016

  14. Temperature variability inferred from tree-ring records in Weichang region, China, and its teleconnection with large-scale climate forcing

    NASA Astrophysics Data System (ADS)

    Wang, Yanchao; Liu, Yu; Zhang, Huifang; Wang, Hui; Guo, Jingli; Zhang, Erliang; Wang, Jun; Li, Xiao

    2018-04-01

    Based on the combination of two dendrochronologies, the annual mean temperature from May to June for the last 160 years was reconstructed in Weichang region, China, with the predictor variables accounting 43.3% of the variance during the calibration period of 1956-2012. Warm periods with temperature levels great than the mean (17.66 °C) occurred in 1853-1881, 1886-1891, 1904-1909, 1923-1930, 1964-1970, 1980-1988, 1998-2002 and 2007-2011; and cold periods with temperature levels less than the mean occurred in 1882-1885, 1892-1898, 1901-1903, 1910-1922, 1931-1963, 1971-1979, 1989-1997 and 2003-2006. The reconstruction showed that droughts usually occurred in the warm years. And the reconstructed temperature series showed an almost reverse trend to the total precipitation of previous August to present July from Chifeng-Weichang on inter-decadal scale, which indicate the basic feature of climate was warm-dry and cold-wet in Weichang region. The reconstructed temperature series showed a linear increasing trend with a rise 0.11 °C from 1880 to 2012. Comparisons with other temperature series revealed a consistently warming trend after the mid-1950s and confirmed a good repeatability and high reliability in our reconstruction. Spatial correlation implied the reconstruction could represent a regional temperature signal in the large parts of northern China and Central-Eastern Mongolia. The multi-taper method reveals several significant periodicities in our reconstruction over the past 160 years, suggesting possible linkages with the El Niño-Southern Oscillation, lunar gravity, Pacific Decadal Oscillation (PDO) and solar activity. Correlation analysis between the reconstruction and Southern Oscillation Index (SOI), lunar geocentric declination, PDO and sunspot number further demonstrates that the temperature variations in Weichang region are negatively correlated with SOI and positively correlated with lunar gravity, PDO and solar activity in the long term.

  15. Stationary and non-stationary extreme value modeling of extreme temperature in Malaysia

    NASA Astrophysics Data System (ADS)

    Hasan, Husna; Salleh, Nur Hanim Mohd; Kassim, Suraiya

    2014-09-01

    Extreme annual temperature of eighteen stations in Malaysia is fitted to the Generalized Extreme Value distribution. Stationary and non-stationary models with trend are considered for each station and the Likelihood Ratio test is used to determine the best-fitting model. Results show that three out of eighteen stations i.e. Bayan Lepas, Labuan and Subang favor a model which is linear in the location parameter. A hierarchical cluster analysis is employed to investigate the existence of similar behavior among the stations. Three distinct clusters are found in which one of them consists of the stations that favor the non-stationary model. T-year estimated return levels of the extreme temperature are provided based on the chosen models.

  16. Understanding climate impacts on vegetation using a spatiotemporal non-linear Granger causality framework

    NASA Astrophysics Data System (ADS)

    Papagiannopoulou, Christina; Decubber, Stijn; Miralles, Diego; Demuzere, Matthias; Dorigo, Wouter; Verhoest, Niko; Waegeman, Willem

    2017-04-01

    Satellite data provide an abundance of information about crucial climatic and environmental variables. These data - consisting of global records, spanning up to 35 years and having the form of multivariate time series with different spatial and temporal resolutions - enable the study of key climate-vegetation interactions. Although methods which are based on correlations and linear models are typically used for this purpose, their assumptions for linearity about the climate-vegetation relationships are too simplistic. Therefore, we adopt a recently proposed non-linear Granger causality analysis [1], in which we incorporate spatial information, concatenating data from neighboring pixels and training a joint model on the combined data. Experimental results based on global data sets show that considering non-linear relationships leads to a higher explained variance of past vegetation dynamics, compared to simple linear models. Our approach consists of several steps. First, we compile an extensive database [1], which includes multiple data sets for land surface temperature, near-surface air temperature, surface radiation, precipitation, snow water equivalents and surface soil moisture. Based on this database, high-level features are constructed and considered as predictors in our machine-learning framework. These high-level features include (de-trended) seasonal anomalies, lagged variables, past cumulative variables, and extreme indices, all calculated based on the raw climatic data. Second, we apply a spatiotemporal non-linear Granger causality framework - in which the linear predictive model is substituted for a non-linear machine learning algorithm - in order to assess which of these predictor variables Granger-cause vegetation dynamics at each 1° pixel. We use the de-trended anomalies of Normalized Difference Vegetation Index (NDVI) to characterize vegetation, being the target variable of our framework. Experimental results indicate that climate strongly (Granger-)causes vegetation dynamics in most regions globally. More specifically, water availability is the most dominant vegetation driver, being the dominant vegetation driver in 54% of the vegetated surface. Furthermore, our results show that precipitation and soil moisture have prolonged impacts on vegetation in semiarid regions, with up to 10% of additional explained variance on the vegetation dynamics occurring three months later. Finally, hydro-climatic extremes seem to have a remarkable impact on vegetation, since they also explain up to 10% of additional variance of vegetation in certain regions despite their infrequent occurrence. References [1] Papagiannopoulou, C., Miralles, D. G., Verhoest, N. E. C., Dorigo, W. A., and Waegeman, W.: A non-linear Granger causality framework to investigate climate-vegetation dynamics, Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-266, in review, 2016.

  17. Reply to communications by Fu et al. international journal of biometeorology

    NASA Astrophysics Data System (ADS)

    Wang, Huanjiong; Rutishauser, This; Tao, Zexing; Zhong, Shuying; Ge, Quansheng; Dai, Junhu

    2016-12-01

    Temperature sensitivity of plant phenology (ST) is a determining factor of as to what degree climate change impacts on plant species. Fu et al . (Int J Biometeorol 60:1611-1613, 2016) claimed that long long-term linear trends mask phenological shifts. However, the decreased and increased ST was both found in warming scenarios. The conceptual scheme telling the nonlinear relationship between spring temperature and leaf unfolding date proposed by Fu et al . (Int J Biometeorol 60:1611-1613, 2016) cannot be supported by observation data across Europe. Therefore, linking declined ST to climate warming is misleading, and future ST changes are more uncertain than they suggested.

  18. Climate Change and Tropical Total Lightning

    NASA Technical Reports Server (NTRS)

    Albrecht, R.; Petersen, W.; Buechler, D.; Goodman, S.; Blakeslee, R.; Christian, H.

    2009-01-01

    While global warming is regarded as a fact by many in the scientific community, its future impact remains a challenge to be determined and measured. The International Panel on Climate Change (IPCC) assessment report (IPCC, 2007) shows inconclusive answers on global rainfall trends and general agreement on a future drier climate with increased global warming. The relationship between temperature, humidity and convection is not linear and is strongly dependent on regional scale features, such as topography and land cover. Furthermore, the relationship between convective lightning production (thunderstorms) and temperature is even more complicated, being subjected to the cloud dynamics and microphysics. Total lightning (intracloud and cloud-to-ground) monitoring is a relatively new field of observation. Global and tropical total lightning began to be more extensively measured by satellites in the mid 90s. In this scope, the Lightning Imaging Sensor (LIS) onboard of the Tropical Rainfall Measurement Mission (TRMM) has been operational for over 11 years. Here we address total lightning trends observed by LIS from 1998 to 2008 in different temporal (annual and seasonal) and spatial (large and regional) scales. The observed 11-year trends are then associate to different predicted/hypothesized climate change scenarios.

  19. Variability and change of sea level and its components in the Indo-Pacific region during the altimetry era

    NASA Astrophysics Data System (ADS)

    Wu, Quran; Zhang, Xuebin; Church, John A.; Hu, Jianyu

    2017-03-01

    Previous studies have shown that regional sea level exhibits interannual and decadal variations associated with the modes of climate variability. A better understanding of those low-frequency sea level variations benefits the detection and attribution of climate change signals. Nonetheless, the contributions of thermosteric, halosteric, and mass sea level components to sea level variability and trend patterns remain unclear. By focusing on signals associated with dominant climate modes in the Indo-Pacific region, we estimate the interannual and decadal fingerprints and trend of each sea level component utilizing a multivariate linear regression of two adjoint-based ocean reanalyses. Sea level interannual, decadal, and trend patterns primarily come from thermosteric sea level (TSSL). Halosteric sea level (HSSL) is of regional importance in the Pacific Ocean on decadal time scale and dominates sea level trends in the northeast subtropical Pacific. The compensation between TSSL and HSSL is identified in their decadal variability and trends. The interannual and decadal variability of temperature generally peak at subsurface around 100 m but that of salinity tend to be surface-intensified. Decadal temperature and salinity signals extend deeper into the ocean in some regions than their interannual equivalents. Mass sea level (MassSL) is critical for the interannual and decadal variability of sea level over shelf seas. Inconsistencies exist in MassSL trend patterns among various estimates. This study highlights regions where multiple processes work together to control sea level variability and change. Further work is required to better understand the interaction of different processes in those regions.

  20. Crop-climate relationships of cereals in Greece and the impacts of recent climate trends

    NASA Astrophysics Data System (ADS)

    Mavromatis, Theodoros

    2015-05-01

    Notwithstanding technological developments, agricultural production is still affected by uncontrollable factors, such weather and climate. Within this context, the present study aims at exploring the relative influence of growing season climate on the yields of major cereals (hard and soft wheat, maize, and barley) on a regional scale in Greece. To this end, crop-climate relationships and the impacts of climate trends over the period 1978-2005 were explored using linear regression and change point analysis (CPA). Climate data used include maximum (Tx) and minimum temperature (Tn), diurnal temperature range (Tr), precipitation (Prec), and solar radiation (Rad). Temperature effects were the most substantial. Yields reduced by 1.8-7.1 %/°C with increasing Tx and by 1.4-6.1 %/°C with decreasing Tr. The warming trends of Tn caused bilateral yield effects (from -3.7 to 8.4 %/°C). The fewer significantly increasing Rad and decreasing Prec anomalies were associated with larger yield decreases (within the range of 2.2 % MJ/m2/day (for maize) to 4.9 % MJ/m2/day (for hard wheat)) and smaller yield increases (from 0.04 to 1.4 %/mm per decade), respectively. Wheat and barley—the most vulnerable cereals—were most affected by the trends of extreme temperatures and least by Tr. On the contrary, solar radiation has proven to be the least affecting climate variable on all cereals. Despite the similarity in the direction of crop responses with both analyses, yield changes were much more substantial in the case of CPA analysis. In conclusion, regional climate change has affected Greek cereal productivity, in a few, but important for cereal production, regions. The results of this study are expected to be valuable in anticipating the effects of weather/climate on other warm regions worldwide, where the upper temperature limit for some cereals and further changes in climate may push them past suitability for their cultivation.

  1. Long-term trend in ground-based air temperature and its responses to atmospheric circulation and anthropogenic activity in the Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Peng, Xia; She, Qiannan; Long, Lingbo; Liu, Min; Xu, Qian; Zhang, Jiaxin; Xiang, Weining

    2017-10-01

    The Yangtze River Delta (YRD), including Shanghai City, Jiangsu and Zhejiang Provinces, is the largest metropolitan region in China. In the past decades, the region has experienced massive urbanization and detrimentally affected the environment in the region. Identifying the spatio-temporal variations of climate change and its influencing mechanism in the YRD is an important task for assessing their impacts on the local society and ecosystem. Based on long-term (1958-2014) observation data of meteorological stations, three temperature indices, i.e. extreme maximum temperature (TXx), extreme minimum temperature (TNn), and mean temperature (TMm), were selected and spatialized with climatological calculations and spatial techniques. Evolution and spatial heterogeneity of three temperature indices over YRD as well as their links to atmospheric circulation and anthropogenic activity were investigated. In the whole YRD, a statistically significant overall uptrend could be detected in three temperature indices with the Mann-Kendall (M-K) trend test method. The linear increasing trend for TMm was 0.31 °C/10 a, which was higher than the global average (0.12 °C/10 a during 1951-2012). For TXx and TNn, the increasing rates were 0.41 °C/10 a and 0.52 °C/10 a. Partial correlation analysis indicated that TMm was more related with TXx (rp = 0.68, p < 0.001) than TNn (rp = 0.48, p < 0.001). Furthermore, it was detected with M-K analysis at pixel scale that 62.17%, 96.75% and 97.05% of the areas in the YRD showed significant increasing trends for TXx, TNn and TMm, respectively. The increasing trend was more obvious in the southern mountainous areas than the northern plains areas. Further analysis indicated that the variation of TXx over YRD was mainly influenced by anthropogenic activities (e.g. economic development), while TNn was more affected by atmospheric circulations (e.g., the Eurasian zonal circulation index (EAZ) and the cold air activity index (CA)). For TMm, it was a result of comprehensive effects of both atmospheric circulations and anthropogenic activities. On the whole, the northern plain areas was mainly dominated by atmospheric circulations, while the southern mountain areas of YRD was more affected by anthropogenic activities. The findings of this study might help to build a better understanding of the mechanics of temperature variations, and assess the potentially influencing factors on temperature changes.

  2. Assessing the cold temperature effect on hospital visit by allergic rhinitis in Seoul, Korea.

    PubMed

    Kim, Hyomi; Kim, Honghyok; Lee, Jong-Tae

    2018-08-15

    The association between temperature and health outcome has been studied in worldwide. However, studies for mild diseases such as AR, with high prevalence and considerable economic burden, are lacking compared to other relatively severe respiratory diseases. We aimed to assess the trend of hospital visit by AR and estimate the cold temperature effect on hospital visit by allergic rhinitis in Seoul, Korea, 2003-2011. We fitted generalized additive model with quasi-poisson distribution, controlling for humidity, long-term trend, day of week, national holiday, and influenza epidemic. We estimated the cumulative cold temperature effect (10%, -1.7°C) referent to 7.9°C for the considered lag periods using distributed lag non-linear model: vary from the day of hospital visit to 10days before. Stratified analysis by season was also conducted. To adjust for possible confounding effect of air pollutants, we additionally adjusted for PM 10 , O 3 and NO 2 respectively. Hospital visit counts and rates per 1,000,000 show increasing trend especially in elderly population (over 65years). Hospital visit rate is higher in children population (age<13years). Statistically significant cold temperature effects were found in the total (1.094(95%CI: 1.037, 1.153)), male (1.100 (95%CI: 1.010, 1.163)), female (1.088 (95%CI: 1.059, 1.170)) and adult (1.113 (95%CI: 1.059, 1.170)) population with consideration of 3-day lag period. In the stratified analysis by the season, the strongest effect was shown in the autumn (Sep-Nov) season. Confounding effects by air pollutants were not found. In this study, we found significant increasing trend of hospital visit by AR. This study provides suggestive evidence of cold temperature effect on hospital visit by AR. To reduce the growing burden of AR, it is important to find possible related environmental risk factors. More studies should be conducted for better understanding of temperature effect on AR. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Snow in Castile-León: trends and variability

    NASA Astrophysics Data System (ADS)

    Merino, A.; Campos, L.; López, L.; García-Ortega, E.; Sánchez, J. L.; Marcos, J. L.; Guerrero-Higueras, A. M.

    2012-04-01

    The location of Castile and León, inside the Iberian Peninsula, in the Northwestern quadrant, determines, in large measure, the climatic conditions of its territory, granting it very characteristic traits, mostly in the mountainous areas. It is important to note that during a large part of the year, the region is under the influence of Jet Stream, and thus, gives way to very diverse dynamic situations, which turn into different and heterogeneous types of weather. So, in many areas of the region, especially in the most elevated areas, these synoptic and mesoscale situations generate snow precipitation. We should point out that snowfall is one of the principal meteorological risks of Castile and León. Thus, on average, in some mountainous areas there are more than 40 events of snowfall registered annually, with the month of January being the month in which the highest frequency of snowfall appears. The social repercussions of this snowfall are represented in the isolation of places, essentially mountainous, highways being blocked, increase in traffic accidents, etc. As proof of this, it is this type of episode that receives ample coverage by the media, which has a linear relationship with the social perception of risk. As such, the objective of the current work is to analyze the annual trend of days with snow in the different meteorological stations pertaining to AEMET placed in the Community. The period of study is from 1960-2010. Additionally, we have also evaluated trends in annual days of freezing temperature and annual absolute minimum temperature, with the objective of facilitating a meteorological interpretation of the trends obtained on days with snowfall. Finally, the results show that in the majority of stations, a significant negative trend in days with snowfall and annual days with freezing temperatures, and a positive trend in annual absolute minimum temperatures. However, we observed variability in the different regions in the area of study. Acknowledgements The authors would like to thank the Regional Government of Castile-León for its financial support through the project LE220A11-2. This study was supported by the following grants: CEN20091028; GRANIMETRO (CGL2010-15930); MICROMETEO (IPT-310000-2010-22 ).

  4. Effects of linear trends on estimation of noise in GNSS position time-series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dmitrieva, K.; Segall, P.; Bradley, A. M.

    A thorough understanding of time-dependent noise in Global Navigation Satellite System (GNSS) position time-series is necessary for computing uncertainties in any signals found in the data. However, estimation of time-correlated noise is a challenging task and is complicated by the difficulty in separating noise from signal, the features of greatest interest in the time-series. In this study, we investigate how linear trends affect the estimation of noise in daily GNSS position time-series. We use synthetic time-series to study the relationship between linear trends and estimates of time-correlated noise for the six most commonly cited noise models. We find that themore » effects of added linear trends, or conversely de-trending, vary depending on the noise model. The commonly adopted model of random walk (RW), flicker noise (FN) and white noise (WN) is the most severely affected by de-trending, with estimates of low-amplitude RW most severely biased. FN plus WN is least affected by adding or removing trends. Non-integer power-law noise estimates are also less affected by de-trending, but are very sensitive to the addition of trend when the spectral index is less than one. We derive an analytical relationship between linear trends and the estimated RW variance for the special case of pure RW noise. Finally, overall, we find that to ascertain the correct noise model for GNSS position time-series and to estimate the correct noise parameters, it is important to have independent constraints on the actual trends in the data.« less

  5. Effects of linear trends on estimation of noise in GNSS position time-series

    NASA Astrophysics Data System (ADS)

    Dmitrieva, K.; Segall, P.; Bradley, A. M.

    2017-01-01

    A thorough understanding of time-dependent noise in Global Navigation Satellite System (GNSS) position time-series is necessary for computing uncertainties in any signals found in the data. However, estimation of time-correlated noise is a challenging task and is complicated by the difficulty in separating noise from signal, the features of greatest interest in the time-series. In this paper, we investigate how linear trends affect the estimation of noise in daily GNSS position time-series. We use synthetic time-series to study the relationship between linear trends and estimates of time-correlated noise for the six most commonly cited noise models. We find that the effects of added linear trends, or conversely de-trending, vary depending on the noise model. The commonly adopted model of random walk (RW), flicker noise (FN) and white noise (WN) is the most severely affected by de-trending, with estimates of low-amplitude RW most severely biased. FN plus WN is least affected by adding or removing trends. Non-integer power-law noise estimates are also less affected by de-trending, but are very sensitive to the addition of trend when the spectral index is less than one. We derive an analytical relationship between linear trends and the estimated RW variance for the special case of pure RW noise. Overall, we find that to ascertain the correct noise model for GNSS position time-series and to estimate the correct noise parameters, it is important to have independent constraints on the actual trends in the data.

  6. Effects of linear trends on estimation of noise in GNSS position time-series

    DOE PAGES

    Dmitrieva, K.; Segall, P.; Bradley, A. M.

    2016-10-20

    A thorough understanding of time-dependent noise in Global Navigation Satellite System (GNSS) position time-series is necessary for computing uncertainties in any signals found in the data. However, estimation of time-correlated noise is a challenging task and is complicated by the difficulty in separating noise from signal, the features of greatest interest in the time-series. In this study, we investigate how linear trends affect the estimation of noise in daily GNSS position time-series. We use synthetic time-series to study the relationship between linear trends and estimates of time-correlated noise for the six most commonly cited noise models. We find that themore » effects of added linear trends, or conversely de-trending, vary depending on the noise model. The commonly adopted model of random walk (RW), flicker noise (FN) and white noise (WN) is the most severely affected by de-trending, with estimates of low-amplitude RW most severely biased. FN plus WN is least affected by adding or removing trends. Non-integer power-law noise estimates are also less affected by de-trending, but are very sensitive to the addition of trend when the spectral index is less than one. We derive an analytical relationship between linear trends and the estimated RW variance for the special case of pure RW noise. Finally, overall, we find that to ascertain the correct noise model for GNSS position time-series and to estimate the correct noise parameters, it is important to have independent constraints on the actual trends in the data.« less

  7. Effects of temperature and pressure on thermodynamic properties of Cd0.50 Zn0.50 Se alloy

    NASA Astrophysics Data System (ADS)

    Aarifeen, Najm ul; Afaq, A.

    2017-09-01

    Thermodynamic properties of \\text{C}{{\\text{d}}0.50} \\text{Z}{{\\text{n}}0.50} Se alloy are studied using quasi harmonic model for pressure range 0-10 GPa and temperature range 0-1000 K. The structural optimization is obtained by self consistent field calculations and full-potential linear muffin-tin orbital method with GGA+U as an exchange correlation functional where U=2.3427 eV is the hubbard potential. The effects of temperature and pressure on the bulk modulus, Helmholtz free energy, internal energy, entropy, Debye temperature, Grüneisen parameter, thermal expansion coefficient and heat capacities of the material are observed and discussed. The bulk modulus, Helmholtz free energy and Debye temperature are found to decrease with increasing temperature while there is an increasing behavior when the pressure rises. Whereas internal energy has increasing trend with rises in temperature and it almost remains insensitive to pressure. The entropy of the system increases (decreases) with a rise of pressure (temperature).

  8. Characterizing Air Temperature Changes in the Tarim Basin over 1960–2012

    PubMed Central

    Peng, Dongmei; Wang, Xiujun; Zhao, Chenyi; Wu, Xingren; Jiang, Fengqing; Chen, Pengxiang

    2014-01-01

    There has been evidence of warming rate varying largely over space and between seasons. However, little has been done to evaluate the spatial and temporal variability of air temperature in the Tarim Basin, northwest China. In this study, we collected daily air temperature from 19 meteorological stations for the period of 1960–2012, and analyzed annual mean temperature (AMT), the annual minimum (Tmin) and maximum temperature (Tmax), and mean temperatures of all twelve months and four seasons and their anomalies. Trend analyses, standard deviation of the detrended anomaly (SDDA) and correlations were carried out to characterize the spatial and temporal variability of various mean air temperatures. Our data showed that increasing trend was much greater in the Tmin (0.55°C/10a) than in the AMT (0.25°C/10a) and Tmax (0.12°C/10a), and the fluctuation followed the same order. There were large spatial variations in the increasing trends of both AMT (from −0.09 to 0.43 °C/10a) and Tmin (from 0.15 to 1.12°C/10a). Correlation analyses indicated that AMT had a significantly linear relationship with Tmin and the mean temperatures of four seasons. There were also pronounced changes in the monthly air temperature from November to March at decadal time scale. The seasonality (i.e., summer and winter difference) of air temperature was stronger during the period of 1960–1979 than over the recent three decades. Our preliminary analyses indicated that local environmental conditions (such as elevation) might be partly responsible for the spatial variability, and large scale climate phenomena might have influences on the temporal variability of air temperature in the Tarim Basin. In particular, there was a significant correlation between index of El Niño-Southern Oscillation (ENSO) and air temperature of May (P = 0.004), and between the index of Pacific Decadal Oscillation (PDO) and air temperature of July (P = 0.026) over the interannual to decadal time scales. PMID:25375648

  9. A Reanalysis for the Seasonal and Longer-Period Cycles and the Trends in Middle Atmosphere Temperature from the HALOE

    NASA Technical Reports Server (NTRS)

    Remsberg, Ellis E.

    2007-01-01

    Previously published analyses for the seasonal and longer-period cycles in middle atmosphere temperature versus pressure (or T(p)) from the Halogen Occultation Experiment (HALOE) are extended to just over 14 years and updated to properly account for the effects of autocorrelation in its time series of zonally-averaged data. The updated seasonal terms and annual averages are provided, and they can be used to generate temperature distributions that are representative of the period 1991-2005. QBO-like terms have also been resolved and are provided, and they exhibit good consistency across the range of latitudes and pressure-altitudes. Further, exploratory analyses of the residuals from each of the 221 time series have yielded significant 11-yr solar cycle (or SC-like) and linear trend terms at a number of latitudes and levels. The amplitudes of the SC-like terms for the upper mesosphere agree reasonably with calculations of the direct solar radiative effects for T(p). Those SC amplitudes increase by about a factor of 2 from the lower to the upper mesosphere and are also larger at the middle than at the low latitudes. The diagnosed cooling trends for the subtropical latitudes are in the range, -0.5 to -1.0 K/decade, which is in good agreement with the findings from models of the radiative effects on pressure surfaces due to known increases in atmospheric CO2. The diagnosed trends are somewhat larger than predicted with models for the upper mesosphere of the northern hemisphere middle latitudes.

  10. Effect of cellulosic fiber scale on linear and non-linear mechanical performance of starch-based composites.

    PubMed

    Karimi, Samaneh; Abdulkhani, Ali; Tahir, Paridah Md; Dufresne, Alain

    2016-10-01

    Cellulosic nanofibers (NFs) from kenaf bast were used to reinforce glycerol plasticized thermoplastic starch (TPS) matrices with varying contents (0-10wt%). The composites were prepared by casting/evaporation method. Raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The aim of study was to investigate the effects of filler dimension and loading on linear and non-linear mechanical performance of fabricated materials. Obtained results clearly demonstrated that the NF-reinforced composites had significantly greater mechanical performance than the RF-reinforced counterparts. This was attributed to the high aspect ratio and nano dimension of the reinforcing agents, as well as their compatibility with the TPS matrix, resulting in strong fiber/matrix interaction. Tensile strength and Young's modulus increased by 313% and 343%, respectively, with increasing NF content from 0 to 10wt%. Dynamic mechanical analysis (DMA) revealed an elevational trend in the glass transition temperature of amylopectin-rich domains in composites. The most eminent record was +18.5°C shift in temperature position of the film reinforced with 8% NF. This finding implied efficient dispersion of nanofibers in the matrix and their ability to form a network and restrict mobility of the system. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluation of Temperature-Dependent Effective Material Properties and Performance of a Thermoelectric Module

    NASA Astrophysics Data System (ADS)

    Chien, Heng-Chieh; Chu, En-Ting; Hsieh, Huey-Lin; Huang, Jing-Yi; Wu, Sheng-Tsai; Dai, Ming-Ji; Liu, Chun-Kai; Yao, Da-Jeng

    2013-07-01

    We devised a novel method to evaluate the temperature-dependent effective properties of a thermoelectric module (TEM): Seebeck coefficient ( S m), internal electrical resistance ( R m), and thermal conductance ( K m). After calculation, the effective properties of the module are converted to the average material properties of a p- n thermoelectric pillar pair inside the module: Seebeck coefficient ( S TE), electrical resistivity ( ρ TE), and thermal conductivity ( k TE). For a commercial thermoelectric module (Altec 1091) chosen to verify the novel method, the measured S TE has a maximum value at bath temperature of 110°C; ρ TE shows a positive linear trend dependent on the bath temperature, and k TE increases slightly with increasing bath temperature. The results show the method to have satisfactory measurement performance in terms of practicability and reliability; the data for tests near 23°C agree with published values.

  12. 3- to 13-micron spectra of Io

    NASA Technical Reports Server (NTRS)

    Noll, Keith S.; Hammel, H. B.; Young, Leslie; Joiner, Joanna; Hackwell, J.; Lynch, D. K.; Russell, R.

    1993-01-01

    The Broadband Array Spectrograph System with the NASA Infrared Telescope Facility was used to obtain 3- to 13-micron spectra of Io on June 14-16, 1991. The extinction correction and its error for each standard star (Alpha Boo, Alpha Lyr, and Mu UMa) were found individually by performing an unweighted linear fit of instrumental magnitude as a function of airmass. The model results indicate two significant trends: (1) modest differences between the two hemispheres at lower background temperatures and (2) a tendency to higher temperatures, smaller areas, and less power from the warm component at higher background temperatures with an increased contrast between the two hemispheres. The increased flux from 8 to 13 microns is due primarily to a greater area on the Loki (trailing) hemisphere for the warm component, although temperature also plays a role.

  13. Differences between near-surface equivalent temperature and temperature trends for the Eastern United States. Equivalent temperature as an alternative measure of heat content

    USGS Publications Warehouse

    Davey, C.A.; Pielke, R.A.; Gallo, K.P.

    2006-01-01

    There is currently much attention being given to the observed increase in near-surface air temperatures during the last century. The proper investigation of heating trends, however, requires that we include surface heat content to monitor this aspect of the climate system. Changes in heat content of the Earth's climate are not fully described by temperature alone. Moist enthalpy or, alternatively, equivalent temperature, is more sensitive to surface vegetation properties than is air temperature and therefore more accurately depicts surface heating trends. The microclimates evident at many surface observation sites highlight the influence of land surface characteristics on local surface heating trends. Temperature and equivalent temperature trend differences from 1982-1997 are examined for surface sites in the Eastern U.S. Overall trend differences at the surface indicate equivalent temperature trends are relatively warmer than temperature trends in the Eastern U.S. Seasonally, equivalent temperature trends are relatively warmer than temperature trends in winter and are relatively cooler in the fall. These patterns, however, vary widely from site to site, so local microclimate is very important. ?? 2006 Elsevier B.V. All rights reserved.

  14. Evaluation of gas data from high-temperature fumaroles at Mount St. Helens, 1980-1982

    USGS Publications Warehouse

    Gerlach, T.M.; Casadevall, T.J.

    1986-01-01

    The Mount St. Helens fumarole gases show linear composition trends during periods of noneruptive degassing between September 1980 and October 1981. The trends are characterized by increasing H2O and decreasing CO2 and sulfur. Maximum fumarole temperatures also show a linear decrease during this period. High-temperature fumarole gases collected from the crater and dome between September 1980 and July 1982 are all H2O-rich (> 90%) with 1-10% CO2 and small amounts of H2S, SO2, H2, CO, HC, and HF. Trace amounts of COS and S2 are present, and occasional observations of minor CH4 appear to result from contamination or low-temperature reactions in sample vessels. The O2 fugacities of the gases remain near Ni-NiO during cooling. The low sulfur content of the gases obviates the need for extensive gas-rock oxygen exchange to maintain fO2's near Ni-NiO. A detailed thermodynamic analysis of 50 gas samples collected between September 1980 and December 1981 led to improved compositions for 22 samples. The gases were initially in a state of equilibrium, but disequilibrium modifications from atmospheric oxidation of H2 and, to a lesser extent, CO occurred within the upper portions of the fumarole vents. The last temperatures of equilibrium for the fumarole gases range from 800??C to 650??C and are nearly always higher than the collection temperatures. No evidence was found of disequilibrium admixture of surface waters; if such modifications of the fumarole gases occurred, the water must have been added at depth and have reequilibrated with the other gas species at magmatic or near-magmatic temperatures. The highest quality analytical data are obtained by field gas chromatograph measurements and from caustic soda bottle samples. Samples collected in evacuated bottles or by pumping through double stopcock tubes tend to be severely deficient in sulfur due to post-collection reactions between H2S and SO2. It is also necessary to infer the water content of the latter samples. ?? 1986.

  15. Long-term temperature observations from the troposphere to upper mesosphere over Mauna Loa, HI (19.5N, 155.6W) and Table Mountain, CA (34.4N, 117.7W) by JPL Lidars and nearby Radiosondes

    NASA Astrophysics Data System (ADS)

    Li, T.; Leblanc, T.; McDermid, S.; Wu, D. L.

    2007-12-01

    The JPL Rayleigh lidars at Mauna Loa Observatory (MLO), HI (19.5N, 155.6W) and Table Mountain Observatory (TMO), CA (34.4N, 117.7W) have been operated for the regular nighttime data acquisition of temperature since 1994 and 1989 respectively. Using the monthly mean temperature vertical profiles observed by the JPL lidars (35- 85km) and nearby radiosondes (5-30km), and with the linear regression analysis, we are able to extract the temperature trend, solar cycle, El Nino South Oscillation (ENSO), and Quasi-Biennial Oscillation (QBO) signals from the troposphere to upper mesosphere over MLO and TMO. The temperature trends show different behaviors at two sites, minor trend at MLO, but more negative trend at TMO. The solar cycle responses in temperature are generally positive above the middle stratosphere at both sites, but negative response at MLO and positive at TMO below. During the El Nino events, the warmer temperatures in the troposphere and upper mesosphere, and the colder temperatures in the stratosphere and lower mesosphere were observed at MLO and almost visa verse at TMO. The significant QBO oscillations were observed in the stratosphere with amplitudes of ~2-3K and with clearer downward phase progression at MLO than that at TMO. The mesospheric QBO near 75-85km is clearly present at both sites with amplitude of ~2K and with longer vertical wavelength than that in stratosphere. In addition, we calculated the GW variances using lidar temperature profiles with 30min and 1km resolutions in the upper stratosphere (38-50km) and lower mesosphere (50-62km), and nearby radiosondes in the lower stratosphere (18-30km). The monthly mean GW variances clearly show an annual oscillation with a maximum in the winter and minimum in the summer. The QBO signature could be clearly seen in the lower stratosphere. In the upper stratosphere, a longer period oscillation (~5-6 years) with maxima in 2000-2001 and 2006 was revealed to synchronize with the solar maximum and minimum. No clear signature of GW activity in the lower mesosphere could be associated to that in the upper stratosphere, suggesting that part of gravity waves may either dissipated or reflected when crossing the stratopause region.

  16. Statistical analysis of stratospheric temperature and ozone profile data for trends and model comparison

    NASA Technical Reports Server (NTRS)

    Tiao, G. C.

    1992-01-01

    Work performed during the project period July 1, 1990 to June 30, 1992 on the statistical analysis of stratospheric temperature data, rawinsonde temperature data, and ozone profile data for the detection of trends is described. Our principal topics of research are trend analysis of NOAA stratospheric temperature data over the period 1978-1989; trend analysis of rawinsonde temperature data for the period 1964-1988; trend analysis of Umkehr ozone profile data for the period 1977-1991; and comparison of observed ozone and temperature trends in the lower stratosphere. Analysis of NOAA stratospheric temperature data indicates the existence of large negative trends at 0.4 mb level, with magnitudes increasing with latitudes away from the equator. Trend analysis of rawinsonde temperature data over 184 stations shows significant positive trends about 0.2 C per decade at surface to 500 mb range, decreasing to negative trends about -0.3 C at 100 to 50 mb range, and increasing slightly at 30 mb level. There is little evidence of seasonal variation in trends. Analysis of Umkehr ozone data for 12 northern hemispheric stations shows significant negative trends about -.5 percent per year in Umkehr layers 7-9 and layer 3, but somewhat less negative trends in layers 4-6. There is no pronounced seasonal variation in trends, especially in layers 4-9. A comparison was made of empirical temperature trends from rawinsonde data in the lower stratosphere with temperature changes determined from a one-dimensional radiative transfer calculation that prescribed a given ozone change over the altitude region, surface to 50 km, obtained from trend analysis of ozonsonde and Umkehr profile data. The empirical and calculated temperature trends are found in substantive agreement in profile shape and magnitude.

  17. The effect of ambient temperature on diabetes mortality in China: A multi-city time series study.

    PubMed

    Yang, Jun; Yin, Peng; Zhou, Maigeng; Ou, Chun-Quan; Li, Mengmeng; Liu, Yunning; Gao, Jinghong; Chen, Bin; Liu, Jiangmei; Bai, Li; Liu, Qiyong

    2016-02-01

    Few multi-city studies have been conducted to investigate the acute health effects of low and high temperatures on diabetes mortality worldwide. We aimed to examine effects of ambient temperatures on city-/gender-/age-/education-specific diabetes mortality in nine Chinese cities using a two-stage analysis. Distributed lag non-linear model was first applied to estimate the city-specific non-linear and delayed effects of temperatures on diabetes mortality. Pooled effects of temperatures on diabetes mortality were then obtained using meta-analysis, based on restricted maximum likelihood. We found that heat effects were generally acute and followed by a period of mortality displacement, while cold effects could last for over two weeks. The pooled relative risks of extreme high (99th percentile of temperature) and high temperature (90th percentile of temperature) were 1.29 (95%CI: 1.11-1.47) and 1.11 (1.03-1.19) over lag 0-21 days, compared with the 75th percentile of temperature. In contrast, the pooled relative risks over lag 0-21 days were 1.44 (1.25-1.66) for extreme low (1st percentile of temperature) and 1.20 (1.12-1.30) for low temperature (10th percentile of temperature), compared to 25th percentile of temperature. The estimate of heat effects was relatively higher among females than that among males, with opposite trend for cold effects, and the estimates of heat and cold effects were particularly higher among the elderly and those with low education, although the differences between these subgroups were not statistically significant (P>0.05). These findings have important public health implications for protecting diabetes patients from adverse ambient temperatures. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Aerosol optical depth trend over the Middle East

    NASA Astrophysics Data System (ADS)

    Klingmueller, Klaus; Pozzer, Andrea; Metzger, Swen; Abdelkader, Mohamed; Stenchikov, Georgiy; Lelieveld, Jos

    2016-04-01

    We use the combined Dark Target/Deep Blue aerosol optical depth (AOD) satellite product of the Moderate-resolution Imaging Spectroradiometer (MODIS) collection 6 to study trends over the Middle East between 2000 and 2015. Our analysis corroborates a previously identified positive AOD trend over large parts of the Middle East during the period 2001 to 2012. By relating the annual AOD to precipitation, soil moisture and surface wind, being the main factors controlling the dust cycle, we identify regions where these attributes are significantly correlated to the AOD over Saudi Arabia, Iraq and Iran. The Fertile Crescent turns out to be of prime importance for the AOD trend over these countries. Using multiple linear regression we show that AOD trend and interannual variability can be attributed to the above mentioned dust cycle parameters, confirming that the AOD increase is predominantly driven by dust. In particular, the positive AOD trend relates to a negative soil moisture trend. This suggests that increasing temperature and decreasing relative humidity in the last decade have promoted soil drying, leading to increased dust emissions and AOD; consequently an AOD increase is expected due to climate change. Based on simulations using the ECHAM/MESSy atmospheric chemistry-climate model (EMAC), we interpret the correlations identified in the observational data in terms of causal relationships.

  19. Ion temperature gradient driven transport in tokamaks with square shaping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joiner, N.; Dorland, W.

    2010-06-15

    Advanced tokamak schemes which may offer significant improvement to plasma confinement on the usual large aspect ratio Dee-shaped flux surface configuration are of great interest to the fusion community. One possibility is to introduce square shaping to the flux surfaces. The gyrokinetic code GS2[Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1996)] is used to study linear stability and the resulting nonlinear thermal transport of the ion temperature gradient driven (ITG) mode in tokamak equilibria with square shaping. The maximum linear growth rate of ITG modes is increased by negative squareness (diamond shaping) and reduced by positive values (square shaping).more » The dependence of thermal transport produced by saturated ITG instabilities on squareness is not as clear. The overall trend follows that of the linear instability, heat and particle fluxes increase with negative squareness and decrease with positive squareness. This is contradictory to recent experimental results [Holcomb et al., Phys. Plasmas 16, 056116 (2009)] which show a reduction in transport with negative squareness. This may be reconciled as a reduction in transport (consistent with the experiment) is observed at small negative values of the squareness parameter.« less

  20. Seasonality of climate change and oscillations in the Northeast Asia and Northwest Pacific

    NASA Astrophysics Data System (ADS)

    Ponomarev, V.; Salomatin, A.; Kaplunenko, D.; Krokhin, V.

    2003-04-01

    The main goals of this study are to estimate and compare the seasonality of centennial/semi-centennial climatic tendencies and dominated oscillations in surface air temperature and precipitation over continental and marginal areas of the Northeast Asia, as well as in the Northwest Pacific SST. We use monthly mean data for the 20th century from the NOAA Global History Climatic Network, JMA data base and WMU/COADS World Atlas of Surface Marine Data. Details of climate change/oscillations associated with cooling or warming in different areas and periods of a year are revealed. Wavelet analyses and two methods of the linear trend estimation are applied. First one is least-squares (LS) method with Fisher’s test for statistical significance level. Second one is nonparametric robust (NR) method, based on Theil's rank regression and Kendall's test for statistical significance level. The NR method should be applied to time series with abnormal distribution function typical for precipitation time series. Application of the NR method result in increase the statistical significance of both positive and negative linear trends in all cases of abnormal distribution with negative/positive skewness and low/high kurtosis. Using this method, we have determined spatial patterns of statistically significant climatic trends in surface air temperature, precipitation in the Northeast Asia, and in the Northwest Pacific SST. The most substantial centennial warming in the vast continental area of the mid-latitude band is found mainly for December March. The semi-centennial/ centennial cooling occurs in South Siberia and the subarctic mid-continental area in June September. Opposite tendencies were also revealed in precipitation and SST. Positive semi-centennial tendency in the SST in the second half of the 20th century predominates in the Kuroshio region and in the northwestern area of the subarctic gyre in winter. Negative tendency in the SST dominates in the southwestern subarctic gyre and the offshore area of the subtropic gyre in summer. Comparison of air temperature, precipitation, SST trends and oscillations in different seasons over land marginal and continental areas, as well as in the subarctic and subtropic zones indicates general features of the Northeast Asian Monsoon change/oscillation in 20th century and its second half. Similar features of seasonality in centennial, semi-centennial trends and dominated oscillations are manifested. Climate change and oscillation in the Northwest Pacific marginal seas revealed for the 20th century are explained.

  1. Seasonality of climate change and oscillations in the Northeast Asia and Northwest Pacific

    NASA Astrophysics Data System (ADS)

    Ponomarev, V.; Salomatin, A.; Kaplunenko, D.; Krokhin, V.

    2003-04-01

    The main goals of this study are to estimate and compare the centennial/semi-centennial climatic tendencies and oscillations in surface air temperature and precipitation over continental and marginal areas of the Northeast Asian, as well as in the Northwest Pacific SST for all months of a year. We use monthly mean data for the 20th century from the NOAA Global History Climatic Network, JMA data base and WMU/COADS World Atlas of Surface Marine Data. Details of climate change/oscillations associated with cooling or warming in different areas and periods of a year are revealed. Wavelet analyses and two methods of the linear trend estimation are applied. First one is least-squares (LS) method with Fisher’s test for statistical significance level. Second one is nonparametric robust (NR) method, based on Theil's rank regression and Kendall's test for statistical significance level. The NR method should be applied to time series with abnormal distribution function typical for precipitation time series. Application of the NR method result in increase the statistical significance of both positive and negative linear trends in all cases of abnormal distribution with negative/positive skewness and low/high kurtosis. Using this method, we have determined spatial patterns of statistically significant climatic trends in surface air temperature, precipitation in the Northeast Asia, and in the Northwest Pacific SST. The most substantial centennial warming in the vast continental area of the mid-latitude band is found mainly for December March. The semi-centennial/ centennial cooling occurs in South Siberia and the subarctic mid-continental area in June September. Opposite tendencies were also revealed in precipitation and SST. Positive semi-centennial tendency in the SST in the second half of the 20th century predominates in the Kuroshio region and in the northwestern area of the subarctic gyre in winter. Negative tendency in the SST dominates in the southwestern subarctic gyre and the offshore area of the subtropic gyre in summer. Comparison of air temperature, precipitation, SST trends and oscillations in different seasons over land marginal and continental areas, as well as in the subarctic and subtropic zones indicates general features of the Northeast Asian Monsoon change/oscillation in 20th century and its second half. Similar features of seasonality in centennial, semi-centennial trends and dominated oscillations are manifested. Climate change and oscillation in the Northwest Pacific marginal seas revealed for the 20th century are explained.

  2. Deciphering the Long-Term Trend of Atlantic Basin Intense Hurricanes: More Active Versus Less Active During the Present Epoch

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    1998-01-01

    During the interval of 1944-1997, 120 intense hurricanes (i.e., those of category 3 or higher on the Saffir-Simpson hurricane damage potential scale) were observed in the Atlantic basin, having an annual frequency of 0-7 events per year, being more active prior to the mid 1960's than thereafter (hence a possible two-state division: more active versus less active), and being preferentially lower during El Nino years as compared to non-El Nino years. Because decadal averages of the frequency of intense hurricanes closely resemble those of average temperature anomalies for northern hemispheric and global standards and of the average temperature at the Armagh Observatory (Northern Ireland), a proxy for climatic change, it is inferred that the long-term trends of the annual frequency of intense hurricanes and temperature may be statistically related. Indeed, on the basis of 4- and 10-yr moving averages, one finds that there exists strong linear associations between the annual frequency of intense hurricanes in the Atlantic basin and temperature (specially, when temperature slightly leads). Because the long-term leading trends of temperature are now decidedly upward, beginning about the mid 1980's, it is inferred that the long-term consequential trends of the annual frequency of intense hurricanes should now also be upward, having begun near 1990, suggesting that a return to the more active state probably has already occurred. However, because of the anomalous El Nino activity of the early to mid 1990's, the switch from the less active to the more active state essentially went unnoticed (a marked increase in the number of intense hurricanes was not observed until the 1995 and 1996 hurricane seasons, following the end of the anomalous El Nino activity). Presuming that a return to the more active state has, indeed, occurred, one expects the number of seasonal intense hurricanes during the present epoch (continuing through about 2012) to usually be higher than average (i.e., greater than or equal to 2), except during El Nino-related seasons when the number usually will be less than average.

  3. Model Development for MODIS Thermal Band Electronic Crosstalk

    NASA Technical Reports Server (NTRS)

    Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghonh; Brinkman, Jake; Keller, Graziela; Xiong, Xiaoxiong

    2016-01-01

    MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 m. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands developed substantial issues that cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 m and band 29 at 8.5 m increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk effect is evident in the near-monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. The development of an alternative approach is very helpful for independent verification.In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically to correct the Earth brightness temperature measurements. In the model development, the detectors nonlinear response is considered. The impact of the electronic crosstalk is assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detectors nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector non-linearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic cross talk can be implemented empirically from the processed bias at different brightness temperature. The implementation can be done through two approaches. As routine calibration assessment for thermal infrared bands, the trending over select Earth scenes is processed for all the detectors in a band and the band averaged bias is derived at a certain time. In this case, the correction of an affected band can be made using the regression of the model with band averaged bias and then corrections of detector differences are applied. The second approach requires the trending for individual detectors and the bias for each detector is used for regression with the model. A test using the first approach was made for Terra MODIS band 29 with the biases derived from long-term trending of brightness temperature over ocean and Dome-C.

  4. Rethinking the longitudinal stream temperature paradigm: region-wide comparison of thermal infrared imagery reveals unexpected complexity of river temperatures

    USGS Publications Warehouse

    Fullerton, Aimee H.; Torgersen, Christian E.; Lawler, Joshua J.; Faux, Russell N.; Steel, E. Ashley; Beechie, Timothy J.; Ebersole, Joseph L.; Leibowitz, Scott J.

    2015-01-01

    Prevailing theory suggests that stream temperature warms asymptotically in a downstream direction, beginning at the temperature of the source in the headwaters and leveling off downstream as it converges to match meteorological conditions. However, there have been few empirical examples of longitudinal patterns of temperature in large rivers due to a paucity of data. We constructed longitudinal thermal profiles (temperature versus distance) for 53 rivers in the Pacific Northwest (USA) using an extensive dataset of remotely sensed summertime river temperatures and classified each profile into one of five patterns of downstream warming: asymptotic (increasing then flattening), linear (increasing steadily), uniform (not changing), parabolic (increasing then decreasing), or complex (not fitting other classes). We evaluated (1) how frequently profiles warmed asymptotically downstream as expected, and (2) whether relationships between river temperature and common hydroclimatic variables differed by profile class. We found considerable diversity in profile shape, with 47% of rivers warming asymptotically, and 53% having alternative profile shapes. Water temperature did not warm substantially over the course of the river for coastal parabolic and uniform profiles, and for some linear and complex profiles. Profile classes showed no clear geographical trends. The degree of correlation between river temperature and hydroclimatic variables differed among profile classes, but there was overlap among classes. Water temperature in rivers with asymptotic or parabolic profiles was positively correlated with August air temperature, tributary temperature and velocity, and negatively correlated with elevation, August precipitation, gradient, and distance upstream. Conversely, associations were less apparent in rivers with linear, uniform, or complex profiles. Factors contributing to the unique shape of parabolic profiles differed for coastal and inland rivers, where downstream cooling was influenced locally by climate or cool water inputs, respectively. Potential drivers of shape for complex profiles were specific to each river. These thermal patterns indicate diverse thermal habitats that may promote resilience of aquatic biota to climate change. Without this spatial context, climate change models may incorrectly estimate loss of thermally suitable habitat.

  5. Urban climate modifies tree growth in Berlin

    NASA Astrophysics Data System (ADS)

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2017-12-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  6. Urban climate modifies tree growth in Berlin

    NASA Astrophysics Data System (ADS)

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2018-05-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees ( Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  7. Urban climate modifies tree growth in Berlin.

    PubMed

    Dahlhausen, Jens; Rötzer, Thomas; Biber, Peter; Uhl, Enno; Pretzsch, Hans

    2018-05-01

    Climate, e.g., air temperature and precipitation, differs strongly between urban and peripheral areas, which causes diverse life conditions for trees. In order to compare tree growth, we sampled in total 252 small-leaved lime trees (Tilia cordata Mill) in the city of Berlin along a gradient from the city center to the surroundings. By means of increment cores, we are able to trace back their growth for the last 50 to 100 years. A general growth trend can be shown by comparing recent basal area growth with estimates from extrapolating a growth function that had been fitted with growth data from earlier years. Estimating a linear model, we show that air temperature and precipitation significantly influence tree growth within the last 20 years. Under consideration of housing density, the results reveal that higher air temperature and less precipitation led to higher growth rates in high-dense areas, but not in low-dense areas. In addition, our data reveal a significantly higher variance of the ring width index in areas with medium housing density compared to low housing density, but no temporal trend. Transferring the results to forest stands, climate change is expected to lead to higher tree growth rates.

  8. Analysis of temperature trends in Northern Serbia

    NASA Astrophysics Data System (ADS)

    Tosic, Ivana; Gavrilov, Milivoj; Unkašević, Miroslava; Marković, Slobodan; Petrović, Predrag

    2017-04-01

    An analysis of air temperature trends in Northern Serbia for the annual and seasonal time series is performed for two periods: 1949-2013 and 1979-2013. Three data sets of surface air temperatures: monthly mean temperatures, monthly maximum temperatures, and monthly minimum temperatures are analyzed at 9 stations that have altitudes varying between 75 m and 102 m. Monthly mean temperatures are obtained as the average of the daily mean temperatures, while monthly maximum (minimum) temperatures are the maximum (minimum) values of daily temperatures in corresponding month. Positive trends were found in 29 out of 30 time series, and the negative trend was found only in winter during the period 1979-2013. Applying the Mann-Kendall test, significant positive trends were found in 15 series; 7 in the period 1949-2013 and 8 in the period 1979-2013; and no significant trend was found in 15 series. Significant positive trends are dominated during the year, spring, and summer, where it was found in 14 out of 18 cases. Significant positive trends were found 7, 5, and 3 times in mean, maximum and minimum temperatures, respectively. It was found that the positive temperature trends are dominant in Northern Serbia.

  9. Relationship of ultrasound signal intensity with SonoVue concentration at body temperature in vitro

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Li, Jing; He, Xiaoling; Wu, Kaizhi; Yuan, Yun; Ding, Mingyue

    2014-04-01

    In this paper, the relationship between image intensity and ultrasound contrast agent (UCA) concentration is investigated. Experiments are conducted in water bath using a silicon tube filled with UCA (SonoVue) at different concentrations (100μl/l to 6000μl/l) at around 37 °C to simulate the temperature in human body. The mean gray-scale intensity within the region of interest (ROI) is calculated to obtain the plot of signal intensity to UCA concentration. The results show that the intensity firstly exhibits a linear increase to the peak at approximately 1500μl/l then appears a downward trend due to the multiple scattering (MS) effects.

  10. Temperature nonuniformity occurring during the cooling process of a KDP crystal and its effects on second-harmonic generation.

    PubMed

    Liang, Yingchun; Su, Ruifeng; Lu, Lihua; Liu, Haitao

    2014-08-10

    The temperature nonuniformity occurring during the cooling process of a KDP crystal is studied, along with its effects on the second-harmonic generation (SHG) of a high-average-power laser. A comprehensive model is proposed incorporating principles of thermodynamics, mechanics, and optics, and it is applied to investigate the temperature nonuniformity and its effects. The temperature rise caused by linear absorption is calculated, while the temperature nonuniformity occurring during the cooling process is analyzed using the finite-element method (FEM). The stress induced by the nonuniformity is then studied using the FEM, and the trend of its change is determined. Moreover, the changes in refractive index caused by the stress are calculated, the results of which are used to determine the variations in the induced phase mismatch. The SHG efficiency considering the phase mismatch is eventually obtained by solving the coupling wave equations. The results demonstrate that the temperature nonuniformity has negative effects on the SHG efficiency.

  11. Magnetic, structural and magnetocaloric properties of Ni-Si and Ni-Al thermoseeds for self-controlled hyperthermia.

    PubMed

    Pandey, Sudip; Quetz, Abdiel; Aryal, Anil; Dubenko, Igor; Mazumdar, Dipanjan; Stadler, Shane; Ali, Naushad

    2017-11-01

    Self-controlled hyperthermia is a non-invasive technique used to kill or destroy cancer cells while preserving normal surrounding tissues. We have explored bulk magnetic Ni-Si and Ni-Al alloys as a potential thermoseeds. The structural, magnetic and magnetocaloric properties of the samples were investigated, including saturation magnetisation, Curie temperature (T C ), and magnetic and thermal hysteresis, using room temperature X-ray diffraction and magnetometry. The annealing time, temperature and the effects of homogenising the thermoseeds were studied to determine the functional hyperthermia applications. The bulk Ni-Si and Ni-Al binary alloys have Curie temperatures in the desired range, 316 K-319 K (43 °C-46 °C), which is suitable for magnetic hyperthermia applications. We have found that T C strictly follows a linear trend with doping concentration over a wide range of temperature. The magnetic ordering temperature and the magnetic properties can be controlled through substitution in these binary alloys.

  12. Trend analysis of the homogenized total ozone series of Arosa (Switzerland), 1926-1996

    NASA Astrophysics Data System (ADS)

    Staehelin, Johannes; Kegel, Rainer; Harris, Neil R. P.

    1998-04-01

    Total ozone measurements have been made at Arosa, Switzerland (47°N), from 1926 through the present day, forming the longest total ozone series in the world. The record has been recently homogenized. Ozone trends are calculated to be -(2.3±0.6)% per decade for annual means (larger losses are found in winter and spring, approximately -4% per decade for trends in January, February, and March) when a simple linear change from 1970 to 1996 is assumed. In addition, total ozone trends are calculated using multiple regression models involving combinations of explanatory variables for the 11-year solar cycle, local meteorological conditions (the Mount Säntis high-altitude temperature record), stratospheric aerosol loading from volcanoes, and stratospheric chlorine loading. When the terms for the solar cycle, the stratospheric aerosol loading and the high mountain temperature record were included, the annually averaged ozone trends were found to be -(1.9±0.6)% per decade. While a statistically significant relation is found between total ozone and indices of aerosol loadings of the stratosphere, the recent decrease in total ozone cannot be accounted for by the higher average aerosol content in the second half of the century. Finally, the decrease in ozone in the stratosphere is estimated to be approximately 30% larger than that found for total ozone, when a crude estimate of the increase in tropospheric ozone is included. The acceleration observed in total ozone trends between the 1970s and the 1980s over northern midlatitudes [e.g., Harris et al., 1997] might be partially attributed to the larger increase in tropospheric ozone in the 1970s.

  13. Nonlinear flowering responses to climate: are species approaching their limits of phenological change?

    PubMed

    Iler, Amy M; Høye, Toke T; Inouye, David W; Schmidt, Niels M

    2013-08-19

    Many alpine and subalpine plant species exhibit phenological advancements in association with earlier snowmelt. While the phenology of some plant species does not advance beyond a threshold snowmelt date, the prevalence of such threshold phenological responses within plant communities is largely unknown. We therefore examined the shape of flowering phenology responses (linear versus nonlinear) to climate using two long-term datasets from plant communities in snow-dominated environments: Gothic, CO, USA (1974-2011) and Zackenberg, Greenland (1996-2011). For a total of 64 species, we determined whether a linear or nonlinear regression model best explained interannual variation in flowering phenology in response to increasing temperatures and advancing snowmelt dates. The most common nonlinear trend was for species to flower earlier as snowmelt advanced, with either no change or a slower rate of change when snowmelt was early (average 20% of cases). By contrast, some species advanced their flowering at a faster rate over the warmest temperatures relative to cooler temperatures (average 5% of cases). Thus, some species seem to be approaching their limits of phenological change in response to snowmelt but not temperature. Such phenological thresholds could either be a result of minimum springtime photoperiod cues for flowering or a slower rate of adaptive change in flowering time relative to changing climatic conditions.

  14. Waterfowl Conservation in the US Prairie Pothole Region: Confronting the Complexities of Climate Change

    PubMed Central

    Niemuth, Neal D.; Fleming, Kathleen K.; Reynolds, Ronald E.

    2014-01-01

    The Prairie Pothole Region (PPR) is the most important waterfowl production area in North America. However, waterfowl populations there are predicted to decline because of climate-related drying of wetlands. Consequently, changes in the geographic focus of PPR waterfowl conservation have been recommended, which could have long-lasting and costly impacts. We used a 40-year dataset of pond counts collected in the PPR to test hypotheses about climate-related drying. We assessed May (1974–2013) and July (1974–2003) pond numbers in 20 waterfowl survey strata to determine if trends in pond numbers were consistent with predictions of drying. We also assessed trends in precipitation and temperature for the 20 strata and developed models describing May pond numbers from 1974 through 2010 as a function of precipitation, temperature, the previous year’s pond numbers, and location. None of the 20 strata showed significant declines in May pond numbers, although seven strata showed increases over time. July pond numbers declined significantly in one stratum, and increased in seven strata. An index to hydroperiod showed significant increasing trends in three strata, and no strata had decreasing trends. Precipitation increased significantly in two strata and decreased in two from 1974 to 2010; no strata showed significant changes in temperature. The best linear model described pond numbers within all strata as a function of precipitation, temperature, the previous year’s pond numbers, and the latitude and longitude of the stratum, and explained 62% of annual variation in pond numbers. We hypothesize that direct effects of climate change on prairie pothole wetlands and waterfowl may be overshadowed by indirect effects such as intensified land use and increased pressure to drain wetlands. We recommend that an adaptive, data-driven approach be used to resolve uncertainties regarding direct and indirect effects of climate change on prairie wetlands and waterfowl, and guide future conservation efforts. PMID:24937641

  15. Waterfowl conservation in the US Prairie Pothole Region: confronting the complexities of climate change.

    PubMed

    Niemuth, Neal D; Fleming, Kathleen K; Reynolds, Ronald E

    2014-01-01

    The Prairie Pothole Region (PPR) is the most important waterfowl production area in North America. However, waterfowl populations there are predicted to decline because of climate-related drying of wetlands. Consequently, changes in the geographic focus of PPR waterfowl conservation have been recommended, which could have long-lasting and costly impacts. We used a 40-year dataset of pond counts collected in the PPR to test hypotheses about climate-related drying. We assessed May (1974-2013) and July (1974-2003) pond numbers in 20 waterfowl survey strata to determine if trends in pond numbers were consistent with predictions of drying. We also assessed trends in precipitation and temperature for the 20 strata and developed models describing May pond numbers from 1974 through 2010 as a function of precipitation, temperature, the previous year's pond numbers, and location. None of the 20 strata showed significant declines in May pond numbers, although seven strata showed increases over time. July pond numbers declined significantly in one stratum, and increased in seven strata. An index to hydroperiod showed significant increasing trends in three strata, and no strata had decreasing trends. Precipitation increased significantly in two strata and decreased in two from 1974 to 2010; no strata showed significant changes in temperature. The best linear model described pond numbers within all strata as a function of precipitation, temperature, the previous year's pond numbers, and the latitude and longitude of the stratum, and explained 62% of annual variation in pond numbers. We hypothesize that direct effects of climate change on prairie pothole wetlands and waterfowl may be overshadowed by indirect effects such as intensified land use and increased pressure to drain wetlands. We recommend that an adaptive, data-driven approach be used to resolve uncertainties regarding direct and indirect effects of climate change on prairie wetlands and waterfowl, and guide future conservation efforts.

  16. Thermal conductivity as influenced by the temperature and apparent viscosity of dairy products.

    PubMed

    Gonçalves, B J; Pereira, C G; Lago, A M T; Gonçalves, C S; Giarola, T M O; Abreu, L R; Resende, J V

    2017-05-01

    This study aimed to evaluate the rheological behavior and thermal conductivity of dairy products, composed of the same chemical components but with different formulations, as a function of temperature. Subsequently, thermal conductivity was related to the apparent viscosity of yogurt, fermented dairy beverage, and fermented milk. Thermal conductivity measures and rheological tests were performed at 5, 10, 15, 20, and 25°C using linear probe heating and an oscillatory rheometer with concentric cylinder geometry, respectively. The results were compared with those calculated using the parallel, series, and Maxwell-Eucken models as a function of temperature, and the discrepancies in the results are discussed. Linear equations were fitted to evaluate the influence of temperature on the thermal conductivity of the dairy products. The rheological behavior, specifically apparent viscosity versus shear rate, was influenced by temperature. Herschel-Bulkley, power law, and Newton's law models were used to fit the experimental data. The Herschel-Bulkley model best described the adjustments for yogurt, the power law model did so for fermented dairy beverages, and Newton's law model did so for fermented milk and was then used to determine the rheological parameters. Fermented milk showed a Newtonian trend, whereas yogurt and fermented dairy beverage were shear thinning. Apparent viscosity was correlated with temperature by the Arrhenius equation. The formulation influenced the effective thermal conductivity. The relationship between the 2 properties was established by fixing the temperature and expressing conductivity as a function of apparent viscosity. Thermal conductivity increased with viscosity and decreased with increasing temperature. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  17. The acute effects of outdoor temperature on blood pressure in a panel of elderly hypertensive patients

    NASA Astrophysics Data System (ADS)

    Chen, Renjie; Lu, Jianxiong; Yu, Qun; Peng, Li; Yang, Dandan; Wang, Cuicui; Kan, Haidong

    2015-12-01

    Higher level of blood pressure (BP) in winter than in summer has been observed, but the association between temperature and BP and its potential modifiers with adjustment of individual confounders and time trends was rarely explored. We aimed to investigate the association between outdoor temperature and BP and its potential modification factors in a longitudinal panel study in Shanghai, China. From January 2011 to December 2012, we scheduled 54 follow-ups for BP measurements per subject via home visit every other week for 50 elderly hypertensive patients. We applied linear mixed-effect models to analyze the association between temperature and BP after controlling for individual characteristics, antihypertensive medication, comorbidities, and time trends. We evaluated the potential effect modifiers by stratification analyses. For a 1 °C decrease in the average temperature on concurrent day and previous day, systolic BP increased by 0.19 mmHg (95 % confidence interval = 0.06, 0.31) and diastolic BP increased by 0.12 mmHg (95 % confidence interval = 0.03, 0.21). The effect of temperature on BP was stronger among those with older age, female sex, low socioeconomic status, and obese physique. The effect was weak and even null for those taking the angiotensin receptor blockers, angiotensin-converting enzyme inhibitor, or its combination with calcium antagonists. Further, the effect was almost restricted within those having chronic comorbidities. Our results demonstrated that an acute decrease in outdoor temperature was significantly associated with a rise in BP among elderly hypertensive patients, in Shanghai, China. Individual characteristics, antihypertensive medications, and comorbidities may modify this effect.

  18. Spatial variability in plankton biomass and hydrographic variables along an axial transect in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Roman, M.; Kimmel, D.; McGilliard, C.; Boicourt, W.

    2006-05-01

    High-resolution, axial sampling surveys were conducted in Chesapeake Bay during April, July, and October from 1996 to 2000 using a towed sampling device equipped with sensors for depth, temperature, conductivity, oxygen, fluorescence, and an optical plankton counter (OPC). The results suggest that the axial distribution and variability of hydrographic and biological parameters in Chesapeake Bay were primarily influenced by the source and magnitude of freshwater input. Bay-wide spatial trends in the water column-averaged values of salinity were linear functions of distance from the main source of freshwater, the Susquehanna River, at the head of the bay. However, spatial trends in the water column-averaged values of temperature, dissolved oxygen, chlorophyll-a and zooplankton biomass were nonlinear along the axis of the bay. Autocorrelation analysis and the residuals of linear and quadratic regressions between each variable and latitude were used to quantify the patch sizes for each axial transect. The patch sizes of each variable depended on whether the data were detrended, and the detrending techniques applied. However, the patch size of each variable was generally larger using the original data compared to the detrended data. The patch sizes of salinity were larger than those for dissolved oxygen, chlorophyll-a and zooplankton biomass, suggesting that more localized processes influence the production and consumption of plankton. This high-resolution quantification of the zooplankton spatial variability and patch size can be used for more realistic assessments of the zooplankton forage base for larval fish species.

