NASA Astrophysics Data System (ADS)
Hammerand, Daniel C.
Over the past several decades, the use of composite materials has grown considerably. Typically, fiber-reinforced polymer-matrix composites are modeled as being linear elastic. However, it is well-known that polymers are viscoelastic in nature. Furthermore, the analysis of complex structures requires a numerical approach such as the finite element method. In the present work, a triangular flat shell element for linear elastic composites is extended to model linear viscoelastic composites. Although polymers are usually modeled as being incompressible, here they are modeled as compressible. Furthermore, the macroscopic constitutive properties for fiber-reinforced composites are assumed to be known and are not determined using the matrix and fiber properties along with the fiber volume fraction. Hygrothermo-rheologically simple materials are considered for which a change in the hygrothermal environment results in a horizontal shifting of the relaxation moduli curves on a log time scale, in addition to the usual hygrothermal loads. Both the temperature and moisture are taken to be prescribed. Hence, the heat energy generated by the viscoelastic deformations is not considered. When the deformations and rotations are small under an applied load history, the usual engineering stress and strain measures can be used and the time history of a viscoelastic deformation process is determined using the original geometry of the structure. If, however, sufficiently large loads are applied, the deflections and rotations will be large leading to changes in the structural stiffness characteristics and possibly the internal loads carried throughout the structure. Hence, in such a case, nonlinear effects must be taken into account and the appropriate stress and strain measures must be used. Although a geometrically-nonlinear finite element code could always be used to compute geometrically-linear deformation processes, it is inefficient to use such a code for small deformations, due to
NASA Astrophysics Data System (ADS)
Honorio, Tulio
2017-02-01
Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.
HAMMERAND,DANIEL C.; KAPANIA,RAKESH K.
2000-05-01
A triangular flat shell element for large deformation analysis of linear viscoelastic laminated composites is presented. Hygrothermorheologically simple materials are considered for which a change in the hygrothermal environment results in a horizontal shifting of the relaxation moduli curves on a log time scale, in addition to the usual hygrothermal loads. Recurrence relations are developed and implemented for the evaluation of the viscoelastic memory loads. The nonlinear deformation process is computed using an incremental/iterative approach with the Newton-Raphson Method used to find the incremental displacements in each step. The presented numerical examples consider the large deformation and stability of linear viscoelastic structures under deformation-independent mechanical loads, deformation-dependent pressure loads, and thermal loads. Unlike elastic structures that have a single critical load value associated with a given snapping of buckling instability phenomenon, viscoelastic structures will usually exhibit a particular instability for a range of applied loads over a range of critical times. Both creep buckling and snap-through examples are presented here. In some cases, viscoelastic results are also obtained using the quasielastic method in which load-history effects are ignored, and time-varying viscoelastic properties are simply used in a series of elastic problems. The presented numerical examples demonstrate the capability and accuracy of the formulation.
Physical aging effects on the compressive linear viscoelastic creep of IM7/K3B composite
NASA Technical Reports Server (NTRS)
Veazie, David R.; Gates, Thomas S.
1995-01-01
An experimental study was undertaken to establish the viscoelastic behavior of 1M7/K3B composite in compression at elevated temperature. Creep compliance, strain recovery and the effects of physical aging on the time dependent response was measured for uniaxial loading at several isothermal conditions below the glass transition temperature (T(g)). The IM7/K3B composite is a graphite reinforced thermoplastic polyimide with a T(g) of approximately 240 C. In a composite, the two matrix dominated compliance terms associated with time dependent behavior occur in the transverse and shear directions. Linear viscoelasticity was used to characterize the creep/recovery behavior and superposition techniques were used to establish the physical aging related material constants. Creep strain was converted to compliance and measured as a function of test time and aging time. Results included creep compliance master curves, physical aging shift factors and shift rates. The description of the unique experimental techniques required for compressive testing is also given.
Non linear viscoelasticity applied for the study of durability of polymer matrix composites
NASA Technical Reports Server (NTRS)
Cardon, A.; Brinson, H. F.; Hiel, C. C.
1989-01-01
A methodology is described for the durability analysis of polymer matrix composites, based on nonlinear viscoelasticity theory. The durability analysis is performed on the basis of a certain number of tests carried out on limited and, if possible, short time scale by the use of accelerating factors. The method was applied to thermomatrix composites under uniaxial and biaxial loadings, showing satisfactory agreement between the life-time predictions and the published data on real-time behavior.
Hickey, Robert J.; Gillard, Timothy M.; Lodge, Timothy P.; Bates, Frank S.
2015-08-28
Rheological evidence of composition fluctuations in disordered diblock copolymers near the order disorder transition (ODT) has been documented in the literature over the past three decades, characterized by a failure of time–temperature superposition (tTS) to reduce linear dynamic mechanical spectroscopy (DMS) data in the terminal viscoelastic regime to a temperature-independent form. However, for some materials, most notably poly(styrene-b-isoprene) (PS–PI), no signature of these rheological features has been found. We present small-angle X-ray scattering (SAXS) results on symmetric poly(cyclohexylethylene-b-ethylene) (PCHE–PE) diblock copolymers that confirm the presence of fluctuations in the disordered state and DMS measurements that also show no sign of the features ascribed to composition fluctuations. Assessment of DMS results published on five different diblock copolymer systems leads us to conclude that the effects of composition fluctuations can be masked by highly asymmetric block dynamics, thereby resolving a long-standing disagreement in the literature and reinforcing the importance of mechanical contrast in understanding the dynamics of ordered and disordered block polymers.
Linear viscoelasticity of complex coacervates.
Liu, Yalin; Winter, H Henning; Perry, Sarah L
2017-01-01
Rheology is a powerful method for material characterization that can provide detailed information about the self-assembly, structure, and intermolecular interactions present in a material. Here, we review the use of linear viscoelastic measurements for the rheological characterization of complex coacervate-based materials. Complex coacervation is an electrostatically and entropically-driven associative liquid-liquid phase separation phenomenon that can result in the formation of bulk liquid phases, or the self-assembly of hierarchical, microphase separated materials. We discuss the need to link thermodynamic studies of coacervation phase behavior with characterization of material dynamics, and provide parallel examples of how parameters such as charge stoichiometry, ionic strength, and polymer chain length impact self-assembly and material dynamics. We conclude by highlighting key areas of need in the field, and specifically call for the development of a mechanistic understanding of how molecular-level interactions in complex coacervate-based materials affect both self-assembly and material dynamics. Copyright © 2016 Elsevier B.V. All rights reserved.
Approximate Controllability Results for Linear Viscoelastic Flows
NASA Astrophysics Data System (ADS)
Chowdhury, Shirshendu; Mitra, Debanjana; Ramaswamy, Mythily; Renardy, Michael
2017-09-01
We consider linear viscoelastic flow of a multimode Maxwell or Jeffreys fluid in a bounded domain with smooth boundary, with a distributed control in the momentum equation. We establish results on approximate and exact controllability.
On Wave Propagation in Linear Viscoelasticity.
1984-07-01
solutions to equations which model motions of viscoelastic media has received a lot of attention. In this paper , we study linear initial value problems...this paper , we study linear wave propagation in a one-dimensional viscoelastic medium. That is, we study the equation (1.1) utt(x,t) - bux,(x,t) + ft m...singularities. Throughout this paper , the operations of differentiation, convolution, and Laplace transformation should be interpreted in the sense
A Thermodynamic Theory Of Solid Viscoelasticity. Part 1: Linear Viscoelasticity.
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Leonov, Arkady I.
2002-01-01
The present series of three consecutive papers develops a general theory for linear and finite solid viscoelasticity. Because the most important object for nonlinear studies are rubber-like materials, the general approach is specified in a form convenient for solving problems important for many industries that involve rubber-like materials. General linear and nonlinear theories for non-isothermal deformations of viscoelastic solids are developed based on the quasi-linear approach of non-equilibrium thermodynamics. In this, the first paper of the series, we analyze non-isothermal linear viscoelasticity, which is applicable in a range of small strains not only to all synthetic polymers and bio-polymers but also to some non-polymeric materials. Although the linear case seems to be well developed, there still are some reasons to implement a thermodynamic derivation of constitutive equations for solid-like, non-isothermal, linear viscoelasticity. The most important is the thermodynamic modeling of thermo-rheological complexity , i.e. different temperature dependences of relaxation parameters in various parts of relaxation spectrum. A special structure of interaction matrices is established for different physical mechanisms contributed to the normal relaxation modes. This structure seems to be in accord with observations, and creates a simple mathematical framework for both continuum and molecular theories of the thermo-rheological complex relaxation phenomena. Finally, a unified approach is briefly discussed that, in principle, allows combining both the long time (discrete) and short time (continuous) descriptions of relaxation behaviors for polymers in the rubbery and glassy regions.
Static viscoelasticity of biomass polyethylene composites
NASA Astrophysics Data System (ADS)
Yang, Keyan; Cai, Hongzhen; Yi, Weiming; Zhang, Qingfa; Zhao, Kunpeng
The biomass polyethylene composites filled with poplar wood flour, rice husk, cotton stalk or corn stalk were prepared by extrusion molding. The static viscoelasticity of composites was investigated by the dynamic thermal mechanical analyzer (DMA). Through the stress-strain scanning, it is found that the linear viscoelasticity interval of composites gradually decreases as the temperature rises, and the critical stress and strain values are 0.8 MPa and 0.03% respectively. The experiment shows that as the temperature rises, the creep compliance of biomass polyethylene composites is increased; under the constant temperature, the creep compliance decreases with the increase of content of biomass and calcium carbonate. The biomass and calcium carbonate used to prepare composites as filler can improve damping vibration attenuation and reduce stress deformation of composites. The stress relaxation modulus of composites is reduced and the relaxation rate increases at the higher temperature. The biomass and calcium carbonate used to prepare composites as filler not only can reduce costs, but also can increase stress relaxation modulus and improve the size thermostability of composites. The corn stalk is a good kind of biomass raw material for composites since it can improve the creep resistance property and the stress relaxation resistance property of composites more effectively than other three kinds of biomass (poplar wood flour, rice husk and cotton stalk).
Incorporating linear viscoelasticity into acoustic scattering theory
NASA Astrophysics Data System (ADS)
Hipp, Alexander K.; Adjadj, Laurent P.; Storti, Giuseppe; Morbidelli, Massimo
2002-04-01
The scattering theory of Epstein and Carhart [J. Acoust. Soc. Am. 25, 553-565 (1953)] and Allegra and Hawley [J. Acoust. Soc. Am. 51, 1545-1564 (1972)] is a well-established approach for the prediction of the acoustic attenuation and sound speed in suspensions and emulsions. The original theory assumes that each phase is either an elastic solid or a Newtonian liquid; incorporation of other rheological behavior generally requires rederivation of the model equations. An exception is the case of linear viscoelasticity: using a suitable stress-strain relation, the original model equations also hold for this case. In this work, it is shown that G*=G'-iG'', where G' and G'' are the storage and loss moduli of a viscoelastic material, is analogous to the shear modulus G (elastic solids) and -iωɛ (Newtonian liquids). Viscoelasticity can thus be introduced simply by using G* in place of G.
Linear and quasi-linear viscoelastic characterization of ankle ligaments.
Funk, J R; Hall, G W; Crandall, J R; Pilkey, W D
2000-02-01
The objective of this study was to produce linear and nonlinear viscoelastic models of eight major ligaments in the human ankle/foot complex for use in computer models of the lower extremity. The ligaments included in this study were the anterior talofibular (ATaF), anterior tibiofibular (ATiF), anterior tibiotalar (ATT), calcaneofibular (CF), posterior talofibular (PTaF), posterior tibiofibular (PTiF), posterior tibiotalar (PTT), and tibiocalcaneal (TiC) ligaments. Step relaxation and ramp tests were performed. Back-extrapolation was used to correct for vibration effects and the error introduced by the finite rise time in step relaxation tests. Ligament behavior was found to be nonlinear viscoelastic, but could be adequately modeled up to 15 percent strain using Fung's quasilinear viscoelastic (QLV) model. Failure properties and the effects of preconditioning were also examined.
Viscoelastic properties of 3-D braided PEEK/graphite composites
Hu, Jian-Ni.
1992-01-01
In this study, 3-D braided PEEK/AS4 graphite composites were performed and processed to investigate the viscoelastic behavior of this new system. These manufactured composites were characterized to determine their fiber volume fractions and matrix crystallinity indices using matrix digestion and wide angle x-ray diffraction. After physical characterization, the mechanical response of these composites were evaluated at various temperatures. Experimental results from tensile measurements were compared to an established fabric geometry model (FGM). This model predicts tensile modules based upon fiber and matrix properties, fiber volume fraction, and braiding angle. Model predictions and experimental results are given here, and are in good agreement with each other. In order to study the time-dependent mechanical properties of these 3-D braided composites, their stress relaxation, creep and dynamic mechanical properties were evaluated. These results were then compared to a new composite model. This model combined a Quasi/linear Viscoelastic Model (QVM) for the viscoelastic behavior of PEEK with the FGM approach to predict the viscoelastic behavior of 3-D PEEK composites. The experimental stress relaxation and creep results are in good agreement with the QVM-FGM analysis. Thus, the QVM-FGM approach was used to accurately correlate these viscoelastic properties of 3-D braided PEEK/graphite composites. Through wider use and testing, this QVM/FGM approach may be used to increase our understanding and perhaps facilitate the design of composite structures.
Quasi-linear viscoelastic properties of normal articular cartilage.
Woo, S L; Simon, B R; Kuei, S C; Akeson, W H
1980-05-01
A combined experimental and analytical approach was used to determine the history-dependent viscoelastic properties of normal articular cartilage in tension. Specimens along the surface split line direction, taken from the middle zone of articular cartilage were subjected to relaxation and cyclic tests. A quasi-linear viscoelastic theory proposed by Fung was used in combination with the experimental results to determine the nonlinear viscoelastic properties and the elastic stress-strain relationship of normal articular cartilage.
Determination of linear viscoelastic behavior of abdominal aortic aneurysm thrombus.
van Dam, Evelyne A; Dams, Susanne D; Peters, Gerrit W M; Rutten, Marcel C M; Schurink, Geert Willem H; Buth, Jaap; van de Vosse, Frans N
2006-01-01
The objective of this study is to determine whether the linear viscoelastic properties of an abdominal aortic aneurysm thrombus can be determined by rheometry. Although large strains occur in the in vivo situation, in this work only linear behavior is studied to show the applicability of the described methods. A thrombus exists of several layers that vary in composition, structure and mechanical properties. Two types of thrombus are described. In discrete transition thrombi the layers are not or at most weakly attached to each other and the structure of each layer is different. Continuous transition thrombi consist of strongly attached layers whose structure changes gradually throughout the thickness of the thrombus. Shear experiments are performed on samples from both types of thrombus on a rotational rheometer using a parallel plate geometry. In the discrete type the storage modulus G' cannot be assumed equal for the different layers. In the continuous thrombus, G', changes gradually throughout the layered structure. In both types the loss modulus, G'', does not vary throughout the thrombus. Furthermore, it was found that Time-Temperature Superposition is applicable to thrombus tissue. Since results were reproducible it can be concluded that the method we used to determine the viscoelastic properties is applicable to thrombus tissue.
Investigating Filler Reinforcement and Nonlinear Viscoelastic Behavior in Polymer Composites
NASA Astrophysics Data System (ADS)
Zhu, Zhiyong; Wang, Shi-Qing; von Meerwall, Ernst
2004-03-01
Solid fillers have been known to enhance the linear viscoelastic responses of polymer melts and elastomers. Nonlinear viscoelastic behavior of such systems is closely related to the reinforcement of the linear viscoelascity. Understanding such phenomena as the Payne effect (where the storage modulus is measured to decrease in oscillatory shear with the amplitude of the oscillation and with time for a fixed amplitude) requires a better understanding of the filler reinforcement mechanism. Recent publications, from two different groups (a) (b) prompted our present study. Using monodisperse 1,4-polybutadiene melts as the matrix and nano-silicon oxide particles of 15 nm diameter as the fillers, we carried out a variety of viscoelastic and NMR-spin-echo diffusion measurements to elucidate the important role of the filler-filler networking in controlling the observed linear and nonlinear behavior at temperatures over 100 degrees above the glass transition temperature of PBD. (a)S.S. Sternstein and A. Zhu, Macromolecules 35, 7262 (2002); Composites Sci. and Techn. 63, 1113 (2003). This work claims that the reinforcement arises primarily from the entrapped chain entanglement due to chain adsorption on filler surfaces instead of the filler-filler networking. (b) H. Montes, F. Lequeux and J. Berriot, Macromolecules, 36, 8107 (2003). This work advocates that a glassy layer formed around each filler is responsible for the enhanced linear viscoelascity and for the observed nonlinear viscoelastic behavior such as the Payne effect.
Semi-analytical computation of displacement in linear viscoelastic materials
NASA Astrophysics Data System (ADS)
Spinu, S.; Gradinaru, D.
2015-11-01
Prediction of mechanical contact performance based on elastic models is not accurate in case of viscoelastic materials; however, a closed-form description of the viscoelastic contact has yet to be found. This paper aims to advance a semi-analytical method for computation of displacement induced in viscoelastic materials by arbitrary surface tractions, as a prerequisite to a semi-analytical solution for the viscoelastic contact problem. The newly advanced model is expected to provide greater generality, allowing for arbitrary contact geometry and / or arbitrary loading history. While time-independent equations in the purely elastic model can be treated numerically by imposing a spatial discretization only, a viscoelastic constitutive law requires supplementary temporal discretization capable of simulating the memory effect specific to viscoelastic materials. By deriving new influence coefficients, computation of displacement induced in a viscoelastic material by a known but otherwise arbitrary history of surface tractions can be achieved via superposition authorized by the Boltzmann superposition theory applicable in the frame of linear viscoelasticity.
Modeling of linear viscoelastic space structures
NASA Astrophysics Data System (ADS)
McTavish, D. J.; Hughes, P. C.
1993-01-01
The GHM Method provides viscoelastic finite elements derived from the commonly used elastic finite elements. Moreover, these GHM elements are used directly and conveniently in second-order structural models just like their elastic counterparts. The forms of the GHM element matrices preserve the definiteness properties usually associated with finite element matrices (the mass matrix is positive definite, the stiffness matrix is nonnegative definite, and the damping matrix is positive semidefinite). In the Laplace domain, material properties are modeled phenomenologically as a sum of second-order rational functions dubbed 'minioscillator' terms. Developed originally as a tool for the analysis of damping in large flexible space structures, the GHM method is applicable to any structure which incorporates viscoelastic materials.
Visco-elastic properties and edge stress relaxation of laminated composite materials
Walrath, D.E.
1986-01-01
Applicability of the Schapery single-integral nonlinear visco-elastic constitutive model to describe time-dependent mechanical behavior of laminated composite materials containing two visco-elastic phases was explored. Procedures to measure all five visco-elastic material properties necessary to describe visco-elastic behavior of a transversely isotropic continuous-fiber unidirectional lamina were implemented. Measurement of the through-the-thickness or interlaminar shear visco-elastic response required development of a new test methodology. The losipescu shear test method was selected for this purpose. The visco-elastic response of unidirectional DuPont Kevlar KV49/Hercules 3501-6 epoxy was measured. An automated data-reduction scheme was developed to facilitate description of visco-elastic properties using the Schapery single-integral approach. The basis for this data-reduction scheme differs from similar approaches used by other investigators in that time-superposition features of linear visco-elasticity are preserved. Finally, measured visco-elastic properties of KV49/3501-6 were used to model the interlaminar shear-stress relaxation that occurs near free edges in symmetric angle-ply laminated composite materials loaded by uniform axial extension. Interlaminar stresses induced near free edges were shown to be time-dependent for KV49/3501-6.
Quasi-linear viscoelastic behavior of the human periodontal ligament.
Toms, Stephanie R; Dakin, Greg J; Lemons, Jack E; Eberhardt, Alan W
2002-10-01
Previous studies have not produced a comprehensive mathematical description of the nonlinear viscoelastic stress-strain behavior of the periodontal ligament (PDL). In the present study, the quasi-linear viscoelastic (QLV) model was applied to mechanical tests of the human PDL. Transverse sections of cadaveric premolars were subjected to relaxation tests and loading to failure perpendicular to the plane of section. Distinct and repeatable toe and linear regions of stress-strain behavior were observed. The amount of strain associated with the toe region differed as a function of anatomical location along the tooth root. Stress relaxation behavior was comparable for different anatomical locations. Model predicted peak tissue stresses for cyclic loading were within 11% of experimental values, demonstrating that the QLV approach provided an improved, accurate quantification of PDL mechanical response. The success of the QLV approach supports its usefulness in future efforts of experimental characterization of PDL mechanical behavior.
On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model
De Pascalis, Riccardo; Abrahams, I. David; Parnell, William J.
2014-01-01
This paper offers a reappraisal of Fung's model for quasi-linear viscoelasticity. It is shown that a number of negative features exhibited in other works, commonly attributed to the Fung approach, are merely a consequence of the way it has been applied. The approach outlined herein is shown to yield improved behaviour and offers a straightforward scheme for solving a wide range of models. Results from the new model are contrasted with those in the literature for the case of uniaxial elongation of a bar: for an imposed stretch of an incompressible bar and for an imposed load. In the latter case, a numerical solution to a Volterra integral equation is required to obtain the results. This is achieved by a high-order discretization scheme. Finally, the stretch of a compressible viscoelastic bar is determined for two distinct materials: Horgan–Murphy and Gent. PMID:24910527
On nonlinear viscoelastic deformations: a reappraisal of Fung's quasi-linear viscoelastic model.
De Pascalis, Riccardo; Abrahams, I David; Parnell, William J
2014-06-08
This paper offers a reappraisal of Fung's model for quasi-linear viscoelasticity. It is shown that a number of negative features exhibited in other works, commonly attributed to the Fung approach, are merely a consequence of the way it has been applied. The approach outlined herein is shown to yield improved behaviour and offers a straightforward scheme for solving a wide range of models. Results from the new model are contrasted with those in the literature for the case of uniaxial elongation of a bar: for an imposed stretch of an incompressible bar and for an imposed load. In the latter case, a numerical solution to a Volterra integral equation is required to obtain the results. This is achieved by a high-order discretization scheme. Finally, the stretch of a compressible viscoelastic bar is determined for two distinct materials: Horgan-Murphy and Gent.
Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus.
van Dam, Evelyne A; Dams, Susanne D; Peters, Gerrit W M; Rutten, Marcel C M; Schurink, Geert Willem H; Buth, Jaap; van de Vosse, Frans N
2008-04-01
The objective of this work was to determine the linear and non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus and to study the changes in mechanical properties throughout the thickness of the thrombus. Samples are gathered from thrombi of seven patients. Linear viscoelastic data from oscillatory shear experiments show that the change of properties throughout the thrombus is different for each thrombus. Furthermore the variations found within one thrombus are of the same order of magnitude as the variation between patients. To study the non-linear regime, stress relaxation experiments are performed. To describe the phenomena observed experimentally, a non-linear multimode model is presented. The parameters for this model are obtained by fitting this model successfully to the experiments. The model cannot only describe the average stress response for all thrombus samples but also the highest and lowest stress responses. To determine the influence on the wall stress of the behavior observed the model proposed needs to implemented in the finite element wall stress analysis.
NASA Astrophysics Data System (ADS)
Zhang, Zhenhuan; Barman, Sourav; Christopher, Gordon F.
2014-05-01
The role of interfacial rheology on the bulk linear viscoelastic moduli of low concentration bovine albumin solutions is probed. Previously reported soft gel properties of these systems were attributed to either protein aggregation or organization within the bulk. Instead, these behaviors are shown to be attributable to the measurement error caused by interfacial rheology due to adsorption of bovine serum albumin to the air and water interface. Even at low bulk concentrations, fast interfacial adsorption results in erroneous measurements. When these effects are removed, the solutions are viscous dominated with a dynamic viscosity slightly larger than water.
Stephanou, Pavlos S; Mavrantzas, Vlasis G
2014-06-07
We present a hierarchical computational methodology which permits the accurate prediction of the linear viscoelastic properties of entangled polymer melts directly from the chemical structure, chemical composition, and molecular architecture of the constituent chains. The method entails three steps: execution of long molecular dynamics simulations with moderately entangled polymer melts, self-consistent mapping of the accumulated trajectories onto a tube model and parameterization or fine-tuning of the model on the basis of detailed simulation data, and use of the modified tube model to predict the linear viscoelastic properties of significantly higher molecular weight (MW) melts of the same polymer. Predictions are reported for the zero-shear-rate viscosity η0 and the spectra of storage G'(ω) and loss G″(ω) moduli for several mono and bidisperse cis- and trans-1,4 polybutadiene melts as well as for their MW dependence, and are found to be in remarkable agreement with experimentally measured rheological data.
Quasi-linear viscoelastic characterization of human hip ligaments.
Kemper, Andrew R; McNally, Craig; Smith, Byron; Duma, Stefan M
2007-01-01
The object of this study was to develop a quasi-linear viscoelastic model for the iliofemoral and ischiofemoral hip ligaments. In order to accomplish this, a total of 56 axial tension tests were performed on 8 bone-ligament-bone specimens prepared from 4 fresh frozen male cadavers. Each specimen went through a battery of 7 tests including a series of step-and-hold tests and load-and-unload ramp tests. The bone-ligament-bone specimens were situated so that the load from a servo-hydraulic Material Testing System would be applied on the long axis of each ligament. The reduced relaxation data was fit to a two exponential damping function while the instantaneous elastic response was fit to a power-law function. These two constituents were then combined to create a single constitutive equation for each ligament. The quasi-linear viscoelastic model presented in this study can be used to improve the biofidelity of computational models of the human hip.