  19. Long-term geochemical surveillance of fumaroles at Showa-Shinzan dome, Usu volcano, Japan

    USGS Publications Warehouse

    Symonds, R.B.; Mizutani, Y.; Briggs, P.H.

    1996-01-01

    This study investigates 31 years of fumarole gas and condensate (trace elements) data from Showa-Shinzan, a dacitic dome-cryptodome complex that formed during the 1943-1945 eruption of Usu volcano. Forty-two gas samples were collected from the highest-temperature fumarole, named A-1, from 1954 (800??C) to 1985 (336??C), and from lower-temperature vents. Condensates were collected contemporaneously with the gas samples, and we reanalyzed ten of these samples, mostly from the A-1 vent, for 32 cations and three anions. Modeling using the thermochemical equilibrium program, SOLVGAS, shows that the gas samples are mild disequilibrium mixtures because they: (a) contain unequilibrated sedimentary CH4 and NH3; (b) have unequilibrated meteoric water; or (c) lost CO, either by air oxidation or by absorption by the sodium hydroxide sampling solution. SOLVGAS also enabled us to restore the samples by removing these disequilibrium effects, and to estimate their equilibrium oxygen fugacities and amounts of S2 and CH4. The restored compositions contain > 98% H2O with minor to trace amounts of CO2, H2, HCl, SO2, HF, H2S, CO, S2 and CH4. We used the restored gas and condensate data to test the hypotheses that these time-series compositional data from the dome's fumaroles provide: (1) sufficient major-gas data to analyze long-term degassing trends of the dome's magma-hydrothermal system without the influence of sampling or contamination effects; (2) independent oxygen fugacity-versus-temperature estimates of the Showa-Shinzan dacite; (3) the order of release of trace elements, especially metals, from magma; and (4) useful information for assessing volcanic hazards. The 1954-1985 restored A-1 gas compositions confirm the first hypothesis because they are sufficient to reveal three long-term degassing trends: (1) they became increasingly H2O-rich with time due to the progressive influx of meteoric water into the dome; (2) their C/S and S/Cl ratios decreased dramatically while their Cl/F ratios stayed roughly constant, indicating the progressive outgassing of less soluble components (F ??? Cl > S > C) from the magma reservoir; and (3) their H2O/H2, CO2/CO and H2S/SO2 ratios increased significantly in concert with equilibrium changes expected for the ??? 500??C temperature drop. When plotted against reciprocal temperature, the restored-gas log oxygen fugacities follow a tight linear trend from 800??C to NNO + 2.5 at ??? 400??C. This trend largely disproves the second hypothesis because the oxygen fugacities for the < 800??C restored gases can only be explained by mixing of hot magmatic gases with ??? 350??C steam from superheated meteoric water. But above 800??C this trend intersects the opposing linear trend for other Usu eruptive products, implying a log oxygen fugacity of -11.45 at 902??C for the Showa-Shinzan magma. The time-series trace-element data also disprove the third hypothesis because rock- and incrustation-particle contaminants in the condensates account for most of the trace-element variation. Nonetheless, highly volatile elements like B and As are relatively unaffected by this particle contamination, and they show similar time-series trends as Cl and F. Finally, except for infrequent sampling around the 1977 Usu eruption, the results generally confirm the fourth hypothesis, since the time-series trends for the major gases and selected trace elements indicate that, with time, the system cooled, degassed and was infiltrated by meteoric water, all of which are positive signs that volcanic activity declined over the 31-year history. This study also suggests that second boiling of shallow magma within and possibly beneath the cryptodome sustained magmatic degassing for at least 20 years after emplacement.

  20. Environmental and Physiological Factors Affect Football Head Impact Biomechanics.

    PubMed

    Mihalik, Jason P; Sumrall, Adam Z; Yeargin, Susan W; Guskiewicz, Kevin M; King, Kevin B; Trulock, Scott C; Shields, Edgar W

    2017-10-01

    Recent anecdotal trends suggest a disproportionate number of head injuries in collegiate football players occur during preseason football camp. In warmer climates, this season also represents the highest risk for heat-related illness among collegiate football players. Because concussion and heat illnesses share many common symptoms, we need 1) to understand if environmental conditions, body temperature, and hydration status affect head impact biomechanics; and 2) to determine if an in-helmet thermistor could provide a valid measure of gastrointestinal temperature. A prospective cohort of 18 Division I college football players (age, 21.1 ± 1.4 yr; height, 187.7 ± 6.6 cm; mass, 114.5 ± 23.4 kg). Data were collected during one control and three experimental sessions. During each session, the Head Impact Telemetry System recorded head impact biomechanics (linear acceleration, rotational acceleration, and severity profile) and in-helmet temperature. A wet bulb globe device recorded environmental conditions, and CorTemp™ Ingestible Core Body Temperature Sensors recorded gastrointestinal temperature. Our findings suggest that linear acceleration (P = 0.57), rotational acceleration (P = 0.16), and Head Impact Technology severity profile (P = 0.33) are not influenced by environmental or physiological conditions. We did not find any single or combination of predictors for impact severity. Rotational acceleration was approaching significance between our early experimental sessions when compared with our control session. More research should be conducted to better understand if rotational accelerations are a component of impact magnitudes that are affected due to changes in environmental conditions, body temperature, and hydration status.

  1. Impact of temperature variability on childhood hand, foot and mouth disease in Huainan, China.

    PubMed

    Xu, J; Zhao, D; Su, H; Xie, M; Cheng, J; Wang, X; Li, K; Yang, H; Wen, L; Wang, B

    2016-05-01

    The short-term temperature variation has been shown to be significantly associated with human health. However, little is known about whether temperature change between neighbouring days (TCN) and diurnal temperature range (DTR) have any effect on childhood hand, foot and mouth disease (HFMD). This study aims to explore whether temperature variability has any effect on childhood HFMD. Ecological study. The association between meteorological variables and HFMD cases in Huainan, China, from January 1st 2012 to December 31st 2014 was analysed using Poisson generalized linear regression combined with distributed lag non-linear model (DLNM) after controlling for long-term trend and seasonality, mean temperature and relative humidity. An adverse effect of TCN on childhood HFMD was observed, and the impact of TCN was the greatest at five days lag, with a 10% (95% CI: 4%-15%) increase of daily number of HFMD cases per 3 °C (10th percentile) decrease of TCN. Male children, children aged 0-5 years, scattered children and children in high-risk areas appeared to be more vulnerable to the TCN effect than others. However, there was no significant association between DTR and childhood HFMD. Our findings indicate that TCN drops may increase the incidence of childhood HFMD in Huainan, highlighting the importance of protecting children from forthcoming TCN drops, particularly for those who are male, young, scattered and from high-risk areas. Copyright © 2015 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  2. Extreme temperatures and paediatric emergency department admissions.

    PubMed

    Xu, Zhiwei; Hu, Wenbiao; Su, Hong; Turner, Lyle R; Ye, Xiaofang; Wang, Jiajia; Tong, Shilu

    2014-04-01

    Children are particularly vulnerable to the effects of extreme temperatures. To examine the relationship between extreme temperatures and paediatric emergency department admissions (EDAs) in Brisbane, Australia, during 2003-2009. A quasi-Poisson generalised linear model combined with a distributed lag non-linear model was used to examine the relationships between extreme temperatures and age-, gender- and cause-specific paediatric EDAs, while controlling for air pollution, relative humidity, day of the week, influenza epidemics, public holiday, season and long-term trends. The model residuals were checked to identify whether there was an added effect due to heat waves or cold spells. There were 131 249 EDAs among children during the study period. Both high (RR=1.27; 95% CI 1.12 to 1.44) and low (RR=1.81; 95% CI 1.66 to 1.97) temperatures were significantly associated with an increase in paediatric EDAs in Brisbane. Male children were more vulnerable to temperature effects. Children aged 0-4 years were more vulnerable to heat effects and children aged 10-14 years were more sensitive to both hot and cold effects. High temperatures had a significant impact on several paediatric diseases, including intestinal infectious diseases, respiratory diseases, endocrine, nutritional and metabolic diseases, nervous system diseases and chronic lower respiratory diseases. Low temperatures were significantly associated with intestinal infectious diseases, respiratory diseases and endocrine, nutritional and metabolic diseases. An added effect of heat waves on childhood chronic lower respiratory diseases was seen, but no added effect of cold spells was found. As climate change continues, children are at particular risk of a variety of diseases which might be triggered by extremely high temperatures. This study suggests that preventing the effects of extreme temperature on children with respiratory diseases might reduce the number of EDAs.

  3. Temperature, routine activities, and domestic violence: a reanalysis.

    PubMed

    Rotton, J; Cohn, E G

    2001-04-01

    It was hypothesized that base rate differences in the number of complaints made during daylight and nighttime hours were responsible for a previously reported, nonlinear relationship between temperature and domestic violence. This hypothesis was tested by subjecting calls for service in 1987 and 1988 in Minneapolis, to moderator-variable regression analyses with controls for time of day, day of the week, season, and their interactions as well as linear trend, major holidays, public school closings, the first day of the month, and other weather variables. Temporal variables explained 75% of the variance in calls for service. As hypothesized, the base rate artifact was responsible for an apparent downturn in violence at high temperatures: Fewer complaints were received during afternoon hours, because they happen to be the warmest time of the day. The results were interpreted in terms of routine activity theory.

  4. Changing spring phenology dates in the Three-Rivers Headwater Region of the Tibetan Plateau during 1960-2013

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Xia, Jiangjiang; Yan, Zhongwei; Yang, Kun

    2018-01-01

    The variation of the vegetation growing season in the Three-Rivers Headwater Region of the Tibetan Plateau has recently become a controversial topic. One issue is that the estimated local trend in the start of the vegetation growing season (SOS) based on remote sensing data is easily affected by outliers because this data series is short. In this study, we determine that the spring minimum temperature is the most influential factor for SOS. The significant negative linear relationship between the two variables in the region is evaluated using Moderate Resolution Imaging Spectroradiometer-Normalized Difference Vegetation Index data for 2000-13. We then reconstruct the SOS time series based on the temperature data for 1960-2013. The regional mean SOS shows an advancing trend of 1.42 d (10 yr)-1 during 1960-2013, with the SOS occurring on the 160th and 151st days in 1960 and 2013, respectively. The advancing trend enhances to 6.04 d (10 yr)-1 during the past 14 years. The spatiotemporal variations of the reconstructed SOS data are similar to those deduced from remote sensing data during the past 14 years. The latter exhibit an even larger regional mean trend of SOS [7.98 d (10 yr-1)] during 2000-13. The Arctic Oscillation is found to have significantly influenced the changing SOS, especially for the eastern part of the region, during 2000-13.

  5. Zooplankton responses to increasing sea surface temperatures in the southeastern Australia global marine hotspot

    NASA Astrophysics Data System (ADS)

    Kelly, Paige; Clementson, Lesley; Davies, Claire; Corney, Stuart; Swadling, Kerrie

    2016-10-01

    Southeastern Australia is a 'hotspot' for oceanographic change. Here, rapidly increasing sea surface temperatures, rising at more than double the global trend, are largely associated with a southerly extension of the East Australian Current (EAC) and its eddy field. Maria Island, situated at the southern end of the EAC extension at 42°S, 148°E, has been used as a site to study temperature-driven biological trends in this region of accelerated change. Zooplankton have short life cycles (usually < 1 year) and are highly sensitive to environmental change, making them an ideal indicator of the biological effects of an increased southward flow of the EAC. Data from in-situ net drops and the Continuous Plankton Recorder (CPR), collected since 2009, together with historical zooplankton abundance data, have been analysed in this study. Like the North Atlantic, zooplankton communities of southeastern Australia are responding to increased temperatures through relocation, long-term increases in warm-water species and a shift towards a zooplankton community dominated by small copepods. The biological trends present evidence of extended EAC influence at Maria Island into autumn and winter months, which has allowed for the rapid establishment of warm-water species during these seasons, and has increased the similarity between Maria Island and the more northerly Port Hacking zooplankton community. Generalised Linear Models (GLM) suggest the high salinity and low nutrient properties of EAC-water to be the primary drivers of increasing abundances of warm-water species off southeastern Australia. Changes in both the species composition and size distribution of the Maria Island zooplankton community will have effects for pelagic fisheries. This study provides an indication of how zooplankton communities influenced by intensifying Western Boundary currents may respond to rapid environmental change.

  6. An energy analysis of torrefaction for upgrading microalga residue as a solid fuel.

    PubMed

    Chen, Wei-Hsin; Huang, Ming-Yueh; Chang, Jo-Shu; Chen, Chun-Yen; Lee, Wen-Jhy

    2015-06-01

    The torrefaction characteristics and energy utilization of microalga Chlamydomonas sp. JSC4 (C. sp. JSC4) residue under the combination of temperature and duration are studied by examining contour maps. The torrefaction temperature on the contour line of solid yield has a trend to linearly decrease with increasing duration. An index of relative energy efficiency (REE) is introduced to identify the performance of energy utilization for upgrading biomass. For a fixed energy yield, the optimal operation can be found to maximize the heating value of the biomass and minimize the solid yield. The energy utilization under the combination of a high temperature and a short duration is more efficient than that of a low temperature and a long duration. The maximum REE along the contour line of energy yield is always exhibited at the highest temperature (300°C) where the energy efficiency can be enlarged by a factor of at least 2.36. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Trend analysis of hydro-climatic variables in the north of Iran

    NASA Astrophysics Data System (ADS)

    Nikzad Tehrani, E.; Sahour, H.; Booij, M. J.

    2018-04-01

    Trend analysis of climate variables such as streamflow, precipitation, and temperature provides useful information for understanding the hydrological changes associated with climate change. In this study, a nonparametric Mann-Kendall test was employed to evaluate annual, seasonal, and monthly trends of precipitation and streamflow for the Neka basin in the north of Iran over a 44-year period (1972 to 2015). In addition, the Inverse Distance Weight (IDW) method was used for annual seasonal, monthly, and daily precipitation trends in order to investigate the spatial correlation between precipitation and streamflow trends in the study area. Results showed a downward trend in annual and winter precipitation (Z < -1.96) and an upward trend in annual maximum daily precipitation. Annual and monthly mean flows for most of the months in the Neka basin decreased by 14% significantly, but the annual maximum daily flow increased by 118%. Results for the trend analysis of streamflow and climatic variables showed that there are statistically significant relationships between precipitation and streamflow (p value < 0.05). Correlation coefficients for Kendall, Spearman's rank and linear regression are 0.43, 0.61, and 0.67, respectively. The spatial presentation of the detected precipitation and streamflow trends showed a downward trend for the mean annual precipitation observed in the upstream part of the study area which is consistent with the streamflow trend. Also, there is a good correlation between monthly and seasonal precipitation and streamflow for all sub-basins (Sefidchah, Gelvard, Abelu). In general, from a hydro-climatic point of view, the results showed that the study area is moving towards a situation with more severe drought events.

  8. Investigating the Uncertainty in Global SST Trends Due to Internal Variations Using an Improved Trend Estimator

    NASA Astrophysics Data System (ADS)

    Lian, Tao; Shen, Zheqi; Ying, Jun; Tang, Youmin; Li, Junde; Ling, Zheng

    2018-03-01

    A new criterion was proposed recently to measure the influence of internal variations on secular trends in a time series. When the magnitude of the trend is greater than a theoretical threshold that scales the influence from internal variations, the sign of the estimated trend can be interpreted as the underlying long-term change. Otherwise, the sign may depend on the period chosen. An improved least squares method is developed here to further reduce the theoretical threshold and is applied to eight sea surface temperature (SST) data sets covering the period 1881-2013 to investigate whether there are robust trends in global SSTs. It is found that the warming trends in the western boundary regions, the South Atlantic, and the tropical and southern-most Indian Ocean are robust. However, robust trends are not found in the North Pacific, the North Atlantic, or the South Indian Ocean. The globally averaged SST and Indian Ocean Dipole indices are found to have robustly increased, whereas trends in the zonal SST gradient across the equatorial Pacific, Niño 3.4 SST, and the Atlantic Multidecadal Oscillation indices are within the uncertainty range associated with internal variations. These results indicate that great care is required when interpreting SST trends using the available records in certain regions and indices. It is worth noting that the theoretical threshold can be strongly influenced by low-frequency oscillations, and the above conclusions are based on the assumption that trends are linear. Caution should be exercised when applying the theoretical threshold criterion to real data.

  9. The Evolution of El Nino-Precipitation Relationships from Satellites and Gauges

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Adler, Robert F.; Starr, David OC (Technical Monitor)

    2002-01-01

    This study uses a twenty-three year (1979-2001) satellite-gauge merged community data set to further describe the relationship between El Nino Southern Oscillation (ENSO) and precipitation. The globally complete precipitation fields reveal coherent bands of anomalies that extend from the tropics to the polar regions. Also, ENSO-precipitation relationships were analyzed during the six strongest El Ninos from 1979 to 2001. Seasons of evolution, Pre-onset, Onset, Peak, Decay, and Post-decay, were identified based on the strength of the El Nino. Then two simple and independent models, first order harmonic and linear, were fit to the monthly time series of normalized precipitation anomalies for each grid block. The sinusoidal model represents a three-phase evolution of precipitation, either dry-wet-dry or wet-dry-wet. This model is also highly correlated with the evolution of sea surface temperatures in the equatorial Pacific. The linear model represents a two-phase evolution of precipitation, either dry-wet or wet-dry. These models combine to account for over 50% of the precipitation variability for over half the globe during El Nino. Most regions, especially away from the Equator, favor the linear model. Areas that show the largest trend from dry to wet are southeastern Australia, eastern Indian Ocean, southern Japan, and off the coast of Peru. The northern tropical Pacific and Southeast Asia show the opposite trend.

  10. Three decades (1983-2010) of contaminant trends in East Greenland polar bears (Ursus maritimus). Part 2: brominated flame retardants.

    PubMed

    Dietz, Rune; Rigét, Frank F; Sonne, Christian; Born, Erik W; Bechshøft, Thea; McKinney, Melissa A; Drimmie, Robert J; Muir, Derek C G; Letcher, Robert J

    2013-09-01

    Brominated flame retardants were determined in adipose tissues from 294 polar bears (Ursus maritimus) sampled in East Greenland in 23 of the 28years between 1983 and 2010. Significant linear increases were found for sum polybrominated diphenyl ether (ΣPBDE), BDE100, BDE153, and hexabromocyclododecane (HBCD). Average increases of 5.0% per year (range: 2.9-7.6%/year) were found for the subadult polar bears. BDE47 and BDE99 concentrations did not show a significant linear trend over time, but rather a significant non-linear trend peaking between 2000 and 2004. The average ΣPBDE concentrations increased 2.3 fold from 25.0ng/g lw (95% C.I.: 15.3-34.7ng/g lw) in 1983-1986 to 58.5ng/g lw (95% C.I.: 43.6-73.4ng/g lw) in 2006-2010. Similar but fewer statistically significant trends were found for adult females and adult males likely due to smaller sample size and years. Analyses of δ(15)N and δ(13)C stable isotopes in hair revealed no clear linear temporal trends in trophic level or carbon source, respectively, and non-linear trends differed among sex and age groups. These increasing concentrations of organobromine contaminants contribute to complex organohalogen mixture, already causing health effects to the East Greenland polar bears. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Effects of processing parameters on immersion vacuum cooling time and physico-chemical properties of pork hams.

    PubMed

    Feng, Chao-Hui; Drummond, Liana; Zhang, Zhi-Hang; Sun, Da-Wen

    2013-10-01

    The effects of agitation (1002 rpm), different pressure reduction rates (60 and 100 mbar/min), as well as employing cold water with different initial temperatures (IWT: 7 and 20°C) on immersion vacuum cooling (IVC) of cooked pork hams were experimentally investigated. Final pork ham core temperature, cooling time, cooling loss, texture properties, colour and chemical composition were evaluated. The application for the first time of agitation during IVC substantially reduced the cooling time (47.39%) to 4.6°C, compared to IVC without agitation. For the different pressure drop rates, there was a trend that shorter IVC cooling times were achieved with lower cooling rate, although results were not statistically significant (P>0.05). For both IWTs tested, the same trend was observed: shorter cooling time and lower cooling loss were obtained under lower linear pressure drop rate of 60 mbar/min (not statistically significant, P>0.05). Compared to the reference cooling method (air blast cooling), IVC achieved higher cooling rates and better meat quality. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Global Surface Temperature Change and Uncertainties Since 1861

    NASA Technical Reports Server (NTRS)

    Shen, Samuel S. P.; Lau, William K. M. (Technical Monitor)

    2002-01-01

    The objective of this talk is to analyze the warming trend and its uncertainties of the global and hemi-spheric surface temperatures. By the method of statistical optimal averaging scheme, the land surface air temperature and sea surface temperature observational data are used to compute the spatial average annual mean surface air temperature. The optimal averaging method is derived from the minimization of the mean square error between the true and estimated averages and uses the empirical orthogonal functions. The method can accurately estimate the errors of the spatial average due to observational gaps and random measurement errors. In addition, quantified are three independent uncertainty factors: urbanization, change of the in situ observational practices and sea surface temperature data corrections. Based on these uncertainties, the best linear fit to annual global surface temperature gives an increase of 0.61 +/- 0.16 C between 1861 and 2000. This lecture will also touch the topics on the impact of global change on nature and environment. as well as the latest assessment methods for the attributions of global change.

  13. Interannual, solar cycle, and trend terms in middle atmospheric temperature time series from HALOE

    NASA Astrophysics Data System (ADS)

    Remsberg, E. E.; Deaver, L. E.

    2005-03-01

    Temperature versus pressure or T(p) time series from the Halogen Occultation Experiment (HALOE) have been generated and analyzed for the period of 1991-2004 and for the mesosphere and upper stratosphere for latitude zones from 40N to 40S. Multiple linear regression (MLR) techniques were used for the analysis of the seasonal and the significant interannual and solar cycle (or decadal-scale) terms. An 11-yr solar cycle (SC) term of amplitude 0.5 to 1.7 K was found for the middle to upper mesosphere; its phase was determined by a Fourier fit to the de-seasonalized residual. This SC term is largest and has a lag of several years for northern hemisphere middle latitudes of the middle mesosphere, perhaps due to the interfering effects of wintertime wave dissipation. The SC response from the MLR models is weaker but essentially in-phase at low latitudes and in the southern hemisphere. An in-phase SC response term is also significant near the tropical stratopause with an amplitude of about 0.4 to 0.6 K, which is somewhat less than predicted from models. Both sub-biennial (688-dy) and QBO (800-dy) terms are resolved for the mid to upper stratosphere along with a decadal-scale term that is presumed to have a 13.5-yr period due to their predicted modulation. This decadal-scale term is out-of-phase with the SC during 1991-2004. However, the true nature and source of this term is still uncertain, especially at 5 hPa. Significant linear cooling trends ranging from -0.3 K to -1.1 K per decade were found in the tropical upper stratosphere and subtropical mesosphere. Trends have not emerged so far for the tropical mesosphere, so it is concluded that the cooling rates that have been resolved for the subtropics are likely upper limits. As HALOE-like measurements continue and their time series lengthen, it is anticipated that better accuracy can be achieved for these interannual, SC, and trend terms.

  14. Uptake of alkaline earth metals in Alcyonarian spicules (Octocorallia)

    NASA Astrophysics Data System (ADS)

    Taubner, I.; Böhm, F.; Eisenhauer, A.; Garbe-Schönberg, D.; Erez, J.

    2012-05-01

    Alcyonarian corals (Octocorallia) living in shallow tropical seas produce spicules of high-Mg calcite with ˜13 mol% MgCO3. We cultured the tropical alcyonarian coral Rhythisma fulvum in experiments varying temperature (19-32 °C) and pH (8.15-8.44). Alkalinity depletion caused by spicule formation systematically varied in the temperature experiments increasing from 19 to 29 °C. Spicules were investigated for their elemental ratios (Mg/Ca, Sr/Ca) using ICP-OES, δ44/40Ca using TIMS, as well as δ18O and δ13C by IRMS. Mg/Ca increased with temperature from 146 to 164 mmol/mol, in good agreement with the range observed for marine inorganic calcite. Mg/Ca increased by 1.0 ± 0.4 mmol/mol/°C, similar to the sensitivity of Miliolid foraminifera. The pH experiments revealed a linear relationship between Mg/Ca and carbonate ion concentration of +0.03 ± 0.02 mmol/mol/μMol. Sr/Ca ranges from 2.5 to 2.9 mmol/mol being in good agreement with other high-Mg calcites. Temperature and pH experiments showed linear dependencies of Sr/Ca matching inorganic calcite trends and pointing to a decoupling of crystal precipitation rate and calcification rate. Ca isotopes range between 0.7‰ and 0.9‰ in good agreement with aragonitic scleractinian corals and calcitic coccoliths. Presumably Ca isotopes are fractionated by a biological mechanism that may be independent of the skeletal mineralogy. We observe no temperature trend, but a significant decrease of δ44/40Ca with increasing pH. This inverse correlation may characterise biologically controlled intracellular calcification. Oxygen isotope ratios are higher than expected for isotopic equilibrium with a temperature sensitivity of -0.15 ± 0.03‰/°C. Carbon isotope ratios are significantly lower than expected for equilibrium and positively correlated with temperature with a slope of 0.20 ± 0.04‰/°C. Many of our observations on trace element incorporation in R. fulvum may be explained by inorganic processes during crystal formation, which do not comply with the intracellular mode of calcification in Alcyonarian corals. The observed elemental and isotopic compositions, however, could be explained if the partitioning caused by biological mechanisms mimics the effects of inorganic processes.

  15. Effects of temperature on mortality in Chiang Mai city, Thailand: a time series study

    PubMed Central

    2012-01-01

    Background The association between temperature and mortality has been examined mainly in North America and Europe. However, less evidence is available in developing countries, especially in Thailand. In this study, we examined the relationship between temperature and mortality in Chiang Mai city, Thailand, during 1999–2008. Method A time series model was used to examine the effects of temperature on cause-specific mortality (non-external, cardiopulmonary, cardiovascular, and respiratory) and age-specific non-external mortality (<=64, 65–74, 75–84, and > =85 years), while controlling for relative humidity, air pollution, day of the week, season and long-term trend. We used a distributed lag non-linear model to examine the delayed effects of temperature on mortality up to 21 days. Results We found non-linear effects of temperature on all mortality types and age groups. Both hot and cold temperatures resulted in immediate increase in all mortality types and age groups. Generally, the hot effects on all mortality types and age groups were short-term, while the cold effects lasted longer. The relative risk of non-external mortality associated with cold temperature (19.35°C, 1st percentile of temperature) relative to 24.7°C (25th percentile of temperature) was 1.29 (95% confidence interval (CI): 1.16, 1.44) for lags 0–21. The relative risk of non-external mortality associated with high temperature (31.7°C, 99th percentile of temperature) relative to 28°C (75th percentile of temperature) was 1.11 (95% CI: 1.00, 1.24) for lags 0–21. Conclusion This study indicates that exposure to both hot and cold temperatures were related to increased mortality. Both cold and hot effects occurred immediately but cold effects lasted longer than hot effects. This study provides useful data for policy makers to better prepare local responses to manage the impact of hot and cold temperatures on population health. PMID:22613086

  16. Trends in thermal discomfort indices over western coastal cities of India

    NASA Astrophysics Data System (ADS)

    Desai, Manasi S.; Dhorde, Amit G.

    2018-02-01

    The present research aimed at analyzing temporal trends in thermal discomfort indices for a period of 46 years from 1969 to 2014 over western coastal region of India for seven urban centers during the months of pre-monsoon and monsoon seasons. Direct thermal discomfort indices employed for this purpose were thermo-hygrometric index (THI) and heat index (HI). Statistical techniques applied for obtaining temporal trends were linear regression model and Mann-Kendall (MK) rank test. Statistical significance of the obtained trends was evaluated at 95% confidence level. Sequential MK (SQ-MK) test was used for change point detection. To investigate actual incidences of thermal discomfort, daily index values were averaged for standard meteorological weeks (SMWs) over the study period and decadal percentage of thermal discomfort during SMWs was estimated. Trend analysis of selected meteorological parameters such as dry bulb temperature (DBT), wet bulb temperature (WBT), relative humidity (RH), and wind speed (WS) were investigated, which might be responsible for variation in thermal discomfort over the period. The results obtained depicted significant increase in thermal discomfort over the cities located on the southern part of west coast, while significant increase was observed during monsoon season months compared to pre-monsoon season. Decadal variation in percentage of SMWs falling in various discomfort categories was studied. At majority of the stations, moderate and high-risk SMWs have increased over the last two decades. The results of change point detection for THI and HI denoted significant increase at most of the stations after 1990s. The study validates increase in thermal discomfort vulnerability, particularly at thriving urban centers of western coastal region of India.

  17. Spatio-temporal Trends of Climate Variability in North Carolina

    NASA Astrophysics Data System (ADS)

    Sayemuzzaman, Mohammad

    Climatic trends in spatial and temporal variability of maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tmean) and precipitation were evaluated for 249 ground-based stations in North Carolina for 1950-2009. The Mann-Kendall (MK), the Theil-Sen Approach (TSA) and the Sequential Mann-Kendall (SQMK) tests were applied to quantify the significance of trend, magnitude of trend and the trend shift, respectively. The lag-1 serial correlation and double mass curve techniques were used to address the data independency and homogeneity. The pre-whitening technique was used to eliminate the effect of auto correlation of the data series. The difference between minimum and maximum temperatures, and so the diurnal temperature range (DTR), at some stations was found to be decreasing on both an annual and a seasonal basis, with an overall increasing trend in the mean temperature. For precipitation, a statewide increasing trend in fall (highest in November) and decreasing trend in winter (highest in February) were detected. No pronounced increasing/decreasing trends were detected in annual, spring, and summer precipitation time series. Trend analysis on a spatial scale (for three physiographic regions: mountain, piedmont and coastal) revealed mixed results. Coastal zone exhibited increasing mean temperature (warming) trend as compared to other locations whereas mountain zone showed decreasing trend (cooling). Three main moisture components (precipitation, total cloud cover, and soil moisture) and the two major atmospheric circulation modes (North Atlantic Oscillation and Southern Oscillation) were used for correlative analysis purposes with the temperature (specifically with DTR) and precipitation trends. It appears that the moisture components are associated with DTR more than the circulation modes in North Carolina.

  18. A high resolution model of linear trend in mass variations from DMT-2: Added value of accounting for coloured noise in GRACE data

    NASA Astrophysics Data System (ADS)

    Farahani, Hassan H.; Ditmar, Pavel; Inácio, Pedro; Didova, Olga; Gunter, Brian; Klees, Roland; Guo, Xiang; Guo, Jing; Sun, Yu; Liu, Xianglin; Zhao, Qile; Riva, Riccardo

    2017-01-01

    We present a high resolution model of the linear trend in the Earth's mass variations based on DMT-2 (Delft Mass Transport model, release 2). DMT-2 was produced primarily from K-Band Ranging (KBR) data of the Gravity Recovery And Climate Experiment (GRACE). It comprises a time series of monthly solutions complete to spherical harmonic degree 120. A novel feature in its production was the accurate computation and incorporation of stochastic properties of coloured noise when processing KBR data. The unconstrained DMT-2 monthly solutions are used to estimate the linear trend together with a bias, as well as annual and semi-annual sinusoidal terms. The linear term is further processed with an anisotropic Wiener filter, which uses full noise and signal covariance matrices. Given the fact that noise in an unconstrained model of the trend is reduced substantially as compared to monthly solutions, the Wiener filter associated with the trend is much less aggressive compared to a Wiener filter applied to monthly solutions. Consequently, the trend estimate shows an enhanced spatial resolution. It allows signals in relatively small water bodies, such as Aral sea and Ladoga lake, to be detected. Over the ice sheets, it allows for a clear identification of signals associated with some outlet glaciers or their groups. We compare the obtained trend estimate with the ones from the CSR-RL05 model using (i) the same approach based on monthly noise covariance matrices and (ii) a commonly-used approach based on the DDK-filtered monthly solutions. We use satellite altimetry data as independent control data. The comparison demonstrates a high spatial resolution of the DMT-2 linear trend. We link this to the usage of high-accuracy monthly noise covariance matrices, which is due to an accurate computation and incorporation of coloured noise when processing KBR data. A preliminary comparison of the linear trend based on DMT-2 with that computed from GSFC_global_mascons_v01 reveals, among other, a high concentration of the signal along the coast for both models in areas like the ice sheets, Gulf of Alaska, and Iceland.

  19. [Influence of humidex on incidence of bacillary dysentery in Hefei: a time-series study].

    PubMed

    Zhang, H; Zhao, K F; He, R X; Zhao, D S; Xie, M Y; Wang, S S; Bai, L J; Cheng, Q; Zhang, Y W; Su, H

    2017-11-10

    Objective: To investigate the effect of humidex combined with mean temperature and relative humidity on the incidence of bacillary dysentery in Hefei. Methods: Daily counts of bacillary dysentery cases and weather data in Hefei were collected from January 1, 2006 to December 31, 2013. Then, the humidex was calculated from temperature and relative humidity. A Poisson generalized linear regression combined with distributed lag non-linear model was applied to analyze the relationship between humidex and the incidence of bacillary dysentery, after adjusting for long-term and seasonal trends, day of week and other weather confounders. Stratified analyses by gender, age and address were also conducted. Results: The risk of bacillary dysentery increased with the rise of humidex. The adverse effect of high humidex (90 percentile of humidex) appeared in 2-days lag and it was the largest at 4-days lag ( RR =1.063, 95 %CI : 1.037-1.090). Subgroup analyses indicated that all groups were affected by high humidex at lag 2-5 days. Conclusion: High humidex could significantly increase the risk of bacillary dysentery, and the lagged effects were observed.

  20. Making sense of enthalpy of vaporization trends for ionic liquids: new experimental and simulation data show a simple linear relationship and help reconcile previous data.

    PubMed

    Verevkin, Sergey P; Zaitsau, Dzmitry H; Emel'yanenko, Vladimir N; Yermalayeu, Andrei V; Schick, Christoph; Liu, Hongjun; Maginn, Edward J; Bulut, Safak; Krossing, Ingo; Kalb, Roland

    2013-05-30

    Vaporization enthalpy of an ionic liquid (IL) is a key physical property for applications of ILs as thermofluids and also is useful in developing liquid state theories and validating intermolecular potential functions used in molecular modeling of these liquids. Compilation of the data for a homologous series of 1-alkyl-3-methylimidazolium bis(trifluoromethane-sulfonyl)imide ([C(n)mim][NTf2]) ILs has revealed an embarrassing disarray of literature results. New experimental data, based on the concurring results from quartz crystal microbalance, thermogravimetric analyses, and molecular dynamics simulation have revealed a clear linear dependence of IL vaporization enthalpies on the chain length of the alkyl group on the cation. Ambiguity of the procedure for extrapolation of vaporization enthalpies to the reference temperature 298 K was found to be a major source of the discrepancies among previous data sets. Two simple methods for temperature adjustment of vaporization enthalpies have been suggested. Resulting vaporization enthalpies obey group additivity, although the values of the additivity parameters for ILs are different from those for molecular compounds.

  1. Long-term analysis and appropriate metrics of climate change in Mongolia

    NASA Astrophysics Data System (ADS)

    Jamiyansharav, Khishigbayar

    This study addresses three important issues related to long-term climate change study in Mongolia. Mongolia is one of the biggest land-locked countries in Asia and 75--80 percent of the land is rangeland, which is highly vulnerable to climate change. Climate will affect many sectors critical to the country's economic, social, and ecological welfare. Therefore, it is regionally and globally important to evaluate climate change in Mongolia. Chapter 1 discusses the qualitative and descriptive study on exposure characteristics of the 17 Mongolian meteorological stations, which are part of the Global Climate Observing Network (GCON). The global average temperature anomalies are based in part on the GCON stations' meteorological data. To document the possible exposures surrounding the weather stations, the Mongolian meteorological stations were surveyed during July--August 2005. From the total 17 stations, 47 percent were determined strongly influenced by urban character landscape, 41 percent received some anthropogenic influences, and 12 percent had very little to no anthropogenic influences. Even though the Mongolian meteorological stations' exposure characteristics are better than the European and North American stations' the strict adherence in following WMO guidelines is important and urgently needed. Chapter 2 evaluates the long-term (1961--2005) trends in seasonal and annual surface mean, maximum, minimum temperatures and precipitation. Furthermore, this study compares the long-term mean temperature trends with decadal (1998--2007) trends. This chapter also discusses the extreme climate indices on spatial and temporal scales. According to the results, the long-term linear temperature trends show a clear increasing trend whereas the decadal trends show the decreasing trend mostly in winter and spring. The analysis of extreme indices (1961--2001) indicate that most of the stations frost and icing days are decreased and summer days, tropical nights, monthly maximum value of daily minimum, maximum temperatures and growing season length are increased. Precipitation indices varied substantially and there were no unified temporal and spatial pattern. In addition to that, I am suggesting effective temperature as an appropriate metric to evaluate surface heat change because it counts not only air temperature but also surface humidity. Chapter 3 discusses a case study of grazing intensity on surface energy budgets. To evaluate the land atmospheric interactions over the grassland area depending on the different grazing intensity I conducted the case study over the Shortgrass Steppe Long-Term Ecological Research site on Northern Great Plains of US to imply the findings in semiarid shortgrass steppe of Mongolia. The study site has much of similarities with Mongolian shortgrass steppe and has more frequent, high quality data. This study evaluates the impact of grazing on microclimate and energy budgets in a dry (163 mm) and two near-normal (262 and 260 mm) precipitation years based on continuously measured 20 minute interval data. This study helps to describe surface energy partitioning in semi-arid grasslands that has long history of grazing. The main finding of the study is grazing has a potential impact on the energy partitioning under conditions of higher water availability, but not during dry conditions.

  2. Trends in abuse and misuse of prescription opioids among older adults.

    PubMed

    West, Nancy A; Severtson, Stevan G; Green, Jody L; Dart, Richard C

    2015-04-01

    Dramatic increases in the prescriptive use of opioid analgesics during the past two decades have been paralleled by alarming increases in rates of the abuse and intentional misuse of these drugs. We examined recent trends in the abuse and misuse and associated fatal outcomes among older adults (60+ years) and compared these to trends among younger adults (20-59 years). Trend analysis using linear regression models was used to analyze 184,136 cases and 1149 deaths associated with abuse and misuse of the prescription opioids oxycodone, fentanyl, hydrocodone, morphine, oxymorphone, hydromorphone, methadone, buprenorphine, tramadol, and tapentadol that were reported to participating U.S. Poison Centers of the Researched Abuse, Diversion and Addiction-Related Surveillance (RADARS(®)) System between 2006-Q1 and 2013-Q4. Rates of abuse and misuse of prescription opioids were lower for older adults than for younger adults; however, mortality rates among the older ages followed an increasing linear trend (P < 0.0001) and surpassed rates for younger adults in 2012 and 2013. In contrast, mortality rates among younger adults rose and fell during the period, with recent rates trending downward (P = 0.0003 for quadratic trend). Sub-analysis revealed an increasing linear trend among older adults specifically for suicidal intent (P < 0.0001), whereas these rates increased and then decreased among younger adults (P < 0.0001 for quadratic trend). Recent linear increases in rates of death and use of prescription opioids with suicidal intent among older adults have important implications as the U.S. undergoes a rapid expansion of its elderly population. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Selection of specimen types for irradiation surveillance programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varga, T.; Njo, D.H.

    1981-10-01

    Recent trends in coping with embrittlement problems in reactor pressure vessels (RPVs) show two main directions of development: (1) improvement of the vessel materials and (2) limitations of fluence over the design life of the RPV. For several reasons, however, adequate irradiation surveillance programs are still considered to be necessary in the future, despite possible improvements resulting from such research activities. Since the introduction of linear elastic fracture mechanics (LEFM) and elastic-plastic fracture mechanics, (EPFM), irradiation surveillance programs show a trend towards direct measurement of fracture toughness, in addition to relying on the conventional nil-ductility transition temperature (NDTT) shift asmore » a relative measure of embrittlement. Some basic considerations concerning the selection of specimen types for irradiation surveillance programs and some technical aspects of currently used speciment types are discussed.« less

  4. Time series modelling of increased soil temperature anomalies during long period

    NASA Astrophysics Data System (ADS)

    Shirvani, Amin; Moradi, Farzad; Moosavi, Ali Akbar

    2015-10-01

    Soil temperature just beneath the soil surface is highly dynamic and has a direct impact on plant seed germination and is probably the most distinct and recognisable factor governing emergence. Autoregressive integrated moving average as a stochastic model was developed to predict the weekly soil temperature anomalies at 10 cm depth, one of the most important soil parameters. The weekly soil temperature anomalies for the periods of January1986-December 2011 and January 2012-December 2013 were taken into consideration to construct and test autoregressive integrated moving average models. The proposed model autoregressive integrated moving average (2,1,1) had a minimum value of Akaike information criterion and its estimated coefficients were different from zero at 5% significance level. The prediction of the weekly soil temperature anomalies during the test period using this proposed model indicated a high correlation coefficient between the observed and predicted data - that was 0.99 for lead time 1 week. Linear trend analysis indicated that the soil temperature anomalies warmed up significantly by 1.8°C during the period of 1986-2011.

  5. Geochemical Proxies for Enhanced Process Control of Underground Coal Gasification

    NASA Astrophysics Data System (ADS)

    Kronimus, A.; Koenen, M.; David, P.; Veld, H.; van Dijk, A.; van Bergen, F.

    2009-04-01

    Underground coal gasification (UCG) represents a strategy targeting at syngas production for fuel or power generation from in-situ coal seams. It is a promising technique for exploiting coal deposits as an energy source at locations not allowing conventional mining under economic conditions. Although the underlying concept has already been suggested in 1868 and has been later on implemented in a number of field trials and even at a commercial scale, UCG is still facing technological barriers, impeding its widespread application. Field UCG operations rely on injection wells enabling the ignition of the target seam and the supply with oxidants (air, O2) inducing combustion (oxidative conditions). The combustion process delivers the enthalpy required for endothermic hydrogen production under reduction prone conditions in some distance to the injection point. The produced hydrogen - usually accompanied by organic and inorganic carbon species, e.g. CH4, CO, and CO2 - can then be retrieved through a production well. In contrast to gasification of mined coal in furnaces, it is difficult to measure the combustion temperature directly during UCG operations. It is already known that geochemical parameters such as the relative production gas composition as well as its stable isotope signature are related to the combustion temperature and, consequently, can be used as temperature proxies. However, so far the general applicability of such relations has not been proven. In order to get corresponding insights with respect to coals of significantly different rank and origin, four powdered coal samples covering maturities ranging from Ro= 0.43% (lignite) to Ro= 3.39% (anthracite) have been gasified in laboratory experiments. The combustion temperature has been varied between 350 and 900 ˚ C, respectively. During gasification, the generated gas has been captured in a cryo-trap, dried and the carbon containing gas components have been catalytically oxidized to CO2. Thereafter, the generated CO2 has been analyzed with respect to its stable carbon isotope composition by mass spectrometry. All samples exhibited a similar trend: The ^13C signatures of initially produced CO2 revealed to be relatively light and linearly increasing with temperature until approaching the bulk stable carbon isotope composition of the coal at a certain temperature, where the isotope signature kept virtually constant during further temperature increase. The temperature introducing the range of constant isotope compositions of the produced gas increased with coal rank. Additionally, all coal samples were treated by Rock Eval pyrolysis up to 550 ˚ C in order to investigate temperature dependent generation of CO and CO2. The results exhibited a linear decrease of the CO2/CO ratio at increasing temperature. Both experimental approaches demonstrated dependencies between the qualitative and the isotope composition of the generated syngas on the one hand and the applied combustion temperature on the other hand and, consequently, the principal applicability of the considered geochemical parameters as temperature proxies for coals of significantly different rank and origin. Although the investigated samples revealed similar trends, the absolute characteristics of the correlation functions (e.g. linear gradients) between geochemical parameters and combustion temperatures differed on an individual sample base, implying a significant additional dependence of the considered geochemical parameters on the coal composition. As a consequence, corresponding experimental approaches are currently continued and refined by involving multi component compound specific isotope analysis, high temperature Rock Eval pyrolysis as well as an enforced consideration of initial coal and oxidant compositions.

  6. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth.

    PubMed

    Davy, Richard; Esau, Igor

    2016-05-25

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response.

  7. The aging correlation (RH + t): Relative humidity (%) + temperature (deg C)

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1986-01-01

    An aging correlation between corrosion lifetime, and relative humidity RH (%) and temperature t (C) has been reported in the literature. This aging correlation is a semi-log plot of corrosion lifetime on the log scale versus the interesting summation term RH(%) + t(C) on the linear scale. This empirical correlation was derived from observation of experimental data trends and has been referred to as an experimental law. Using electrical resistivity data of polyvinyl butyral (PVB) measured as a function of relative humidity and temperature, it was found that the electrical resistivity could be expressed as a function of the term RH(%) t(C). Thus, if corrosion is related to leakage current through an organic insulator, which, in turn, is a function of RH and t, then some partial theoretical validity for the correlation is indicated. This article describes the derivation of the term RH(%) t(C) from PVB electrical resistivity data.

  8. Relationships between thermal maturity indices calculated using Arrhenius equation and Lopatin method: implications for petroleum exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, D.A.

    1988-02-01

    Thermal maturity can be calculated with time-temperature indices (TTI) based on the Arrhenius equation using kinetics applicable to a range of Types II and III kerogens. These TTIs are compared with TTI calculations based on the Lopatin method and are related theoretically (and empirically via vitrinite reflectance) to the petroleum-generation window. The TTIs for both methods are expressed mathematically as integrals of temperature combined with variable linear heating rates for selected temperature intervals. Heating rates control the thermal-maturation trends of buried sediments. Relative to Arrhenius TTIs, Lopatin TTIs tend to underestimate thermal maturity at high heating rates and overestimate itmore » as low heating rates. Complex burial histories applicable to a range of tectonic environments illustrate the different exploration decisions that might be made on the basis of independent results of these two thermal-maturation models. 15 figures, 8 tables.« less

  9. Differences in the efficacy of climate forcings explained by variations in atmospheric boundary layer depth

    PubMed Central

    Davy, Richard; Esau, Igor

    2016-01-01

    The Earth has warmed in the last century and a large component of that warming has been attributed to increased anthropogenic greenhouse gases. There are also numerous processes that introduce strong, regionalized variations to the overall warming trend. However, the ability of a forcing to change the surface air temperature depends on its spatial and temporal distribution. Here we show that the efficacy of a forcing is determined by the effective heat capacity of the atmosphere, which in cold and dry climates is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, and so we get a strongly amplified temperature response in shallow boundary layers. This must be accounted for to assess the efficacy of a climate forcing, and also implies that multiple climate forcings cannot be linearly combined to determine the temperature response. PMID:27221757

  10. Are there evidences of altitudinal effects of air temperature trends in the European Alps 1820-2013?

    NASA Astrophysics Data System (ADS)

    Schoener, W.; Auer, I.; Chimani, B.; Garnekind, M.; Haslinger, K.

    2013-12-01

    We use the HISTALP data set (www.zamg.ac.at/histalp) in order to assess the elevation dependency of air temperature trends within the European Alps. The evidence of altitudinal effects of the climate warming (with higher sensitivity of high mountain regions to warming) is a key statement, or at least key hypothesis, in many studies. The high relevance of such statement resp. hypothesis is obvious if one consider the impacts resulting from such fact, such as snow- and glacier melting and related effects for mountain hydrology. The HISTALP data set stands out with respect to its series lengths and its high level of homogenisation. Interestingly, the HISTALP temperature data show no clear altitudinal dependency of warming or cooling trends within the period 1820-2013. Additionally, a rather homogenous temporal trend could be observed within the entire Greater Alpine Region (GAR). Because HISTALP include also air pressure and vapour pressure series, we could compare our measured air temperatures with mean-column air temperatures, computed by the barometric formula, which were derived from the independently measured air pressure data (using vapour pressure to account for the atmospheric water content) at low resp. high elevations. Computed mean column temperatures are in good agreement with observed temperatures, indicating generally homogenous temporal temperature trend behaviour at different elevations. Our finding contradicts several results from climate modelling attempts and also other studies investigating Alpine temperature trends. We conclude that, whereas modelling results are still limited in the assessment of altitudinal effect of temperature trends from missing atmospheric processes captured by the models, the difference of the trend behaviour compared to other analyses of instrumental air temperatures comes from the seasonal base taken as the basis for trend estimation. It appears that opposite trend in spring and autumn for the period 1980-2000, respectively, levels each other out for the annual temperature trend.

  11. Stratospheric temperature trends: History of our evolving understanding

    NASA Astrophysics Data System (ADS)

    Seidel, D. J.; Gillett, N. P.; Lanzante, J.; Shine, K. P.; Thorne, P.

    2010-12-01

    Changes in greenhouse gas and stratospheric ozone concentrations are known to force long-term trends in stratospheric temperature. Therefore, national and international assessments of climate change and stratospheric ozone depletion over the past several decades have included discussion of observed and projected stratospheric temperature trends. Similarly, tropospheric temperature trends have figured prominently in the climate change literature; they have been the subject of considerable controversy. Although many of the same modeling and observational tools have been applied, and there are many common scientific issues in both regions of the atmosphere, stratospheric temperatures have not captured the imagination of the public, the popular press and public policy community. We present an historical review of our evolving understanding of stratospheric temperature trends, including both observational and modeling perspectives, from the 1970’s to present. Comparisons and contrasts will be drawn between the stratospheric and tropospheric temperature trend literature, including observing systems, dataset development for trend estimates, modeling approaches, and associated uncertainties. Recent developments will be highlighted.

  12. Seasonality of change: Summer warming rates do not fully represent effects of climate change on lake temperatures

    USGS Publications Warehouse

    Winslow, Luke; Read, Jordan S.; Hansen, Gretchen J. A.; Rose, Kevin C.; Robertson, Dale M.

    2017-01-01

    Responses in lake temperatures to climate warming have primarily been characterized using seasonal metrics of surface-water temperatures such as summertime or stratified period average temperatures. However, climate warming may not affect water temperatures equally across seasons or depths. We analyzed a long-term dataset (1981–2015) of biweekly water temperature data in six temperate lakes in Wisconsin, U.S.A. to understand (1) variability in monthly rates of surface- and deep-water warming, (2) how those rates compared to summertime average trends, and (3) if monthly heterogeneity in water temperature trends can be predicted by heterogeneity in air temperature trends. Monthly surface-water temperature warming rates varied across the open-water season, ranging from 0.013 in August to 0.073°C yr−1 in September (standard deviation [SD]: 0.025°C yr−1). Deep-water trends during summer varied less among months (SD: 0.006°C yr−1), but varied broadly among lakes (–0.056°C yr−1 to 0.035°C yr−1, SD: 0.034°C yr−1). Trends in monthly surface-water temperatures were well correlated with air temperature trends, suggesting monthly air temperature trends, for which data exist at broad scales, may be a proxy for seasonal patterns in surface-water temperature trends during the open water season in lakes similar to those studied here. Seasonally variable warming has broad implications for how ecological processes respond to climate change, because phenological events such as fish spawning and phytoplankton succession respond to specific, seasonal temperature cues.

  13. Variability of Diurnal Temperature Range During Winter Over Western Himalaya: Range- and Altitude-Wise Study

    NASA Astrophysics Data System (ADS)

    Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek

    2018-04-01

    The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.

  14. The association between diurnal temperature range and childhood bacillary dysentery

    NASA Astrophysics Data System (ADS)

    Wen, Li-ying; Zhao, Ke-fu; Cheng, Jian; Wang, Xu; Yang, Hui-hui; Li, Ke-sheng; Xu, Zhi-wei; Su, Hong

    2016-02-01

    Previous studies have found that mean, maximum, and minimum temperatures were associated with bacillary dysentery (BD). However, little is known about whether the within-day variation of temperature has any impact on bacillary dysentery. The current study aimed to identify the relationship between diurnal temperature range (DTR) and BD in Hefei, China. Daily data on BD counts among children aged 0-14 years from 1 January 2006 to 31 December 2012 were retrieved from Hefei Center for Disease Control and Prevention. Daily data on ambient temperature and relative humidity covering the same period were collected from the Hefei Bureau of Meteorology. A Poisson generalized linear regression model combined with a distributed lag non-linear model (DLNM) was used in the analysis after controlling the effects of season, long-term trends, mean temperature, and relative humidity. The results showed that there existed a statistically significant relationship between DTR and childhood BD. The DTR effect on childhood bacillary dysentery increased when DTR was over 8 °C. And it was greatest at 1-day lag, with an 8 % (95 % CI = 2.9-13.4 %) increase of BD cases per 5 °C increment of DTR. Male children and children aged 0-5 years appeared to be more vulnerable to the DTR effect. The data indicate that large DTR may increase the incidence of childhood BD. Caregivers and health practitioners should be made aware of the potential threat posed by large DTR. Therefore, DTR should be taken into consideration when making targeted health policies and programs to protect children from being harmed by climate impacts.

  15. The association between diurnal temperature range and childhood bacillary dysentery.

    PubMed

    Wen, Li-ying; Zhao, Ke-fu; Cheng, Jian; Wang, Xu; Yang, Hui-hui; Li, Ke-sheng; Xu, Zhi-wei; Su, Hong

    2016-02-01

    Previous studies have found that mean, maximum, and minimum temperatures were associated with bacillary dysentery (BD). However, little is known about whether the within-day variation of temperature has any impact on bacillary dysentery. The current study aimed to identify the relationship between diurnal temperature range (DTR) and BD in Hefei, China. Daily data on BD counts among children aged 0-14 years from 1 January 2006 to 31 December 2012 were retrieved from Hefei Center for Disease Control and Prevention. Daily data on ambient temperature and relative humidity covering the same period were collected from the Hefei Bureau of Meteorology. A Poisson generalized linear regression model combined with a distributed lag non-linear model (DLNM) was used in the analysis after controlling the effects of season, long-term trends, mean temperature, and relative humidity. The results showed that there existed a statistically significant relationship between DTR and childhood BD. The DTR effect on childhood bacillary dysentery increased when DTR was over 8 °C. And it was greatest at 1-day lag, with an 8% (95% CI = 2.9-13.4%) increase of BD cases per 5 °C increment of DTR. Male children and children aged 0-5 years appeared to be more vulnerable to the DTR effect. The data indicate that large DTR may increase the incidence of childhood BD. Caregivers and health practitioners should be made aware of the potential threat posed by large DTR. Therefore, DTR should be taken into consideration when making targeted health policies and programs to protect children from being harmed by climate impacts.

  16. Attribution of trends in global vegetation greenness from 1982 to 2011

    NASA Astrophysics Data System (ADS)

    Zhu, Z.; Xu, L.; Bi, J.; Myneni, R.; Knyazikhin, Y.

    2012-12-01

    Time series of remotely sensed vegetation indices data provide evidence of changes in terrestrial vegetation activity over the past decades in the world. However, it is difficult to attribute cause-and-effect to vegetation trends because variations in vegetation productivity are driven by various factors. This study investigated changes in global vegetation productivity first, and then attributed the global natural vegetation with greening trend. Growing season integrated normalized difference vegetation index (GSI NDVI) derived from the new GIMMS NDVI3g dataset (1982-2011was analyzed. A combined time series analysis model, which was developed from simper linear trend model (SLT), autoregressive integrated moving average model (ARIMA) and Vogelsang's t-PST model shows that productivity of all vegetation types except deciduous broadleaf forest predominantly showed increasing trends through the 30-year period. The evolution of changes in productivity in the last decade was also investigated. Area of greening vegetation monotonically increased through the last decade, and both the browning and no change area monotonically decreased. To attribute the predominant increase trend of productivity of global natural vegetation, trends of eight climate time series datasets (three temperature, three precipitation and two radiation datasets) were analyzed. The attribution of trends in global vegetation greenness was summarized as relaxation of climatic constraints, fertilization and other unknown reasons. Result shows that nearly all the productivity increase of global natural vegetation was driven by relaxation of climatic constraints and fertilization, which play equally important role in driving global vegetation greenness.; Area fraction and productivity change fraction of IGBP vegetation land cover classes showing statistically significant (10% level) trend in GSI NDVIt;

  17. Recent Acceleration of the Terrestrial Hydrologic Cycle in the U.S. Midwest

    NASA Astrophysics Data System (ADS)

    Yeh, Pat J.-F.; Wu, Chuanhao

    2018-03-01

    Most hydroclimatic trend studies considered only a subset of water budget variables; hence, the trend consistency and a holistic assessment of hydrologic changes across the entire water cycle cannot be evaluated. Here we use a unique 31 year (1983-2013) observed data set in Illinois (a representative region of the U.S. Midwest), including temperature (T), precipitation (P), evaporation (E), streamflow (R), soil moisture, and groundwater level (GWL), to estimate the trends and their sensitivity to different data periods and lengths. Both the Mann-Kendall trend test and the least squares linear method identify trends in close agreement. Despite no clear trends during 1983-2013, increasing trends are found in P (8.73-9.05 mm/year), E (6.87-7.47 mm/year), and R (1.57-3.54 mm/year) during 1992-2013, concurrently with a pronounced warming trend of 0.029-0.037 °C/year. However, terrestrial water storageis decreased by -2.0 mm/year (mainly due to declining GWL), suggesting that the increased R is caused by increased surface runoff rather than baseflow. Monthly analyses identify warming trends for all months except winter. In summer, P (E) exhibits an increasing (decreasing) trend, leading to increasing R, soil moisture, GWL, and terrestrial water storage. Most trends estimated for different subperiods are found to be sensitive to data lengths and periods. Overall, this study provides an internally consistent observed evidence on the intensification of the hydrologic cycle in response to recent climate warming in U.S. Midwest, in agreement with and well supported by several recent studies consistently reporting the increased P, R and E over the Midwest and Mississippi River basin.

  18. Multiple long-term trends and trend reversals dominate environmental conditions in a man-made freshwater reservoir.

    PubMed

    Znachor, Petr; Nedoma, Jiří; Hejzlar, Josef; Seďa, Jaromír; Kopáček, Jiří; Boukal, David; Mrkvička, Tomáš

    2018-05-15

    Man-made reservoirs are common across the world and provide a wide range of ecological services. Environmental conditions in riverine reservoirs are affected by the changing climate, catchment-wide processes and manipulations with the water level, and water abstraction from the reservoir. Long-term trends of environmental conditions in reservoirs thus reflect a wider range of drivers in comparison to lakes, which makes the understanding of reservoir dynamics more challenging. We analysed a 32-year time series of 36 environmental variables characterising weather, land use in the catchment, reservoir hydrochemistry, hydrology and light availability in the small, canyon-shaped Římov Reservoir in the Czech Republic to detect underlying trends, trend reversals and regime shifts. To do so, we fitted linear and piecewise linear regression and a regime shift model to the time series of mean annual values of each variable and to principal components produced by Principal Component Analysis. Models were weighted and ranked using Akaike information criterion and the model selection approach. Most environmental variables exhibited temporal changes that included time-varying trends and trend reversals. For instance, dissolved organic carbon showed a linear increasing trend while nitrate concentration or conductivity exemplified trend reversal. All trend reversals and cessations of temporal trends in reservoir hydrochemistry (except total phosphorus concentrations) occurred in the late 1980s and during 1990s as a consequence of dramatic socioeconomic changes. After a series of heavy rains in the late 1990s, an administrative decision to increase the flood-retention volume of the reservoir resulted in a significant regime shift in reservoir hydraulic conditions in 1999. Our analyses also highlight the utility of the model selection framework, based on relatively simple extensions of linear regression, to describe temporal trends in reservoir characteristics. This approach can provide a solid basis for a better understanding of processes in freshwater reservoirs. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Long-term trends in daily temperature extremes in Iraq

    NASA Astrophysics Data System (ADS)

    Salman, Saleem A.; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Al-Abadi, Alaa M.

    2017-12-01

    The existence of long-term persistence (LTP) in hydro-climatic time series can lead to considerable change in significance of trends. Therefore, past findings of climatic trend studies that did not consider LTP became a disputable issue. A study has been conducted to assess the trends in temperature and temperature extremes in Iraq in recent years (1965-2015) using both ordinary Mann-Kendal (MK) test; and the modified Mann-Kendall (m-MK) test, which can differentiate the multi-decadal oscillatory variations from secular trends. Trends in annual and seasonal minimum and maximum temperatures, diurnal temperature range (DTR), and 14 temperature-related extremes were assessed. MK test detected the significant increases in minimum and maximum temperature at all stations, where m-MK test detected at 86% and 80% of all stations, respectively. The temperature in Iraq is increasing 2 to 7 times faster than global temperature rise. The minimum temperature is increasing more (0.48-1.17 °C/decade) than maximum temperature (0.25-1.01 °C/decade). Temperature rise is higher in northern Iraq and in summer. The hot extremes particularly warm nights are increasing all over Iraq at a rate of 2.92-10.69 days/decade, respectively. On the other hand, numbers of cold days are decreasing at some stations at a rate of - 2.65 to - 8.40 days/decade. The use of m-MK test along with MK test confirms the significant increase in temperature and some of the temperature extremes in Iraq. This study suggests that trends in many temperature extremes in the region estimated in previous studies using MK test may be due to natural variability of climate, which empathizes the need for validation of the trends by considering LTP in time series.

  20. Comparison of GPS tropospheric delays derived from two consecutive EPN reprocessing campaigns from the point of view of climate monitoring

    NASA Astrophysics Data System (ADS)

    Baldysz, Zofia; Nykiel, Grzegorz; Araszkiewicz, Andrzej; Figurski, Mariusz; Szafranek, Karolina

    2016-09-01

    The main purpose of this research was to acquire information about consistency of ZTD (zenith total delay) linear trends and seasonal components between two consecutive GPS reprocessing campaigns. The analysis concerned two sets of the ZTD time series which were estimated during EUREF (Reference Frame Sub-Commission for Europe) EPN (Permanent Network) reprocessing campaigns according to 2008 and 2015 MUT AC (Military University of Technology Analysis Centre) scenarios. Firstly, Lomb-Scargle periodograms were generated for 57 EPN stations to obtain a characterisation of oscillations occurring in the ZTD time series. Then, the values of seasonal components and linear trends were estimated using the LSE (least squares estimation) approach. The Mann-Kendall trend test was also carried out to verify the presence of linear long-term ZTD changes. Finally, differences in seasonal signals and linear trends between these two data sets were investigated. All these analyses were conducted for the ZTD time series of two lengths: a shortened 16-year series and a full 18-year one. In the case of spectral analysis, amplitudes of the annual and semi-annual periods were almost exactly the same for both reprocessing campaigns. Exceptions were found for only a few stations and they did not exceed 1 mm. The estimated trends were also similar. However, for the reprocessing performed in 2008, the trends values were usually higher. In general, shortening of the analysed time period by 2 years resulted in a decrease of the linear trends values of about 0.07 mm yr-1. This was confirmed by analyses based on two data sets.

  1. Prony series spectra of structural relaxation in N-BK7 for finite element modeling.

    PubMed

    Koontz, Erick; Blouin, Vincent; Wachtel, Peter; Musgraves, J David; Richardson, Kathleen

    2012-12-20

    Structural relaxation behavior of N-BK7 glass was characterized at temperatures 20 °C above and below T(12) for this glass, using a thermo mechanical analyzer (TMA). T(12) is a characteristic temperature corresponding to a viscosity of 10(12) Pa·s. The glass was subject to quick temperature down-jumps preceded and followed by long isothermal holds. The exponential-like decay of the sample height was recorded and fitted using a unique Prony series method. The result of his method was a plot of the fit parameters revealing the presence of four distinct peaks or distributions of relaxation times. The number of relaxation times decreased as final test temperature was increased. The relaxation times did not shift significantly with changing temperature; however, the Prony weight terms varied essentially linearly with temperature. It was also found that the structural relaxation behavior of the glass trended toward single exponential behavior at temperatures above the testing range. The result of the analysis was a temperature-dependent Prony series model that can be used in finite element modeling of glass behavior in processes such as precision glass molding (PGM).

  2. Spatiotemporal trends in extreme rainfall and temperature indices over Upper Tapi Basin, India

    NASA Astrophysics Data System (ADS)

    Sharma, Priyank J.; Loliyana, V. D.; S. R., Resmi; Timbadiya, P. V.; Patel, P. L.

    2017-12-01

    The flood risk across the globe is intensified due to global warming and subsequent increase in extreme temperature and precipitation. The long-term trends in extreme rainfall (1944-2013) and temperature (1969-2012) indices have been investigated at annual, seasonal, and monthly time scales using nonparametric Mann-Kendall (MK), modified Mann-Kendall (MMK), and Sen's slope estimator tests. The extreme rainfall and temperature indices, recommended by the Expert Team on Climate Change Detection Monitoring Indices (ETCCDMI), have been analyzed at finer spatial scales for trend detection. The results of trend analyses indicate decreasing trend in annual total rainfall, significant decreasing trend in rainy days, and increasing trend in rainfall intensity over the basin. The seasonal rainfall has been found to decrease for all the seasons except postmonsoon, which could affect the rain-fed agriculture in the basin. The 1- and 5-day annual maximum rainfalls exhibit mixed trends, wherein part of the basin experiences increasing trend, while other parts experience a decreasing trend. The increase in dry spells and concurrent decrease in wet spells are also observed over the basin. The extreme temperature indices revealed increasing trends in hottest and coldest days, while decreasing trends in coldest night are found over most parts of the basin. Further, the diurnal temperature range is also found to increase due to warming tendency in maximum temperature (T max) at a faster rate compared to the minimum temperature (T min). The increase in frequency and magnitude of extreme rainfall in the basin has been attributed to the increasing trend in maximum and minimum temperatures, reducing forest cover, rapid pace of urbanization, increase in human population, and thereby increase in the aerosol content in the atmosphere. The findings of the present study would significantly help in sustainable water resource planning, better decision-making for policy framework, and setting up infrastructure against flood disasters in Upper Tapi Basin, India.

  3. Temperature and ice layer trends in the summer middle atmosphere

    NASA Astrophysics Data System (ADS)

    Lübken, F.-J.; Berger, U.

    2012-04-01

    We present results from our LIMA model (Leibniz Institute Middle Atmosphere Model) which nicely reproduces mean conditions of the summer mesopause region and also mean characteristics of ice layers known as noctilucent clouds. LIMA nudges to ECMWF data in the troposphere and lower stratosphere which influences the background conditions in the mesosphere. We study temperature trends in the mesosphere at middle and polar latitudes and compared with temperature trends from satellites, lidar, and phase height observations. For the first time large observed temperature trends in the summer mesosphere can be reproduced and explained by a model. As will be shown, stratospheric ozone has a major impact on temperature trends in the summer mesosphere. The temperature trend is not uniform in time: it is moderate from 1961 (the beginning of our record) until the beginning of the 1980s. Thereafter, temperatures decrease much stronger until the mid 1990s. Thereafter, temperatures are nearly constant or even increase with time. As will be shown, trends in ozone and carbon dioxide explain most of this behavior. Ice layers in the summer mesosphere are very sensitive to background conditions and are therefore considered to be appropriate tracers for long term variations in the middle atmosphere. We use LIMA background conditions to determine ice layer characteristics in the mesopause region. We compare our results with measurements, for example with albedos from the SBUV satellites, and show that we can nicely reproduce observed trends. It turns out that temperature trends are positive (negative) in the upper (lower) part of the ice layer regime. This complicates an interpretation of NLC long term variations in terms of temperature trends.

  4. Temperature Trends in Montane Lakes

    NASA Astrophysics Data System (ADS)

    Melack, J. M.; Sadro, S.; Jellison, R.

    2014-12-01

    Long-term temperature trends in lakes integrate hydrological and meteorological factors. We examine temperature trends in a small montane lake with prolonged ice-cover and large seasonal snowfall and in a large saline lake. Emerald Lake, located in the Sierra Nevada (California), is representative of high-elevation lakes throughout the region. No significant trend in outflow temperature was apparent from 1991to 2012. Snowfall in the watershed accounted for 93% of the variability in average summer lake temperatures. Mono Lake (California) lies in a closed, montane basin and is hypersaline and monomictic or meromictic. Temperature profiles have been collected from 1982 to 2010. In the upper water column, the July-August-September water temperatures increased 0.8-1.0°C over the 29 years. This rate of warming is less than published estimates based on satellite-derived skin temperatures and will discussed in the context of general limnological interpretation of temperature trends.

  5. 20 Years of ClO Measurements in the Antarctic Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Nedoluha, Gerald E.; Connor, Brian J.; Mooney, Thomas; Barrett, James W.; Parrish, Alan; Gomez, R. Michael; Boyd, Ian; Allen, Douglas R.; Kotkamp, Michael; Kremser, Stefanie; hide

    2016-01-01

    We present 20 years (1996-2015) of austral springtime measurements of chlorine monoxide (ClO) over Antarctica from the Chlorine Oxide Experiment (ChlOEl) ground-based millimeter wave spectrometer at Scott Base, Antarctica, as well 12 years (2004-2015) of ClO measurements from the Aura Microwave Limb Sounder (MLS). From August onwards we observe a strong increase in lower stratospheric ClO, with a peak column amount usually occurring in early September. From mid-September onwards we observe a strong decrease in ClO. In order to study interannual differences, we focus on a 3-week period from 28 August to 17 September for each year and compare the average column ClO anomalies. These column ClO anomalies are shown to be highly correlated with the average ozone mass deficit for September and October of each year. We also show that anomalies in column ClO are strongly anti-correlated with 30 hPa temperature anomalies, both on a daily and an interannual timescale. Making use of this anti-correlation we calculate the linear dependence of the interannual variations in column C1O on interannual variations in temperature. By making use of this relationship, we can better estimate the underlying trend in the total chlorine (Cl(sub y) = HCl + ClONO2 + HOCl + 2 x Cl2 + 2 x Cl2+ ClO + Cl). The resultant trends in Cl(sub y), which determine the long-term trend in ClO, are estimated to be -0.5 +/-0.2, -1.40.9, and -0.60.4% per year, for zonal MLS, Scott Base MLS (both 2004-2015), and ChlOE (1996-2015) respectively. These trends are within 1sigma of trends in stratospheric Cl(sub y) previously found at other latitudes. The decrease in ClO is consistent with the trend expected from regulations enacted under the Montreal Protocol.

  6. 20 years of ClO measurements in the Antarctic lower stratosphere

    NASA Astrophysics Data System (ADS)

    Nedoluha, Gerald E.; Connor, Brian J.; Mooney, Thomas; Barrett, James W.; Parrish, Alan; Gomez, R. Michael; Boyd, Ian; Allen, Douglas R.; Kotkamp, Michael; Kremser, Stefanie; Deshler, Terry; Newman, Paul; Santee, Michelle L.

    2016-08-01

    We present 20 years (1996-2015) of austral springtime measurements of chlorine monoxide (ClO) over Antarctica from the Chlorine Oxide Experiment (ChlOE1) ground-based millimeter wave spectrometer at Scott Base, Antarctica, as well 12 years (2004-2015) of ClO measurements from the Aura Microwave Limb Sounder (MLS). From August onwards we observe a strong increase in lower stratospheric ClO, with a peak column amount usually occurring in early September. From mid-September onwards we observe a strong decrease in ClO. In order to study interannual differences, we focus on a 3-week period from 28 August to 17 September for each year and compare the average column ClO anomalies. These column ClO anomalies are shown to be highly correlated with the average ozone mass deficit for September and October of each year. We also show that anomalies in column ClO are strongly anti-correlated with 30 hPa temperature anomalies, both on a daily and an interannual timescale. Making use of this anti-correlation we calculate the linear dependence of the interannual variations in column ClO on interannual variations in temperature. By making use of this relationship, we can better estimate the underlying trend in the total chlorine (Cly = HCl + ClONO2 + HOCl + 2 × Cl2 + 2 × Cl2O2 + ClO + Cl). The resultant trends in Cly, which determine the long-term trend in ClO, are estimated to be -0.5 ± 0.2, -1.4 ± 0.9, and -0.6 ± 0.4 % year-1, for zonal MLS, Scott Base MLS (both 2004-2015), and ChlOE (1996-2015) respectively. These trends are within 1σ of trends in stratospheric Cly previously found at other latitudes. The decrease in ClO is consistent with the trend expected from regulations enacted under the Montreal Protocol.

  7. Trends and changes in tropical and summer days at the Adana Sub-Region of the Mediterranean Region, Southern Turkey

    NASA Astrophysics Data System (ADS)

    Bayer Altın, Türkan; Barak, Belma

    2017-11-01

    In this study, the long-term variability and trends of the annual and seasonal numbers of summer and tropical days of the Adana Sub-region were investigated using nonlinear and linear trend detection tests for the period 1960-2014 at 14 meteorological stations. The results suggest that the annual number of summer and tropical days was generally below the long-term average through to the end of the 1980s. In particular, positive anomaly values could be observed at all stations between the years 1993-2014. With respect to the Kruskal-Wallis homogeneity test, the significant breaking date was 1993. The rapid rise of the annual number of summer (tropical) days after this year led to the inversion of the negative trends observed from 1987 to 1992 into positive ones. The increasing trend is statistically significance at 0.01 level in Yumurtalık, Mersin and Antakya for the annual number of summer and tropical days. Dörtyol, İskenderun and Elbistan were significance at 0.01 level for tropical days. The largest positive anomalies of the summer of 2010 are observed in coastal vicinity (Mersin, Yumurtalık and İskenderun). This indicates that these settlements underwent a long-term warm period and thermal conditions due to increasing temperatures in the spring and summer months. The same conditions are found in high inner areas (Göksun and Elbistan) for tropical days. It is noticed that a tendency for greater warming occurred at stations located above 1000 m in the sub-region. The average number of warm days will increase 2-days per 100-years in southern part of the sub-region. The increasing trend in summer temperatures can be considered a potential risk, notably for human health and for economic and crop losses in the Adana Sub-region, including Çukurova, one of the most important agriculture areas of Turkey.

  8. Groundwater-level trends and forecasts, and salinity trends, in the Azraq, Dead Sea, Hammad, Jordan Side Valleys, Yarmouk, and Zarqa groundwater basins, Jordan

    USGS Publications Warehouse

    Goode, Daniel J.; Senior, Lisa A.; Subah, Ali; Jaber, Ayman

    2013-01-01

    Changes in groundwater levels and salinity in six groundwater basins in Jordan were characterized by using linear trends fit to well-monitoring data collected from 1960 to early 2011. On the basis of data for 117 wells, groundwater levels in the six basins were declining, on average about -1 meter per year (m/yr), in 2010. The highest average rate of decline, -1.9 m/yr, occurred in the Jordan Side Valleys basin, and on average no decline occurred in the Hammad basin. The highest rate of decline for an individual well was -9 m/yr. Aquifer saturated thickness, a measure of water storage, was forecast for year 2030 by using linear extrapolation of the groundwater-level trend in 2010. From 30 to 40 percent of the saturated thickness, on average, was forecast to be depleted by 2030. Five percent of the wells evaluated were forecast to have zero saturated thickness by 2030. Electrical conductivity was used as a surrogate for salinity (total dissolved solids). Salinity trends in groundwater were much more variable and less linear than groundwater-level trends. The long-term linear salinity trend at most of the 205 wells evaluated was not increasing, although salinity trends are increasing in some areas. The salinity in about 58 percent of the wells in the Amman-Zarqa basin was substantially increasing, and the salinity in Hammad basin showed a long-term increasing trend. Salinity increases were not always observed in areas with groundwater-level declines. The highest rates of salinity increase were observed in regional discharge areas near groundwater pumping centers.

  9. The paradox of cooling streams in a warming world: Regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States

    USGS Publications Warehouse

    Arismendi, Ivan; Johnson, Sherri; Dunham, Jason B.; Haggerty, Roy; Hockman-Wert, David

    2012-01-01

    Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream temperature. Here, we examined the evidence for this using long-term stream temperature data from minimally and highly human-impacted sites located across the Pacific continental United States. Based on hypothesized climate impacts, we predicted that we should find warming trends in the maximum, mean and minimum temperatures, as well as increasing variability over time. These predictions were not fully realized. Warming trends were most prevalent in a small subset of locations with longer time series beginning in the 1950s. More recent series of observations (1987-2009) exhibited fewer warming trends and more cooling trends in both minimally and highly human-influenced systems. Trends in variability were much less evident, regardless of the length of time series. Based on these findings, we conclude that our perspective of climate impacts on stream temperatures is clouded considerably by a lack of long-termdata on minimally impacted streams, and biased spatio-temporal representation of existing time series. Overall our results highlight the need to develop more mechanistic, process-based understanding of linkages between climate change, other human impacts and stream temperature, and to deploy sensor networks that will provide better information on trends in stream temperatures in the future.

  10. Water-quality trend analysis and sampling design for the Devils Lake Basin, North Dakota, January 1965 through September 2003

    USGS Publications Warehouse

    Ryberg, Karen R.; Vecchia, Aldo V.

    2006-01-01

    This report presents the results of a study conducted by the U.S. Geological Survey, in cooperation with the North Dakota State Water Commission, the Devils Lake Basin Joint Water Resource Board, and the Red River Joint Water Resource District, to analyze historical water-quality trends in three dissolved major ions, three nutrients, and one dissolved trace element for eight stations in the Devils Lake Basin in North Dakota and to develop an efficient sampling design to monitor the future trends. A multiple-regression model was used to detect and remove streamflow-related variability in constituent concentrations. To separate the natural variability in concentration as a result of variability in streamflow from the variability in concentration as a result of other factors, the base-10 logarithm of daily streamflow was divided into four components-a 5-year streamflow anomaly, an annual streamflow anomaly, a seasonal streamflow anomaly, and a daily streamflow anomaly. The constituent concentrations then were adjusted for streamflow-related variability by removing the 5-year, annual, seasonal, and daily variability. Constituents used for the water-quality trend analysis were evaluated for a step trend to examine the effect of Channel A on water quality in the basin and a linear trend to detect gradual changes with time from January 1980 through September 2003. The fitted upward linear trends for dissolved calcium concentrations during 1980-2003 for two stations were significant. The fitted step trends for dissolved sulfate concentrations for three stations were positive and similar in magnitude. Of the three upward trends, one was significant. The fitted step trends for dissolved chloride concentrations were positive but insignificant. The fitted linear trends for the upstream stations were small and insignificant, but three of the downward trends that occurred during 1980-2003 for the remaining stations were significant. The fitted upward linear trends for dissolved nitrite plus nitrate as nitrogen concentrations during 1987-2003 for two stations were significant. However, concentrations during recent years appear to be lower than those for the 1970s and early 1980s but higher than those for the late 1980s and early 1990s. The fitted downward linear trend for dissolved ammonia concentrations for one station was significant. The fitted linear trends for total phosphorus concentrations for two stations were significant. Upward trends for total phosphorus concentrations occurred from the late 1980s to 2003 for most stations, but a small and insignificant downward trend occurred for one station. Continued monitoring will be needed to determine if the recent trend toward higher dissolved nitrite plus nitrate as nitrogen and total phosphorus concentrations continues in the future. For continued monitoring of water-quality trends in the upper Devils Lake Basin, an efficient sampling design consists of five major-ion, nutrient, and trace-element samples per year at three existing stream stations and at three existing lake stations. This sampling design requires the collection of 15 stream samples and 15 lake samples per year rather than 16 stream samples and 20 lake samples per year as in the 1992-2003 program. Thus, the design would result in a program that is less costly and more efficient than the 1992-2003 program but that still would provide the data needed to monitor water-quality trends in the Devils Lake Basin.

  11. Analysis of Zenith Tropospheric Delay above Europe based on long time series derived from the EPN data

    NASA Astrophysics Data System (ADS)

    Baldysz, Zofia; Nykiel, Grzegorz; Figurski, Mariusz; Szafranek, Karolina; Kroszczynski, Krzysztof; Araszkiewicz, Andrzej

    2015-04-01

    In recent years, the GNSS system began to play an increasingly important role in the research related to the climate monitoring. Based on the GPS system, which has the longest operational capability in comparison with other systems, and a common computational strategy applied to all observations, long and homogeneous ZTD (Zenith Tropospheric Delay) time series were derived. This paper presents results of analysis of 16-year ZTD time series obtained from the EPN (EUREF Permanent Network) reprocessing performed by the Military University of Technology. To maintain the uniformity of data, analyzed period of time (1998-2013) is exactly the same for all stations - observations carried out before 1998 were removed from time series and observations processed using different strategy were recalculated according to the MUT LAC approach. For all 16-year time series (59 stations) Lomb-Scargle periodograms were created to obtain information about the oscillations in ZTD time series. Due to strong annual oscillations which disturb the character of oscillations with smaller amplitude and thus hinder their investigation, Lomb-Scargle periodograms for time series with the deleted annual oscillations were created in order to verify presence of semi-annual, ter-annual and quarto-annual oscillations. Linear trend and seasonal components were estimated using LSE (Least Square Estimation) and Mann-Kendall trend test were used to confirm the presence of linear trend designated by LSE method. In order to verify the effect of the length of time series on the estimated size of the linear trend, comparison between two different length of ZTD time series was performed. To carry out a comparative analysis, 30 stations which have been operating since 1996 were selected. For these stations two periods of time were analyzed: shortened 16-year (1998-2013) and full 18-year (1996-2013). For some stations an additional two years of observations have significant impact on changing the size of linear trend - only for 4 stations the size of linear trend was exactly the same for two periods of time. In one case, the nature of the trend has changed from negative (16-year time series) for positive (18-year time series). The average value of a linear trends for 16-year time series is 1,5 mm/decade, but their spatial distribution is not uniform. The average value of linear trends for all 18-year time series is 2,0 mm/decade, with better spatial distribution and smaller discrepancies.

  12. Observational Evidence of Changes in Soil Temperatures across Eurasian Continent

    NASA Astrophysics Data System (ADS)

    Zhang, T.

    2015-12-01

    Soil temperature is one of the key climate change indicators and plays an important role in plant growth, agriculture, carbon cycle and ecosystems as a whole. In this study, variability and changes in ground surface and soil temperatures up to 3.20 m were investigated based on data and information obtained from hydrometeorological stations across Eurasian continent since the early 1950s. Ground surface and soil temperatures were measured daily by using the same standard method and by the trained professionals across Eurasian continent, which makes the dataset unique and comparable over a large study region. Using the daily soil temperature profiles, soil seasonal freeze depth was also obtained through linear interpolation. Preliminary results show that soil temperatures at various depths have increased dramatically, almost twice as much as air temperature increase over the same period. Regionally, soil temperature increase was more dramatically in high northern latitudes than mid/lower latitude regions. Air temperature changes alone may not be able to fully explain the magnitude of changes in soil temperatures. Further study indicates that snow cover establishment started later in autumn and snow cover disappearance occurred earlier in spring, while winter snow depth became thicker with a decreasing trend of snow density. Changes in snow cover conditions may play an important role in changes of soil temperatures over the Eurasian continent.

  13. Geomorphic domains and linear features on Landsat images, Circle Quadrangle, Alaska

    USGS Publications Warehouse

    Simpson, S.L.

    1984-01-01

    A remote sensing study using Landsat images was undertaken as part of the Alaska Mineral Resource Assessment Program (AMRAP). Geomorphic domains A and B, identified on enhanced Landsat images, divide Circle quadrangle south of Tintina fault zone into two regional areas having major differences in surface characteristics. Domain A is a roughly rectangular, northeast-trending area of relatively low relief and simple, widely spaced drainages, except where igneous rocks are exposed. In contrast, domain B, which bounds two sides of domain A, is more intricately dissected showing abrupt changes in slope and relatively high relief. The northwestern part of geomorphic domain A includes a previously mapped tectonostratigraphic terrane. The southeastern boundary of domain A occurs entirely within the adjoining tectonostratigraphic terrane. The sharp geomorphic contrast along the southeastern boundary of domain A and the existence of known faults along this boundary suggest that the southeastern part of domain A may be a subdivision of the adjoining terrane. Detailed field studies would be necessary to determine the characteristics of the subdivision. Domain B appears to be divisible into large areas of different geomorphic terrains by east-northeast-trending curvilinear lines drawn on Landsat images. Segments of two of these lines correlate with parts of boundaries of mapped tectonostratigraphic terranes. On Landsat images prominent north-trending lineaments together with the curvilinear lines form a large-scale regional pattern that is transected by mapped north-northeast-trending high-angle faults. The lineaments indicate possible lithlogic variations and/or structural boundaries. A statistical strike-frequency analysis of the linear features data for Circle quadrangle shows that northeast-trending linear features predominate throughout, and that most northwest-trending linear features are found south of Tintina fault zone. A major trend interval of N.64-72E. in the linear feature data, corresponds to the strike of foliations in metamorphic rocks and magnetic anomalies reflecting compositional variations suggesting that most linear features in the southern part of the quadrangle probably are related to lithologic variations brought about by folding and foliation of metamorphic rocks. A second important trend interval, N.14-35E., may be related to thrusting south of the Tintina fault zone, as high concentrations of linear features within this interval are found in areas of mapped thrusts. Low concentrations of linear features are found in areas of most igneous intrusives. High concentrations of linear features do not correspond to areas of mineralization in any consistent or significant way that would allow concentration patterns to be easily used as an aid in locating areas of mineralization. The results of this remote sensing study indicate that there are several possibly important areas where further detailed studies are warranted.

  14. How does the terrestrial carbon exchange respond to inter-annual climatic variations? A quantification based on atmospheric CO2 data

    NASA Astrophysics Data System (ADS)

    Rödenbeck, Christian; Zaehle, Sönke; Keeling, Ralph; Heimann, Martin

    2018-04-01

    The response of the terrestrial net ecosystem exchange (NEE) of CO2 to climate variations and trends may crucially determine the future climate trajectory. Here we directly quantify this response on inter-annual timescales by building a linear regression of inter-annual NEE anomalies against observed air temperature anomalies into an atmospheric inverse calculation based on long-term atmospheric CO2 observations. This allows us to estimate the sensitivity of NEE to inter-annual variations in temperature (seen as a climate proxy) resolved in space and with season. As this sensitivity comprises both direct temperature effects and the effects of other climate variables co-varying with temperature, we interpret it as inter-annual climate sensitivity. We find distinct seasonal patterns of this sensitivity in the northern extratropics that are consistent with the expected seasonal responses of photosynthesis, respiration, and fire. Within uncertainties, these sensitivity patterns are consistent with independent inferences from eddy covariance data. On large spatial scales, northern extratropical and tropical inter-annual NEE variations inferred from the NEE-T regression are very similar to the estimates of an atmospheric inversion with explicit inter-annual degrees of freedom. The results of this study offer a way to benchmark ecosystem process models in more detail than existing effective global climate sensitivities. The results can also be used to gap-fill or extrapolate observational records or to separate inter-annual variations from longer-term trends.

  15. Decadal trend of precipitation and temperature patterns and impacts on snow-related variables in a semiarid region, Sierra Nevada, Spain.

    NASA Astrophysics Data System (ADS)

    José Pérez-Palazón, María; Pimentel, Rafael; Herrero, Javier; José Polo, María

    2016-04-01

    In the current context of global change, mountainous areas constitute singular locations in which these changes can be traced. Early detection of significant shifts of snow state variables in semiarid regions can help assess climate variability impacts and future snow dynamics in northern latitudes. The Sierra Nevada mountain range, in southern Spain, is a representative example of snow areas in Mediterranean-climate regions and both monitoring and modelling efforts have been performed to assess this variability and its significant scales. This work presents a decadal trend analysis throughout the 50-yr period 1960-2010 performed on some snow-related variables over Sierra Nevada, in Spain, which is included in the global climate change observatories network around the world. The study area comprises 4583 km2 distributed throughout the five head basins influenced by these mountains, with altitude values ranging from 140 to 3479 m.a.s.l., just 40 km from the Mediterranean coastline. Meteorological variables obtained from 44 weather stations from the National Meteorological Agency were studied and further used as input to the distributed hydrological model WiMMed (Polo et al., 2010), operational at the study area, to obtain selected snow variables. Decadal trends were obtained, together with their statistical significance, over the following variables, averaged over the whole study area: (1) annual precipitation; (2) annual snowfall; annual (3) mean, (4) maximum and (5) minimum daily temperature; annual (6) mean and (7) maximum daily fraction of snow covered areas; (8) annual number of days with snow cover; (9) mean and (10) maximum daily snow water equivalent; (11) annual number of extreme precipitation events; and (12) mean intensity of the annual extreme precipitation events. These variables were also studied over each of the five regions associated to each basin in the range. Globally decreasing decadal trends were obtained for all the meteorological variables, with the exception of the average annual mean and maximum daily temperature. In the case of the snow-related variables, no significant trends are observed at this time scale; nonetheless, a global decreasing rate is predominant in most of the variables. The torrential events are more frequent in the last decades of the study period, with an apparently increasing associated dispersion. This study constitutes a first sound analysis of the long-term observed trends of the snow regime in this area under the context of increasing temperature and decreasing precipitation regimes. The results highlight the complexity of non-linearity in environmental processes in Mediterranean regions, and point out to a significant shift in the precipitation and temperature regime, and thus on the snow-affected hydrological variables in the study area.

  16. Malaria incidence trends and their association with climatic variables in rural Gwanda, Zimbabwe, 2005-2015.

    PubMed

    Gunda, Resign; Chimbari, Moses John; Shamu, Shepherd; Sartorius, Benn; Mukaratirwa, Samson

    2017-09-30

    Malaria is a public health problem in Zimbabwe. Although many studies have indicated that climate change may influence the distribution of malaria, there is paucity of information on its trends and association with climatic variables in Zimbabwe. To address this shortfall, the trends of malaria incidence and its interaction with climatic variables in rural Gwanda, Zimbabwe for the period January 2005 to April 2015 was assessed. Retrospective data analysis of reported cases of malaria in three selected Gwanda district rural wards (Buvuma, Ntalale and Selonga) was carried out. Data on malaria cases was collected from the district health information system and ward clinics while data on precipitation and temperature were obtained from the climate hazards group infrared precipitation with station data (CHIRPS) database and the moderate resolution imaging spectro-radiometer (MODIS) satellite data, respectively. Distributed lag non-linear models (DLNLM) were used to determine the temporal lagged association between monthly malaria incidence and monthly climatic variables. There were 246 confirmed malaria cases in the three wards with a mean incidence of 0.16/1000 population/month. The majority of malaria cases (95%) occurred in the > 5 years age category. The results showed no correlation between trends of clinical malaria (unconfirmed) and confirmed malaria cases in all the three study wards. There was a significant association between malaria incidence and the climatic variables in Buvuma and Selonga wards at specific lag periods. In Ntalale ward, only precipitation (1- and 3-month lag) and mean temperature (1- and 2-month lag) were significantly associated with incidence at specific lag periods (p < 0.05). DLNM results suggest a key risk period in current month, based on key climatic conditions in the 1-4 month period prior. As the period of high malaria risk is associated with precipitation and temperature at 1-4 month prior in a seasonal cycle, intensifying malaria control activities over this period will likely contribute to lowering the seasonal malaria incidence.

  17. Filled and Unfilled Temperature-Dependent Epoxy Resin Blends for Lossy Transducer Substrates

    PubMed Central

    Eames, Matthew D.C.; Hossack, John A.

    2016-01-01

    In the context of our ongoing investigation of low-cost 2-dimensional (2-D) arrays, we studied the temperature-dependent acoustic properties of epoxy blends that could serve as an acoustically lossy backing material in compact 2-D array-based devices. This material should be capable of being machined during array manufacture, while also providing adequate signal attenuation to mitigate backing block reverberation artifacts. The acoustic impedance and attenuation of 5 unfilled epoxy blends and 2 filled epoxy blends—tungsten and fiberglass fillers—were analyzed across a 35°C temperature range in 5°C increments. Unfilled epoxy materials possessed an approximately linear variation of impedance and sigmoidal variation of attenuation properties over the range of temperatures of interest. An intermediate epoxy blend was fitted to a quadratic trend line with R2 values of 0.94 and 0.99 for attenuation and impedance, respectively. It was observed that a fiberglass filler induces a strong quadratic trend in the impedance data with temperature, which results in increased error in the characterization of attenuation and impedance. The tungsten-filled epoxy was not susceptible to such problems because a different method of fabrication was required. At body temperature, the tungsten-filled epoxy could provide a 44 dB attenuation of the round-trip backing block echo in our application, in which the center frequency is 5 MHz and the backing material is 1.1 mm thick. This is an 11 dB increase in attenuation compared with the fiberglass-filled epoxy in the context of our application. This work provides motivation for exploring the use of custom-made tungsten-filled epoxy materials as a substitute PCB-based substrate to provide electrical signal interconnect. PMID:19406716

  18. The 500-year temperature and precipitation fluctuations in the Czech Lands derived from documentary evidence and instrumental measurements

    NASA Astrophysics Data System (ADS)

    Dobrovolný, Petr; Brázdil, Rudolf; Kotyza, Oldřich; Valášek, Hubert

    2010-05-01

    Series of temperature and precipitation indices (in ordinal scale) based on interpretation of various sources of documentary evidence (e.g. narrative written reports, visual daily weather records, personal correspondence, special prints, official economic records, etc.) are used as predictors in the reconstruction of mean seasonal temperatures and seasonal precipitation totals for the Czech Lands from A.D. 1500. Long instrumental measurements from 1771 (temperatures) and 1805 (precipitation) are used as a target values to calibrate and verify documentary-based index series. Reconstruction is based on linear regression with variance and mean adjustments. Reconstructed series were compared with similar European documentary-based reconstructions as well as with reconstructions based on different natural proxies. Reconstructed series were analyzed with respect to trends on different time-scales and occurrence of extreme values. We discuss uncertainties typical for documentary evidence from historical archives. Besides the fact that reports on weather and climate in documentary archives cover all seasons, our reconstructions provide the best results for winter temperatures and summer precipitation. However, explained variance for these seasons is comparable to other existing reconstructions for Central Europe.

  19. Density of jadeite melts under high pressure and high temperature conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SAKAMAKI, Tatsuya

    2017-01-01

    The density of the jadeite (NaAlSi2O6) melt has been measured up to 6.5 GPa and 2273 K using the X–ray absorption technique at beamline 13–BM–D of the Advanced Photon Source. A fit of the pressure–density–temperature data to the high temperature Birch–Murnaghan equation of state yielded the following thermoelastic parameters: density, ρ0 = 2.36 g/cm3, isothermal bulk modulus, KT0 = 21.5 ± 0.8 GPa, its pressure derivative, K0' = 8.9 ± 1.2, and the temperature derivative (∂KT/∂T)P = -0.0021 ± 0.0011 GPa/K at a reference temperature T0 = 1473 K. The densification of jadeite melt at low pressures is primarily dominatedmore » by topological changes in the structure, including a decrease in T–O–T angle and breaking and reforming of the T–O bond (T = Si4+, Al3+). Compressibilities of jadeite, albite, diopside, phonolite and peridotite melts display a systematic trend: the K0–K0' plot of these silicate melts exhibits an inverse linear relation.« less

  20. Land use/land cover change effects on temperature trends at U.S. Climate Normals stations

    USGS Publications Warehouse

    Hale, R.C.; Gallo, K.P.; Owen, T.W.; Loveland, Thomas R.

    2006-01-01

    Alterations in land use/land cover (LULC) in areas near meteorological observation stations can influence the measurement of climatological variables such as temperature. Urbanization near climate stations has been the focus of considerable research attention, however conversions between non-urban LULC classes may also have an impact. In this study, trends of minimum, maximum, and average temperature at 366 U.S. Climate Normals stations are analyzed based on changes in LULC defined by the U.S. Land Cover Trends Project. Results indicate relatively few significant temperature trends before periods of greatest LULC change, and these are generally evenly divided between warming and cooling trends. In contrast, after the period of greatest LULC change was observed, 95% of the stations that exhibited significant trends (minimum, maximum, or mean temperature) displayed warming trends. Copyriht 2006 by the American Geophysical Union.

  1. Latitudinal and interhemispheric variation of stratospheric effects on mesospheric ice layer trends

    NASA Astrophysics Data System (ADS)

    Lübken, F.-J.; Berger, U.

    2011-02-01

    Latitudinal and interhemispheric differences of model results on trends in mesospheric ice layers and background conditions are analyzed. The model nudges to European Centre for Medium-Range Weather Forecasts data below ˜45 km. Greenhouse gas concentrations in the mesosphere are kept constant. Temperature trends in the mesosphere mainly come from shrinking of the stratosphere and from dynamical effects. Water vapor increases at noctilucent cloud (NLC) heights and decreases above due to increased freeze drying caused by temperature trends. There is no tendency for ice clouds in the Northern Hemisphere for extending farther southward with time. Trends of NLC albedo are similar to satellite measurements, but only if a time period longer than observations is considered. Ice cloud trends get smaller if albedo thresholds relevant to satellite instruments are applied, in particular at high polar latitudes. This implies that weak and moderate NLC is favored when background conditions improve for NLC formation, whereas strong NLC benefits less. Trends of ice cloud parameters are generally smaller in the Southern Hemisphere (SH) compared to the Northern Hemisphere (NH), consistent with observations. Trends in background conditions have counteracting effects on NLC: temperature trends would suggest stronger ice increase in the SH, and water vapor trends would suggest a weaker increase. Larger trends in NLC brightness or occurrence rates are not necessarily associated with larger (more negative) temperature trends. They can also be caused by larger trends of water vapor caused by larger freeze drying, which in turn can be caused by generally lower temperatures and/or more background water. Trends of NLC brightness and occurrence rates decrease with decreasing latitude in both hemispheres. The latitudinal variation of these trends is primarily determined by induced water vapor trends. Trends in NLC altitudes are generally small. Stratospheric temperature trends vary differently with altitude in the NH and SH but add up to similar trends at mesospheric cloud heights.

  2. 21st Century Trends in Antarctic Temperature and Polar Stratospheric Cloud (PSC) Area in the GEOS Chemistry-Climate Model

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Newman, P. A.

    2010-01-01

    This study examines trends in Antarctic temperature and APSC, a temperature proxy for the area of polar stratospheric clouds, in an ensemble of Goddard Earth Observing System (GEOS) chemistry-climate model (CCM) simulations of the 21st century. A selection of greenhouse gas, ozone-depleting substance, and sea surface temperature scenarios is used to test the trend sensitivity to these parameters. One scenario is used to compare temperature trends in two versions of the GEOS CCM. An extended austral winter season is examined in detail. In May, June, and July, the expected future increase in CO2-related radiative cooling drives temperature trends in the Antarctic lower stratosphere. At 50 hPa, a 1.3 K cooling is expected between 2000 and 2100. Ozone levels increase, despite this robust cooling signal and the consequent increase in APSC, suggesting the enhancement of stratospheric transport in future. In the lower stratosphere, the choice of climate change scenarios does not affect the magnitude of the early winter cooling. Midwinter temperature trends are generally small. In October, APSC trends have the same sign as the prescribed halogen trends. That is, there are negative APSC trends in "grealistic future" simulations, where halogen loading decreases in accordance with the Montreal Protocol and CO2 continues to increase. In these simulations, the speed of ozone recovery is not influenced by either the choice of sea surface temperature and greenhouse gas scenarios or by the model version.

  3. An 'Observational Large Ensemble' to compare observed and modeled temperature trend uncertainty due to internal variability.

    NASA Astrophysics Data System (ADS)

    Poppick, A. N.; McKinnon, K. A.; Dunn-Sigouin, E.; Deser, C.

    2017-12-01

    Initial condition climate model ensembles suggest that regional temperature trends can be highly variable on decadal timescales due to characteristics of internal climate variability. Accounting for trend uncertainty due to internal variability is therefore necessary to contextualize recent observed temperature changes. However, while the variability of trends in a climate model ensemble can be evaluated directly (as the spread across ensemble members), internal variability simulated by a climate model may be inconsistent with observations. Observation-based methods for assessing the role of internal variability on trend uncertainty are therefore required. Here, we use a statistical resampling approach to assess trend uncertainty due to internal variability in historical 50-year (1966-2015) winter near-surface air temperature trends over North America. We compare this estimate of trend uncertainty to simulated trend variability in the NCAR CESM1 Large Ensemble (LENS), finding that uncertainty in wintertime temperature trends over North America due to internal variability is largely overestimated by CESM1, on average by a factor of 32%. Our observation-based resampling approach is combined with the forced signal from LENS to produce an 'Observational Large Ensemble' (OLENS). The members of OLENS indicate a range of spatially coherent fields of temperature trends resulting from different sequences of internal variability consistent with observations. The smaller trend variability in OLENS suggests that uncertainty in the historical climate change signal in observations due to internal variability is less than suggested by LENS.

  4. On the Relationship Between Global Land-Ocean Temperature and Various Descriptors of Solar-Geomagnetic Activity and Climate

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2014-01-01

    Examined are sunspot cycle- (SC-) length averages of the annual January-December values of the Global Land-Ocean Temperature Index () in relation to SC-length averages of annual values of various descriptors of solar-geomagnetic activity and climate, incorporating lags of 0-5 yr. For the overall interval SC12-SC23, the is inferred to correlate best against the parameter incorporating lag = 5 yr, where the parameter refers to the resultant aa value having removed that portion of the annual aa average value due to the yearly variation of sunspot number (SSN). The inferred correlation between the and is statistically important at confidence level cl > 99.9%, having a coefficient of linear correlation r = 0.865 and standard error of estimate se = 0.149 degC. Excluding the most recent cycles SC22 and SC23, the inferred correlation is stronger, having r = 0.969 and se = 0.048 degC. With respect to the overall trend in the , which has been upwards towards warmer temperatures since SC12 (1878-1888), solar-geomagnetic activity parameters are now trending downwards (since SC19). For SC20-SC23, in contrast, comparison of the against SC-length averages of the annual value of the Mauna Loa carbon dioxide () index is found to be highly statistically important (cl >> 99.9%), having r = 0.9994 and se = 0.012 degC for lag = 2 yr. On the basis of the inferred preferential linear correlation between the and , the current ongoing SC24 is inferred to have warmer than was seen in SC23 (i.e., >0.526 degC), probably in excess of 0.68 degC (relative to the 1951-1980 base period).

  5. Simulated permafrost soil thermal dynamics during 1960-2009 in eight offline processed-based models

    NASA Astrophysics Data System (ADS)

    Peng, S.; Gouttevin, I.; Krinner, G.; Ciais, P.

    2013-12-01

    Permafrost soil thermal dynamics not only determine the status of permafrost, but also have large impacts on permafrost organic carbon decomposition. Here, we used eight processed based models that participated in the Vulnerability Permafrost Carbon Research Coordination Network (RCN) project to investigate: (1) the trends in soil temperature at different depths over the northern hemisphere permafrost region during the past five decades, and (2) which factors drive trends and inter-annual variability of permafrost soil temperature? The simulated annual soil temperature at 20cm increases by ~0.02 °C per year from 1960 to 2009 (ranging from 0.00 °C per year in CoLM to 0.04 °C per year in ISBA). Most models simulated more warming of soil in spring and winter than in summer and autumn, although there were different seasonal trends in different models. Trends in soil temperature decrease with soil depth in all models. To quantify the contributions of various factors (air temperature, precipitation, downward longwave radiation etc.) to trends and inter-annual variation in soil temperature, we ran offline models with detrended air temperature, precipitation, downward longwave radiation, respectively. Our results suggest that both annual air temperature and downward longwave radiation significantly correlate with annual soil temperature. Moreover, trend in air temperature and downward longwave radiation contribute 30% and 60% to trends in soil temperature (0 - 200cm), respectively, during the period 1960-2009. Spatial distributions of trend in annual soil temperature at 20cm from R01 simulations of (a) CLM4, (b) CoLM, (c) ISBA, (d) JULES, (e) LPJ_GUESS, (f) ORCHIDEE, (g) UVic and (h) UW-VIC during the period 1960-2009.

  6. Methodological uncertainties in multi-regression analyses of middle-atmospheric data series.

    PubMed

    Kerzenmacher, Tobias E; Keckhut, Philippe; Hauchecorne, Alain; Chanin, Marie-Lise

    2006-07-01

    Multi-regression analyses have often been used recently to detect trends, in particular in ozone or temperature data sets in the stratosphere. The confidence in detecting trends depends on a number of factors which generate uncertainties. Part of these uncertainties comes from the random variability and these are what is usually considered. They can be statistically estimated from residual deviations between the data and the fitting model. However, interferences between different sources of variability affecting the data set, such as the Quasi-Biennal Oscillation (QBO), volcanic aerosols, solar flux variability and the trend can also be a critical source of errors. This type of error has hitherto not been well quantified. In this work an artificial data series has been generated to carry out such estimates. The sources of errors considered here are: the length of the data series, the dependence on the choice of parameters used in the fitting model and the time evolution of the trend in the data series. Curves provided here, will permit future studies to test the magnitude of the methodological bias expected for a given case, as shown in several real examples. It is found that, if the data series is shorter than a decade, the uncertainties are very large, whatever factors are chosen to identify the source of the variability. However the errors can be limited when dealing with natural variability, if a sufficient number of periods (for periodic forcings) are covered by the analysed dataset. However when analysing the trend, the response to volcanic eruption induces a bias, whatever the length of the data series. The signal to noise ratio is a key factor: doubling the noise increases the period for which data is required in order to obtain an error smaller than 10%, from 1 to 3-4 decades. Moreover, if non-linear trends are superimposed on the data, and if the length of the series is longer than five years, a non-linear function has to be used to estimate trends. When applied to real data series, and when a breakpoint in the series occurs, the study reveals that data extending over 5 years are needed to detect a significant change in the slope of the ozone trends at mid-latitudes.

  7. Long-term trends of bloater (Coregonus hoyi) recruitment in Lake Michigan: evidence for the effect of sex ratio

    USGS Publications Warehouse

    Bunnell, David B.; Madenjian, Charles P.; Croley, Thomas E.

    2006-01-01

    Long-term population trends are generally explained by factors extrinsic (e.g., climate, predation) rather than intrinsic (e.g., genetics, maternal effects) to the population. We sought to understand the long-term population dynamics of an important native Lake Michigan prey fish, the bloaterCoregonus hoyi. Over a 38-year time series, three 10- to 15-year phases occurred (poor, excellent, and then poor recruitment) without high interannual variability within a particular phase. We used dynamic linear models to determine whether extrinsic (winter and spring temperature, alewife predator densities) or intrinsic factors (population egg production, adult condition, adult sex ratio) explained variation in recruitment. Models that included population egg production, sex ratio, winter and spring temperature, and adult bloater condition explained the most variation. Of these variables, sex ratio, which ranged from 47% to 97% female across the time series, consistently had the greatest effect: recruitment declined with female predominance. Including biomass of adult alewife predators in the models did not explain additional variation. Overall our results indicated that bloater recruitment is linked to its sex ratio, but understanding the underlying mechanisms will require additional efforts.

  8. Corrosion of Candidate High Temperature Alloys in Supercritical Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Parks, Curtis J.

    The corrosion resistance of three candidate alloys is tested in supercritical carbon dioxide (S-CO2) at different levels of temperature and pressure for up to 3000 hours. The purpose of the testing is to evaluate the compatibility of different engineering alloys in S-CO2 for use in a S-CO 2 Brayton cycle. The three alloys used are austenitic stainless steel 316, iron-nickel-base superalloy 718, and nickel-base superalloy 738. Each alloy is exposed to four combinations of temperature and pressure, consisting of either 550°C or 700°C at either 15 or 25 MPa for up to 1500 hours. At each temperature, an additional sample set is tested for 3000 hours and experienced an increase in pressure from 15 MPa to 25 MPa after 1500 hours of testing. All three alloys are successful in producing a protective oxide layer at the lower temperature of 550°C based on the logarithmic weight gain trends. At the higher temperature of 700°C, 316SS exhibits unfavourable linear weight gain trends at both pressures of 15 and 25 MPa. In comparison, IN-718 and IN-738 performs similarly in producing a protective oxide layer illustrated through a power weight gain relation. The effect of pressure is most pronounced at the operating temperature of 700°C, where the higher pressure of 25 MPa results in an increased rate of oxide formation. SEM analysis exposes a thin film oxide for both IN-718 and IN-738 but severe intergranular corrosion is exhibited by IN-738. Based on the testing conducted, both alloys show favourable characteristics for use in S-CO 2 conditions up to 700°C, but further testing is required to characterize the effect of the intergranular corrosion on the stability of oxide in IN-738. 316SS provided favourable results for use in temperatures of 550°C, but the protective oxide deteriorated at an operating temperature of 700°C.

  9. A century of climate and ecosystem change in Western Montana: What do temperature trends portend?

    USGS Publications Warehouse

    Pederson, G.T.; Graumlich, L.J.; Fagre, D.B.; Kipfer, T.; Muhlfeld, C.C.

    2010-01-01

    The physical science linking human-induced increases in greenhouse gasses to the warming of the global climate system is well established, but the implications of this warming for ecosystem processes and services at regional scales is still poorly understood. Thus, the objectives of this work were to: (1) describe rates of change in temperature averages and extremes for western Montana, a region containing sensitive resources and ecosystems, (2) investigate associations between Montana temperature change to hemispheric and global temperature change, (3) provide climate analysis tools for land and resource managers responsible for researching and maintaining renewable resources, habitat, and threatened/endangered species and (4) integrate our findings into a more general assessment of climate impacts on ecosystem processes and services over the past century. Over 100 years of daily and monthly temperature data collected in western Montana, USA are analyzed for long-term changes in seasonal averages and daily extremes. In particular, variability and trends in temperature above or below ecologically and socially meaningful thresholds within this region (e.g., -17.8??C (0??F), 0??C (32??F), and 32.2??C (90??F)) are assessed. The daily temperature time series reveal extremely cold days (??? -17.8??C) terminate on average 20 days earlier and decline in number, whereas extremely hot days (???32??C) show a three-fold increase in number and a 24-day increase in seasonal window during which they occur. Results show that regionally important thresholds have been exceeded, the most recent of which include the timing and number of the 0??C freeze/thaw temperatures during spring and fall. Finally, we close with a discussion on the implications for Montana's ecosystems. Special attention is given to critical processes that respond non-linearly as temperatures exceed critical thresholds, and have positive feedbacks that amplify the changes. ?? Springer Science + Business Media B.V. 2009.

  10. Quantification of Local Warming Trend: A Remote Sensing-Based Approach

    PubMed Central

    Rahaman, Khan Rubayet; Hassan, Quazi K.

    2017-01-01

    Understanding the warming trends at local level is critical; and, the development of relevant adaptation and mitigation policies at those levels are quite challenging. Here, our overall goal was to generate local warming trend map at 1 km spatial resolution by using: (i) Moderate Resolution Imaging Spectroradiometer (MODIS)-based 8-day composite surface temperature data; (ii) weather station-based yearly average air temperature data; and (iii) air temperature normal (i.e., 30 year average) data over the Canadian province of Alberta during the period 1961–2010. Thus, we analysed the station-based air temperature data in generating relationships between air temperature normal and yearly average air temperature in order to facilitate the selection of year-specific MODIS-based surface temperature data. These MODIS data in conjunction with weather station-based air temperature normal data were then used to model local warming trends. We observed that almost 88% areas of the province experienced warming trends (i.e., up to 1.5°C). The study concluded that remote sensing technology could be useful for delineating generic trends associated with local warming. PMID:28072857

  11. Problems in evaluating regional and local trends in temperature: An example from eastern Colorado, USA

    USGS Publications Warehouse

    Pielke, R.A.; Stohlgren, T.; Schell, L.; Parton, W.; Doesken, N.; Redmond, K.; Moeny, J.; McKee, T.; Kittel, T.G.F.

    2002-01-01

    We evaluated long-term trends in average maximum and minimum temperatures, threshold temperatures, and growing season in eastern Colorado, USA, to explore the potential shortcomings of many climate-change studies that either: (1) generalize regional patterns from single stations, single seasons, or a few parameters over short duration from averaging dissimilar stations: or (2) generalize an average regional pattern from coarse-scale general circulation models. Based on 11 weather stations, some trends were weakly regionally consistent with previous studies of night-time temperature warming. Long-term (80 + years) mean minimum temperatures increased significantly (P < 0.2) in about half the stations in winter, spring, and autumn and six stations had significant decreases in the number of days per year with temperatures ??? - 17.8 ??C (???0??F). However, spatial and temporal variation in the direction of change was enormous for all the other weather parameters tested, and, in the majority of tests, few stations showed significant trends (even at P < 0.2). In summer, four stations had significant increases and three stations had significant decreases in minimum temperatures, producing a strongly mixed regional signal. Trends in maximum temperature varied seasonally and geographically, as did trends in threshold temperature days ???32.2??C (???90??F) or days ???37.8??C (???100??F). There was evidence of a subregional cooling in autumn's maximum temperatures, with five stations showing significant decreasing trends. There were many geographic anomalies where neighbouring weather stations differed greatly in the magnitude of change or where they had significant and opposite trends. We conclude that sub-regional spatial and seasonal variation cannot be ignored when evaluating the direction and magnitude of climate change. It is unlikely that one or a few weather stations are representative of regional climate trends, and equally unlikely that regionally projected climate change from coarse-scale general circulation models will accurately portray trends at sub-regional scales. However, the assessment of a group of stations for consistent more qualitative trends (such as the number of days less than - 17.8??C, such as we found) provides a reasonably robust procedure to evaluate climate trends and variability. Copyright ?? 2002 Royal Meteorological Society.

  12. Active layer thermal monitoring at Fildes Peninsula, King George Island, Maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. N. B.; Francelino M., R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-07-01

    International attention to the climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of the this paper is to present active layer temperature data for one CALM-S site located at Fildes Peninsula, King George Island, Maritime Antarctica over an fifth seven month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ± 0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a~high capacity data logger. A series of statistical analysis were performed to describe the soil temperature time series, including a linear fit in order to identify global trend and a series of autoregressive integrated moving average (ARIMA) models were tested in order to define the best fit for the data. The controls of weather on the thermal regime of the active layer have been identified, providing insights about the influence of climate chance over the permafrost. The active layer thermal regime in the studied period was typical of periglacial environment, with extreme variation at the surface during summer resulting in frequent freeze and thaw cycles. The active layer thickness (ALT) over the studied period showed variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model was considered appropriate to treat the dataset, enabling more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and active layer thickness over the studied period, no warming trend was detected.

  13. Active-layer thermal monitoring on the Fildes Peninsula, King George Island, maritime Antarctica

    NASA Astrophysics Data System (ADS)

    Michel, R. F. M.; Schaefer, C. E. G. R.; Simas, F. M. B.; Francelino, M. R.; Fernandes-Filho, E. I.; Lyra, G. B.; Bockheim, J. G.

    2014-12-01

    International attention to climate change phenomena has grown in the last decade; the active layer and permafrost are of great importance in understanding processes and future trends due to their role in energy flux regulation. The objective of this paper is to present active-layer temperature data for one Circumpolar Active Layer Monitoring South hemisphere (CALM-S) site located on the Fildes Peninsula, King George Island, maritime Antarctica over an 57-month period (2008-2012). The monitoring site was installed during the summer of 2008 and consists of thermistors (accuracy of ±0.2 °C), arranged vertically with probes at different depths, recording data at hourly intervals in a high-capacity data logger. A series of statistical analyses was performed to describe the soil temperature time series, including a linear fit in order to identify global trends, and a series of autoregressive integrated moving average (ARIMA) models was tested in order to define the best fit for the data. The affects of weather on the thermal regime of the active layer have been identified, providing insights into the influence of climate change on permafrost. The active-layer thermal regime in the studied period was typical of periglacial environments, with extreme variation in surface during the summer resulting in frequent freeze and thaw cycles. The active-layer thickness (ALT) over the studied period shows a degree of variability related to different annual weather conditions, reaching a maximum of 117.5 cm in 2009. The ARIMA model could describe the data adequately and is an important tool for more conclusive analysis and predictions when longer data sets are available. Despite the variability when comparing temperature readings and ACT over the studied period, no trend can be identified.

  14. Mapping of the Land Cover Spatiotemporal Characteristics in Northern Russia Caused by Climate Change

    NASA Astrophysics Data System (ADS)

    Panidi, E.; Tsepelev, V.; Torlopova, N.; Bobkov, A.

    2016-06-01

    The study is devoted to the investigation of regional climate change in Northern Russia. Due to sparseness of the meteorological observation network in northern regions, we investigate the application capabilities of remotely sensed vegetation cover as indicator of climate change at the regional scale. In previous studies, we identified statistically significant relationship between the increase of surface air temperature and increase of the shrub vegetation productivity. We verified this relationship using ground observation data collected at the meteorological stations and Normalised Difference Vegetation Index (NDVI) data produced from Terra/MODIS satellite imagery. Additionally, we designed the technique of growing seasons separation for detailed investigation of the land cover (shrub cover) dynamics. Growing seasons are the periods when the temperature exceeds +5°C and +10°C. These periods determine the vegetation productivity conditions (i.e., conditions that allow growth of the phytomass). We have discovered that the trend signs for the surface air temperature and NDVI coincide on planes and river floodplains. On the current stage of the study, we are working on the automated mapping technique, which allows to estimate the direction and magnitude of the climate change in Northern Russia. This technique will make it possible to extrapolate identified relationship between land cover and climate onto territories with sparse network of meteorological stations. We have produced the gridded maps of NDVI and NDWI for the test area in European part of Northern Russia covered with the shrub vegetation. Basing on these maps, we may determine the frames of growing seasons for each grid cell. It will help us to obtain gridded maps of the NDVI linear trend for growing seasons on cell-by-cell basis. The trend maps can be used as indicative maps for estimation of the climate change on the studied areas.

  15. Antarctic Sea ice variations and seasonal air temperature relationships

    NASA Technical Reports Server (NTRS)

    Weatherly, John W.; Walsh, John E.; Zwally, H. J.

    1991-01-01

    Data through 1987 are used to determine the regional and seasonal dependencies of recent trends of Antarctic temperature and sea ice. Lead-lag relationships involving regional sea ice and air temperature are systematically evaluated, with an eye toward the ice-temperature feedbacks that may influence climatic change. Over the 1958-1087 period the temperature trends are positive in all seasons. For the 15 years (l973-l987) for which ice data are available, the trends are predominantly positive only in winter and summer, and are most strongly positive over the Antarctic Peninsula. The spatially aggregated trend of temperature for this latter period is small but positive, while the corresponding trend of ice coverage is small but negative. Lag correlations between seasonal anomalies of the two variables are generally stronger with ice lagging the summer temperatures and with ice leading the winter temperatures. The implication is that summer temperatures predispose the near-surface waters to above-or below-normal ice coverage in the following fall and winter.

  16. Effects of Temperature on Development and Voltinism of Chaetodactylus krombeini (Acari: Chaetodactylidae): Implications for Climate Change Impacts

    DOE PAGES

    Ahn, Jeong Joon; Son, Youngsoo; He, Yaqian; ...

    2016-08-17

    Temperature plays an important role in the growth and development of arthropods, and thus the current trend of climate change will alter their biology and species distribution. We used Chaetodactylus krombeini (Acari: Chaetodactylidae), a cleptoparasitic mite associated with Osmia bees (Hymenoptera: Megachilidae), as a model organism to investigate how temperature affects the development and voltinism of C. krombeini in the eastern United States. The effects of temperature on the stage-specific development of C. krombeini were determined at seven constant temperatures (16.1, 20.2, 24.1, 27.5, 30.0, 32.4 and 37.8°C). Parameters for stage-specific development, such as threshold temperatures and thermal constant, weremore » determined by using empirical models. Results of this study showed that C. krombeini eggs developed successfully to adult at all temperatures tested except 37.8°C. The nonlinear and linear empirical models were applied to describe quantitatively the relationship between temperature and development of each C. krombeini stage. The nonlinear Lactin model estimated optimal temperatures as 31.4, 32.9, 32.6 and 32.5°C for egg, larva, nymph, and egg to adult, respectively. In the linear model, the lower threshold temperatures were estimated to be 9.9, 14.7, 13.0 and 12.4°C for egg, larva, nymph, and egg to adult, respectively. The thermal constant for each stage completion were 61.5, 28.1, 64.8 and 171.1 degree days for egg, larva, nymph, and egg to adult, respectively. Under the future climate scenarios, the number of generations (i.e., voltinism) would increase more likely by 1.5 to 2.0 times by the year of 2100 according to simulation. Lastly, the findings herein firstly provided comprehensive data on thermal development of C. krombeini and implications for the management of C. krombeini populations under global warming were discussed.« less

  17. Effects of Temperature on Development and Voltinism of Chaetodactylus krombeini (Acari: Chaetodactylidae): Implications for Climate Change Impacts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Jeong Joon; Son, Youngsoo; He, Yaqian

    Temperature plays an important role in the growth and development of arthropods, and thus the current trend of climate change will alter their biology and species distribution. We used Chaetodactylus krombeini (Acari: Chaetodactylidae), a cleptoparasitic mite associated with Osmia bees (Hymenoptera: Megachilidae), as a model organism to investigate how temperature affects the development and voltinism of C. krombeini in the eastern United States. The effects of temperature on the stage-specific development of C. krombeini were determined at seven constant temperatures (16.1, 20.2, 24.1, 27.5, 30.0, 32.4 and 37.8°C). Parameters for stage-specific development, such as threshold temperatures and thermal constant, weremore » determined by using empirical models. Results of this study showed that C. krombeini eggs developed successfully to adult at all temperatures tested except 37.8°C. The nonlinear and linear empirical models were applied to describe quantitatively the relationship between temperature and development of each C. krombeini stage. The nonlinear Lactin model estimated optimal temperatures as 31.4, 32.9, 32.6 and 32.5°C for egg, larva, nymph, and egg to adult, respectively. In the linear model, the lower threshold temperatures were estimated to be 9.9, 14.7, 13.0 and 12.4°C for egg, larva, nymph, and egg to adult, respectively. The thermal constant for each stage completion were 61.5, 28.1, 64.8 and 171.1 degree days for egg, larva, nymph, and egg to adult, respectively. Under the future climate scenarios, the number of generations (i.e., voltinism) would increase more likely by 1.5 to 2.0 times by the year of 2100 according to simulation. Lastly, the findings herein firstly provided comprehensive data on thermal development of C. krombeini and implications for the management of C. krombeini populations under global warming were discussed.« less

  18. Projection of temperature-related mortality due to cardiovascular disease in beijing under different climate change, population, and adaptation scenarios.

    PubMed

    Zhang, Boya; Li, Guoxing; Ma, Yue; Pan, Xiaochuan

    2018-04-01

    Human health faces unprecedented challenges caused by climate change. Thus, studies of the effect of temperature change on total mortality have been conducted in numerous countries. However, few of those studies focused on temperature-related mortality due to cardiovascular disease (CVD) or considered future population changes and adaptation to climate change. We present herein a projection of temperature-related mortality due to CVD under different climate change, population, and adaptation scenarios in Beijing, a megacity in China. To this end, 19 global circulation models (GCMs), 3 representative concentration pathways (RCPs), 3 socioeconomic pathways, together with generalized linear models and distributed lag non-linear models, were used to project future temperature-related CVD mortality during periods centered around the years 2050 and 2070. The number of temperature-related CVD deaths in Beijing is projected to increase by 3.5-10.2% under different RCP scenarios compared with that during the baseline period. Using the same GCM, the future daily maximum temperatures projected using the RCP2.6, RCP4.5, and RCP8.5 scenarios showed a gradually increasing trend. When population change is considered, the annual rate of increase in temperature-related CVD deaths was up to fivefold greater than that under no-population-change scenarios. The decrease in the number of cold-related deaths did not compensate for the increase in that of heat-related deaths, leading to a general increase in the number of temperature-related deaths due to CVD in Beijing. In addition, adaptation to climate change may enhance rather than ameliorate the effect of climate change, as the increase in cold-related CVD mortality greater than the decrease in heat-related CVD mortality in the adaptation scenarios will result in an increase in the total number of temperature-related CVD mortalities. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Effects of Temperature on Development and Voltinism of Chaetodactylus krombeini (Acari: Chaetodactylidae): Implications for Climate Change Impacts

    PubMed Central

    Ahn, Jeong Joon; Son, Youngsoo; He, Yaqian; Lee, Eungul; Park, Yong-Lak

    2016-01-01

    Temperature plays an important role in the growth and development of arthropods, and thus the current trend of climate change will alter their biology and species distribution. We used Chaetodactylus krombeini (Acari: Chaetodactylidae), a cleptoparasitic mite associated with Osmia bees (Hymenoptera: Megachilidae), as a model organism to investigate how temperature affects the development and voltinism of C. krombeini in the eastern United States. The effects of temperature on the stage-specific development of C. krombeini were determined at seven constant temperatures (16.1, 20.2, 24.1, 27.5, 30.0, 32.4 and 37.8°C). Parameters for stage-specific development, such as threshold temperatures and thermal constant, were determined by using empirical models. Results of this study showed that C. krombeini eggs developed successfully to adult at all temperatures tested except 37.8°C. The nonlinear and linear empirical models were applied to describe quantitatively the relationship between temperature and development of each C. krombeini stage. The nonlinear Lactin model estimated optimal temperatures as 31.4, 32.9, 32.6 and 32.5°C for egg, larva, nymph, and egg to adult, respectively. In the linear model, the lower threshold temperatures were estimated to be 9.9, 14.7, 13.0 and 12.4°C for egg, larva, nymph, and egg to adult, respectively. The thermal constant for each stage completion were 61.5, 28.1, 64.8 and 171.1 degree days for egg, larva, nymph, and egg to adult, respectively. Under the future climate scenarios, the number of generations (i.e., voltinism) would increase more likely by 1.5 to 2.0 times by the year of 2100 according to simulation. The findings herein firstly provided comprehensive data on thermal development of C. krombeini and implications for the management of C. krombeini populations under global warming were discussed. *Scientific Article No. 3278 of the West Virginia Agricultural and Forestry Experiment Station, Morgantown, West Virginia PMID:27532151

  20. Change features and regional distribution of temperature trend and variability joint mode in mainland China

    NASA Astrophysics Data System (ADS)

    Chen, Xi; Li, Ning; Zhang, Zhengtao; Feng, Jieling; Wang, Ye

    2018-05-01

    Adaption for temperature should be suitable to local conditions for regional differences in temperature change features. This paper proposed to utilize nine temperature modes that joint the trend (increasing/decreasing/unchanged) with variability (intensifying/weakening/unchanged) to investigate features of temperature change in mainland China. Monthly temperature data over the period 1960-2013 were obtained from 522 national basic and reference meteorological stations. Here, temperature trend (TT) was reflected by the trend of mean annual temperature (MAT) and the uptrend (downtrend) of inter-monthly sliding standard deviation (SSD) series with a sliding length of 29 years (348 months) was used for representing the intensification (weakening) of temperature variability (TV). The Mann-Kendall method and the least squares method were applied to assess the significance and quantify the magnitude of trend in MAT and SSD time series, respectively. The results show that there is a consistent warming trend throughout the country except for only three stations in which a cooling trend is identified. Moreover, the overall increasing rate in the north of 35° N is the highest, over 0.4 °C/decade for most stations. TV is weakened for almost 98% of the stations, indicating the low instability of temperature at a national scale. Finally, temperature mode (TM), for more than 90% of the stations, is the combination of an increasing TT with a weakened TV (mode 8). So, it is more important for people to adapt to the increasing temperature in these regions. Compared to using annual temperature data to calculate SSD, monthly data can accurately reflect the inter-monthly change of temperature and reserve more initial characteristics of temperature.

  1. The Multiphase Rheology of Andesitic Magmas from the 1.9ka Eruption of Turrialba Volcano (Costa Rica)

    NASA Astrophysics Data System (ADS)

    Vona, A.; Di Piazza, A.; Romano, C.; De Astis, G.; Soto, G. J.

    2014-12-01

    We present a study of high-temperature, uniaxial deformation experiments of natural magma from an andesitic eruption of Turrialba volcano (1.9ka Plinian eruption). The aim of this work is to investigate the multiphase rheology (liquid+vesicles+crystals) of natural samples and the effect of vesicles and crystals on the magma viscosity. The experiments were performed using a high-temperature uniaxial Geocomp LoadTrac II press at dry atmospheric conditions and controlled deformation rates. Cores of natural sample (with Φcrys=0.20-0.30 and Φves=0.41-0.58) were deformed isothermally (790-870°C) at variable strain rates (VSR, from 10-6 to 10-4 s-1) and constant strain rate (CSR, 10-5 s-1). VSR were performed at low total amount of strain (e<0.10) to parameterize the flow behavior of these complex natural materials. The stress-strain rate relationships under flow conditions showed a linear trend between the applied stress and strain rate in the temperature interval investigated. All the samples display a steep linear trend, typical of Newtonian fluids (n index ~ 1), with a very small shear thinning behavior. CSR tests were performed at different total amount of strain (e=0.15-0.25-0.35). Strain hardening was observed with increasing deformation, resulting in an increase of apparent viscosity (up to 100.5 Pa s). This increase is related to the loss of total porosity (up to ΔΦves=0.15) due to compaction of the sample as indicated by post-run analyses . The measured multiphase rheology of Turrialba magmas was compared with literature models for both crystal- and bubble-bearing suspension. We calculate a difference of ~101 Pa s in magma apparent viscosity between high and low density samples, that coupled with a lateral temperature gradient inside the conduit of the volcano, could increase up to ~103 Pa s. The large difference in viscosity could be responsible of significant rheological contrasts, possibly resulting in strain localization and brittle fragmentation of magma.

  2. Temporal dynamic of malaria in a suburban area along the Niger River.

    PubMed

    Sissoko, Mahamadou Soumana; Sissoko, Kourane; Kamate, Bourama; Samake, Yacouba; Goita, Siaka; Dabo, Abdoulaye; Yena, Mama; Dessay, Nadine; Piarroux, Renaud; Doumbo, Ogobara K; Gaudart, Jean

    2017-10-23

    Even if rainfall and temperature are factors classically associated to malaria, little is known about other meteorological factors, their variability and combinations related to malaria, in association with river height variations. Furthermore, in suburban area, urbanization and growing population density should be assessed in relation to these environmental factors. The aim of this study was to assess the impact of combined environmental, meteorological and hydrological factors on malaria incidence through time in the context of urbanization. Population observational data were prospectively collected. Clinical malaria was defined as the presence of parasites in addition to clinical symptoms. Meteorological and hydrological factors were measured daily. For each factors variation indices were estimated. Urbanization was yearly estimated assessing satellite imaging and field investigations. Principal component analysis was used for dimension reduction and factors combination. Lags between malaria incidences and the main components were assessed by cross-correlation functions. Generalized additive model was used to assess relative impact of different environmental components, taking into account lags, and modelling non-linear relationships. Change-point analysis was used to determine transmission periods within years. Malaria incidences were dominated by annual periodicity and varied through time without modification of the dynamic, with no impact of the urbanization. The main meteorological factor associated with malaria was a combination of evaporation, humidity and rainfall, with a lag of 3 months. The relationship between combined temperature factors showed a linear impact until reaching high temperatures limiting malaria incidence, with a lag 3.25 months. Height and variation of the river were related to malaria incidence (respectively 6 week lag and no lag). The study emphasizes no decreasing trend of malaria incidence despite accurate access to care and control strategies in accordance to international recommendations. Furthermore, no decreasing trend was showed despite the urbanization of the area. Malaria transmission remain increase 3 months after the beginning of the dry season. Addition to evaporation versus humidity/rainfall, nonlinear relationship for temperature and river height and variations have to be taken into account when implementing malaria control programmes.