Linear Viscoelasticity and Swelling of Polyelectrolyte Complex Coacervates
NASA Astrophysics Data System (ADS)
Hamad, Fawzi; Colby, Ralph
2012-02-01
The addition of near equimolar amounts of poly(diallyldimethylammonium chloride) to poly(isobutylene-alt-maleate sodium), results in formation of a polyelectrolyte complex coacervate. Zeta-potential titrations conclude that these PE-complexes are nearly charge-neutral. Swelling and rheological properties are studied at different salt concentrations in the surrounding solution. The enhanced swelling observed at high salt concentration suggests the system behaves like a polyampholyte gel, and weaker swelling at very low salt concentrations implies polyelectrolyte gel behavior. Linear viscoelastic oscillatory shear measurements indicate that the coacervates are viscoelastic liquids and that increasing ionic strength of the medium weakens the electrostatic interactions between charged units, lowering the relaxation time and viscosity. We use the time-salt superposition idea recently proposed by Spruijt, et al., allowing us to construct master curves for these soft materials. Similar swelling properties observed when varying molecular weights. Rheological measurements reveal that PE-complexes with increasing molecular weight polyelectrolytes form a network with higher crosslink density, suggesting time-molecular weight superposition idea.
Damping Experiment of Spinning Composite Plates with Embedded Viscoelastic Material
NASA Technical Reports Server (NTRS)
Mehmed, Oral; Kosmatka, John B.
1997-01-01
One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration reduction can be achieved by adding damping to metal and composite blade-disk systems. This experiment was done to investigate the use of integral viscoelastic damping treatments to reduce vibration of rotating composite fan blades. It is part of a joint research effort with NASA LeRC and the University of California, San Diego (UCSD). Previous vibration bench test results obtained at UCSD show that plates with embedded viscoelastic material had over ten times greater damping than similar untreated plates; and this was without a noticeable change in blade stiffness. The objectives of this experiment, were to verify the structural integrity of composite plates with viscoelastic material embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.
NASA Astrophysics Data System (ADS)
Alakus, Bayram
Mathematical modeling involving porous heterogeneous media is important in a number of composite manufacturing processes, such as resin transfer molding (RTM), injection molding and the like. Of interest here are process modeling issues as related to composites manufacturing by RTM, because of the ability of the method to manufacture consolidated net shapes of complex geometric parts. In this research, we propose a mathematical model by utilizing the local volume averaging technique to establish the governing equations and therein provide finite element computational developments to predict the flow behavior of a viscous and viscoelastic fluid through a porous fiber network. The developments predict the velocity, pressure, and polymeric stress by modeling the conservation laws (e.g. mass and momentum) of the flow field coupled with constitutive equations for polymeric stress field. The governing equations of the flow are averaged for the fluid phase. Furthermore, the simulations target a variety of viscoelastic models (e.g. Newtonian model, Upper-Convected-Maxwell Model, Oldroyd-B model and Giesekus model) to provide a fundamental understanding of the elastic effects on the flow field. To solve the complex coupled nonlinear equations of the mathematical model described above, a combination of Newton linearization and the Galerkin and Streamline-Upwinding-Petrov-Galerkin (SUPG) finite element procedures are employed to accurately capture the representative physics. The formulations are first validated with available test cases of viscoelastic flows without porous media. Therein, the simulations are described for viscoelastic flow through porous media and the comparative results of different constitutive models are presented and discussed at length.
Thermo-viscoelastic analysis of composite materials, volume 1
NASA Technical Reports Server (NTRS)
Lin, K. Y.; Hwang, I. H.
1988-01-01
Advanced composite materials, especially graphite/epoxy, are being applied to aircraft structures in order to improve performance and save weight. An important consideration in composite design is the residual strength of a structure containing holes, delaminations, or interlaminar damage when subjected to compressive loads. Recent studies have revealed the importance of viscoelastic effects in polymer-based composites. The viscoelastic effect is particularly significant at elevated temperature/moisture conditions since the matrix material is strongly affected by the environment. The solution of viscoelastic problems in composites was limited to special cases which can be solved by classical lamination theory. A finite element procedure is presented for calculating time-dependent stresses and strains in composite structures with general configurations and complicated boundary conditions. Using this procedure the in-plane and interlaminar stress distributions and histories in notched and unnotched composites were obtained for mechanical and thermal loads. Both two-dimensional and three-dimensional viscoelastic problems are analyzed. The effects of layup orientation and load spectrum on creep response and stress relaxation were also studied.
A simplified approach to quasi-linear viscoelastic modeling
Nekouzadeh, Ali; Pryse, Kenneth M.; Elson, Elliot L.; Genin, Guy M.
2007-01-01
The fitting of quasi-linear viscoelastic (QLV) constitutive models to material data often involves somewhat cumbersome numerical convolution. A new approach to treating quasi-linearity in one dimension is described and applied to characterize the behavior of reconstituted collagen. This approach is based on a new principle for including nonlinearity and requires considerably less computation than other comparable models for both model calibration and response prediction, especially for smoothly applied stretching. Additionally, the approach allows relaxation to adapt with the strain history. The modeling approach is demonstrated through tests on pure reconstituted collagen. Sequences of “ramp-and-hold” stretching tests were applied to rectangular collagen specimens. The relaxation force data from the “hold” was used to calibrate a new “adaptive QLV model” and several models from literature, and the force data from the “ramp” was used to check the accuracy of model predictions. Additionally, the ability of the models to predict the force response on a reloading of the specimen was assessed. The “adaptive QLV model” based on this new approach predicts collagen behavior comparably to or better than existing models, with much less computation. PMID:17499254
A simplified approach to quasi-linear viscoelastic modeling.
Nekouzadeh, Ali; Pryse, Kenneth M; Elson, Elliot L; Genin, Guy M
2007-01-01
The fitting of quasi-linear viscoelastic (QLV) constitutive models to material data often involves somewhat cumbersome numerical convolution. A new approach to treating quasi-linearity in 1-D is described and applied to characterize the behavior of reconstituted collagen. This approach is based on a new principle for including nonlinearity and requires considerably less computation than other comparable models for both model calibration and response prediction, especially for smoothly applied stretching. Additionally, the approach allows relaxation to adapt with the strain history. The modeling approach is demonstrated through tests on pure reconstituted collagen. Sequences of "ramp-and-hold" stretching tests were applied to rectangular collagen specimens. The relaxation force data from the "hold" was used to calibrate a new "adaptive QLV model" and several models from literature, and the force data from the "ramp" was used to check the accuracy of model predictions. Additionally, the ability of the models to predict the force response on a reloading of the specimen was assessed. The "adaptive QLV model" based on this new approach predicts collagen behavior comparably to or better than existing models, with much less computation.
Viscoelasticity of Axisymmetric Composite Structures: Analysis and Experimental Validation
2013-02-01
Mathematics and Mechanics of Solids 2009, 14 (3), 300–366. 13. Kim , R. Y.; Hartness, J. T. Time-dependent Response of AS-4/ PEEK Composite. Proceedings...Relaxation of Thermal Stresses The time-dependent thermal viscoelastic behavior of a 100-layer, AS-4/3502 (graphite/ PEEK ) composite cylinder...the 0 direction coinciding with the axis of the cylinder. The creep property of an AS-4/ PEEK graphite/epoxy composite with a fiber volume fraction
NASA Astrophysics Data System (ADS)
Musa, A. B.
2015-05-01
The study is about impact of a short elastic rod (or slug) on a stationary semi-infinite viscoelastic rod. The viscoelastic materials are modeled as standard linear solid which involve three material parameters and the motion is treated as one-dimensional. We first establish the governing equations pertaining to the impact of viscoelastic materials subject to certain boundary conditions for the case when an elastic slug moving at a speed V impacts a semi-infinite stationary viscoelastic rod. The objective is to validate the numerical results of stresses and velocities at the interface following wave transmissions and reflections in the slug after the impact using viscoelastic discontinuity. If the stress at the interface becomes tensile and the velocity changes its sign, then the slug and the rod part company. If the stress at the interface is compressive after the impact, the slug and the rod remain in contact. After modelling the impact and solve the governing system of partial differential equations in the Laplace transform domain, we invert the Laplace transformed solution numerically to obtain the stresses and velocities at the interface for several viscosity time constants and ratios of acoustic impedances. In inverting the Laplace transformed equations, we used the complex inversion formula because there is a branch cut and infinitely many poles within the Bromwich contour. In the viscoelastic discontinuity analysis, we look at the moving discontinuities in stress and velocity using the impulse-momentum relation and kinematical condition of compatibility. Finally, we discussed the relationship of the stresses and velocities using numeric and the validated stresses and velocities using viscoelastic discontinuity analysis.
Anisotropy of bituminous mixture in the linear viscoelastic domain
NASA Astrophysics Data System (ADS)
Di Benedetto, Hervé; Sauzéat, Cédric; Clec'h, Pauline
2016-08-01
Some anisotropic properties in the linear viscoelastic domain of bituminous mixtures compacted with a French LPC wheel compactor are highlighted in this paper. Bituminous mixture is generally considered as isotropic even if the compaction process on road or in laboratory induces anisotropic properties. Tension-compression complex modulus tests have been performed on parallelepipedic specimens in two directions: (i) direction of compactor wheel movement (direction I, which is horizontal) and (ii) direction of compaction (direction II, which is vertical). These tests consist in measuring sinusoidal axial and lateral strains as well as sinusoidal axial stress, when sinusoidal axial loading is applied on the specimen. Different loading frequencies and temperatures are applied. Two complex moduli, EI ^{*} and E_{II}^{*}, and four complex Poisson's ratios, ν_{{II-I}}^{*}, ν_{{III-I}}^{*}, ν_{{I-II}}^{*} and ν_{{III-II}}^{*}, were obtained. The vertical direction appears softer than the other ones for the highest frequencies. There are very few differences between the two directions I and II for parameters concerning viscous effects (phase angles φ(EI) and φ(E_{II}), and shift factors). The four Poisson's ratios reveal anisotropic properties but rheological tensor can be considered as symmetric when considering very similar values obtained for the two measured parameters (I-II and II-I)
Damping Experiment of Spinning Composite Plates With Embedded Viscoelastic Material
NASA Technical Reports Server (NTRS)
Mehmed, Oral
1998-01-01
One way to increase gas turbine engine blade reliability and durability is to reduce blade vibration. It is well known that vibration can be reduced by adding damping to metal and composite blade-disk systems. As part of a joint research effort of the NASA Lewis Research Center and the University of California, San Diego, the use of integral viscoelastic damping treatment to reduce the vibration of rotating composite fan blades was investigated. The objectives of this experiment were to verify the structural integrity of composite plates with viscoelastic material patches embedded between composite layers while under large steady forces from spinning, and to measure the damping and natural frequency variation with rotational speed.
A log-linearized arterial viscoelastic model for evaluation of the carotid artery.
Hirano, Harutoyo; Horiuchi, Tetsuya; Kutluk, Abdugheni; Kurita, Yuichi; Ukawa, Teiji; Nakamura, Ryuji; Saeki, Noboru; Higashi, Yukihito; Kawamoto, Masashi; Yoshizumi, Masao; Tsuji, Toshio
2013-01-01
This paper proposes a method for qualitatively estimating the mechanical properties of arterial walls on a beat-to-beat basis through noninvasive measurement of continuous arterial pressure and arterial diameter using an ultrasonic device. First, in order to describe the nonlinear relationships linking arterial pressure waveforms and arterial diameter waveforms as well as the viscoelastic characteristics of arteries, we developed a second-order nonlinear model (called the log-linearized arterial viscoelastic model) to allow estimation of arterial wall viscoelasticity. Next, to verify the validity of the proposed method, the viscoelastic indices of the carotid artery were estimated. The results showed that the proposed model can be used to accurately approximate the mechanical properties of arterial walls. It was therefore deemed suitable for qualitative evaluation of arterial viscoelastic properties based on noninvasive measurement of arterial pressure and arterial diameter.
Generalization of the ordinary state-based peridynamic model for isotropic linear viscoelasticity
NASA Astrophysics Data System (ADS)
Delorme, Rolland; Tabiai, Ilyass; Laberge Lebel, Louis; Lévesque, Martin
2017-02-01
This paper presents a generalization of the original ordinary state-based peridynamic model for isotropic linear viscoelasticity. The viscoelastic material response is represented using the thermodynamically acceptable Prony series approach. It can feature as many Prony terms as required and accounts for viscoelastic spherical and deviatoric components. The model was derived from an equivalence between peridynamic viscoelastic parameters and those appearing in classical continuum mechanics, by equating the free energy densities expressed in both frameworks. The model was simplified to a uni-dimensional expression and implemented to simulate a creep-recovery test. This implementation was finally validated by comparing peridynamic predictions to those predicted from classical continuum mechanics. An exact correspondence between peridynamics and the classical continuum approach was shown when the peridynamic horizon becomes small, meaning peridynamics tends toward classical continuum mechanics. This work provides a clear and direct means to researchers dealing with viscoelastic phenomena to tackle their problem within the peridynamic framework.
Viscoelasticity of Epoxy nano-composites
NASA Astrophysics Data System (ADS)
Ahuja, Suresh
2013-03-01
Nanocomposites have been modeled in a multiscale covering from molecular scale (e.g., molecular dynamics, Monte Carlo), microscale (e.g., Brownian dynamics, dissipative particle dynamics, lattice Boltzmann, time-dependent Ginzburg-Landau method, dynamic density functional theory method) to mesoscale and macroscale (e.g., micromechanics, equivalent-continuum and self-similar approaches, finite element method) The presence of layered silicates in nonaqueous polymers changes the viscoelastic behavior of the unfilled matrix from liquid-like to solid-like because of the formation of a three-dimensional percolating network of exfoliated or intercalated stacks. This gel-like behavior is a direct consequence of the highly anisotropic nature of the nanoclays which prevents their free rotation and the dissipation of stress. Particle to particle interactions is the dominant mechanism in fumed silica nanocomposites whereas particle to polymer interaction is the dominant one in colloidal silica nanocomposites at identical filler concentrations. These interactions are balanced in each nanocomposite systems by the silica surface treatments (chain grafting, silane modification) and the molecular weight of the matrix. Two different types of nanocomposite structures exist namely, intercalated nanocomposites where the polymer chains are sandwiched between silicate layers and exfoliated nanocomposites where the layers can be considered individually but remain more or less dispersed in the polymer matrix. Yield stress from Carreau-Yasuda model has been correlated to exfoliation. Also, equilibrium modulus and zero shear rate viscosity has been used to analyze percolation threshold and sol-gel transition. Nano clays organically functionalized were mixed with Epoxy in a high shear mixer.
A quasi-correspondence principle for Quasi-Linear viscoelastic solids
NASA Astrophysics Data System (ADS)
Rajagopal, K. R.; Wineman, A. S.
2008-03-01
In this paper we show that the correspondence principle that allows one to obtain solutions to boundary-initial value problems for Linear viscoelastic solids from solutions to that for a linearized elastic solid can be extended, in many circumstances, to the case of the Quasi-Linear viscoelastic solids introduced by Fung. We illustrate the ability to generalize the correspondence principle by considering a variety of problems including torsion, transverse loading of beams and several problems that involve a single non-zero stress component. This extension is however not possible for certain classes of problems and we present a specific example where the correspondence principle breaks down. The correspondence principle between Linear elasticity and Linear viscoelasticity also breaks down under certain conditions, however the correspondence between the solutions for Linear viscoelasticity and Quasi-Linear viscoelasticity is even more fragile in that it breaks down while the classical correspondence works, and hence we refer to the correspondence as a quasi-correspondence principle.
Dynamic stability of unidirectional fiber-reinforced viscoelastic composite plates
NASA Technical Reports Server (NTRS)
Chandiramani, N. K.; Librescu, L.
1989-01-01
This paper deals with a dynamic stability analysis of unidirectional fiber-reinforced composite viscoelastic plates subjected to compressive edge loads. The integrodifferential equations governing the stability problem are obtained by using, in conjunction with a Boltzmann hereditary constitutive law for a three-dimensional viscoelastic medium, a higher-order shear deformation theory of orthotropic plates. Such a theory incorporates transverse shear deformation, transverse normal stress, and rotatory inertia effects. The solution of the stability problem as considered within this paper concerns the determination of the critical in-plane edge loads yielding the asymptotic instability. Numerical applications, based on material properties derived within the framework of Aboudi's micromechanical model, are presented and pertinent conclusions concerning the nature of the loss of stability and the influence of various parameters are outlined.
The nonlinear viscoelastic response of resin matrix composite laminates
NASA Technical Reports Server (NTRS)
Hiel, C.; Cardon, A. H.; Brinson, H. F.
1984-01-01
Possible treatments of the nonlinear viscoelastic behavior of materials are reviewed. A thermodynamic based approach, developed by Schapery, is discussed and used to interpret the nonlinear viscoelastic response of a graphite epoxy laminate, T300/934. Test data to verify the analysis for Fiberite 934 neat resin as well as transverse and shear properties of the unidirectional T300/934 composited are presented. Long time creep characteristics as a function of stress level and temperature are generated. Favorable comparisons between the traditional, graphical, and the current analytical approaches are shown. A free energy based rupture criterion is proposed as a way to estimate the life that remains in a structure at any time.
Numerical simulation of blood flow through a capillary using a non-linear viscoelastic model.
Shariatkhah, Amin; Norouzi, Mahmood; Nobari, Mohammad Reza Heyrani
2016-01-01
In this article, a periodic developing blood flow in a capillary is simulated using a non-linear viscoelastic model for the first time. Here, the Giesekus model is used as the constitutive equation, and based on the experimental data, the best value for the mobility factor and zero shear rate viscosity are derived. The numerical solution of the problem is obtained using the finite volume method. The algorithm of the solution is pressure implicit with splitting of operators (PISO). The simulation carried out using the Giesekus, Oldroyd-B and Newtonian models and the results indicate that the Giesekus model presents a more accurate solution for the stress and velocity fields than the Newtonian and Oldroyd-B models. The previous studies on this problem were restricted to the linear and quasi-linear viscoelastic models. It is shown that only non-linear viscoelastic models can accurately describe the experimental data of unsteady blood flow in capillaries.
Viscoelastic behaviour of rubberwood-polymer composites
NASA Astrophysics Data System (ADS)
Chan, K. Y.; Yap, M. G. S.; Chia, L. H. L.; Teoh, S. H.
The dynamic storage modulus E' of rubberwood ( Hevea braziliensis) increased after the in situ polymerization of methylmethacrylate in the wood cellular structure. A significant linear relationship existed between the percentage increase in E' and polymer loading. A thermal scan of tan δ values between -120° and 200°C revealed that the damping pattern of rubberwood was affected to different extents by three different polymeric systems. Poly(styrene- co-acrylonitrile) caused the greatest change in the damping pattern, followed by polymethylmethacrylate-dioxane, and polymethylmethacrylate. This observed trend was attributed to the relative extent of monomer penetration and interaction with the wood cell-wall components.
Measurement of the linear viscoelastic behavior of antimisting kerosene
NASA Technical Reports Server (NTRS)
Ferry, J. D.
1983-01-01
Measurements of dynamic viscoelastic properties in very small oscillating shear deformations was made on solutions of a jet fuel, Jet A, containing an antimisting polymeric additive, FM-9. A few measurements were also made on solutions of FM-9 in a mixed solvent of mineral oil, Tetralin, and 0-terphenyl. Two samples of FM-9 had approximate number-average molecular weights of 12,000,000 and 8,100,000 as deduced from analysis of the measurements. The ranges of variables were 2.42 to 4.03 g/1 in concentration (0.3 to 0.5% by weight), 1 to 35 in temperature, 1.3 to 9.4 cp in solvent viscosity, and 103 to 6100 Hz in frequency. Measurements in the Jet A solvent were made both with and without a modifying carrier. The results were compared with the Zimm theory and the viscoelastic behavior was found to resemble rather closely that of ordinary non-polar polymers in theta solvents. The relation of the results to the antithixotropic behavior of such solutions a high shear rates is discussed in terms of intramolecular and intermolecular interactions.
A rate insensitive linear viscoelastic model for soft tissues
Zhang, Wei; Chen, Henry Y.; Kassab, Ghassan S.
2012-01-01
It is well known that many biological soft tissues behave as viscoelastic materials with hysteresis curves being nearly independent of strain rate when loading frequency is varied over a large range. In this work, the rate insensitive feature of biological materials is taken into account by a generalized Maxwell model. To minimize the number of model parameters, it is assumed that the characteristic frequencies of Maxwell elements form a geometric series. As a result, the model is characterized by five material constants: μ0, τ, m, ρ and β, where μ0 is the relaxed elastic modulus, τ the characteristic relaxation time, m the number of Maxwell elements, ρ the gap between characteristic frequencies, and β = μ1/μ0 with μ1 being the elastic modulus of the Maxwell body that has relaxation time τ. The physical basis of the model is motivated by the microstructural architecture of typical soft tissues. The novel model shows excellent fit of relaxation data on the canine aorta and captures the salient features of vascular viscoelasticity with significantly fewer model parameters. PMID:17512585
Fractional characteristic times and dissipated energy in fractional linear viscoelasticity
NASA Astrophysics Data System (ADS)
Colinas-Armijo, Natalia; Di Paola, Mario; Pinnola, Francesco P.
2016-08-01
In fractional viscoelasticity the stress-strain relation is a differential equation with non-integer operators (derivative or integral). Such constitutive law is able to describe the mechanical behavior of several materials, but when fractional operators appear, the elastic and the viscous contribution are inseparable and the characteristic times (relaxation and retardation time) cannot be defined. This paper aims to provide an approach to separate the elastic and the viscous phase in the fractional stress-strain relation with the aid of an equivalent classical model (Kelvin-Voigt or Maxwell). For such equivalent model the parameters are selected by an optimization procedure. Once the parameters of the equivalent model are defined, characteristic times of fractional viscoelasticity are readily defined as ratio between viscosity and stiffness. In the numerical applications, three kinds of different excitations are considered, that is, harmonic, periodic, and pseudo-stochastic. It is shown that, for any periodic excitation, the equivalent models have some important features: (i) the dissipated energy per cycle at steady-state coincides with the Staverman-Schwarzl formulation of the fractional model, (ii) the elastic and the viscous coefficients of the equivalent model are strictly related to the storage and the loss modulus, respectively.
Parameter estimation using the quasi-linear viscoelastic model proposed by Fung.
Dortmans, L J; Sauren, A A; Rousseau, E P
1984-08-01
Using the quasi-linear viscoelastic model proposed by Fung for the description of the viscoelastic properties of soft biological tissues, the parameters governing their time-dependent behavior are commonly estimated from relaxation experiments. Exact quantification is possible from the response to a step change in the strain. Since it is physically impossible to realize a true step change in the strain, in practice the response to a steplike strain change is used. In the present study the discrepancies between the exact and the estimated parameter values are investigated using a hypothetical quasi-linear viscoelastic material. The parameter tau 1, governing the fast viscous phenomena, is found to be subject to the largest errors. Methods for obtaining better estimates of tau 1 are outlined in a number of special cases.
NASA Astrophysics Data System (ADS)
Pottier, Basile; Talini, Laurence; Frétigny, Christian
2012-02-01
We present a new optical method to measure the linear viscoelastic properties of materials, ranging from complex fluids to soft solids, within a large frequency range (about 0.1--10^4 Hz). The surface fluctuation specular reflection technique is based on the measurement of the thermal fluctuations of the free surfaces of materials at which a laser beam is specularly reflected. The propagation of the thermal surface waves depends on the surface tension, density, and complex viscoelastic modulus of the material. For known surface tension and density, we show that the frequency dependent elastic and loss moduli can be deduced from the fluctuation spectrum. Using a viscoelastic solid (a cross-linked PDMS), which linear viscoelastic properties are known in a large frequency range from rheometric measurements and the time--temperature superposition principle, we show that there is a good agreement between the rheological characterization provided by rheometric and fluctuation measurements. We also present measurements conducted with complex fluids that are supramolecular polymer solutions. The agreement with other low frequency and high frequency rheological measurements is again very good, and we discuss the sensitivity of the technique to surface viscoelasticity.
NASA Astrophysics Data System (ADS)
Shokri, H.; Kayhani, M. H.; Norouzi, M.
2017-03-01
In this study, the viscous fingering instability of miscible displacement involving a viscoelastic fluid is investigated using both linear stability analysis and computational fluid dynamics for the first time. The Oldroyd-B model is used as the constitutive equation of a viscoelastic fluid. Here, it is assumed that one of the displacing fluids or the displaced one is viscoelastic. In linear stability analysis, the quasi-steady state approximation and six order shooting method are used to predict the growth rate of the disturbance in the flow. It is shown that the flow is more stabilized when the elasticity (Weissenberg number) of the displaced or displacing viscoelastic fluid is increased. In the nonlinear simulation, using the spectral method based on Hartley transforms and the fourth-order Adams-Bashforth technique, the effect of the viscoelastic fluid on this instability has been studied. Evaluation of concentration contours, mixing length, sweep efficiency, and transversely average concentration show that the elasticity has a significant effect on the fingering instability and the flow becomes more stable by increasing the Weissenberg number.