  3. Linearity of Mid-Continent Kimberlite-Carbonatite Magmatism, USA: Slab-Edge Focus as Alternative to Hot-Spot Track

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.

    2009-12-01

    The fates of subducted oceanic slabs at depth in the mantle are not well known, but linear trends of unusual magmatic products such as kimberlites and carbonatites might be used to track their past existence within the mantle. A N40°W linear trend of kimberlites and carbonatites, and rocks of kimberlitic affinity, from the Black Hills (WY-SD) to Alberta, was suggested to have been caused by upwelling mantle material focused directly above the western edge of the subducted Kula plate stalled in the transition zone, with a slab window or “tear” to the southwest (Duke, 2009). In contrast, a linear zone of similar magmas to the south (a southerly extension of this N40°W linear trend, from Kansas to Louisiana) has been proposed to represent a hot spot trace produced by a mantle plume (“Bermuda Hot Spot”). Ongoing studies of ages and geochemistry of alkalic rocks along the N40°W trend from Louisiana to Alberta provide increasing evidence for a slab-edge model as the cause of the linear trend of kimberlites and carbonatites in the mid-continent. In addition, seismic tomography indicates that the torn Farallon slab currently is stalled in the transition zone below the mid-continent, and an older slab is within the lower mantle farther to the east (Sigloch et al., 2008). These seismic data were interpreted as revealing the presence of the western edge of the Farallon plate trending roughly N40°W. The slab edge as projected to the surface is parallel to, but slightly west of, the trend of kimberlites and carbonatites at the mid-continent. Recently published ages show no clear age progression for the magmatism and thus do not support a hot-spot hypothesis for the linear trend. The isotopic compositions of the alkalic rocks show a genetic similarity among more recent magmas along the trend. There are at least four main pulses of magmatism along the trend at 110-85, 67-64, 55-52, and less than 50 Ma. Kimberlites and carbonatites in the northern section of the N40°W trend are the youngest of the northern group, with ages of ~48 to ≤ 46 Ma. The southern portion of the trend contains the oldest alkalic magmatism in Arkansas, Kansas, and Louisiana, with kimberlites in Kansas and carbonatites in Arkansas. The 67-64 Ma magmatic (or “reheating”) pulse was recorded along the entire trend from Louisiana to northern Montana. Multiple slabs and/or slab segmentation, and irregular convection may account for multiple magmatic pulses, although the 67-64 Ma magmatism across the entire continent is difficult to explain. Importantly, kimberlites and carbonatites represent the most recent, or part of the most recent, magmatism along the N40°W trend. This correlates with a change in proportion of source composition with time, as indicated by increasing positive epsilon Nd and Hf, lower 87Sr/86Sr, and higher 207Pb/204Pb, 206/204Pb, and 208Pb/204Pb. Thus, in each area where there exist precise age and isotopic data, magmatism began with a component that was dominantly lithospheric, followed by increasing proportions of asthenospheric component with time, culminating with kimberlitic or carbonatite magmatism.

  4. Heat aggregation studies of phycobilisomes, ferritin, insulin, and immunoglobulin by dynamic light scattering.

    PubMed

    Singh, B P; Bohidar, H B; Chopra, S

    1991-10-15

    Dynamic laser light scattering studies on the heat aggregation behavior of phycobilisomes (PBS), ferritin, insulin, and immunoglobulin (IgG) in dilute aqueous solutions has been reported. Except for PBS, results are reported for heat aggregation trends in these proteins for three different pH environments (4.0, 7.5, 9.1). For PBS, studies were performed only in the neutral buffer medium (pH 7.5). The experiments were performed in the very dilute concentration regime (between 0.23 and 1.8 gL-1). For all these samples heat aggregation and dissociation trends were found to be linear with temperature. Upon temperature reversal (self-cooling), hysteresis-like behavior observed in insulin was found to be predominantly large at pH 7.5. PBS, ferritin, and IgG showed no such behavior at any of three pH values, and retraced their path of aggregation while dissociating on temperature reversal. Heat aggregation and dissociation processes in ferritin were found to be independent of pH. The IgG samples showed smooth aggregation tendency only up to 35 degrees C in the buffer media pH 4.0 and 9.1, whereas for pH 7.0 the same could be observed until 60 degrees C. Low polydispersity in the correlation spectra was observed in case of all these samples.

  5. [Vegetation change of Yamzho Yumco Basin in southern Tibet based on SPOT-VGT NDVI].

    PubMed

    Yu, Shu-Mei; Liu, Jing-Shi; Yuan, Jin-Guo

    2010-06-01

    The area we studied is Lake Yamzho Yumco Basin (28 degrees 27'-29 degrees 12'N, 90 degrees 08'-91 degrees 45'E), the largest inland lake basin in southern Tibetan Plateau, China. Using the SPOT-VGT NDVI vegetation index from 1998 to 2007 in the basin, the temporal and spatial variation characteristics of NDVI and its correlation with the major climatic factors (air temperature, precipitation) were analyzed. The results show that the average NDVI of the lake basin ranges from 0.12 to 0.31 and its seasonal change is obvious; the NDVI begins to rise rapidly in May and reaches the maximum value in early September. The average NDVI of the basin shows the slow increasing trend during 1998 to 2007, and it indicates that the eco-environment of the basin is recovering. The high value of NDVI has close relationships with water supply, altitude and vegetation types, so NDVI is relatively high near water sources and is the highest in meadow grassland. The summer air temperature and precipitation are the important climate elements that influence the vegetation in the basin, and the linear correlation coefficients between NDVI and air temperature and precipitation are 0.7 and 0.71, respectively. In recent years, warm and humid trend of the local climate is prevailing to improve the ecological environment in Yamzho Yumco Basin.

  6. Seasonal modeling of hand, foot, and mouth disease as a function of meteorological variations in Chongqing, China

    NASA Astrophysics Data System (ADS)

    Wang, Pin; Zhao, Han; You, Fangxin; Zhou, Hailong; Goggins, William B.

    2017-08-01

    Hand, foot, and mouth disease (HFMD) is an enterovirus-induced infectious disease, mainly affecting children under 5 years old. Outbreaks of HFMD in recent years indicate the disease interacts with both the weather and season. This study aimed to investigate the seasonal association between HFMD and weather variation in Chongqing, China. Generalized additive models and distributed lag non-linear models based on a maximum lag of 14 days, with negative binomial distribution assumed to account for overdispersion, were constructed to model the association between reporting HFMD cases from 2009 to 2014 and daily mean temperature, relative humidity, total rainfall and sun duration, adjusting for trend, season, and day of the week. The year-round temperature and relative humidity, rainfall in summer, and sun duration in winter were all significantly associated with HFMD. An inverted-U relationship was found between mean temperature and HFMD above 19 °C in summer, with a maximum morbidity at 27 °C, while the risk increased linearly with the temperature in winter. A hockey-stick association was found for relative humidity in summer with increasing risks over 60%. Heavy rainfall, relative to no rain, was found to be associated with reduced HFMD risk in summer and 2 h of sunshine could decrease the risk by 21% in winter. The present study showed meteorological variables were differentially associated with HFMD incidence in two seasons. Short-term weather variation surveillance and forecasting could be employed as an early indicator for potential HFMD outbreaks.

  7. Dependence of the critical temperature in overdoped copper oxides on superfluid density

    DOE PAGES

    Božović, I.; He, X.; Wu, J.; ...

    2016-08-17

    The physics of underdoped copper-oxide superconductors, including the pseudogap, spin and charge ordering, and their relation to superconductivity 1-3, is intensely debated. The overdoped side is perceived as simpler, with strongly-correlated fermion physics evolving smoothly into the conventional Bardeen-Cooper-Schrieffer (BCS) behavior. Pioneering studies on a few overdoped samples 4-11 indicated that the superfluid density was much smaller than expected, but this was attributed to pair-breaking, disorder, and phase separation. Here, we test this conjecture by studying how the magnetic penetration depth λ and the phase stiffness ρs depend on temperature and doping, scanning densely the entire overdoped side of themore » La 2-xSr xCuO 4 (LSCO) phase diagram. We have measured the absolute values of λ and ρs to the accuracy of ±1% in thousands of cuprate samples; the large statistics reveals clear trends and intrinsic properties. The films are quite homogeneous; variations in the critical temperature (T c) within a film are very small (< 1 K). At every doping, ρs(T) decreases linearly with temperature. The T c(ρ s0) dependence is linear but with an offset, (T c - T 0) ∝ ρs0 where T0 ≈ 7 K, except very close to the origin where Tc ∝ √ρ s0. This scaling law defies the standard BCS description, posing a challenge to theory.« less

  8. Climate Change in Alpine Regions - Regional Characteristics of a Global Phenomenon by the Example of Air Temperature

    NASA Astrophysics Data System (ADS)

    Lang, Erich; Stary, Ulrike

    2017-04-01

    For nearly 50 years the Austrian Research Centre for Forests (BFW) has been engaged in research in the Alpine region recording measuring data at extreme sites. Data series of this duration provide already a good insight into the evolution of climate parameters. Extrapolations derived from it are suitable for comparison with results from climate change models or supplement them with regard to their informative value. This is useful because climate change models describe a simplified picture of reality based on the size of the data grid they use. Analysis of time series of two air temperature measuring stations in different torrent catchment areas indicate that 1) predictions of temperature rise for the Alpine region in Austria will have to be revised upwards, and 2) only looking at the data of seasons (or shorter time periods), reveals the real dramatic effect of climate change. Considering e.g. the annual average data of air temperature of the years 1969-2016 at the climate station "Fleissner" (altitude 1210m a.s.l; Upper Mölltal, Carinthia) a significant upward trend is visible. Using a linear smoothing function an increase of the average annual air temperature of about 2.2°C within 50 years emerges. The calculated temperature rise thus confirms the general fear of an increase of more than 2.0°C till the middle of the 21st century. Looking at the seasonal change of air temperature, significant positive trends are shown in all four seasons. But the level of the respective temperature increase varies considerably and indicates the highest increase in spring (+3.3°C), and the lowest one in autumn (+1.3°C, extrapolated for a time period of 50 years). The maximum increase of air temperature at the measuring station "Pumpenhaus" (altitude 980m a.s.l), which is situated in the "Karnische Alpen" in the south of Austria, is even stronger. From a time series of 28 years (with data recording starting in 1989) the maximum rise of temperature was 5.4°C detected for the summer (calculated over a period of 50 years). The predicted overall rise in the annual average temperature within 50 years is +3.9°C, whereas the rise of temperature at the station "Fleissner", located in the "Hohen Tauern", is +2.3°C; both based on determined linear smoothing functions and for the same measuring period (1989-2016). As the effects of the calculated changes of air temperature on the alpine habitat (the entire ecosystem, natural hazards and tourism) and the characteristics of climate change vary strongly from a geographical point of view (as shown by the two examples of air temperature data), a comprehensive analysis of data series from climatic measurement stations (including precipitation, snow covering, radiation…) in the Alpine region is urgently necessary, to be able to work on targeted climate adaptation strategies for these sensitive areas.

  9. How is the weather? Forecasting inpatient glycemic control

    PubMed Central

    Saulnier, George E; Castro, Janna C; Cook, Curtiss B; Thompson, Bithika M

    2017-01-01

    Aim: Apply methods of damped trend analysis to forecast inpatient glycemic control. Method: Observed and calculated point-of-care blood glucose data trends were determined over 62 weeks. Mean absolute percent error was used to calculate differences between observed and forecasted values. Comparisons were drawn between model results and linear regression forecasting. Results: The forecasted mean glucose trends observed during the first 24 and 48 weeks of projections compared favorably to the results provided by linear regression forecasting. However, in some scenarios, the damped trend method changed inferences compared with linear regression. In all scenarios, mean absolute percent error values remained below the 10% accepted by demand industries. Conclusion: Results indicate that forecasting methods historically applied within demand industries can project future inpatient glycemic control. Additional study is needed to determine if forecasting is useful in the analyses of other glucometric parameters and, if so, how to apply the techniques to quality improvement. PMID:29134125

  10. Short-term Aerosol Trends: Reality or Myth?

    NASA Technical Reports Server (NTRS)

    Leptoukh, Gregory; Zubko, Viktor

    2009-01-01

    The main questions addressed in this slide presentation involve short-term trends of MODIS aerosol optical thickness (AOT) over 6 years: (1) Why are the trends different in different regions? (2) How are these trends so high? (3) Why are they "coherent" in many areas? (4) Are these changes in aerosol concentrations real, i.e., are they monotonic changes in emissions? Several views of the Spatial Distribution of AOT from Terra are shown. In conclusion there are several trends: (1) There is a broad spatial inhomogenueity in AOT trends over 6 years of MODIS Terra and Aqua (2) Some of the areas demonstrate clear positive trends related to increase of emission (e.g., Eastern China) (3) Strong trends in some other areas are superficial and might be attributed, in part, to: (3a) Least squares linear trend sensitivity to outliers (need to use more robust linear fitting method) (3b) Spatial and temporal shifts or trends in meteorological conditions, especially in wind patterns responsible for aerosol transport (6) Aerosol trends should be studied together with changes in meteorology patterns as they might closely linked together

  11. Evaluation of Two Statistical Methods Provides Insights into the Complex Patterns of Alternative Polyadenylation Site Switching

    PubMed Central

    Li, Jie; Li, Rui; You, Leiming; Xu, Anlong; Fu, Yonggui; Huang, Shengfeng

    2015-01-01

    Switching between different alternative polyadenylation (APA) sites plays an important role in the fine tuning of gene expression. New technologies for the execution of 3’-end enriched RNA-seq allow genome-wide detection of the genes that exhibit significant APA site switching between different samples. Here, we show that the independence test gives better results than the linear trend test in detecting APA site-switching events. Further examination suggests that the discrepancy between these two statistical methods arises from complex APA site-switching events that cannot be represented by a simple change of average 3’-UTR length. In theory, the linear trend test is only effective in detecting these simple changes. We classify the switching events into four switching patterns: two simple patterns (3’-UTR shortening and lengthening) and two complex patterns. By comparing the results of the two statistical methods, we show that complex patterns account for 1/4 of all observed switching events that happen between normal and cancerous human breast cell lines. Because simple and complex switching patterns may convey different biological meanings, they merit separate study. We therefore propose to combine both the independence test and the linear trend test in practice. First, the independence test should be used to detect APA site switching; second, the linear trend test should be invoked to identify simple switching events; and third, those complex switching events that pass independence testing but fail linear trend testing can be identified. PMID:25875641

  12. Extreme temperature trends in major cropping systems and their relation to agricultural land use change

    NASA Astrophysics Data System (ADS)

    Mueller, N. D.; Butler, E. E.; McKinnon, K. A.; Rhines, A. N.; Tingley, M.; Siebert, S.; Holbrook, N. M.; Huybers, P. J.

    2015-12-01

    High temperature extremes during the growing season can reduce agricultural production. At the same time, agricultural practices can modify temperatures by altering the surface energy budget. Here we investigate growing season climate trends in major cropping systems and their relationship with agricultural land use change. In the US Midwest, 100-year trends exhibit a transition towards more favorable conditions, with cooler summer temperature extremes and increased precipitation. Statistically significant correspondence is found between the cooling pattern and trends in cropland intensification, as well as with trends towards greater irrigated land over a small subset of the domain. Land conversion to cropland, often considered an important influence on historical temperatures, is not significantly associated with cooling. We suggest that cooling is primarily associated with agricultural intensification increasing the potential for evapotranspiration, consistent with our finding that cooling trends are greatest for the highest temperature percentiles, and that increased evapotranspiration generally leads to greater precipitation. Temperatures over rainfed croplands show no cooling trend during drought conditions, consistent with evapotranspiration requiring adequate soil moisture, and implying that modern drought events feature greater warming as baseline cooler temperatures revert to historically high extremes. Preliminary results indicate these relationships between temperature extremes, irrigation, and intensification are also observed in other major summer cropping systems, including northeast China, Argentina, and the Canadian Prairies.

  13. Structural and lithologic study of northern coast ranges and Sacramento Valley, California

    NASA Technical Reports Server (NTRS)

    Rich, E. I. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. The pattern of linear systems within the project area has been extended into the western foothill belt of the Sierra Nevada. The chief pattern of linear features in the western Sierran foothill belt trends about N. 10 - 15 deg W., but in the vicinity of the Feather River the trend of the features abruptly changes to about N. 50-60 deg W and appears to be contiguous across the Sacramento Valley with a similar system of linear features in the Coast Ranges. The linear features in the Modoc Plateau and Klamath Mt. areas appear unrelated to the systems detected in the Coast Ranges of Sierran foothill belt. Although the change in trend of the Sierran structural features has been previously suggested and the interrelationship of the Klamath Mt. region with the northern Sierra Nevadas has been postulated, the data obtained from the ERTS-1 imagery strengthens these notions and provides for the first time evidence of a direct connection of the structural trends within the alluviated part of the Sacramento Valley. In addition rocks of Pleistocene and Holocene age are offset by some of the linear features seen on ERTS-1 imagery and hence may record the latest episode of geologic deformation in north-central California.

  14. Expanding Antarctic Sea Ice: Anthropogenic or Natural Variability?

    NASA Astrophysics Data System (ADS)

    Bitz, C. M.

    2016-12-01

    Antarctic sea ice extent has increased over the last 36 years according to the satellite record. Concurrent with Antarctic sea-ice expansion has been broad cooling of the Southern Ocean sea-surface temperature. Not only are Southern Ocean sea ice and SST trends at odds with expectations from greenhouse gas-induced warming, the trend patterns are not reproduced in historical simulations with comprehensive global climate models. While a variety of different factors may have contributed to the observed trends in recent decades, we propose that it is atmospheric circulation changes - and the changes in ocean circulation they induce - that have emerged as the most likely cause of the observed Southern Ocean sea ice and SST trends. I will discuss deficiencies in models that could explain their incorrect response. In addition, I will present results from a series of experiments where the Antarctic sea ice and ocean are forced by atmospheric perturbations imposed within a coupled climate model. Figure caption: Linear trends of annual-mean SST (left) and annual-mean sea-ice concentration (right) over 1980-2014. SST is from NOAA's Optimum Interpolation SST dataset (version 2; Reynolds et al. 2002). Sea-ice concentration is from passive microwave observations using the NASA Team algorithm. Only the annual means are shown here for brevity and because the signal to noise is greater than in the seasonal means. Figure from Armour and Bitz (2015).

  15. Stratospheric Ozone Trends and Variability as Seen by SCIAMACHY from 2002 to 2012

    NASA Technical Reports Server (NTRS)

    Gebhardt, C.; Rozanov, A.; Hommel, R.; Weber, M.; Bovensmann, H.; Burrows, J. P.; Degenstein, D.; Froidevaux, L.; Thompson, A. M.

    2014-01-01

    Vertical profiles of the rate of linear change (trend) in the altitude range 15-50 km are determined from decadal O3 time series obtained from SCIAMACHY/ENVISAT measurements in limb-viewing geometry. The trends are calculated by using a multivariate linear regression. Seasonal variations, the quasi-biennial oscillation, signatures of the solar cycle and the El Nino-Southern Oscillation are accounted for in the regression. The time range of trend calculation is August 2002-April 2012. A focus for analysis are the zonal bands of 20 deg N - 20 deg S (tropics), 60 - 50 deg N, and 50 - 60 deg S (midlatitudes). In the tropics, positive trends of up to 5% per decade between 20 and 30 km and negative trends of up to 10% per decade between 30 and 38 km are identified. Positive O3 trends of around 5% per decade are found in the upper stratosphere in the tropics and at midlatitudes. Comparisons between SCIAMACHY and EOS MLS show reasonable agreement both in the tropics and at midlatitudes for most altitudes. In the tropics, measurements from OSIRIS/Odin and SHADOZ are also analysed. These yield rates of linear change of O3 similar to those from SCIAMACHY. However, the trends from SCIAMACHY near 34 km in the tropics are larger than MLS and OSIRIS by a factor of around two.

  16. Modeling Diverse Pathways to Age Progressive Volcanism in Subduction Zones.

    NASA Astrophysics Data System (ADS)

    Kincaid, C. R.; Szwaja, S.; Sylvia, R. T.; Druken, K. A.

    2015-12-01

    One of the best, and most challenging clues to unraveling mantle circulation patterns in subduction zones comes in the form of age progressive volcanic and geochemical trends. Hard fought geological data from many subduction zones, like Tonga-Lau, the Cascades and Costa-Rica/Nicaragua, reveal striking temporal patterns used in defining mantle flow directions and rates. We summarize results from laboratory subduction models showing a range in circulation and thermal-chemical transport processes. These interaction styles are capable of producing such trends, often reflecting apparent instead of actual mantle velocities. Lab experiments use a glucose working fluid to represent Earth's upper mantle and kinematically driven plates to produce a range in slab sinking and related wedge transport patterns. Kinematic forcing assumes most of the super-adiabatic temperature gradient available to drive major downwellings is in the tabular slabs. Moreover, sinking styles for fully dynamic subduction depend on many complicating factors that are only poorly understood and which can vary widely even for repeated parameter combinations. Kinematic models have the benefit of precise, repeatable control of slab motions and wedge flow responses. Results generated with these techniques show the evolution of near-surface thermal-chemical-rheological heterogeneities leads to age progressive surface expressions in a variety of ways. One set of experiments shows that rollback and back-arc extension combine to produce distinct modes of linear, age progressive melt delivery to the surface through a) erosion of the rheological boundary layer beneath the overriding plate, and deformation and redistribution of both b) mantle residuum produced from decompression melting and c) formerly active, buoyant plumes. Additional experiments consider buoyant diapirs rising in a wedge under the influence of rollback, back-arc spreading and slab-gaps. Strongly deflected diapirs, experiencing variable rise rates, also commonly surface as linear, age progressive tracks. Applying these results to systems like the Cascades and Tonga-Lau suggest there are multiple ways to produce timing trends due both to linear flows and waves of heterogeneity obliquely impacting surface plates.

  17. Trends in snowfall versus rainfall in the Western United States--Revisited

    NASA Astrophysics Data System (ADS)

    Dettinger, M. D.; Knowles, N.; Cayan, D. R.

    2015-12-01

    Knowles et al. (J. Climate, 2006) documented long-term (1949-2004) trends in precipitation form, with a smaller fraction of precipitation falling, in recent decades, on days with reported snow compared to days when no snow was reported (and when precipitation was presumably rain). This precipitation-amount-corrected trend was found at three-quarters of 261 cooperative weather stations across the region. The trends correlated with corresponding trends towards warmer winter air temperatures at the weather stations involved. An update of those analyses through the more recent period indicates that the overall swing towards less precipitation fraction occurring on snowy days has continued through the intervening years, with 21st Century rain/snow fractions remaining significantly higher than historical norms at most stations. The same data have also been used to develop site-specific statistical relations between precipitation form (snowy-day precipitation vs purely rainy day) and air temperatures by logistical regressions at over 200 stations across the West, to determine whether the general temperature trends mentioned above have, in fact, been large enough to explain the trending precipitation forms. That is, were the warming trends detected across the West large enough to actually raise temperatures above the local snow-rain thresholds at most stations? The regression relations show that the temperature at which half of the wet days have been snowy historically varies, from station to station, across a range from -2ºC to +4ºC. Thus at some stations winter storm temperatures would have to rise above about -2ºC to markedly impact precipitation forms, while at other stations, temperature had to rise above +4ºC. Nonetheless, observed temperature trends since 1950 have been sufficient to explain the observed regional precipitation-form trends. The fitted precipitation form-temperature relations also provide a basis for estimating precipitation forms in hydrological models and in climate-change projections across the region, allowing—for example—more geographically informed projections of precipitation-form changes under future climates. On the whole, though, the expected relations between warming trends and precipitation-form trends found by Knowles et al. (2006) continue to hold.

  18. Total Column Water Vapor Trends from 15 Years of MODIS/NIR above the Arctic

    NASA Astrophysics Data System (ADS)

    OMAR, D. A.; Sarkissian, A.; Keckhut, P.; Bock, O.; Claud, C.; Irbah, A.

    2016-12-01

    Water vapor is defined as a major climate indicator at many occasions, highly variable spatially and temporarily, water vapor has the most important natural GHG effect, through his high infra-red absorption capacity, and temperature changes sensitivity, water vapor affects the Earth radiative budget and energy transfer, evolved at many atmospheric dynamics including the cloud formation and the aerosols composition. As a consequence to the accelerated transition towards the new climate especially above the arctic, and to investigate the feedback to the arctic amplification and the global warming, we study the water vapor variability and trends on a relatively long term above the arctic region, using the Total Column Water Vapor retrieval from MODIS/NIR spectro-radiometer on board of TERRA satellite. These 15 Years monthly daytime satellite data were compared to GPS integrated water vapor over four selected NDACC polar stations: Sodankyla-Finland, Ny-Alesund -Svalbard, Thule-Greenland, Scoresbysund-Greenland. GPS data are calculated with the temperature and pressure profile of the nearest coastal ERA-Interim station. These data were filtered for nearly coincident time to satellite over pass in order to exclude the timing effects. Errors, relative biases and RMSE at both monthly and seasonally scales will be presented and discussed. Then the MODIS 15 years linear trends and anomalies above the whole Arctic will be shown with a special focus on sea ice extent decline feed-back and hydrologic cycle connections with respect to heat waves. Results show wetter trends on the Mackenzie and mid-Siberia at September, unlike the European arctic summer which is getting drier, while Svalbard is getting wetter almost all the year. Conclusion and perspectives are also presented.

  19. Short-term effects of air temperature on mortality and effect modification by air pollution in three cities of Bavaria, Germany: a time-series analysis.

    PubMed

    Breitner, Susanne; Wolf, Kathrin; Devlin, Robert B; Diaz-Sanchez, David; Peters, Annette; Schneider, Alexandra

    2014-07-01

    Air temperature has been shown to be associated with mortality; however, only very few studies have been conducted in Germany. This study examined the association between daily air temperature and cause-specific mortality in Bavaria, Southern Germany. Moreover, we investigated effect modification by age and ambient air pollution. We obtained data from Munich, Nuremberg as well as Augsburg, Germany, for the period 1990 to 2006. Data included daily cause-specific death counts, mean daily meteorology and air pollution concentrations (particulate matter with a diameter<10 μm [PM10] and maximum 8-h ozone). We used Poisson regression models combined with distributed lag non-linear models adjusting for long-term trend, calendar effects, and meteorological factors. Air pollutant concentrations were categorized into three levels, and an interaction term was included to quantify potential effect modification of the air temperature effects. The temperature-mortality relationships were non-linear for all cause-specific mortality categories showing U- or J-shaped curves. An increase from the 90th (20.0 °C) to the 99th percentile (24.8 °C) of 2-day average temperature led to an increase in non-accidental mortality by 11.4% (95% CI: 7.6%-15.3%), whereas a decrease from the 10th (-1.0 °C) to the 1st percentile (-7.5 °C) in the 15-day average temperature resulted in an increase of 6.2% (95% CI: 1.8%-10.8%). The very old were found to be most susceptible to heat effects. Results also suggested some effect modification by ozone, but not for PM10. Results indicate that both very low and very high air temperature increase cause-specific mortality in Bavaria. Results also pointed to the importance of considering effect modification by age and ozone in assessing temperature effects on mortality. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The Effects of Global Warming on Temperature and Precipitation Trends in Northeast America

    NASA Astrophysics Data System (ADS)

    Francis, F.

    2013-12-01

    The objective of this paper is to discuss the analysis of results in temperature and precipitation (rainfall) data and how they are affected by the theory of global warming in Northeast America. The topic was chosen because it will show the trends in temperature and precipitation and their relations to global warming. Data was collected from The Global Historical Climatology Network (GHCN). The data range from years of 1973 to 2012. We were able to calculate the yearly and monthly regress to estimate the relationship of variables found in the individual sources. With the use of specially designed software, analysis and manual calculations we are able to give a visualization of these trends in precipitation and temperature and to question if these trends are due to the theory of global warming. With the Calculation of the trends in slope we were able to interpret the changes in minimum and maximum temperature and precipitation. Precipitation had a 9.5 % increase over the past forty years, while maximum temperature increased 1.9 %, a greater increase is seen in minimum temperature of 3.3 % was calculated over the years. The trends in precipitation, maximum and minimum temperature is statistically significant at a 95% level.

  1. Seasonal and elevational contrasts in temperature trends in Central Chile between 1979 and 2015

    NASA Astrophysics Data System (ADS)

    Burger, F.; Brock, B.; Montecinos, A.

    2018-03-01

    We analyze trends in temperature from 18 temperature stations and one upper air sounding site at 30°-35° S in central Chile between 1979-2015, to explore geographical and season temperature trends and their controls, using regional ocean-atmosphere indices. Significant warming trends are widespread at inland stations, while trends are non-significant or negative at coastal sites, as found in previous studies. However, ubiquitous warming across the region in the past 8 years, suggests the recent period of coastal cooling has ended. Significant warming trends are largely restricted to austral spring, summer and autumn seasons, with very few significant positive or negative trends in winter identified. Autumn warming is notably strong in the Andes, which, together with significant warming in spring, could help to explain the negative mass balance of snow and glaciers in the region. A strong Pacific maritime influence on regional temperature trends is inferred through correlation with the Interdecadal Pacific Oscillation (IPO) index and coastal sea surface temperature, but the strength of this influence rapidly diminishes inland, and the majority of valley, and all Andes, sites are independent of the IPO index. Instead, valley and Andes sites, and mid-troposphere temperature in the coastal radiosonde profile, show correlation with the autumn Antarctic Oscillation which, in its current positive phase, promotes subsidence and warming at the latitude of central Chile.

  2. The linear trend of headache prevalence and some headache features in school children.

    PubMed

    Ozge, Aynur; Buğdayci, Resul; Saşmaz, Tayyar; Kaleağasi, Hakan; Kurt, Oner; Karakelle, Ali; Siva, Aksel

    2007-04-01

    The objectives of this study were to determine the age and sex dependent linear trend of recurrent headache prevalence in schoolchildren in Mersin. A stratified sample composed of 5562 children; detailed characteristics were previously published. In this study the prevalence distribution of headache by age and sex showed a peak in the female population at the age of 11 (27.2%) with a plateau in the following years. The great stratified random sample results suggested that, in addition to socio-demographic features, detailed linear trend analysis showed headache features of children with headache have some specific characteristics dependent on age, gender and headache type. This study results can constitute a basis for the future epidemiological based studies.

  3. Variability, trends, and predictability of seasonal sea ice retreat and advance in the Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Serreze, Mark C.; Crawford, Alex D.; Stroeve, Julienne C.; Barrett, Andrew P.; Woodgate, Rebecca A.

    2016-10-01

    As assessed over the period 1979-2014, the date that sea ice retreats to the shelf break (150 m contour) of the Chukchi Sea has a linear trend of -0.7 days per year. The date of seasonal ice advance back to the shelf break has a steeper trend of about +1.5 days per year, together yielding an increase in the open water period of 80 days. Based on detrended time series, we ask how interannual variability in advance and retreat dates relate to various forcing parameters including radiation fluxes, temperature and wind (from numerical reanalyses), and the oceanic heat inflow through the Bering Strait (from in situ moorings). Of all variables considered, the retreat date is most strongly correlated (r ˜ 0.8) with the April through June Bering Strait heat inflow. After testing a suite of statistical linear models using several potential predictors, the best model for predicting the date of retreat includes only the April through June Bering Strait heat inflow, which explains 68% of retreat date variance. The best model predicting the ice advance date includes the July through September inflow and the date of retreat, explaining 67% of advance date variance. We address these relationships by discussing heat balances within the Chukchi Sea, and the hypothesis of oceanic heat transport triggering ocean heat uptake and ice-albedo feedback. Developing an operational prediction scheme for seasonal retreat and advance would require timely acquisition of Bering Strait heat inflow data. Predictability will likely always be limited by the chaotic nature of atmospheric circulation patterns.

  4. Role of deuterium desorption kinetics on the thermionic emission properties of polycrystalline diamond films with respect to kinetic isotope effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paxton, W. F., E-mail: william.f.paxton@vanderbilt.edu; Howell, M.; Kang, W. P.

    2014-06-21

    The desorption kinetics of deuterium from polycrystalline chemical vapor deposited diamond films were characterized by monitoring the isothermal thermionic emission current behavior. The reaction was observed to follow a first-order trend as evidenced by the decay rate of the thermionic emission current over time which is in agreement with previously reported studies. However, an Arrhenius plot of the reaction rates at each tested temperature did not exhibit the typical linear behavior which appears to contradict past observations of the hydrogen (or deuterium) desorption reaction from diamond. This observed deviation from linearity, specifically at lower temperatures, has been attributed to non-classicalmore » processes. Though no known previous studies reported similar deviations, a reanalysis of the data obtained in the present study was performed to account for tunneling which appeared to add merit to this hypothesis. Additional investigations were performed by reevaluating previously reported data involving the desorption of hydrogen (as opposed to deuterium) from diamond which further indicated this reaction to be dominated by tunneling at the temperatures tested in this study (<775 °C). An activation energy of 3.19 eV and a pre-exponential constant of 2.3 × 10{sup 12} s{sup −1} were determined for the desorption reaction of deuterium from diamond which is in agreement with previously reported studies.« less

  5. Influence of thermal boundary conditions on heat transfer from a cylinder in cross flow

    NASA Technical Reports Server (NTRS)

    Papell, S. S.

    1981-01-01

    Local heat transfer data over the leading surface of a cylinder in crossflow were obtained for a Reynolds number range of 50,000. The cylinder was operated at both uniform-wall-temperature and uniform-heat-flux thermal ance of 80 deg from the front stagnation point, the uniform-wall-temperature heat transfer coefficients were as much as 66 percent lower than the uniform-heat-flux data. Between the stagnation point and 60 deg around the cylinder, there were no significant differences in the data. This region of the cylinder is within the cylindrical curvature region of the front end of a real turbine so it was concluded that either thermal boundary condition could be used to model turbine flow over that region of the blade. Results of evaluating the exponent x in the fundamental relationship Nu=f(Re) sup x, which is used in data correlation show the exponent varies as a function of local position on the cylinder even in the laminar flow region. The value of x increases linearly from 0.50 at the stagnation point to 0.59 at 60 deg around the cylinder. This linear trend continued into the separation region at 80 deg for the uniform-wall-temperature data, but x increased markedly in the separation region for the uniform-heat-flux data.

  6. Influence of thermal boundary conditions on heat transfer from a cylinder in cross flow

    NASA Astrophysics Data System (ADS)

    Papell, S. S.

    1981-08-01

    Local heat transfer data over the leading surface of a cylinder in crossflow were obtained for a Reynolds number range of 50,000. The cylinder was operated at both uniform-wall-temperature and uniform-heat-flux thermal ance of 80 deg from the front stagnation point, the uniform-wall-temperature heat transfer coefficients were as much as 66 percent lower than the uniform-heat-flux data. Between the stagnation point and 60 deg around the cylinder, there were no significant differences in the data. This region of the cylinder is within the cylindrical curvature region of the front end of a real turbine so it was concluded that either thermal boundary condition could be used to model turbine flow over that region of the blade. Results of evaluating the exponent x in the fundamental relationship Nu=f(Re) sup x, which is used in data correlation show the exponent varies as a function of local position on the cylinder even in the laminar flow region. The value of x increases linearly from 0.50 at the stagnation point to 0.59 at 60 deg around the cylinder. This linear trend continued into the separation region at 80 deg for the uniform-wall-temperature data, but x increased markedly in the separation region for the uniform-heat-flux data.

  7. Optical Diagnostic Characterization of High-Power Hall Thruster Wear and Operation

    NASA Technical Reports Server (NTRS)

    Williams, George J., Jr.; Soulas, George C.; Kamhawi, Hani

    2012-01-01

    Optical emission spectroscopy is employed to correlate BN insulator erosion with high-power Hall thruster operation. Specifically, actinometry leveraging excited xenon states is used to normalize the emission spectra of ground state boron as a function of thruster operating condition. Trends in the strength of the boron signal are correlated with thruster power, discharge voltage, and discharge current. In addition, the technique is demonstrated on metallic coupons embedded in the walls of the HiVHAc EM thruster. The OES technique captured the overall trend in the erosion of the coupons which boosts credibility in the method since there are no data to which to calibrate the erosion rates of high-power Hall thrusters. The boron signals are shown to trend linearly with discharge voltage for a fixed discharge current as expected. However, the boron signals of the higher-power NASA 300M and NASA 457Mv2 trend with discharge current and show an unexpectedly weak to inverse dependence on discharge voltage. Electron temperatures measured optically in the near-field plume of the thruster agree well with Langmuir probe data. However, the optical technique used to determine Te showed unacceptable sensitivity to the emission intensities. Near-field, single-frequency imaging of the xenon neutrals is also presented as a function of operating condition for the NASA 457 Mv2.

  8. Trends in Middle East climate extreme indices from 1950 to 2003

    NASA Astrophysics Data System (ADS)

    Zhang, Xuebin; Aguilar, Enric; Sensoy, Serhat; Melkonyan, Hamlet; Tagiyeva, Umayra; Ahmed, Nader; Kutaladze, Nato; Rahimzadeh, Fatemeh; Taghipour, Afsaneh; Hantosh, T. H.; Albert, Pinhas; Semawi, Mohammed; Karam Ali, Mohammad; Said Al-Shabibi, Mansoor Halal; Al-Oulan, Zaid; Zatari, Taha; Al Dean Khelet, Imad; Hamoud, Saleh; Sagir, Ramazan; Demircan, Mesut; Eken, Mehmet; Adiguzel, Mustafa; Alexander, Lisa; Peterson, Thomas C.; Wallis, Trevor

    2005-11-01

    A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950-2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.

  9. Spatial and Temporal Temperature trends on Iraq during 1980-2015

    NASA Astrophysics Data System (ADS)

    Al-Timimi, Yassen K.; Al-Khudhairy, Aws A.

    2018-05-01

    Monthly Mean surface air temperature at 23 stations in Iraq were analyzed for temporal trends and spatial variation during 1980-2015. Seasonal and annual temperature was analyzed using Mann-Kendall test to detect the significant trend. The results of temporal analysis showed that during winter, spring, summer and Autumn have a positive trend in all the parts of Iraq. A tendency has also been observed towards warmer years, with significantly warmer summer and spring periods and slightly warmer autumn and winter, the highest increase is (3.5)°C in Basrah during the summer. The results of spatial analyze using the ArcGIS showed that the seasonal temperature can be divided into two or three distinct areas with high temperature in the south and decreasing towards north, where the trend of spatial temperature were decreasing from south to the north in all the four seasons.

  10. Socio-demographic, ecological factors and dengue infection trends in Australia.

    PubMed

    Akter, Rokeya; Naish, Suchithra; Hu, Wenbiao; Tong, Shilu

    2017-01-01

    Dengue has been a major public health concern in Australia. This study has explored the spatio-temporal trends of dengue and potential socio- demographic and ecological determinants in Australia. Data on dengue cases, socio-demographic, climatic and land use types for the period January 1999 to December 2010 were collected from Australian National Notifiable Diseases Surveillance System, Australian Bureau of Statistics, Australian Bureau of Meteorology, and Australian Bureau of Agricultural and Resource Economics and Sciences, respectively. Descriptive and linear regression analyses were performed to observe the spatio-temporal trends of dengue, socio-demographic and ecological factors in Australia. A total of 5,853 dengue cases (both local and overseas acquired) were recorded across Australia between January 1999 and December 2010. Most the cases (53.0%) were reported from Queensland, followed by New South Wales (16.5%). Dengue outbreak was highest (54.2%) during 2008-2010. A highest percentage of overseas arrivals (29.9%), households having rainwater tanks (33.9%), Indigenous population (27.2%), separate houses (26.5%), terrace house types (26.9%) and economically advantage people (42.8%) were also observed during 2008-2010. Regression analyses demonstrate that there was an increasing trend of dengue incidence, potential socio-ecological factors such as overseas arrivals, number of households having rainwater tanks, housing types and land use types (e.g. intensive uses and production from dryland agriculture). Spatial variation of socio-demographic factors was also observed in this study. In near future, significant increase of temperature was also projected across Australia. The projected increased temperature as well as increased socio-ecological trend may pose a future threat to the local transmission of dengue in other parts of Australia if Aedes mosquitoes are being established. Therefore, upgraded mosquito and disease surveillance at different ports should be in place to reduce the chance of mosquitoes and dengue cases being imported into all over Australia.

  11. Temperature trends and Urban Heat Island intensity mapping of the Las Vegas valley area

    NASA Astrophysics Data System (ADS)

    Black, Adam Leland

    Modified urban climate regions that are warmer than rural areas at night are referred to as Urban Heat Islands or UHI. Islands of warmer air over a city can be 12 degrees Celsius greater than the surrounding cooler air. The exponential growth in Las Vegas for the last two decades provides an opportunity to detect gradual temperature changes influenced by an increasing presence of urban materials. This thesis compares ground based thermometric observations and satellite based remote sensing temperature observations to identify temperature trends and UHI areas caused by urban development. Analysis of temperature trends between 2000 and 2010 at ground weather stations has revealed a general cooling trend in the Las Vegas region. Results show that urban development accompanied by increased vegetation has a cooling effect in arid climates. Analysis of long term temperature trends at McCarran and Nellis weather stations show 2.4 K and 1.2 K rise in temperature over the last 60 years. The ground weather station temperature data is related to the land surface temperature images from the Landsat Thematic Mapper to estimate and evaluate urban heat island intensity for Las Vegas. Results show that spatial and temporal trends of temperature are related to the gradual change in urban landcover. UHI are mainly observed at the airport and in the industrial areas. This research provides useful insight into the temporal behavior of the Las Vegas area.

  12. Unidirectional trends in annual and seasonal climate and extremes in Egypt

    NASA Astrophysics Data System (ADS)

    Nashwan, Mohamed Salem; Shahid, Shamsuddin; Abd Rahim, Norhan

    2018-05-01

    The presence of short- and long-term autocorrelations can lead to considerable change in significance of trend in hydro-climatic time series. Therefore, past findings of climatic trend studies that did not consider autocorrelations became a questionable issue. The spatial patterns in the trends of annual and seasonal temperature, rainfall, and related extremes in Egypt have been assessed in this paper using modified Mann-Kendal (MMK) trend test which can detect unidirectional trends in time series in the presence of short- and long-term autocorrelations. The trends obtained using the MMK test was compared with that obtained using standard Mann-Kendall (MK) test to show how natural variability in climate affects the trends. The daily rainfall and temperature data of Princeton Global Meteorological Forcing for the period 1948-2010 having a spatial resolution of 0.25° × 0.25° was used for this purpose. The results showed a large difference between the trends obtained using MMK and MK tests. The MMK test showed increasing trends in temperature and a number of temperature extremes in Egypt, but almost no change in rainfall and rainfall extremes. The minimum temperature was found to increase (0.08-0.29 °C/decade) much faster compared to maximum temperature (0.07-0.24 °C/decade) and therefore, a decrease in diurnal temperature range (- 0.01 to - 0.16 °C/decade) in most part of Egypt. The number of winter hot days and nights are increasing, while the number of cold days is decreasing in most part of the country. The study provides a more realistic scenario of the changes in climate and weather extremes of Egypt.

  13. Changes of the time-varying percentiles of daily extreme temperature in China

    NASA Astrophysics Data System (ADS)

    Li, Bin; Chen, Fang; Xu, Feng; Wang, Xinrui

    2017-11-01

    Identifying the air temperature frequency distributions and evaluating the trends in time-varying percentiles are very important for climate change studies. In order to get a better understanding of the recent temporal and spatial pattern of the temperature changes in China, we have calculated the trends in temporal-varying percentiles of the daily extreme air temperature firstly. Then we divide all the stations to get the spatial patterns for the percentile trends using the average linkage cluster analysis method. To make a comparison, the shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 are also examined. Important results in three aspects have been achieved: (1) In terms of the trends in temporal-varying percentiles of the daily extreme air temperature, the most intense warming for daily maximum air temperature (Tmax) was detected in the upper percentiles with a significant increasing tendency magnitude (>2.5 °C/50year), and the greatest warming for daily minimum air temperature (Tmin) occurred with very strong trends exceeding 4 °C/50year. (2) The relative coherent spatial patterns for the percentile trends were found, and stations for the whole country had been divided into three clusters. The three primary clusters were distributed regularly to some extent from north to south, indicating the possible large influence of the latitude. (3) The most significant shifts of trends percentile frequency distribution from 1961-1985 to 1986-2010 was found in Tmax. More than half part of the frequency distribution show negative trends less than -0.5 °C/50year in 1961-1985, while showing trends less than 2.5 °C/50year in 1986-2010.

  14. Boundary layer analysis in turbulent Rayleigh-Bénard convection in air: experiment versus simulation.

    PubMed

    Li, Ling; Shi, Nan; du Puits, Ronald; Resagk, Christian; Schumacher, Jörg; Thess, André

    2012-08-01

    We report measurements and numerical simulations of the three-dimensional velocity and temperature fields in turbulent Rayleigh-Bénard convection in air. Highly resolved velocity and temperature measurements inside and outside the boundary layers have been directly compared with equivalent data obtained in direct numerical simulations (DNSs). This comparison comprises a set of two Rayleigh numbers at Ra=3×10(9) and 3×10(10) and a fixed aspect ratio; this is the ratio between the diameter and the height of the Rayleigh-Bénard cell of Γ=1. We find that the measured velocity data are in excellent agreement with the DNS results while the temperature data slightly differ. In particular, the measured mean temperature profile does not show the linear trend as seen in the DNS data, and the measured gradients at the wall are significantly higher than those obtained from the DNS. Both viscous and thermal boundary layer thickness scale with respect to the Rayleigh number as δ(v)~Ra(-0.24) and δ(θ)~Ra(-0.24), respectively.

  15. Consolidation and Warpage Deformation Finite Element Analysis of Filament Wound Tubes

    NASA Astrophysics Data System (ADS)

    Li, Jun; Dong, Chensong; Chen, Shenshen

    2009-10-01

    This paper presents a process model for simulating the manufacturing process of prepreg filament wound composite tubes developed based on the finite element analysis. The model relates the process variables, such as degree of cure, viscosity, material property and temperature etc., to the parameters characterizing (residual stresses, warpage deformation) the composite tube and the mandrel. From the simulating results, several important trends in both the data and model are observed (1) Low temperature will go with low reaction rate and the reaction starts under low temperature will later compared with high temperature; (2) The results using CHILE model after demolding will smaller than the one using linear elasticity which assumes a stress-free prior to cool-down. After the mandrel (mold) is removed, some residual stresses, especially hoop stress will be released. (3) Remarkable stress concentration appeared in the transition zone between the boss and cylinder. In order to prevent the structural failure due to interlaminar shear or delamination, both the outer surface of the cylinder and the inner of the boss should have the same ply orientation angle.

  16. Geo-spatial analysis of temporal trends of temperature and its extremes over India using daily gridded (1°×1°) temperature data of 1969-2005

    NASA Astrophysics Data System (ADS)

    Chakraborty, Abhishek; Seshasai, M. V. R.; Rao, S. V. C. Kameswara; Dadhwal, V. K.

    2017-10-01

    Daily gridded (1°×1°) temperature data (1969-2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season ( kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann-Kendall statistics ( α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test ( α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02-0.04 °C year-1) were found to be higher than that of maximum temperature (0.01-0.02 °C year-1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.

  17. Changes in antibiotic usage and susceptibility in nosocomial Enterobacteriaceae and Pseudomonas isolates following the introduction of ertapenem to hospital formulary.

    PubMed

    Graber, C J; Hutchings, C; Dong, F; Lee, W; Chung, J K; Tran, T

    2012-01-01

    There is concern that widespread usage of ertapenem may promote cross-resistance to other carbapenems. To analyse the impact that adding ertapenem to our hospital formulary had on usage of other broad-spectrum agents and on susceptibilities of nosocomial Enterobacteriaceae and Pseudomonas isolates, we performed interrupted time-series analyses to determine the change in linear trend in antibiotic usage and change in mean proportion and linear trend of susceptibility pre- (March 2004-June 2005) and post- (July 2005-December 2008) ertapenem introduction. Usage of piperacillin-tazobactam (P=0·0013) and ampicillin-sulbactam (P=0·035) declined post-ertapenem introduction. For Enterobacteriaceae, the mean proportion susceptible to ciprofloxacin (P=0·016) and piperacillin-tazobactam (P=0·038) increased, while the linear trend in susceptibility significantly increased for cefepime (P=0·012) but declined for ceftriaxone (P=0·0032). For Pseudomonas, the mean proportion susceptible to cefepime (P=0·011) and piperacillin-tazobactam (P=0·028) increased, as did the linear trend in susceptibility to ciprofloxacin (P=0·028). Notably, no significant changes in carbapenem susceptibility were observed.

  18. Timeline trend profile and seasonal variations in nicotine present in ambient PM10 samples: A four year investigation from Delhi region, India

    NASA Astrophysics Data System (ADS)

    Yadav, Shweta; Tandon, Ankit; Attri, Arun K.

    2014-12-01

    The detection of nicotine, an organic tracer for Environmental Tobacco Smoke (ETS), in the collected PM10 samples from Delhi region's ambient environment, in a appropriately designed investigation was initiated over four years (2006-2009) to: (1) Comprehend seasonal and inter-annual variations in the nicotine present in PM10; (2) Extract regression based linear trend profile manifested by nicotine in PM10; (3) Determine the non-linear trend timeline from the nicotine data, and compare it with the obtained linear trend; (4) Suggest the possible use of the designed experiment and analysis to have a qualitative appraisal of Tobacco Smoking activity in the sampling region. The PM10 samples were collected in a monthly time-series sequence at a known receptor site. Quantitative estimates of nicotine (ng m-3) were made by using a Thermal Desorption Gas Chromatography Mass Spectrometry (TD-GC/MS). The annual average concentrations of nicotine (ng m-3) were 516 ± 302 (2008) > 494 ± 301 (2009) > 438 ± 250 (2007) > 325 ± 149 (2006). The estimated linear trend of 5.4 ng m-3 month-1 corresponded to 16.3% per annum increase in the PM10 associated nicotine. The industrial production of India's tobacco index normalized to Delhi region's consumption, pegged an increase at 10.5% per annum over this period.

  19. Spatial distribution of unidirectional trends in temperature and temperature extremes in Pakistan

    NASA Astrophysics Data System (ADS)

    Khan, Najeebullah; Shahid, Shamsuddin; Ismail, Tarmizi bin; Wang, Xiao-Jun

    2018-06-01

    Pakistan is one of the most vulnerable countries of the world to temperature extremes due to its predominant arid climate and geographic location in the fast temperature rising zone. Spatial distribution of the trends in annual and seasonal temperatures and temperature extremes over Pakistan has been assessed in this study. The gauge-based gridded daily temperature data of Berkeley Earth Surface Temperature (BEST) having a spatial resolution of 1° × 1° was used for the assessment of trends over the period 1960-2013 using modified Mann-Kendall test (MMK), which can discriminate the multi-decadal oscillatory variations from secular trends. The results show an increase in the annual average of daily maximum and minimum temperatures in 92 and 99% area of Pakistan respectively at 95% level of confidence. The annual temperature is increasing faster in southern high-temperature region compared to other parts of the country. The minimum temperature is rising faster (0.17-0.37 °C/decade) compared to maximum temperature (0.17-0.29 °C/decade) and therefore declination of diurnal temperature range (DTR) (- 0.15 to - 0.08 °C/decade) in some regions. The annual numbers of both hot and cold days are increasing in whole Pakistan except in the northern sub-Himalayan region. Heat waves are on the rise, especially in the hot Sindh plains and the Southern coastal region, while the cold waves are becoming lesser in the northern cold region. Obtained results contradict with the findings of previous studies on temperature trends, which indicate the need for reassessment of climatic trends in Pakistan using the MMK test to understand the anthropogenic impacts of climate change.

  20. The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States

    Treesearch

    Ivan Arismendi; Sherri L. Johnson; Jason B. Dunham; Roy Haggerty

    2012-01-01

    Temperature is a fundamentally important driver of ecosystem processes in streams. Recent warming of terrestrial climates around the globe has motivated concern about consequent increases in stream temperature. More specifically, observed trends of increasing air temperature and declining stream flow are widely believed to result in corresponding increases in stream...

  1. [Effect of climate change on the fisheries conununity pattern in the overwintering ground of open waters of northern East China Sea].

    PubMed

    Liu, Zun-lei; Yuan, Xing-wei; Yang, Lin-lin; Yan, Li-ping; Tian, Yong-jun; Chen, Jia-hua

    2015-03-01

    Data sets of 26 fisheries target species from the fishery-depen-dent and fishery-independent surveys in the overwintering ground of open waters of northern East China Sea (OW-NECS), combined sea surface temperature (SST), were used to examine the links between diversity index, pattern of common variability and climate changes based on the principal component analysis (PCA) and generalized additive model (GAM). The results showed that the shift from a cold regime to a warm regime was detected in SST during the 1970s-2011 with step changes around 1982/ 1983. SST increased during the cold regime and the warm regime before 1998 (warming trend period, 1972-1998), and decreased during the warm regime after 1998 (cooling trend period, 1999-2011). Shannon diversity index was largely dependent on the filefish, which contributed up to 50% of the total production as a single species, with low diversity in the waters of the OW-NECS, during the late 1980s and early 1990s. Excluding the filefish, the diversity index linearly increased and decreased during 1972-1998 and 1999-2011, respectively. The variation pattern generally corresponds with the trend in water temperature, strongly suggesting the effect of the SST on the diversity. The first two components (PC1 and PC2) of PCA for target species, which accounted for 32.43% of the total variance, showed evident decadal variation patterns with a step change during 1992-1999 and inter-annual variability with short-period fluctuation, respectively. It seems that PC1 was associated with large scale climatic change, while PC2 was related to inter-annual oceanographic variability such as ENSO events. Linear fitting results showed winEOF1 had significant effect on PC1, and GAM analysis for PC1 showed that winter EOF1 (winEOF1) and summer EOF2 (sumEOF2) can explain 88.9% of the total variance. Nonlinear effect was also found between PC2 and win EOF1, indicating that the fish community structure, which had predominantly decadal/inter-annual variation patterns, was influenced by inter-annual variations in oceanographic conditions.

  2. Different influence of outdoor temperature on traumatic and nontraumatic injuries.

    PubMed

    Kim, Yoonhee; Kim, Ho; Shin, Sang-Do; Hong, Yun-Chul

    2012-10-01

    Injuries are affected by weather conditions, which influence various human activities. However, only a few studies have reported an association between injuries and weather conditions despite the fact that extreme weather conditions can occur more frequently with climate change. The goal of this study was to evaluate the association between outdoor temperature and traumatic and nontraumatic injury using emergency ambulance delivery. We designed a prognostic study to evaluate the different effects of outdoor temperature depending on types of injury. Using a generalized additive model, we examined the association between outdoor temperatures and injuries in Korea from 2006 to 2008, adjusting for confounders such as relative humidity, day of the week, and long-term time trends. A random effects model was used to estimate combined effects across all areas. The city-combined effect estimate for nontraumatic injuries was 1.95% (95% confidence interval, 1.28-2.62%) corresponding to a 1°C increase in mean temperature, whereas the relationship for traumatic injuries was not linear. The risk of nontraumatic injury related to temperature for males and elderly individuals was higher than for females and younger people. The risk of injury attributable to outdoor temperature was found to vary according to the injury type. This information may be useful for developing adaptation strategies related to climate change. Prognostic study, level III.

  3. Stratospheric Temperature Trends Observed by TIMED/SABER

    NASA Astrophysics Data System (ADS)

    Xian, T.; Tan, R.

    2017-12-01

    Trends in the stratospheric temperature are studied based on the temperature profile observation from the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER). The spatially trends are evaluated in different time scales ranging from decadal to monthly resolved. The results indicate a signature of BDC acceleration. There are strong warming trends (up to 9 K/decade) in the middle to upper stratosphere in the high latitude spring, summer, and autumn seasons, accompanied by strong cooling trends in the lower stratosphere. Besides, strong warming trends occurs through the whole stratosphere over the Southern Hemisphere, which confirms Antarctic ozone layer healing since 2000. In addition, the results demonstrate a significant warming trends in the middle of tropical stratosphere, which becomes strongest during June-July-August.

  4. Trends in record-breaking temperatures for the conterminous United States

    NASA Astrophysics Data System (ADS)

    Rowe, Clinton M.; Derry, Logan E.

    2012-08-01

    In an unchanging climate, record-breaking temperatures are expected to decrease in frequency over time, as established records become increasingly more difficult to surpass. This inherent trend in the number of record-breaking events confounds the interpretation of actual trends in the presence of any underlying climate change. Here, a simple technique to remove the inherent trend is introduced so that any remaining trend can be examined separately for evidence of a climate change. As this technique does not use the standard definition of a broken record, our records* are differentiated by an asterisk. Results for the period 1961-2010 indicate that the number of record* low daily minimum temperatures has been significantly and steadily decreasing nearly everywhere across the United States while the number of record* high daily minimum temperatures has been predominantly increasing. Trends in record* low and record* high daily maximum temperatures are generally weaker and more spatially mixed in sign. These results are consistent with other studies examining changes expected in a warming climate.

  5. Streamflow droughts in major watershed regions of the conterminous U.S.: Understanding evolution of historic patterns

    NASA Astrophysics Data System (ADS)

    Pournasiri Poshtiri, M.; Pal, I.

    2015-12-01

    Climate non-stationarity affects regional hydrological extremes. This research looks into historic patterns of streamflow drought indicators and their evolution for major watershed regions in the conterminous U.S. (CONUS). The results indicate general linear and non-linear drying trends, particularly in the last four decades, as opposed to wetting trends reported in previous studies. Regional differences in the trends are notable, and echo the local climatic changes documented in the recent National Climate Assessment (NCA). A reversal of linear trends is seen for some northern regions after 1980s. Patterns in return periods and corresponding return values of the indicators are also examined, which suggests changing risk conditions that are important for water-resources decision-making. Persistent or flash drought conditions in a river can lead to chronic or short-term water scarcity—a main driver of societal and cross-boundary conflicts. Thus, this research identifies "hotspot" locations where suitable adaptive management measures are most needed.

  6. Detecting temporal change in freshwater fisheries surveys: statistical power and the important linkages between management questions and monitoring objectives

    USGS Publications Warehouse

    Wagner, Tyler; Irwin, Brian J.; James R. Bence,; Daniel B. Hayes,

    2016-01-01

    Monitoring to detect temporal trends in biological and habitat indices is a critical component of fisheries management. Thus, it is important that management objectives are linked to monitoring objectives. This linkage requires a definition of what constitutes a management-relevant “temporal trend.” It is also important to develop expectations for the amount of time required to detect a trend (i.e., statistical power) and for choosing an appropriate statistical model for analysis. We provide an overview of temporal trends commonly encountered in fisheries management, review published studies that evaluated statistical power of long-term trend detection, and illustrate dynamic linear models in a Bayesian context, as an additional analytical approach focused on shorter term change. We show that monitoring programs generally have low statistical power for detecting linear temporal trends and argue that often management should be focused on different definitions of trends, some of which can be better addressed by alternative analytical approaches.

  7. Recent recovery of surface wind speed after decadal decrease: a focus on South Korea

    NASA Astrophysics Data System (ADS)

    Kim, JongChun; Paik, Kyungrock

    2015-09-01

    We investigate the multi-decadal variability of observed surface wind speed around South Korea. It is found that surface wind speed exhibits decreasing trend from mid-1950s until 2003, which is similar with the trends reported for other parts of the world. However, the decreasing trend ceases and becomes unclear since then. It is revealed that decreasing wind speed until 2003 is strongly associated with the decreasing trend of the spatial variance in both atmospheric pressure and air temperature across the East Asia for the same period. On the contrary, break of decreasing trend in surface wind speed since 2003 is associated with increasing spatial variance in surface temperature over the East Asia. Ground observation shows that surface wind speed and air temperature exhibit highly negative correlations for both summer and winter prior to 2003. However, since 2003, the correlations differ between seasons. We suggest that mechanisms behind the recent wind speed trend are different between summer and winter. This is on the basis of an interesting finding that air temperature has decreased while surface temperature has increased during winter months since 2003. We hypothesize that such contrasting temperature trends indicate more frequent movement of external cold air mass into the region since 2003. We also hypothesize that increasing summer wind speed is driven by intrusion of warm air mass into the region which is witnessed via increasing spatial variance in surface temperature across East Asia and the fact that both air and surface temperature rise together.

  8. Warming slowdown over the Tibetan plateau in recent decades

    NASA Astrophysics Data System (ADS)

    Liu, Yaojie; Zhang, Yangjian; Zhu, Juntao; Huang, Ke; Zu, Jiaxing; Chen, Ning; Cong, Nan; Stegehuis, Annemiek Irene

    2018-03-01

    As the recent global warming hiatus and the warming on high elevations are attracting worldwide attention, this study examined the robustness of the warming slowdown over the Tibetan plateau (TP) and its related driving forces. By integrating multiple-source data from 1982 to 2015 and using trend analysis, we found that the mean temperature (T mean), maximum temperature (T max) and minimum temperature (T min) showed a slowdown of the warming trend around 1998, during the period of the global warming hiatus. This was found over both the growing season (GS) and non-growing season (NGS) and suggested a robust warming hiatus over the TP. Due to the differences in trends of T max and T min, the trend of diurnal temperature range (DTR) also shifted after 1998, especially during the GS temperature. The warming rate was spatially heterogeneous. The northern TP (NTP) experienced more warming than the southern TP (STP) in all seasons from 1982 to 1998, while the pattern was reversed in the period from 1998 to 2015. Water vapour was found to be the main driving force for the trend in T mean and T min by influencing downward long wave radiation. Sunshine duration was the main driving force behind the trend in T max and DTR through a change in downward shortwave radiation that altered the energy source of daytime temperature. Water vapour was the major driving force for temperature change over the NTP, while over the STP, sunshine duration dominated the temperature trend.

  9. Investigation of the annealing temperature dependence of the spin pumping in Co20Fe60B20/Pt systems

    NASA Astrophysics Data System (ADS)

    Belmeguenai, M.; Aitoukaci, K.; Zighem, F.; Gabor, M. S.; Petrisor, T.; Mos, R. B.; Tiusan, C.

    2018-03-01

    Co20Fe60B20/Pt systems with variable thicknesses of Co20Fe60B20 and of Pt have been sputtered and then annealed at various temperatures (Ta) up to 300 °C. Microstrip line ferromagnetic resonance (MS-FMR) has been used to investigate Co20Fe60B20 and Pt thickness dependencies of the magnetic damping enhancement due to the spin pumping. Using diffusion and ballistic models for spin pumping, the spin mixing conductance and the spin diffusion length have been deduced from the Co20Fe60B20 and the Pt thickness dependencies of the Gilbert damping parameter α of the Co20Fe60B20/Pt heterostructures, respectively. Within the ballistic simple model, both the spin mixing conductance at the CoFeB/Pt interface and the spin-diffusion length of Pt increase with the increasing annealing temperature and show a strong enhancement at 300 °C annealing temperature. In contrast, the spin mixing conductance, which increases with Ta, shows a different trend to the spin diffusion length when using the diffusion model. Moreover, MS-FMR measurements revealed that the effective magnetization varies linearly with the Co20Fe60B20 inverse thickness due to the perpendicular interface anisotropy, which is found to decrease as the annealing temperature increases. It also revealed that the angular dependence of the resonance field is governed by small uniaxial anisotropy which is found to vary linearly with the Co20Fe60B20 inverse thickness of the annealed films, in contrast to that of the as grown ones.

  10. Scrutinization of thermal radiation, viscous dissipation and Joule heating effects on Marangoni convective two-phase flow of Casson fluid with fluid-particle suspension

    NASA Astrophysics Data System (ADS)

    Mahanthesh, B.; Gireesha, B. J.

    2018-03-01

    The impact of Marangoni convection on dusty Casson fluid boundary layer flow with Joule heating and viscous dissipation aspects is addressed. The surface tension is assumed to vary linearly with temperature. Physical aspects of magnetohydrodynamics and thermal radiation are also accounted. The governing problem is modelled under boundary layer approximations for fluid phase and dust particle phase and then Runge-Kutta-Fehlberg method based numeric solutions are established. The momentum and heat transport mechanisms are focused on the result of distinct governing parameters. The Nusselt number is also calculated. It is established that the rate of heat transfer can be enhanced by suspending dust particles in the base fluid. The temperature field of fluid phase and temperature of dust phase are quite reverse for thermal dust parameter. The radiative heat, viscous dissipation and Joule heating aspects are constructive for thermal fields of fluid and dust phases. The velocity of dusty Casson fluid dominates the velocity of dusty fluid while this trend is opposite in the case of temperature. Moreover qualitative behaviour of fluid phase and dust phase temperature/velocity are similar.