Chan, Roger W.; Rodriguez, Maritza L.
2008-01-01
Previous studies reporting the linear viscoelastic shear properties of the human vocal fold cover or mucosa have been based on torsional rheometry, with measurements limited to low audio frequencies, up to around 80 Hz. This paper describes the design and validation of a custom-built, controlled-strain, linear, simple-shear rheometer system capable of direct empirical measurements of viscoelastic shear properties at phonatory frequencies. A tissue specimen was subjected to simple shear between two parallel, rigid acrylic plates, with a linear motor creating a translational sinusoidal displacement of the specimen via the upper plate, and the lower plate transmitting the harmonic shear force resulting from the viscoelastic response of the specimen. The displacement of the specimen was measured by a linear variable differential transformer whereas the shear force was detected by a piezoelectric transducer. The frequency response characteristics of these system components were assessed by vibration experiments with accelerometers. Measurements of the viscoelastic shear moduli (G′ and G″) of a standard ANSI S2.21 polyurethane material and those of human vocal fold cover specimens were made, along with estimation of the system signal and noise levels. Preliminary results showed that the rheometer can provide valid and reliable rheometric data of vocal fold lamina propria specimens at frequencies of up to around 250 Hz, well into the phonatory range. PMID:18681608
Inverting Glacial Isostatic Adjustment beyond linear viscoelasticity using Burgers rheology
NASA Astrophysics Data System (ADS)
Caron, L.; Greff-Lefftz, M.; Fleitout, L.; Metivier, L.; Rouby, H.
2014-12-01
In Glacial Isostatic Adjustment (GIA) inverse modeling, the usual assumption for the mantle rheology is the Maxwell model, which exhibits constant viscosity over time. However, mineral physics experiments and post-seismic observations show evidence of a transient component in the deformation of the shallow mantle, with a short-term viscosity lower than the long-term one. In these studies, the resulting rheology is modeled by a Burgers material: such rheology is indeed expected as the mantle is a mixture of materials with different viscosities. We propose to apply this rheology for the whole viscoelastic mantle, and, using a Bayesian MCMC inverse formalism for GIA during the last glacial cycle, study its impact on estimations of viscosity values, elastic thickness of the lithosphere, and ice distribution. To perform this inversion, we use a global dataset of sea level records, the geological constraints of ice-sheet margins, and present-day GPS data as well as satellite gravimetry. Our ambition is to present not only the best fitting model, but also the range of possible solutions (within the explored space of parameters) with their respective probability of explaining the data. Our first results indicate that compared to the Maxwell models, the Burgers models involve a larger lower mantle viscosity and thicker ice over Fennoscandia and Canada.
Babaei, Behzad; Velasquez-Mao, Aaron J; Thomopoulos, Stavros; Elson, Elliot L; Abramowitch, Steven D; Genin, Guy M
2017-05-01
The time- and frequency-dependent properties of connective tissue define their physiological function, but are notoriously difficult to characterize. Well-established tools such as linear viscoelasticity and the Fung quasi-linear viscoelastic (QLV) model impose forms on responses that can mask true tissue behavior. Here, we applied a more general discrete quasi-linear viscoelastic (DQLV) model to identify the static and dynamic time- and frequency-dependent behavior of rabbit medial collateral ligaments. Unlike the Fung QLV approach, the DQLV approach revealed that energy dissipation is elevated at a loading period of ∼10s. The fitting algorithm was applied to the entire loading history on each specimen, enabling accurate estimation of the material's viscoelastic relaxation spectrum from data gathered from transient rather than only steady states. The application of the DQLV method to cyclically loading regimens has broad applicability for the characterization of biological tissues, and the results suggest a mechanistic basis for the stretching regimens most favored by athletic trainers. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic analysis of linear viscoelastic cylindrical and conical helicoidal rods using the mixed FEM
NASA Astrophysics Data System (ADS)
Eratlı, Nihal; Argeso, Hakan; Çalım, Faruk F.; Temel, Beytullah; Omurtag, Mehmet H.
2014-08-01
The objective of this study is to investigate the influence of the rotary inertia on dynamic behavior of linear viscoelastic cylindrical and conical helixes by means of the Laplace transform-mixed finite element formulation and solution. The element matrix is based on the Timoshenko beam theory. The influence of rotary inertias is considered in the dynamic analysis, which is original in the literature. Rectangular, sine and step type of impulsive loads are applied on helices having rectangular cross-sections with various aspect ratios. The Kelvin and standard models are used for defining the linear viscoelastic material behavior; and by means of the correspondence principle (the elastic-viscoelastic analogy), the material parameters are replaced with their complex counterparts in the Laplace domain. The analysis is carried out in the Laplace domain and the results are transformed back to time space numerically by modified Durbin's algorithm. First, the solution algorithm is verified using the existing open sources in the literature and afterwards some benchmark examples such as conical viscoelastic rods are handled.
Valdez-Jasso, D; Bia, D; Haider, M A; Zocalo, Y; Armentano, R L; Olufsen, M S
2010-01-01
This study uses linear and nonlinear viscoelastic models to describe the dynamic distention of the aorta induced by time-varying arterial blood pressure. We employ an inverse mathematical modeling approach on a four-parameter (linear) Kelvin viscoelastic model and two five-parameter nonlinear viscoelastic models (arctangent and sigmoid) to infer vascular biomechanical properties under in vivo and ex vivo experimental conditions in ten and eleven male Merino sheep, respectively. We used the Akaike Information Criterion (AIC) as a goodness-of-fit measure. Results show that under both experimental conditions, the nonlinear models generally outperform the linear Kelvin model, as judged by the AIC. Furthermore, the sigmoid nonlinear viscoelastic model consistently achieves the lowest AIC and also matches the zero-stress vessel radii measured ex vivo. Based on these observations, we conclude that the sigmoid nonlinear viscoelastic model best describes the biomechanical properties of ovine large arteries under both experimental conditions considered in this study.
Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites
Zhang, Jun
2016-01-01
This paper investigates the scaling from a statistical volume element (SVE; i.e. mesoscale level) to representative volume element (RVE; i.e. macroscale level) of spatially random linear viscoelastic materials, focusing on the quasi-static properties in the frequency domain. Requiring the material statistics to be spatially homogeneous and ergodic, the mesoscale bounds on the RVE response are developed from the Hill–Mandel homogenization condition adapted to viscoelastic materials. The bounds are obtained from two stochastic initial-boundary value problems set up, respectively, under uniform kinematic and traction boundary conditions. The frequency and scale dependencies of mesoscale bounds are obtained through computational mechanics for composites with planar random chessboard microstructures. In general, the frequency-dependent scaling to RVE can be described through a complex-valued scaling function, which generalizes the concept originally developed for linear elastic random composites. This scaling function is shown to apply for all different phase combinations on random chessboards and, essentially, is only a function of the microstructure and mesoscale. PMID:27274689
Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites
NASA Astrophysics Data System (ADS)
Zhang, Jun; Ostoja-Starzewski, Martin
2016-04-01
This paper investigates the scaling from a statistical volume element (SVE; i.e. mesoscale level) to representative volume element (RVE; i.e. macroscale level) of spatially random linear viscoelastic materials, focusing on the quasi-static properties in the frequency domain. Requiring the material statistics to be spatially homogeneous and ergodic, the mesoscale bounds on the RVE response are developed from the Hill-Mandel homogenization condition adapted to viscoelastic materials. The bounds are obtained from two stochastic initial-boundary value problems set up, respectively, under uniform kinematic and traction boundary conditions. The frequency and scale dependencies of mesoscale bounds are obtained through computational mechanics for composites with planar random chessboard microstructures. In general, the frequency-dependent scaling to RVE can be described through a complex-valued scaling function, which generalizes the concept originally developed for linear elastic random composites. This scaling function is shown to apply for all different phase combinations on random chessboards and, essentially, is only a function of the microstructure and mesoscale.
Cheng Guan; Houjiang Zhang; John F. Hunt; Lujing Zhou; Dan Feng
2016-01-01
The dynamic viscoelasticity of full-size wood composite panels (WCPs) under the free-free vibrational state were determined by a vibration testing method. Vibration detection tests were performed on 194 pieces of three types of full-size WCPs (particleboard, medium density fiberboard, and plywood (PW)). The dynamic viscoelasticity from smaller specimens cut from the...
Huang, Yan-Ping; Zheng, Yong-Ping; Leung, Sing-Fai
2005-02-01
Hand palpation is a conventional way to assess and document soft tissue fibrosis. But it is semi-quantitative and subjective, so there is a need to develop quantitative and objective methods for this purpose. 105 patients with different degrees of radiation-induced fibrosis of soft tissue of the neck were assessed using an ultrasound indentation method. The force response was reconstructed from the indentation history using a quasi-linear viscoelastic model with four material parameters. The parameters which best curve-fitted the force response with respect to the experimentally measured one, were selected as the viscoelastic properties of the tested soft tissue. These parameters were compared among patient subgroups with different degrees of fibrosis as scored by hand palpation, and also compared with those of a control group of healthy, non-irradiated subjects. Their relation to the rotation range of the neck and the effective Young's modulus, were also assessed. Soft tissue with a more severe degree of fibrosis was associated with a larger initial stiffness and a more rapid increase in stiffness under loading. Viscoelasticity parameters could discriminate soft tissue with different degrees of clinical fibrosis and had significant correlation with clinical parameters of fibrosis. Change of viscoelastic properties is reflection of pathological modifications of components in fibrotic soft tissues. Measurement of viscoelasticity parameters of soft tissue provides a quantitative and objective approach for the researcher and clinician to quantify soft tissue fibrosis. Measurement of the change of viscoelastic properties of soft tissue provides a quantitative and objective approach for researchers and clinicians to quantify soft tissue fibrosis which is one of the most common late effects of radiotherapy.
Miller, C E; Wong, C L
2000-05-01
Passive viscoelastic behavior is important in embryonic cardiovascular function, influencing the rate and magnitude of contraction and relaxation. We hypothesized that if viscoelastic behavior is influenced by interstitial fluid flow, then the stage-21 (312d) and stage-24 (4d) chick myocardium with large intertrabecular spaces will exhibit much different viscoelastic behavior than stage-16 (212d) and stage-18 (3d) compact myocardium and a non-quasi-linear response. Excised left ventricular sections were tested with ramp-and-hold stress relaxation tests at axial stretch ratios of 1.05:1.1:1.2:1.3. The measured stress relaxation was much more rapid than previously observed in the compact, non-trabeculated myocardium. The reduced relaxation curves depended significantly on the stretch level. A continuous-spectrum quasi-linear relaxation function described their shape well but the model-fit parameters also depended on the stretch level. Sinusoidal stretching of ventricular sections at rates from 0.2 to 25Hz showed that the steepening of stress-strain curves with increasing strain rate was half as much as predicted by a quasi-linear model. Hysteresis ranged from 25-35%, varied little with loading rate from 0.2 to 8Hz, and was twice that predicted from a quasi-linear model. Doubling the viscosity of the perfusate in stress-relaxation tests produced increased stiffness and decreased relaxation rate. These results demonstrate that the passive viscoelastic behavior of the trabeculated embryonic myocardium is markedly different from that of younger, compact myocardium and is not quasi-linear.
Dynamics of a supercritical composite shaft mounted on viscoelastic supports
NASA Astrophysics Data System (ADS)
Montagnier, O.; Hochard, C.
2014-01-01
The damping in a carbon fiber reinforced plastic (CFRP) laminate is greater than that which occurs in most metallic materials. In the supercritical regime, the damping can trigger unstable whirl oscillations, which can have catastrophic effects. The vibrations occurring in a supercritical composite drive shaft are investigated here in order to predict instabilities of this kind. A simply supported carbon/epoxy composite tube mounted on viscoelastic supports is studied, using an approximation of the Rayleigh-Timoshenko equation. The damping process is assumed to be hysteretic. The composite behavior is described in terms of modulus and loss factor, taking homogenized values. The critical speeds are obtained in several analytical forms in order to determine the effects of factors such as the rotatory inertia, the gyroscopic forces, the transverse shear and the supports stiffness. Assuming that the hysteretic damping can be expressed in terms of the equivalent viscous model, the threshold speed is obtained in the form of an analytical criterion. The influence of the various factors involved is quantified at the first critical speed of a subcritical composite shaft previously described in the literature. The influence of the coupling mechanisms on the unsymmetrical composite laminate and the end fittings is also investigated using a finite element model. None of these parameters were found to have a decisive influence in this case. Those having the greatest effects were the transverse shear and the supports stiffness. The effects of the composite stacking sequence, the shaft length and the supports stiffness on the threshold speed were then investigated. In particular, drive shafts consisting only of ±45° or ±30° plies can be said to be generally unstable in the supercritical regime due to their very high loss factors.
NASA Astrophysics Data System (ADS)
Endo, Vitor Takashi; de Carvalho Pereira, José Carlos
2017-05-01
Material properties description and understanding are essential aspects when computational solid mechanics is applied to product development. In order to promote injected fiber reinforced thermoplastic materials for structural applications, it is very relevant to develop material characterization procedures, considering mechanical properties variation in terms of fiber orientation and loading time. Therefore, a methodology considering sample manufacturing, mechanical tests and data treatment is described in this study. The mathematical representation of the material properties was solved by a linear viscoelastic constitutive model described by Prony series, which was properly adapted to orthotropic materials. Due to the large number of proposed constitutive model coefficients, a parameter identification method was employed to define mathematical functions. This procedure promoted good correlation among experimental tests, and analytical and numerical creep models. Such results encourage the use of numerical simulations for the development of structural components with the proposed linear viscoelastic orthotropic constitutive model. A case study was presented to illustrate an industrial application of proposed methodology.
NASA Astrophysics Data System (ADS)
Endo, Vitor Takashi; de Carvalho Pereira, José Carlos
2016-09-01
Material properties description and understanding are essential aspects when computational solid mechanics is applied to product development. In order to promote injected fiber reinforced thermoplastic materials for structural applications, it is very relevant to develop material characterization procedures, considering mechanical properties variation in terms of fiber orientation and loading time. Therefore, a methodology considering sample manufacturing, mechanical tests and data treatment is described in this study. The mathematical representation of the material properties was solved by a linear viscoelastic constitutive model described by Prony series, which was properly adapted to orthotropic materials. Due to the large number of proposed constitutive model coefficients, a parameter identification method was employed to define mathematical functions. This procedure promoted good correlation among experimental tests, and analytical and numerical creep models. Such results encourage the use of numerical simulations for the development of structural components with the proposed linear viscoelastic orthotropic constitutive model. A case study was presented to illustrate an industrial application of proposed methodology.
Gayle, Andrew J; Cook, Robert F
An instrumented indentation method is developed for generating maps of time-dependent viscoelastic and time-independent plastic properties of polymeric materials. The method is based on a pyramidal indentation model consisting of two quadratic viscoelastic Kelvin-like elements and a quadratic plastic element in series. Closed-form solutions for indentation displacement under constant load and constant loading-rate are developed and used to determine and validate material properties. Model parameters are determined by point measurements on common monolithic polymers. Mapping is demonstrated on an epoxy-ceramic interface and on two composite materials consisting of epoxy matrices containing multi-wall carbon nanotubes. A fast viscoelastic deformation process in the epoxy was unaffected by the inclusion of the nanotubes, whereas a slow viscoelastic process was significantly impeded, as was the plastic deformation. Mapping revealed considerable spatial heterogeneity in the slow viscoelastic and plastic responses in the composites, particularly in the material with a greater fraction of nanotubes.
NASA Astrophysics Data System (ADS)
Chakraborty, Debadi; Sader, John E.
2015-05-01
Simple bulk liquids such as water are commonly assumed to be Newtonian. While this assumption holds widely, the fluid-structure interaction of mechanical devices at nanometer scales can probe the intrinsic molecular relaxation processes in a surrounding liquid. This was recently demonstrated through measurement of the high frequency (20 GHz) linear mechanical vibrations of bipyramidal nanoparticles in simple liquids [Pelton et al., "Viscoelastic flows in simple liquids generated by vibrating nanostructures," Phys. Rev. Lett. 111, 244502 (2013)]. In this article, we review and critically assess the available constitutive equations for compressible viscoelastic flows in their linear limits—such models are required for analysis of the above-mentioned measurements. We show that previous models, with the exception of a very recent proposal, do not reproduce the required response at high frequency. We explain the physical origin of this recent model and show that it recovers all required features of a linear viscoelastic flow. This constitutive equation thus provides a rigorous foundation for the analysis of vibrating nanostructures in simple liquids. The utility of this model is demonstrated by solving the fluid-structure interaction of two common problems: (1) a sphere executing radial oscillations in liquid, which depends strongly on the liquid compressibility and (2) the extensional mode vibration of bipyramidal nanoparticles in liquid, where the effects of liquid compressibility are negligible. This highlights the importance of shear and compressional relaxation processes, as a function of flow geometry, and the impact of the shear and bulk viscosities on nanometer scale flows.
The constitutive behaviour of passive heart muscle tissue: a quasi-linear viscoelastic formulation.
Huyghe, J M; van Campen, D H; Arts, T; Heethaar, R M
1991-01-01
A quasi-linear viscoelastic law with a continuous relaxation spectrum describing triaxial constitutive behaviour of heart muscle tissue is presented. The elastic response of the viscoelastic law is anisotropic, while the relaxation behaviour is assumed isotropic. The law is designed for a biphasic description (fluid-solid) of the myocardial tissue. Biaxial and uniaxial stress-strain curves from the literature are used to evaluate the parameters of the model. The non-linear elastic response, the difference between fibre and cross-fibre stiffness, the phenomenon of stress relaxation, the stiffening of the stress-strain relationship with increasing strain rate and the weak frequency dependency of the dissipated energy during cyclic loading are fairly well described by the proposed law. However, it is found that the model produces realistic values for the dissipated energy during cyclic loading only when relaxation parameter values are chosen which result in an overestimation of the stress relaxation data by more than 100%. This finding may indicate non-quasi-linearity of viscoelasticity of passive heart muscle tissue.
Linear viscoelasticity of polymer-graphite nanoplatelets (GNPs) nanocomposites
NASA Astrophysics Data System (ADS)
de Luna, Martina Salzano; Acierno, Domenico; Russo, Pietro; Filippone, Giovanni
2012-07-01
We prepare well dispersed nanocomposites based on Graphite Nanoplatelets (GNPs) and polystyrene (PS) through a combination of solution and melt mixing techniques. The samples are subjected to morphological, electrical, and rheological investigations. Electron microscopy analyses show that GNPs are well dispersed, and the presence of few nanometers thick GNPs is noticed. The electrical conductivity of the polymer dramatically increases at a critical content of particles of Φ˜4 wt.%, indicating that electrical percolation has occurred. The existence of a percolating network induces a marked elastic connotation in the melt state. We show that the elasticity of GNP networks in samples at different composition can be scaled on a single master curve. This allows for the accurate estimation of the rheological percolation threshold. In addition, using the master curve we can infer the elasticity of GNP networks which are too tenuous to be appreciated via conventional rheological measurements.
New effective moduli of isotropic viscoelastic composites. Part I. Theoretical justification
NASA Astrophysics Data System (ADS)
Svetashkov, A. A.; Vakurov, A. A.
2016-04-01
According to the approach based on the commonality of problems of determining effective moduli of composites and viscoelastic solids, which properties are time-inhomogeneous, it is assumed that a viscoelastic solid is a two-component composite. One component displays temporal properties defined by a pair of Castiglianian-type effective moduli, and the other is defined by a pair of Lagrangian-type effective moduli. The Voigt and Reuss averaging is performed for the obtained two-composite solid with the introduction of a time function of volume fraction. In order to determine closer estimates, a method of iterative transformation of time effective moduli is applied to the viscoelastic Voigt-Reuss model. The physical justification of the method is provided. As a result, new time effective moduli of the viscoelastic solid are obtained which give a closer estimate of temporal properties as compared to the known models.
Quasi-linear viscoelastic properties of the human medial patello-femoral ligament.
Criscenti, G; De Maria, C; Sebastiani, E; Tei, M; Placella, G; Speziali, A; Vozzi, G; Cerulli, G
2015-12-16
The evaluation of viscoelastic properties of human medial patello-femoral ligament is fundamental to understand its physiological function and contribution as stabilizer for the selection of the methods of repair and reconstruction and for the development of scaffolds with adequate mechanical properties. In this work, 12 human specimens were tested to evaluate the time- and history-dependent non linear viscoelastic properties of human medial patello-femoral ligament using the quasi-linear viscoelastic (QLV) theory formulated by Fung et al. (1972) and modified by Abramowitch and Woo (2004). The five constant of the QLV theory, used to describe the instantaneous elastic response and the reduced relaxation function on stress relaxation experiments, were successfully evaluated. It was found that the constant A was 1.21±0.96MPa and the dimensionless constant B was 26.03±4.16. The magnitude of viscous response, the constant C, was 0.11±0.02 and the initial and late relaxation time constants τ1 and τ2 were 6.32±1.76s and 903.47±504.73s respectively. The total stress relaxation was 32.7±4.7%. To validate our results, the obtained constants were used to evaluate peak stresses from a cyclic stress relaxation test on three different specimens. The theoretically predicted values fit the experimental ones demonstrating that the QLV theory could be used to evaluate the viscoelastic properties of the human medial patello-femoral ligament. Copyright © 2015 Elsevier Ltd. All rights reserved.
Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation
Hamaguchi, Fumiya; Ando, Keita
2015-11-15
Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh–Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh–Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.
Linear oscillation of gas bubbles in a viscoelastic material under ultrasound irradiation
NASA Astrophysics Data System (ADS)
Hamaguchi, Fumiya; Ando, Keita
2015-11-01
Acoustically forced oscillation of spherical gas bubbles in a viscoelastic material is studied through comparisons between experiments and linear theory. An experimental setup has been designed to visualize bubble dynamics in gelatin gels using a high-speed camera. A spherical gas bubble is created by focusing an infrared laser pulse into (gas-supersaturated) gelatin gels. The bubble radius (up to 150 μm) under mechanical equilibrium is controlled by gradual mass transfer of gases across the bubble interface. The linearized bubble dynamics are studied from the observation of spherical bubble oscillation driven by low-intensity, planar ultrasound driven at 28 kHz. It follows from the experiment for an isolated bubble that the frequency response in its volumetric oscillation was shifted to the high frequency side and its peak was suppressed as the gelatin concentration increases. The measurement is fitted to the linearized Rayleigh-Plesset equation coupled with the Voigt constitutive equation that models the behavior of linear viscoelastic solids; the fitting yields good agreement by tuning unknown values of the viscosity and rigidity, indicating that more complex phenomena including shear thinning, stress relaxation, and retardation do not play an important role for the small-amplitude oscillations. Moreover, the cases for bubble-bubble and bubble-wall systems are studied. The observed interaction effect on the linearized dynamics can be explained as well by a set of the Rayleigh-Plesset equations coupled through acoustic radiation among these systems. This suggests that this experimental setup can be applied to validate the model of bubble dynamics with more complex configuration such as a cloud of bubbles in viscoelastic materials.
Viscoelastic stability of resin-composites aged in food-simulating solvents.
Marghalani, Hanadi Y; Watts, David C
2013-09-01
To study time-dependent viscoelastic deformation (creep and recovery) of resin-composites, after conditioning in food-simulating solvents, under a compressive stress at 37°C. Five dimethacrylate-based composites: (Spectrum TPH, Premise Body, Tetric Ceram HB, Filtek P60, X-tra fil), and two Ormocers (Experimental Ormocer V 28407, Admira) were studied. Three groups of cylindrical specimens (4mm×6mm) were prepared and then conditioned in 3 solvents: methyl ethyl ketone (MEK), ethanol, and water for 1 month at 37°C. The compressive creep-strain under 35MPa in 37°C water was recorded continuously for 2h and then the unloaded recovery-strain was monitored for another 2h. The data were analyzed by one-way ANOVA and Bonferroni's test. The materials all exhibited classic creep and recovery curves, with most parameters being significantly different (p<0.0001) for each solvent condition. All materials showed lower creep-strain in water than in ethanol or MEK solvents. Maximum creep-strain and permanent-set gave negative linear-regression (r(2)>0.98) with logarithm of the solvent solubility-parameter. The % mean (SD) creep-strain ranged from a minimum of 0.82 (0.01) for the Exp. Ormocer in water to the maximum of 4.19 (0.30) for Admira in MEK. Similar trends were found for permanent-set. The dimethacrylate-based composites behaved as an intermediate group, apart from X-tra fil that had similar stability to the Exp. Ormocer. The viscoelastic stability (low creep and permanent-set) of the Exp. Ormocer, compared to many dimethacrylate-based composites, in food-simulating solvents may be due to its diluent-free formulation. This was closely matched by a highly-filled dimethacrylate material (X-tra fil). Copyright © 2013 Academy of Dental Materials. All rights reserved.
Kinetic viscoelasticity modeling applied to degradation during carbon-carbon composite processing
NASA Astrophysics Data System (ADS)
Drakonakis, Vassilis M.; Seferis, James C.; Wardle, Brian L.; Nam, Jae-Do; Papanicolaou, George C.; Doumanidis, Charalambos C.