  11. Atomistic properties of γ uranium.

    PubMed

    Beeler, Benjamin; Deo, Chaitanya; Baskes, Michael; Okuniewski, Maria

    2012-02-22

    The properties of the body-centered cubic γ phase of uranium (U) are calculated using atomistic simulations. First, a modified embedded-atom method interatomic potential is developed for the high temperature body-centered cubic (γ) phase of U. This phase is stable only at high temperatures and is thus relatively inaccessible to first principles calculations and room temperature experiments. Using this potential, equilibrium volume and elastic constants are calculated at 0 K and found to be in close agreement with previous first principles calculations. Further, the melting point, heat capacity, enthalpy of fusion, thermal expansion and volume change upon melting are calculated and found to be in reasonable agreement with experiment. The low temperature mechanical instability of γ U is correctly predicted and investigated as a function of pressure. The mechanical instability is suppressed at pressures greater than 17.2 GPa. The vacancy formation energy is analyzed as a function of pressure and shows a linear trend, allowing for the calculation of the extrapolated zero pressure vacancy formation energy. Finally, the self-defect formation energy is analyzed as a function of temperature. This is the first atomistic calculation of γ U properties above 0 K with interatomic potentials.

  12. Atomistic properties of γ uranium

    NASA Astrophysics Data System (ADS)

    Beeler, Benjamin; Deo, Chaitanya; Baskes, Michael; Okuniewski, Maria

    2012-02-01

    The properties of the body-centered cubic γ phase of uranium (U) are calculated using atomistic simulations. First, a modified embedded-atom method interatomic potential is developed for the high temperature body-centered cubic (γ) phase of U. This phase is stable only at high temperatures and is thus relatively inaccessible to first principles calculations and room temperature experiments. Using this potential, equilibrium volume and elastic constants are calculated at 0 K and found to be in close agreement with previous first principles calculations. Further, the melting point, heat capacity, enthalpy of fusion, thermal expansion and volume change upon melting are calculated and found to be in reasonable agreement with experiment. The low temperature mechanical instability of γ U is correctly predicted and investigated as a function of pressure. The mechanical instability is suppressed at pressures greater than 17.2 GPa. The vacancy formation energy is analyzed as a function of pressure and shows a linear trend, allowing for the calculation of the extrapolated zero pressure vacancy formation energy. Finally, the self-defect formation energy is analyzed as a function of temperature. This is the first atomistic calculation of γ U properties above 0 K with interatomic potentials.

  13. Long Term Precipitation Pattern Identification and Derivation of Non Linear Precipitation Trend in a Catchment using Singular Spectrum Analysis

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, Poornima; Jothiprakash, Vinayakam

    2017-04-01

    Precipitation is the major component in the hydrologic cycle. Awareness of not only the total amount of rainfall pertaining to a catchment, but also the pattern of its spatial and temporal distribution are equally important in the management of water resources systems in an efficient way. Trend is the long term direction of a time series; it determines the overall pattern of a time series. Singular Spectrum Analysis (SSA) is a time series analysis technique that decomposes the time series into small components (eigen triples). This property of the method of SSA has been utilized to extract the trend component of the rainfall time series. In order to derive trend from the rainfall time series, we need to select components corresponding to trend from the eigen triples. For this purpose, periodogram analysis of the eigen triples have been proposed to be coupled with SSA, in the present study. In the study, seasonal data of England and Wales Precipitation (EWP) for a time period of 1766-2013 have been analyzed and non linear trend have been derived out of the precipitation data. In order to compare the performance of SSA in deriving trend component, Mann Kendall (MK) test is also used to detect trends in EWP seasonal series and the results have been compared. The result showed that the MK test could detect the presence of positive or negative trend for a significance level, whereas the proposed methodology of SSA could extract the non-linear trend present in the rainfall series along with its shape. We will discuss further the comparison of both the methodologies along with the results in the presentation.

  14. New Linear Partitioning Models Based on Experimental Water: Supercritical CO2 Partitioning Data of Selected Organic Compounds.

    PubMed

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V; Karamalidis, Athanasios K

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch-reactor system with dual spectroscopic detectors: a near-infrared spectrometer for measuring the organic analyte in the CO2 phase and a UV detector for quantifying the analyte in the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly parameter linear free-energy relationship and to develop five new linear free-energy relationships for predicting water-sc-CO2 partitioning coefficients. A total of four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than does the model built for the entire data set.

  15. New Linear Partitioning Models Based on Experimental Water: Supercritical CO 2 Partitioning Data of Selected Organic Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burant, Aniela; Thompson, Christopher; Lowry, Gregory V.

    2016-05-17

    Partitioning coefficients of organic compounds between water and supercritical CO2 (sc-CO2) are necessary to assess the risk of migration of these chemicals from subsurface CO2 storage sites. Despite the large number of potential organic contaminants, the current data set of published water-sc-CO2 partitioning coefficients is very limited. Here, the partitioning coefficients of thiophene, pyrrole, and anisole were measured in situ over a range of temperatures and pressures using a novel pressurized batch reactor system with dual spectroscopic detectors: a near infrared spectrometer for measuring the organic analyte in the CO2 phase, and a UV detector for quantifying the analyte inmore » the aqueous phase. Our measured partitioning coefficients followed expected trends based on volatility and aqueous solubility. The partitioning coefficients and literature data were then used to update a published poly-parameter linear free energy relationship and to develop five new linear free energy relationships for predicting water-sc-CO2 partitioning coefficients. Four of the models targeted a single class of organic compounds. Unlike models that utilize Abraham solvation parameters, the new relationships use vapor pressure and aqueous solubility of the organic compound at 25 °C and CO2 density to predict partitioning coefficients over a range of temperature and pressure conditions. The compound class models provide better estimates of partitioning behavior for compounds in that class than the model built for the entire dataset.« less

  16. Tropospheric temperature climatology and trends observed over the Middle East

    NASA Astrophysics Data System (ADS)

    Basha, Ghouse; Marpu, P. R.; Ouarda, T. B. M. J.

    2015-10-01

    In this study, we report for the first time, the upper air temperature climatology, and trends over the Middle East, which seem to be significantly affected by the changes associated with hot summer and low precipitation. Long term (1985-2012) radiosonde data from 12 stations are used to derive the mean temperature climatology and vertical trends. The study was performed by analyzing the data at different latitudes. The vertical profiles of air temperature show distinct behavior in terms of vertical and seasonal variability at different latitudes. The seasonal cycle of temperature at the 100 hPa, however, shows an opposite pattern compared to the 200 hPa levels. The temperature at 100 hPa shows a maximum during winter and minimum in summer. Spectral analysis shows that the annual cycle is dominant in comparison with the semiannual cycle. The time-series of temperature data was analyzed using the Bayesian change point analysis and cumulative sum method to investigate the changes in temperature trends. Temperature shows a clear change point during the year 1999 at all stations. Further, Modified Mann-Kendall test was applied to study the vertical trend, and analysis shows statistically significant lower tropospheric warming and cooling in upper troposphere after the year 1999. In general, the magnitude of the trend decreases with altitude in the troposphere. In all the latitude bands in lower troposphere, significant warming is observed, whereas at higher altitudes cooling is noticed based on 28 years temperature observations over the Middle East.

  17. Comment on "Methodology and results of calculating Central California surface temperature trends: evidence of human-induced climate change?" by Christy et al. (2006)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bonfils, C; Duffy, P; Lobell, D

    2006-03-28

    Understanding the causes of observed regional temperature trends is essential to projecting the human influences on climate, and the societal impacts of these influences. In their recent study, Christy et al. (2006, hereinafter CRNG06) hypothesized that the presence of irrigated soils is responsible for rapid warming of summer nights occurring in California's Central Valley over the last century (1910-2003), an assumption that rules out any significant effect due to increased greenhouse gases, urbanization, or other factors in this region. We question this interpretation, which is based on an apparent contrast in summer nighttime temperature trends between the San Joaquin Valleymore » ({approx} +0.3 {+-} 0.1 C/decade) and the adjacent western slopes of the Sierra Nevada (-0.25 {+-} 0.15 C/decade), as well as the amplitude, sign and uncertainty of the Sierra nighttime temperature trend itself. We, however, do not dispute the finding of other Sierra and Valley trends. Regarding the veracity of the apparent Sierra nighttime temperature trend, CRNG06 generated the Valley and Sierra time-series using a meticulous procedure that eliminates discontinuities and isolates homogeneous segments in temperature records from 41 weather stations. This procedure yields an apparent cooling of about -0.25 {+-} 0.15 C/decade in the Sierra region. However, because removal of one of the 137 Sierra segments, from the most elevated site (Huntington Lake, 2140m), causes an increase in nighttime temperature trend as large as the trend itself (of +0.25 C/decade, CH06), and leads to a zero trend, the apparent cooling of summer nights in the Sierra regions seems, in fact, largely uncertain.« less

  18. Monitoring Functional Traits of Alpine Vegetation using Remote Sensing

    NASA Astrophysics Data System (ADS)

    Li, C.; Wulf, H.; Schaepman, M. E.; Schmid, B.

    2016-12-01

    Plant functional traits can be used to study the interactions between plants and ecosystem functioning as well as the response of plants to various environmental pressures. Continuous monitoring of plant functional traits dynamics on a large spatial scale is important to understand the mechanisms of ecosystem function degradation, especially on the Qinghai-Tibet Plateau. In this study, we investigated spatiotemporal trends of functional traits (i.e., chlorophyll content, phenology, leaf area index proxy of leaf size and above ground biomass proxy of leaf mass) in the eastern part of the Qinghai-Tibet Plateau based on the combined analysis of multi-sensor satellite data and field observations at three spatial scales (ground-truth data at 1 m, Landsat at 30 m, MODIS at 500 m), and analyzed potential factors contribute to their spatiotemporal trends. Chlorophyll content (Chl) and biomass was retrieved based on 94 field plots measurements. LAI was analyzed using MCD15A3H product and estimated values using digital hemispherical photographs in the field. Plant phenology will be processed based on MODIS NDVI time series and hourly Phenocam observations. The preliminary results show that (1) Chl, LAI and biomass show high spatial heterogeneity trends and increase in 2001 - 2015. (2) Elevation played an important role in the spatial pattern of LAI and Chl variation in 15 years. A dividing line of approximately 3800 m exists and shows that below this line, LAI and Chl changes more complicated, showing significantly positive and negative linear trend. While above this altitude, the change rate of two variables keeps relatively stable. Vegetation in low elevation is exposed to high habitat diversity by showing high Chl, LAI and biomass spatial heterogeneity. The vegetation in high habitat diversity may be more sensitive to climatic variables and human activities than higher elevation since warming contribute to the positive trend of traits while human factors like urbanization might be explain negative trend in relative low altitude (below 3800 m). (3) Temperature contribute to the above functional traits variation than precipitation, especially temperature is more correlated to the functional traits of widely distributed vegetation type than narrow-ranging vegetation type.

  19. Is greater temperature change within a day associated with increased emergency admissions for schizophrenia?

    PubMed

    Zhao, Desheng; Zhang, Xulai; Xie, Mingyu; Cheng, Jian; Zhang, Heng; Wang, Shusi; Li, Kesheng; Yang, Huihui; Wen, Liying; Wang, Xu; Su, Hong

    2016-10-01

    Diurnal temperature range (DTR), as an important index of climate change, has been increasingly used to evaluate the impacts of temperature variability on human health. However, little is known about the effects of DTR on schizophrenia. The present study aims to examine the relationship between DTR and schizophrenia admissions, and further, to explore whether the association varied by individual characteristics and study periods. A Poisson generalized linear regression combined with distributed lag non-linear model (DLNM) was applied to analyze daily DTR and schizophrenia data from Hefei, China during 2005 to 2014, after adjusting for long-term and seasonal trends, mean temperature, relative humidity and other confounding factors. An acute adverse effect of extremely high DTR on schizophrenia was observed, with a 2.7% (95% CI: 1.007-1.047) increase of daily schizophrenia admissions after exposure to extremely high DTR (95th percentile vs. 50th percentile). The risk for schizophrenia onset due to large DTR exposure increased from the first five years (2005-2009) to the second five years (2010-2014). Additionally, the patient aged 15-29 and 50-64years, male patients, patients born in spring/autumn, and married patients appeared to be more vulnerable to DTR effect. However, there was no significant association between moderately high DTR (75th percentile) and schizophrenia. This study suggests that extremely high DTR is a potential trigger for schizophrenia admissions in Hefei, China. Our findings may provide valuable information to decisions-makers and guidance to health practitioners. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Enhanced seasonal predictability of the summer mean temperature in Central Europe favored by new dominant weather patterns

    NASA Astrophysics Data System (ADS)

    Hoffmann, P.

    2018-04-01

    In this study two complementary approaches have been combined to estimate the reliability of the data-driven seasonal predictability of the meteorological summer mean temperature (T_{JJA}) over Europe. The developed model is based on linear regressions and uses early season predictors to estimate the target value T_{JJA}. We found for the Potsdam (Germany) climate station that the monthly standard deviations (σ) from January to April and the temperature mean ( m) in April are good predictors to describe T_{JJA} after 1990. However, before 1990 the model failed. The core region where this model works is the north-eastern part of Central Europe. We also analyzed long-term trends of monthly Hess/Brezowsky weather types as possible causes of the dynamical changes. In spring, a significant increase of the occurrences for two opposite weather patterns was found: Zonal Ridge across Central Europe (BM) and Trough over Central Europe (TRM). Both currently make up about 30% of the total alternating weather systems over Europe. Other weather types are predominantly decreasing or their trends are not significant. Thus, the predictability may be attributed to these two weather types where the difference between the two Z500 composite patterns is large. This also applies to the north-eastern part of Central Europe. Finally, the detected enhanced seasonal predictability over Europe is alarming, because severe side effects may occur. One of these are more frequent climate extremes in summer half-year.

  1. Climate impact on suicide rates in Finland from 1971 to 2003

    NASA Astrophysics Data System (ADS)

    Ruuhela, Reija; Hiltunen, Laura; Venäläinen, Ari; Pirinen, Pentti; Partonen, Timo

    2009-03-01

    Seasonal patterns of death from suicide are well-documented and have been attributed to climatic factors such as solar radiation and ambient temperature. However, studies on the impact of weather and climate on suicide are not consistent, and conflicting data have been reported. In this study, we performed a correlation analysis between nationwide suicide rates and weather variables in Finland during the period 1971-2003. The weather parameters studied were global solar radiation, temperature and precipitation, and a range of time spans from 1 month to 1 year were used in order to elucidate the dose-response relationship, if any, between weather variables and suicide. Single and multiple linear regression models show weak associations using 1-month and 3-month time spans, but robust associations using a 12-month time span. Cumulative global solar radiation had the best explanatory power, while average temperature and cumulative precipitation had only a minor impact on suicide rates. Our results demonstrate that winters with low global radiation may increase the risk of suicide. The best correlation found was for the 5-month period from November to March; the inter-annual variability in the cumulative global radiation for that period explained 40 % of the variation in the male suicide rate and 14 % of the variation in the female suicide rate, both at a statistically significant level. Long-term variations in global radiation may also explain, in part, the observed increasing trend in the suicide rate until 1990 and the decreasing trend since then in Finland.

  2. Environmental influences on the abundance and sexual composition of white sharks Carcharodon carcharias in Gansbaai, South Africa.

    PubMed

    Towner, Alison V; Underhill, Les G; Jewell, Oliver J D; Smale, Malcolm J

    2013-01-01

    The seasonal occurrence of white sharks visiting Gansbaai, South Africa was investigated from 2007 to 2011 using sightings from white shark cage diving boats. Generalized linear models were used to investigate the number of great white sharks sighted per trip in relation to sex, month, sea surface temperature and Multivariate El Niño/Southern Oscillation (ENSO) Indices (MEI). Water conditions are more variable in summer than winter due to wind-driven cold water upwelling and thermocline displacement, culminating in colder water temperatures, and shark sightings of both sexes were higher during the autumn and winter months (March-August). MEI, an index to quantify the strength of Southern Oscillation, differed in its effect on the recorded numbers of male and female white sharks, with highly significant interannual trends. This data suggests that water temperature and climatic phenomena influence the abundance of white sharks at this coastal site. In this study, more females were seen in Gansbaai overall in warmer water/positive MEI years. Conversely, the opposite trend was observed for males. In cool water years (2010 to 2011) sightings of male sharks were significantly higher than in previous years. The influence of environmental factors on the physiology of sharks in terms of their size and sex is discussed. The findings of this study could contribute to bather safety programmes because the incorporation of environmental parameters into predictive models may help identify times and localities of higher risk to bathers and help mitigate human-white shark interactions.

  3. Dynamic linear models using the Kalman filter for early detection and early warning of malaria outbreaks

    NASA Astrophysics Data System (ADS)

    Merkord, C. L.; Liu, Y.; DeVos, M.; Wimberly, M. C.

    2015-12-01

    Malaria early detection and early warning systems are important tools for public health decision makers in regions where malaria transmission is seasonal and varies from year to year with fluctuations in rainfall and temperature. Here we present a new data-driven dynamic linear model based on the Kalman filter with time-varying coefficients that are used to identify malaria outbreaks as they occur (early detection) and predict the location and timing of future outbreaks (early warning). We fit linear models of malaria incidence with trend and Fourier form seasonal components using three years of weekly malaria case data from 30 districts in the Amhara Region of Ethiopia. We identified past outbreaks by comparing the modeled prediction envelopes with observed case data. Preliminary results demonstrated the potential for improved accuracy and timeliness over commonly-used methods in which thresholds are based on simpler summary statistics of historical data. Other benefits of the dynamic linear modeling approach include robustness to missing data and the ability to fit models with relatively few years of training data. To predict future outbreaks, we started with the early detection model for each district and added a regression component based on satellite-derived environmental predictor variables including precipitation data from the Tropical Rainfall Measuring Mission (TRMM) and land surface temperature (LST) and spectral indices from the Moderate Resolution Imaging Spectroradiometer (MODIS). We included lagged environmental predictors in the regression component of the model, with lags chosen based on cross-correlation of the one-step-ahead forecast errors from the first model. Our results suggest that predictions of future malaria outbreaks can be improved by incorporating lagged environmental predictors.

  4. Spatial and Temporal Variation of PATMOS-x AVHRR Lake Surface Temperatures in the Laurentian Great Lakes

    NASA Astrophysics Data System (ADS)

    White, C.; Heidinger, A. K.; Ackerman, S. A.; McIntyre, P. B.

    2017-12-01

    A thirty-four year lake surface water temperature (LSWT) time series over the North American Great Lakes was extracted from NOAA's Advanced Very High Resolution Radiometer (AVHRR) Global Area Coverage (GAC). The time series was cloud-cleared using the NOAA Pathfinder Atmospheres Extended (PATMOS-x) climate dataset and the Clouds from AVHRR Extended System (CLAVR-x) processing system, and was subsampled to a regular 0.05° grid. LSWT coefficients for each AVHRR platform were fit to NOAA National Data Buoy Center buoys with historical records spanning 1982 to 2016. Satellite to buoy matchups indicate an RMSE of 0.72 K for the entire time series across all five lakes. An empirically fit diurnal correction was applied to correct for orbital drift and varying observation times of NOAA-7,9,11,12,14-19, Metop-1 and Metop-2. Ordinary linear regression slopes on monthly mean LSWT show strong spatial heterogeneity in the long-term LSWT trends both within each lake and between lakes. Differences in long-term trends using nighttime only, daytime only, and both day and night are examined. Additionally, a coastal upwelling signal can be identified from the time series along with the indication of an earlier onset of spring stratification.

  5. The local and global climate forcings induced inhomogeneity of Indian rainfall.

    PubMed

    Nair, P J; Chakraborty, A; Varikoden, H; Francis, P A; Kuttippurath, J

    2018-04-16

    India is home for more than a billion people and its economy is largely based on agrarian society. Therefore, rainfall received not only decides its livelihood, but also influences its water security and economy. This situation warrants continuous surveillance and analysis of Indian rainfall. These kinds of studies would also help forecasters to better tune their models for accurate weather prediction. Here, we introduce a new method for estimating variability and trends in rainfall over different climate regions of India. The method based on multiple linear regression helps to assess contributions of different remote and local climate forcings to seasonal and regional inhomogeneity in rainfall. We show that the Indian Summer Monsoon Rainfall (ISMR) variability is governed by Eastern and Central Pacific El Niño Southern Oscillation, equatorial zonal winds, Atlantic zonal mode and surface temperatures of the Arabian Sea and Bay of Bengal, and the North East Monsoon Rainfall variability is controlled by the sea surface temperature of the North Atlantic and extratropial oceans. Also, our analyses reveal significant positive trends (0.43 mm/day/dec) in the North West for ISMR in the 1979-2017 period. This study cautions against the significant changes in Indian rainfall in a perspective of global climate change.

  6. Relationship between eastern tropical Pacific cooling and recent trends in the Southern Hemisphere zonal-mean circulation

    NASA Astrophysics Data System (ADS)

    Clem, Kyle R.; Renwick, James A.; McGregor, James

    2017-07-01

    During 1979-2014, eastern tropical Pacific sea surface temperatures significantly cooled, which has generally been attributed to the transition of the Pacific Decadal Oscillation to its negative phase after 1999. We find the eastern tropical Pacific cooling to be associated with: (1) an intensified Walker Circulation during austral summer (December-February, DJF) and autumn (March-May, MAM); (2) a weakened South Pacific Hadley cell and subtropical jet during MAM; and (3) a strengthening of the circumpolar westerlies between 50 and 60°S during DJF and MAM. Observed cooling in the eastern tropical Pacific is linearly congruent with 60-80 % of the observed Southern Hemisphere positive zonal-mean zonal wind trend between 50 and 60°S during DJF ( 35 % of the interannual variability), and around half of the observed positive zonal-mean zonal wind trend during MAM ( 15 % of the interannual variability). Although previous studies have linked the strengthened DJF and MAM circumpolar westerlies to stratospheric ozone depletion and increasing greenhouse gases, we note that the continuation of the positive SAM trends into the twenty-first century is partially associated with eastern tropical Pacific cooling, especially during MAM when zonal wind anomalies associated with eastern tropical Pacific cooling project strongly onto the observed trends. Outside of DJF and MAM, eastern tropical Pacific cooling is associated with opposing zonal wind anomalies over the Pacific and Indian sectors, which we infer is the reason for the absence of significant positive SAM trends outside of DJF and MAM despite significant eastern tropical Pacific cooling seen during all seasons.

  7. Long-term variations of SST and heat content in the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Huonsou-gbo, Aubains; Servain, Jacques; Caniaux, Guy; Araujo, Moacyr; Bourlès, Bernard; Veleda, Doris

    2015-04-01

    Recent studies (eg. Wen et al. 2010; Servain et al. 2014) suggest that subsurface processes influence the interannual variability of sea surface temperature (SST) in the tropical Atlantic through the Meridional Overturning Circulation (MOC) with time lags of several months. In this study, we used observed SST and Ocean heat content to test such hypothesis during the period 1964-2013. First results indicate great similarities in the positive linear trends of monthly standardized anomalies of SST, upper ocean heat content (0-500m) and deeper ocean heat content (500-2000m) averaged over the whole Atlantic Ocean. Strong positive trends of SST and deeper heat content occurred in the equatorial Atlantic, while a strong positive trend of the upper heat content was observed in the northeast Atlantic. These positive trends were the highest during the last two decades. The lagged positive correlation patterns between upper heat content anomalies over the whole gridded Atlantic Ocean and SST anomalies averaged over the equatorial region (60°W-15°E; 10°N-10°S) show a slow temporal evolution, which is roughly in agreement with the upper MOC. More detailed works about the mechanism, as well as about the origin of the highest positive trend of the deeper heat content in the equatorial region, are presently under investigation. References Servain J., G. Caniaux, Y. K. Kouadio, M. J. McPhaden, M. Araujo (2014). Recent climatic trends in the tropical Atlantic. Climate Dynamics, Vol. 43, 3071-3089, DOI 10.1007/s00382-014-2168-7.

  8. Change point detection of the Persian Gulf sea surface temperature

    NASA Astrophysics Data System (ADS)

    Shirvani, A.

    2017-01-01

    In this study, the Student's t parametric and Mann-Whitney nonparametric change point models (CPMs) were applied to detect change point in the annual Persian Gulf sea surface temperature anomalies (PGSSTA) time series for the period 1951-2013. The PGSSTA time series, which were serially correlated, were transformed to produce an uncorrelated pre-whitened time series. The pre-whitened PGSSTA time series were utilized as the input file of change point models. Both the applied parametric and nonparametric CPMs estimated the change point in the PGSSTA in 1992. The PGSSTA follow the normal distribution up to 1992 and thereafter, but with a different mean value after year 1992. The estimated slope of linear trend in PGSSTA time series for the period 1951-1992 was negative; however, that was positive after the detected change point. Unlike the PGSSTA, the applied CPMs suggested no change point in the Niño3.4SSTA time series.

  9. Use of anomolous thermal imaging effects for multi-mode systems control during crystal growth

    NASA Technical Reports Server (NTRS)

    Wargo, Michael J.

    1989-01-01

    Real time image processing techniques, combined with multitasking computational capabilities are used to establish thermal imaging as a multimode sensor for systems control during crystal growth. Whereas certain regions of the high temperature scene are presently unusable for quantitative determination of temperature, the anomalous information thus obtained is found to serve as a potentially low noise source of other important systems control output. Using this approach, the light emission/reflection characteristics of the crystal, meniscus and melt system are used to infer the crystal diameter and a linear regression algorithm is employed to determine the local diameter trend. This data is utilized as input for closed loop control of crystal shape. No performance penalty in thermal imaging speed is paid for this added functionality. Approach to secondary (diameter) sensor design and systems control structure is discussed. Preliminary experimental results are presented.

  10. Influence of Functional Groups on the Viscosity of Organic Aerosol.

    PubMed

    Rothfuss, Nicholas E; Petters, Markus D

    2017-01-03

    Organic aerosols can exist in highly viscous or glassy phase states. A viscosity database for organic compounds with atmospherically relevant functional groups is compiled and analyzed to quantify the influence of number and location of functional groups on viscosity. For weakly functionalized compounds the trend in viscosity sensitivity to functional group addition is carboxylic acid (COOH) ≈ hydroxyl (OH) > nitrate (ONO 2 ) > carbonyl (CO) ≈ ester (COO) > methylene (CH 2 ). Sensitivities to group addition increase with greater levels of prior functionalization and decreasing temperature. For carboxylic acids a sharp increase in sensitivity is likely present already at the second addition at room temperature. Ring structures increase viscosity relative to linear structures. Sensitivities are correlated with analogously derived sensitivities of vapor pressure reduction. This may be exploited in the future to predict viscosity in numerical models by piggybacking on schemes that track the evolution of organic aerosol volatility with age.

  11. Parametric Characterization of TES Detectors Under DC Bias

    NASA Technical Reports Server (NTRS)

    Chiao, Meng P.; Smith, Stephen James; Kilbourne, Caroline A.; Adams, Joseph S.; Bandler, Simon R.; Betancourt-Martinez, Gabriele L.; Chervenak, James A.; Datesman, Aaron M.; Eckart, Megan E.; Ewin, Audrey J.; hide

    2016-01-01

    The X-ray integrated field unit (X-IFU) in European Space Agency's (ESA's) Athena mission will be the first high-resolution X-ray spectrometer in space using a large-format transition-edge sensor microcalorimeter array. Motivated by optimization of detector performance for X-IFU, we have conducted an extensive campaign of parametric characterization on transition-edge sensor (TES) detectors with nominal geometries and physical properties in order to establish sensitivity trends relative to magnetic field, dc bias on detectors, operating temperature, and to improve our understanding of detector behavior relative to its fundamental properties such as thermal conductivity, heat capacity, and transition temperature. These results were used for validation of a simple linear detector model in which a small perturbation can be introduced to one or multiple parameters to estimate the error budget for X-IFU. We will show here results of our parametric characterization of TES detectors and briefly discuss the comparison with the TES model.

  12. Separation of Trend and Chaotic Components of Time Series and Estimation of Their Characteristics by Linear Splines

    NASA Astrophysics Data System (ADS)

    Kryanev, A. V.; Ivanov, V. V.; Romanova, A. O.; Sevastyanov, L. A.; Udumyan, D. K.

    2018-03-01

    This paper considers the problem of separating the trend and the chaotic component of chaotic time series in the absence of information on the characteristics of the chaotic component. Such a problem arises in nuclear physics, biomedicine, and many other applied fields. The scheme has two stages. At the first stage, smoothing linear splines with different values of smoothing parameter are used to separate the "trend component." At the second stage, the method of least squares is used to find the unknown variance σ2 of the noise component.

  13. Spacecraft-borne long life cryogenic refrigeration: Status and trends

    NASA Technical Reports Server (NTRS)

    Johnson, A. L.

    1983-01-01

    The status of cryogenic refrigerator development intended for, or possibly applicable to, long life spacecraft-borne application is reviewed. Based on these efforts, the general development trends are identified. Using currently projected technology needs, the various trends are compared and evaluated. The linear drive, non-contacting bearing Stirling cycle refrigerator concept appears to be the best current approach that will meet the technology projection requirements for spacecraft-borne cryogenic refrigerators. However, a multiply redundant set of lightweight, moderate life, moderate reliability Stirling cycle cryogenic refrigerators using high-speed linear drive and sliding contact bearings may possibly suffice.

  14. Observed changes in extremes of daily rainfall and temperature in Jemma Sub-Basin, Upper Blue Nile Basin, Ethiopia

    NASA Astrophysics Data System (ADS)

    Worku, Gebrekidan; Teferi, Ermias; Bantider, Amare; Dile, Yihun T.

    2018-02-01

    Climate variability has been a threat to the socio-economic development of Ethiopia. This paper examined the changes in rainfall, minimum, and maximum temperature extremes of Jemma Sub-Basin of the Upper Blue Nile Basin for the period of 1981 to 2014. The nonparametric Mann-Kendall, seasonal Mann-Kendall, and Sen's slope estimator were used to estimate annual trends. Ten rainfall and 12 temperature indices were used to study changes in rainfall and temperature extremes. The results showed an increasing trend of annual and summer rainfall in more than 78% of the stations and a decreasing trend of spring rainfall in most of the stations. An increase in rainfall extreme events was detected in the majority of the stations. Several rainfall extreme indices showed wetting trends in the sub-basin, whereas limited indices indicated dryness in most of the stations. Annual maximum and minimum temperature and extreme temperature indices showed warming trend in the sub-basin. Presence of extreme rainfall and a warming trend of extreme temperature indices may suggest signs of climate change in the Jemma Sub-Basin. This study, therefore, recommended the need for exploring climate induced risks and implementing appropriate climate change adaptation and mitigation strategies.

  15. Non-Linear Concentration-Response Relationships between Ambient Ozone and Daily Mortality.

    PubMed

    Bae, Sanghyuk; Lim, Youn-Hee; Kashima, Saori; Yorifuji, Takashi; Honda, Yasushi; Kim, Ho; Hong, Yun-Chul

    2015-01-01

    Ambient ozone (O3) concentration has been reported to be significantly associated with mortality. However, linearity of the relationships and the presence of a threshold has been controversial. The aim of the present study was to examine the concentration-response relationship and threshold of the association between ambient O3 concentration and non-accidental mortality in 13 Japanese and Korean cities from 2000 to 2009. We selected Japanese and Korean cities which have population of over 1 million. We constructed Poisson regression models adjusting daily mean temperature, daily mean PM10, humidity, time trend, season, year, day of the week, holidays and yearly population. The association between O3 concentration and mortality was examined using linear, spline and linear-threshold models. The thresholds were estimated for each city, by constructing linear-threshold models. We also examined the city-combined association using a generalized additive mixed model. The mean O3 concentration did not differ greatly between Korea and Japan, which were 26.2 ppb and 24.2 ppb, respectively. Seven out of 13 cities showed better fits for the spline model compared with the linear model, supporting a non-linear relationships between O3 concentration and mortality. All of the 7 cities showed J or U shaped associations suggesting the existence of thresholds. The range of city-specific thresholds was from 11 to 34 ppb. The city-combined analysis also showed a non-linear association with a threshold around 30-40 ppb. We have observed non-linear concentration-response relationship with thresholds between daily mean ambient O3 concentration and daily number of non-accidental death in Japanese and Korean cities.

  16. Urban and peri-urban precipitation and air temperature trends in mega cities of the world using multiple trend analysis methods

    NASA Astrophysics Data System (ADS)

    Ajaaj, Aws A.; Mishra, Ashok K.; Khan, Abdul A.

    2018-04-01

    Urbanization plays an important role in altering local to regional climate. In this study, the trends in precipitation and the air temperature were investigated for urban and peri-urban areas of 18 mega cities selected from six continents (representing a wide range of climatic patterns). Multiple statistical tests were used to examine long-term trends in annual and seasonal precipitation and air temperature for the selected cities. The urban and peri-urban areas were classified based on the percentage of land imperviousness. Through this study, it was evident that removal of the lag-k serial correlation caused a reduction of approximately 20 to 30% in significant trend observability for temperature and precipitation data. This observation suggests that appropriate trend analysis methodology for climate studies is necessary. Additionally, about 70% of the urban areas showed higher positive air temperature trends, compared with peri-urban areas. There were not clear trend signatures (i.e., mix of increase or decrease) when comparing urban vs peri-urban precipitation in each selected city. Overall, cities located in dry areas, for example, in Africa, southern parts of North America, and Eastern Asia, showed a decrease in annual and seasonal precipitation, while wetter conditions were favorable for cities located in wet regions such as, southeastern South America, eastern North America, and northern Europe. A positive relationship was observed between decadal trends of annual/seasonal air temperature and precipitation for all urban and peri-urban areas, with a higher rate being observed for urban areas.

  17. [Evolution of maize climate productivity and its response to climate change in Heilongjiang Province, China.

    PubMed

    Li, Xiu Fen; Zhao, Hui Ying; Zhu, Hai Xia; Wang, Ping; Wang, Qiu Jing; Wang, Ming; Li, Yu Guang

    2016-08-01

    Under the background of climate change, revealing the change trend and spatial diffe-rence of maize climate productivity in-depth and understanding the regularity of maize climatic resources utilization can provide scientific basis for the macro-decision of agricultural production in Heilongjiang Province. Based on the 1981-2014 meteorological data of 72 weather stations and the corresponding maize yield data in Heilongjiang Province, by the methods of step by step revisal, spatial interpolation and linear trend analysis, this paper studied the photosynthetic productivity (PP), light-temperature productivity (LTP), and climatic productivity (CP) of spring maize, and their temporal and spatial variation characteristics, main influencing factors and light energy utilization efficiency, and evaluated the maize climate productivities under different climate scenarios in the future. The results showed that during the study period, the mean PP, LTP and CP in Heilongjiang Province were 26558, 19953, 18742 kg·hm -2 , respectively. Maize PP, LTP and CP were high in plains and low in mountains, and gradually decreased from southwest to northeast. PP, LTP and CP presented significantly increasing trends, and the increase rates were 378, 723 and 560 kg·hm -2 ·(10 a) -1 , respectively. The increase of radiation and temperature had positive effect on maize production in Heilongjiang Province. The potential productivity of maize presented significant response to climate change. The decrease of solar radiation led to the decline of PP in western Songnen Plain, but the increased temperature compensated the negative effect of solar radiation, so the downward trend of LTP was slowed. The response to climate warming was particularly evident in North and East, and LTP was significantly increased, which was sensitive to the change of precipitation in southwest of Songnen Plain and part of Sanjiang Plain. The average ratio of maize actual yield to its climate productivity was only 24.1%, there was still 75.9% to be developed. In the future, the warm and wet climate would benefit the improvement of maize climate productivity, while the cold and dry climate would make an adverse impact.

  18. [Spatial and Temporal Variations in Spectrum-Derived Vegetation Growth Trend in Qinghai-Tibetan Plateau from 1982 to 2014].

    PubMed

    Wang, Zhi-wei; Wu, Xiao-dong; Yue, Guang-yang; Zhao, Lin; Wang, Qian; Nan, Zhuo-tong; Qin, Yu; Wu, Tong-hua; Shi, Jian-zong; Zou, De-fu

    2016-02-01

    Recently considerable researches have focused on monitoring vegetation changes because of its important role in regula- ting the terrestrial carbon cycle and the climate system. There were the largest areas with high-altitudes in the Qinghai-Tibet Plateau (QTP), which is often referred to as the third pole of the world. And vegetation in this region is significantly sensitive to the global warming. Meanwhile NDVI dataset was one of the most useful tools to monitor the vegetation activity with high spatial and temporal resolution, which is a normalized transform of the near-infrared radiation (NIR) to red reflectance ratio. Therefore, an extended GIMMS NDVI dataset from 1982-2006 to 1982-2014 was presented using a unary linear regression by MODIS dataset from 2000 to 2014 in QTP. Compared with previous researches, the accuracy of the extended NDVI dataset was improved again with consideration the residuals derived from scale transformation. So the model of extend NDVI dataset could be a new method to integrate different NDVI products. With the extended NDVI dataset, we found that in growing season there was a statistically significant increase (0.000 4 yr⁻¹, r² = 0.585 9, p < 0.001) in QTP from 1982 to 2014. During the study pe- riod, the trends of NDVI were significantly increased in spring (0.000 5 yr⁻¹, r² = 0.295 4, p = 0.001), summer (0.000 3 yr⁻¹, r² = 0.105 3, p = 0.065) and autumn respectively (0.000 6 yr⁻¹, r² = 0.436 7, p < 0.001). Due to the increased vegeta- tion activity in Qinghai-Tibet Plateau from 1982 to 2014, the magnitude of carbon sink was accumulated in this region also at this same period. Then the data of temperature and precipitation was used to explore the reason of vegetation changed. Although the trends of them are both increased, the correlation between NDVI and temperature is higher than precipitation in vegetation grow- ing season, spring, summer and autumn. Furthermore, there is significant spatial heterogeneity of the changing trends for ND- VI, temperature and precipitation at Qinghai-Tibet Plateau scale.

  19. Multiple climate regimes in an idealized lake-ice-atmosphere model

    NASA Astrophysics Data System (ADS)

    Sugiyama, Noriyuki; Kravtsov, Sergey; Roebber, Paul

    2018-01-01

    In recent decades, the Laurentian Great Lakes have undergone rapid surface warming with the summertime trends substantially exceeding the warming rates of surrounding land. Warming of the deepest (Lake Superior) was the strongest, and that of the shallowest (Lake Erie)—the weakest of all lakes. To investigate the dynamics of accelerated lake warming, we considered single-column and multi-column thermodynamic lake-ice models coupled to an idealized two-layer atmosphere. The variable temperature of the upper atmospheric layer—a proxy for the large-scale atmospheric forcing—consisted, in the most general case, of a linear trend mimicking the global warming and atmospheric interannual variability, both on top of the prescribed seasonal cycle of the upper-air temperature. The atmospheric boundary layer of the coupled model exchanged heat with the lake and exhibited lateral diffusive heat transports between the adjacent atmospheric columns. In simpler single-column models, we find that, for a certain range of periodic atmospheric forcing, each lake possesses two stable equilibrium seasonal cycles, which we call "regimes"—with and without lake-ice occurrence in winter and with corresponding cold and warm temperatures in the following summer, respectively, all under an identical seasonally varying external forcing. Deeper lakes exhibit larger differences in their summertime surface water temperature between the warm and cold regimes, due to their larger thermal and dynamical inertia. The regime behavior of multi-column coupled models is similar but more complex, and in some cases, they admit more than two stable equilibrium seasonal cycles, with varying degrees of wintertime ice-cover. The simulated lake response to climate change in the presence of the atmospheric noise rationalizes the observed accelerated warming of the lakes, the correlation between wintertime ice cover and next summer's lake-surface temperature, as well as higher warming trends of the (occasionally wintertime ice-covered) deep-lake vs. shallow-lake regions, in terms of the corresponding characteristics of the forced transitions between colder and warmer lake regimes. Since the regime behavior in our models arises due to nonlinear dynamics rooted in the ice-albedo feedback, this feedback is also the root cause of the accelerated lake warming simulated by these models. In addition, our results imply that if Lake Superior eventually becomes largely ice-free (<10% maximum ice cover every winter) under continuing global warming, the surface warming trends of the deeper regions of the lake will become modest, similar to those of the shallower regions of the lake.

  20. An aftereffect of global warming on tropical Pacific decadal variability

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Liu, Qinyu; Wang, Chuanyang

    2018-03-01

    Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

  1. Effect of pH and dilution rate on specific production rate of extra cellular metabolites by Lactobacillus salivarius UCO_979C in continuous culture.

    PubMed

    Valenzuela, Javier Ferrer; Pinuer, Luis; Cancino, Apolinaria García; Yáñez, Rodrigo Bórquez

    2015-08-01

    The effect of pH and dilution rate on the production of extracellular metabolites of Lactobacillus salivarius UCO_979 was studied. The experiments were carried out in continuous mode, with chemically defined culture medium at a temperature of 37 °C, 200 rpm agitation and synthetic air flow of 100 ml/min. Ethanol, acetic acid, formic acid, lactic acid and glucose were quantified through HPLC, while exopolysaccharide (EPS) was extracted with ethanol and quantified through the Dubois method. The results showed no linear trends for the specific production of lactic acid, EPS, acetic acid and ethanol, while the specific glucose consumption and ATP production rates showed linear trends. There was a metabolic change of the strain for dilution rates below 0.3 h(-1). The pH had a significant effect on the metabolism of the strain, which was evidenced by a higher specific glucose consumption and increased production of ATP at pH 6 compared with that obtained at pH 7. This work shows not only the metabolic capabilities of L. salivarius UCO_979C, but also shows that it is possible to quantify some molecules associated with its current use as gastrointestinal probiotic, especially regarding the production of organic acids and EPS.

  2. Strengthening of Ocean Heat Uptake Efficiency Associated with the Recent Climate Hiatus

    NASA Technical Reports Server (NTRS)

    Watanabe, Masahiro; Kamae, Youichi; Yoshimori, Masakazu; Oka, Akira; Sato, Makiko; Ishii, Masayoshi; Mochizuki, Takashi; Kimoto, Masahide

    2013-01-01

    The rate of increase of global-mean surface air temperature (SAT(sub g)) has apparently slowed during the last decade. We investigated the extent to which state-of-the-art general circulation models (GCMs) can capture this hiatus period by using multimodel ensembles of historical climate simulations. While the SAT(sub g) linear trend for the last decade is not captured by their ensemble means regardless of differences in model generation and external forcing, it is barely represented by an 11-member ensemble of a GCM, suggesting an internal origin of the hiatus associated with active heat uptake by the oceans. Besides, we found opposite changes in ocean heat uptake efficiency (k), weakening in models and strengthening in nature, which explain why the models tend to overestimate the SAT(sub g) trend. The weakening of k commonly found in GCMs seems to be an inevitable response of the climate system to global warming, suggesting the recovery from hiatus in coming decades.

  3. Dynamical amplification of Arctic and global warming

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana; Bobylev, Leonid; Gnatiuk, Natalia; Urazgildeeva, Aleksandra

    2015-04-01

    The Arctic is coupled with global climate system by the atmosphere and ocean circulation that provides a major contribution to the Arctic energy budget. Therefore increase of meridional heat transport under global warming can impact on its Arctic amplification. Contribution of heat transport to the recent warming in the Arctic, Northern Hemisphere and the globe are estimated on base of reanalysis data, global climate model data and proposed special index. It is shown that significant part of linear trend during last four decades in average surface air temperature in these areas can be attributed to dynamical amplification. This attribution keeps until 400 mb height with progressive decreasing. The Arctic warming is amplified also due to an increase of humidity and cloudiness in the Arctic atmosphere that follow meridional transport gain. From October to January the Arctic warming trends are amplified as a result of ice edge retreat from the Siberian and Alaska coast and the heating of expanded volume of sea water. This investigation is supported with RFBR project 15-05-03512.

  4. Constraints on High Northern Photosynthesis Increase Using Earth System Models and a Set of Independent Observations

    NASA Astrophysics Data System (ADS)

    Winkler, A. J.; Brovkin, V.; Myneni, R.; Alexandrov, G.

    2017-12-01

    Plant growth in the northern high latitudes benefits from increasing temperature (radiative effect) and CO2 fertilization as a consequence of rising atmospheric CO2 concentration. This enhanced gross primary production (GPP) is evident in large scale increase in summer time greening over the 36-year record of satellite observations. In this time period also various global ecosystem models simulate a greening trend in terms of increasing leaf area index (LAI). We also found a persistent greening trend analyzing historical simulations of Earth system models (ESM) participating in Phase 5 of the Coupled Model Intercomparison Project (CMIP5). However, these models span a large range in strength of the LAI trend, expressed as sensitivity to both key environmental factors, temperature and CO2 concentration. There is also a wide spread in magnitude of the associated increase of terrestrial GPP among the ESMs, which contributes to pronounced uncertainties in projections of future climate change. Here we demonstrate that there is a linear relationship across the CMIP5 model ensemble between projected GPP changes and historical LAI sensitivity, which allows using the observed LAI sensitivity as an "emerging constraint" on GPP estimation at future CO2 concentration. This constrained estimate of future GPP is substantially higher than the traditional multi-model mean suggesting that the majority of current ESMs may be significantly underestimating carbon fixation by vegetation in NHL. We provide three independent lines of evidence in analyzing observed and simulated CO2 amplitude as well as atmospheric CO2 inversion products to arrive at the same conclusion.

  5. Study of Maowusu Sandy Land Vegetation Coverage Change Based on Modis Ndvi

    NASA Astrophysics Data System (ADS)

    Ye, Q.; Liu, H.; Lin, Y.; Han, R.

    2018-04-01

    This paper selected 2006-2016 MODIS NDVI data with a spatial resolution of 500m and time resolution of 16d, got the 11 years' time series NDVI data of Maowusu sandy land through mosaicking, projection transformation, cutting process in batch. Analysed the spatial and temporal distribution and variation characteristics of vegetation cover in year, season and month time scales by maximum value composite, and unary linear regression analysis. Then, we combined the meteorological data of 33 sites around the sandy area, analysed the response characteristics of vegetation cover change to temperature and precipitation through Pearson correlation coefficient. Studies have shown that: (1) The NDVI value has a stable increase trend, which rate is 0.0075 / a. (2) The vegetation growth have significantly difference in four seasons, the NDVI value of summer > autumn > spring > winter. (3) The NDVI value change trend is conformed to the gauss normal distribution in a year, and it comes to be largest in August, its green season is in April, and yellow season is in the middle of November, the growth period is about 220 d. (4) The vegetation has a decreasing trend from the southeast to the northwest, most part is slightly improved, and Etuokeqianqi improved significantly. (5) The correlation indexes of annual NDVI with temperature and precipitation are -0.2178 and 0.6309, the vegetation growth is mainly affected by precipitation. In this study, a complete vegetation cover analysis and evaluation model for sandy land is established. It has important guiding significance for the sand ecological environment protection.

  6. Abiotic factors influencing embryonic development, egg hatching, and larval orientation in the reindeer warble fly, Hypoderma tarandi.

    PubMed

    Karter, A J; Folstad, I; Anderson, J R

    1992-10-01

    Wild-caught, tethered females of the reindeer warble fly, Hypoderma tarandi (L.) (= Oedemagena tarandi (L.)), (Diptera, Oestridae) were stimulated to oviposit on hairs of a reindeer hide. Newly laid eggs incubated at constant temperatures and relative humidities hatched within 3 days to 2 weeks, depending on the experimental conditions. Over a range of 7-40 degrees C, hatching only occurred between 20 and 37 degrees C. Eggs held at 100% relative humidity had lower hatchability and longer time to hatch relative to eggs held at 77% relative humidity. The average number of degree-days for hatching was 50.35. Between 20 and 33 degrees C there was a temperature-dependent linear trend in developmental rate, and the proportion of eggs hatching was highest, and least variable, at the mid-temperature ranges. The temperature range found in the natural host micro-habitat where H. tarandi commonly affix their eggs (close to the skin at the base of a host hair) was consistent with the experimental temperature treatments that produced the highest hatching rate. Newly emerged larvae displayed positive thermotaxis, while showing no phototaxic or geotaxic behaviour. Results indicate that constraints of the host environment, coupled with temperature-dependent hatching success, may impose a selective pressure on oviposition behaviour.

  7. Trends in Surface Temperature from AIRS.

    NASA Astrophysics Data System (ADS)

    Ruzmaikin, A.; Aumann, H. H.

    2014-12-01

    To address possible causes of the current hiatus in the Earth's global temperature we investigate the trends and variability in the surface temperature using retrievals obtained from the measurements by the Atmospheric Infrared Sounder (AIRS) and its companion instrument, the Advanced Microwave Sounding Unit (AMSU), onboard of Aqua spacecraft in 2002-2014. The data used are L3 monthly means on a 1x1degree spatial grid. We separate the land and ocean temperatures, as well as temperatures in Artic, Antarctic and desert regions. We find a monotonic positive trend for the land temperature but not for the ocean temperature. The difference in the regional trends can help to explain why the global surface temperature remains almost unchanged but the frequency of occurrence of the extreme events increases under rising anthropogenic forcing. The results are compared with the model studies. This work was supported by the Jet Propulsion Laboratory of the California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

  8. Hantavirus reservoir Oligoryzomys longicaudatus spatial distribution sensitivity to climate change scenarios in Argentine Patagonia

    PubMed Central

    Carbajo, Aníbal E; Vera, Carolina; González, Paula LM

    2009-01-01

    Background Oligoryzomys longicaudatus (colilargo) is the rodent responsible for hantavirus pulmonary syndrome (HPS) in Argentine Patagonia. In past decades (1967–1998), trends of precipitation reduction and surface air temperature increase have been observed in western Patagonia. We explore how the potential distribution of the hantavirus reservoir would change under different climate change scenarios based on the observed trends. Methods Four scenarios of potential climate change were constructed using temperature and precipitation changes observed in Argentine Patagonia between 1967 and 1998: Scenario 1 assumed no change in precipitation but a temperature trend as observed; scenario 2 assumed no changes in temperature but a precipitation trend as observed; Scenario 3 included changes in both temperature and precipitation trends as observed; Scenario 4 assumed changes in both temperature and precipitation trends as observed but doubled. We used a validated spatial distribution model of O. longicaudatus as a function of temperature and precipitation. From the model probability of the rodent presence was calculated for each scenario. Results If changes in precipitation follow previous trends, the probability of the colilargo presence would fall in the HPS transmission zone of northern Patagonia. If temperature and precipitation trends remain at current levels for 60 years or double in the future 30 years, the probability of the rodent presence and the associated total area of potential distribution would diminish throughout Patagonia; the areas of potential distribution for colilargos would shift eastwards. These results suggest that future changes in Patagonia climate may lower transmission risk through a reduction in the potential distribution of the rodent reservoir. Conclusion According to our model the rates of temperature and precipitation changes observed between 1967 and 1998 may produce significant changes in the rodent distribution in an equivalent period of time only in certain areas. Given that changes maintain for 60 years or double in 30 years, the hantavirus reservoir Oligoryzomys longicaudatus may contract its distribution in Argentine Patagonia extensively. PMID:19607707

  9. The linkage between stratospheric water vapor and surface temperature in an observation-constrained coupled general circulation model

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Su, Hui; Jiang, Jonathan H.; Livesey, Nathaniel J.; Santee, Michelle L.; Froidevaux, Lucien; Read, William G.; Anderson, John

    2017-04-01

    We assess the interactions between stratospheric water vapor (SWV) and surface temperature during the past two decades using satellite observations and the Community Earth System Model (CESM). From 1992 to 2013, to first order, the observed SWV exhibited three distinct piece-wise trends: a steady increase from 1992 to 2000, an abrupt drop from 2000 to 2004, and a gradual recovery after 2004, while the global-mean surface temperature experienced a strong increase until 2000 and a warming hiatus after 2000. The atmosphere-only CESM shows that the seasonal variation of tropical-mean (30°S-30°N) SWV is anticorrelated with that of the tropical-mean sea surface temperature (SST), while the correlation between the tropical SWV and SST anomalies on the interannual time scale is rather weak. By nudging the modeled SWV to prescribed profiles in coupled atmosphere-slab ocean experiments, we investigate the impact of SWV variations on surface temperature change. We find that a uniform 1 ppmv (0.5 ppmv) SWV increase (decrease) leads to an equilibrium global mean surface warming (cooling) of 0.12 ± 0.05 °C (-0.07 ± 0.05 °C). Sensitivity experiments show that the equilibrium response of global mean surface temperature to SWV perturbations over the extratropics is larger than that over the tropics. The observed sudden drop of SWV from 2000 to 2004 produces a global mean surface cooling of about -0.048 ± 0.041 °C, which suggests that a persistent change in SWV would make an imprint on long-term variations of global-mean surface temperature. A constant linear increase in SWV based on the satellite-observed rate of SWV change yields a global mean surface warming of 0.03 ± 0.01 °C/decade over a 50-year period, which accounts for about 19 % of the observed surface temperature increase prior to the warming hiatus. In the same experiment, trend analyses during different periods reveal a multi-year adjustment of surface temperature before the response to SWV forcing becomes strong relative to the internal variability in the model.

  10. Temperature dependence of elastic and strength properties of T300/5208 graphite-epoxy

    NASA Technical Reports Server (NTRS)

    Milkovich, S. M.; Herakovich, C. T.

    1984-01-01

    Experimental results are presented for the elastic and strength properties of T300/5208 graphite-epoxy at room temperature, 116K (-250 F), and 394K (+250 F). Results are presented for unidirectional 0, 90, and 45 degree laminates, and + or - 30, + or - 45, and + or - 60 degree angle-ply laminates. The stress-strain behavior of the 0 and 90 degree laminates is essentially linear for all three temperatures and that the stress-strain behavior of all other laminates is linear at 116K. A second-order curve provides the best fit for the temperature is linear at 116K. A second-order curve provides the best fit for the temperature dependence of the elastic modulus of all laminates and for the principal shear modulus. Poisson's ratio appears to vary linearly with temperature. all moduli decrease with increasing temperature except for E (sub 1) which exhibits a small increase. The strength temperature dependence is also quadratic for all laminates except the 0 degree - laminate which exhibits linear temperature dependence. In many cases the temperature dependence of properties is nearly linear.

  11. Climate and land use change in an Andean watershed: An NDVI analysis for the years 1985 to 2010

    NASA Astrophysics Data System (ADS)

    Mazzarino, M.; Finn, J.

    2013-12-01

    We perform a Landsat 5-TM derived Normalized Difference Vegetation Index (NDVI) analysis in a watershed (approximately 2700 km2) in southern Peru for the years 1985 through 2010. There in the Andes the livelihoods of the predominately Quechua speaking agro-pastoralists depend on access to natural resources. Vegetation within high-elevation wetlands, locally known as bofedales, is a critical resource that sustains herds of alpaca, sheep, and cattle especially during dry season months (June through August) and in drought. The watershed experiences high inter-annual variability in precipitation (attributed to the El Niño Southern Oscillation) and there are documented increases in air temperature and glacier retreat throughout the Andes. Using one dry-season scene per year for 20 of the 26 years from 1985 to 2010, we calculated NDVI for each pixel in the watershed and used these calculations to perform three objectives. First, we calculated mean NDVI for the Nuñoa watershed for each dry season scene. Using this annual watershed averaged NDVI as the response variable we performed a multiple linear regression with the covariates year, precipitation, and temperature in order to determine the relationship between the response and explanatory variables and if there is a trend in mean watershed dry-season NDVI from 1985 to 2010. Second, we delineated the wetlands (bofedales) based on a threshold value applied to the 26 year dry-season mean NDVI for each pixel in the watershed. Third, we performed a multiple linear regression for each pixel in the watershed (3,070,160) using cell specific annual dry-season NDVI as the response variable (n=20) and year, regional precipitation, and regional temperature indices as the predictor variables in order to review the spatial nature of NDVI changes in vegetation in the watershed throughout time (1985-2010), particularly with respect to bofedales. The results of these analyses indicate that there is reduced variability in dry season NDVI and a general increase in NDVI values in the watershed with time. Variability in mean dry season NDVI is highly correlated with wet season (DJFM) precipitation (R2 = 0.77, p-value < 0.05) and this relationship may explain much of the shift in NDVI values however; the increasing trend in NDVI in the watershed is not explained by a trend in precipitation. We were not able to determine a relationship between NDVI and temperature with our methods. And while an increase in dry-season NDVI is seen in the majority of the vegetated pixels (81%) throughout the watershed, approximately 30% of the wetland areas display a decrease in NDVI over the time period. Contemporary socio-political factors and resulting changes in land management and production systems in the region may be resulting in more intensive use of wetland areas, thereby causing the decreasing vegetation trends seen there. These factors, together with potential reductions in glacier melt from several small ice-capped mountains in the north of the study area may all be contributing to the spatial and temporal changes in NDVI seen in the watershed.

  12. Long-term meteorologically independent trend analysis of ozone air quality at an urban site in the greater Houston area.

    PubMed

    Botlaguduru, Venkata S V; Kommalapati, Raghava R; Huque, Ziaul

    2018-04-19

    The Houston-Galveston-Brazoria (HGB) area of Texas has a history of ozone exceedances and is currently classified under moderate nonattainment status for the 2008 8-hr ozone standard of 75 ppb. The HGB area is characterized by intense solar radiation, high temperature, and humidity, which influence day-to-day variations in ozone concentrations. Long-term air quality trends independent of meteorological influence need to be constructed for ascertaining the effectiveness of air quality management in this area. The Kolmogorov-Zurbenko (KZ) filter technique used to separate different scales of motion in a time series, is applied in the current study for maximum daily 8-hr (MDA8) ozone concentrations at an urban site (EPA AQS Site ID: 48-201-0024, Aldine) in the HGB area. This site located within 10 miles of downtown Houston and the George Bush Intercontinental Airport, was selected for developing long-term meteorologically independent MDA8 ozone trends for the years 1990-2016. Results from this study indicate a consistent decrease in meteorologically independent MDA8 ozone between 2000-2016. This pattern could be partially attributed to a reduction in underlying NO X emissions, particularly that of lowering nitrogen dioxide (NO 2 ) levels, and a decrease in the release of highly reactive volatile organic compounds (HRVOC). Results also suggest solar radiation to be most strongly correlated to ozone, with temperature being the secondary meteorological control variable. Relative humidity and wind speed have tertiary influence at this site. This study observed that meteorological variability accounts for a high of 61% variability in baseline ozone (low-frequency component, sum of long-term and seasonal components), while 64% of the change in long-term MDA8 ozone post-2000 could be attributed to NO X emissions reduction. Long-term MDA8 ozone trend component was estimated to be decreasing at a linear rate of 0.412 ± 0.007 ppb/yr for the years 2000-2016, and 0.155 ± 0.005 ppb/yr for the overall period of 1990-2016. Implications Statement The effectiveness of air emission controls can be evaluated by developing long-term air quality trends independent of meteorological influences. KZ filter technique is a well-established method to separate an air quality time-series into: short-term, seasonal and long-term components. This paper applies the KZ filter technique to MDA8 ozone data between 1990-2016 at an urban site in the Greater Houston area and estimates the variance accounted for, by the primary meteorological control variables. Estimates for linear trends of MDA8 ozone are calculated and underlying causes are investigated to provide a guidance for further investigation into air quality management of the Greater Houston Area.

  13. Contribution of urban expansion and a changing climate to decline of a butterfly fauna.

    PubMed

    Casner, Kayce L; Forister, Matthew L; O'Brien, Joshua M; Thorne, James; Waetjen, David; Shapiro, Arthur M

    2014-06-01

    Butterfly populations are naturally patchy and undergo extinctions and recolonizations. Analyses based on more than 2 decades of data on California's Central Valley butterfly fauna show a net loss in species richness through time. We analyzed 22 years of phenological and faunistic data for butterflies to investigate patterns of species richness over time. We then used 18-22 years of data on changes in regional land use and 37 years of seasonal climate data to develop an explanatory model. The model related the effects of changes in land-use patterns, from working landscapes (farm and ranchland) to urban and suburban landscapes, and of a changing climate on butterfly species richness. Additionally, we investigated local trends in land use and climate. A decline in the area of farmland and ranchland, an increase in minimum temperatures during the summer and maximum temperatures in the fall negatively affected net species richness, whereas increased minimum temperatures in the spring and greater precipitation in the previous summer positively affected species richness. According to the model, there was a threshold between 30% and 40% working-landscape area below which further loss of working-landscape area had a proportionally greater effect on butterfly richness. Some of the isolated effects of a warming climate acted in opposition to affect butterfly richness. Three of the 4 climate variables that most affected richness showed systematic trends (spring and summer mean minimum and fall mean maximum temperatures). Higher spring minimum temperatures were associated with greater species richness, whereas higher summer temperatures in the previous year and lower rainfall were linked to lower richness. Patterns of land use contributed to declines in species richness (although the pattern was not linear), but the net effect of a changing climate on butterfly richness was more difficult to discern. © 2014 Society for Conservation Biology.

  14. Global Mean Temperature Timeseries Projections from GCMs: The Implications of Rebasing

    NASA Astrophysics Data System (ADS)

    Chapman, S. C.; Stainforth, D. A.; Watkins, N. W.

    2017-12-01

    Global climate models are assessed by comparison with observations through several benchmarks. One highlighted by the InterGovernmental Panel on Climate Change (IPCC) is their ability to reproduce "general features of the global and annual mean surface temperature changes over the historical period" [1,2] and to simulate "a trend in global-mean surface temperature from 1951 to 2012 that agrees with the observed trend" [3]. These aspects of annual mean global mean temperature (GMT) change are presented as one feature demonstrating the relevance of these models for climate projections. Here we consider a formal interpretation of "general features" and discuss the implications of this approach to model assessment and intercomparison, for the interpretation of GCM projections. Following the IPCC, we interpret a major element of "general features" as being the slow timescale response to external forcings. (Shorter timescale behaviour such as the response to volcanic eruptions are also elements of "general features" but are not considered here.) Also following the IPCC, we consider only GMT anomalies. The models have absolute temperatures which range over about 3K so this means their timeseries (and the observations) are rebased. We show that rebasing in combination with general agreement, implies a separation of scales which limits the degree to which sub-global behaviour can feedback on the global response. It also implies a degree of linearity in the GMT slow timescale response. For each individual model these implications only apply over the range of absolute temperatures simulated by the model in historic simulations. Taken together, however, they imply consequences over a wider range of GMTs. [1] IPCC, Fifth Assessment Report, Working Group 1, Technical Summary: Stocker et al. 2013. [2] IPCC, Fifth Assessment Report, Working Group 1, Chapter 9 - "Evaluation of Climate Models": Flato et al. 2013. [3] IPCC, Fifth Assessment Report, Working Group 1, Summary for Policy Makers: IPCC, 2013.

  15. Using Generalized Additive Models to Analyze Single-Case Designs

    ERIC Educational Resources Information Center

    Shadish, William; Sullivan, Kristynn

    2013-01-01

    Many analyses for single-case designs (SCDs)--including nearly all the effect size indicators-- currently assume no trend in the data. Regression and multilevel models allow for trend, but usually test only linear trend and have no principled way of knowing if higher order trends should be represented in the model. This paper shows how Generalized…

  16. The impact of water temperature on the measurement of absolute dose

    NASA Astrophysics Data System (ADS)

    Islam, Naveed Mehdi

    To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar magnitude as existing TG 51 recommended correction factors.

  17. Effect of Low Temperature on Charge Transport in Operational Planar and Mesoporous Perovskite Solar Cells.

    PubMed

    Petrović, Miloš; Ye, Tao; Chellappan, Vijila; Ramakrishna, Seeram

    2017-12-13

    Low-temperature optoelectrical studies of perovskite solar cells using MAPbI 3 and mixed-perovskite absorbers implemented into planar and mesoporous architectures reveal fundamental charge transporting properties in fully assembled devices operating under light bias. Both types of devices exhibit inverse correlation of charge carrier lifetime as a function of temperature, extending carrier lifetimes upon temperature reduction, especially after exposure to high optical biases. Contribution of bimolecular channels to the overall recombination process should not be overlooked because the density of generated charge surpasses trap-filling concentration requirements. Bimolecular charge recombination coefficient in both device types is smaller than Langevin theory prediction, and its mean value is independent of the applied illumination intensity. In planar devices, charge extraction declines upon MAPbI 3 transition from a tetragonal to an orthorhombic phase, indicating a connection between the trapping/detrapping mechanism and temperature. Studies on charge extraction by linearly increasing voltage further support this assertion, as charge carrier mobility dependence on temperature follows multiple-trapping predictions for both device structures. The monotonously increasing trend following the rise in temperature opposes the behavior observed in neat perovskite films and indicates the importance of transporting layers and the effect they have on charge transport in fully assembled solar cells. Low-temperature phase transition shows no pattern of influence on thermally activated electron/hole transport.

  18. Sea level anomaly on the Patagonian continental shelf: Trends, annual patterns and geostrophic flows

    PubMed Central

    Saraceno, M.; Piola, A. R.; Strub, P. T.