2010-04-01
Kinetic viscoelasticity modeling has been successfully utilized to describe phenomena during cure of thermoset based carbon fiber reinforced matrices. The basic difference from classic viscoelasticity is that the fundamental material descriptors change as a result of reaction kinetics. Accordingly, we can apply the same concept for different kinetic phenomena with simultaneous curing and degradation. The application of this concept can easily be utilized in processing and manufacturing of carbon-carbon composites, where phenolic resin matrices are cured degraded and reinfused in a carbon fiber bed. This work provides a major step towards understanding complex viscoelastic phenomena that go beyond simple thermomechanical descriptors.
The Quasi-Linear Viscoelastic Properties of Diabetic and Non-Diabetic Plantar Soft Tissue
Pai, Shruti; Ledoux, William R.
2011-01-01
The purpose of this study was to characterize the viscoelastic behavior of diabetic and non-diabetic plantar soft tissue at six ulcer-prone/load-bearing locations beneath the foot to determine any changes that may play a role in diabetic ulcer formation and subsequent amputation in this predisposed population. Four older diabetic and four control fresh frozen cadaveric feet were each dissected to isolate plantar tissue specimens from the hallux, first, third, and fifth metatarsals, lateral midfoot, and calcaneus. Stress relaxation experiments were used to quantify the viscoelastic tissue properties by fitting the data to the quasi-linear viscoelastic (QLV) theory using two methods, a traditional frequency-insensitive approach and an indirect frequency-sensitive approach, and by measuring several additional parameters from the raw data including the rate and amount of overall relaxation. The stress relaxation response of both diabetic and non-diabetic specimens was unexpectedly similar and accordingly few of the QLV parameters for either fit approach and none of raw data parameters differed. Likewise, no differences were found between plantar locations. The accuracy of both fit methods was comparable, however, neither approach predicted the ramp behavior. Further, fit coefficients varied considerably from one method to the other, making it hard to discern meaningful trends. Future testing using alternate loading modes and intact feet may provide more insight into the role that time-dependent properties play in diabetic foot ulceration. PMID:21327701
The quasi-linear viscoelastic properties of diabetic and non-diabetic plantar soft tissue.
Pai, Shruti; Ledoux, William R
2011-05-01
The purpose of this study was to characterize the viscoelastic behavior of diabetic and non-diabetic plantar soft tissue at six ulcer-prone/load-bearing locations beneath the foot to determine any changes that may play a role in diabetic ulcer formation and subsequent amputation in this predisposed population. Four older diabetic and four control fresh frozen cadaveric feet were each dissected to isolate plantar tissue specimens from the hallux, first, third, and fifth metatarsals, lateral midfoot, and calcaneus. Stress relaxation experiments were used to quantify the viscoelastic tissue properties by fitting the data to the quasi-linear viscoelastic (QLV) theory using two methods, a traditional frequency-insensitive approach and an indirect frequency-sensitive approach, and by measuring several additional parameters from the raw data including the rate and amount of overall relaxation. The stress relaxation response of both diabetic and non-diabetic specimens was unexpectedly similar and accordingly few of the QLV parameters for either fit approach and none of raw data parameters differed. Likewise, no differences were found between plantar locations. The accuracy of both fit methods was comparable, however, neither approach predicted the ramp behavior. Further, fit coefficients varied considerably from one method to the other, making it hard to discern meaningful trends. Future testing using alternate loading modes and intact feet may provide more insight into the role that time-dependent properties play in diabetic foot ulceration.
NASA Astrophysics Data System (ADS)
Hanyga, Andrzej
2014-09-01
Dispersion, attenuation and wavefronts in a class of linear viscoelastic media proposed by Strick and Mainardi (Geophys J R Astr Soc 69:415-429, 1982) and a related class of models due to Lomnitz, Jeffreys and Strick are studied by a new method due to the author. Unlike the previously studied explicit models of relaxation modulus or creep compliance, these two classes support propagation of discontinuities. Due to an extension made by Strick, either of these two classes of models comprise both viscoelastic solids and fluids. We also discuss the Andrade viscoelastic media. The Andrade media do not support discontinuity waves and exhibit the pedestal effect.
Pre-Stressed Viscoelastic Composites: Effective Incremental Moduli and Band-Gap Tuning
Parnell, William J.
2010-09-30
We study viscoelastic wave propagation along pre-stressed nonlinear elastic composite bars. In the pre-stressed state we derive explicit forms for the effective incremental storage and loss moduli with dependence on the pre-stress. We also derive a dispersion relation for the effective wavenumber in the case of arbitrary frequency, hence permitting a study of viscoelastic band-gap tuning via pre-stress.
Cast dielectric composite linear accelerator
Sanders, David M.; Sampayan, Stephen; Slenes, Kirk; Stoller, H. M.
2009-11-10
A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.
Determination of the Constitutive Constants of Non-Linear Viscoelastic Materials
NASA Astrophysics Data System (ADS)
Goh, S. M.; Charalambides, M. N.; Williams, J. G.
2004-09-01
A simple method for computing the strain and the time dependent constants for non-linear viscoelastic materials is presented. The method is based on the finite time increment formulation of the convolution integral, and is applicable for materials which exhibit separable strain and time variables. The strain-dependent function can take any form including the hyperelastic potentials such as the Mooney-Rivlin strain energy function. The time-dependent function is based on the Prony series. The attraction of the method is that true material constants can be computed for any deformation history.
NASA Astrophysics Data System (ADS)
Golub, V. P.; Fernati, P. V.; Lyashenko, Ya. G.
2008-09-01
The parameters of the fractional exponential creep and relaxation kernels of linear viscoelastic materials are determined. Methods that approximate the kernel by using the Mittag-Leffler function, the Laplace-Carson transform, and direct approximation of the creep function by the original equation are analyzed. The parameters of fractional exponential kernels are determined for aramid fibers, parapolyamide fibers, glass-reinforced plastic, and polymer concrete. It is shown that the kernel parameters calculated through the direct approximation of the creep function provide the best agreement between theory and experiment. The methods are experimentally validated for constant-stress and variable-stress loading in the modes of additional loading and complete unloading
NASA Astrophysics Data System (ADS)
Ludwig, Thomas; Doreille, Mathias; Merazzi, Silvio; Vescovini, Riccardo; Bisagni, Chiara
2015-10-01
This paper presents a methodology for predicting the damped response and energy dissipation of laminated composite structures, subjected to dynamic loads. Starting from simple coupon tests to characterize the material, the numerical simulation of damping properties is made possible by a novel linear viscoelastic model that has been developed and implemented in the finite element code B2000++. A nonlinear optimization procedure is adopted to fit experimental data and define the exponential Maxwell parameter model. To illustrate the potentialities of the method, the post-buckling analysis of a relatively complex aeronautical panel is presented, accounting not only for geometric nonlinearities, but also for viscoelastic effects. The results illustrate the effects due to material dissipation, their relation to the effects of inertia, and the influence of geometric imperfections on the response of the panel.
NASA Astrophysics Data System (ADS)
Batt, Gregory S.; Gibert, James M.; Daqaq, Mohammed
2015-08-01
In this paper, the free and forced vibration response of a linearized, distributed-parameter model of a viscoelastic rod with an applied tip-mass is investigated. A nonlinear model is developed from constitutive relations and is linearized about a static equilibrium position for analysis. A classical Maxwell-Weichert model, represented via a Prony series, is used to model the viscoelastic system. The exact solution to both the free and forced vibration problem is derived and used to study the behavior of an idealized packaging system containing Nova Chemicals' Arcel® foam. It is observed that, although three Prony series terms are deemed sufficient to fit the static test data, convergence of the dynamic response and study of the storage and loss modulii necessitate the use of additional Prony series terms. It is also shown that the model is able to predict the modal frequencies and the primary resonance response at low acceleration excitation, both with reasonable accuracy given the non-homogeneity and density variation observed in the specimens. Higher acceleration inputs result in softening nonlinear responses highlighting the need for a nonlinear elastic model that extends beyond the scope of this work. Solution analysis and experimental data indicate little material vibration energy dissipation close to the first modal frequency of the mass/rod system.
Non-linear analysis and the design of Pumpkin Balloons: stress, stability and viscoelasticity
NASA Astrophysics Data System (ADS)
Rand, J. L.; Wakefield, D. S.
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures Founded upon their inTENS finite element analysis suite these activities have broadened to encompass lighter than air structures such as aerostats hybrid air-vehicles and stratospheric balloons Winzen Engineering couple many years of practical balloon design and fabrication experience with both academic and practical knowledge of the characterisation of the non-linear viscoelastic response of the polymeric films typically used for high-altitude scientific balloons Both companies have provided consulting services to the NASA Ultra Long Duration Balloon ULDB Program Early implementations of pumpkin balloons have shown problems of geometric instability characterised by improper deployment and these difficulties have been reproduced numerically using inTENS The solution lies in both the shapes of the membrane lobes and also the need to generate a biaxial stress field in order to mobilise in-plane shear stiffness Balloons undergo significant temperature and pressure variations in flight The different thermal characteristics between tendons and film can lead to significant meridional stress Fabrication tolerances can lead to significant local hoop stress concentrations particularly adjacent to the base and apex end fittings The non-linear viscoelastic response of the envelope film acts positively to help dissipate stress concentrations However creep over time may produce lobe geometry variations that may
Haider, M A; Guilak, F
2000-06-01
The micropipette aspiration test has been used extensively in recent years as a means of quantifying cellular mechanics and molecular interactions at the microscopic scale. However, previous studies have generally modeled the cell as an infinite half-space in order to develop an analytical solution for a viscoelastic solid cell. In this study, an axisymmetric boundary integral formulation of the governing equations of incompressible linear viscoelasticity is presented and used to simulate the micropipette aspiration contact problem. The cell is idealized as a homogeneous and isotropic continuum with constitutive equation given by three-parameter (E, tau 1, tau 2) standard linear viscoelasticity. The formulation is used to develop a computational model via a "correspondence principle" in which the solution is written as the sum of a homogeneous (elastic) part and a nonhomogeneous part, which depends only on past values of the solution. Via a time-marching scheme, the solution of the viscoelastic problem is obtained by employing an elastic boundary element method with modified boundary conditions. The accuracy and convergence of the time-marching scheme are verified using an analytical solution. An incremental reformulation of the scheme is presented to facilitate the simulation of micropipette aspiration, a nonlinear contact problem. In contrast to the halfspace model (Sato et al., 1990), this computational model accounts for nonlinearities in the cell response that result from a consideration of geometric factors including the finite cell dimension (radius R), curvature of the cell boundary, evolution of the cell-micropipette contact region, and curvature of the edges of the micropipette (inner radius a, edge curvature radius epsilon). Using 60 quadratic boundary elements, a micropipette aspiration creep test with ramp time t* = 0.1 s and ramp pressure p*/E = 0.8 is simulated for the cases a/R = 0.3, 0.4, 0.5 using mean parameter values for primary chondrocytes
NASA Astrophysics Data System (ADS)
Li, Dongna; Li, Xudong; Dai, Jianfeng
2017-08-01
In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.
Babaei, Behzad; Abramowitch, Steven D.; Elson, Elliot L.; Thomopoulos, Stavros; Genin, Guy M.
2015-01-01
The viscoelastic behaviour of a biological material is central to its functioning and is an indicator of its health. The Fung quasi-linear viscoelastic (QLV) model, a standard tool for characterizing biological materials, provides excellent fits to most stress–relaxation data by imposing a simple form upon a material's temporal relaxation spectrum. However, model identification is challenging because the Fung QLV model's ‘box’-shaped relaxation spectrum, predominant in biomechanics applications, can provide an excellent fit even when it is not a reasonable representation of a material's relaxation spectrum. Here, we present a robust and simple discrete approach for identifying a material's temporal relaxation spectrum from stress–relaxation data in an unbiased way. Our ‘discrete QLV’ (DQLV) approach identifies ranges of time constants over which the Fung QLV model's typical box spectrum provides an accurate representation of a particular material's temporal relaxation spectrum, and is effective at providing a fit to this model. The DQLV spectrum also reveals when other forms or discrete time constants are more suitable than a box spectrum. After validating the approach against idealized and noisy data, we applied the methods to analyse medial collateral ligament stress–relaxation data and identify the strengths and weaknesses of an optimal Fung QLV fit. PMID:26609064
Babaei, Behzad; Abramowitch, Steven D; Elson, Elliot L; Thomopoulos, Stavros; Genin, Guy M
2015-12-06
The viscoelastic behaviour of a biological material is central to its functioning and is an indicator of its health. The Fung quasi-linear viscoelastic (QLV) model, a standard tool for characterizing biological materials, provides excellent fits to most stress-relaxation data by imposing a simple form upon a material's temporal relaxation spectrum. However, model identification is challenging because the Fung QLV model's 'box'-shaped relaxation spectrum, predominant in biomechanics applications, can provide an excellent fit even when it is not a reasonable representation of a material's relaxation spectrum. Here, we present a robust and simple discrete approach for identifying a material's temporal relaxation spectrum from stress-relaxation data in an unbiased way. Our 'discrete QLV' (DQLV) approach identifies ranges of time constants over which the Fung QLV model's typical box spectrum provides an accurate representation of a particular material's temporal relaxation spectrum, and is effective at providing a fit to this model. The DQLV spectrum also reveals when other forms or discrete time constants are more suitable than a box spectrum. After validating the approach against idealized and noisy data, we applied the methods to analyse medial collateral ligament stress-relaxation data and identify the strengths and weaknesses of an optimal Fung QLV fit. © 2015 The Author(s).
The Viscoelastic Properties of Passive Eye Muscle in Primates. II: Testing the Quasi-Linear Theory
Quaia, Christian; Ying, Howard S.; Optican, Lance M.
2009-01-01
We have extensively investigated the mechanical properties of passive eye muscles, in vivo, in anesthetized and paralyzed monkeys. The complexity inherent in rheological measurements makes it desirable to present the results in terms of a mathematical model. Because Fung's quasi-linear viscoelastic (QLV) model has been particularly successful in capturing the viscoelastic properties of passive biological tissues, here we analyze this dataset within the framework of Fung's theory. We found that the basic properties assumed under the QLV theory (separability and superposition) are not typical of passive eye muscles. We show that some recent extensions of Fung's model can deal successfully with the lack of separability, but fail to reproduce the deviation from superposition. While appealing for their elegance, the QLV model and its descendants are not able to capture the complex mechanical properties of passive eye muscles. In particular, our measurements suggest that in a passive extraocular muscle the force does not depend on the entire length history, but to a great extent is only a function of the last elongation to which it has been subjected. It is currently unknown whether other passive biological tissues behave similarly. PMID:19649257
The viscoelastic properties of passive eye muscle in primates. II: testing the quasi-linear theory.
Quaia, Christian; Ying, Howard S; Optican, Lance M
2009-08-03
We have extensively investigated the mechanical properties of passive eye muscles, in vivo, in anesthetized and paralyzed monkeys. The complexity inherent in rheological measurements makes it desirable to present the results in terms of a mathematical model. Because Fung's quasi-linear viscoelastic (QLV) model has been particularly successful in capturing the viscoelastic properties of passive biological tissues, here we analyze this dataset within the framework of Fung's theory.We found that the basic properties assumed under the QLV theory (separability and superposition) are not typical of passive eye muscles. We show that some recent extensions of Fung's model can deal successfully with the lack of separability, but fail to reproduce the deviation from superposition.While appealing for their elegance, the QLV model and its descendants are not able to capture the complex mechanical properties of passive eye muscles. In particular, our measurements suggest that in a passive extraocular muscle the force does not depend on the entire length history, but to a great extent is only a function of the last elongation to which it has been subjected. It is currently unknown whether other passive biological tissues behave similarly.
Gayle, Andrew J.; Cook, Robert F.
2016-01-01
An instrumented indentation method is developed for generating maps of time-dependent viscoelastic and time-independent plastic properties of polymeric materials. The method is based on a pyramidal indentation model consisting of two quadratic viscoelastic Kelvin-like elements and a quadratic plastic element in series. Closed-form solutions for indentation displacement under constant load and constant loading-rate are developed and used to determine and validate material properties. Model parameters are determined by point measurements on common monolithic polymers. Mapping is demonstrated on an epoxy-ceramic interface and on two composite materials consisting of epoxy matrices containing multi-wall carbon nanotubes. A fast viscoelastic deformation process in the epoxy was unaffected by the inclusion of the nanotubes, whereas a slow viscoelastic process was significantly impeded, as was the plastic deformation. Mapping revealed considerable spatial heterogeneity in the slow viscoelastic and plastic responses in the composites, particularly in the material with a greater fraction of nanotubes. PMID:27563168
Earthquake Cycle Simulations with Rate-and-State Friction and Linear and Nonlinear Viscoelasticity
NASA Astrophysics Data System (ADS)
Allison, K. L.; Dunham, E. M.
2016-12-01
We have implemented a parallel code that simultaneously models both rate-and-state friction on a strike-slip fault and off-fault viscoelastic deformation throughout the earthquake cycle in 2D. Because we allow fault slip to evolve with a rate-and-state friction law and do not impose the depth of the brittle-to-ductile transition, we are able to address: the physical processes limiting the depth of large ruptures (with hazard implications); the degree of strain localization with depth; the relative partitioning of fault slip and viscous deformation in the brittle-to-ductile transition zone; and the relative contributions of afterslip and viscous flow to postseismic surface deformation. The method uses a discretization that accommodates variable off-fault material properties, depth-dependent frictional properties, and linear and nonlinear viscoelastic rheologies. All phases of the earthquake cycle are modeled, allowing the model to spontaneously generate earthquakes, and to capture afterslip and postseismic viscous flow. We compare the effects of a linear Maxwell rheology, often used in geodetic models, with those of a nonlinear power law rheology, which laboratory data indicates more accurately represents the lower crust and upper mantle. The viscosity of the Maxwell rheology is set by power law rheological parameters with an assumed a geotherm and strain rate, producing a viscosity that exponentially decays with depth and is constant in time. In contrast, the power law rheology will evolve an effective viscosity that is a function of the temperature profile and the stress state, and therefore varies both spatially and temporally. We will also integrate the energy equation for the thermomechanical problem, capturing frictional heat generation on the fault and off-fault viscous shear heating, and allowing these in turn to alter the effective viscosity.
Kumar, Bipin; Das, Apurba; Alagirusamy, R
2012-09-01
Understanding the stress relaxation behavior of the compression bandage could be very useful in determining the behavior of the interface pressure exerted by the bandage on a limb during the course of the compression treatment. There has been no comprehensive study in the literature to investigate the pressure profile (interface pressure with time) generated by a compression bandage when applied at different levels of strain. The present study attempts to describe the pressure profile, with the use of a quasi-linear viscoelastic model, generated by a compression bandage during compression therapy. The quasi-linear viscoelastic (QLV) theory proposed by Fung (Fung, 1972, "Stress Strain History Relations of Soft Tissues in Simple Elongation," Biomechanics: Its Foundations and Objectives, Y. C. Fung, N. Perrone, and M. Anliker, eds., Prentice-Hall, Englewood Cliffs, NJ, pp. 181-207). was used to model the nonlinear time- and history-dependent relaxation behavior of the bandage using the ramp strain approach. The regression analysis was done to find the correlation between the pressure profile and the relaxation behavior of the bandage. The parameters of the QLV model, describing the relaxation behavior of the bandage, were used to determine the pressure profile generated by the bandage at different levels of strain. The relaxation behaviors of the bandage at different levels of strain were well described by the QLV model parameters. A high correlation coefficient (nearly 0.98) shows a good correlation of the pressure profile with the stress relaxation behavior of the bandage.The prediction of the pressure profile using the QLV model parameters were in agreement with the experimental data. The pressure profile generated by a compression bandage could be predicted using the QLV model describing the nonlinear relaxation behavior of the bandage. This new application of the QLV theory helps in evaluating the bandage performance during compression therapy as scientific wound
Skontorp, A.; Wang, S.S.; Shibuya, Y.
1994-12-31
In this paper, a homogenization theory is developed to determine high-temperature effective viscoelastic constitutive equations for fiber-reinforced polymer composites. The homogenization theory approximates the microstructure of a fiber composite, and determine simultaneously effective macroscopic constitutive properties of the composite and the associated microscopic strain and stress in the heterogeneous material. The time-temperature dependent homogenization theory requires that the viscoelastic constituent properties of the matrix phase at elevated temperatures, the governing equations for the composites, and the boundary conditions of the problem be Laplace transformed to a conjugate problem. The homogenized effective properties in the transformed domain are determined, using a two-scale asymptotic expansion of field variables and an averaging procedure. Field solutions in the unit cell are determined from basic and first-order governing equations with the aid of a boundary integral method (BIM). Effective viscoelastic constitutive properties of the composite at elevated temperatures are determined by an inverse transformation, as are the microscopic stress and deformation in the composite. Using this method, interactions among fibers and between the fibers and the matrix can be evaluated explicitly, resulting in accurate solutions for composites with high-volume fraction of reinforcing fibers. Examples are given for the case of a carbon-fiber reinforced thermoplastic polyamide composite in an elevated temperature environment. The homogenization predictions are in good agreement with experimental data available for the composite.
NASA Astrophysics Data System (ADS)
Shamaev, A. S.; Shumilova, V. V.
2017-01-01
The problem of plane wave propagation through a plane composite layer of thickness h is considered. The composite consists of periodically repeated elastic and Kelvin-Voigt viscoelastic material layers, and all layers are either parallel or perpendicular to the incident wave front. Moreover, it is assumed that the thickness of each separate layer of the composite is much less than the acoustic wave length and the thickness h of the entire composite. We study the problem by using a homogenized model of the composite, which allows us to find the reflection and transmission factors and the variation in the sound intensity level as it propagates though the composite layer of thickness h.
Dynamics of two-dimensional composites of elastic and viscoelastic layers.
El-Raheb, Michael
2002-10-01
Models of frequency response, acoustic transmission, and transient wave propagation are presented for a two-dimensional composite of elastic and viscoelastic layers, simply supported at the two boundaries. The three models adopt transfer matrices to relate state variables over the two faces of a layer. In the frequency domain, a viscoelastic constitutive law is derived by nonlinear fitting a Padé series to measured data of complex shear modulus. For an elastic material, the eigenproblem admits positive real eigenvalues and their negatives. For a viscoelastic material, it admits positive complex eigenvalues and their negative conjugates. The imaginary part of the eigenvalue acts as a velocity-dependent viscous damper. Modal analysis solving transient response utilizes the complex eigenquantities and the static-dynamic superposition method.
A finite element modeling of a multifunctional hybrid composite beam with viscoelastic materials
NASA Astrophysics Data System (ADS)
Wang, Ya; Inman, Daniel J.
2013-04-01
The multifunctional hybrid composite structure studied here consists of a ceramic outer layer capable of withstanding high temperatures, a functionally graded ceramic layer combining shape memory alloy (SMA) properties of NiTi together with Ti2AlC (called Graded Ceramic/Metal Composite, or GCMeC), and a high temperature sensor patch, followed by a polymer matrix composite laced with vascular cooling channels all held together with various epoxies. Due to the recoverable nature of SMA and adhesive properties of Ti2AlC, the damping behavior of the GCMeC is largely viscoelastic. This paper presents a finite element formulation for this multifunctional hybrid structure with embedded viscoelastic material. In order to implement the viscoelastic model into the finite element formulation, a second order three parameter Golla-Hughes-McTavish (GHM) method is used to describe the viscoelastic behavior. Considering the parameter identification, a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. The curve-fitting aspects of both GHM and ADF show good agreement with experimental data obtained from dynamic mechanics analysis. The performance of the finite element of the layered multifunctional beam is verified through experimental model analysis.
NASA Astrophysics Data System (ADS)
Indei, Tsutomu; Takimoto, Jun-ichi
2010-11-01
We have developed a single-chain theory that describes dynamics of associating polymer chains carrying multiple associative groups (or stickers) in the transient network formed by themselves and studied linear viscoelastic properties of this network. It is shown that if the average number N¯ of stickers associated with the network junction per chain is large, the terminal relaxation time τA that is proportional to τXN¯2 appears. The time τX is the interval during which an associated sticker goes back to its equilibrium position by one or more dissociation steps. In this lower frequency regime ω <1/τX, the moduli are well described in terms of the Rouse model with the longest relaxation time τA. The large value of N¯ is realized for chains carrying many stickers whose rate of association with the network junction is much larger than the dissociation rate. This associative Rouse behavior stems from the association/dissociation processes of stickers and is different from the ordinary Rouse behavior in the higher frequency regime, which is originated from the thermal segmental motion between stickers. If N¯ is not large, the dynamic shear moduli are well described in terms of the Maxwell model characterized by a single relaxation time τX in the moderate and lower frequency regimes. Thus, the transition occurs in the viscoelastic relaxation behavior from the Maxwell-type to the Rouse-type in ω <1/τX as N¯ increases. All these results are obtained under the affine deformation assumption for junction points. We also studied the effect of the junction fluctuations from the affine motion on the plateau modulus by introducing the virtual spring for bound stickers. It is shown that the plateau modulus is not affected by the junction fluctuations.
NASA Astrophysics Data System (ADS)
Cua, Edwin Matthew Chua
The characterization of the low-frequency linear viscoelastic properties of polymers is a classical problem in rheometry, especially for broad molecular weight (MW), fractional melt-flow index (MFI) polyolefins with small time-temperature shift factors. By interconversion of high-temperature, low-shear steady-viscosity data in the terminal flow regime into low-frequency data using the Cox-Merz rule, the experimental window is expanded towards lower frequencies. A squeeze-flow apparatus using Newton interferometry as a drift-free transducer to measure the gap between a spherical lens and a flat glass plate with high spatial resolution was constructed. Trials with a Newtonian silicone oil and a viscoelastic polydimethylsiloxane (PDMS) gum were undertaken to examine the various experimental factors that might contribute to errors in the calculation of the viscosity. After taking into account those factors during the runs with PDMS gum, the squeeze-flow-derived viscosities at the terminal flow regime (at shear rates accessible to a commercial rheometer) were in good agreement with low frequency dynamic data. To achieve much lower shear rates for the runs with polyolefins, an increase in the working gap range was made by switching from Newton interferometry to Fizeau interferometry. A hermetically sealed high vacuum chamber was built to allow high-temperature runs with polyolefins with minimal degradation. Interconversion of the measured viscosities of a broad MW, 1.04 MFI high-density polyethylene (HDPE) with the squeeze flow apparatus resulted in complex viscosity data at ˜10-5 rad/s, expanding the experimental window by 2 decades. The squeeze-flow derived complex viscosity data was used to decide which of the two popular viscosity models was more accurate in predicting the zero-shear rate viscosity based on its fit to dynamic data limited to higher frequencies.
NASA Astrophysics Data System (ADS)
Li, Jilong; Zhou, Zhi; Ou, Jinping
2006-03-01
This paper presents the interface transferring mechanism and error modification of the Fiber Reinforced Polymer-Optical Fiber Bragg Grating (FRP-OFBG) sensing tendons, which including GFRP (Glass Fiber Reinforced Polymer) and CFRP (Carbon Fiber Reinforced Polymer), using standard linear viscoelastic model. The optical fiber is made up of glass, quartz or plastic, et al, which creep strain is very small at room temperature. So the tensile creep compliance of optical fiber is independent of time at room temperature. On the other hand, the FRP (GFRP or CFRP) is composed of a kind of polymeric matrix (epoxy resins or the others) with glass, carbon or aramid fibers, which shear creep strain is dependent of time at room temperature. Hence, the standard linear viscoelastic model is employed to describe the shear creep compliance of FRP along the fiber direction. The expression of interface strain transferring mechanism of FRP-OFBG sensors is derived based on the linear viscoelastic theory and the analytic solution of the error rate is given by the inverse Laplace transform. The effects of FRP viscoelasticity on the error rate of FRP-OFBG sensing tendons are included in the above expression. And the transient and steady-state error modified coefficient of FRP-OFBG sensors are obtained using initial value and final value theorems. Finally, a calculated example is given to explain the correct of theoretical prediction.
NASA Technical Reports Server (NTRS)
Morris, D. H.; Yeow, Y. T.
1979-01-01
The time-temperature response of the principal compliances of a unidirectional graphite/epoxy composite was determined. It is shown that two components of the compliance matrix are time and temperature independent and that the compliance matrix is symmetric for the viscoelastic composite. The time-temperature superposition principle is used to determine shift factors which are independent of fiber orientation, for fiber angles that vary from 10 D to 90 D with respect to the load direction.
Non-linear dynamics of viscoelastic liquid trilayers subjected to an electric field
NASA Astrophysics Data System (ADS)
Karapetsas, George; Bontozoglou, Vasilis
2014-11-01
The scope of this work is to investigate the non-linear dynamics of the electro-hydrodynamic instability of a trilayer of immiscible liquids. We consider the case of a polymer film which is separated from the top electrode by two viscous fluids. We develop a computational model and carry out 2D numerical simulations fully accounting for the flow and electric field in all phases. For the numerical solution of the governing equations we employ the mixed finite element method combined with a quasi-elliptic mesh generation scheme which is capable of following the large deformations of the liquid-liquid interface. We model the viscoelastic behavior using the Phan-Thien and Tanner (PTT) constitutive equation taking fully into account the non-linear elastic effects as well as a varying shear and extensional viscosity. We perform a thorough parametric study and investigate the influence of the electric properties of fluids, applied voltage and various rheological parameters. The authors acknowledge the support by the General Secretariat of Research and Technology of Greece under the action ``Supporting Postdoctoral Researchers'' (Grant Number PE8/906), co-funded by the European Social Fund and National Resources.
Sedef, Mert; Samur, Evren; Basdogan, Cagatay
2006-01-01
The lack of experimental data on the viscoelastic material properties of live organ tissues has been a significant obstacle in the development of realistic models. A real-time and realisti finite-element simulation of viscoelastic tissue behavior using experimental data collected by a robotic indenter offers one solution.
How preservation time changes the linear viscoelastic properties of porcine liver.
Wex, C; Stoll, A; Fröhlich, M; Arndt, S; Lippert, H
2013-01-01
The preservation time of a liver graft is one of the crucial factors for the success of a liver transplantation. Grafts are kept in a preservation solution to delay cell destruction and cellular edema and to maximize organ function after transplantation. However, longer preservation times are not always avoidable. In this paper we focus on the mechanical changes of porcine liver with increasing preservation time, in order to establish an indicator for the quality of a liver graft dependent on preservation time. A time interval of 26 h was covered and the rheological properties of liver tissue studied using a stress-controlled rheometer. For samples of 1 h preservation time 0.8% strain was found as the limit of linear viscoelasticity. With increasing preservation time a decrease in the complex shear modulus as an indicator for stiffness was observed for the frequency range from 0.1 to 10 Hz. A simple fractional derivative representation of the Kelvin Voigt model was applied to gain further information about the changes of the mechanical properties of liver with increasing preservation time. Within the small shear rate interval of 0.0001-0.01 s⁻¹ the liver showed Newtonian-like flow behavior.
Chen, Rung-Jian; Lin, Chou-Ching K; Ju, Ming-Shaung
2010-04-19
Biomechanical properties of nerves were investigated using the quasi-linear viscoelastic model. An improved parameter estimation technique based on fast convolution was developed and tested in sciatic nerves of normal and diabetic rats. In situ dynamic compression response of sciatic nerves was obtained by a modified custom-designed compression system. Six normal and five diabetic neuropathic Wistar rats were used. The model derived from the high strain rate (0.1 s(-1)) data could predict the responses of lower strain rates (0.05 and 0.01 s(-1)) satisfactorily. The computation time was cut down 49.0% by using the newly developed technique without increasing the root-mean-square error. The percentage of stress relaxation of the diabetic and normal rats, calculated directly from the experimental data, was not significantly different (51.03+/-1.96% vs. 55.97+/-5.89%, respectively; p=0.247). After model fitting, compared with the QLV parameters of normal nerves, the smaller parameter C for diabetic nerves (0.27+/-0.06 vs. 0.20+/-0.02, p < 0.05) indicated that diabetic nerves had a smaller amplitude of viscous response (stress relaxation). The larger parameter tau(2) of diabetic nerves (199+/-153 s vs. 519+/-337 s, p<0.05) implied that diabetic nerves needed a longer relaxation period to reach equilibrium. Copyright 2009 Elsevier Ltd. All rights reserved.
Quasi-Linear Viscoelastic theory applied to internal shearing of porcine aortic valve leaflets.
Carew, E O; Talman, E A; Boughner, D R; Vesely, I
1999-08-01
The elements of Quasi-Linear Viscoelastic (QLV) theory have been applied to model the internal shear mechanics of fresh and glutaraldehyde-fixed porcine aortic valve leaflets. A novel function estimation method was used to extract the material functions from experimental shear data obtained at one strain rate, and the model was used to predict the material response at different strain rates. In general, experiments and predictions were in good agreement, the larger discrepancies being in the prediction of peak stresses and hysteresis in cyclic shear. In shear, fixed tissues are stiffer (mean initial shear modulus, 13 kPa versus 427 Pa), take longer to relax to steady state (mean tau 2 4,736 s versus 1,764 s) with a slower initial relaxation rate (mean magnitude of G(0), 1 s-1 versus 5 s-1), and relax to a lesser extent than fresh tissues (mean percentage stress remaining after relaxation, 60 versus 45 percent). All differences were significant at p = 0.04 or less, except for the initial relaxation slope. We conclude that shear experiments can complement traditional tensile and biaxial experiments toward providing a complete mechanical description of soft biomaterials, particularly when evaluating alternative chemical fixation techniques.
Quasi-linear viscoelastic properties of costal cartilage using atomic force microscopy.
Tripathy, S; Berger, E J
2012-01-01
Costal cartilage (CC) is one of the load-bearing tissues of the rib cage. Literature on material characterisation of the CC is limited. Atomic force microscopy (AFM) has been extremely successful in characterising the elastic properties of soft biomaterials such as articular cartilage and hydrogels, which are often the material of choice for cartilage models. But AFM data on CC are absent in the literature. In this study, AFM indentations using spherical beaded tips were performed on human CC to isolate the mechanical properties. A novel method was developed for modelling the relaxation indentation experiments based on Fung's quasi-linear viscoelasticity and a continuous relaxation spectrum. This particular model has been popular for uniaxial compression test data analysis. Using the model, the mean Young's modulus of CC was found to be about 2.17, 4.11 and 5.49 MPa for three specimens. A large variation of modulus was observed over the tissue. Also, the modulus values decreased with distance from the costochondral junction.
Zheng, Y P; Mak, A F
1999-06-01
A manual indentation protocol was established to assess the quasi-linear viscoelastic (QLV) properties of lower limb soft tissues. The QLV parameters were extracted using a curve-fitting procedure on the experimental indentation data. The load-indentation responses were obtained using an ultrasound indentation apparatus with a hand-held pen-sized probe. Limb soft tissues at four sites of eight normal young subjects were tested in three body postures. Four QLV model parameters were extracted from the experimental data. The initial modulus E0 ranged from 0.22 kPa to 58.4 kPa. The nonlinear factor E1 ranged from 21.7 kPa to 547 kPa. The time constant tau ranged from 0.05 s to 8.93 s. The time-dependent materials parameter alpha ranged from 0.029 to 0.277. Large variations of the parameters were noted among subjects, sites, and postures.
Viscoelastic Properties of Advanced Polymer Composites for Ballistic Protective Applications
1994-09-01
of stainless steel-toughened NiAl composite plate. Author: Nardone , Vincent C. Corporate Source: United Technologies Research Cent, Hartford, CT, USA...toughened composites. Author: Nardone , Vincent C; Strife, James R, Corporate Source: United Technologies Research Cent, E. Hartford, CT, USA Source...matrix composites. Author: Nardone , Vincent C; Strife, James R.; Pre wo, K. M. Corporate Source: United Technologies Research Cent, E. Hartford, CT
NASA Astrophysics Data System (ADS)
Arshad Bashir, M.; Shahid, M.; Ahmed, Riaz; Yahya, A. G.
2014-06-01
In this research paper the effect of blending ratio of natural rubber (NR) with Ethylene Propylene Diene Monomer (EPDM) were investigated. Different samples of EPDM/NR ratio were prepared to study the variation of NR in EPDM on rheology, curing characteristics, tangent δ, and viscosity variation during vulcanization of sponge nano composites.The main aim of present research is to develop elastomeric based sponge composites with the blending ratio of base elastomers along with the carbon nano particles for high energy absorbing and damping applications. The curing characteristics, rheology and viscoelastic nature of the composite is remarkably influenced with the progressive blending ratio of the base elastomeric matrix.
NASA Astrophysics Data System (ADS)
Golub, V. P.; Maslov, B. P.; Fernati, P. V.
2016-11-01
The relationships between the hereditary and creep kernels are established. The hereditary kernels define the scalar properties of isotropic linear viscoelastic materials in a combined stress state. The creep kernels are obtained in uniaxial-tension and pure-torsion tests. The constitutive equations are chosen so as to meet the hypothesis of proportional deviators. The problems of analyzing the creep deformation and stress relaxation of thin-walled tubular specimens under combined tension and torsion are solved and tested experimentally
Valdez-Jasso, Daniela; Bia, Daniel; Zócalo, Yanina; Armentano, Ricardo L.; Haider, Mansoor A.; Olufsen, Mette S.
2013-01-01
A better understanding of the biomechanical properties of the arterial wall provides important insight into arterial vascular biology under normal (healthy) and pathological conditions. This insight has potential to improve tracking of disease progression and to aid in vascular graft design and implementation. In this study, we use linear and nonlinear viscoelastic models to predict biomechanical properties of the thoracic descending aorta and the carotid artery under ex vivo and in vivo conditions in ovine and human arteries. Models analyzed include a four-parameter (linear) Kelvin viscoelastic model and two five-parameter nonlinear viscoelastic models (an arctangent and a sigmoid model) that relate changes in arterial blood pressure to the vessel cross-sectional area (via estimation of vessel strain). These models were developed using the framework of Quasilinear Viscoelasticity (QLV) theory and were validated using measurements from the thoracic descending aorta and the carotid artery obtained from human and ovine arteries. In vivo measurements were obtained from ten ovine aortas and ten human carotid arteries. Ex vivo measurements (from both locations) were made in eleven male Merino sheep. Biomechanical properties were obtained through constrained estimation of model parameters. To further investigate the parameter estimates we computed standard errors and confidence intervals and we used analysis of variance to compare results within and between groups. Overall, our results indicate that optimal model selection depends on the arterial type. Results showed that for the thoracic descending aorta (under both experimental conditions) the best predictions were obtained with the nonlinear sigmoid model, while under healthy physiological pressure loading the carotid arteries nonlinear stiffening with increasing pressure is negligible, and consequently, the linear (Kelvin) viscoelastic model better describes the pressure-area dynamics in this vessel. Results
NASA Astrophysics Data System (ADS)
Wang, Ya; Inman, Daniel J.
2013-11-01
This paper investigates the frequency dependent viscoelastic dynamics of a multifunctional composite structure from finite element analysis and experimental validation. The frequency-dependent behavior of the stiffness and damping of a viscoelastic material directly affects the system's modal frequencies and damping, and results in complex vibration modes and differences in the relative phase of vibration. A second order three parameter Golla-Hughes-McTavish (GHM) method and a second order three fields Anelastic Displacement Fields (ADF) approach are used to implement the viscoelastic material model, enabling the straightforward development of time domain and frequency domain finite elements, and describing the frequency dependent viscoelastic behavior. Considering the parameter identification a strategy to estimate the fractional order of the time derivative and the relaxation time is outlined. Agreement between the curve fits using both the GHM and ADF and experiment is within 0.001 percent error. Continuing efforts are addressing the material modulus comparison of the GHM and the ADF model. There may be a theoretical difference between viscoelastic degrees of freedom at nodes and elements, but their numerical results are very close to each other in the specific frequency range of interest. With identified model parameters, numerical simulation is carried out to predict the damping behavior in its first two vibration modes. The experimental testing on the layered composite beam validates the numerical predication. Experimental results also show that elastic modulus measured from dynamic response yields more accurate results than static measurement, such as tensile testing, especially for elastomers. The viscoelatic layer is augmented with the inclusion of a shear angle associated with transverse shear in addition to Euler-Bernoulli hypotheses. >The other four layers are assumed to be elastic; Euler-Bernoulli bending assumption applies; Transverse and rotatory
Quasi-linear viscoelastic modeling of arterial wall for surgical simulation.
Yang, Tao; Chui, Chee Kong; Yu, Rui Qi; Qin, Jing; Chang, Stephen K Y
2011-11-01
Realistic soft tissue deformation modeling and haptic rendering for surgical simulation require accurate knowledge of tissue material characteristics. Biomechanical experiments on porcine tissue were performed, and a reduced quasi-linear viscoelastic model was developed to describe the strain-dependent relaxation behavior of the arterial wall. This information is used in surgical simulation to provide a realistic sensation of reduction in strength when the user holds a virtual blood vessel strained at different levels. Twelve pieces of porcine abdominal artery were tested with uniaxial elongation and relaxation test in both circumferential and longitudinal directions. The mechanical property testing system consists of automated environment control, testing, and data collection mechanism. A combined logarithm and polynomial strain energy equation was applied to model the elastic response of the specimens. The reduced relaxation function was modified by integrating a rational equation as a corrective factor to precisely describe the strain-dependent relaxation effects. The experiments revealed that (1) stress is insensitive to strain rate in arterial tissue when the loading rate is low, and (2) the rate of stress relaxation of arterial wall is highly strain dependent. The proposed model can accurately represent the experimental data. Stress-strain function derived from the combined strain energy function is able to fit the tensile experimental data with R(2) equals to 0.9995 in circumferential direction and 0.999 in longitudinal direction. Modified reduced relaxation function is able to model the strain-dependent relaxation with R(2) equals to 0.9686 in circumferential direction and 0.988 in longitudinal direction. The proposed model, based on extensive biomechanical experiments, can be used for accurate simulation of arterial deformation and haptic rendering in surgical simulation. The resultant model enables stress relaxation status to be determined when subjected
Dynamic viscoelasticities for short fiber-thermoplastic elastomer composites
Guo, Wuyun; Ashida, Michio . Graduate School of Science and Technology)
1993-11-20
Dynamic moduli, E[prime] and E[double prime], and loss tangent tan [delta] were investigated for thermoplastic elastomers (TPEs), styrene-isoprene-styrene copolymers (SISs), styrene-butadiene-styrene copolymer (SBS), and Hytrel and composites reinforced by poly(ethylene terephthalate) (PET) short fibers. The styrenic TPEs have a typical rubbery behavior and the Hytrel TPE has medial characteristics between rubber and plastic. Both E[prime] and E[double prime] of the composites depended on the matrix as well as the fiber loading and fiber length. Based on the viewpoint of different extensibility between the fiber and the matrix elastomer, a triblock model was considered for estimating the storage modulus of the short fiber-TPE composites as follows: E[sub c] = [alpha] V[sub f]E[sub f] + [beta](1 [minus] V[sub f])E[sub m], where [alpha] and [beta] are the effective deformation coefficients for the fiber and the matrix elastomer, respectively. They can be quantitatively represented by modulus ratio M (= E[sub m]/E[sub f]) and fiber length L: [alpha] = (L[sup n] + k)M/(L[sup n]M + k), [beta] = (1 [minus] [alpha]V[sub f])/(1 [minus] V[sub f]), where the constants n and k are obtained experimentally. When k = 0.0222 and n = 0.45, E[sub c] of the TPE composites agreed well with the prediction of the proposed model. The relaxation spectrum of the composites showed a distinct main peak ascribed to the matrix elastomer, but no peak to the PET fiber.
Viscoelastic properties of kenaf reinforced unsaturated polyester composites
NASA Astrophysics Data System (ADS)
Osman, Ekhlas A.; Mutasher, Saad A.
2014-03-01
In order to quantify the effect of temperature on the mechanical and dynamic properties of kenaf fiber unsaturated polyester composites, formulations containing 10 wt.% to 40 wt.% kenaf fiber were produced and tested at two representative temperatures of 30°C and 50°C. Dynamic mechanical analysis was performed, to obtain the strain and creep compliance for kenaf composites at various styrene concentrations. It is possible to obtain creep curves at different temperature levels which can be shifted along the time axis to generate a single curve known as a master curve. This technique is known as the time-temperature superposition principle. Shift factors conformed to a William-Landel-Ferry (WLF) equation. However, more long term creep data was needed in order to further validate the applicability of time-temperature superposition principle (TTSP) to this material. The primary creep strain model was fitted to 60 min creep data. The resulting equation was then extrapolated to 5.5 days; the creep strain model of power-law was successfully used to predict the long-term creep behavior of natural fiber/thermoset composites.
Commisso, Maria S; Martínez-Reina, Javier; Mayo, Juana; Domínguez, Jaime
2013-02-01
The main objectives of this work are: (a) to introduce an algorithm for adjusting the quasi-linear viscoelastic model to fit a material using a stress relaxation test and (b) to validate a protocol for performing such tests in temporomandibular joint discs. This algorithm is intended for fitting the Prony series coefficients and the hyperelastic constants of the quasi-linear viscoelastic model by considering that the relaxation test is performed with an initial ramp loading at a certain rate. This algorithm was validated before being applied to achieve the second objective. Generally, the complete three-dimensional formulation of the quasi-linear viscoelastic model is very complex. Therefore, it is necessary to design an experimental test to ensure a simple stress state, such as uniaxial compression to facilitate obtaining the viscoelastic properties. This work provides some recommendations about the experimental setup, which are important to follow, as an inadequate setup could produce a stress state far from uniaxial, thus, distorting the material constants determined from the experiment. The test considered is a stress relaxation test using unconfined compression performed in cylindrical specimens extracted from temporomandibular joint discs. To validate the experimental protocol, the test was numerically simulated using finite-element modelling. The disc was arbitrarily assigned a set of quasi-linear viscoelastic constants (c1) in the finite-element model. Another set of constants (c2) was obtained by fitting the results of the simulated test with the proposed algorithm. The deviation of constants c2 from constants c1 measures how far the stresses are from the uniaxial state. The effects of the following features of the experimental setup on this deviation have been analysed: (a) the friction coefficient between the compression plates and the specimen (which should be as low as possible); (b) the portion of the specimen glued to the compression plates (smaller
A model of the viscoelastic behavior of flowable resin composites prior to setting.
Petrovic, Ljubomir M; Zorica, Dusan M; Stojanac, Igor Lj; Krstonosic, Veljko S; Hadnadjev, Miroslav S; Atanackovic, Teodor M
2013-09-01
The aim of this study is to develop fractional derivative models for the assessment of viscoelastic properties related to handling characteristics of dental resin composites belonging to two classes: flowable (Revolution Formula 2 and Filtek Ultimate) and posterior "bulk-fill" flowable base (Smart Dentin Replace). Rheological measurements on all materials tested in this study were performed using dynamic oscillatory rheometer at temperature of 23°C. A parallel plates module with a diameter of 20mm was used to measure the properties of the resin composites tested. We developed two models to describe the obtained data: the generalized Newton model and the generalized Zener model (the so-called three parameter model). Both models contain fractional derivatives of Riemann-Liouville type. By determining the parameters of the model we were able to fit experimental data with high accuracy. Our results show that flowable "bulk-fill" resin-composite material (SDR) has distinct properties as compared to other two flowable resin composite materials (Revolution Formula 2 and Filtek Ultimate). Thus, previously found SDR properties as "bulk-fill" flowable base results in the fact that it is described by generalized Zener model (i.e., it has properties of solid like viscoelastic material). Our model may be used to predict behavior of tested composites in different flow conditions. The SDR has initially small almost constant complex viscosity showing that it has good self-leveling property. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Long-Term Viscoelastic Response of E-glass/Bismaleimide Composite in Seawater Environment
NASA Astrophysics Data System (ADS)
Yian, Zhao; Zhiying, Wang; Keey, Seah Leong; Boay, Chai Gin
2015-12-01
The effect of seawater absorption on the long-term viscoelastic response of E-glass/BMI composite is presented in this paper. The diffusion of seawater into the composite shows a two-stage behavior, dominated by Fickian diffusion initially and followed by polymeric relaxation. The Glass transition temperature (Tg) of the composite with seawater absorption is considerably lowered due to the plasticization effect. However the effect of water absorption at 50 °C is found to be reversible after drying process. The time-temperature superposition (TTS) was performed based on the results of Dynamic Mechanical Analysis to construct the master curve of storage modulus. The shift factors exhibit Arrhenius behavior when temperature is well below Tg and Vogel-Fulcher-Tammann (VFT) like behavior when temperature gets close to glass transition region. As a result, a semi-empirical formulation is proposed to account for the seawater absorption effect in predicting long-term viscoelastic response of BMI composites based on temperature dependent storage modulus and TTS. The predicted master curves show that the degradation of storage modulus accelerates with both seawater exposure and increasing temperature. The proposed formulation can be applied to predict the long-term durability of any thermorheologically simple composite materials in seawater environment.
The viscoelastic behavior of a composite in a thermal environment
NASA Technical Reports Server (NTRS)
Morris, D. H.; Brinson, H. F.; Griffith, W. I.; Yeow, Y. T.
1979-01-01
A proposed method for the accelerated predictions of modulus and life times for time dependent polymer matrix composite laminates is presented. The method, based on the time temperature superposition principle and lamination theory, is described in detail. Unidirectional reciprocal of compliance master curves and the shift functions needed are presented and discussed. Master curves for arbitrarily oriented unidirectional laminates are predicted and compared with experimantal results obtained from master curves generated from 15 minute tests and with 25 hour tests. Good agreement is shown. Predicted 30 deg and 60 deg unidirectional strength master curves are presented and compared to results of creep rupture tests. Reasonable agreement is demonstrated. In addition, creep rupture results for a (90 deg + or - 60 deg/90 deg) sub 2s laminate are presented.
NASA Astrophysics Data System (ADS)
Jansson, A.; Lundberg, B.
2007-09-01
A system consisting of a linear power amplifier driving a piezoelectric actuator pair attached to a long viscoelastic bar is analysed. Coupled piezoelectric theory is used, and allowance is made for the dynamics of the amplifier and of the actuators. Formulae are derived for the relation between the input voltage to the amplifier and the normal force associated with extensional waves generated in the bar and for the load impedance constituted by the actuator-bar assembly. It is established that the mechanical work performed on the external parts of the bar at the actuator/bar interfaces is at most equal to the electrical energy supplied by the amplifier. The results are applied to a three-parameter viscoelastic bar and to an elastic bar, and the effects of the cut-off frequency, without load, and the output impedance of the amplifier are examined. For the elastic bar, sharp response minima occur at frequencies that are integral multiples of the inverse transit time through the actuator region. For the viscoelastic bar, the corresponding minima are less sharp and deep. The input voltage to the amplifier required to produce a desired output wave at the actuator/bar interfaces can be determined provided that the spectrum of this wave is not too broad.