    2016-01-01

    Abstract We study the annual patterns and linear trend of satellite sea level anomaly (SLA) over the southwest South Atlantic continental shelf (SWACS) between 54ºS and 36ºS. Results show that south of 42°S the thermal steric effect explains nearly 100% of the annual amplitude of the SLA, while north of 42°S it explains less than 60%. This difference is due to the halosteric contribution. The annual wind variability plays a minor role over the whole continental shelf. The temporal linear trend in SLA ranges between 1 and 5 mm/yr (95% confidence level). The largest linear trends are found north of 39°S, at 42°S and at 50°S. We propose that in the northern region the large positive linear trends are associated with local changes in the density field caused by advective effects in response to a southward displacement of the South Atlantic High. The causes of the relative large SLA trends in two southern coastal regions are discussed as a function meridional wind stress and river discharge. Finally, we combined the annual cycle of SLA with the mean dynamic topography to estimate the absolute geostrophic velocities. This approach provides the first comprehensive description of the seasonal component of SWACS circulation based on satellite observations. The general circulation of the SWACS is northeastward with stronger/weaker geostrophic currents in austral summer/winter. At all latitudes, geostrophic velocities are larger (up to 20 cm/s) close to the shelf‐break and decrease toward the coast. This spatio‐temporal pattern is more intense north of 45°S. PMID:27840784

  19. Causes of spring vegetation greenness trends in the northern mid-high latitudes from 1982 to 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Jiafu; Shi, Xiaoying; Thornton, Peter E

    2012-01-01

    The Community Land Model version 4 (CLM4) is applied to explore the spatial temporal patterns of spring (April May) vegetation growth trends over the northern mid high latitudes (NMH) (>25 N) between 1982 and 2004. During the spring season through the 23 yr period, both the satellite-derived and simulated normalized difference vegetation index (NDVI) anomalies show a statistically significant correlation and an overall greening trend within the study area. Consistently with the observed NDVI temperature relation, the CLM4 NDVI shows a significant positive association with the spring temperature anomaly for the NMH, North America and Eurasia. Large study areas experiencemore » temperature discontinuity associated with contrasting NDVI trends. Before and after the turning point (TP) of the temperature trends, climatic variability plays a dominant role, while the other environmental factors exert minor effects on the NDVI tendencies. Simulated vegetation growth is broadly stimulated by the increasing atmospheric CO2. Trends show that nitrogen deposition increases NDVI mostly in southeastern China, and decreases NDVI mainly in western Russia after the temperature TP. Furthermore, land use-induced NDVI trends vary roughly with the respective changes in land management practices (crop areas and forest coverage). Our results highlight how non-climatic factors mitigate or exacerbate the impact of temperature on spring vegetation growth, particularly across regions with intensive human activity.« less

  20. Martian lineaments from Mariner 6 and 7 photographs

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Ingerson, F. E.

    1973-01-01

    Mariner 6 and 7 photographs were used to investigate the nature and importance of linear surface trends on Mars. Cross correlations of frequency-azimuth distributions of linear trends from different Mariner frames indicate that lineations not recognized as topographic features have a component of pseudoforms, probably introduced during digital reconstruction of the pictures. Similar statistical tests may aid in the analysis of surface trends from future satellites and space probes. The most reliable data were separated into photometrically defined provinces. Meridiani Sinus and Margaritifer Sinus display five major trends in common, which are interpreted as extensions of crustal weaknesses related to the enormous equatorial canyon revealed in Mariner 6 and 9 pictures. Alignments of crater wall segments generally match these trends and suggest structural control of crater plan. Crater chains, however, do not match these trends and are interpreted as secondary impacts. Rose diagrams of lineations in Deucalionis Regio exhibit much more complexity and are believed to reflect a better preserved or more complex geologic history.

  1. The association between meteorological factors and road traffic injuries: a case analysis from Shantou city, China

    PubMed Central

    Gao, Jinghong; Chen, Xiaojun; Woodward, Alistair; Liu, Xiaobo; Wu, Haixia; Lu, Yaogui; Li, Liping; Liu, Qiyong

    2016-01-01

    Few studies examined the associations of meteorological factors with road traffic injuries (RTIs). The purpose of the present study was to quantify the contributions of meteorological factors to RTI cases treated at a tertiary level hospital in Shantou city, China. A time-series diagram was employed to illustrate the time trends and seasonal variation of RTIs, and correlation analysis and multiple linear regression analysis were conducted to investigate the relationships between meteorological parameters and RTIs. RTIs followed a seasonal pattern as more cases occurred during summer and winter months. RTIs are positively correlated with temperature and sunshine duration, while negatively associated with wind speed. Temperature, sunshine hour and wind speed were included in the final linear model with regression coefficients of 0.65 (t = 2.36, P = 0.019), 2.23 (t = 2.72, P = 0.007) and −27.66 (t = −5.67, P < 0.001), respectively, accounting for 19.93% of the total variation of RTI cases. The findings can help us better understand the associations between meteorological factors and RTIs, and with potential contributions to the development and implementation of regional level evidence-based weather-responsive traffic management system in the future. PMID:27853316

  2. Dissipative particle dynamics: Effects of thermostating schemes on nano-colloid electrophoresis

    NASA Astrophysics Data System (ADS)

    Hassanzadeh Afrouzi, Hamid; Moshfegh, Abouzar; Farhadi, Mousa; Sedighi, Kurosh

    2018-05-01

    A novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced in the present study to model the electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Performance of various thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field (0 . 072 < E < 0 . 361 v/nm) covering linear to non-linear response regime, and ionic salt concentration (0.049 < SC < 0 . 69 [M]) covering weak to strong Debye screening of the colloid. System temperature and electrophoretic mobility both show a direct and inverse relationships respectively with electric field and colloidal repulsion; although they each respectively behave direct and inverse trends with salt concentration under various thermostats. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0 . 145[v/nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the system radial distribution function with available EW3D modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  3. Kinetics of Hydrothermal Inactivation of Endotoxins ▿

    PubMed Central

    Li, Lixiong; Wilbur, Chris L.; Mintz, Kathryn L.

    2011-01-01

    A kinetic model was established for the inactivation of endotoxins in water at temperatures ranging from 210°C to 270°C and a pressure of 6.2 × 106 Pa. Data were generated using a bench scale continuous-flow reactor system to process feed water spiked with endotoxin standard (Escherichia coli O113:H10). Product water samples were collected and quantified by the Limulus amebocyte lysate assay. At 250°C, 5-log endotoxin inactivation was achieved in about 1 s of exposure, followed by a lower inactivation rate. This non-log-linear pattern is similar to reported trends in microbial survival curves. Predictions and parameters of several non-log-linear models are presented. In the fast-reaction zone (3- to 5-log reduction), the Arrhenius rate constant fits well at temperatures ranging from 120°C to 250°C on the basis of data from this work and the literature. Both biphasic and modified Weibull models are comparable to account for both the high and low rates of inactivation in terms of prediction accuracy and the number of parameters used. A unified representation of thermal resistance curves for a 3-log reduction and a 3 D value associated with endotoxin inactivation and microbial survival, respectively, is presented. PMID:21193667

  4. Temperature Trends in the Tropical Upper Troposphere and Lower Stratosphere: Connections with Sea Surface Temperatures and Implications for Water Vapor and Ozone

    NASA Technical Reports Server (NTRS)

    Garfinkel, C. I.; Waugh, D. W.; Oman, L. D.; Wang, L.; Hurwitz, M. M.

    2013-01-01

    Satellite observations and chemistry-climate model experiments are used to understand the zonal structure of tropical lower stratospheric temperature, water vapor, and ozone trends. The warming in the tropical upper troposphere over the past 30 years is strongest near the Indo-Pacific warm pool, while the warming trend in the western and central Pacific is much weaker. In the lower stratosphere, these trends are reversed: the historical cooling trend is strongest over the Indo-Pacific warm pool and is weakest in the western and central Pacific. These zonal variations are stronger than the zonal-mean response in boreal winter. Targeted experiments with a chemistry-climate model are used to demonstrate that sea surface temperature (hereafter SST) trends are driving the zonal asymmetry in upper tropospheric and lower stratospheric tropical temperature trends. Warming SSTs in the Indian Ocean and in the warm pool region have led to enhanced moist heating in the upper troposphere, and in turn to a Gill-like response that extends into the lower stratosphere. The anomalous circulation has led to zonal structure in the ozone and water vapor trends near the tropopause, and subsequently to less water vapor entering the stratosphere. The radiative impact of these changes in trace gases is smaller than the direct impact of the moist heating. Projected future SSTs appear to drive a temperature and water vapor response whose zonal structure is similar to the historical response. In the lower stratosphere, the changes in water vapor and temperature due to projected future SSTs are of similar strength to, though slightly weaker than, that due directly to projected future CO2, ozone, and methane.

  5. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Suhaila, Jamaludin; Yusop, Zulkifli

    2017-06-01

    Most of the trend analysis that has been conducted has not considered the existence of a change point in the time series analysis. If these occurred, then the trend analysis will not be able to detect an obvious increasing or decreasing trend over certain parts of the time series. Furthermore, the lack of discussion on the possible factors that influenced either the decreasing or the increasing trend in the series needs to be addressed in any trend analysis. Hence, this study proposes to investigate the trends, and change point detection of mean, maximum and minimum temperature series, both annually and seasonally in Peninsular Malaysia and determine the possible factors that could contribute to the significance trends. In this study, Pettitt and sequential Mann-Kendall (SQ-MK) tests were used to examine the occurrence of any abrupt climate changes in the independent series. The analyses of the abrupt changes in temperature series suggested that most of the change points in Peninsular Malaysia were detected during the years 1996, 1997 and 1998. These detection points captured by Pettitt and SQ-MK tests are possibly related to climatic factors, such as El Niño and La Niña events. The findings also showed that the majority of the significant change points that exist in the series are related to the significant trend of the stations. Significant increasing trends of annual and seasonal mean, maximum and minimum temperatures in Peninsular Malaysia were found with a range of 2-5 °C/100 years during the last 32 years. It was observed that the magnitudes of the increasing trend in minimum temperatures were larger than the maximum temperatures for most of the studied stations, particularly at the urban stations. These increases are suspected to be linked with the effect of urban heat island other than El Niño event.

  6. Linking the Mediterranean regional and the global climate change

    NASA Astrophysics Data System (ADS)

    Lionello, Piero; Scarascia, Luca

    2017-04-01

    This contribution analyzes 22 CMIP5 global climate projections to show how is the regional climate change in the Mediterranean related to the global climate change. The aim is to use these recent results to revisit evidences suggesting that the Mediterranean region is a climate change hot spot. Results show that future increase of temperature in the Mediterranean region has a strong seasonal connotation, with summer warming at a pace 40% larger than the global mean. This future trend is consistent with the global reduction of the meridional temperature gradient that is produced by climate change. However spatial distribution of changes shows a strong a sub-regional modulation depending of the land-sea contrast, the role of soil moisture feedback and changes of large scale atmospheric circulation leading to increased subsidence conditions. Projections show that precipitation decrease will affect most of the region, but with a strong difference between southern and northern areas, where CMIP5 projections suggest a 7% and 3% decrease of annual precipitation for each degree of global warming, respectively. For both Mediterranean temperature and precipitation, the dependence is substantially linear in the range up to 40C of global warming. Interannual variability and intermodel differences are a substantial source of uncertainty for precipitation (while there is a robust consensus for temperature changes). Therefore, future precipitation changes are still a controversial issue, in terms of intensity and precise location of the transition belt that separates the decrease of precipitation over the MR from areas in central and northern Europe, where precipitation is expected to increase. On this respect, though the overall drying trend appears consolidated in the scientific literature, its precise evaluation remains to some extent controversial.

  7. New Trends in Educational Lighting Systems.

    ERIC Educational Resources Information Center

    Murphy, Peter

    2001-01-01

    Explores technological trends for improving campus lighting, including the use of direct-indirect suspended fluorescent lighting, suspended linear lighting, high-efficiency optical systems, and occupancy and daylight sensors. (GR)

  8. A Global Assessment of Long-Term Greening and Browning Trends in Pasture Lands Using the GIMMS LAI3g Dataset

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Pau, Stephanie

    2013-01-01

    Pasture ecosystems may be particularly vulnerable to land degradation due to the high risk of human disturbance (e.g., overgrazing, burning, etc.), especially when compared with natural ecosystems (non-pasture, non-cultivated) where direct human impacts are minimal. Using maximum annual leaf area index (LAImax) as a proxy for standing biomass and peak annual aboveground productivity, we analyze greening and browning trends in pasture areas from 1982-2008. Inter-annual variability in pasture productivity is strongly controlled by precipitation (positive correlation) and, to a lesser extent, temperature (negative correlation). Linear temporal trends are significant in 23% of pasture cells, with the vast majority of these areas showing positive LAImax trends. Spatially extensive productivity declines are only found in a few regions, most notably central Asia, southwest North America, and southeast Australia. Statistically removing the influence of precipitation reduces LAImax trends by only 13%, suggesting that precipitation trends are only a minor contributor to long-term greening and browning of pasture lands. No significant global relationship was found between LAImax and pasture intensity, although the magnitude of trends did vary between cells classified as natural versus pasture. In the tropics and Southern Hemisphere, the median rate of greening in pasture cells is significantly higher than for cells dominated by natural vegetation. In the Northern Hemisphere extra-tropics, conversely, greening of natural areas is 2-4 times the magnitude of greening in pasture areas. This analysis presents one of the first global assessments of greening and browning trends in global pasture lands, including a comparison with vegetation trends in regions dominated by natural ecosystems. Our results suggest that degradation of pasture lands is not a globally widespread phenomenon and, consistent with much of the terrestrial biosphere, there have been widespread increases in pasture productivity over the last 30 years.

  9. The role of organo-mineral interactions on the capacity of soils to store carbon

    NASA Astrophysics Data System (ADS)

    Georgiou, K.; Abramoff, R. Z.; Riley, W. J.; Torn, M. S.

    2017-12-01

    Observed patterns of soil organic carbon (SOC) content across geochemical regimes are signatures of process and provide opportunities to understand the underlying decomposition and stabilization mechanisms that can guide their representation in models. The type of sorption equation used in soil decomposition models has large implications for both SOC stock and its temperature sensitivity. Here we compared different model formulations of SOC sorption to mineral surfaces, motivated by the myriad of chemical associations between organic and mineral surfaces, and used laboratory and field incubations to inform model parameters. We explored linear, Langmuir, and Freundlich adsorption models, where the latter emerges from heterogeneous compositions of substrate and surface components. We show the effect of model representations on predicted trends of SOC as a function of mineralogy and discuss the role of soil C saturation on emergent patterns. Specifically, our results highlight that the response of mineral-associated (`protected') SOC to changes in plant C inputs depends greatly on the C saturation deficit of the soil and thus, the representation of organo-mineral interactions in models can lead to nonlinear steady-state responses in protected SOC. We also find that, consistent with field experiments, the trend in protected SOC and mineral C saturation capacity is linear, but, interestingly, the slope depends on the degree of C saturation. We contend that this latter finding is an important consideration for field studies that did not find a universal slope and interpreted this as an inability of mineralogy to explain observed patterns. Our results also suggest that warming affects this slope, with higher temperatures causing a decrease in the amount of protected C for a given saturation capacity and C input rate. This means that more C inputs will be needed to keep the same amount of protected C at higher temperatures. Organo-mineral interactions play a key role in governing soil C stabilization and long-term storage, and thus, improving their representation for inclusion in Earth system models is crucial for understanding and predicting feedbacks under global change.

  10. Small lakes show muted climate change signal in deepwater temperatures

    USGS Publications Warehouse

    Winslow, Luke A.; Read, Jordan S.; Hansen, Gretchen J. A.; Hanson, Paul C.

    2015-01-01

    Water temperature observations were collected from 142 lakes across Wisconsin, USA, to examine variation in temperature of lakes exposed to similar regional climate. Whole lake water temperatures increased across the state from 1990 to 2012, with an average trend of 0.042°C yr−1 ± 0.01°C yr−1. In large (>0.5 km2) lakes, the positive temperature trend was similar across all depths. In small lakes (<0.5 km2), the warming trend was restricted to shallow waters, with no significant temperature trend observed in water >0.5 times the maximum lake depth. The differing response of small versus large lakes is potentially a result of wind-sheltering reducing turbulent mixing magnitude in small lakes. These results demonstrate that small lakes respond differently to climate change than large lakes, suggesting that current predictions of impacts to lakes from climate change may require modification.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartolac, S; Letourneau, D; University of Toronto, Toronto, Ontario

    Purpose: Application of process control theory in quality assurance programs promises to allow earlier identification of problems and potentially better quality in delivery than traditional paradigms based primarily on tolerances and action levels. The purpose of this project was to characterize underlying seasonal variations in linear accelerator output that can be used to improve performance or trigger preemptive maintenance. Methods: Review of runtime plots of daily (6 MV) output data acquired using in house ion chamber based devices over three years and for fifteen linear accelerators of varying make and model were evaluated. Shifts in output due to known interventionsmore » with the machines were subtracted from the data to model an uncorrected scenario for each linear accelerator. Observable linear trends were also removed from the data prior to evaluation of periodic variations. Results: Runtime plots of output revealed sinusoidal, seasonal variations that were consistent across all units, irrespective of manufacturer, model or age of machine. The average amplitude of the variation was on the order of 1%. Peak and minimum variations were found to correspond to early April and September, respectively. Approximately 48% of output adjustments made over the period examined were potentially avoidable if baseline levels had corresponded to the mean output, rather than to points near a peak or valley. Linear trends were observed for three of the fifteen units, with annual increases in output ranging from 2–3%. Conclusion: Characterization of cyclical seasonal trends allows for better separation of potentially innate accelerator behaviour from other behaviours (e.g. linear trends) that may be better described as true out of control states (i.e. non-stochastic deviations from otherwise expected behavior) and could indicate service requirements. Results also pointed to an optimal setpoint for accelerators such that output of machines is maintained within set tolerances and interventions are required less frequently.« less

  12. Long-Term Coffee Consumption and Risk of Cardiovascular Disease: A Systematic Review and a Dose-Response Meta-Analysis of Prospective Cohort Studies

    PubMed Central

    Ding, Ming; Bhupathiraju, Shilpa N; Satija, Ambika; van Dam, Rob M; Hu, Frank B

    2013-01-01

    Background Considerable controversy exists regarding the association between coffee consumption and cardiovascular disease (CVD) risk. A meta-analysis was performed to assess the dose-response relationship of long-term coffee consumption with CVD risk. Methods and Results Pubmed and EMBASE were searched for prospective cohort studies of the relationship between coffee consumption and CVD risk, which included coronary heart disease, stroke, heart failure, and CVD mortality. Thirty-six studies were included with 1,279,804 participants and 36,352 CVD cases. A non-linear relationship of coffee consumption with CVD risk was identified (P for heterogeneity = 0.09, P for trend < 0.001, P for non-linearity < 0.001). Compared with the lowest category of coffee consumption (median: 0 cups/d), the relative risk of CVD was 0.95 (95% CI, 0.87 to 1.03) for the highest (median: 5 cups/d) category, 0.85 (0.80 to 0.90) for the second highest (median: 3.5 cups/d), and 0.89 (0.84 to 0.94) for the third highest category (median: 1.5 cups/d). Looking at separate outcomes, coffee consumption was non-linearly associated with both CHD (P for heterogeneity = 0.001, P for trend < 0.001, P for non-linearity < 0.001) and stroke risks (P for heterogeneity = 0.07, P for trend < 0.001, P for non-linearity< 0.001) (P for trend differences > 0.05). Conclusions A non-linear association between coffee consumption with CVD risk was observed in this meta-analysis. Moderate coffee consumption was inversely significantly associated with CVD risk, with the lowest CVD risk at 3 to 5 cups/d, and heavy coffee consumption was not associated with elevated CVD risk. PMID:24201300

  13. Natural gas production and anomalous geothermal gradients of the deep Tuscaloosa Formation

    USGS Publications Warehouse

    Burke, Lauri

    2011-01-01

    For the largest producing natural gas fields in the onshore Gulf of Mexico Basin, the relation between temperature versus depth was investigated. Prolific natural gas reservoirs with the highest temperatures were found in the Upper Cretaceous downdip Tuscaloosa trend in Louisiana. Temperature and production trends from the deepest field, Judge Digby field, in Pointe Coupe Parish, Louisiana, were investigated to characterize the environment of natural gas in the downdip Tuscaloosa trend. The average production depth in the Judge Digby field is approximately 22,000 ft. Temperatures as high as 400 degrees F are typically found at depth in Judge Digby field and are anomalously low when compared to temperature trends extrapolated to similar depths regionally. At 22,000 ft, the minimum and maximum temperatures for all reservoirs in Gulf Coast producing gas fields are 330 and 550 degrees F, respectively; the average temperature is 430 degrees F. The relatively depressed geothermal gradients in the Judge Digby field may be due to high rates of sediment preservation, which may have delayed the thermal equilibration of the sediment package with respect to the surrounding rock. Analyzing burial history and thermal maturation indicates that the deep Tuscaloosa trend in the Judge Digby field is currently in the gas generation window. Using temperature trends as an exploration tool may have important implications for undiscovered hydrocarbons at greater depths in currently producing reservoirs, and for settings that are geologically analogous to the Judge Digby fiel

  14. Evaluation of empirical relationships between extreme rainfall and daily maximum temperature in Australia

    NASA Astrophysics Data System (ADS)

    Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van

    2018-01-01

    Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.

  15. Detection of trends and break points in temperature: the case of Umbria (Italy) and Guadalquivir Valley (Spain)

    NASA Astrophysics Data System (ADS)

    Herrera-Grimaldi, Pascual; García-Marín, Amanda; Ayuso-Muñoz, José Luís; Flamini, Alessia; Morbidelli, Renato; Ayuso-Ruíz, José Luís

    2018-02-01

    The increase of air surface temperature at global scale is a fact with values around 0.85 °C since the late nineteen century. Nevertheless, the increase is not equally distributed all over the world, varying from one region to others. Thus, it becomes interesting to study the evolution of temperature indices for a certain area in order to analyse the existence of climatic trend in it. In this work, monthly temperature time series from two Mediterranean areas are used: the Umbria region in Italy, and the Guadalquivir Valley in southern Spain. For the available stations, six temperature indices (three annual and three monthly) of mean, average maximum and average minimum temperature have been obtained, and the existence of trends has been studied by applying the non-parametric Mann-Kendall test. Both regions show a general increase in all temperature indices, being the pattern of the trends clearer in Spain than in Italy. The Italian area is the only one at which some negative trends are detected. The presence of break points in the temperature series has been also studied by using the non-parametric Pettit test and the parametric standard normal homogeneity test (SNHT), most of which may be due to natural phenomena.

  16. Are Karakoram temperatures out of phase compared to hemispheric trends?

    NASA Astrophysics Data System (ADS)

    Asad, Fayaz; Zhu, Haifeng; Zhang, Hui; Liang, Eryuan; Muhammad, Sher; Farhan, Suhaib Bin; Hussain, Iqtidar; Wazir, Muhammad Atif; Ahmed, Moinuddin; Esper, Jan

    2017-05-01

    In contrast to a global retreating trend, glaciers in the Karakoram showed stability and/or mass gaining during the past decades. This "Karakoram Anomaly" has been assumed to result from an out-of-phase temperature trend compared to hemispheric scales. However, the short instrumental observations from the Karakoram valley bottoms do not support a quantitative assessment of long-term temperature trends in this high mountain area. Here, we presented a new April-July temperature reconstruction from the Karakoram region in northern Pakistan based on a high elevation ( 3600 m a.s.l.) tree-ring chronology covering the past 438 years (AD 1575-2012). The reconstruction passes all statistical calibration and validation tests and represents 49 % of the temperature variance recorded over the 1955-2012 instrumental period. It shows a substantial warming accounting to about 1.12 °C since the mid-twentieth century, and 1.94 °C since the mid-nineteenth century, and agrees well with the Northern Hemisphere temperature reconstructions. These findings provide evidence that the Karakoram temperatures are in-phase, rather than out-of-phase, compared to hemispheric scales since the AD 1575. The synchronous temperature trends imply that the anomalous glacier behavior reported from the Karakoram may need further explanations beyond basic regional thermal anomaly.

  17. Black carbon aerosol-induced Northern Hemisphere tropical expansion

    DOE PAGES

    Kovilakam, Mahesh; Mahajan, Salil

    2015-06-23

    Global climate models (GCMs) underestimate the observed trend in tropical expansion. Recent studies partly attribute it to black carbon (BC) aerosols, which are poorly represented in GCMs. In this paper, we conduct a suite of idealized experiments with the Community Atmosphere Model version 4 coupled to a slab ocean model forced with increasing BC concentrations covering a large swath of the estimated range of current BC radiative forcing while maintaining their spatial distribution. The Northern Hemisphere (NH) tropics expand poleward nearly linearly as BC radiative forcing increases (0.7° W -1 m 2), indicating that a realistic representation of BC couldmore » reduce GCM biases. We find support for the mechanism where BC-induced midlatitude tropospheric heating shifts the maximum meridional tropospheric temperature gradient poleward resulting in tropical expansion. Finally, we also find that the NH poleward tropical edge is nearly linearly correlated with the location of the Intertropical Convergence Zone, which shifts northward in response to increasing BC.« less

  18. The effect of welding parameters on penetration in GTA welds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirali, A.A.; Mills, K.C.

    1993-07-01

    The effect of various welding parameters on the penetration of GTA welds has been investigated. Increases in welding speed were found to reduce penetration; however, increases in welding current were observed to increase the penetration in high sulfur (HS) casts and decrease penetration in low sulfur (LS) steels. Plots of penetration as a function of increasing linear energy (the heat supplied per unit length of weld) revealed a similar trend with increased penetration in HS casts, but the penetration in LS casts was unaffected by increases in linear energy. These results support the Burgardt-Heiple proposition that changes in welding parametersmore » on penetration can be explained in terms of their effect, sequentially, on the temperature gradient and the Marangoni forces operating in the weld pool. Increases in arc length were found to decrease weld penetration regardless of the sulfur concentration of the steel, and the effects of electrode geometry and welding position on weld penetration were also investigated.« less

  19. Numerical treatment for Carreau nanofluid flow over a porous nonlinear stretching surface

    NASA Astrophysics Data System (ADS)

    Eid, Mohamed R.; Mahny, Kasseb L.; Muhammad, Taseer; Sheikholeslami, Mohsen

    2018-03-01

    The impact of magnetic field and nanoparticles on the two-phase flow of a generalized non-Newtonian Carreau fluid over permeable non-linearly stretching surface has been analyzed in the existence of all suction/injection and thermal radiation. The governing PDEs with congruous boundary condition are transformed into a system of non-linear ODEs with appropriate boundary conditions by using similarity transformation. It solved numerically by using 4th-5th order Runge-Kutta-Fehlberg method based on shooting technique. The impacts of non-dimensional controlling parameters on velocity, temperature, and nanoparticles volume concentration profiles are scrutinized with aid of graphs. The Nusselt and the Sherwood numbers are studied at the different situations of the governing parameters. The numerical computations are in excellent consent with previously reported studies. It is found that the heat transfer rate is reduced with an increment of thermal radiation parameter and on contrary of the rising of magnetic field. The opposite trend happens in the mass transfer rate.

  20. Development trends in IR detector coolers

    NASA Astrophysics Data System (ADS)

    Mai, M.; Rühlich, I.; Wiedmann, Th.; Rosenhagen, C.

    2009-05-01

    For different IR application specific cooler requirements are needed to achieve best performance on system level. Handheld applications require coolers with highest efficiency and lowest weight. For application with continuous operation, i.e. border surveillance or homeland security, a very high MTTF is mandatory. Space applications additionally require extremely high reliability. In other application like fighter aircraft sufficient cooling capacity even at extreme high reject temperatures has to be provided. Meeting all this requirements within one cooler design is technically not feasible. Therefore, different coolers designs like integral rotary, split rotary or split linear are being employed. The use of flexure bearings supporting the driving mechanism has generated a new sub-group for the linear coolers; also, the coolers may either use a motor with moving magnet or with moving coil. AIM has mainly focussed on long life linear cooler technology and therefore developed a series of moving magnet flexure bearing compressors which meets MTTF's exceeding 20,000h (up to 50,000h with a Pulse-Tube coldfinger). These compressors have a full flexure bearing support on both sides of the driving mechanism. Cooler designs are being compared in regard to characteristic figures as described above.

  1. High-pressure optical studies on R-line fluorescence lifetime in Al2O3:V2+

    NASA Astrophysics Data System (ADS)

    Jovanić, Branislav R.; Radenković, Božidar; Despotović-Zrakić, Marijana; Bogdanović, Zorica; Barać, Dušan

    2018-04-01

    The effect of high hydrostatic pressure (up to 10.3 GPa) at room temperature on fluorescence lifetime τ for R line (2E→4A2 transition) in ruby Al2O3:V2+ was studied. The performed studies show the linear increase of τ with increasing pressure. At 10.3 GPa, τ is about 1.36 times higher than at ambient pressure. The obtained trend was explained by a model which considered the effect of pressure on τ through an induced change of line position, inter-ionic distance, compressibility, and molecular polarizability. A good agreement between the calculated and experimental values for τ was obtained.

  2. Effect of thermal radiation on laminar boundary layer flow over a permeable flat plate with Newtonian heating

    NASA Astrophysics Data System (ADS)

    Khairul Anuar Mohamed, Muhammad; Zuki Salleh, Mohd; Noar, Nor Aida Zuraimi Md; Ishak, Anuar

    2017-09-01

    The laminar boundary layer flow over a permeable flat plat with the presence of thermal radiation and Newtonian heating is numerically studied. The non linear partial differential equations that governed the model are transformed to ordinary differential equations before being solved numerically by Runge-Kutta-Fehlberg (RKF) method using Maple software. The influenced and characteristic of pertinent parameters which are the Prandtl number, the suction/blowing parameter, the thermal radiation parameter and the conjugate parameter are analyzed and discussed. It is found that the presence of thermal radiation and blowing parameter has increased the value of wall temperature. Meanwhile, the trend is contrary with the suction effect.

  3. Small-scale convection beneath the transverse ranges, California: Implications for interpretation of gravity anomalies

    NASA Technical Reports Server (NTRS)

    Humphreys, E. D.; Hager, B. H.

    1985-01-01

    Tomographic inversion of upper mantle P wave velocity heterogeneities beneath southern California shows two prominent features: an east-west trending curtain of high velocity material (up to 3% fast) in the upper 250 km beneath the Transverse Ranges and a region of low velocity material (up to 4% slow) in the 100 km beneath the Salton Trough. These seismic velocity anomalies were interpreted as due to small scale convection in the mantle. Using this hypothesis and assuming that temperature and density anomalies are linearly related to seismic velocity anomalies through standard coefficients of proportionality, leads to inferred variations of approx. + or - 300 C and approx. + or - 0.03 g/cc.

  4. Effect of recent minor volcanic eruptions on temperatures in the upper troposphere and lower stratosphere

    NASA Astrophysics Data System (ADS)

    Mehta, Sanjay Kumar; Fujiwara, Masatomo; Tsuda, Toshitaka; Vernier, Jean-Paul

    2015-07-01

    The impact of the recent minor volcanic eruptions during 2001-2010 in the temperature of the upper troposphere and lower stratosphere (UTLS) is investigated using data from the Global Positioning System Radio Occultation (GPS RO), three radiosonde compilations and two reanalyses (ERA-Interim and MERRA). The volcanic signals are identified in the residual temperature time series after removal of the linear trend, the quasi-biennial oscillation and El Nino Southern Oscillation components. Eight minor volcanic eruptions (six from the tropics and two from midlatitude) over the last decade (2001-2010) are analyzed in this study. We found significant volcanic signals in the UTLS temperature only in association with the tropical Soufrière Hills and Tavurvur eruptions (in May 2006 and in October 2006, respectively). Other four tropical eruptions had very small aerosol perturbations and did not show any significant UTLS temperature change. Out of the two midlatitude eruptions, Sarychev peak had similar stratospheric aerosol perturbations as Soufrière Hills and Tavurvur eruptions, but did not show any significant UTLS temperature change. The volcanic signals in the UTLS temperature from the tropical Soufrière Hills and Tavurvur eruptions were observed for the period of 7 months after August 2006. A warming of 0.5-0.8 K in the tropical 16-18.5 km (100-70 hPa) layer was observed in association with these two tropical eruptions.

  5. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii).

    PubMed

    Agha, Mickey; Augustine, Benjamin; Lovich, Jeffrey E; Delaney, David; Sinervo, Barry; Murphy, Mason O; Ennen, Joshua R; Briggs, Jessica R; Cooper, Robert; Price, Steven J

    2015-01-01

    Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Short communication: using infrared thermography as an in situ measure of core body temperature in lot-fed Angus steers

    NASA Astrophysics Data System (ADS)

    Lees, Angela M.; Lees, J. C.; Sejian, V.; Wallage, A. L.; Gaughan, J. B.

    2018-01-01

    Thirty-six Black Angus steers were used in a replicated study; three replicates of 12 steers/replicate. Steers had an initial non-fasted BW of 392.3 ± 5.1, 427.5 ± 6.3, and 392.7 ± 3.7 kg for each replicate, respectively. Steers were housed outside in individual animal pens (10 m × 3.4 m). Each replicate was conducted over a 6-day period where infrared thermography (IRT) images were collected at 3-h intervals, commencing at 0600 h on day 1 and concluding at 0600 h on day 6. Rumen temperatures ( T RUM) were measured at 10-min intervals for the duration of each replicate using a radio-frequency identification (RFID) rumen bolus. These data were used to determine the relationship with surface temperature of the cattle, which was determined using IRT. Individual T RUM were converted to an hourly average. The relationship between T RUM and surface temperature was determined using Pearson's correlation coefficient. There were no linear trends between mean hourly T RUM and mean surface temperature. Pearson's correlation coefficient indicated that there were weak associations ( r ≤ 0.1; P < 0.003) between T RUM and body surface temperature. These data suggest that there was little relationship between the surface temperature and T RUM.

  7. Using motion-sensor camera technology to infer seasonal activity and thermal niche of the desert tortoise (Gopherus agassizii)

    USGS Publications Warehouse

    Agha, Mickey; Augustine, Benjamin; Lovich, Jeffrey E.; Delaney, David F.; Sinervo, Barry; Murphy, Mason O.; Ennen, Joshua R.; Briggs, Jessica R.; Cooper, Robert J.; Price, Steven J.

    2015-01-01

    Understanding the relationships between environmental variables and wildlife activity is an important part of effective management. The desert tortoise (Gopherus agassizii), an imperiled species of arid environments in the southwest US, may have increasingly restricted windows for activity due to current warming trends. In summer 2013, we deployed 48 motion sensor cameras at the entrances of tortoise burrows to investigate the effects of temperature, sex, and day of the year on the activity of desert tortoises. Using generalized estimating equations, we found that the relative probability of activity was associated with temperature (linear and quadratic), sex, and day of the year. Sex effects showed that male tortoises are generally more active than female tortoises. Temperature had a quadratic effect, indicating that tortoise activity was heightened at a range of temperatures. In addition, we found significant support for interactions between sex and day of the year, and sex and temperature as predictors of the probability of activity. Using our models, we were able to estimate air temperatures and times (days and hours) that were associated with maximum activity during the study. Because tortoise activity is constrained by environmental conditions such as temperature, it is increasingly vital to conduct studies on how tortoises vary their activity throughout the Sonoran Desert to better understand the effects of a changing climate.

  8. Does increasing intrinsic water use efficiency (iWUE) stimulate tree growth at natural alpine timberline on the southeastern Tibetan Plateau?

    NASA Astrophysics Data System (ADS)

    Huang, Ru; Zhu, Haifeng; Liu, Xiaohong; Liang, Eryuan; Grießinger, Jussi; Wu, Guoju; Li, Xiaoxia; Bräuning, Achim

    2017-01-01

    Little is known about whether increasing iWUE (intrinsic water use efficiency) can stimulate tree growth in the temperature-limited natural timberlines. Here, we presented the basal area increment (BAI) and iWUE chronologies of Smith fir (Abies georgei var. smithii) from 1900 to 2006 at a high-elevation (ca. 4400 m a.s.l.) timberline in the humid Sygera Mountains, southeastern Tibetan Plateau (TP). The commonality analysis model was applied to investigate the relationships among BAI, temperatures, atmospheric CO2 concentration (Ca) and iWUE during 1961-2006, taking into account of both pure and joint effects. As illustrated by the commonality analysis model, the pure effect of Ca (39.15%) had more stronger influence on iWUE than that of the Tmean (annul mean temperature, 0.12%), but the joint effect between Ca and Tmean (49.79%) on iWUE was stronger than any pure effect for the raw data with an increasing trend. For the first-difference data with year-to-year variations, the pure effect of Ca (7.72%) on iWUE was stronger than that of Tmean (0.59%) and the joint effect between them (0.59%). All above imply the Ca is the dominant factor for iWUE both for the 46-year trend and interannual variations. In addition, as showed by the commonality analysis model, the pure effect of iWUE (17.57%) played a much more important role on BAI than that of temperatures (smt, mean temperature during June, July, August of current year, 5.92%; amt, mean temperature during September, October, November of previous year, 3.04%), while joint effects of iWUE and temperatures contributed more (27.96%; 13.90%; 16.47%) to the BAI than their pure effects for the raw data with an increasing linear trend. For the first-difference data with interannual variations, the pure effect of smt (12.45%) had much more effect on BAI than that of iWUE (5.49%), at the same time the joint iWUE and temperatures contributed less (3.56%; 1.9%; 1.31%) to the BAI than their pure effects. These results suggest that an increasing iWUE could enhance 46-year increasing tree growth trend at humid and high-elevation timberlines, supporting the CO2 fertilization hypothesis, while temperatures dominate the interannual variations of tree growth. Background about the sample plot in the timberline Comparison among iWUE series under different scenarios (Ci = constant, Ci/Ca = constant, Ca-Ci = constant, and method mentioned in Silva et al. 2013) The representative of our chronology for tree growth during the past century Vapor Pressure Deficit (VPD) Corrected carbon isotopes series and their climatic signal Methods for removing climate signal from iWUE Information about uncertainties of calculating iWUE in our study The 30-year moving correlations among BAI, iWUE, smt,Ca Results of the commonality analysis are shown from a perspective of set theories Raw data and first-difference data used for the commonality analysis.

  9. Changes in time-trends of nutrient intake from fortified and non-fortified food in German children and adolescents--15 year results of the DONALD study. Dortmund Nutritional and Anthropometric Longitudinally Designed Study.

    PubMed

    Sichert-Hellert, W; Kersting, M; Manz, F

    2001-04-01

    Although fortified products have played an increasing role in food marketing since the 1980s in Germany, data as to the consumption of fortified food is sparse. To assess long-term data on changes in fortified food supply or consumption patterns, nutrient intake, and time trends in the DONALD Study (Dortmund Nutritional and Anthropometric Longitudinally Designed Study). Between 1985 and 2000 consumption of nutrient intake (total and from fortified foods) was evaluated and time trends in energy and nutrient intake were assessed on the basis of 3-day weighed dietary records (n = 4193) of 2-14 year-old males (n = 383) and females (n = 404) enrolled in the DONALD Study. Nutrient intake was expressed as percentage of the current German recommendations. Food products were defined as fortified if enriched with at least one of the following nutrients: Vitamin A or provitamin A carotenoids (summarised as Vitamin A), Vitamins E, B1, B2, B6, C, niacin, folate, calcium or iron. Nutrient supplements and medicine were excluded from this evaluation. Time trends were analysed using linear and non-linear regression models (PROC MIXED, SAS 6.12). In percent of German references [3], non-fortified food contributed to folate intake by 20-30%, to Vitamin E by about 40%, to Vitamin B1 by 50-65%, to Vitamin A, C, B2, calcium, iron by about 65-95%, and to Vitamin B6 and niacin intake by 100% and more. Fortified food alone provided no more than 5% of calcium intake, about 10-20% of iron, Vitamin A and folate intake, up to 40-50% of Vitamin C, B1, B2, E, niacin and up to 80% of Vitamin B6 intake. During the 15 year period of the DONALD Study with total food, we only found a significant linear time trend for Vitamin C, whereas significant non-linear time trends were found for calcium, Vitamin E, B1, B2, B6, niacin and folate. In the latter there was a uniform increase until 1994 and a decrease thereafter. For iron and Vitamin A no significant time trend could be identified. Only iron and Vitamin A intake from fortified food showed a significant linear time trend. All other nutrients studied here gave significant non-linear time trends. Nutrient intake with fortified food reached maximum values between 1994 and 1996 followed by a decrease thereafter. Signs of changing food consumption patterns were found, pointing to an almost uniform decrease of nutrient intake since 1994/96 in our population of German children and adolescents. This could be an alarming indicator of a slight but unpreferable tendency to eat energydense, nutrient-poor foods.

  10. Elastic-plastic fracture mechanics of compact bone

    NASA Astrophysics Data System (ADS)

    Yan, Jiahau

    Bone is a composite composed mainly of organics, minerals and water. Most studies on the fracture toughness of bone have been conducted at room temperature. Considering that the body temperature of animals is higher than room temperature, and that bone has a high volumetric percentage of organics (generally, 35--50%), the effect of temperature on fracture toughness of bone should be studied. Single-edged V-shaped notched (SEVN) specimens were prepared to measure the fracture toughness of bovine femur and manatee rib in water at 0, 10, 23, 37 and 50°C. The fracture toughness of bovine femur and manatee rib were found to decrease from 7.0 to 4.3 MPa·m1/2 and from 5.5 to 4.1 MPa·m1/2, respectively, over a temperature range of 50°C. The decreases were attributed to inability of the organics to sustain greater stresses at higher temperatures. We studied the effects of water and organics on fracture toughness of bone using water-free and organics-free SEVN specimens at 23°C. Water-free and organics-free specimens were obtained by placing fresh bone specimen in a furnace at different temperatures. Water and organics significantly affected the fracture toughness of bone. Fracture toughness of the water-free specimens was 44.7% (bovine femur) and 32.4% (manatee rib) less than that of fresh-bone specimens. Fracture toughness of the organics-free specimens was 92.7% (bovine femur) and 91.5% (manatee rib) less than that of fresh bone specimens. Linear Elastic Fracture Mechanics (LEFM) is widely used to study bone. However, bone often has small to moderate scale yielding during testing. We used J integral, an elastic-plastic fracture-mechanics parameter, to study the fracture process of bone. The J integral of bovine femur increased from 6.3 KJ/mm2 at 23°C to 6.7 KJ/mm2 at 37°C. Although the fracture toughness of bovine bone decreases as the temperature increases, the J integral results show a contrary trend. The energy spent in advancing the crack beyond the linear-elastic deformation was much greater than the energy spent in linear-elastic deformation. This could be because bone has at least four toughening mechanisms and a high volumetric percentage of organics (approximately 42% for bovine femur). The J integral is shown to better describe the fracture process of bovine femur and manatee rib.

  11. Detecting trends in raptor counts: power and type I error rates of various statistical tests

    USGS Publications Warehouse

    Hatfield, J.S.; Gould, W.R.; Hoover, B.A.; Fuller, M.R.; Lindquist, E.L.

    1996-01-01

    We conducted simulations that estimated power and type I error rates of statistical tests for detecting trends in raptor population count data collected from a single monitoring site. Results of the simulations were used to help analyze count data of bald eagles (Haliaeetus leucocephalus) from 7 national forests in Michigan, Minnesota, and Wisconsin during 1980-1989. Seven statistical tests were evaluated, including simple linear regression on the log scale and linear regression with a permutation test. Using 1,000 replications each, we simulated n = 10 and n = 50 years of count data and trends ranging from -5 to 5% change/year. We evaluated the tests at 3 critical levels (alpha = 0.01, 0.05, and 0.10) for both upper- and lower-tailed tests. Exponential count data were simulated by adding sampling error with a coefficient of variation of 40% from either a log-normal or autocorrelated log-normal distribution. Not surprisingly, tests performed with 50 years of data were much more powerful than tests with 10 years of data. Positive autocorrelation inflated alpha-levels upward from their nominal levels, making the tests less conservative and more likely to reject the null hypothesis of no trend. Of the tests studied, Cox and Stuart's test and Pollard's test clearly had lower power than the others. Surprisingly, the linear regression t-test, Collins' linear regression permutation test, and the nonparametric Lehmann's and Mann's tests all had similar power in our simulations. Analyses of the count data suggested that bald eagles had increasing trends on at least 2 of the 7 national forests during 1980-1989.

  12. Combined solvent- and non-uniform temperature-programmed gradient liquid chromatography. I - A theoretical investigation.

    PubMed

    Gritti, Fabrice

    2016-11-18

    An new class of gradient liquid chromatography (GLC) is proposed and its performance is analyzed from a theoretical viewpoint. During the course of such gradients, both the solvent strength and the column temperature are simultaneously changed in time and space. The solvent and temperature gradients propagate along the chromatographic column at their own and independent linear velocity. This class of gradient is called combined solvent- and temperature-programmed gradient liquid chromatography (CST-GLC). The general expressions of the retention time, retention factor, and of the temporal peak width of the analytes at elution in CST-GLC are derived for linear solvent strength (LSS) retention models, modified van't Hoff retention behavior, linear and non-distorted solvent gradients, and for linear temperature gradients. In these conditions, the theory predicts that CST-GLC is equivalent to a unique and apparent dynamic solvent gradient. The apparent solvent gradient steepness is the sum of the solvent and temperature steepness. The apparent solvent linear velocity is the reciprocal of the steepness-averaged sum of the reciprocal of the actual solvent and temperature linear velocities. The advantage of CST-GLC over conventional GLC is demonstrated for the resolution of protein digests (peptide mapping) when applying smooth, retained, and linear acetonitrile gradients in combination with a linear temperature gradient (from 20°C to 90°C) using 300μm×150mm capillary columns packed with sub-2 μm particles. The benefit of CST-GLC is demonstrated when the temperature gradient propagates at the same velocity as the chromatographic speed. The experimental proof-of-concept for the realization of temperature ramps propagating at a finite and constant linear velocity is also briefly described. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Detecting climate forcing and feedback signals in surface climate change

    NASA Astrophysics Data System (ADS)

    Davy, Richard; Esau, Igor

    2015-04-01

    The Earth has warmed in the last century and a large component of that warming has been attributed to the build-up of anthropogenic greenhouse gases. There are also numerous feedback processes which can introduce strong, regionalized asymmetries to the overall warming trend. These processes alter the surface energy budget, and thus affect the surface air temperature, which is one of the primary measures of how the climate is changing. However, the degree to which a given forcing or feedback process alters surface temperatures is contingent on the effective heat capacity of the atmosphere which is defined by the depth of the planetary boundary layer. This can vary by an order of magnitude on different temporal and spatial scales, which can lead to a strongly amplified temperature response in shallow boundary layers. Therefore, if a climate forcing or feedback is acting across a wide range of conditions of the boundary layer, then this non-linear response of the surface climate to perturbations in the forcing must be accounted for in order to correctly assess the effect of the forcing on the surface climatology.

  14. A conditional stochastic weather generator for seasonal to multi-decadal simulations

    NASA Astrophysics Data System (ADS)

    Verdin, Andrew; Rajagopalan, Balaji; Kleiber, William; Podestá, Guillermo; Bert, Federico

    2018-01-01

    We present the application of a parametric stochastic weather generator within a nonstationary context, enabling simulations of weather sequences conditioned on interannual and multi-decadal trends. The generalized linear model framework of the weather generator allows any number of covariates to be included, such as large-scale climate indices, local climate information, seasonal precipitation and temperature, among others. Here we focus on the Salado A basin of the Argentine Pampas as a case study, but the methodology is portable to any region. We include domain-averaged (e.g., areal) seasonal total precipitation and mean maximum and minimum temperatures as covariates for conditional simulation. Areal covariates are motivated by a principal component analysis that indicates the seasonal spatial average is the dominant mode of variability across the domain. We find this modification to be effective in capturing the nonstationarity prevalent in interseasonal precipitation and temperature data. We further illustrate the ability of this weather generator to act as a spatiotemporal downscaler of seasonal forecasts and multidecadal projections, both of which are generally of coarse resolution.

  15. Variation in skin biology to climate in Shanghai, China.

    PubMed

    Liu, Xiaoping; Gao, Yanrui; Zhang, Yiyi; Wang, Xuemin

    2017-09-01

    To explore the relationship between climate and skin condition, and to investigate the variation of skin biology to climatic change. In total, 2005 healthy Chinese volunteers living in Shanghai (aged 13-69 years) were recruited. Transepidermal water loss (TEWL) and SCH were tested on six sites (forehead, cheek, nasolabial, inner forearm, dorsal hand, and palm) by noninvasive devices between January 2005 and December 2012. The corresponding climate data were recorded by local Weather Bureau. TEWL was increased with atmospheric pressure and decreased with temperature, steam pressure, and relative humidity (p < 0.05). SCH was increased with steam pressure and decreased with atmospheric pressure (p < 0.05); there was no obvious trend between SCH and temperature and SCH and relative humidity. To investigate the climate parameters together, we introduced these correlated factors into the multivariate linear regression model which demonstrated that temperature and steam pressure were main factors related to skin biological parameters. At different sites, the effect of climatic factors on skin biology was diverse. Skin biological parameters are associated with climatic factors. Different sites have different sensitivity to climate factors.

  16. Interpreting the Latitudinal Structure of Differences Between Modeled and Observed Temperature Trends (Invited)

    NASA Astrophysics Data System (ADS)

    Santer, B. D.; Mears, C. A.; Gleckler, P. J.; Solomon, S.; Wigley, T.; Arblaster, J.; Cai, W.; Gillett, N. P.; Ivanova, D. P.; Karl, T. R.; Lanzante, J.; Meehl, G. A.; Stott, P.; Taylor, K. E.; Thorne, P.; Wehner, M. F.; Zou, C.

    2010-12-01

    We perform the most comprehensive comparison to date of simulated and observed temperature trends. Comparisons are made for different latitude bands, timescales, and temperature variables, using information from a multi-model archive and a variety of observational datasets. Our focus is on temperature changes in the lower troposphere (TLT), the mid- to upper troposphere (TMT), and at the sea surface (SST). For SST, TLT, and TMT, trend comparisons over the satellite era (1979 to 2009) always yield closest agreement in mid-latitudes of the Northern Hemisphere. There are pronounced discrepancies in the tropics and in the Southern Hemisphere: in both regions, the multi-model average warming is consistently larger than observed. At high latitudes in the Northern Hemisphere, the observed tropospheric warming exceeds multi-model average trends. The similarity in the latitudinal structure of this discrepancy pattern across different temperature variables and observational data sets suggests that these trend differences are real, and are not due to residual inhomogeneities in the observations. The interpretation of these results is hampered by the fact that the CMIP-3 multi-model archive analyzed here convolves errors in key external forcings with errors in the model response to forcing. Under a "forcing error" interpretation, model-average temperature trends in the Southern Hemisphere extratropics are biased warm because many models neglect (and/or inaccurately specify) changes in stratospheric ozone and the indirect effects of aerosols. An alternative "response error" explanation for the model trend errors is that there are fundamental problems with model clouds and ocean heat uptake over the Southern Ocean. When SST changes are compared over the longer period 1950 to 2009, there is close agreement between simulated and observed trends poleward of 50°S. This result is difficult to reconcile with the hypothesis that the trend discrepancies over 1979 to 2009 are primarily attributable to response errors. Our results suggest that biases in multi-model average temperature trends over the satellite era can be plausibly linked to forcing errors. Better partitioning of the forcing and response components of model errors will require a systematic program of numerical experimentation, with a focus on exploring the climate response to uncertainties in key historical forcings.

  17. Synchrony of forest responses to climate from the aspect of tree mortality in South Korea

    NASA Astrophysics Data System (ADS)

    Kim, M.; Lee, W. K.; Piao, D.; Choi, G. M.; Gang, H. U.

    2016-12-01

    Mortality is a key process in forest-stand dynamics. However, tree mortality is not well understood, particularly in relation to climatic factors. The objectives of this study were to: (i) determine the patterns of maximum stem number (MSN) per ha over dominant tree height from 5-year remeasurements of the permanent sample plots for temperate forests [Red pine (Pinus densiflora), Japanese larch (Larix kaempferi), Korean pine (Pinus koraiensis), Chinese cork oak (Quercus variabilis), and Mongolian oak (Quercus mongolica)] using Sterba's theory and Korean National Forest Inventory (NFI) data, (ii) develop a stand-level mortality (self-thinning) model using the MSN curve, and (iii) assess the impact of temperature on tree mortality in semi-variogram and linear regression models. The MSN curve represents the upper range of observed stem numbers per ha. The mortality model and validation statistic reveal significant differences between the observed data and the model predictions (R2 = 0.55-0.81), and no obvious dependencies or patterns that indicate systematic trends between the residuals and the independent variable. However, spatial autocorrelation was detected from residuals of coniferous species (Red pine, Japanese larch and Korean pine), but not of oak species (Chinese cork oak and Mongolian oak). Based on linear regression from residuals, we found that the mortality of coniferous forests tended to increase when the annual mean temperature increased. Conversely, oak mortality nonsignificantly decreased with increasing temperature. These findings indicate that enhanced tree mortality due to rising temperatures in response to climate change is possible, especially in coniferous forests, and are expected to contribute to policy decisions to support and forest management practices.

  18. Impact of diurnal temperature range on mortality in a high plateau area in southwest China: A time series analysis.

    PubMed

    Ding, Zan; Guo, Pi; Xie, Fang; Chu, Huifang; Li, Kun; Pu, Jingbo; Pang, Shaojie; Dong, Hongli; Liu, Yahui; Pi, Fuhua; Zhang, Qingying

    2015-09-01

    Diurnal temperature range (DTR) is an important meteorological indicator that reflects weather stability and is associated with global climate change and urbanization. Previous studies have explored the effect of DTR on human health in coastal cities with small daily temperature variations, but we have little evidence for high plateau regions where large DTRs usually occur. Using daily mortality data (2007-2013), we conducted a time-series analysis to assess the effect of DTR on daily mortality in Yuxi, a high plateau city in southwest China. Poisson regression with distributed lag non-linear model was used to estimate DTR effects on daily mortality, controlling for daily mean temperature, relative humidity, sunshine duration, wind speed, atmospheric pressure, day of the week, and seasonal and long-term trends. The cumulative effects of DTR were J-shaped curves for non-accidental, cardiorespiratory and cardiovascular mortality, with a U-shaped curve for respiratory mortality. Risk assessments showed strong monotonic increases in mortality starting at a DTR of approximately 16 °C. The relative risk of non-accidental morality with extreme high DTR at lag 0 and 0-21 days was 1.03 (95% confidence interval: 0.95-1.11) and 1.33 (0.94-1.89), respectively. The risk of mortality with extreme high DTR was greater for males and age <75 years than females and age ≥75 years. The effect of DTR on mortality was non-linear, with high DTR associated with increased mortality. A DTR of 16 °C may be a cut-off point for mortality prognosis and has implications for developing intervention strategies to address high DTR exposure. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Annual trend patterns of phytoplankton species abundance belie homogeneous taxonomical group responses to climate in the NE Atlantic upwelling.

    PubMed

    Bode, Antonio; Estévez, M Graciela; Varela, Manuel; Vilar, José A

    2015-09-01

    Phytoplankton is a sentinel of marine ecosystem change. Composed by many species with different life-history strategies, it rapidly responds to environment changes. An analysis of the abundance of 54 phytoplankton species in Galicia (NW Spain) between 1989 and 2008 to determine the main components of temporal variability in relation to climate and upwelling showed that most of this variability was stochastic, as seasonality and long term trends contributed to relatively small fractions of the series. In general, trends appeared as non linear, and species clustered in 4 groups according to the trend pattern but there was no defined pattern for diatoms, dinoflagellates or other groups. While, in general, total abundance increased, no clear trend was found for 23 species, 14 species decreased, 4 species increased during the early 1990s, and only 13 species showed a general increase through the series. In contrast, series of local environmental conditions (temperature, stratification, nutrients) and climate-related variables (atmospheric pressure indices, upwelling winds) showed a high fraction of their variability in deterministic seasonality and trends. As a result, each species responded independently to environmental and climate variability, measured by generalized additive models. Most species showed a positive relationship with nutrient concentrations but only a few showed a direct relationship with stratification and upwelling. Climate variables had only measurable effects on some species but no common response emerged. Because its adaptation to frequent disturbances, phytoplankton communities in upwelling ecosystems appear less sensitive to changes in regional climate than other communities characterized by short and well defined productive periods. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Numerical calculations of spectral turnover and synchrotron self-absorption in CSS and GPS radio sources

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.

    2016-06-01

    The dependence of the turnover frequency on the linear size is presented for a sample of Giga-hertz Peaked Spectrum and Compact Steep Spectrum radio sources derived from complete samples. The dependence of the luminosity of the emission at the peak frequency with the linear size and the peak frequency is also presented for the galaxies in the sample. The luminosity of the smaller sources evolve strongly with the linear size. Optical depth effects have been included to the 3D model for the radio source of Kaiser to study the spectral turnover. Using this model, the observed trend can be explained by synchrotron self-absorption. The observed trend in the peak-frequency-linear-size plane is not affected by the luminosity evolution of the sources.

  1. A parametric heat transfer study for cryogenic ball bearings in SSME HPOTP

    NASA Technical Reports Server (NTRS)

    Chyu, Mingking K.

    1989-01-01

    A numerical modeling is to examine the effects of coolant convective heat transfer coefficient and frictional heating on the local temperature characteristics of a ball element in Space Shuttle Main Engine (SSME) High Pressure Oxidizer Turbopump (HPOTP) bearing. The present modeling uses a control-volume based, finite-difference method to solve the non-dimensionalized heat conduction equation in spherical coordinate system. The dimensionless temperature is found as a function of Biot number, heat flux ratio between the two race contacts, and location in the ball. The current results show that, for a given cooling capability, the ball temperature generally increases almost linearly with the heat input from the race-contacts. This increase is always very high at one of the two contacts. An increase in heat transfer coefficient generally reduces the ball temperature and alleviates the temperature gradient, except for the regions very close to the race contacts. For a 10-fold increase of heat transfer coefficient, temperature decrease is 35 percent for the average over entire ball, and 10 percent at the inner-race contact. The corresponding change of temperature gradient displays opposing trends between the regions immediately adjacent to the contacts and the remaining portion of the ball. The average temperature gradient in the vicinity of both contacts increases approximately 70 to 100 percent. A higher temperature gradient produces excessive thermal stress locally which may be detrimental to the material integrity. This, however, is the only unfavorable issue for an increase of heat transfer coefficient.

  2. Assessment of Air Temperature Trends in the Source Region of Yellow River and Its Sub-Basins, China

    NASA Astrophysics Data System (ADS)

    Iqbal, Mudassar; Wen, Jun; Wang, Xin; Lan, Yongchao; Tian, Hui; Anjum, Muhammad Naveed; Adnan, Muhammad

    2018-02-01

    Changes in climatic variables at the sub-basins scale (having different features of land cover) are crucial for planning, development and designing of water resources infrastructure in the context of climate change. Accordingly, to explore the features of climate changes in sub-basins of the Source Region of Yellow River (SRYR), absolute changes and trends of temperature variables, maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tavg) and diurnal temperature range (DTR), were analyzed annually and seasonally by using daily observed air temperature dataset from 1965 to 2014. Results showed that annual Tmax, Tmin and Tavg for the SRYR were experiencing warming trends respectively at the rate of 0.28, 0.36 and 0.31°C (10 yr)-1. In comparison with the 1st period (1965-1989), more absolute changes and trends towards increasing were observed during the 2nd period (1990-2014). Apart from Tangnaihai (a low altitude sub-basin), these increasing trends and changes seemed more significant in other basins with highest magnitude during winter. Among sub-basins the increasing trends were more dominant in Huangheyan compared to other sub-basins. The largest increase magnitude of Tmin, 1.24 and 1.18°C (10 yr)-1, occurred in high altitude sub-basins Jimai and Huangheyan, respectively, while the smallest increase magnitude of 0.23°C (10 yr)-1 occurred in a low altitude sub-basin Tangnaihai. The high elevation difference in Tangnaihai probably was the main reason for the less increase in the magnitude of Tmin. In the last decade, smaller magnitude of trend for all temperature variables signified the signal of cooling in the region. Overall, changes of temperature variables had significant spatial and seasonal variations. It implies that seasonal variations of runoff might be greater or different for each sub-basin.

  3. Among-tree variability and feedback effects result in different growth responses to climate change at the upper treeline in the Swiss Alps.

    PubMed

    Jochner, Matthias; Bugmann, Harald; Nötzli, Magdalena; Bigler, Christof

    2017-10-01

    Upper treeline ecotones are important life form boundaries and particularly sensitive to a warming climate. Changes in growth conditions at these ecotones have wide-ranging implications for the provision of ecosystem services in densely populated mountain regions like the European Alps. We quantify climate effects on short- and long-term tree growth responses, focusing on among-tree variability and potential feedback effects. Although among-tree variability is thought to be substantial, it has not been considered systematically yet in studies on growth-climate relationships. We compiled tree-ring data including almost 600 trees of major treeline species ( Larix decidua , Picea abies , Pinus cembra , and Pinus mugo ) from three climate regions of the Swiss Alps. We further acquired tree size distribution data using unmanned aerial vehicles. To account for among-tree variability, we employed information-theoretic model selections based on linear mixed-effects models (LMMs) with flexible choice of monthly temperature effects on growth. We isolated long-term trends in ring-width indices (RWI) in interaction with elevation. The LMMs revealed substantial amounts of previously unquantified among-tree variability, indicating different strategies of single trees regarding when and to what extent to invest assimilates into growth. Furthermore, the LMMs indicated strongly positive temperature effects on growth during short summer periods across all species, and significant contributions of fall ( L. decidua ) and current year's spring ( L. decidua , P. abies ). In the longer term, all species showed consistently positive RWI trends at highest elevations, but different patterns with decreasing elevation. L. decidua exhibited even negative RWI trends compared to the highest treeline sites, whereas P. abies , P. cembra , and P. mugo showed steeper or flatter trends with decreasing elevation. This does not only reflect effects of ameliorated climate conditions on tree growth over time, but also reveals first signs of long-suspected negative and positive feedback of climate change on stand dynamics at treeline.

  4. Low temperature platinum atomic layer deposition on nylon-6 for highly conductive and catalytic fiber mats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundy, J. Zachary; Shafiefarhood, Arya; Li, Fanxing

    2016-01-15

    Low temperature platinum atomic layer deposition (Pt-ALD) via (methylcyclopentadienyl)trimethyl platinum and ozone (O{sub 3}) is used to produce highly conductive nonwoven nylon-6 (polyamide-6, PA-6) fiber mats, having effective conductivities as high as ∼5500–6000 S/cm with only a 6% fractional increase in mass. The authors show that an alumina ALD nucleation layer deposited at high temperature is required to promote Pt film nucleation and growth on the polymeric substrate. Fractional mass gain scales linearly with Pt-ALD cycle number while effective conductivity exhibits a nonlinear trend with cycle number, corresponding to film coalescence. Field-emission scanning electron microscopy reveals island growth mode ofmore » the Pt film at low cycle number with a coalesced film observed after 200 cycles. The metallic coating also exhibits exceptional resistance to mechanical flexing, maintaining up to 93% of unstressed conductivity after bending around cylinders with radii as small as 0.3 cm. Catalytic activity of the as-deposited Pt film is demonstrated via carbon monoxide oxidation to carbon dioxide. This novel low temperature processing allows for the inclusion of highly conductive catalytic material on a number of temperature-sensitive substrates with minimal mass gain for use in such areas as smart textiles and flexible electronics.« less

  5. Antarctica: Cooling or Warming?

    NASA Astrophysics Data System (ADS)

    Bunde, Armin; Ludescher, Josef; Franzke, Christian

    2013-04-01

    We consider the 14 longest instrumental monthly mean temperature records from the Antarctica and analyse their correlation properties by wavelet and detrended fluctuation analysis. We show that the stations in the western and the eastern part of the Antarctica show significant long-term memory governed by Hurst exponents close to 0.8 and 0.65, respectively. In contrast, the temperature records at the inner part of the continent (South Pole and Vostok), resemble white noise. We use linear regression to estimate the respective temperature differences in the records per decade (i) for the annual data, (ii) for the summer and (iii) for the winter season. Using a recent approach by Lennartz and Bunde [1] we estimate the respective probabilities that these temperature differences can be exceeded naturally without inferring an external (anthropogenic) trend. We find that the warming in the western part of the continent and the cooling at the South Pole is due to a gradually changes in the cold extremes. For the winter months, both cooling and warming are well outside the 95 percent confidence interval, pointing to an anthropogenic origin. In the eastern Antarctica, the temperature increases and decreases are modest and well within the 95 percent confidence interval. [1] S. Lennartz and A. Bunde, Phys. Rev. E 84, 021129 (2011)

  6. Age at menarche, total mortality and mortality from ischaemic heart disease and stroke: the Adventist Health Study, 1976–88

    PubMed Central

    Jacobsen, B K; Oda, K; Knutsen, S F; Fraser, G E

    2009-01-01

    Background Little is known about the relationship between age at menarche and total mortality and mortality from ischaemic heart disease and stroke. Methods A cohort study of 19 462 Californian Seventh-Day Adventist women followed-up from 1976 to 1988. A total of 3313 deaths occurred during follow-up, of which 809 were due to ischaemic heart disease and 378 due to stroke. Results An early menarche was associated with increased total mortality (P-value for linear trend <0.001), ischaemic heart disease (P-value for linear trend = 0.01) and stroke (P-value for linear trend = 0.02) mortality. There were, however, also some indications of an increased ischaemic heart disease mortality in women aged 16–18 at menarche (5% of the women). When assessed as a linear relationship, a 1-year delay in menarche was associated with 4.5% (95% CI 2.3–6.7) lower total mortality. The association was stronger for ischaemic heart disease [6.0% (95% CI 1.2–10.6)] and stroke [8.6% (95% CI 1.6–15.1)] mortality. Conclusions The results suggest that there is a linear, inverse relationship between age at menarche and total mortality as well as with ischaemic heart disease and stroke mortality. PMID:19188208

  7. Age at menarche, total mortality and mortality from ischaemic heart disease and stroke: the Adventist Health Study, 1976-88.