Composite Linear Models | Division of Cancer Prevention
By Stuart G. Baker The composite linear models software is a matrix approach to compute maximum likelihood estimates and asymptotic standard errors for models for incomplete multinomial data. It implements the method described in Baker SG. Composite linear models for incomplete multinomial data. Statistics in Medicine 1994;13:609-622. The software includes a library of thirty examples from the literature. |
Environmental effects and viscoelastic behavior of laminated graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Dillard, D. A.; Morris, D. H.; Brinson, H. F.
1983-01-01
Primarily because of the polymeric matrix, graphite/epoxy composites are viscoelastic materials which exhibit creep and delayed failures. Guided by the time-temperature superposition principle, the authors are developing accelerated characterization techniques to predict the long term compliance behavior and creep rupture strength of composite materials based on short term tests at elevated temperatures. The effect of a post-cure cycle on the compliance and creep rupture strength of composite materials is discussed. The Zhurkov type failure law is applied to experimental creep rupture data of a typical laminate and is shown to correlate the data. A beneficial mechanical strengthening effect is described which significantly affects the failure strengths of specimens which have been under creep loading for a period of time. This aging effect is reversible if the specimen is allowed to recover before being loaded to failure. Other environmental aspects of composite materials are also reviewed.
Environmental effects and viscoelastic behavior of laminated graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Dillard, D. A.; Morris, D. H.; Brinson, H. F.
1983-01-01
Primarily because of the polymeric matrix, graphite/epoxy composites are viscoelastic materials which exhibit creep and delayed failures. Guided by the time-temperature superposition principle, the authors are developing accelerated characterization techniques to predict the long term compliance behavior and creep rupture strength of composite materials based on short term tests at elevated temperatures. The effect of a post-cure cycle on the compliance and creep rupture strength of composite materials is discussed. The Zhurkov type failure law is applied to experimental creep rupture data of a typical laminate and is shown to correlate the data. A beneficial mechanical strengthening effect is described which significantly affects the failure strengths of specimens which have been under creep loading for a period of time. This aging effect is reversible if the specimen is allowed to recover before being loaded to failure. Other environmental aspects of composite materials are also reviewed.
Huang, Gang; Daphalapurkar, Nitin P; Gan, Rong Z; Lu, Hongbing
2008-02-01
A viscoelastic nanoindentation technique was developed to measure both in-plane and through-thickness viscoelastic properties of human tympanic membrane (TM). For measurement of in-plane Young's relaxation modulus, the TM sample was clamped on a circular hole and a nanoindenter tip was used to apply a concentrated force at the center of the TM sample. In this setup, the resistance to nanoindentation displacement can be considered due primarily to the in-plane stiffness. The load-displacement curve obtained was used along with finite element analysis to determine the in-plane viscoelastic properties of TM. For measurements of Young's relaxation modulus in the through-thickness (out-of-plane) direction, the TM sample was placed on a relatively rigid solid substrate and nanoindentation was made on the sample surface. In this latter setup, the resistance to nanoindentation displacement arises primarily due to out-of-plane stiffness. The load-displacement curve obtained in this manner was used to determine the out-of-plane relaxation modulus using the method appropriate for viscoelastic materials. From our sample tests, we obtained the steady-state values for in-plane moduli as approximately 17.4 MPa and approximately 19.0 MPa for posterior and anterior portions of TM samples, respectively, and the value for through-thickness modulus as approximately 6.0 MPa for both posterior and anterior TM samples. Using this technique, the local out-of-plane viscoelastic modulus can be determined for different locations over the entire TM, and the in-plane properties can be determined for different quadrants of the TM.
NASA Astrophysics Data System (ADS)
Sun, Hong-xiang; Zhang, Shu-yi; Yuan, Shou-qi; Guan, Yi-jun; Ge, Yong
2016-07-01
The propagation characteristics of laser-generated Lamb waves in multilayered fiber-reinforced composite plates with different fiber orientations and number of layers have been investigated quantitatively. Considering the viscoelasticity of the composite materials, we have set up finite element models for simulating the laser-generated Lamb waves in two types of the multilayered composite plates. In the first type, different fiber orientations are adopted. In the second one, different number of layers are considered. The results illustrate the occurrence of attenuation and dispersion, which is induced by the viscoelasticity and multilayer structure, respectively.
Sarver, Joseph J; Robinson, Paul S; Elliott, Dawn M
2003-10-01
The quasi-linear viscoelastic (QLV) model was applied to incremental stress-relaxation tests and an expression for the stress was derived for each step. This expression was used to compare two methods for normalizing stress data prior to estimating QLV parameters. The first and commonly used normalization method was shown to be strain-dependent. Thus, a second normalization method was proposed and shown to be strain-independent and more sensitive to QLV time constants. These analytical results agreed with representative tendon data. Therefore, this method for normalizing stress data was proposed for future studies of incremental stress-relaxation, or whenever comparing stress-relaxation at different strains.
Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load.
Kocen, Rok; Gasik, Michael; Gantar, Ana; Novak, Saša
2017-03-06
Along with biocompatibility, bioinductivity and appropriate biodegradation, mechanical properties are also of crucial importance for tissue engineering scaffolds. Hydrogels, such as gellan gum (GG), are usually soft materials, which may benefit from the incorporation of inorganic particles, e.g. bioactive glass, not only due to the acquired bioactivity, but also due to improved mechanical properties. They exhibit complex viscoelastic properties, which can be evaluated in various ways. In this work, to reliably evaluate the effect of the bioactive glass (BAG) addition on viscoelastic properties of the composite hydrogel, we employed and compared the three most commonly used techniques, analyzing their advantages and limitations: monotonic uniaxial unconfined compression, small amplitude oscillatory shear (SAOS) rheology and dynamic mechanical analysis (DMA). Creep and small amplitude dynamic strain-controlled tests in DMA are suggested as the best ways for the characterization of mechanical properties of hydrogel composites, whereas the SAOS rheology is more useful for studying the hydrogel's processing kinetics, as it does not induce volumetric changes even at very high strains. Overall, the results confirmed a beneficial effect of BAG (nano)particles on the elastic modulus of the GG-BAG composite hydrogel. The Young's modulus of 6.6 ± 0.8 kPa for the GG hydrogel increased by two orders of magnitude after the addition of 2 wt.% BAG particles (500-800 kPa).
Nonlinear Visco-Elastic Response of Composites via Micro-Mechanical Models
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Sridharan, Srinivasan
2005-01-01
Micro-mechanical models for a study of nonlinear visco-elastic response of composite laminae are developed and their performance compared. A single integral constitutive law proposed by Schapery and subsequently generalized to multi-axial states of stress is utilized in the study for the matrix material. This is used in conjunction with a computationally facile scheme in which hereditary strains are computed using a recursive relation suggested by Henriksen. Composite response is studied using two competing micro-models, viz. a simplified Square Cell Model (SSCM) and a Finite Element based self-consistent Cylindrical Model (FECM). The algorithm is developed assuming that the material response computations are carried out in a module attached to a general purpose finite element program used for composite structural analysis. It is shown that the SSCM as used in investigations of material nonlinearity can involve significant errors in the prediction of transverse Young's modulus and shear modulus. The errors in the elastic strains thus predicted are of the same order of magnitude as the creep strains accruing due to visco-elasticity. The FECM on the other hand does appear to perform better both in the prediction of elastic constants and the study of creep response.
Hirano, Hiroki; Horiuchi, Tetsuya; Hirano, Harutoyo; Kurita, Yuichi; Ukawa, Teiji; Nakamura, Ryuji; Saeki, Noboru; Yoshizumi, Masao; Kawamoto, Masashi; Tsuji, Toshio
2013-01-01
This paper proposes a novel technique to support the monitoring of peripheral vascular conditions using biological signals such as electrocardiograms, arterial pressure values and pulse oximetry plethysmographic waveforms. In this approach, a second-order log-linearized model (referred to here as a log-linearized peripheral arterial viscoelastic model) is used to describe the non-linear viscoelastic relationship between blood pressure waveforms and photo-plethysmographic waveforms. The proposed index enables estimation of peripheral arterial wall stiffness changes induced by sympathetic nerve activity. The validity of the method is discussed here based on the results of peripheral vascular condition monitoring conducted during endoscopic thoracic sympathectomy (ETS). The results of ETS monitoring showed significant changes in stiffness variations between the periods before and during the procedures observed (p < 0.01) as well as during and after them (p < 0.01), so that it was confirmed that sympathetic nerve activity is drastically decreased in the area around the monitoring site after the thoracic sympathetic nerve trunk on the monitoring side is successfully blocked. In addition, no change was observed in the values of the proposed index during the ETS procedure on the side opposite that of the monitoring site. The experimental results obtained clearly show the proposed method can be used to assess changes in sympathetic nerve activity during ETS.
Best, T M; McElhaney, J; Garrett, W E; Myers, B S
1994-04-01
The tensile viscoelastic responses of live, innervated rabbit skeletal muscle were measured and characterized using the quasi-linear model of viscoelasticity. The tibialis anterior (TA) and extensor digitorum longus (EDL) muscles of anesthetized New Zealand white rabbits were surgically exposed and tested under in vivo conditions. Rate sensitivity of the force-time history was observed in response to constant velocity testing at rates from 0.01 to 2.0 Hz. Average hysteresis energy, expressed as a percentage of maximum stored strain energy, was 39.3 +/- 5.4% and was insensitive to deformation rate. The quasi-linear model, with constants derived from relaxation testing, was able to describe and predict these responses with correlation exceeding the 99% confidence interval for the 132 constant velocity tests performed (rmean = 0.9263 +/- 0.0373). The predictive ability of this model was improved when compressive loading effects on the muscle were neglected, rmean = 0.9306 +/- 0.0324. The rate insensitivity of hysteresis energy was predicted by the model; however, the absolute value of the hysteresis was underestimated (30.2 +/- 4.0%). Both muscles demonstrated strikingly different elastic functions. Geometric normalization of these responses (stress and strain) did not result in a single elastic function capable of describing both muscles. Based on these results, the quasi-linear model is recommended for the characterization of the structural responses of muscle; however, further investigation is required to determine the influence of muscle geometry and fiber architecture on the elastic function.
Modeling and Testing of the Viscoelastic Properties of a Graphite Nanoplatelet/Epoxy Composite
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Gates, Thomas S.
2005-01-01
In order to facilitate the interpretation of experimental data, a micromechanical modeling procedure is developed to predict the viscoelastic properties of a graphite nanoplatelet/epoxy composite as a function of volume fraction and nanoplatelet diameter. The predicted storage and loss moduli for the composite are compared to measured values from the same material using three test methods; Dynamical Mechanical Analysis, nanoindentation, and quasi-static tensile tests. In most cases, the model and experiments indicate that for increasing volume fractions of nanoplatelets, both the storage and loss moduli increase. Also, the results indicate that for nanoplatelet sizes above 15 microns, nanoindentation is capable of measuring properties of individual constituents of a composite system. Comparison of the predicted values to the measured data helps illustrate the relative similarities and differences between the bulk and local measurement techniques.
NASA Astrophysics Data System (ADS)
Meza-Fajardo, Kristel C.; Lai, Carlo G.
2007-12-01
The theory of linear viscoelasticity is the simplest constitutive model that can be adopted to accurately predict the small-strain mechanical response of materials exhibiting the ability to both store and dissipate strain energy. An important result implied by this theory is the relationship existing between material attenuation and the velocity of propagation of a mechanical disturbance. The functional dependence of these important parameters is represented by the Kramers-Kronig (KK) equations, also known as dispersion equations, which are nothing but a statement of the necessary and sufficient conditions to satisfy physical causality. This paper illustrates the derivation of exact solutions of the KK equations to provide explicit relations between frequency-dependent phase velocity and material damping ratio (or equivalently, quality factor). The assumptions that form the basis of the derivation are not beyond those established by the standard theory of viscoelasticity for a viscoelastic solid. The explicit expression for phase velocity as a function of damping ratio was derived by means of the theory of linear singular integral equations, and in particular by the solution of the associated Homogeneous Riemann Boundary Value Problem. It is shown that the same solution may be obtained also by using the implications of physical causality on the Fourier Transform. On the other hand, the explicit solution for damping ratio as a function of phase velocity was found through the components of the complex wavenumber. The exact solutions make it possible to obtain frequency-dependent material damping ratio solely from phase velocity measurements, and conversely. Hence, these relations provide an innovative and inexpensive tool to determine the small-strain dynamic properties of geomaterials. It is shown that the obtained rigorous solutions are in good agreement with well-known solutions based on simplifying assumptions that have been developed in the fields of seismology
NASA Astrophysics Data System (ADS)
Rozite, L.; Joffe, R.; Varna, J.; Nyström, B.
2012-02-01
The behaviour of highly non-linear cellulosic fibers and their composite is characterized. Micro-mechanisms occurring in these materials are identified. Mechanical properties of regenerated cellulose fibers and composites are obtained using simple tensile test. Material visco-plastic and visco-elastic properties are analyzed using creep tests. Two bio-based resins are used in this study - Tribest and EpoBioX. The glass and flax fiber composites are used as reference materials to compare with Cordenka fiber laminates.
Dargel, Vadim; Jäckel, Nicolas; Shpigel, Netanel; Sigalov, Sergey; Levi, Mikhael D; Daikhin, Leonid; Presser, Volker; Aurbach, Doron
2017-08-23
Intercalation-induced dimensional changes in a composite battery electrode (comprising a polymeric binder) are one of the major factors limiting electrode cycling performance. Since electrode performance is expressed by the quantities averaged over its entire surface area (e.g., capacity retention, Faradaic efficiency, rate capability), significant efforts have been made to develop a methodology allowing its facile mechanical diagnostics at the same areal scale. Herein we introduce such a generic methodology for a highly sensitive in situ monitoring of intrinsic mechanical properties of composite battery electrodes. The gravimetric, dimensional, viscoelastic, and adhesive changes in the composite electrodes caused by Li-ions intercalation are assessed noninvasively and in real time by electrochemical quartz-crystal microbalance with dissipation monitoring (EQCM-D). Multiharmonic acoustic waves generated by EQCM-D penetrate into thin porous electrodes comprising either rigid or a soft binder resulting in frequency and dissipation changes quantified by analytical acoustic load impedance models. As a first demonstration, we used a composite LiFePO4 (LFP) electrode containing either polyvinylidene dichloride (PVdF) or Na carboximethyl cellulose (NaCMC) as rigid and viscoelastic binders, respectively, in aqueous electrolytes. The intercalation-induced volume changes of LFP electrode were evaluated from a hydrodynamic correction to the mass effect of the intercalated ions for PVdF, and both components of the effective complex shear modulus (i.e., storage and loss moduli) in case of NaCMC binder have been extracted. The sliding friction coefficients for large particles bound at their bottom to the quartz crystal surface (a measure of the adhesion strength of binders) has also been evaluated. Tracking the mechanical properties of the composite electrodes in different environments and charging/cycling conditions in a self-consistent manner provides all necessary conditions
The accelerated characterization of viscoelastic composite materials. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Griffith, W. I.; Morris, D. H.; Brinson, H. F.
1980-01-01
Necessary fundamentals relative to composite materials and viscoelasticity are reviewed. The accelerated characterization techniques of time temperature superposition and time temperature stress superposition are described. An experimental procedure for applying the latter to composites is given along with results obtained on a particular T300/934 graphite/epoxy. The accelerated characterization predictions are found in good agreement with actual long term tests. A postcuring phenomenon is discussed that necessitates thermal conditioning of the specimen prior to testing. A closely related phenomenon of physical aging is described as well as the effect of each on the glass transition temperature and strength. Creep rupture results are provided for a variety of geometries and temperatures for T300/934 graphite/epoxy. The results are found to compare reasonably with a modified kinetic rate theory.
In-situ measurement of viscoelastic effects in composite tape springs
NASA Astrophysics Data System (ADS)
Makuch, Alessa J.; Reynolds, Whitney D.
2012-04-01
Bi-stable composite tape springs present several volume efficient solutions for deployable structures in small satellites. Viscoelastic changes within the composite matrix of these materials caused by their long term storage and exposure to varying temperatures can negatively impact the ability to deploy the structure. This study investigates a method for developing an in situ sensor for structural health monitoring in space structures employing tape springs. A method is developed by employing a custom load cell to detect stress relaxation in a bent tape spring over a period of time and two tests of this method were conducted. Results from the first test reveal the correct trend for stress relaxation but with significant noise. The second test showed the cause of the noise to be material behavior changes due to temperature fluctuations. The results show the expected decreasing exponential trend in the strain data as stress relaxation occurs, proving the feasibility of the approach.
Daphalapurkar, Nitin P; Dai, Chenkai; Gan, Rong Z; Lu, Hongbing
2009-01-01
Human tympanic membrane (or eardrum) is composed of three membrane layers with collagen fibers oriented in the radial and circumferential directions, and exhibits viscoelastic behavior with membrane (or in-plane) properties different from through-thickness (or out-of-plane) properties. Due to the interaction of bundled fibers and ground substance, which is inhomogeneous, these properties could change with locations. In this paper, we use nanoindentation techniques to measure the viscoelastic functions of four quadrants of tympanic membrane (TM). For measurement of in-plane Young's relaxation modulus we fixed a sectioned quadrant of the TM on a circular hole and used a spherical nanoindenter tip to apply force at the center of the suspended circular portion of the specimen. An inverse problem solving methodology was employed using finite element method to determine the average in-plane Young's relaxation modulus of the TM quadrant. Results indicate that the in-plane steady-state Young's relaxation modulus for four quadrants of the TM does not vary significantly. However, a variation of the modulus from 25.73 MPa to 37.8 MPa was observed with measurements from different individuals. For measurement of Young's relaxation modulus in the through-thickness direction a spherical indenter tip was used to indent into different locations on the surface of the TM specimen supported by a substrate. Viscoelastic contact mechanics analysis of the load-displacement curve, representative primarily of the through-thickness stiffness of the TM, was conducted to extract the Young's relaxation modulus in the out-of-plane direction. Results indicate a wide variation in steady-state Young's relaxation modulus, from 2 MPa to 15 MPa, in the through-thickness direction over the TM.
Calculation by iterative method of linear viscoelastic plate under biaxial tension
NASA Astrophysics Data System (ADS)
Svetashkov, A. A.; Miciński, J.; Manabaev, K. K.; Vakurov, A. A.
2017-02-01
In this paper, we used the iterative solution algorithm, proposed in the work of Pavlov and Svetashkova. This algorithm results in a complete separation of spatial and temporal variables, if we set up the boundary loads and (or) volumetric forces in the same kind. In this paper, we have examined the stress-strain state of a viscoelastic plate, and the results of the calculation displacements, stresses are given. In addition, we made a comparison of the calculation indices rate of convergence for the iterative process with their theoretical values.
Viscoelastic Properties of Collagen-Adhesive Composites under Water Saturated and Dry Conditions
Singh, Viraj; Misra, Anil; Parthasarathy, Ranganathan; Ye, Qiang; Spencer, Paulette
2014-01-01
To investigate the time and rate dependent mechanical properties of collagen-adhesive composites, creep and monotonic experiments are performed under dry and wet conditions. The composites are prepared by infiltration of dentin adhesive into a demineralized bovine dentin. Experimental results show that for small stress level under dry conditions, both the composite and neat adhesive have similar behavior. On the other hand, in wet conditions, the composites are significantly soft and weak compared to the neat adhesives. The behavior in the wet condition is found to be affected by the hydrophilicity of both the adhesive and collagen. Since the adhesive-collagen composites area part of the complex construct that forms the adhesive-dentin interface, their presence will affect the overall performance of the restoration. We find that Kelvin-Voigt model with at least 4-elements is required to fit the creep compliance data, indicating that the adhesive-collagen composites are complex polymers with several characteristics time-scales whose mechanical behavior will be significantly affected by loading rates and frequencies. Such mechanical properties have not been investigated widely for these types of materials. The derived model provides an additional advantage that it can be exploited to extract other viscoelastic properties which are, generally, time consuming to obtain experimentally. The calibrated model is utilized to obtain stress relaxation function, frequency-dependent storage and loss modulus, and rate dependent elastic modulus. PMID:24753362
NASA Astrophysics Data System (ADS)
Menzel, Andreas M.
2016-08-01
One possibility to adjust material properties to a specific need is to embed units of one substance into a matrix of another substance. Even materials that are readily tunable during operation can be generated in this way. In (visco)elastic substances, both the matrix material as well as the inclusions and/or their immediate environment can be dynamically deformed. If the typical dynamic response time of the inclusions and their surroundings approach the macroscopic response time, their deformation processes need to be included into a dynamic macroscopic characterization. Along these lines, we present a hydrodynamic description of (visco)elastic composite materials. For this purpose, additional strain variables reflect the state of the inclusions and their immediate environment. These additional strain variables in general are not set by a coarse-grained macroscopic displacement field. Apart from that, during our derivation, we also include the macroscopic variables of relative translations and relative rotations that were previously introduced in different contexts. As a central point, our approach reveals and classifies the importance of a macroscopic variable termed relative strains. We analyze two simplified minimal example geometries as an illustration.
NASA Technical Reports Server (NTRS)
Gutierrez-Lemini, Danton; McCool, Alex (Technical Monitor)
2001-01-01
A method is developed to establish the J-resistance function for an isotropic linear viscoelastic solid of constant Poisson's ratio using the single-specimen technique with constant-rate test data. The method is based on the fact that, for a test specimen of fixed crack size under constant rate, the initiation J-integral may be established from the crack size itself, the actual external load and load-point displacement at growth initiation, and the relaxation modulus of the viscoelastic solid, without knowledge of the complete test record. Since crack size alone, of the required data, would be unknown at each point of the load-vs-load-point displacement curve of a single-specimen test, an expression is derived to estimate it. With it, the physical J-integral at each point of the test record may be established. Because of its basis on single-specimen testing, not only does the method not require the use of multiple specimens with differing initial crack sizes, but avoids the need for tracking crack growth as well.
Bending and stretching finite element analysis of anisotropic viscoelastic composite plates
NASA Technical Reports Server (NTRS)
Hilton, Harry H.; Yi, Sung
1990-01-01
Finite element algorithms have been developed to analyze linear anisotropic viscoelastic plates, with or without holes, subjected to mechanical (bending, tension), temperature, and hygrothermal loadings. The analysis is based on Laplace transforms rather than direct time integrations in order to improve the accuracy of the results and save on extensive computational time and storage. The time dependent displacement fields in the transverse direction for the cross ply and angle ply laminates are calculated and the stacking sequence effects of the laminates are discussed in detail. Creep responses for the plates with or without a circular hole are also studied. The numerical results compare favorably with analytical solutions, i.e. within 1.8 percent for bending and 10(exp -3) 3 percent for tension. The tension results of the present method are compared with those using the direct time integration scheme.
Embedding viscoelastic damping materials in low-cost VARTM composite structures
NASA Astrophysics Data System (ADS)
Robinson, M. J.; Kosmatka, J. B.
2005-05-01
It has been well established that using viscoelastic damping materials in structural applications can greatly reduce the dynamic response and thus improve structural fatigue life. Previously these materials have been used to solve vibration problems in metallic structures, where the damping material is attached to the structure and then a stiff outer layer is attached to promote shear deformation in the damping material. More recently, these materials have been used successfully in expensive aerospace composite structures, where the damping material is embedded between plies of prepreg graphite/epoxy prior to being cured in a high-temperature, high-pressure autoclave. The current research involves embedding these damping layers into low-cost composite structures fabricated using the Vacuum Assisted Resin Transfer Molding (VARTM) process. The damping layers are perforated with a series of small holes to allow the resin to flow through the damping layer and completely wet-out the structure. Experimental fabrication, vibration testing, and stiffness testing investigate the effect of hole diameter versus hole spacing. Results show that the damping and stiffness can be very sensitive to perforation spacing and size. It is shown that for closely spaced perforations (95% damping area) that damping increases by only a factor of 2.2 over the undamped plate. However, for greater perforation spacing (99.7% damping area) the damping is increased by a factor of 14.3. Experimental results as well as practical design considerations for fabricating damped composite structures using the VARTM process are presented.
Viscoelastic properties, creep behavior and degree of conversion of bulk fill composite resins.