    PubMed

    Jacobsen, B K; Oda, K; Knutsen, S F; Fraser, G E

    2009-02-01

    Little is known about the relationship between age at menarche and total mortality and mortality from ischaemic heart disease and stroke. A cohort study of 19 462 Californian Seventh-Day Adventist women followed-up from 1976 to 1988. A total of 3313 deaths occurred during follow-up, of which 809 were due to ischaemic heart disease and 378 due to stroke. An early menarche was associated with increased total mortality (P-value for linear trend <0.001), ischaemic heart disease (P-value for linear trend = 0.01) and stroke (P-value for linear trend = 0.02) mortality. There were, however, also some indications of an increased ischaemic heart disease mortality in women aged 16-18 at menarche (5% of the women). When assessed as a linear relationship, a 1-year delay in menarche was associated with 4.5% (95% CI 2.3-6.7) lower total mortality. The association was stronger for ischaemic heart disease [6.0% (95% CI 1.2-10.6)] and stroke [8.6% (95% CI 1.6-15.1)] mortality. The results suggest that there is a linear, inverse relationship between age at menarche and total mortality as well as with ischaemic heart disease and stroke mortality.

  8. Investigation of methods for hydroclimatic data homogenization

    NASA Astrophysics Data System (ADS)

    Steirou, E.; Koutsoyiannis, D.

    2012-04-01

    We investigate the methods used for the adjustment of inhomogeneities of temperature time series covering the last 100 years. Based on a systematic study of scientific literature, we classify and evaluate the observed inhomogeneities in historical and modern time series, as well as their adjustment methods. It turns out that these methods are mainly statistical, not well justified by experiments and are rarely supported by metadata. In many of the cases studied the proposed corrections are not even statistically significant. From the global database GHCN-Monthly Version 2, we examine all stations containing both raw and adjusted data that satisfy certain criteria of continuity and distribution over the globe. In the United States of America, because of the large number of available stations, stations were chosen after a suitable sampling. In total we analyzed 181 stations globally. For these stations we calculated the differences between the adjusted and non-adjusted linear 100-year trends. It was found that in the two thirds of the cases, the homogenization procedure increased the positive or decreased the negative temperature trends. One of the most common homogenization methods, 'SNHT for single shifts', was applied to synthetic time series with selected statistical characteristics, occasionally with offsets. The method was satisfactory when applied to independent data normally distributed, but not in data with long-term persistence. The above results cast some doubts in the use of homogenization procedures and tend to indicate that the global temperature increase during the last century is between 0.4°C and 0.7°C, where these two values are the estimates derived from raw and adjusted data, respectively.

  9. Environmental Influences on the Abundance and Sexual Composition of White Sharks Carcharodon carcharias in Gansbaai, South Africa

    PubMed Central

    Towner, Alison V.; Underhill, Les G.; Jewell, Oliver J. D.; Smale, Malcolm J.

    2013-01-01

    The seasonal occurrence of white sharks visiting Gansbaai, South Africa was investigated from 2007 to 2011 using sightings from white shark cage diving boats. Generalized linear models were used to investigate the number of great white sharks sighted per trip in relation to sex, month, sea surface temperature and Multivariate El Niño/Southern Oscillation (ENSO) Indices (MEI). Water conditions are more variable in summer than winter due to wind-driven cold water upwelling and thermocline displacement, culminating in colder water temperatures, and shark sightings of both sexes were higher during the autumn and winter months (March–August). MEI, an index to quantify the strength of Southern Oscillation, differed in its effect on the recorded numbers of male and female white sharks, with highly significant interannual trends. This data suggests that water temperature and climatic phenomena influence the abundance of white sharks at this coastal site. In this study, more females were seen in Gansbaai overall in warmer water/positive MEI years. Conversely, the opposite trend was observed for males. In cool water years (2010 to 2011) sightings of male sharks were significantly higher than in previous years. The influence of environmental factors on the physiology of sharks in terms of their size and sex is discussed. The findings of this study could contribute to bather safety programmes because the incorporation of environmental parameters into predictive models may help identify times and localities of higher risk to bathers and help mitigate human-white shark interactions. PMID:23951111

  10. Hartree-Fock values of energies, interaction constants, and atomic properties for excited states with 3 d N4 s0 and 3 d n4 s2 configurations of the negative ions, neutral atoms, and first four positive ions of the transition elements

    NASA Astrophysics Data System (ADS)

    Snyder, C. D.; Jastram, J. D.; Hitt, N. P.; Woffod, J.; Rice, K. C.

    2012-12-01

    Global climate-change models predict warmer stream temperatures, but there have been few studies that document such effects on stream communities. In Shenandoah National Park, Virginia, long-term temperature records indicate that stream temperatures show an increasing trend over the last 20 years and especially over the last 10 years. Stream temperatures have increased apparently due to atmospheric warming (i.e., stream temperatures are strongly correlated with regional air temperature patterns). Across 14 monitored stream sites, the median increase in maximum annual water temperature was 0.32oC per year for the 10-yr period between 2000 and 2009, and all 14 sites had positive trend slopes. Moreover, in contrast to water-chemistry trends, temperature trends showed no spatial structure and were consistent throughout the park. The observed warming is consistent with global warming projections, but other factors, including the North Atlantic Oscillation and forest defoliation due to gypsy moth (Lepidoptera: Lymantriidae), also may have contributed to warming trends. We summarized benthic macroinvertebrate community composition and structure from samples collected at 24 stream sites over the last 20 years and evaluated temporal patterns in the context of observed temperature trends. We found that a substantial amount of temporal variation in both taxonomic composition and community structure could be explained by temperature trends, even after accounting for water-chemistry changes. We observed significant declines in community diversity as well as a decline in the abundance of several stonefly (Plecoptera) taxa, a cold-water-dependent taxonomic group. We hypothesize that temperature-induced changes in the diversity and composition of macroinvertebrate communities could cascade to other faunal groups and other parts of the watershed. For instance, reduced abundances of stoneflies, an important component of the shredder functional group, may lead to reduced export of fine particulate organic matter from headwaters, disrupting food webs and reducing productivity to stream reaches farther downstream.

  11. Temporal variability of total cloud cover at a Mediterranean megacity in the 20th century: Evidence from visual observations and climate models

    NASA Astrophysics Data System (ADS)

    Founda, Dimitra; Giannakopoulos, Christos; Pierros, Fragiskos

    2013-04-01

    Cloud cover is one of the major factors that determine the radiation budget and the climate system of the Earth. Moreover, the response of clouds has always been an important source of uncertainty in global climate models. Visual surface observations of clouds have been conducted at the National Observatory of Athens (NOA) since the mid 19th century. The historical archive of cloud reports at NOA since 1860 has been digitized and updated, spanning now a period of one and a half century. Mean monthly values of total cloud cover were derived by averaging subdaily observations of cloud cover (3 observations/day). Changes in observational practice (e.g. from 1/10 to 1/8 units) were considered, however, subjective measures of cloud cover from trained observers introduces some kind of uncertainty in the time series. Data before 1884 were considered unreliable, so the analysis was restricted to the series from 1884 to 2012. The time series of total cloud cover at NOA is validated and correlated with historical time series of other (physically related) variables such as the total sunshine duration as well as DTR (Diurnal Temperature Range) which are independently measured. Trend analysis was performed on the mean annual and seasonal series of total cloud cover from 1884-2012. The mean annual values show a marked temporal variability with sub periods of decreasing and increasing tendencies, however, the overall linear trend is positive and statistically significant (p <0.001) amounting to +2% per decade and implying a total increase of almost 25% for the whole analysed period. These results are in agreement qualitatively with the trends reported in other studies worldwide, especially concerning the period before the mid 20th century. On a seasonal basis, spring and summer series present outstanding positive long term trends, while in winter and autumn total cloud cover reveals also positive but less pronounced long term trends Additionally, an evaluation of cloud cover and/or sunshine duration/diurnal temperature range as depicted by regional climate models over Athens will be performed. Regional climate models are valuable tools for projections of future climate change but their performance is typically assessed only in terms of temperature and precipitation. The representation of non-standard parameters such as cloud cover and/or sunshine duration/diurnal temperature range has so far seen little or no evaluation in the models and can therefore be prone to large uncertainties. Regional climate models developed in the framework of recent EU projects, such as the ENSEMBLES (www.ensembles-eu.org) and the CIRCE (www.circeproject.eu) projects, will be used and an initial validation of these parameters against the historical archive of NOA will be performed.

  12. Malaria resurgence in the East African highlands: Temperature trends revisited

    PubMed Central

    Pascual, M.; Ahumada, J. A.; Chaves, L. F.; Rodó, X.; Bouma, M.

    2006-01-01

    The incidence of malaria in the East African highlands has increased since the end of the 1970s. The role of climate change in the exacerbation of the disease has been controversial, and the specific influence of rising temperature (warming) has been highly debated following a previous study reporting no evidence to support a trend in temperature. We revisit this result using the same temperature data, now updated to the present from 1950 to 2002 for four high-altitude sites in East Africa where malaria has become a serious public health problem. With both nonparametric and parametric statistical analyses, we find evidence for a significant warming trend at all sites. To assess the biological significance of this trend, we drive a dynamical model for the population dynamics of the mosquito vector with the temperature time series and the corresponding detrended versions. This approach suggests that the observed temperature changes would be significantly amplified by the mosquito population dynamics with a difference in the biological response at least 1 order of magnitude larger than that in the environmental variable. Our results emphasize the importance of considering not just the statistical significance of climate trends but also their biological implications with dynamical models. PMID:16571662

  13. Global water vapor variability and trend from the latest 36 year (1979 to 2014) data of ECMWF and NCEP reanalyses, radiosonde, GPS, and microwave satellite

    NASA Astrophysics Data System (ADS)

    Chen, Biyan; Liu, Zhizhao

    2016-10-01

    The variability and trend in global precipitable water vapor (PWV) from 1979 to 2014 are analyzed using the PWV data sets from the ERA-Interim reanalysis of the European Centre for Medium-Range Weather Forecasts (ECMWF), reanalysis of the National Centers for Environmental Prediction (NCEP), radiosonde, Global Positioning System (GPS), and microwave satellite observations. PWV data from the ECMWF and NCEP have been evaluated by radiosonde, GPS, and microwave satellite observations, showing that ECMWF has higher accuracy than NCEP. Over the oceans, ECMWF has a much better agreement with the microwave satellite than NCEP. An upward trend in the global PWV is evident in all the five PWV data sets over three study periods: 1979-2014, 1992-2014, and 2000-2014. Positive global PWV trends, defined as percentage normalized by annual average, of 0.61 ± 0.33% decade-1, 0.57 ± 0.28% decade-1, and 0.17 ± 0.35% decade-1, have been derived from the NCEP, radiosonde, and ECMWF, respectively, for the period 1979-2014. It is found that ECMWF overestimates the PWV over the ocean prior to 1992. Thus, two more periods, 1992-2014 and 2000-2014, are studied. Increasing PWV trends are observed from all the five data sets in the two periods: 1992-2014 and 2000-2014. The linear relationship between PWV and surface temperature is positive over most oceans and the polar region. Steep positive/negative regression slopes are generally found in regions where large regional moisture flux divergence/convergence occurs.

  14. Climate-induced changes in river water temperature in North Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Soto, Benedicto

    2017-06-01

    This study evaluates the effects of climate change on the thermal regime of 12 rivers in the Northern Iberian Peninsula by using a non-linear regression model that employs air temperature as the only input variable. Prediction of future air temperature was obtained from five regional climate models (RCMs) under emission scenario Special Report on Emissions Scenarios A1B. Prior to simulation of water temperature, air temperature was bias-corrected (B-C) by means of variance scaling (VS) method. This procedure allows an improvement of fit between observed and estimated air temperature for all climate models. The simulation of water temperature for the period 1990-2100 shows an increasing trend, which is higher for the period of June-August (summer) and September-November (autumn) (0.0275 and 0.0281 °C/year) than that of winter (December-February) and spring (March-May) (0.0181 and 0.0218 °C/year). In the high air temperature range, daily water temperature is projected to increase on average by 2.2-3.1 °C for 2061-2090 relative to 1961-1990. During the coldest days, the increment of water temperature would range between 1.0 and 1.7 °C. In fact, employing the numbers of days that water temperature exceeded the upper incipient lethal temperature (UILT) for brown trout (24.7 °C) has been noted that this threshold is exceeded 14.5 days per year in 2061-2090 while in 1961-1990, this values was exceeded 2.6 days per year of mean and 3.6 days per year in observation period (2000-2014).

  15. Analysis of satellite precipitation over East Africa during last decades

    NASA Astrophysics Data System (ADS)

    Cattani, Elsa; Wenhaji Ndomeni, Claudine; Merino, Andrés; Levizzani, Vincenzo

    2016-04-01

    Daily accumulated precipitation time series from satellite retrieval algorithms (e.g., ARC2 and TAMSAT) are exploited to extract the spatial and temporal variability of East Africa (EA - 5°S-20°N, 28°E-52°E) precipitation during last decades (1983-2013). The Empirical Orthogonal Function (EOF) analysis is applied to precipitation time series to investigate the spatial and temporal variability in particular for October-November-December referred to as the short rain season. Moreover, the connection among EA's precipitation, sea surface temperature, and soil moisture is analyzed through the correlation with the dominant EOF modes of variability. Preliminary results concern the first two EOF's modes for the ARC2 data set. EOF1 is characterized by an inter-annual variability and a positive correlation between precipitation and El Niño, positive Indian Ocean Dipole mode, and soil moisture, while EOF2 shows a dipole structure of spatial variability associated with a longer scale temporal variability. This second dominant mode is mostly linked to sea surface temperature variations in the North Atlantic Ocean. Further analyses are carried out by computing the time series of the joint CCI/CLIVAR/JCOMM Expert Team on Climate Change Detection and Indices (ETCCDI, http://etccdi.pacificclimate.org/index.shtml), i.e. RX1day, RX5day, CDD, CDD, CWD, SDII, PRCPTOT, R10, R20. The purpose is to identify the occurrenes of extreme events (droughts and floods) and extract precipitation temporal variation by trend analysis (Mann-Kendall technique). Results for the ARC2 data set demonstrate the existence of a dipole spatial pattern in the linear trend of the time series of PRCPTOT (annual precipitation considering days with a rain rate > 1 mm) and SDII (average precipitation on wet days over a year). A negative trend is mainly present over West Ethiopia and Sudan, whereas a positive trend is exhibited over East Ethiopia and Somalia. CDD (maximum number of consecutive dry days) and CWD (maximum number of consecutive wet days) time series do not exhibit a similar behavior and trends are generally weaker with a lower significance level with respect to PRCPTOT and SDII.

  16. Effects of diurnal adjustment on biases and trends derived from inter-sensor calibrated AMSU-A data

    NASA Astrophysics Data System (ADS)

    Chen, H.; Zou, X.; Qin, Z.

    2018-03-01

    Measurements of brightness temperatures from Advanced Microwave Sounding Unit-A (AMSU-A) temperature sounding instruments onboard NOAA Polarorbiting Operational Environmental Satellites (POES) have been extensively used for studying atmospheric temperature trends over the past several decades. Intersensor biases, orbital drifts and diurnal variations of atmospheric and surface temperatures must be considered before using a merged long-term time series of AMSU-A measurements from NOAA-15, -18, -19 and MetOp-A.We study the impacts of the orbital drift and orbital differences of local equator crossing times (LECTs) on temperature trends derivable from AMSU-A using near-nadir observations from NOAA-15, NOAA-18, NOAA-19, and MetOp-A during 1998-2014 over the Amazon rainforest. The double difference method is firstly applied to estimation of inter-sensor biases between any two satellites during their overlapping time period. The inter-calibrated observations are then used to generate a monthly mean diurnal cycle of brightness temperature for each AMSU-A channel. A diurnal correction is finally applied each channel to obtain AMSU-A data valid at the same local time. Impacts of the inter-sensor bias correction and diurnal correction on the AMSU-A derived long-term atmospheric temperature trends are separately quantified and compared with those derived from original data. It is shown that the orbital drift and differences of LECTamong different POESs induce a large uncertainty in AMSU-A derived long-term warming/cooling trends. After applying an inter-sensor bias correction and a diurnal correction, the warming trends at different local times, which are approximately the same, are smaller by half than the trends derived without applying these corrections.

  17. Spatiotemporal trends in mean temperatures and aridity index over Rwanda

    NASA Astrophysics Data System (ADS)

    Muhire, I.; Ahmed, F.

    2016-01-01

    This study aims at quantifying the trends in mean temperatures and aridity index over Rwanda for the period of 1961-1992, based on analysis of climatic data (temperatures, precipitations, and potential evapotranspiration). The analysis of magnitude and significance of trends in temperatures and aridity index show the degree of climate change and mark the level of vulnerability to extreme events (e.g., droughts) in different areas of the country. The study reveals that mean temperatures increased in most parts of the country, with a significant increase observed in the eastern lowlands and in the southwestern parts. The highlands located in the northwest and the Congo-Nile crest showed a nonsignificant increase in mean temperatures. Aridity index increased only in March, April, October, and November, corresponding with the rainy seasons. The remaining months of the year showed a decreasing trend. At an annual resolution, the highlands and the western region showed a rise in aridity index with a decreasing pattern over the eastern lowlands and the central plateau. Generally, the highlands presented a nonsignificant increase in mean temperatures and aridity index especially during the rainy seasons. The eastern lowlands showed a significant increase in mean temperatures and decreasing trends in aridity index. Therefore, these areas are bound to experience more droughts, leading to reduced water and consequent decline in agricultural production. On the other hand, the north highlands and southwest region will continue to be more productive.

  18. On the impacts of computing daily temperatures as the average of the daily minimum and maximum temperatures

    NASA Astrophysics Data System (ADS)

    Villarini, Gabriele; Khouakhi, Abdou; Cunningham, Evan

    2017-12-01

    Daily temperature values are generally computed as the average of the daily minimum and maximum observations, which can lead to biases in the estimation of daily averaged values. This study examines the impacts of these biases on the calculation of climatology and trends in temperature extremes at 409 sites in North America with at least 25 years of complete hourly records. Our results show that the calculation of daily temperature based on the average of minimum and maximum daily readings leads to an overestimation of the daily values of 10+ % when focusing on extremes and values above (below) high (low) thresholds. Moreover, the effects of the data processing method on trend estimation are generally small, even though the use of the daily minimum and maximum readings reduces the power of trend detection ( 5-10% fewer trends detected in comparison with the reference data).

  19. The effect of length and starting year on trend analyses of temperatures in Spanish mainland (1951-2010). Seasonal analysis: Winter (II)

    NASA Astrophysics Data System (ADS)

    Salinas Solé, Celia; Peña Angulo, Dhais; Gonzalez Hidalgo, Jose Carlos; Brunetti, Michele

    2017-04-01

    In this poster we applied the moving window approach (see Poster I of this collection) to analyze trends of winter and its corresponding months (December, January, February) temperature mean values of maximum (Tmax) and minimum (Tmin) in Spanish mainland to detect the effects of length period and starting year. Monthly series belong to Monthly Temperature dataset of Spanish mainland (MOTEDAS). Database contains in its grid format of 5236 pixels of monthly series (10x10 km). The threshold used in spatial analyses considers 20% of land under significant trend (p<0.05). The most striking results are as follow: • Seasonal trend analyses of Tmax shows that global trend 1951-2010 was positive and significant mostly in central-western areas; from 1970 to 2010 there is less than 20% of land with significant trend. In the case of Tmin no relevant significant period is detected. • Monthly Tmax analyses show that December significant trend changed from positive (>20%) in between 1955-2010 until 1962-2010, to negative from 1976-2010. Meanwhile January does not show relevant period with significant trend; finally Tmax in February shows different periods with positive significant trend (>20% of land) 1951-2010 to 1954-2010 and 1962-2010 to 1968-2010. No significant trend is detected after this data. • Monthly Tmin trend analyses show that except exceptional period, no months present any significant trend. As conclusions, we have detected that for winter and winter-months, Tmax trends are not significant from 1970 across Spanish mainland. In the case of Tmin we conclude that no significant trend have been occurred in any temporal windows analyzed. Results differ from what traditionally has been assumed that the increase of the average annual temperature was due to the increase of trends in the winter season. And these analyses also show that seasonal trend values could hide monthly behavior. So extreme caution should be taken into account when seasonal values are offered.

  20. Examining for any impact of climate change on the association between seasonality and hospitalization for mania.

    PubMed

    Parker, Gordon B; Hadzi-Pavlovic, Dusan; Graham, Rebecca K

    2017-01-15

    Studies have established higher rates of hospitalization for mania in spring and summer and posit various explanatory climatic variables. As the earth's climate is changing, we pursue whether this is reflected in the yearly seasonal variation in hospitalizations for mania. This would be indicated by the presence of secular changes in both the hospitalization seasonal pattern and climatic variables, and associations between both variable sets. Data were obtained for 21,882 individuals hospitalized to psychiatric hospitals in the Australian state of New South Wales (NSW) over a 14-year period (2000-2014) with ICD-diagnosed mania - and with NSW population figures and salient climatic variables collected for the same period. Regression analyses were conducted to examine the predictive value of climate variables on hospital admissions. Data quantified a peak for manic admissions in spring of the southern hemisphere, in the months of October and November. There was a significant linear increase in manic admissions (0.5%/year) over the 14-year time period, with significant variation across years. In terms of climatic variables, there was a significant linear trend over the interval for solar radiation, although the trend indicated a decrease rather than an increase. Seasonal variation in admissions was most closely associated with two climate variables - evaporation in the current month and temperature in the previous month. Hospitalization rates do not necessarily provide an accurate estimate of the onset of manic episodes and findings may be limited to the southern hemisphere, or New South Wales. While overall findings do not support the hypothesis that climate change is leading to a higher seasonal impact for manic hospital admissions in the southern hemisphere, analyses identified two climate/weather variables - evaporation and temperature - that may account for the yearly spring excess. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Effect of heat stress on age at first calving of Japanese Black cows in Okinawa.

    PubMed

    Oikawa, Takuro

    2017-03-01

    Calving records from birth certificates of cows were analyzed to investigate the effect of heat stress on age at first calving (AFC) of Japanese Black cows. The data set covered 20 years (1990-2009) of calving records. Total number of records was 9279. Daily weather information from weather stations in the vicinity of the farms was used. Temperature-humidity index (THI) fitted to a linear model covered 30 days pre-insemination to 61 days post-insemination. Statistical analysis was conducted with procedures of SAS/STAT. Preliminary analysis showed that THI of the lowest temperature and humidity was most conducive to AFC. Covariance analysis, including main effect of sire, farm and year of insemination and covariates of THI on days showed that regression coefficients of THI on day -7, day -2 and day +31 were statistically significant. The estimated piecewise regression line showed different responses of AFC to THI on days: roof-shasped downward trend on day -7, hockey-stick shaped upward trend on day -2 and day +31. The difference among the estimated regression lines may be caused by direct and indirect factors on reproduction: indirect effect of reduced feed intake, failure of conception at previous insemination, direct effect of heat stress on oocyte and embryo development. © 2016 Japanese Society of Animal Science.

  2. Historical Change of Equilibrium Water Temperature in Japan

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.

    2015-12-01

    Changes in freshwater ecosystems due to a climate change have been great concern for sustainable river basin management both for water resources utilization and ecological conservation. However, their impact seems to be difficult to evaluate because of wide variety of basin characteristics along a river network both in nature and social environment. This presentation uses equilibrium water temperature as a simple criterion index for evaluating the long-term changes of stream thermal environment due to the historical climate change in Japan. It examines, at first, the relationship between the equilibrium water temperature and the stream temperature observed for 7 years at a lower reach in the Ibo River, Japan. It analyzes, then, the seasonal and regional trends of the equilibrium water temperature change for the last 50 years at 133 meteorological station sites throughout Japan, discussing their rising or falling characteristics. The correlation analysis at the local reach of the Ibo River shows that the equilibrium water temperature has similar trend of change as the stream temperature. However, its value tends to be higher than the stream temperature in summer, while lower in winter. The onset of the higher equilibrium water temperature fluctuates annually from mid February to early April. This onset fluctuation at each spring could be influenced by the different amount of snow at the antecedent winter. The rising or falling trends of the equilibrium water temperature are analyzed both annually and seasonally through the regression analysis of the 133 sites in Japan. Consequently, the trends of the temperature change could be categorized by 12 patterns. As for the seasonal analysis, the results shows that there are many sites indicating the falling trend in spring and summer, and rising trends in autumn and winter. In particular, winter has the strong rising tendency throughout Japan. As for the regional analysis, the result illustrates the precise rationality; e.g., northern parts of Japan show the temperature fall in spring and the temperature rise in autumn, while the urbanized regions along the Pacific coastline indicate the temperature rise in all the four seasons.

  3. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    PubMed

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Nan; Zhu, Wenquan; Zheng, Zhoutao

    The long-term Normalized Difference Vegetation Index (NDVI) time-series data set generated from the Advanced Very High Resolution Radiometers (AVHRR) has been widely used to monitor vegetation activity change. The third version of NDVI (NDVI3g) produced by the Global Inventory Modeling and Mapping Studies (GIMMS) group was released recently. The comparisons between the new and old versions should be conducted for linking existing studies with future applications of NDVI3g in monitoring vegetation activity change. Based on simple and piecewise linear regression methods, this research made a comparative analysis between NDVIg and NDVI3g for monitoring vegetation activity change and its responses tomore » climate change in the middle and high latitudes of the Northern Hemisphere during 1982–2008. Our results indicated that there were large differences between NDVIg and NDVI3g in the spatial patterns for both the overall changing trends and the timing of Turning Points (TP) in NDVI time series, which spread over almost the entire study region. The average NDVI trend from NDVI3g was almost twice as great as that from NDVIg and the detected average timing of TP from NDVI3g was about one year later. Although the general spatial patterns were consistent between two data sets for detecting the responses of growing-season NDVI to temperature and precipitation changes, there were large differences in the response magnitude, with a higher response magnitude to temperature in NDVI3g and an opposite response to precipitation change for the two data sets. Finally, these results demonstrated that the NDVIg data set may underestimate the vegetation activity change trend and its response to climate change in the middle and high latitudes of the Northern Hemisphere during the past three decades.« less

  5. Long-term Trends in the Solar Wind Proton Measurements

    NASA Astrophysics Data System (ADS)

    Elliott, Heather A.; McComas, David J.; DeForest, Craig E.

    2016-11-01

    We examine the long-term time evolution (1965-2015) of the relationships between solar wind proton temperature (T p) and speed (V p) and between the proton density (n p) and speed using OMNI solar wind observations taken near Earth. We find a long-term decrease in the proton temperature-speed (T p-V p) slope that lasted from 1972 to 2010, but has been trending upward since 2010. Since the solar wind proton density-speed (n p-V p) relationship is not linear like the T p-V p relationship, we perform power-law fits for n p-V p. The exponent (steepness in the n p-V p relationship) is correlated with the solar cycle. This exponent has a stronger correlation with current sheet tilt angle than with sunspot number because the sunspot number maxima vary considerably from cycle to cycle and the tilt angle maxima do not. To understand this finding, we examined the average n p for different speed ranges, and found that for the slow wind n p is highly correlated with the sunspot number, with a lag of approximately four years. The fast wind n p variation was less, but in phase with the cycle. This phase difference may contribute to the n p-V p exponent correlation with the solar cycle. These long-term trends are important since empirical formulas based on fits to T p and V p data are commonly used to identify interplanetary coronal mass ejections, but these formulas do not include any time dependence. Changes in the solar wind density over a solar cycle will create corresponding changes in the near-Earth space environment and the overall extent of the heliosphere.

  6. The Vegetation Trends and Drivers in Beijing-Tianjing Region from 1982 TO 2013 Based on Time Series Gimms NDVI3g

    NASA Astrophysics Data System (ADS)

    Liu, S.; Tian, H.; Wang, X.; Li, H.; He, Y.

    2018-04-01

    Vegetation plays a leading role in ecosystems. Plant communities are the main components of ecosystems. Green plants in ecosystems are the primary producers, and they provide the living organic matter for the survival of other organisms. The dynamics of most landscapes are driven by both natural processes and human activities. In this study, the growing season GIMMS NDVI3g and climatic data were used to analyse the vegetation trends and drivers in Beijing-Tianjin-Hebei region from 1982 to 2013. Result shows that, the vegetation in Beijing-Tianjin-Hebei region shows overall restoration and partial degradation trend. The significant restoration region accounts for 61.5 % of Beijing-Tianjin-Hebei region, while the significant degradation region accounts for 2.1 %. The dominant climatic factor for time series NDVI were analyzed using the multi-linear regression model. Vegetation growth in 17.9 % of Beijing-Tianjin-Hebei region is dominated by temperature, 35.5 % is dominated by precipitation, and 11.68 % is dominated by solar radiance. Human activities play important role for vegetation restoration in Beijing-Tianjin-Hebei Region, where the large scale forest restoration programs are the main human activities, such as the three-north shelterbelt construction project, Beijing-Tianjin-Hebei sandstorm source control project and grain for green projects.

  7. Isolating the roles of different forcing agents in global stratospheric temperature changes using model integrations with incrementally added single forcings

    NASA Astrophysics Data System (ADS)

    Aquila, V.; Swartz, W. H.; Waugh, D. W.; Colarco, P. R.; Pawson, S.; Polvani, L. M.; Stolarski, R. S.

    2016-07-01

    Satellite instruments show a cooling of global stratospheric temperatures over the whole data record (1979-2014). This cooling is not linear and includes two descending steps in the early 1980s and mid-1990s. The 1979-1995 period is characterized by increasing concentrations of ozone-depleting substances (ODSs) and by the two major volcanic eruptions of El Chichón (1982) and Mount Pinatubo (1991). The 1995-present period is characterized by decreasing ODS concentrations and by the absence of major volcanic eruptions. Greenhouse gas (GHG) concentrations increase over the whole time period. In order to isolate the roles of different forcing agents in the global stratospheric temperature changes, we performed a set of simulations using the NASA Goddard Earth Observing System Chemistry-Climate Model with prescribed sea surface temperatures. We find that in our model simulations the cooling of the stratosphere from 1979 to present is mostly driven by changes in GHG concentrations in the middle and upper stratosphere and by GHG and ODS changes in the lower stratosphere. While the cooling trend caused by increasing GHGs is roughly constant over the satellite era, changing ODS concentrations cause a significant stratospheric cooling only up to the mid-1990s, when they start to decrease because of the implementation of the Montreal Protocol. Sporadic volcanic events and the solar cycle have a distinct signature in the time series of stratospheric temperature anomalies but do not play a statistically significant role in the long-term trends from 1979 to 2014. Several factors combine to produce the step-like behavior in the stratospheric temperatures: in the lower stratosphere, the flattening starting in the mid-1990s is due to the decrease in ozone-depleting substances; Mount Pinatubo and the solar cycle cause the abrupt steps through the aerosol-associated warming and the volcanically induced ozone depletion. In the middle and upper stratosphere, changes in solar irradiance are largely responsible for the step-like behavior of global temperature anomalies, together with volcanically induced ozone depletion and water vapor increases in the post-Pinatubo years.

  8. Prevailing trends of climatic extremes across Indus-Delta of Sindh-Pakistan

    NASA Astrophysics Data System (ADS)

    Abbas, Farhat; Rehman, Iqra; Adrees, Muhammad; Ibrahim, Muhammad; Saleem, Farhan; Ali, Shafaqat; Rizwan, Muhammad; Salik, Muhammad Raza

    2018-02-01

    This study examines the variability and change in the patterns of climatic extremes experienced in Indus-Delta of Sindh province of Pakistan, comprising regions of Karachi, Badin, Mohenjodaro, and Rohri. The homogenized daily minimum and maximum temperature and precipitation data for a 36-year period were used to calculate 13 and 11 indices of temperature and precipitation extremes with the help of RClimDex, a program written in the statistical software package R. A non-parametric Mann-Kendall test and Sen's slope estimates were used to determine the statistical significance and magnitude of the calculated trend. Temperatures of summer days and tropical nights increased in the region with overall significant warming trends for monthly maximum temperature as well as for warm days and nights reflecting dry conditions in the study area. The warm extremes and nighttime temperature indices showed greater trends than cold extremes and daytime indices depicting an overall warming trends in the Delta. Historic decrease in the acreage of major crops and over 33% decrease in agriculture credit for Sindh are the indicators of adverse impacts of warmer and drier weather on Sindh agriculture. Trends reported for Karachi and Badin are expected to decrease rice cultivation, hatching of fisheries, and mangroves forest surrounding these cities. Increase in the prevailing temperature trends will lead to increasingly hotter and drier summers resulting to constraints on cotton, wheat, and rice yield in Rohri and Mohenjodaro areas due to increased crop water requirements that may be met with additional groundwater pumping; nonetheless, the depleted groundwater resources would have a direct impact on the region's economy.

  9. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jy-An John

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 logmore » (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.« less

  10. Effects of diurnal variations in temperature on non-accidental mortality among the elderly population of Montreal, Québec, 1984-2007.

    PubMed

    Vutcovici, Maria; Goldberg, Mark S; Valois, Marie-France

    2014-07-01

    The association between ambient temperature and mortality has been studied extensively. Recent data suggest an independent role of diurnal temperature variations in increasing daily mortality. Elderly adults-a growing subgroup of the population in developed countries-may be more susceptible to the effects of temperature variations. The aim of this study was to determine whether variations in diurnal temperature were associated with daily non-accidental mortality among residents of Montreal, Québec, who were 65 years of age and over during the period between 1984 and 2007. We used distributed lag non-linear Poisson models constrained over a 30-day lag period, adjusted for temporal trends, mean daily temperature, and mean daily concentrations of nitrogen dioxide and ozone to estimate changes in daily mortality with diurnal temperature. We found, over the 30 day lag period, a cumulative increase in daily mortality of 5.12% [95% confidence interval (CI): 0.02-10.49%] for a change from 5.9 °C to 11.1 °C (25th to 75th percentiles) in diurnal temperature, and a 11.27% (95%CI: 2.08-21.29%) increase in mortality associated with an increase of diurnal temperature from 11.1 to 17.5 °C (75th to 99th percentiles). The results were relatively robust to adjustment for daily mean temperature. We found that, in Montreal, diurnal variations in temperature are associated with a small increase in non-accidental mortality among the elderly population. More studies are needed in different geographical locations to confirm this effect.

  11. Fifteen-year trends in the prevalence of barriers to healthy eating in a high-income country.

    PubMed

    de Mestral, Carlos; Khalatbari-Soltani, Saman; Stringhini, Silvia; Marques-Vidal, Pedro

    2017-03-01

    Background: Despite increasing levels of education and income in the Swiss population over time and greater food diversity due to globalization, adherence to dietary guidelines has remained persistently low. This may be because of barriers to healthy eating hampering adherence, but whether these barriers have evolved in prevalence over time has never been assessed, to our knowledge. Objective: We assessed 15-y trends in the prevalence of self-reported barriers to healthy eating in Switzerland overall and according to sex, age, education, and income. Design: We used data from 4 national Swiss Health Surveys conducted between 1997 and 2012 (52,238 participants aged ≥18 y, 55% women), applying multivariable-adjusted logistic regression models to assess trends in prevalence of 6 barriers to healthy eating (taste, price, daily habits, time, lack of willpower, and limited options). Results: The prevalence of 3 barriers exhibited an increasing trend until 2007, followed by a decrease in 2012 (from 44% in 1997 to 50% in 2007 and then to 44% in 2012 for taste, from 40% to 52% and then to 39% for price, and from 29% to 34% and then to 32% for time; quadratic P -trend < 0.0001). Limited options decreased slightly until 2007 (35-33%) and then sharply by 2012 (18%) (linear P -trend < 0.0001). Daily habits remained relatively stable across time from 42% in 1997 to 38% in 2012 (linear P -trend < 0.0001). Conversely, lack of willpower decreased steadily over time from 26% in 1997 to 21% in 2012 (linear P -trend < 0.0001). Trends were similar for all barriers irrespective of sex, age, education, and income. Conclusion: Between 1997 and 2012, barriers to healthy eating remained highly prevalent (≥20%) in the Swiss population and evolved similarly irrespective of age, sex, education, and income. © 2017 American Society for Nutrition.

  12. Long-term trends in stratospheric ozone, temperature, and water vapor over the Indian region

    NASA Astrophysics Data System (ADS)

    Thankamani Akhil Raj, Sivan; Venkat Ratnam, Madineni; Narayana Rao, Daggumati; Venkata Krishna Murthy, Boddam

    2018-01-01

    We have investigated the long-term trends in and variabilities of stratospheric ozone, water vapor and temperature over the Indian monsoon region using the long-term data constructed from multi-satellite (Upper Atmosphere Research Satellite (UARS MLS and HALOE, 1993-2005), Aura Microwave Limb Sounder (MLS, 2004-2015), Sounding of the Atmosphere using Broadband Emission Radiometry (SABER, 2002-2015) on board TIMED (Thermosphere Ionosphere Mesosphere Energetics Dynamics)) observations covering the period 1993-2015. We have selected two locations, namely, Trivandrum (8.4° N, 76.9° E) and New Delhi (28° N, 77° E), covering northern and southern parts of the Indian region. We also used observations from another station, Gadanki (13.5° N, 79.2° E), for comparison. A decreasing trend in ozone associated with NOx chemistry in the tropical middle stratosphere is found, and the trend turned to positive in the upper stratosphere. Temperature shows a cooling trend in the stratosphere, with a maximum around 37 km over Trivandrum (-1.71 ± 0.49 K decade-1) and New Delhi (-1.15 ± 0.55 K decade-1). The observed cooling trend in the stratosphere over Trivandrum and New Delhi is consistent with Gadanki lidar observations during 1998-2011. The water vapor shows a decreasing trend in the lower stratosphere and an increasing trend in the middle and upper stratosphere. A good correlation between N2O and O3 is found in the middle stratosphere (˜ 10 hPa) and poor correlation in the lower stratosphere. There is not much regional difference in the water vapor and temperature trends. However, upper stratospheric ozone trends over Trivandrum and New Delhi are different. The trend analysis carried out by varying the initial year has shown significant changes in the estimated trend.

  13. Trends in Daily Cannabis Use Among Cigarette Smokers: United States, 2002-2014.

    PubMed

    Goodwin, Renee D; Pacek, Lauren R; Copeland, Jan; Moeller, Scott J; Dierker, Lisa; Weinberger, Andrea; Gbedemah, Misato; Zvolensky, Michael J; Wall, Melanie M; Hasin, Deborah S

    2018-01-01

    To estimate changes in the prevalence of daily cannabis use among current, former, and never cigarette smokers from 2002 to 2014 in the United States. The National Survey on Drug Use and Health is a nationally representative cross-sectional study conducted annually among persons aged 12 years and older in the United States. Daily cannabis use occurs nearly exclusively among nondaily and daily cigarette smokers compared with former and never smokers (8.03%, 9.01%, 2.79%, 1.05%, respectively). Daily cannabis use increased over the past decade among both nondaily (8.03% [2014] vs 2.85% [2002]; linear trend P < .001) and daily smokers (9.01% [2014]; 4.92% [2002]; linear trend P < .001). Daily cannabis use increased most rapidly among former cigarette smokers (2.79% [2014] vs 0.98% [2002]; linear trend P < .001). Daily cannabis use occurs predominantly among cigarette smokers in the United States. Daily cannabis use increased among current, former, and never smokers over the past decade, with particularly rapid increases among youth and female cigarette smokers. Future research is needed to monitor the observed increase in daily cannabis use, especially among youths and adults who smoke cigarettes.

  14. Relative Contribution of Greenhouse Gases and Ozone Change to Temperature Trends in the Stratosphere: A Chemistry/Climate Model Study

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, A. R.; Newman, P. A.; Pawson, S.; Schoeberl, M. R.

    2006-01-01

    Long-term changes in greenhouse gases, primarily carbon dioxide, are expected to lead to a warming of the troposphere and a cooling of the stratosphere. We examine the cooling of the stratosphere and compare the contributions greenhouse gases and ozone change for the decades between 1980 and 2000. We use 150 years of simulation done with our coupled chemistry/climate model (GEOS 4 GCM with GSFC CTM chemistry) to calculate temperatures and constituents fiom,1950 through 2100. The contributions of greenhouse gases and ozone to temperature change are separated by a time-series analysis using a linear trend term throughout the period to represent the effects of greenhouse gases and an equivalent effective stratospheric chlorine (EESC) term to represent the effects of ozone change. The temperature changes over the 150 years of the simulation are dominated by the changes in greenhouse gases. Over the relatively short period (approx. 20 years) of ozone decline between 1980 and 2000 changes in ozone are competitive with changes in greenhouse gases. The changes in temperature induced by the ozone change are comparable to, but smaller than, those of greenhouse gases in the upper stratosphere (1-3 hPa) at mid latitudes. The ozone term dominates the temperature change near both poles with a negative temperature change below about 3-5 hPa and a positive change above. At mid latitudes in the upper stratosphere and mesosphere (above about 1 hPa) and in the middle stratosphere (3 to 70 ma), the greenhouse has term dominates. From about 70 hPa down to the tropopause at mid latitudes, cooling due to ozone changes is the largest influence on temperature. Over the 150 years of the simulation, the change in greenhouse gases is the most important contributor to temperature change. Ozone caused a perturbation that is expected to reverse over the coming decades. We show a model simulation of the expected temperature change over the next two decades (2006-2026). The simulation shows a crossover between lower atmospheric heating and upper atmospheric cooling that is located at about 90 hPa in the tropics and 30-40 hPa in the polar regions. This results from the combination of continuing increases in greehouse gases and recovery from ozone depletion.

  15. Investigation of Instabilities and Heat Transfer Phenomena in Supercritical Fuels at High Heat Flux and Temperatures

    NASA Technical Reports Server (NTRS)

    Linne, Diane L.; Meyer, Michael L.; Braun, Donald C.; Keller, Dennis J.

    2000-01-01

    A series of heated tube experiments was performed to investigate fluid instabilities that occur during heating of supercritical fluids. In these tests, JP-7 flowed vertically through small diameter tubes at supercritical pressures. Test section heated length, diameter, mass flow rate, inlet temperature, and heat flux were varied in an effort to determine the range of conditions that trigger the instabilities. Heat flux was varied up to 4 BTU/sq in./s, and test section wall temperatures reached as high as 1950 F. A statistical model was generated to explain the trends and effects of the control variables. The model included no direct linear effect of heat flux on the occurrence of the instabilities. All terms involving inlet temperature were negative, and all terms involving mass flow rate were positive. Multiple tests at conditions that produced instabilities provided inconsistent results. These inconsistencies limit the use of the model as a predictive tool. Physical variables that had been previously postulated to control the onset of the instabilities, such as film temperature, velocity, buoyancy, and wall-to-bulk temperature ratio, were evaluated here. Film temperatures at or near critical occurred during both stable and unstable tests. All tests at the highest velocity were stable, but there was no functional relationship found between the instabilities and velocity, or a combination of velocity and temperature ratio. Finally, all of the unstable tests had significant buoyancy at the inlet of the test section, but many stable tests also had significant buoyancy forces.

  16. Latitudinal dependence of variations in stratospheric NO2 content

    NASA Astrophysics Data System (ADS)

    Gruzdev, A. N.

    2008-06-01

    Diurnal and annual variations in the NO2 total content (TC), the effect of its decrease owing to the products of the eruption of Mt. Pinatubo, its variations during an 11-year cycle of solar activity, and its linear trends are analyzed on the basis of data obtained from the ground-based spectrometric measurements of the NO2 TC in stratospheric vertical columns over the stations of the Network for the Detection of Atmospheric Composition Change. Latitudinal dependence of the indicated variations and trends is revealed. The annual estimates of the linear trends of the NO2 TC are found to be mostly positive for the middle and low latitudes of the Southern Hemisphere and negative for the middle and low latitudes of the Northern Hemisphere. The maximum values of the positive and negative trends amount to ˜10% per ten years. In the high and polar latitudes of both hemispheres, the annual trend estimates are statistically insignificant. Seasonal estimates of the trends may differ from their annual estimates. The trends and solar-activity effect in the NO2 TC, which were estimated by using the two-dimensional model SOCRATES, as well as the analytical estimates of a zonal mean trend of the NO2 TC, on the whole, significantly differ from the estimates obtained from the measurements.

  17. Climate variability and increase in intensity and magnitude of dengue incidence in Singapore.

    PubMed

    Hii, Yien Ling; Rocklöv, Joacim; Ng, Nawi; Tang, Choon Siang; Pang, Fung Yin; Sauerborn, Rainer

    2009-11-11

    Dengue is currently a major public health burden in Asia Pacific Region. This study aims to establish an association between dengue incidence, mean temperature and precipitation, and further discuss how weather predictors influence the increase in intensity and magnitude of dengue in Singapore during the period 2000-2007. Weekly dengue incidence data, daily mean temperature and precipitation and the midyear population data in Singapore during 2000-2007 were retrieved and analysed. We employed a time series Poisson regression model including time factors such as time trends, lagged terms of weather predictors, considered autocorrelation, and accounted for changes in population size by offsetting. The weekly mean temperature and cumulative precipitation were statistically significant related to the increases of dengue incidence in Singapore. Our findings showed that dengue incidence increased linearly at time lag of 5-16 and 5-20 weeks succeeding elevated temperature and precipitation, respectively. However, negative association occurred at lag week 17-20 with low weekly mean temperature as well as lag week 1-4 and 17-20 with low cumulative precipitation. As Singapore experienced higher weekly mean temperature and cumulative precipitation in the years 2004-2007, our results signified hazardous impacts of climate factors on the increase in intensity and magnitude of dengue cases. The ongoing global climate change might potentially increase the burden of dengue fever infection in near future.

  18. Trends in rainfall and temperature extremes in Morocco

    NASA Astrophysics Data System (ADS)

    Khomsi, K.; Mahe, G.; Tramblay, Y.; Sinan, M.; Snoussi, M.

    2015-02-01

    In Morocco, socioeconomic fields are vulnerable to weather extreme events. This work aims to analyze the frequency and the trends of temperature and rainfall extreme events in two contrasted Moroccan regions (the Tensift in the semi-arid South, and the Bouregreg in the sub-humid North), during the second half of the 20th century. This study considers long time series of daily extreme temperatures and rainfall, recorded in the stations of Marrakech and Safi for the Tensift region, and Kasba-Tadla and Rabat-Sale for the Bouregreg region, data from four other stations (Tanger, Fes, Agadir and Ouarzazate) from outside the regions were added. Extremes are defined by using as thresholds the 1st, 5th, 90th, 95th, and 99th percentiles. Results show upward trends in maximum and minimum temperatures of both regions and no generalized trends in rainfall amounts. Changes in cold events are larger than those for warm events, and the number of very cold events decrease significantly in the whole studied area. The southern region is the most affected with the changes of the temperature regime. Most of the trends found in rainfall heavy events are positive with weak magnitudes even though no statistically significant generalized trends could be identified during both seasons.

  19. Detection time for global and regional sea level trends and accelerations

    NASA Astrophysics Data System (ADS)

    Jordà, G.

    2014-10-01

    Many studies analyze trends on sea level data with the underlying purpose of finding indications of a long-term change that could be interpreted as the signature of anthropogenic climate change. The identification of a long-term trend is a signal-to-noise problem where the natural variability (the "noise") can mask the long-term trend (the "signal"). The signal-to-noise ratio depends on the magnitude of the long-term trend, on the magnitude of the natural variability, and on the length of the record, as the climate noise is larger when averaged over short time scales and becomes smaller over longer averaging periods. In this paper, we evaluate the time required to detect centennial sea level linear trends and accelerations at global and regional scales. Using model results and tide gauge observations, we find that the averaged detection time for a centennial linear trend is 87.9, 76.0, 59.3, 40.3, and 25.2 years for trends of 0.5, 1.0, 2.0, 5.0, and 10.0 mm/yr, respectively. However, in regions with large decadal variations like the Gulf Stream or the Circumpolar current, these values can increase up to a 50%. The spatial pattern of the detection time for sea level accelerations is almost identical. The main difference is that the length of the records has to be about 40-60 years longer to detect an acceleration than to detect a linear trend leading to an equivalent change after 100 years. Finally, we have used a new sea level reconstruction, which provides a more accurate representation of interannual variability for the last century in order to estimate the detection time for global mean sea level trends and accelerations. Our results suggest that the signature of natural variability in a 30 year global mean sea level record would be less than 1 mm/yr. Therefore, at least 2.2 mm/yr of the recent sea level trend estimated by altimetry cannot be attributed to natural multidecadal variability. This article was corrected on 19 NOV 2014. See the end of the full text for details.

  20. Climatic indicators over Catalonia during the last century

    NASA Astrophysics Data System (ADS)

    Busto, M.; Prohom, M.

    2010-09-01

    The Meteorological Service of Catalonia releases a yearly bulletin whose main objective is to try to detect climate trends over Catalonia during the last decades. Climate indicators are obtained from the analysis of historical daily air temperature, sea temperature and rainfall series. Those series have been first completed, analyzed for quality control and homogenized to ensure its final reliability. Regarding homogenization, monthly air temperature series have been tested and corrected according to the methodology proposed by Caussinus and Mestre (2004). For the two longest air temperature series, the calculated correction factors have been transferred to the daily values following Vincent et al. (2002) recommendations, while no significant inhomogeneities have been detected for precipitation series. The analysis of temperature trends, for the period 1950-2010, of 17 selected climatic series spread across the territory shows a common temperature increase between +0.19 to +0.24 °C/decade. This warming trend is uniform and no specific sub-regional trends are detected. Furthermore, the seasonal approach reveals that mean maximum temperature increases at a higher rate than mean minimum temperature. The summer temperature rise is the most significant, between +0.32 and +0.44 °C/decade, while autumn is the only season showing no significant positive trend. The summer maximum temperature shows the highest increase, exceeding +0.39 °C/decade in all the 17 series. The climatic extremes analysis of the longest Catalan series (Ebre Observatory in Roquetes, Tarragona, since 1905 and Fabra Observatory in Barcelona since 1913) reveals an increase in the number of summer days, tropical nights, minimum of maximum temperature, warm days and warm nights, and a decrease in the number of frost days, cold nights, cold days and cold spell duration indicator. Concerning precipitation, the only significant trend is the reduction of snow days. These trends were calculated according to the Expert Team on Climate Change Detection and Indices (ETCCDI). The sea temperature trend in l'Estartit (NE coast of Catalonia, Costa Brava) since 1974 shows a steady increment in all the measured levels (surface, -20 m, -50 m and -80 m) of +0,33 °C/decade on average. Temperature increment is maximum at -20 m, with +0.36 °C/decade variation. Moreover, there is an increase in the sea level of +3.35 cm/decade. CAUSSINUS, H. and MESTRE, O. (2004): Detection and correction of artificial shifts in climate series. Journal of the Royal Statistical Society Series C - Applied Statistics, 53, 405-425. VINCENT, L.A., ZHANG, X., BONSAL, B.R., HOGG, W.D. (2002): Homogenization of daily temperatures over Canada. Journal of Climate, 15, 1322-1334

  1. On the Trend of the Annual Mean, Maximum, and Minimum Temperature and the Diurnal Temperature Range in the Armagh Observatory, Northern Ireland, Dataset, 1844 -2012

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2013-01-01

    Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.

  2. An analysis of surface air temperature trends and variability along the Andes

    NASA Astrophysics Data System (ADS)

    Franquist, Eric S.

    Climate change is difficult to study in mountainous regions such as the Andes since steep changes in elevation cannot always be resolved by climate models. However, it is important to examine temperature trends in this region as rises in surface air temperature are leading to the melting of tropical glaciers. Local communities rely on the glacier-fed streamflow to get their water for drinking, irrigation, and livestock. Moreover, communities also rely on the tourism of hikers who come to the region to view the glaciers. As the temperatures increase, these glaciers are no longer in equilibrium with their current climate and are receding rapidly and decreasing the streamflow. This thesis examines surface air temperature from 858 weather stations across Ecuador, Peru, and Chile in order to analyze changes in trends and variability. Three time periods were studied: 1961--1990, 1971--2000, and 1981--2010. The greatest warming occurred during the period of 1971--2000 with 92% of the stations experiencing positive trends with a mean of 0.24°C/decade. There was a clear shift toward cooler temperatures at all latitudes and below elevations of 500 m during the most recent time period studied (1981--2010). Station temperatures were more strongly correlated with the El Nino Southern Oscillation (ENSO), than the Pacific Decadal Oscillation (PDO), and the Southern Annular Mode (SAM). A principal component analysis confirmed ENSO as the main contributor of variability with the most influence in the lower latitudes. There were clear multidecadal changes in correlation strength for the PDO. The PDO contributed the most to the increases in station temperature trends during the 1961--1990 period, consistent with the PDO shift to the positive phase in the middle of this period. There were many strong positive trends at individual stations during the 1971--2000 period; however, these trends could not fully be attributed to ENSO, PDO, or SAM, indicating anthropogenic effects of greenhouse gas emissions as the most likely cause.

  3. The implications of rebasing global mean temperature timeseries for GCM based climate projections

    NASA Astrophysics Data System (ADS)

    Stainforth, David; Chapman, Sandra; Watkins, Nicholas

    2017-04-01

    Global climate and earth system models are assessed by comparison with observations through a number of metrics. The InterGovernmental Panel on Climate Change (IPCC) highlights in particular their ability to reproduce "general features of the global and annual mean surface temperature changes over the historical period" [1,2] and to simulate "a trend in global-mean surface temperature from 1951 to 2012 that agrees with the observed trend" [3]. This focus on annual mean global mean temperature (hereafter GMT) change is presented as an important element in demonstrating the relevance of these models for climate projections. Any new model or new model version whose historic simulations fail to reproduce the "general features " and 20th century trends is likely therefore to undergo further tuning. Thus this focus could have implications for model development. Here we consider a formal interpretation of "general features" and discuss the implications of this approach to model assessment and intercomparison, for the interpretation of GCM projections. Following the IPCC, we interpret a major element of "general features" as being the slow timescale response to external forcings. (Shorter timescale behaviour such as the response to volcanic eruptions are also elements of "general features" but are not considered here.) Also following the IPCC, we consider only GMT anomalies i.e. changes with respect to some period. Since the models have absolute temperatures which range over about 3K (roughly observed GMT +/- 1.5K) this means their timeseries (and the observations) are rebased. We present timeseries of the slow timescale response of the CMIP5 models rebased to late-20th century temperatures and to mid-19th century temperatures. We provide a mathematical interpretation of this approach to model assessment and discuss two consequences. First is a separation of scales which limits the degree to which sub-global behaviour can feedback on the global response. Second, is an implication of linearity in the GMT response (to the extent that the slow-timescale response of the historic simulations is consistent with observations, and given their uncertainties). For each individual model these consequences only apply over the range of absolute temperatures simulated by the model in historic simulations. Taken together, however, they imply consequences over a much wider range of GMTs. The analysis suggests that this aspect of model evaluation risks providing a model development pressure which acts against a wide exploration of physically plausible responses; in particular against an exploration of potentially globally significant nonlinear responses and feedbacks. [1] IPCC, Fifth Assessment Report, Working Group 1, Technical Summary: Stocker et al. 2013. [2] IPCC, Fifth Assessment Report, Working Group 1, Chapter 9 - "Evaluation of Climate Models": Flato et al. 2013. [3] IPCC, Fifth Assessment Report, Working Group 1, Summary for Policy Makers: IPCC, 2013.

  4. High Predictive Skill of Global Surface Temperature a Year Ahead

    NASA Astrophysics Data System (ADS)

    Folland, C. K.; Colman, A.; Kennedy, J. J.; Knight, J.; Parker, D. E.; Stott, P.; Smith, D. M.; Boucher, O.

    2011-12-01

    We discuss the high skill of real-time forecasts of global surface temperature a year ahead issued by the UK Met Office, and their scientific background. Although this is a forecasting and not a formal attribution study, we show that the main instrumental global annual surface temperature data sets since 1891 are structured consistently with a set of five physical forcing factors except during and just after the second World War. Reconstructions use a multiple application of cross validated linear regression to minimise artificial skill allowing time-varying uncertainties in the contribution of each forcing factor to global temperature to be assessed. Mean cross validated reconstructions for the data sets have total correlations in the range 0.93-0.95,interannual correlations in the range 0.72-0.75 and root mean squared errors near 0.06oC, consistent with observational uncertainties.Three transient runs of the HadCM3 coupled model for 1888-2002 demonstrate quite similar reconstruction skill from similar forcing factors defined appropriately for the model, showing that skilful use of our technique is not confined to observations. The observed reconstructions show that the Atlantic Multidecadal Oscillation (AMO) likely contributed to the re-commencement of global warming between 1976 and 2010 and to global cooling observed immediately beforehand in 1965-1976. The slowing of global warming in the last decade is likely to be largely due to a phase-delayed response to the downturn in the solar cycle since 2001-2, with no net ENSO contribution. The much reduced trend in 2001-10 is similar in size to other weak decadal temperature trends observed since global warming resumed in the 1970s. The causes of variations in decadal trends can be mostly explained by variations in the strength of the forcing factors. Eleven real-time forecasts of global mean surface temperature for the year ahead for 2000-2010, based on broadly similar methods, provide an independent test of the ideas of this study. They had the high correlation and root mean square error skill levels compared to observations of 0.74 and 0.07oC respectively. Pseudo-forecasts for the same period reconstructed from somewhat improved forcing data used for this study had the slightly better correlation of 0.80 and root mean squared error of 0.05oC. Finally we compare the statistical forecasts with dynamical hindcasts and forecasts of global surface temperature a year ahead made by the Met Office DePreSys coupled model. The statistical and dynamical forecasts of global surface temperature for 2011 will be compared with preliminary verification data.

  5. Model development for MODIS thermal band electronic cross-talk

    NASA Astrophysics Data System (ADS)

    Chang, Tiejun; Wu, Aisheng; Geng, Xu; Li, Yonghong; Brinkmann, Jake; Keller, Graziela; Xiong, Xiaoxiong (Jack)

    2016-10-01

    MODerate-resolution Imaging Spectroradiometer (MODIS) has 36 bands. Among them, 16 thermal emissive bands covering a wavelength range from 3.8 to 14.4 μm. After 16 years on-orbit operation, the electronic crosstalk of a few Terra MODIS thermal emissive bands develop substantial issues which cause biases in the EV brightness temperature measurements and surface feature contamination. The crosstalk effects on band 27 with center wavelength at 6.7 μm and band 29 at 8.5 μm increased significantly in recent years, affecting downstream products such as water vapor and cloud mask. The crosstalk issue can be observed from nearly monthly scheduled lunar measurements, from which the crosstalk coefficients can be derived. Most of MODIS thermal bands are saturated at moon surface temperatures and the development of an alternative approach is very helpful for verification. In this work, a physical model was developed to assess the crosstalk impact on calibration as well as in Earth view brightness temperature retrieval. This model was applied to Terra MODIS band 29 empirically for correction of Earth brightness temperature measurements. In the model development, the detector nonlinear response is considered. The impacts of the electronic crosstalk are assessed in two steps. The first step consists of determining the impact on calibration using the on-board blackbody (BB). Due to the detector nonlinear response and large background signal, both linear and nonlinear coefficients are affected by the crosstalk from sending bands. The crosstalk impact on calibration coefficients was calculated. The second step is to calculate the effects on the Earth view brightness temperature retrieval. The effects include those from affected calibration coefficients and the contamination of Earth view measurements. This model links the measurement bias with crosstalk coefficients, detector nonlinearity, and the ratio of Earth measurements between the sending and receiving bands. The correction of the electronic crosstalk can be implemented empirically from the processed bias at different brightness temperature. The implementation can be done through two approaches. As routine calibration assessment for thermal infrared bands, the trending over select Earth scenes is processed for all the detectors in a band and the band averaged bias is derived for certain time. In this case, the correction of an affected band can be made using the regression of the model with band averaged bias and then corrections of detector differences are applied. The second approach requires the trending for individual detectors and the bias for each detector is used for regression with the model. A test using the first approach was made for Terra MODIS band 29 with the biases derived from long-term trending of sea surface temperature and Dome-C surface temperature.

  6. Trends in asthma mortality in the 0- to 4-year and 5- to 34-year age groups in Brazil

    PubMed Central

    Graudenz, Gustavo Silveira; Carneiro, Dominique Piacenti; Vieira, Rodolfo de Paula

    2017-01-01

    ABSTRACT Objective: To provide an update on trends in asthma mortality in Brazil for two age groups: 0-4 years and 5-34 years. Methods: Data on mortality from asthma, as defined in the International Classification of Diseases, were obtained for the 1980-2014 period from the Mortality Database maintained by the Information Technology Department of the Brazilian Unified Health Care System. To analyze time trends in standardized asthma mortality rates, we conducted an ecological time-series study, using regression models for the 0- to 4-year and 5- to 34-year age groups. Results: There was a linear trend toward a decrease in asthma mortality in both age groups, whereas there was a third-order polynomial fit in the general population. Conclusions: Although asthma mortality showed a consistent, linear decrease in individuals ≤ 34 years of age, the rate of decline was greater in the 0- to 4-year age group. The 5- to 34-year group also showed a linear decline in mortality, and the rate of that decline increased after the year 2004, when treatment with inhaled corticosteroids became more widely available. The linear decrease in asthma mortality found in both age groups contrasts with the nonlinear trend observed in the general population of Brazil. The introduction of inhaled corticosteroid use through public policies to control asthma coincided with a significant decrease in asthma mortality rates in both subsets of individuals over 5 years of age. The causes of this decline in asthma-related mortality in younger age groups continue to constitute a matter of debate. PMID:28380185

  7. Consumption of added sugars is decreasing in the United States.

    PubMed

    Welsh, Jean A; Sharma, Andrea J; Grellinger, Lisa; Vos, Miriam B

    2011-09-01

    The consumption of added sugars (caloric sweeteners) has been linked to obesity, diabetes, and heart disease. Little is known about recent consumption trends in the United States or how intakes compare with current guidelines. We examined trends in intakes of added sugars in the United States over the past decade. A cross-sectional study of US residents ≥2 y of age (n = 42,316) was conducted by using dietary data from NHANES 1999-2008 (five 2-y cycles) and data for added-sugar contents from the MyPyramid Equivalents Database. Mean intakes of added sugars (grams and percentage of total energy intake) were weighted to obtain national estimates over time across age, sex, and race-ethnic groups. Linear trends were tested by using Wald's F tests. Between 1999-2000 and 2007-2008, the absolute intake of added sugars decreased from a mean (95% CI) of 100.1 g/d (92.8, 107.3 g/d) to 76.7 g/d (71.6, 81.9 g/d); two-thirds of this decrease, from 37.4 g/d (32.6, 42.1 g/d) to 22.8 g/d (18.4, 27.3 g/d), resulted from decreased soda consumption (P-linear trend <0.001 for both). Energy drinks were the only source of added sugars to increase over the study period (P-linear trend = 0.003), although the peak consumption reached only 0.15 g/d (0.08, 0.22 g/d). The percentage of total energy from added sugars also decreased from 18.1% (16.9%, 19.3%) to 14.6% (13.7%, 15.5%) (P-linear trend <0.001). Although the consumption of added sugars in the United States decreased between 1999-2000 and 2007-2008, primarily because of a reduction in soda consumption, mean intakes continue to exceed recommended limits.

  8. Consumption of added sugars is decreasing in the United States1234

    PubMed Central

    Sharma, Andrea J; Grellinger, Lisa; Vos, Miriam B

    2011-01-01

    Background: The consumption of added sugars (caloric sweeteners) has been linked to obesity, diabetes, and heart disease. Little is known about recent consumption trends in the United States or how intakes compare with current guidelines. Objective: We examined trends in intakes of added sugars in the United States over the past decade. Design: A cross-sectional study of US residents ≥2 y of age (n = 42,316) was conducted by using dietary data from NHANES 1999–2008 (five 2-y cycles) and data for added-sugar contents from the MyPyramid Equivalents Database. Mean intakes of added sugars (grams and percentage of total energy intake) were weighted to obtain national estimates over time across age, sex, and race-ethnic groups. Linear trends were tested by using Wald's F tests. Results: Between 1999–2000 and 2007–2008, the absolute intake of added sugars decreased from a mean (95% CI) of 100.1 g/d (92.8, 107.3 g/d) to 76.7 g/d (71.6, 81.9 g/d); two-thirds of this decrease, from 37.4 g/d (32.6, 42.1 g/d) to 22.8 g/d (18.4, 27.3 g/d), resulted from decreased soda consumption (P-linear trend <0.001 for both). Energy drinks were the only source of added sugars to increase over the study period (P-linear trend = 0.003), although the peak consumption reached only 0.15 g/d (0.08, 0.22 g/d). The percentage of total energy from added sugars also decreased from 18.1% (16.9%, 19.3%) to 14.6% (13.7%, 15.5%) (P-linear trend <0.001). Conclusion: Although the consumption of added sugars in the United States decreased between 1999–2000 and 2007–2008, primarily because of a reduction in soda consumption, mean intakes continue to exceed recommended limits. PMID:21753067

  9. Investigation of correlation of the variations in land subsidence (detected by continuous GPS measurements) and methodological data in the surrounding areas of Lake Urmia

    NASA Astrophysics Data System (ADS)

    Moghtased-Azar, K.; Mirzaei, A.; Nankali, H. R.; Tavakoli, F.