Papadogiannis, D; Tolidis, K; Gerasimou, P; Lakes, R; Papadogiannis, Y
2015-12-01
The aim of this study was to investigate the viscoelastic properties and creep behavior of bulk fill composites under different conditions and evaluate their degree of conversion. Seven bulk fill composites were examined: everX Posterior (EV), SDR (SD), SonicFill (SF), Tetric EvoCeram Bulk Fill (TE), Venus Bulk Fill (VE), x-tra base (XB) and x-tra fil (XF). Each material was tested at 21°C, 37°C and 50°C under dry and wet conditions by applying a constant torque for static and creep testing and dynamic torsional loading for dynamic testing. Degree of conversion (%DC) was measured on the top and bottom surfaces of composites with ATR-FTIR spectroscopy. Statistical analysis was performed with two-way ANOVA, Bonferroni's post hoc test and Pearson's correlation coefficient. Shear modulus G ranged from 2.17GPa (VE) to 8.03GPa (XF) and flexural modulus E from 6.16GPa (VE) to 23GPa (XF) when the materials were tested dry at 21°C. The increase of temperature and the presence of water lead to a decline of these properties. Flowable materials used as base composites in restorations showed significantly lower values (p<0.05) than non-base composites, while being more prone to creep deformation. %DC ranged from 47.25% (XF) to 66.67% (SD) at the top material surface and 36.06% (XF) to 63.20% (SD) at the bottom. Bulk fill composites exhibited significant differences between them with base flowable materials showing in most cases inferior mechanical properties and higher degree of conversion than restorative bulk fill materials. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Golub, V. P.; Maslov, B. P.; Fernati, P. V.
2016-03-01
Relations between the shear and bulk creep kernels of an isotropic linear viscoelastic material in combined stress state and the longitudinal and shear creep kernels constructed from data of creep tests under uniaxial tension and pure torsion are formulated. The constitutive equations of viscoelasticity for the combined stress state are chosen in the form of a superposition of the equation for shear strains and the equation for bulk strains. The hereditary kernels are described by Rabotnov's fractional-exponential functions. The creep strains of thin-walled pipes under a combination of tension and torsion or tension and internal pressure are calculated
NASA Astrophysics Data System (ADS)
Musa, Abu Bakar
2013-09-01
The study is about impact of a short elastic rod(or slug) on a stationary semi-infinite viscoelastic rod. The viscoelastic materials are modeled as standard linear solid which involve three material parameters and the motion is treated as one-dimensional. We first establish the governing equations pertaining to the impact of viscoelastic materials subject to certain boundary conditions for the case when an elastic slug moving at a speed V impacts a semi-infinite stationary viscoelastic rod. The objective is to predict stresses and velocities at the interface following wave transmissions and reflections in the slug after the impact using viscoelastic discontinuity. If the stress at the interface becomes tensile and the velocity changes its sign, then the slug and the rod part company. If the stress at the interface is compressive after the impact, the slug and the rod remain in contact. In the process of predicting the stress and velocity of wave propagation using viscoelastic discontinuity, the Z-effective which is the effective ratio of acoustic impedance plays important role. It can be shown that effective ratio of acoustic impedance can help us to determine whether the slug and the rod move together or part company after the impact. After modeling the impact and solve the governing system of partial differential equations in the Laplace transform domain. We invert the Laplace transformed solution numerically to obtain the stresses and velocities at the interface for several viscosity time constants and ratios of acoustic impedances. In inverting the Laplace transformed equations, we used the complex inversion formula because there is a branch cut and infinitely many poles within the Bromwich contour. In the discontinuity analysis, we look at the moving discontinuities in stress and velocity using the impulse-momentum relation and kinematical condition of compatibility. Finally, we discussed the relationship of the stresses and velocities using numeric and the
Non-linear cord-rubber composites
NASA Technical Reports Server (NTRS)
Clark, S. K.; Dodge, R. N.
1989-01-01
A method is presented for calculating the stress-strain relations in a multi-layer composite made up of materials whose individual stress-strain characteristics are non-linear and possibly different. The method is applied to the case of asymmetric tubes in tension, and comparisons with experimentally measured data are given.
Inverting Glacial Isostatic Adjustment beyond linear viscoelasticity using the Burgers rheology
NASA Astrophysics Data System (ADS)
Caron, Lambert; Greff-Lefftz, Marianne; Fleitout, Luce; Métivier, Laurent; Rouby, Hélène
2015-04-01
In Glacial Isostatic Adjustment (GIA) inverse modeling, the usual assumption for the mantle rheology is the Maxwell model, which exhibits constant viscosity over time. However, mineral physics experiments and post-seismic observations show evidence of a transient component in the deformation of the shallow mantle, with a short-term viscosity lower than the long-term one. In these studies, the resulting rheology is modeled by a Burgers material: such rheology is indeed expected as the mantle is a mixture of materials with different viscosities. We propose to apply this rheology for the whole viscoelastic mantle, and, using a Bayesian MCMC inverse formalism for GIA during the last glacial cycle, study its impact on estimations of viscosity values, elastic thickness of the lithosphere, and ice distribution. To perform this inversion, we use a global dataset of sea level records, the geological constraints of ice-sheet margins, and present-day GPS data as well as satellite gravimetry. Our ambition is to present not only the best fitting model, but also the range of possible solutions (within the explored space of parameters) with their respective probability of explaining the data. Our results show that the Burgers model is able to fit the dataset as well as the Maxwell model, but would imply a larger lower mantle viscosity, thicker ice sheets over Fennoscandia and Canada, and thinner ice sheets over Antarctica and Greenland.
Abramowitch, Steven D; Woo, Savio L Y; Clineff, Theodore D; Debski, Richard E
2004-03-01
The viscoelastic properties of the healing medial collateral ligament (MCL) at 12 weeks after isolated injury were investigated in a goat model. The stress-strain relationships, static and cyclic stress-relaxation behaviors of the healing MCL up to 5% strain were determined experimentally using a femur-MCL-tibia complex. These experimental data were used in combination with the quasi-linear viscoelastic (QLV) theory of Fung (1972) to characterize the reduced relaxation function, G(t) (described by constants C, tau1, and tau2) and the elastic response, sigmae(epsilon) (described by constants A and B) of this tissue. It was found that the percentage of stress relaxation for the healing MCLs was significantly greater than those for sham-operated controls (49.0 +/- 12.1% vs. 26.5 +/- 8.1%, respectively; p < 0.05). The product of constants A x B, i.e. the initial slope of the stress-strain curves, was found to be significantly lower for healing MCLs compared to those for sham-operated controls (32.9 +/- 15.8 MPa vs. 118.8 +/- 48.3 MPa; p < 0.05). The dimensionless constant C, i.e. the magnitude of the viscous response, was nearly three times greater for healing MCLs, while constant tau1 was found to be similar between the two groups (0.80 +/- 0.43 s vs. 0.89 +/- 0.52 s, respectively). Constant tau2 for the healing MCL was significantly less than the controls (1269 +/- 38 s vs. 1845 +/- 431 s; p < 0.05) indicating that the stress relaxation reached a plateau earlier. These constants of the QLV theory used to describe the healing MCL were validated for the strain level utilized in this experiment (approximately equal to 4.5%) by predicting the peak stresses during a cyclic stress-relaxation experiment. The theoretically determined values closely matched the experimentally measured values. Thus, this study demonstrates that the QLV theory could be successfully used to describe the viscoelastic behavior of the MCL during the early phases of healing.
Solares, Santiago D
2014-01-01
This paper presents computational simulations of single-mode and bimodal atomic force microscopy (AFM) with particular focus on the viscoelastic interactions occurring during tip-sample impact. The surface is modeled by using a standard linear solid model, which is the simplest system that can reproduce creep compliance and stress relaxation, which are fundamental behaviors exhibited by viscoelastic surfaces. The relaxation of the surface in combination with the complexities of bimodal tip-sample impacts gives rise to unique dynamic behaviors that have important consequences with regards to the acquisition of quantitative relationships between the sample properties and the AFM observables. The physics of the tip-sample interactions and its effect on the observables are illustrated and discussed, and a brief research outlook on viscoelasticity measurement with intermittent-contact AFM is provided.
Viscoelastic cationic polymers containing the urethane linkage
NASA Technical Reports Server (NTRS)
Rembaum, A. (Inventor)
1972-01-01
A method for the synthesis and manufacturing of elastomeric compositions and articles containing quaternary nitrogen centers and condensation residues along the polymeric backbone of the centers is presented. Linear and cross-linked straight chain and block polymers having a wide damping temperature range were synthesized. Formulae for the viscoelastic cationic polymers are presented.
Viscoelastic processing and characterization of high-performance polymeric composite systems
NASA Astrophysics Data System (ADS)
Buehler, Frederic Ulysse
2000-10-01
Fiber reinforced composites, a combination of reinforcing fiber and resin matrix, offer many advantages over traditional materials, and have therefore found wide application in the aerospace and sporting goods industry. Among the advantages that composite materials offer, the most often cited are weight saving, high modulus, high strength-to-weight ratio, corrosion resistance, and fatigue resistance. As much as their attributes are desirable, composites are difficult to process due to their heterogeneous, anisotropic, and viscoelastic nature. It is therefore not surprising that the interrelationship between structure, property, and process is not fully understood. Consequently, the major purpose of this research work was to investigate this interrelationship, and ways to scale it to utilization. First, four prepreg materials, which performed differently in the manufacturing of composite parts, but were supposedly identical, were characterized. The property variations that were found among these prepregs in terms of tack and frictional resistance assessed the need for improved understanding of the prepregging process. Therefore, the influence of the processing parameters on final prepreg quality were investigated, and led to the definition of more adequate process descriptors. Additionally, one of the characterization techniques used in this work, temperature modulated differential scanning calorimetry, was examined in depth with the development of a mathematical model. This model, which enabled the exploration of the relationship between user parameters, sample thermophysical properties, and final results, was then compared to literature data. Collectively, this work explored and identified the key connectors between process, structure, and property as they relate to the manufacturing, design, and performance of composite materials.
Abramowitch, Steven D; Zhang, Xiaoyan; Curran, Molly; Kilger, Robert
2010-05-01
Over 50-% of anterior cruciate ligament reconstructions are performed using semitendinosus and gracilis tendon autografts. Despite their increased use, there remains little quantitative data on their mechanical behavior. Therefore, the objective of this study was to investigate the quasi-static mechanical and non-linear viscoelastic properties of human semitendinosus and gracilis tendons, as well as the variation of these properties along their length. Specimens were subjected to a series of uniaxial tensile tests: 1-h static stress-relaxation test, 30 cycle cyclic stress-relaxation test and load to failure test. To describe the non-linear viscoelastic behavior, the quasi-linear viscoelastic theory was utilized to model data from the static stress-relaxation experiment. The constants describing the viscoelastic behavior were similar between the proximal and distal halves of the gracilis tendon. The proximal half of the semitendinosus tendon, however, had a greater viscous response than its distal half, which was also significantly higher than the proximal gracilis tendon. In terms of the quasi-static mechanical properties, the properties were similar between the proximal and distal halves of the semitendinosus tendon. However, the distal gracilis tendon showed a significantly higher tangent modulus and ultimate stress compared to its proximal half, which was also significantly higher than the distal semitendinosus tendon. The results of this study demonstrate differences between the semitendinosus and gracilis tendons in terms of their quasi-static mechanical and non-linear viscoelastic properties. These results are important for establishing surgical preconditioning protocols and graft selection. Copyright 2009 Elsevier Ltd. All rights reserved.
Hogea, Cosmina S; Armstrong, William D
2002-11-01
The paper develops a one-dimensional magneto-elastic model of a magnetostrictive fiber actuated polymer matrix composite material which accounts for a strong viscoelastic response in the polymer matrix. The viscoelastic behavior of the composite polymer matrix is modeled with a three parallel Maxwell element viscoelastic model, the magnetoelastic behavior of the composite fibers is modeled with an anhysteric directional potential based domain occupation theory. Example calculations are performed to identify and explain the dynamical behavior of the composite. These calculations assume that a constant stress and the oscillating magnetic field are applied in the fiber longitudinal direction. The inclusion of matrix viscosity results in an apparent hysteresis loop in the magnetization and magnetostriction curves even though the model does not include magnetoelastic hysteresis in the fibers. The apparent hysteresis is a consequence of the interaction of the time varying fiber stress caused by matrix viscosity with a multidomain state in the fiber. The small increase in fiber longitudinal compressive stress due to matrix viscosity under increasing field inhibits the occupation of domains with magnetization orientations near the fiber longitudinal [112] direction. As a consequence, the summed longitudinal magnetization and magnetostriction is reduced as compared to the decreasing field limb.
Linear and interface defects in composite linear photonic lattice
NASA Astrophysics Data System (ADS)
Stojanović Krasić, Marija; Mančić, Ana; Kuzmanović, Slavica; Đorić Veljković, Snežana; Stepić, Milutin
2017-07-01
We numerically analysed various localized modes formed by light beam propagation through one-dimensional composite lattices consisting of two structurally different linear lattices and a linear defect (LD) in one of them. The localized modes are found in the area between the interface and the LD, near the interface and around the LD. It has been confirmed that a LD narrower than the other waveguides (WGs) in the array is better potential barrier and captures the light better than a LD that is wider than the other WGs in the array. Also, it has been shown that a LD narrower than the other WGs in the lattice captures the light more efficiently than any saturable nonlinear defect (ND) of the same width as other elements of the lattice. On the other hand, it is obtained that the influence of a LD wider than the other WGs in the array on light propagation can be mimicked by insertion of an adequate ND whose width coincides with that of the other WGs. Depending on the defect size, its position and input beam parameters, controllable beam trapping, reflection and refraction are observed.
NASA Astrophysics Data System (ADS)
Wakefield, David
Tensys have a long-established background in the shape generation and load analysis of architectural stressed membrane structures. Founded upon their inTENS finite element analysis suite, these activities have broadened to encompass ‘lighter than air' structures such as aerostats, hybrid air-vehicles and stratospheric balloons. Since 2004 Tensys have acted as consultants to the NASA Ultra Long Duration Balloon (ULDB) Program. Early implementations of the super-pressure balloon design chosen for ULDB have shown problems of geometric instability, characterised by improper deployment and the potential for overall geometric instability once deployed. The latter has been reproduced numerically using inTENS, and the former are better understood following a series of large-scale hangar tests simulating launch and ascent. In both cases the solution lies in minimising the film lobing between the tendons. These tendons, which span between base and apex end fittings, cause the characteristic pumpkin shape of the balloons and also provide valuable constraint against excessive film deformation. There is also the requirement to generate a biaxial stress field in order to mobilise in-plane shear stiffness. A consequence of reduced lobing between tendons is the development of higher stresses in the balloon film under pressure. The different thermal characteristics between tendons and film lead to further significant meridional stress under low temperature flight conditions. The non-linear viscoelastic response of the envelope film acts positively to help dissipate excessive stress and local concentrations. However, creep over time may produce lobe geometry variations sufficient to compromise the geometric stability of the balloon. The design of a balloon requires an analysis approach that addresses the questions of stress and stability over the duration of a flight by time stepping analyses using an appropriate material model. This paper summarises the Dynamic Relaxation
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.
1991-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures are outlined.
A nonlinear viscoelastic approach to durability predictions for polymer based composite structures
NASA Technical Reports Server (NTRS)
Brinson, Hal F.; Hiel, C. C.
1990-01-01
Current industry approaches for the durability assessment of metallic structures are briefly reviewed. For polymer based composite structures, it is suggested that new approaches must be adopted to include memory or viscoelastic effects which could lead to delayed failures that might not be predicted using current techniques. A durability or accelerated life assessment plan for fiber reinforced plastics (FRP) developed and documented over the last decade or so is reviewed and discussed. Limitations to the plan are outlined and suggestions to remove the limitations are given. These include the development of a finite element code to replace the previously used lamination theory code and the development of new specimen geometries to evaluate delamination failures. The new DCB model is reviewed and results are presented. Finally, it is pointed out that new procedures are needed to determine interfacial properties and current efforts underway to determine such properties are reviewed. Suggestions for additional efforts to develop a consistent and accurate durability predictive approach for FRP structures is outlined.
Defrate, L E; Li, G
2007-07-01
Recent studies have questioned the ability of the quasi-linear viscoelastic (QLV) model to predict stresses and strains in response to loading conditions other than those used to fit the model. The objective of this study was to evaluate the ability of several models in the literature to predict the elastic stress response of ligament and tendon at strain levels higher than the levels used to fit the model. The constitutive models were then used to evaluate the ability of the QLV model to predict the overall stress response during stress relaxation. The models expressing stress as an exponential function of strain significantly overestimated stress when used at higher strain levels. The polynomial formulation of the Mooney-Rivlin model more accurately predicted the stress-strain behavior of ligament and tendon. The results demonstrate that the ability of the QLV model to accurately predict the stress-relaxation response is dependent in part on the accuracy of the function used to model the elastic response of the soft tissue.
NASA Technical Reports Server (NTRS)
Gupta, K. K.; Akyuz, F. A.; Heer, E.
1972-01-01
This program, an extension of the linear equilibrium problem solver ELAS, is an updated and extended version of its earlier form (written in FORTRAN 2 for the IBM 7094 computer). A synchronized material property concept utilizing incremental time steps and the finite element matrix displacement approach has been adopted for the current analysis. A special option enables employment of constant time steps in the logarithmic scale, thereby reducing computational efforts resulting from accumulative material memory effects. A wide variety of structures with elastic or viscoelastic material properties can be analyzed by VISCEL. The program is written in FORTRAN 5 language for the Univac 1108 computer operating under the EXEC 8 system. Dynamic storage allocation is automatically effected by the program, and the user may request up to 195K core memory in a 260K Univac 1108/EXEC 8 machine. The physical program VISCEL, consisting of about 7200 instructions, has four distinct links (segments), and the compiled program occupies a maximum of about 11700 words decimal of core storage.
NASA Astrophysics Data System (ADS)
Vu, Q. H.; Brenner, R.; Castelnau, O.; Moulinec, H.; Suquet, P.
2012-03-01
The correspondence principle is customarily used with the Laplace-Carson transform technique to tackle the homogenization of linear viscoelastic heterogeneous media. The main drawback of this method lies in the fact that the whole stress and strain histories have to be considered to compute the mechanical response of the material during a given macroscopic loading. Following a remark of Mandel (1966 Mécanique des Milieux Continus(Paris, France: Gauthier-Villars)), Ricaud and Masson (2009 Int. J. Solids Struct. 46 1599-1606) have shown the equivalence between the collocation method used to invert Laplace-Carson transforms and an internal variables formulation. In this paper, this new method is developed for the case of polycrystalline materials with general anisotropic properties for local and macroscopic behavior. Applications are provided for the case of constitutive relations accounting for glide of dislocations on particular slip systems. It is shown that the method yields accurate results that perfectly match the standard collocation method and reference full-field results obtained with a FFT numerical scheme. The formulation is then extended to the case of time- and strain-dependent viscous properties, leading to the incremental collocation method (ICM) that can be solved efficiently by a step-by-step procedure. Specifically, the introduction of isotropic and kinematic hardening at the slip system scale is considered.
Nguyen, Nhung; Shao, Yue; Wineman, Alan; Fu, Jianping; Waas, Anthony
2016-07-01
Breast cancer cells (MCF-7 and MCF-10A) are studied through indentation with spherical borosilicate glass particles in atomic force microscopy (AFM) contact mode in fluid. Their mechanical properties are obtained by analyzing the recorded reaction force-time response. The analysis is based on comparing experimental data with predictions from finite element (FE) simulation. Here, FE modeling is employed to simulate the AFM indentation experiment which is neither a displacement nor a force controlled test. This approach is expected to overcome many underlying problems of the widely used models such as Hertz contact model due to its capability to capture the contact behaviors between the spherical indentor and the cell, account for cell geometry, and incorporate with large strain theory. In this work, a non-linear viscoelastic (NLV) model in which the viscoelastic part is described by Prony series terms is used for the constitutive model of the cells. The time-dependent material parameters are extracted through an inverse analysis with the use of a surrogate model based on a Kriging estimator. The purpose is to automatically extract the NLV properties of the cells with a more efficient process compared to the iterative inverse technique that has been mostly applied in the literature. The method also allows the use of FE modeling in the analysis of a large amount of experimental data. The NLV parameters are compared between MCF-7 and MCF-10A and MCF-10A treated and untreated with the drug Cytochalasin D to examine the possibility of using relaxation properties as biomarkers for distinguishing these types of breast cancer cells. The comparisons indicate that malignant cells (MCF-7) are softer and exhibit more relaxation than benign cells (MCF-10A). Disrupting the cytoskeleton using the drug Cytochalasin D also results in a larger amount of relaxation in the cell's response. In addition, relaxation properties indicate larger differences as compared to the elastic moduli
Godeau, Guilhem; Navailles, Laurence; Nallet, Frédéric; Lin, Xinrong; McIntosh, Thomas J.; Grinstaff, Mark W.
2013-01-01
A polystyrenylphosphonium polymer was synthesized and complexed with various carboxylic acid derivatives to form new solid-state polyelectrolyte-surfactant assemblies. The properties of these ionic materials were highly dependent on the nature of the anion and included a brittle material, a rubbery ball that bounces, or a sticky fiber. The values for the equilibrium modulus, storage modulus, and loss modulus were dependent on the composition of the carboxylic acid and the number of electrostatic interactions. Small-angle X-ray scattering studies on the supramolecular assemblies confirmed a bilayer structure for two of the assemblies. PMID:24511156
Linear dependencies between composite fermion states
NASA Astrophysics Data System (ADS)
Meyer, M. L.; Liabøtrø, O.; Viefers, S.
2016-09-01
The formalism of composite fermions (CFs) has been one of the most prominent and successful approaches to describing the fractional quantum Hall effect, in terms of trial many-body wave functions. Testing the accuracy of the latter typically involves rather heavy numerical comparison to exact diagonalization results. Thus, optimizing computational efficiency has been an important technical issue in this field. One generic (and not yet fully understood) property of the CF approach is that it tends to overcount the number of linearly independent candidate states for fixed sets of quantum numbers. Technically speaking, CF Slater determinants that are orthogonal before projection to the lowest Landau level, may lead to wave functions that are identical, or possess linear dependencies, after projection. This leads to unnecessary computations, and has been pointed out in the literature both for fermionic and bosonic systems. We here present a systematic approach that enables us to reveal all linear dependencies between bosonic compact states in the lowest CF ‘cyclotron energy’ sub-band, and almost all dependencies in higher sub-bands, at the level of the CF Slater determinants, i.e. before projection, which implies a major computational simplification. Our approach is introduced for so-called simple states of two-species rotating bosons, and then generalized to generic compact bosonic states, both one- and two-species. Some perspectives also apply to fermionic systems. The identities and linear dependencies we find, are analytically exact for ‘brute force’ projection in the disk geometry.
NASA Astrophysics Data System (ADS)
Xu, Jinsheng; Han, Long; Zheng, Jian; Chen, Xiong; Zhou, Changsheng
2017-02-01
A thermo-damage-viscoelastic model for hydroxyl-terminated polybutadiene (HTPB) composite propellant with consideration for the effect of temperature was implemented in ABAQUS. The damage evolution law of the model has the same form as the crack growth equation for viscoelastic materials, and only a single damage variable S is considered. The HTPB propellant was considered as an isotropic material, and the deviatoric and volumetric strain-stress relations are decoupled and described by the bulk and shear relaxation moduli, respectively. The stress update equations were expressed by the principal stresses σ_{ii}R and the rotation tensor M, the Jacobian matrix in the global coordinate system J_{ijkl} was obtained according to the fourth-order tensor transformation rules. Two models having complex stress states were used to verify the accuracy of the constitutive model. The test results showed good agreement with the strain responses of characteristic points measured by a contactless optical deformation test system, which illustrates that the thermo-damage-viscoelastic model perform well at describing the mechanical properties of an HTPB propellant.
Viscoelastic Timoshenko beam theory
NASA Astrophysics Data System (ADS)
Hilton, Harry H.
2009-03-01
The concept of elastic Timoshenko shear coefficients is used as a guide for linear viscoelastic Euler-Bernoulli beams subjected to simultaneous bending and twisting. It is shown that the corresponding Timoshenko viscoelastic functions now depend not only on material properties and geometry as they do in elasticity, but also additionally on stresses and their time histories. Possible viscoelastic definitions are formulated and evaluated. In general, the viscoelastic relations are sufficiently complicated so that the elastic-viscoelastic correspondence principle (analogy) cannot be applied. This is particularly true for, but not limited to, elastic shear coefficients which are Poisson ratio dependent. Expressions for equivalent viscoelastic Timoshenko shear functions must, therefore, be derived de novo on a case by case basis, taking in to account specific relaxation moduli, stresses, temperatures and their time histories. Thus the elastic simplicity and generality is lost and hence rendering the use of viscoelastic Timoshenko shear functions as highly impractical. Consequently, it is necessary to directly solve the coupled viscoelastic beam governing relations for bending and twisting deflections by using appropriate solution protocols as discussed herein.
Ledoux, William R; Meaney, David F; Hillstrom, Howard J
2004-12-01
Little is known about the structural properties of plantar soft-tissue areas other than the heel; nor is it known whether the structural properties vary depending on location. Furthermore, although the quasi-linear viscoelastic (QLV) theory has been used to model many soft-tissue types, it has not been employed to model the plantar soft tissue. The structural properties of the plantar soft tissue were quantified via stress relaxation experiments at seven regions (subcalcaneal, five submetatarsal, and subhallucal) across eight cadaveric feet. The cadaveric feet were 36.9 +/- 17.4 (mean +/- S.D.) years of age, all free from vascular diseases and orthopedics disorders. All tests were performed at a constant environmental temperature of 35 degrees C. Stress relaxation experiments were performed; different loads were employed for different areas based on normative gait data. A modification of the relaxation spectrum employed within the QLV theory allowed for the inclusion of frequency-sensitive relaxation properties in addition to nonlinear elastic behavior. The tissue demonstrated frequency-dependent damping properties that made the QLV theory ill suited to model the relaxation. There was a significant difference between the elastic structural properties (A) of the subcalcaneal tissue and all other areas (p = 0.004), and a trend (p = 0.067) for the fifth submetatarsal to have less viscous damping (c1) than the subhallucal, or first, second, or third submetatarsal areas. Thus, the data demonstrate that the structural properties of the foot can vary across regions, but careful consideration must be given to the applied loads and the manner in which the loads were applied.