    2012-11-01

    Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT) was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180-218 days band (~6-7 months) from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena.

  10. Rotational dynamics of imidazolium-based ionic liquids: do the nature of the anion and the length of the alkyl chain influence the dynamics?

    PubMed

    Prabhu, Sugosh R; Dutt, G B

    2014-11-20

    The rotational dynamics of 1-alkyl-3-methylimidazolium-based ionic liquids has been investigated by monitoring their inherent fluorescence with the intent to unravel the characteristics of the emitting species. For this purpose, temperature-dependent fluorescence anisotropies of 1-alkyl-3-methylimidazolium (alkyl = ethyl and hexyl) ionic liquids with anions such as tris(pentafluoroethyl)trifluorophosphate ([FAP]), bis(trifluoromethylsulfonyl)imide ([Tf2N]), tetrafluoroborate ([BF4]), and hexafluorophosphate ([PF6]) have been measured. It has been observed that the reorientation times (τr) of the ionic liquids with an ethyl chain scale linearly with viscosity and were found to be independent of the nature of the anion. The experimentally measured τr values are a factor of 3 longer than the ones calculated for 1-ethyl-3-methylimidazolium cation using the Stokes-Einstein-Debye (SED) hydrodynamic theory with stick boundary condition, which suggests that the emitting species is not the imidazolium moiety but some kind of associated species. The reorientation times of ionic liquids with a hexyl chain, in contrast, follow the trend τr([FAP]) > τr([Tf2N]) = τr([BF4]) > τr([PF6]) at a given viscosity (η) and temperature (T). The ability of the ionic liquids with longer alkyl chains to form the organized structure appears to be responsible for the observed behavior considering the fact that significant deviations from linearity have been noticed in the τr versus η/T plots for strongly associating anions [BF4] and [PF6], especially at ambient temperatures.

  11. Impact of climate variability on various Rabi crops over Northwest India

    NASA Astrophysics Data System (ADS)

    Nageswararao, M. M.; Dhekale, B. S.; Mohanty, U. C.

    2018-01-01

    The Indian agriculture with its two prominent cropping seasons [summer ( Kharif) and winter ( Rabi)] is the mainstay of the rural economy. Northwest India (NWI) is an important region for the cultivation of Rabi crops grown during the period from October to April. In the present study, state wise impact analysis is carried out to ascertain the influence of climate indices Nino3.4 region Sea Surface Temperature (SST), Southern Oscillation Index (SOI), Arctic Oscillation (AO), North Atlantic Oscillation (NAO) and local precipitation, soil moisture, minimum ( T min), maximum ( T max) and mean ( T mean) temperatures on different Rabi crops (wheat, gram, rapeseed-mustard, oilseeds, and total Rabi food grains) over NWI during the years 1966-2011. To study the impact of climate variability on different Rabi crops, firstly, the influence of technology on the productivity of these crops has been removed by using linear function, as linear trend has noticed in all the time series. Correlation analysis provides an indication of the influence of local precipitation, soil moisture, T min, T max and T mean and some of its potential predictors (Nino3.4 region SST, SOI, AO, and NAO) on the productivity of different Rabi crops. Overall impact analysis indicates that the productivity of different Rabi crops in most of the places of NWI is most likely influenced by variability in local temperatures. Moreover, Nino3.4 region SST (SOI) positively (negatively) affects the productivity of gram, rapeseed-mustard, and total Rabi oilseeds in most of the states. The results of this study are useful in determining the strategies for increasing sustainable production through better agronomic practices.

  12. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Deser, Clara; Guo, Ruixia; Lehner, Flavio

    2017-08-01

    The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.

  13. Observed Trends in West Coast Atmospheric River Temperatures

    NASA Astrophysics Data System (ADS)

    Gonzales, K. R.; Swain, D. L.; Barnes, E. A.; Diffenbaugh, N. S.

    2017-12-01

    Understanding the changing characteristics of atmospheric rivers (ARs) in a warming climate is critical in light of their importance in generating precipitation and creating the potential for flood and geophysical hazards. Numerous changes to the characteristics of ARs under the influence of a changing climate have been documented or hypothesized; one simple hypothesis is that AR precipitation will occur at increasingly warm temperatures, potentially altering the critical rain/snow balance in snowpack-dependent watersheds and causing precipitation at higher elevations to fall as rain rather than snow. Not only would warmer, primarily rain-producing ARs greatly affect snow accumulation, but they might also increase the intensity of runoff, the potential for flooding, and the occurrence of rain-on-snow events. Since the West Coast of North America relies heavily on ARs as a source of precipitation and snowpack accumulation, these regions may be profoundly affected by changes in AR temperatures and associated impacts. Using a catalog of ARs encompassing 1979-2014 and ERA-Interim reanalysis, we assess whether detectable trends exist in cool season AR temperatures over the Pacific Coast states of California, Oregon, and Washington. We define AR temperature by the mean temperature of the air mass between 1000 hPa and 750 hPa, and compare AR temperature trends to background temperature trends over the same period. We find overall AR warming over this period and particularly robust warming in March ARs coincident with an apparent poleward shift in March AR frequency. Further analysis suggests that warmer ARs have higher rates of warming than cooler ARs. AR temperature trends generally scale with background temperature trends, although some regions exhibit a near one-to-one relationship while others are largely uncorrelated. The observed warming of ARs making landfall on the West Coast may have potentially significant implications for rain vs. snow at higher elevations, the rain/snow balance, and rain-on-snow flood hazards (particularly in March).

  14. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events

    PubMed Central

    Vincenzi, Simone

    2014-01-01

    One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an ‘extinction window’ of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the ‘extinction window’, although genetic variance had a smaller role than population size in predicting contemporary risk of extinction. PMID:24920116

  15. Simulation of herbicide degradation in different soils by use of Pedo-transfer functions (PTF) and non-linear kinetics.

    PubMed

    von Götz, N; Richter, O

    1999-03-01

    The degradation behaviour of bentazone in 14 different soils was examined at constant temperature and moisture conditions. Two soils were examined at different temperatures. On the basis of these data the influence of soil properties and temperature on degradation was assessed and modelled. Pedo-transfer functions (PTF) in combination with a linear and a non-linear model were found suitable to describe the bentazone degradation in the laboratory as related to soil properties. The linear PTF can be combined with a rate related to the temperature to account for both soil property and temperature influence at the same time.

  16. Assessment of short- and long-term memory in trends of major climatic variables over Iran: 1966-2015

    NASA Astrophysics Data System (ADS)

    Mianabadi, Ameneh; Shirazi, Pooya; Ghahraman, Bijan; Coenders-Gerrits, A. M. J.; Alizadeh, Amin; Davary, Kamran

    2018-02-01

    In arid and semi-arid regions, water scarcity is the crucial issue for crop production. Identifying the spatial and temporal trends in aridity, especially during the crop-growing season, is important for farmers to manage their agricultural practices. This will become especially relevant when considering climate change projections. To reliably determine the actual trends, the influence of short- and long-term memory should be removed from the trend analysis. The objective of this study is to investigate the effect of short- and long-term memory on estimates of trends in two aridity indicators—the inverted De Martonne (ϕ IDM ) and Budyko (ϕ B ) indices. The analysis is done using precipitation and temperature data over Iran for a 50-year period (1966-2015) at three temporal scales: annual, wheat-growing season (October-June), and maize-growing season (May-November). For this purpose, the original and the modified Mann-Kendall tests (i.e., modified by three methods of trend free pre-whitening (TFPT), effective sample size (ESS), and long-term persistence (LTP)) are used to investigate the temporal trends in aridity indices, precipitation, and temperature by taking into account the effect of short- and long-term memory. Precipitation and temperature data were provided by the Islamic Republic of Iran Meteorological Organization (IRIMO). The temporal trend analysis showed that aridity increased from 1966 to 2015 at the annual and wheat-growing season scales, which is due to a decreasing trend in precipitation and an increasing trend in mean temperature at these two timescales. The trend in aridity indices was decreasing in the maize-growing season, since precipitation has an increasing trend for most parts of Iran in that season. The increasing trend in aridity indices is significant in Western Iran, which can be related to the significantly more negative trend in precipitation in the West. This increasing trend in aridity could result in an increasing crop water requirement and a significant reduction in the crop production and water use efficiency. Furthermore, the modified Mann-Kendall tests indicated that unlike temperature series, precipitation, ϕ IDM , and ϕ B series are not affected by short- and long-term memory. Our results can help decision makers and water resource managers to adopt appropriate policy strategies for sustainable development in the field of irrigated agriculture and water resources management.

  17. Hawaiian forest bird trends: using log-linear models to assess long-term trends is supported by model diagnostics and assumptions (reply to Freed and Cann 2013)

    USGS Publications Warehouse

    Camp, Richard J.; Pratt, Thane K.; Gorresen, P. Marcos; Woodworth, Bethany L.; Jeffrey, John J.

    2014-01-01

    Freed and Cann (2013) criticized our use of linear models to assess trends in the status of Hawaiian forest birds through time (Camp et al. 2009a, 2009b, 2010) by questioning our sampling scheme, whether we met model assumptions, and whether we ignored short-term changes in the population time series. In the present paper, we address these concerns and reiterate that our results do not support the position of Freed and Cann (2013) that the forest birds in the Hakalau Forest National Wildlife Refuge (NWR) are declining, or that the federally listed endangered birds are showing signs of imminent collapse. On the contrary, our data indicate that the 21-year long-term trends for native birds in Hakalau Forest NWR are stable to increasing, especially in areas that have received active management.

  18. Trends in Extreme Rainfall Frequency in the Contiguous United States: Attribution to Climate Change and Climate Variability Modes

    NASA Astrophysics Data System (ADS)

    Armal, S.; Devineni, N.; Khanbilvardi, R.

    2017-12-01

    This study presents a systematic analysis for identifying and attributing trends in the annual frequency of extreme rainfall events across the contiguous United States to climate change and climate variability modes. A Bayesian multilevel model is developed for 1,244 stations simultaneously to test the null hypothesis of no trend and verify two alternate hypotheses: Trend can be attributed to changes in global surface temperature anomalies, or to a combination of cyclical climate modes with varying quasi-periodicities and global surface temperature anomalies. The Bayesian multilevel model provides the opportunity to pool information across stations and reduce the parameter estimation uncertainty, hence identifying the trends better. The choice of the best alternate hypotheses is made based on Watanabe-Akaike Information Criterion, a Bayesian pointwise predictive accuracy measure. Statistically significant time trends are observed in 742 of the 1,244 stations. Trends in 409 of these stations can be attributed to changes in global surface temperature anomalies. These stations are predominantly found in the Southeast and Northeast climate regions. The trends in 274 of these stations can be attributed to the El Nino Southern Oscillations, North Atlantic Oscillation, Pacific Decadal Oscillation and Atlantic Multi-Decadal Oscillation along with changes in global surface temperature anomalies. These stations are mainly found in the Northwest, West and Southwest climate regions.

  19. Analysis of rainfall and temperature time series to detect long-term climatic trends and variability over semi-arid Botswana

    NASA Astrophysics Data System (ADS)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.; Moalafhi, D. B.

    2018-03-01

    Arid and semi-arid environments have been identified with locations prone to impacts of climate variability and change. Investigating long-term trends is one way of tracing climate change impacts. This study investigates variability through annual and seasonal meteorological time series. Possible inhomogeneities and years of intervention are analysed using four absolute homogeneity tests. Trends in the climatic variables were determined using Mann-Kendall and Sen's Slope estimator statistics. Association of El Niño Southern Oscillation (ENSO) with local climate is also investigated through multivariate analysis. Results from the study show that rainfall time series are fully homogeneous with 78.6 and 50% of the stations for maximum and minimum temperature, respectively, showing homogeneity. Trends also indicate a general decrease of 5.8, 7.4 and 18.1% in annual, summer and winter rainfall, respectively. Warming trends are observed in annual and winter temperature at 0.3 and 1.5% for maximum temperature and 1.7 and 6.5% for minimum temperature, respectively. Rainfall reported a positive correlation with Southern Oscillation Index (SOI) and at the same time negative association with Sea Surface Temperatures (SSTs). Strong relationships between SSTs and maximum temperature are observed during the El Niño and La Niña years. These study findings could facilitate planning and management of agricultural and water resources in Botswana.

  20. Evaluation of reanalysis datasets against observational soil temperature data over China

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Zhang, Jingyong

    2018-01-01

    Soil temperature is a key land surface variable, and is a potential predictor for seasonal climate anomalies and extremes. Using observational soil temperature data in China for 1981-2005, we evaluate four reanalysis datasets, the land surface reanalysis of the European Centre for Medium-Range Weather Forecasts (ERA-Interim/Land), the second modern-era retrospective analysis for research and applications (MERRA-2), the National Center for Environmental Prediction Climate Forecast System Reanalysis (NCEP-CFSR), and version 2 of the Global Land Data Assimilation System (GLDAS-2.0), with a focus on 40 cm soil layer. The results show that reanalysis data can mainly reproduce the spatial distributions of soil temperature in summer and winter, especially over the east of China, but generally underestimate their magnitudes. Owing to the influence of precipitation on soil temperature, the four datasets perform better in winter than in summer. The ERA-Interim/Land and GLDAS-2.0 produce spatial characteristics of the climatological mean that are similar to observations. The interannual variability of soil temperature is well reproduced by the ERA-Interim/Land dataset in summer and by the CFSR dataset in winter. The linear trend of soil temperature in summer is well rebuilt by reanalysis datasets. We demonstrate that soil heat fluxes in April-June and in winter are highly correlated with the soil temperature in summer and winter, respectively. Different estimations of surface energy balance components can contribute to different behaviors in reanalysis products in terms of estimating soil temperature. In addition, reanalysis datasets can mainly rebuild the northwest-southeast gradient of soil temperature memory over China.

  1. Hydro-meteorological trends in the Gidabo catchment of the Rift Valley Lakes Basin of Ethiopia

    NASA Astrophysics Data System (ADS)

    Belihu, Mamuye; Abate, Brook; Tekleab, Sirak; Bewket, Woldeamlak

    2018-04-01

    The global and regional variability and changes of climate and stream flows are likely to have significant influence on water resource availability. The magnitude and impacts of climate variability and change differs spatially and temporally. This study examines the long term hydroclimatic changes, analyses of the hydro-climate variability and detect whether there exist significant trend or not in the Gidabo catchment, rift valley lakes basin of Ethiopia. Precipitation, temperature and stream flow time series data were used in monthly, seasonal and annual time scales. The precipitation and temperature data span is between 1982 and 2014 and that of stream flow is between 1976 and 2006. To detect trends the analysis were done by using Mann Kendal (MK), Sen's graphical method and to detect change point using the Pettit test. The comparison of trend analysis between MK trend test and Sen graphical method results depict mostly similar pattern. The annual rainfall trends exhibited a significant decrease by about 12 mm per year in the upstream, which is largely driven by the significant decrease in the peak season rainfall. The Pettit test revealed that the years 1997 and 2007 were the change points. It is noted that the rise of temperature over a catchment might have decreased the availability of soil moisture which resulted in less runoff. The temperature analyses also revealed that the catchment was getting warmer; particularly in the upstream. The minimum temperature trend showed a significant increase about 0.08°c per annum. There is generally a decreasing trend in stream flow. The monthly stream flow also exhibited a decreasing trend in February, March and September. The decline in annual and seasonal rainfall and the increase in temperature lead to more evaporation and directly affecting the stream flow negatively. This trend compounded with the growth of population and increasing demand for irrigation water exacerbates the competing demand for water resources. It thus calls for prudence in devising appropriate intervention in the planning and sustainable development of the basin water resources.

  2. Trends of urban surface temperature and heat island characteristics in the Mediterranean

    NASA Astrophysics Data System (ADS)

    Benas, Nikolaos; Chrysoulakis, Nektarios; Cartalis, Constantinos

    2017-11-01

    Urban air temperature studies usually focus on the urban canopy heat island phenomenon, whereby the city center experiences higher near surface air temperatures compared to its surrounding non-urban areas. The Land Surface Temperature (LST) is used instead of urban air temperature to identify the Surface Urban Heat Island (SUHI). In this study, the nighttime LST and SUHI characteristics and trends in the seventeen largest Mediterranean cities were investigated, by analyzing satellite observations for the period 2001-2012. SUHI averages and trends were based on an innovative approach of comparing urban pixels to randomly selected non-urban pixels, which carries the potential to better standardize satellite-derived SUHI estimations. A positive trend for both LST and SUHI for the majority of the examined cities was documented. Furthermore, a 0.1 °C decade-1 increase in urban LST corresponded to an increase in SUHI by about 0.04 °C decade-1. A longitudinal differentiation was found in the urban LST trends, with higher positive values appearing in the eastern Mediterranean. Examination of urban infrastructure and development factors during the same period revealed correlations with SUHI trends, which can be used to explain differences among cities. However, the majority of the cities examined show considerably increased trends in terms of the enhancement of SUHI. These findings are considered important so as to promote sustainable urbanization, as well as to support the development of heat island adaptation and mitigation plans in the Mediterranean.

  3. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    PubMed Central

    Bothwell, Lori D.; Giardina, Christian P.; Litton, Creighton M.

    2014-01-01

    Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT) gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5) across a broad range of ecosystems. The percentage of leaf litter nitrogen (N) remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming. PMID:25493213

  4. Exciton dynamics in a site-controlled quantum dot coupled to a photonic crystal cavity

    NASA Astrophysics Data System (ADS)

    Jarlov, C.; Lyasota, A.; Ferrier, L.; Gallo, P.; Dwir, B.; Rudra, A.; Kapon, E.

    2015-11-01

    Exciton and cavity mode (CM) dynamics in site-controlled pyramidal quantum dots (QDs), integrated with linear photonic crystal membrane cavities, are investigated for a range of temperatures and photo-excitation power levels. The absence of spurious multi-excitonic effects, normally observed in similar structures based on self-assembled QDs, permits the observation of effects intrinsic to two-level systems embedded in a solid state matrix and interacting with optical cavity modes. The coupled exciton and CM dynamics follow the same trend, indicating that the CM is fed only by the exciton transition. The Purcell reduction of the QD and CM decay times is reproduced well by a theoretical model that includes exciton linewidth broadening and temperature dependent non-radiative processes, from which we extract a Purcell factor of 17 ± 5. For excitation powers above QD saturation, we show the influence of quantum wire barrier states at short delay time, and demonstrate the absence of multiexcitonic background emission.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolff-Fabris, F.; Lei, Hechang; Wosnitza, J.

    We have studied the temperature dependence of the upper critical fields μ 0 H c 2 of K x Fe 2 - y Se 2 - z S z single crystals up to 60 T. The μ 0 H c 2 for H ∥ a b and H ∥ c decrease with increasing sulfur content. The detailed analysis using Werthamer-Helfand-Hohenberg theory including the Pauli spin-paramagnetic effect shows that μ 0 H c 2 for H ∥ a b is dominated by the spin-paramagnetic effect, which diminishes with higher S content, whereas μ 0 H c 2 for H ∥ cmore » shows a linear temperature dependence with an upturn at high fields. The latter observation can be ascribed to multiband effects that become weaker for higher S content. This results in an enhanced anisotropy of μ 0 H c 2 for high S content due to the different trends of the spin-paramagnetic and multiband effect for H ∥ a b and H ∥ c , respectively.« less

  6. [Analysis on the trend of long-term change of blood pressure in hypertensive patients treated with benazepril].

    PubMed

    Lu, Jun; Li, Li-Ming; He, Ping-Ping; Cao, Wei-Hua; Zhan, Si-Yan; Hu, Yong-Hua

    2004-06-01

    To introduce the application of mixed linear model in the analysis of secular trend of blood pressure under antihypertensive treatment. A community-based postmarketing surveillance of benazepril was conducted in 1831 essential hypertensive patients (age range from 35 to 88 years) in Shanghai. Data of blood pressure was analyzed every 3 months with mixed linear model to describe the secular trend of blood pressure and changes of age-specific and gender-specific. The changing trends of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were found to fit the curvilinear models. A piecewise model was fit for pulse pressure (PP), i.e., curvilinear model in the first 9 months and linear model after 9 months of taking medication. Both blood pressure and its velocity gradually slowed down. There were significant variation for the curve parameters of intercept, slope, and acceleration. Blood pressure in patients with higher initial levels was persistently declining in the 3-year-treatment. However blood pressures of patients with relatively low initial levels remained low when dropped down to some degree. Elderly patients showed high SBP but low DBP, so as with higher PP. The velocity and sizes of blood pressure reductions increased with the initial level of blood pressure. Mixed linear model is flexible and robust when applied to the analysis of longitudinal data but with missing values and can also make the maximum use of available information.

  7. Medico-legal litigation in Obstetrics: a characterization analysis of a decade in Portugal.

    PubMed

    Domingues, Ana Patrícia Rodrigues; Belo, Adriana; Moura, Paulo; Vieira, Duarte Nuno

    2015-05-01

    It was to analyse the most critical areas in Obstetrics and to suggest measures to reduce or avoid the situations most often involved in these disputes. Obstetrics cases submitted to the Medico-legal Council since the creation of the National Institute of Legal Medicine and Forensic Sciences in 2001 until 2011 were evaluated. A comprehensive characterization, determination of absolute/relative frequencies, hypothesis of a linear trend over the years and the association between each parameter was done. The analysis has shown no significantly linear trend. The most common reasons for disputes were perinatal asphyxia (50%), traumatic injuries of the newborn (24%), maternal sequelae (19%) and issues related to prenatal diagnosis and/or obstetric ultrasound (5.4%). Perinatal asphyxia showed no significantly linear trend (p=0.58) and was usually related to perinatal deaths or permanent neurologic sequelae in newborn children. Traumatic injuries of the newborn, mostly related to instrumented deliveries, shoulder dystocia or vaginal delivery in breech presentation, has shown a significantly increased linear trend (p<0.001), especially related to instrumented deliveries. The delay/absence of cesarean section was the clinical procedure questioned in a significantly higher number of cases of perinatal asphyxia (68.7%) and of traumatic lesions of the newborn due to instrumented deliveries (20.5%). It is important to improve and correct theoretical/practical daily clinical performance in these highlighted areas, in order to reduce or even avoid situations that could end up in medico-legal litigations.

  8. Electrostatic analysis of n-doped SrTiO{sub 3} metal-insulator-semiconductor systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamerbeek, A. M., E-mail: a.m.kamerbeek@rug.nl; Banerjee, T.; Hueting, R. J. E.

    2015-12-14

    Electron doped SrTiO{sub 3}, a complex-oxide semiconductor, possesses novel electronic properties due to its strong temperature and electric-field dependent permittivity. Due to the high permittivity, metal/n-SrTiO{sub 3} systems show reasonably strong rectification even when SrTiO{sub 3} is degenerately doped. Our experiments show that the insertion of a sub nanometer layer of AlO{sub x} in between the metal and n-SrTiO{sub 3} interface leads to a dramatic reduction of the Schottky barrier height (from around 0.90 V to 0.25 V). This reduces the interface resistivity by 4 orders of magnitude. The derived electrostatic analysis of the metal-insulator-semiconductor (n-SrTiO{sub 3}) system is consistent with thismore » trend. When compared with a Si based MIS system, the change is much larger and mainly governed by the high permittivity of SrTiO{sub 3}. The non-linear permittivity of n-SrTiO{sub 3} leads to unconventional properties such as a temperature dependent surface potential non-existent for semiconductors with linear permittivity such as Si. This allows tuning of the interfacial band alignment, and consequently the Schottky barrier height, in a much more drastic way than in conventional semiconductors.« less

  9. Assessing weather effects on dengue disease in Malaysia.

    PubMed

    Cheong, Yoon Ling; Burkart, Katrin; Leitão, Pedro J; Lakes, Tobia

    2013-11-26

    The number of dengue cases has been increasing on a global level in recent years, and particularly so in Malaysia, yet little is known about the effects of weather for identifying the short-term risk of dengue for the population. The aim of this paper is to estimate the weather effects on dengue disease accounting for non-linear temporal effects in Selangor, Kuala Lumpur and Putrajaya, Malaysia, from 2008 to 2010. We selected the weather parameters with a Poisson generalized additive model, and then assessed the effects of minimum temperature, bi-weekly accumulated rainfall and wind speed on dengue cases using a distributed non-linear lag model while adjusting for trend, day-of-week and week of the year. We found that the relative risk of dengue cases is positively associated with increased minimum temperature at a cumulative percentage change of 11.92% (95% CI: 4.41-32.19), from 25.4 °C to 26.5 °C, with the highest effect delayed by 51 days. Increasing bi-weekly accumulated rainfall had a positively strong effect on dengue cases at a cumulative percentage change of 21.45% (95% CI: 8.96, 51.37), from 215 mm to 302 mm, with the highest effect delayed by 26-28 days. The wind speed is negatively associated with dengue cases. The estimated lagged effects can be adapted in the dengue early warning system to assist in vector control and prevention plan.

  10. Comparison of Recent Modeled and Observed Trends in Total Column Ozone

    NASA Technical Reports Server (NTRS)

    Andersen, S. B.; Weatherhead, E. C.; Stevermer, A.; Austin, J.; Bruehl, C.; Fleming, E. L.; deGrandpre, J.; Grewe, V.; Isaksen, I.; Pitari, G.; hide

    2006-01-01

    We present a comparison of trends in total column ozone from 10 two-dimensional and 4 three-dimensional models and solar backscatter ultraviolet-2 (SBUV/2) satellite observations from the period 1979-2003. Trends for the past (1979-2000), the recent 7 years (1996-2003), and the future (2000-2050) are compared. We have analyzed the data using both simple linear trends and linear trends derived with a hockey stick method including a turnaround point in 1996. If the last 7 years, 1996-2003, are analyzed in isolation, the SBUV/2 observations show no increase in ozone, and most of the models predict continued depletion, although at a lesser rate. In sharp contrast to this, the recent data show positive trends for the Northern and the Southern Hemispheres if the hockey stick method with a turnaround point in 1996 is employed for the models and observations. The analysis shows that the observed positive trends in both hemispheres in the recent 7-year period are much larger than what is predicted by the models. The trends derived with the hockey stick method are very dependent on the values just before the turnaround point. The analysis of the recent data therefore depends greatly on these years being representative of the overall trend. Most models underestimate the past trends at middle and high latitudes. This is particularly pronounced in the Northern Hemisphere. Quantitatively, there is much disagreement among the models concerning future trends. However, the models agree that future trends are expected to be positive and less than half the magnitude of the past downward trends. Examination of the model projections shows that there is virtually no correlation between the past and future trends from the individual models.

  11. Comparison of recent modeled and observed trends in total column ozone

    NASA Astrophysics Data System (ADS)

    Andersen, S. B.; Weatherhead, E. C.; Stevermer, A.; Austin, J.; Brühl, C.; Fleming, E. L.; de Grandpré, J.; Grewe, V.; Isaksen, I.; Pitari, G.; Portmann, R. W.; Rognerud, B.; Rosenfield, J. E.; Smyshlyaev, S.; Nagashima, T.; Velders, G. J. M.; Weisenstein, D. K.; Xia, J.

    2006-01-01

    We present a comparison of trends in total column ozone from 10 two-dimensional and 4 three-dimensional models and solar backscatter ultraviolet-2 (SBUV/2) satellite observations from the period 1979-2003. Trends for the past (1979-2000), the recent 7 years (1996-2003), and the future (2000-2050) are compared. We have analyzed the data using both simple linear trends and linear trends derived with a hockey stick method including a turnaround point in 1996. If the last 7 years, 1996-2003, are analyzed in isolation, the SBUV/2 observations show no increase in ozone, and most of the models predict continued depletion, although at a lesser rate. In sharp contrast to this, the recent data show positive trends for the Northern and the Southern Hemispheres if the hockey stick method with a turnaround point in 1996 is employed for the models and observations. The analysis shows that the observed positive trends in both hemispheres in the recent 7-year period are much larger than what is predicted by the models. The trends derived with the hockey stick method are very dependent on the values just before the turnaround point. The analysis of the recent data therefore depends greatly on these years being representative of the overall trend. Most models underestimate the past trends at middle and high latitudes. This is particularly pronounced in the Northern Hemisphere. Quantitatively, there is much disagreement among the models concerning future trends. However, the models agree that future trends are expected to be positive and less than half the magnitude of the past downward trends. Examination of the model projections shows that there is virtually no correlation between the past and future trends from the individual models.

  12. Changing stream temperatures in a changing world: evaluating spatio-temporal patterns and trends across the eastern US

    NASA Astrophysics Data System (ADS)

    Kelleher, C.; Archfield, S. A.

    2016-12-01

    Stream temperatures drive biogeochemical processes and influence ecosystem health and extent, with patterns of stream temperature arising from complex interactions between climate, land cover, and in-stream diversions and dams. While each of these individual drivers may have well-understood implications for changing stream temperatures, considering the concomitant impacts of these drivers along the stream network is much more difficult. This is true especially for the eastern United States, where downstream temperature integrates many different upstream impacts. To begin to decipher the influence of these different drivers on changing stream temperatures and how these impacts may manifest through time, we examined trends for 66 sites with continuous stream temperature measurements across the eastern United States. Stream temperature records were summarized as daily mean, maximum, and mimimum values, and sites consisting of 15 or more years of data were selected for analysis. While annual stream temperatures at 53 locations were warming, a few sites on larger rivers (n = 13) have been cooling. To explore the timing of these changes as well as their implications for aquatic species, we calculated trends for seasonal extremes (average of the five warmest and coolest daily stream temperatures) during spring, summer, and fall. Interestingly, while some streams displayed strong warming trends in peak summer temperatures (n = 43), many streams also displayed cooling trends (n = 23). We also found that peak stream temperatures were warming faster in fall than in summer for many locations (n = 36). Results of this analysis show that warming (and cooling) happens at different times in different places, as a function of climate and anthropogenic impacts. Finally, we explore potential drivers of these different patterns, to determine the relative impacts of climate, land cover, and in-stream water diversions on stream temperature change. Given that the number of regulated stream miles is only increasing, improving our understanding of linkages between landscape drivers and stream temperature variation may have important outcomes for river management in a changing world.

  13. "Sunlight is said to be the best of disinfectants"*: the efficacy of sun exposure for reducing fungal contamination in used clothes.

    PubMed

    Amichai, Boaz; Grunwald, Marcelo H; Davidovici, Batya; Shemer, Avner

    2014-07-01

    Tinea pedis is a common chronic skin disease; the role of contaminated clothes as a possible source of infection or re-infection has not been fully understood. The ability of ultraviolet light to inactivate microorganisms has long been known and UV is used in many applications. To evaluate the effectivity of sun exposure in reducing fungal contamination in used clothes. Fifty-two contaminated socks proven by fungal culture from patients with tinea pedis were studied. The samples were divided into two groups: group A underwent sun exposure for 3 consecutive days and group B remained indoors. At the end of each day fungal cultures of the samples were performed. Overall, there was an increase in the percentage of negative cultures with time. The change was significantly higher in socks that were left in the sun (chi-square for linear trend = 37.449, P < 0.0001). Sun exposure of contaminated clothes was effective in lowering the contamination rate. This finding enhances the current trends of energy saving and environmental protection, which recommend low temperature laundry.

  14. Thyroid hormones and coronary artery calcification in euthyroid men and women.

    PubMed

    Zhang, Yiyi; Kim, Bo-Kyoung; Chang, Yoosoo; Ryu, Seungho; Cho, Juhee; Lee, Won-Young; Rhee, Eun-Jung; Kwon, Min-Jung; Rampal, Sanjay; Zhao, Di; Pastor-Barriuso, Roberto; Lima, Joao A; Shin, Hocheol; Guallar, Eliseo

    2014-09-01

    Overt and subclinical hypothyroidism are risk factors for atherosclerosis. It is unclear whether thyroid hormone levels within the normal range are also associated with atherosclerosis measured by coronary artery calcium (CAC). We conducted a cross-sectional study of 41 403 apparently healthy young and middle-aged men and women with normal thyroid hormone levels. Free thyroxin, free triiodothyronine, and thyroid-stimulating hormone levels were measured by electrochemiluminescent immunoassay. CAC score was measured by multidetector computed tomography. The multivariable adjusted CAC ratios comparing the highest versus the lowest quartile of thyroid hormones were 0.74 (95% confidence interval, 0.60-0.91; P for trend <0.001) for free thyroxin, 0.81 (0.66-1.00; P for trend=0.05) for free triiodothyronine, and 0.78 (0.64-0.95; P for trend=0.01) for thyroid-stimulating hormone. Similarly, the odds ratios for detectable CAC (CAC >0) comparing the highest versus the lowest quartiles of thyroid hormones were 0.87 (0.79-0.96; P for linear trend <0.001) for free thyroxin, 0.90 (0.82-0.99; P for linear trend=0.02) for free triiodothyronine, and 0.91 (0.83-1.00; P for linear trend=0.03) for thyroid-stimulating hormone. In a large cohort of apparently healthy young and middle-aged euthyroid men and women, low-normal free thyroxin and thyroid-stimulating hormone were associated with a higher prevalence of subclinical coronary artery disease and with a greater degree of coronary calcification. © 2014 American Heart Association, Inc.

  15. Opposing seasonal trends for polycyclic aromatic hydrocarbons and PM10: Health risk and sources in southwest Mexico City

    NASA Astrophysics Data System (ADS)

    Amador-Muñoz, Omar; Bazán-Torija, S.; Villa-Ferreira, S. A.; Villalobos-Pietrini, Rafael; Bravo-Cabrera, José Luis; Munive-Colín, Zenaida; Hernández-Mena, Leonel; Saldarriaga-Noreña, H.; Murillo-Tovar, M. A.

    2013-03-01

    This study reports the measurement of polycyclic aromatic hydrocarbons (PAHs) in airborne particles ≤ 10 μm (PM10) during four years. Seasonal variation was observed for PM10 and PAH in southwest Mexico City, with major mass concentrations during the dry season (November-April). A non linear decreasing trend of PM10 was observed during this period, while a linear increase (in the four years) was obtained for benzo[a]pyrene (88 pg m- 3), phenanthrene (29 pg m- 3), fluoranthene (88 pg m- 3), and benzo[ghi]perylene (438 pg m- 3). Coronene also showed an increasing trend but it was nonlinear. This suggests that air control strategies implemented by the government contributed to maintaining PM10 under the 24 h maximum limit and resulted in a decreasing trend during this period. However, these strategies did not result in controlling some organic constituents with mutagenic and/or carcinogenic properties as it is the case of benzo[a]pyrene. The annual average of this PAH exceeded the UK recommendation. It was estimated a median (10th-90th) lifetime health risk of 7.6 (3.4-17.2) additional cases of cancer per 10 million people in this zone exists and the health risk of PAH is almost three times greater in dry seasons than it is in rainy seasons. Specific humidity, temperature and wind speed acted as cleaners for PM10 and PAH from the atmosphere. PAH diagnostic ratios and correlation and principal component analyses suggest incomplete combustion from gasoline and diesel engines as the main contributor to PAH found in southwest Mexico City, where factor 1 grouped all PAH emitted from gasoline engines during first three years. During last year, factor 1 only grouped PAH markers of diesel engines. This suggests a change of emission amounts between gasoline and diesel combustion sources or a contribution of other source(s) which changed the PAH profiles. During four years retene was always separated from factors which grouped the rest of PAH, due to its wood combustion origin.

  16. Riparian Bird Population Monitoring in Utah, 1992-2001

    Treesearch

    Russell E. Norvell; Frank P. Howe; Jimmie R. Parrish

    2005-01-01

    We report statewide linear and non-linear trends in density from 1992 to 2001 for six common bird species in the riparian areas of Utah. The six species examined here represent over 24 percent of all observations in the period. Four of the six species showed linear declines (Black-headed Grosbeak [Pheucticus melanocephalus], American Goldfinch [

  17. Sea-Level Trend Uncertainty With Pacific Climatic Variability and Temporally-Correlated Noise

    NASA Astrophysics Data System (ADS)

    Royston, Sam; Watson, Christopher S.; Legrésy, Benoît; King, Matt A.; Church, John A.; Bos, Machiel S.

    2018-03-01

    Recent studies have identified climatic drivers of the east-west see-saw of Pacific Ocean satellite altimetry era sea level trends and a number of sea-level trend and acceleration assessments attempt to account for this. We investigate the effect of Pacific climate variability, together with temporally-correlated noise, on linear trend error estimates and determine new time-of-emergence (ToE) estimates across the Indian and Pacific Oceans. Sea-level trend studies often advocate the use of auto-regressive (AR) noise models to adequately assess formal uncertainties, yet sea level often exhibits colored but non-AR(1) noise. Standard error estimates are over- or under-estimated by an AR(1) model for much of the Indo-Pacific sea level. Allowing for PDO and ENSO variability in the trend estimate only reduces standard errors across the tropics and we find noise characteristics are largely unaffected. Of importance for trend and acceleration detection studies, formal error estimates remain on average up to 1.6 times those from an AR(1) model for long-duration tide gauge data. There is an even chance that the observed trend from the satellite altimetry era exceeds the noise in patches of the tropical Pacific and Indian Oceans and the south-west and north-east Pacific gyres. By including climate indices in the trend analysis, the time it takes for the observed linear sea-level trend to emerge from the noise reduces by up to 2 decades.

  18. Spatial and seasonal patterns in climate change, temperatures, and precipitation across the United States.

    PubMed

    Portmann, Robert W; Solomon, Susan; Hegerl, Gabriele C

    2009-05-05

    Changes in climate during the 20th century differ from region to region across the United States. We provide strong evidence that spatial variations in US temperature trends are linked to the hydrologic cycle, and we also present unique information on the seasonal and latitudinal structure of the linkage. We show that there is a statistically significant inverse relationship between trends in daily temperature and average daily precipitation across regions. This linkage is most pronounced in the southern United States (30-40 degrees N) during the May-June time period and, to a lesser extent, in the northern United States (40-50 degrees N) during the July-August time period. It is strongest in trends in maximum temperatures (T(max)) and 90th percentile exceedance trends (90PET), and less pronounced in the T(max) 10PET and the corresponding T(min) statistics, and it is robust to changes in analysis period. Although previous studies suggest that areas of increased precipitation may have reduced trends in temperature compared with drier regions, a change in sign from positive to negative trends suggests some additional cause. We show that trends in precipitation may account for some, but not likely all, of the cause point to evidence that shows that dynamical patterns (El Niño/Southern Oscillation, North Atlantic Oscillation, etc.) cannot account for the observed effects during May-June. We speculate that changing aerosols, perhaps related to vegetation changes, and increased strength of the aerosol direct and indirect effect may play a role in the observed linkages between these indices of temperature change and the hydrologic cycle.

  19. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan; Geng, Steven

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpowers Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 C. Increasing the temperature capability of the linear alternator could expand the mission space of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to uses. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 C is currently underway.

  20. Performance Testing of a High Temperature Linear Alternator for Stirling Convertors

    NASA Technical Reports Server (NTRS)

    Metscher, Jonathan F.; Geng, Steven M.

    2016-01-01

    The NASA Glenn Research Center has conducted performance testing of a high temperature linear alternator (HTLA) in support of Stirling power convertor development for potential future Radioisotope Power Systems (RPS). The high temperature linear alternator is a modified version of that used in Sunpower's Advanced Stirling Convertor (ASC), and is capable of operation at temperatures up to 200 deg. Increasing the temperature capability of the linear alternator could expand the mission set of future Stirling RPS designs. High temperature Neodymium-Iron-Boron (Nd-Fe-B) magnets were selected for the HTLA application, and were fully characterized and tested prior to use. Higher temperature epoxy for alternator assembly was also selected and tested for thermal stability and strength. A characterization test was performed on the HTLA to measure its performance at various amplitudes, loads, and temperatures. HTLA endurance testing at 200 deg is currently underway.

  1. Spatial distribution of temperature trends and extremes over Maharashtra and Karnataka States of India

    NASA Astrophysics Data System (ADS)

    Dhorde, Amit G.; Korade, Mahendra S.; Dhorde, Anargha A.

    2017-10-01

    Earth surface temperatures are changing worldwide together with the changes in the extreme temperatures. The present study investigates trends and variations of monthly maximum and minimum temperatures and their effects on seasonal fluctuations at different climatological stations of Maharashtra and Karnataka states of India. Trend analysis was performed on annual and seasonal mean maximum temperature (TMAX) and mean minimum temperature (TMIN) for the period 1969 to 2006. During the last 38 years, an increase in annual TMAX and TMIN has occurred. At most of the locations, the increase in TMAX was faster than the TMIN, resulting in an increase in diurnal temperature range. At the same time, annual mean temperature (TM) showed a significant increase over the study area. Percentiles were used to identify extreme temperature indices. An increase in occurrence of warm extremes was observed at southern locations, and cold extremes increased over the central and northeastern part of the study area. Occurrences of cold wave conditions have decreased rapidly compared to heat wave conditions.

  2. Understanding Southern Ocean SST Trends in Historical Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Kostov, Yavor; Ferreira, David; Marshall, John; Armour, Kyle

    2017-04-01

    Historical simulations with CMIP5 global climate models do not reproduce the observed 1979-2014 Southern Ocean (SO) cooling, and most ensemble members predict gradual warming around Antarctica. In order to understand this discrepancy and the mechanisms behind the SO cooling, we analyze output from 19 CMIP5 models. For each ensemble member we estimate the characteristic responses of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these step-response functions and linear convolution theory, we reconstruct the original CMIP5 simulations of 1979-2014 SO SST trends. We recover the CMIP5 ensemble mean trend, capture the intermodel spread, and reproduce very well the behavior of individual models. We thus suggest that GHG forcing and the SAM are major drivers of the simulated 1979-2014 SO SST trends. In consistence with the seasonal signature of the Antarctic ozone hole, our results imply that the summer (DJF) and fall (MAM) SAM exert a particularly important effect on the SO SST. In some CMIP5 models the SO SST response to SAM partially counteracts the warming due to GHG forcing, while in other ensemble members the SAM-induced SO SST trends complement the warming effect of GHG forcing. The compensation between GHG and SAM-induced SO SST anomalies is model-dependent and is determined by multiple factors. Firstly, CMIP5 models have different characteristic SST step response functions to SAM. Kostov et al. (2016) relate these differences to biases in the models' climatological SO temperature gradients. Secondly, many CMIP5 historical simulations underestimate the observed positive trends in the DJF and MAM seasonal SAM indices. We show that this affects the models' ability to reproduce the observed SO cooling. Last but not least, CMIP5 models differ in their SO SST step response functions to GHG forcing. Understanding the diverse behavior of CMIP5 models helps shed light on the physical processes that drive SST trends in the real SO.

  3. Decadal Variability and Temperature Trends in the Middle Atmosphere From Historical Rocketsonde Data

    NASA Technical Reports Server (NTRS)

    Dunkerton, Timothy J.

    2000-01-01

    Observational studies were performed using historical rocketsonde data to investigate long-term temperature trends, solar-cycle variations, and interactions between tropical and extratropical latitudes in the middle atmosphere. Evidence from tropical, subtropical, and midlatitude North American rocketsonde stations indicated a consistent downward trend over 25 years, with a solar cycle component superposed. The trend is about -1.4 to -2.0 K per decade and the amplitude of the decadal oscillation is about 1.1 K. Prior to trend derivation it was necessary for us to correct temperatures for aerodynamic heating in the early years. The empirically derived correction profile agrees well with a theoretical profile of Krumins and Lyons. A study was also performed of the correlation between equatorial winds and north polar temperatures in winter, showing that the entire stratospheric wind profile near the equator -- including the quasi-biennial oscillation (QBO) and stratopause semiannual oscillation (SAO) -- is important to the extratropical flow, not merely the QBO component as previously thought. A strong correlation was discovered between winter polar temperatures and equatorial winds in the upper stratosphere during the preceding September, suggesting a role for the second cycle of the SAO.

  4. Thermal-Interaction Matrix For Resistive Test Structure

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Dhiman, Jaipal K.; Zamani, Nasser

    1990-01-01

    Linear mathematical model predicts increase in temperature in each segment of 15-segment resistive structure used to test electromigration. Assumption of linearity based on fact: equations that govern flow of heat are linear and coefficients in equations (heat conductivities and capacities) depend only weakly on temperature and considered constant over limited range of temperature.

  5. Kernel reconstruction methods for Doppler broadening - Temperature interpolation by linear combination of reference cross sections at optimally chosen temperatures

    NASA Astrophysics Data System (ADS)

    Ducru, Pablo; Josey, Colin; Dibert, Karia; Sobes, Vladimir; Forget, Benoit; Smith, Kord

    2017-04-01

    This article establishes a new family of methods to perform temperature interpolation of nuclear interactions cross sections, reaction rates, or cross sections times the energy. One of these quantities at temperature T is approximated as a linear combination of quantities at reference temperatures (Tj). The problem is formalized in a cross section independent fashion by considering the kernels of the different operators that convert cross section related quantities from a temperature T0 to a higher temperature T - namely the Doppler broadening operation. Doppler broadening interpolation of nuclear cross sections is thus here performed by reconstructing the kernel of the operation at a given temperature T by means of linear combination of kernels at reference temperatures (Tj). The choice of the L2 metric yields optimal linear interpolation coefficients in the form of the solutions of a linear algebraic system inversion. The optimization of the choice of reference temperatures (Tj) is then undertaken so as to best reconstruct, in the L∞ sense, the kernels over a given temperature range [Tmin ,Tmax ]. The performance of these kernel reconstruction methods is then assessed in light of previous temperature interpolation methods by testing them upon isotope 238U. Temperature-optimized free Doppler kernel reconstruction significantly outperforms all previous interpolation-based methods, achieving 0.1% relative error on temperature interpolation of 238U total cross section over the temperature range [ 300 K , 3000 K ] with only 9 reference temperatures.

  6. Trends in seasonal warm anomalies across the contiguous United States: Contributions from natural climate variability

    Treesearch

    Lejiang Yu; Shiyuan Zhong; Warren E. Heilman; Xindi Bian

    2018-01-01

    Many studies have shown the importance of anthropogenic greenhouse gas emissions in contributing to observed upward trends in the occurrences of temperature extremes over the U.S. However, few studies have investigated the contributions of internal variability in the climate system to these observed trends. Here we use daily maximum temperature time series from the...

  7. Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985-2012

    NASA Astrophysics Data System (ADS)

    Heron, Scott F.; Maynard, Jeffrey A.; van Hooidonk, Ruben; Eakin, C. Mark

    2016-12-01

    Coral reefs across the world’s oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world’s reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985-2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the ‘winter’ reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985-91 and 2006-12 - a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress.

  8. Warming Trends and Bleaching Stress of the World’s Coral Reefs 1985–2012

    PubMed Central

    Heron, Scott F.; Maynard, Jeffrey A.; van Hooidonk, Ruben; Eakin, C. Mark

    2016-01-01

    Coral reefs across the world’s oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world’s reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985–2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the ‘winter’ reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985–91 and 2006–12 – a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress. PMID:27922080

  9. Warming Trends and Bleaching Stress of the World's Coral Reefs 1985-2012.

    PubMed

    Heron, Scott F; Maynard, Jeffrey A; van Hooidonk, Ruben; Eakin, C Mark

    2016-12-06

    Coral reefs across the world's oceans are in the midst of the longest bleaching event on record (from 2014 to at least 2016). As many of the world's reefs are remote, there is limited information on how past thermal conditions have influenced reef composition and current stress responses. Using satellite temperature data for 1985-2012, the analysis we present is the first to quantify, for global reef locations, spatial variations in warming trends, thermal stress events and temperature variability at reef-scale (~4 km). Among over 60,000 reef pixels globally, 97% show positive SST trends during the study period with 60% warming significantly. Annual trends exceeded summertime trends at most locations. This indicates that the period of summer-like temperatures has become longer through the record, with a corresponding shortening of the 'winter' reprieve from warm temperatures. The frequency of bleaching-level thermal stress increased three-fold between 1985-91 and 2006-12 - a trend climate model projections suggest will continue. The thermal history data products developed enable needed studies relating thermal history to bleaching resistance and community composition. Such analyses can help identify reefs more resilient to thermal stress.

  10. The effect of extreme cold temperatures on the risk of death in the two major Portuguese cities

    NASA Astrophysics Data System (ADS)

    Antunes, Liliana; Silva, Susana Pereira; Marques, Jorge; Nunes, Baltazar; Antunes, Sílvia

    2017-01-01

    It is well known that meteorological conditions influence the comfort and human health. Southern European countries, including Portugal, show the highest mortality rates during winter, but the effects of extreme cold temperatures in Portugal have never been estimated. The objective of this study was the estimation of the effect of extreme cold temperatures on the risk of death in Lisbon and Oporto, aiming the production of scientific evidence for the development of a real-time health warning system. Poisson regression models combined with distributed lag non-linear models were applied to assess the exposure-response relation and lag patterns of the association between minimum temperature and all-causes mortality and between minimum temperature and circulatory and respiratory system diseases mortality from 1992 to 2012, stratified by age, for the period from November to March. The analysis was adjusted for over dispersion and population size, for the confounding effect of influenza epidemics and controlled for long-term trend, seasonality and day of the week. Results showed that the effect of cold temperatures in mortality was not immediate, presenting a 1-2-day delay, reaching maximum increased risk of death after 6-7 days and lasting up to 20-28 days. The overall effect was generally higher and more persistent in Lisbon than in Oporto, particularly for circulatory and respiratory mortality and for the elderly. Exposure to cold temperatures is an important public health problem for a relevant part of the Portuguese population, in particular in Lisbon.

  11. Analysis of Global Urban Temperature Trends and Urbanization Impacts

    NASA Astrophysics Data System (ADS)

    Lee, K. I.; Ryu, J.; Jeon, S. W.

    2018-04-01

    Due to urbanization, urban areas are shrinking green spaces and increasing concrete, asphalt pavement. So urban climates are different from non-urban areas. In addition, long-term macroscopic studies of urban climate change are becoming more important as global urbanization affects global warming. To do this, it is necessary to analyze the effect of urbanization on the temporal change in urban temperature with the same temperature data and standards for urban areas around the world. In this study, time series analysis was performed with the maximum, minimum, mean and standard values of surface temperature during the from 1980 to 2010 and analyzed the effect of urbanization through linear regression analysis with variables (population, night light, NDVI, urban area). As a result, the minimum value of the surface temperature of the urban area reflects an increase by a rate of 0.28K decade-1 over the past 31 years, the maximum value reflects an increase by a rate of 0.372K decade-1, the mean value reflects an increase by a rate of 0.208 decade-1, and the standard deviation reflects a decrease by rate of 0.023K decade-1. And the change of surface temperature in urban areas is affected by urbanization related to land cover such as decrease of greenery and increase of pavement area, but socioeconomic variables are less influential than NDVI in this study. This study are expected to provide an approach to future research and policy-planning for urban temperature change and urbanization impacts.

  12. Historical trend in river ice thickness and coherence in hydroclimatological trends in Maine

    USGS Publications Warehouse

    Huntington, T.G.; Hodgkins, G.A.; Dudley, R.W.

    2003-01-01

    We analyzed long-term records of ice thickness on the Piscataquis River in central Maine and air temperature in Maine to determine whether there were temporal trends that were associated with climate warming. The trend in ice thickness was compared and correlated with regional time series of winter air temperature, heating degree days (HDD), date of river ice-out, seasonal center-of-volume date (SCVD) (date on which half of the stream runoff volume during the period 1 Jan. to 31 May has occurred), water temperature, and lake ice-out date. All of these variables except lake ice-out date showed significant temporal trends during the 20th century. Average ice thickness around 28 February decreased by about 23 cm from 1912 to 2001. Over the period 1900 to 1999, winter air temperature increased by 1.7??C and HDD decreased by about 7.5%. Final ice-out date on the Piscataquis River occurred earlier (advanced), by 0.21 days yr-1 over the period 1931 to 2002, and the SCVD advanced by 0.11 days yr-1 over the period 1903 to 2001. Ice thickness was significantly correlated (P-value < 0.01) with winter air temperature, HDD, river ice-out, and SCVD. These systematic temporal trends in multiple hydrologic indicator variables indicate a coherent response to climate forcing.

  13. Space-time patterns of trends in stratospheric constituents derived from UARS measurements

    NASA Astrophysics Data System (ADS)

    Randel, William J.; Wu, Fei; Russell, James M.; Waters, Joe

    1999-02-01

    The spatial and temporal behavior of low-frequency changes (trends) in stratospheric constituents measured by instruments on the Upper Atmosphere Research Satellite (UARS) during 1991-98 is investigated. The data include CH4, H2O, HF, HCl, O3, and NO2 from the Halogen Occultation Experiment (HALOE), and O3, ClO, and HNO3 from the Microwave Limb Sounder (MLS). Time series of global anomalies are analyzed by linear regression and empirical orthogonal function analysis. Each of the constituents show significant linear trends over at least some region of the stratosphere, and the spatial patterns exhibit coupling between the different species. Several of the constituents (namely CH4, H2O, HF, HCl, O3, and NO2) exhibit a temporal change in trend rates, with strong changes prior to 1996 and weaker (or reversed) trends thereafter. Positive trends are observed in upper stratospheric ClO, with a percentage rate during 1993-97 consistent with stratospheric HCl increases and with tropospheric chlorine emission rates. Significant negative trends in ozone in the tropical middle stratosphere are found in both HALOE and MLS data during 1993-97, together with positive trends in the tropics near 25 km. These trends are very different from the decadal-scale ozone trends observed since 1979, and this demonstrates the variability of trends calculated over short time periods. Positive trends in NO2 are found in the tropical middle stratosphere, and spatial coincidence to the observed ozone decreases suggests the ozone is responding to the NO2 increase. Significant negative trends in HNO3 are found in the lower stratosphere of both hemispheres. These coupled signatures offer a fingerprint of chemical evolution in the stratosphere for the UARS time frame.

  14. Trends in Global Vegetation Activity and Climatic Drivers Indicate a Decoupled Response to Climate Change.

    PubMed

    Schut, Antonius G T; Ivits, Eva; Conijn, Jacob G; Ten Brink, Ben; Fensholt, Rasmus

    2015-01-01

    Detailed understanding of a possible decoupling between climatic drivers of plant productivity and the response of ecosystems vegetation is required. We compared trends in six NDVI metrics (1982-2010) derived from the GIMMS3g dataset with modelled biomass productivity and assessed uncertainty in trend estimates. Annual total biomass weight (TBW) was calculated with the LINPAC model. Trends were determined using a simple linear regression, a Thiel-Sen medium slope and a piecewise regression (PWR) with two segments. Values of NDVI metrics were related to Net Primary Production (MODIS-NPP) and TBW per biome and land-use type. The simple linear and Thiel-Sen trends did not differ much whereas PWR increased the fraction of explained variation, depending on the NDVI metric considered. A positive trend in TBW indicating more favorable climatic conditions was found for 24% of pixels on land, and for 5% a negative trend. A decoupled trend, indicating positive TBW trends and monotonic negative or segmented and negative NDVI trends, was observed for 17-36% of all productive areas depending on the NDVI metric used. For only 1-2% of all pixels in productive areas, a diverging and greening trend was found despite a strong negative trend in TBW. The choice of NDVI metric used strongly affected outcomes on regional scales and differences in the fraction of explained variation in MODIS-NPP between biomes were large, and a combination of NDVI metrics is recommended for global studies. We have found an increasing difference between trends in climatic drivers and observed NDVI for large parts of the globe. Our findings suggest that future scenarios must consider impacts of constraints on plant growth such as extremes in weather and nutrient availability to predict changes in NPP and CO2 sequestration capacity.

  15. Intelligent trend analysis for a solar thermal energy collector field

    NASA Astrophysics Data System (ADS)

    Juuso, E. K.

    2018-03-01

    Solar thermal power plants collect available solar energy in a usable form at a temperature range which is adapted to the irradiation levels and seasonal variations. Solar energy can be collected only when the irradiation is high enough to produce the required temperatures. During the operation, a trade-off of the temperature and the flow is needed to achieve a good level for the collected power. The scaling approach brings temporal analysis to all measurements and features: trend indices are calculated by comparing the averages in the long and short time windows, a weighted sum of the trend index and its derivative detects the trend episodes and severity of the trend is estimated by including also the variable level in the sum. The trend index, trend episodes and especially, the deviation index reveal early evolving changes in the operating conditions, including cloudiness and load disturbances. The solution is highly compact: all variables, features and indices are transformed to the range [-2, 2] and represented in natural language which is important in integrating data-driven solutions with domain expertise. The special situations detected during the test campaigns are explained well.

  16. Spatial and temporal trends of reference crop evapotranspiration and its influential variables in Yangtze River Delta, eastern China

    NASA Astrophysics Data System (ADS)

    Xu, Yu; Xu, Youpeng; Wang, Yuefeng; Wu, Lei; Li, Guang; Song, Song

    2017-11-01

    Reference crop evapotranspiration (ETo) is one of the most important links in hydrologic circulation and greatly affects regional agricultural production and water resource management. Its variation has drawn more and more attention in the context of global warming. We used the Penman-Monteith method of the Food and Agriculture Organization, based on meteorological factors such as air temperature, sunshine duration, wind speed, and relative humidity to calculate the ETo over 46 meteorological stations located in the Yangtze River Delta, eastern China, from 1957 to 2014. The spatial distributions and temporal trends in ETo were analyzed based on the modified Mann-Kendall trend test and linear regression method, while ArcGIS software was employed to produce the distribution maps. The multiple stepwise regression method was applied in the analysis of the meteorological variable time series to identify the causes of any observed trends in ETo. The results indicated that annual ETo showed an obvious spatial pattern of higher values in the north than in the south. Annual increasing trends were found at 34 meteorological stations (73.91 % of the total), which were mainly located in the southeast. Among them, 12 (26.09 % of the total) stations showed significant trends. We saw a dominance of increasing trends in the monthly ETo except for January, February, and August. The high value zone of monthly ETo appeared in the northwest from February to June, mid-south area from July to August, and southeast coastal area from September to January. The research period was divided into two stages—stage I (1957-1989) and stage II (1990-2014)—to investigate the long-term temporal ETo variation. In stage I, almost 85 % of the total stations experienced decreasing trends, while more than half of the meteorological stations showed significant increasing trends in annual ETo during stage II except in February and September. Relative humidity, wind speed, and sunshine duration were identified as the most dominant meteorological variables influencing annual ETo changes. The results are expected to assist water resource managers and policy makers in making better planning decisions in the research region.

  17. Extreme temperatures and out-of-hospital coronary deaths in six large Chinese cities.

    PubMed

    Chen, Renjie; Li, Tiantian; Cai, Jing; Yan, Meilin; Zhao, Zhuohui; Kan, Haidong

    2014-12-01

    The seasonal trend of out-of-hospital coronary death (OHCD) and sudden cardiac death has been observed, but whether extreme temperature serves as a risk factor is rarely investigated. We therefore aimed to evaluate the impact of extreme temperatures on OHCDs in China. We obtained death records of 126,925 OHCDs from six large Chinese cities (Harbin, Beijing, Tianjin, Nanjing, Shanghai and Guangzhou) during the period 2009-2011. The short-term associations between extreme temperature and OHCDs were analysed with time-series methods in each city, using generalised additive Poisson regression models. We specified distributed lag non-linear models in studying the delayed effects of extreme temperature. We then applied Bayesian hierarchical models to combine the city-specific effect estimates. The associations between extreme temperature and OHCDs were almost U-shaped or J-shaped. The pooled relative risks (RRs) of extreme cold temperatures over the lags 0-14 days comparing the 1st and 25th centile temperatures were 1.49 (95% posterior interval (PI) 1.26-1.76); the pooled RRs of extreme hot temperatures comparing the 99th and 75th centile temperatures were 1.53 (95% PI 1.27-1.84) for OHCDs. The RRs of extreme temperature on OHCD were higher if the patients with coronary heart disease were old, male and less educated. This multicity epidemiological study suggested that both extreme cold and hot temperatures posed significant risks on OHCDs, and might have important public health implications for the prevention of OHCD or sudden cardiac death. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  18. Reassessing the role of temperature in precipitation oxygen isotopes across the eastern and central United States through weekly precipitation-day data

    NASA Astrophysics Data System (ADS)

    Akers, Pete D.; Welker, Jeffrey M.; Brook, George A.

    2017-09-01

    Air temperature is correlated with precipitation oxygen isotope (δ18Oprcp) variability for much of the eastern and central United States, but the nature of this δ18Oprcp-temperature relationship is largely based on data coarsely aggregated at a monthly resolution. We constructed a database of 6177 weeks of isotope and precipitation-day air temperature data from 25 sites to determine how more precise data change our understanding of this classic relationship. Because the δ18Oprcp-temperature relationship is not perfectly linear, trends in the regression residuals suggest the influence of additional environmental factors such as moisture recycling and extratropical cyclone interactions. Additionally, the temporal relationships between δ18Oprcp and temperature observed in the weekly data at individual sites can explain broader spatial patterns observed across the study region. For 20 of 25 sites, the δ18Oprcp-temperature relationship slope is higher for colder precipitation than for warmer precipitation. Accordingly, northern and western sites with relatively more cold precipitation events have steeper overall relationships with higher slope values than southeastern sites that have more warm precipitation events. Although the magnitude of δ18Oprcp variability increases to the north and west, the fraction of δ18Oprcp variability explained by temperature increases due to wider annual temperature ranges, producing stronger relationships in these regions. When our δ18Oprcp-temperature data are grouped by month, we observe significant variations in the relationship from month to month. This argues against a principal causative role for temperature and suggests the existence of an alternative environmental control on δ18Oprcp values that simply covaries seasonally with temperature.

  19. How much have California winters warmed over the last century?

    NASA Astrophysics Data System (ADS)

    Wang, K. J.; Williams, A. P.; Lettenmaier, D. P.

    2017-09-01

    Extraordinarily warm 2013-2014 and 2014-2015 winter temperatures in California accompanied by drought conditions contributed to low snow accumulations and stressed water resources, giving rise to the question: how much has California's climate warmed over the last century? We examine long-term trends in maximum (Tmax) and minimum (Tmin) daily temperatures in winter estimated from five gridded data sets. Resulting trends show some consistent features, such as higher trends in Tmin than Tmax; however, substantial differences exist in the trend magnitudes and spatial patterns due mostly to the nature of spatial interpolation employed in the different data sets. Averaged across California over 1920-2015, Tmax trends vary from -0.30 to 1.2°C/century, while Tmin trends range from 1.2 to 1.9°C/century. The differences in temperature strongly impact modeled changes in snow water equivalent over the last century (from -5.0 to -7.6 km3/century).

  20. [Effects of climate warming and drying on millet yield in Gansu Province and related countermeasures].

    PubMed

    Cao, Ling; Wang, Qiang; Deng, Zhen-yong; Guo, Xiao-qin; Ma, Xing-xiang; Ning, Hui-fang

    2010-11-01

    Based on the data of air temperature, precipitation, and millet yield from Ganzhou, Anding, and Xifeng, the representative stations in Hexi moderate arid oasis irrigation area, moderate sub-arid dry area in middle Gansu, and moderate sub-humid dry area in eastern Gansu, respectively, this paper calculated the regional active accumulated temperature of > or = 0 degrees C, > or =5 degrees C, > or =10 degrees C, > or =15 degrees C, and > or =20 degrees C in millet growth period, and the average temperature and precipitation in millet key growth stages. The millet climatic yield was isolated by orthogonal polynomial, and the change characteristics of climate and millet climatic yield as well as the effects of climate change on millet yield were analyzed by statistical methods of linear tendency, cumulative anomaly, and Mann-Kendall. The results showed that warming and drying were the main regional features in the modern climatic change of Gansu. The regional temperature had a significant upward trend since the early 1990s, while the precipitation was significantly reduced from the late 1980s. There were significant correlations between millet yield and climatic factors. The millet yield in dry areas increased with the increasing temperature and precipitation in millet key growth stages, and that in Hexi Corridor area increased with increasing temperature. Warming and drying affected millet yield prominently. The weather fluctuation index of regional millet yield in Xifeng, Anding, and Ganzhou accounted for 73%, 72%, and 54% of real output coefficient variation, respectively, and the percentages increased significantly after warming. Warming was conducive to the increase of millet production, and the annual increment of millet climatic yield in Xifeng, Anding, and Ganzhou after warming was 30.6, 43.1, and 121.1 kg x hm(-2), respectively. Aiming at the warming and drying trend in Gansu Province in the future, the millet planting area in the Province should be further expanded, and the millet planting structure should be adjusted. At the same time, according to the different regional and yearly climatic types, different varieties should be selected, and various planting measures should be taken.

Top