Modeling Non-Linear Material Properties in Composite Materials
2016-06-28
Technical Report ARWSB-TR-16013 MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS Michael F. Macri Andrew G...REPORT TYPE Technical 3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE MODELING NON-LINEAR MATERIAL PROPERTIES IN COMPOSITE MATERIALS ...systems are increasingly incorporating composite materials into their design. Many of these systems subject the composites to environmental conditions
NASA Astrophysics Data System (ADS)
Caruthers, James; Bhattacharya, Aparajita; Medvedev, Grigori
2010-03-01
An extensive set of both linear and non-linear mechanical experiments including non-linear stress-strain behavior and non-linear creep/recovery has been carried out on a lightly cross-linked SBR. The results have been obtained for a wide range of temperatures, extension rates and stretch ratios. The data set reveals an unexpectedly rich behavior, which cannot be predicted by the traditional constitutive models that are based on an additive combination of hyperelastic and quasi-linear viscoelastic contributions. The inability of traditional constitutive models to describe the data is particularly striking for a high extension rate deformation followed by a slow extension rate (e.g. creep) as contrasted to deformations at slow extension rates. The hyperelastic model of rubber elasticity is shown to provide a satisfactory description of the equilibrium behavior; thus, the results in the current study indicate the need for the development of a new type viscoelastic model for elastomers. Potential candidates for the needed constitutive description will be discussed.
USDA-ARS?s Scientific Manuscript database
The influence of jet-cooking Prowashonupana barley flour on total phenolic contents, antioxidant activities, water holding capacities, and viscoelastic properties was studied. Barley flour was jet-cooked without or with pH adjustment at 7, 9, or 11. Generally, the free phenolic content and antioxi...
NASA Astrophysics Data System (ADS)
Kim, Do-Hyoung; Joo, Sung-Jun; Kwak, Dong-Ok; Kim, Hak-Sung
2015-10-01
In this study, the warpage simulation of a multi-layer printed circuit board (PCB) was performed as a function of various copper (Cu) patterns/photoimageable solder resist (PSR) composite patterns and their anisotropic viscoelastic properties. The thermo-mechanical properties of Cu/PSR patterns were obtained from finite element analysis (virtual test) and homogenized with anisotropic composite shell models that considered the viscoelastic properties. The multi-layer PCB model was simplified based on the unit Cu/PSR patterns and the warpage simulation during the reflow process was performed by using ABAQUS combined with a user-defined subroutine. From these results, it was demonstrated that the proposed anisotropic viscoelastic composite shell simulation technique can be successfully used to predict warpage of multi-layer PCBs during the reflow process.
Micromechanical modeling of viscoelastic voided composites in the low-frequency approximation
NASA Astrophysics Data System (ADS)
Haberman, Michael R.; Berthelot, Yves H.; Jarzynski, J.; Cherkaoui, Mohammed
2002-11-01
The self-consistent model of Cherkaoui [et al.] [J. Eng. Mater. Technol. 116, 274-278 (1994)] is used to compute the effective material moduli of a viscoelastic material containing coated spherical inclusions. Losses are taken into account by introducing the frequency-dependent, complex shear modulus of the viscoelastic matrix. Mode conversion appears through the localization tensors that govern the micromechanical behavior near the inclusions. The results are compared with the scattering model and the data of Baird [et al.] [J. Acoust. Soc. Am. 105, 1527-1538 (1999)]. The two models are in good agreement. the advantage of the self-consistent model is that it is applicable to the case of nonspherical inclusions embedded in anisotropic materials. copyright 2002 Acoustical Society of America.
Simplified Bulk Experiments and Hygrothermal Nonlinear Viscoelasticity
NASA Astrophysics Data System (ADS)
Park, Soo Jae; Liechti, Kenneth M.; Roy, Samit
2004-12-01
Bulk and shear linear viscoelastic functions were simultaneously determined using confined compression experiments on an epoxy primer, one component of a concrete/fiber-reinforced polymer composite bond line. The results were validated with data from separately conducted bulk creep compliance experiments. The transition region of the bulk modulus was as wide as those of the tensile and shear relaxation moduli. Thermal and hygral expansions were measured and used to calibrate a hybrid nonlinear viscoelastic constitutive model which represented the hygrothermal nonlinear viscoelastic response of the material. This model was a combination of Schapery’s (Further Development of a Thermodynamic Constitutive Theory: Stress Formulation, AA {&} ES Report (69 2), 1969a, Purdue University, West Lafayette; Schapery, R.A., ‘On the characterization of nolinear viscoelastic materials’, Polym. Eng. Sci. 9 1969b, 295 310.) and Popelar’s (K., ‘Multiaxial nonlinear viscoelastic characterization and modeling of a structural adhesive’, J. Eng. Mater. Technol. Trans. ASME 119, 1997, 205 210.) shear modified free volume model, which was calibrated ramp using torsion and tension experiments at various temperature and humidity levels. Using free volume concepts to accomplish time shifting as a function of strain, temperature and humidity levels did not create the extent of the softening behavior that was observed in the experiments, particularly at high humidity levels. The vertical shifting concepts of Schapery were required to capture the extraordinarily strong hygral effect.
Numerical solution methods for viscoelastic orthotropic materials
NASA Technical Reports Server (NTRS)
Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.
1988-01-01
Numerical solution methods for viscoelastic orthotropic materials, specifically fiber reinforced composite materials, are examined. The methods include classical lamination theory using time increments, direction solution of the Volterra Integral, Zienkiewicz's linear Prony series method, and a new method called Nonlinear Differential Equation Method (NDEM) which uses a nonlinear Prony series. The criteria used for comparison of the various methods include the stability of the solution technique, time step size stability, computer solution time length, and computer memory storage. The Volterra Integral allowed the implementation of higher order solution techniques but had difficulties solving singular and weakly singular compliance function. The Zienkiewicz solution technique, which requires the viscoelastic response to be modeled by a Prony series, works well for linear viscoelastic isotropic materials and small time steps. The new method, NDEM, uses a modified Prony series which allows nonlinear stress effects to be included and can be used with orthotropic nonlinear viscoelastic materials. The NDEM technique is shown to be accurate and stable for both linear and nonlinear conditions with minimal computer time.
Skontorp, A.; Wang, S.S.
1995-12-31
The high-temperature creep with physical and chemical aging of a polyimide-matrix composite has been studied with a combined experimental and analytical micromechanics approach. High-temperature aging and creep experiments are carried out to determine the effects of aging on both a neat polyimide (Avimid-N) resin and polyimide-matrix composite. The effect of aging on the polyimide resin is found to be in the form of a volume reduction and a small change in its glass- transition temperature. For both the neat polyimide resin and its composite, aging strains have been distinguished from total high-temperature strains and, thus, true mechanical creep strains can be properly determined. A micromechanics model based on the recently developed homogenization theory is used to study the viscoelastic effective constitutive equations of the composite. The effect of aging-induced property change is taken into account implicitly, through the input neat resin data in the formulation. Comparisons are made between the homogenization predictions and the experimentally obtained effective properties, and good agreement is observed. In the long-term high-temperature creep, it has been found that the complexities associated with the composite microstructural inhomogeneities and imperfection may lead to some discrepancies between the predictions and the experimental results.
Viscoelastic/damage modeling of filament-wound spherical pressure vessels
NASA Technical Reports Server (NTRS)
Hackett, Robert M.; Dozier, Jan D.
1987-01-01
A model of the viscoelastic/damage response of a filament-wound spherical vessel used for long-term pressure containment is developed. The matrix material of the composite system is assumed to be linearly viscoelastic. Internal accumulated damage based upon a quadratic relationship between transverse modulus and maximum circumferential strain is postulated. The resulting nonlinear problem is solved by an iterative routine. The elastic-viscoelastic correspondence is employed to produce, in the Laplace domain, the associated elastic solution for the maximum circumferential strain which is inverted by the method of collocation to yield the time-dependent solution. Results obtained with the model are compared to experimental observations.
Viscoelastic/damage modeling of filament-wound spherical pressure vessels
NASA Technical Reports Server (NTRS)
Hackett, Robert M.; Dozier, Jan D.
1987-01-01
A model of the viscoelastic/damage response of a filament-wound spherical vessel used for long-term pressure containment is developed. The matrix material of the composite system is assumed to be linearly viscoelastic. Internal accumulated damage based upon a quadratic relationship between transverse modulus and maximum circumferential strain is postulated. The resulting nonlinear problem is solved by an iterative routine. The elastic-viscoelastic correspondence is employed to produce, in the Laplace domain, the associated elastic solution for the maximum circumferential strain which is inverted by the method of collocation to yield the time-dependent solution. Results obtained with the model are compared to experimental observations.
Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Starch Co-filler
USDA-ARS?s Scientific Manuscript database
Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...
USDA-ARS?s Scientific Manuscript database
The hydrolyzed wheat gluten (WG) and wheat starch (WS) showed substantial reinforcement effects in rubber composites. Due to different abilities of WG and WS to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG and WS as a co-filler. The...
Viscoelastic Properties of Rubber Composites Reinforced by Wheat Gluten and Wheat Starch Co-filler
USDA-ARS?s Scientific Manuscript database
Due to different abilities of wheat gluten (WG) and wheat starch (WS) to increase the modulus of rubber composites, the composite properties can be adjusted by varying the ratio of WG to WS as a co-filler. This study shows that the co-filler composites became more temperature dependent as the WG co...
Non-linear behavior of fiber composite laminates
NASA Technical Reports Server (NTRS)
Hashin, Z.; Bagchi, D.; Rosen, B. W.
1974-01-01
The non-linear behavior of fiber composite laminates which results from lamina non-linear characteristics was examined. The analysis uses a Ramberg-Osgood representation of the lamina transverse and shear stress strain curves in conjunction with deformation theory to describe the resultant laminate non-linear behavior. A laminate having an arbitrary number of oriented layers and subjected to a general state of membrane stress was treated. Parametric results and comparison with experimental data and prior theoretical results are presented.
The Standard Linear Model in a Viscoelastic Laminated Composite Beam Theory.
1976-04-01
FlexuralVibrations of Beams. 8 IA equatb ns C yzy= PC Ca + C PCv (3) y,y yzz which when added to Lheir counterparts in equation (6) become •yz,y + yz,y =pi+p w a C a...1 19 ~ (is introduced to yield the energy exp~essions (A A) ý2 + 1 22 C ’’~ + 222) 1 b qp,1 + (l-Tn)p 2 ] tp 2 .22pI +.2 nE( ) (~2 1 l 1 _ ý 2I~rE
Abramowitch, Steven D; Woo, Savio L
2004-02-01
The quasi-linear viscoelastic (QLV) theory proposed by Fung (1972) has been frequently used to model the nonlinear time- and history-dependent viscoelastic behavior of many soft tissues. It is common to use five constants to describe the instantaneous elastic response (constants A and B) and reduced relaxation function (constants C, tau 1, and tau 2) on experiments with finite ramp times followed by stress relaxation to equilibrium. However, a limitation is that the theory is based on a step change in strain which is not possible to perform experimentally. Accounting for this limitation may result in regression algorithms that converge poorly and yield nonunique solutions with highly variable constants, especially for long ramp times (Kwan et al. 1993). The goal of the present study was to introduce an improved approach to obtain the constants for QLV theory that converges to a unique solution with minimal variability. Six goat femur-medial collateral ligament-tibia complexes were subjected to a uniaxial tension test (ramp time of 18.4 s) followed by one hour of stress relaxation. The convoluted QLV constitutive equation was simultaneously curve-fit to the ramping and relaxation portions of the data (r2 > 0.99). Confidence intervals of the constants were generated from a bootstrapping analysis and revealed that constants were distributed within 1% of their median values. For validation, the determined constants were used to predict peak stresses from a separate cyclic stress relaxation test with averaged errors across all specimens measuring less than 6.3 +/- 6.0% of the experimental values. For comparison, an analysis that assumed an instantaneous ramp time was also performed and the constants obtained for the two approaches were compared. Significant differences were observed for constants B, C, tau 1, and tau 2, with tau 1 differing by an order of magnitude. By taking into account the ramping phase of the experiment, the approach allows for viscoelastic
2005-01-01
The objective of the project was to develop a multiscale computational model capable of predicting the evolution of matrix cracking, delamination...currently under development by the author. The cohesive zone model for predicting damage evolution in laminated composite plates is cast within a...three dimensional continuum finite element algorithm capable of simulating the evolution of matrix, fiber, and delamination cracking in composite
Characterization of viscoelastic response and damping of composite materials used in flywheel rotors
NASA Astrophysics Data System (ADS)
Chen, Jianmin
The long-term goal for spacecraft flywheel systems with higher energy density at the system level requires new and innovative composite material concepts. Multi-Direction Composite (MDC) offers significant advantages over traditional filament-wound and multi-ring press-fit filament-wound wheels in providing higher energy density (i.e., less mass), better crack resistance, and enhanced safety. However there is a lack of systematic characterization for dynamic properties of MDC composite materials. In order to improve the flywheel materials reliability, durability and life time, it is very important to evaluate the time dependent aging effects and damping properties of MDC material, which are significant dynamic parameter for vibration and sound control, fatigue endurance, and impact resistance. The physical aging effects are quantified based on a set of creep curves measured at different aging time or different aging temperature. One parameter (tau) curve fit was proposed to represent the relationship of aging time and aging temperature between different master curves. The long term mechanical behavior was predicted by obtained master curves. The time and temperature shift factors of matrix were obtained from creep curves and the aging time shift rate were calculated. The aging effects on composite are obtained from experiments and compared with prediction. The mechanical quasi-behavior of MDC composite was analyzed. The correspondence principle was used to relate quasi-static elastic properties of composite materials to time-dependent properties of its constituent materials (i.e., fiber and matrix). The Prony series combined with the multi-data fitting method was applied to inverse Laplace transform and to calculate the time dependent stiffness matrix effectively. Accelerated time-dependent deformation of two flywheel rim designs were studied for a period equivalent to 31 years and are compared with hoop reinforcement only composite. Damping of pure resin and T700
NASA Astrophysics Data System (ADS)
Xin, Fu-Long; Bai, Xian-Xu; Qian, Li-Jun
2016-10-01
Magnetorheological elastomers (MREs), a smart composite, exhibit dual characteristics of both MR materials and particle reinforced composites, i.e., the viscoelasticity of MREs depends on external magnetic field as well as strain amplitude and excitation frequency. In this article, the principle of a frequency-, amplitude-, and magneto-dependent linear dynamic viscoelastic model for isotropic MREs is proposed and investigated. The viscoelasticity of MREs is divided into frequency- and amplitude-dependent mechanical viscoelasticity and frequency-, amplitude-, and magneto-dependent magnetic viscoelasticity. Based on the microstructures of ferrous particles and matrix, the relationships between mechanical shear modulus corresponding to the mechanical viscoelasticity and strain amplitude and excitation frequency are obtained. The relationships between magnetic shear modulus corresponding to the magnetic viscoelasticity with strain amplitude, excitation frequency, and further external magnetic field are derived using the magneto-elastic theory. The influence of magnetic saturation on the MR effect is also considered. The dynamic characteristics of a fabricated isotropic MRE sample under different strain amplitudes, excitation frequencies and external magnetic fields are tested. The parameters of the proposed model are identified with the experimental data and the theoretical expressions of shear storage modulus and shear loss modulus of the MRE sample are obtained. In the light of the theoretical expressions, the loss factors of the MRE sample under different loading conditions are analyzed and compared with the test results to evaluate the effectiveness of the proposed model.
NASA Astrophysics Data System (ADS)
Khurana, Meenakshi; Rana, Puneet; Srivastava, Sangeet
2016-12-01
In the present paper, we present both linear and nonlinear analyses to investigate thermal instability on a rotating non-Newtonian viscoelastic nanofluid layer under the influence of a magnetic field. In the linear stability analysis, the stationary and oscillatory modes of convection are obtained for various controlling parameters using the normal mode technique. Both Nusselt and Sherwood numbers are calculated after employing the minimal truncated Fourier series to steady and unsteady state. The main findings conclude that rotation and strain retardation parameter increase the value of the critical Rayleigh number in the neutral stability curve which delays the onset of convection in the nanofluid layer while the stress relaxation parameter enhances the convection. The magnetic field stabilizes the system for low values of the Taylor number (rotation) but an inverse trend is observed for high Taylor number. Both Nusselt and Sherwood numbers initially oscillate with time until the steady state prevails and they decrease with both Chandrasekhar and Taylor numbers. The magnitude of the streamlines and the contours of both isotherms and iso-nanohalines concentrate near the boundaries for large values of Ra, indicating an increase in convection.
Enhanced studies on a composite time integration scheme in linear and non-linear dynamics
NASA Astrophysics Data System (ADS)
Klarmann, S.; Wagner, W.
2015-03-01
In Bathe and Baig (Comput Struct 83:2513-2524, 2005), Bathe (Comput Struct 85:437-445, 2007), Bathe and Noh (Comput Struct 98-99:1-6, 2012) Bathe et al. have proposed a composite implicit time integration scheme for non-linear dynamic problems. This paper is aimed at the further investigation of the scheme's behaviour for use in case of linear and non-linear problems. Therefore, the examination of the amplification matrix of the scheme will be extended in order to get in addition the properties for linear calculations. Besides, it will be demonstrated that the integration scheme also has an impact on some of these properties when used for non-linear calculations. In conclusion, a recommendation for the only selectable parameter of the scheme will be given for application in case of geometrically non-linear calculations.
USDA-ARS?s Scientific Manuscript database
When soy products including soy protein isolate, defatted soy flour, soy protein concentrate, and soy spent flakes were incorporated into rubber latex to form composites, they showed substantial reinforcement effects as measured by rheological and mechanical methods. It was observed that different ...
Effect of Phthalic Anhydride Modified Soy Protein on Viscoelastic Properties of Polymer Composites
USDA-ARS?s Scientific Manuscript database
Phthalic anhydride (PA) modified soy protein isolates (SPI), both hydrolyzed and un-hydrolyzed, are investigated as reinforcement fillers in styrene-butadiene (SB) composites. The modification of SPI by PA increases the number of carboxylic acid functional groups on the protein surface and therefor...
USDA-ARS?s Scientific Manuscript database
When soy products including soy protein isolate (SPI), defatted soy flour, soy protein concentrate, and soy spent flakes (SSF) were incorporated into rubber latex to form composites, they showed substantial reinforcement effects as measured by rheological and mechanical methods. It was observed tha...
Viscoelastic Characterization of a Nonlinear, Glass/Epoxy Composite Including the Effects of Damage
1974-10-01
Schapery Isothermal creep and recovery tests were conducted on an epoxy resin and a glass fiber-reiiforced composite made from the same bulk resin ...Contracted Notations ... ......... ... 43 2 Ingredients of Shell 58-68R Epoxy Resin [181]. . 9 3 Fiber Content of S-901 Glass/Shell 58-68R Epoxy Resin ...Epoxy Resin .......... ................... 154 i0 Shift Factors, aT, for Shell 58-68R Epoxy Resin .......... ................... 164 11 Shell 58-68R
Viscoelastic properties of high solids softwood kraft black liquors
Zaman, A.A.; Fricke, A.L. . Dept. of Chemical Engineering)
1995-01-01
The linear viscoelastic functions of several softwood slash pine kraft black liquors from a two level, four variable factorially designed pulping experiment were determined for solids concentrations from 65% to 81% and temperatures from 40 to 85 C. At high solids and lower temperatures, black liquors behave like un-cross-linked polymers.The exact level of dynamic viscosity and storage modulus at any given condition is dependent upon the solids composition which will vary from liquor to liquor. The linear viscoelastic functions were described using Cross and Carreau-Yasuda models. Superposition principles developed for polymer melts and concentrated polymer solutions were applied to obtain reduced correlations for dynamic viscosity and storage modulus. The data for dynamic viscosity were shifted over the whole range of temperature, solids concentrations, and frequency, and a single curve for dynamic viscosity behavior of every liquor was obtained. The data for storage modulus did not superimpose into a single curve for the effects of solids concentration. The reduced correlations were used to estimate the viscoelasticity of the liquors near normal firing conditions and found that black liquors will not have any problem in droplet formation for concentrations up to 81% solids and temperatures above 120 C. The viscometric and linear viscoelastic functions of black liquors were compared (Cox-Merz rule), and it was shown that at sufficiently low shear rates and frequencies both shear viscosity and the magnitude of the complex viscosity approach zero shear rate viscosity.
1988-09-01
properties.> Moreover, it is found that whether or not a failure zone is incorporated into the model si nif icantly influences both quantitatively and...Moreover, it is found that whether or not a failure zone is incorporated into the model significantly influences both quantitatively and...Hopf technique, Willis constructed the dynamic stress intensity factor (SIP) for a standard linear solid material model and general crack face
NASA Astrophysics Data System (ADS)
Sina, Nima; Moosavi, Hassan; Aghaei, Hosein; Afrand, Masoud; Wongwises, Somchai
2017-01-01
In this paper, for the first time, a nonlocal Timoshenko beam model is employed for studying the wave dispersion of a fluid-conveying single-walled carbon nanotube on Viscoelastic Pasternak foundation under high and low temperature change. In addition, the phase and group velocity for the nanotube are discussed, respectively. The influences of Winkler and Pasternak modulus, homogenous temperature change, steady flow velocity and damping factor of viscoelastic foundation on wave dispersion of carbon nanotubes are investigated. It was observed that the characteristic of the wave for carbon nanotubes conveying fluid is the normal dispersion. Moreover, implying viscoelastic foundation leads to increasing the wave frequencies.
Yang, Jun; Han, ChunRui
2016-09-28
With inspiration from the concept of natural dynamic materials, binary-component composite hydrogels with excellent mechanical properties and recovery capability were prepared from the cellulose nanocrystal (CNC) skeleton reinforced covalently cross-linked polyacrylamide (PAAm) networks. The hierarchical skeleton obtained by freeze-drying of CNC aqueous suspension was directly impregnated into acrylamide (AAm) monomer solution, and in situ polymerization occurred in the presence of hydrophilic cross-linker PEGDA575. Under stress, hydrogen bonds at the interface between CNC and PAAm as well as inside the CNC skeleton acted as sacrificial bonds to dissipate energy, while the covalently cross-linked PAAm chains bind the network together by providing adhesion to CNC and thereby suppress the catastrophic craze propagation. The above synergistic effects of the CNC skeleton and the elastic PAAm network enabled the composite hydrogels to withstand up to 181 kPa of tensile stress, 1.01 MPa of compressive strength, and 1392% elongation at break with the fracture energy as high as 2.82 kJ/m(2). Moreover, the hydrogels recovered more than 70% elasticity after eight loading-unloading cycles, revealing excellent fatigue resistance. The depth-sensing instrumentation by indentation test corroborated that the CNC skeleton contributed simultaneous improvements in hardness and elasticity by as much as 500% in comparison with the properties of the pristine PAAm hydrogels. This elegant strategy by using the CNC skeleton as a reinforcing template offers a new perspective for the fabrication of robust hydrogels with exceptional mechanical properties that may be important for biomedical applications where high strength is required, such as scaffolds for tissue engineering.
Viscoelastic Properties and Nano-scale Structures of Composite Oligopeptide-Polysaccharide Hydrogels
Hyland, Laura L.; Taraban, Marc B.; Feng, Yue; Hammouda, Boualem; Yu, Y. Bruce
2012-01-01
Biocompatible and biodegradable peptide hydrogels are drawing increasing attention as prospective materials for human soft tissue repair and replacement. To improve the rather unfavorable mechanical properties of our pure peptide hydrogels, in this work we examined the possibility of creating a double hydrogel network. This network was created by means of the co-assembly of mutually attractive but self-repulsive oligopeptides within an already existing fibrous network formed by the charged, biocompatible polysaccharides chitosan, alginate, and chondroitin. Using dynamic oscillatory rheology experiments, it was found that the co-assembly of the peptides within the existing polysaccharide network resulted in a less stiff material as compared to the pure peptide networks (the elastic modulus G′ decreased from 90 kPa to 10 kPa). However, these composite oligopeptide-polysaccharide hydrogels were characterized by a greater resistance to deformation (the yield strain γ grew from 4 % to 100 %). Small-angle neutron scattering (SANS) was used to study the 2D cross-sectional shapes of the fibers, their dimensional characteristics and the mesh sizes of the fibrous networks. Differences in material structures found with SANS experiments confirmed rheology data showing that incorporation of the peptides dramatically changed the morphology of the polysaccharide network. The resulting fibers were structurally very similar to those forming the pure peptide networks, but formedless stiff gels because of their markedly greater mesh sizes. Together, these findings suggest an approach for the development of highly deformation-resistant biomaterials. PMID:21994046
Koga, Shiori; Böcker, Ulrike; Moldestad, Anette; Tosi, Paola; Shewry, Peter R; Mosleth, Ellen F; Uhlen, Anne Kjersti
2016-01-15
The aim of this study was to investigate the effects of low to moderate temperatures on gluten functionality and gluten protein composition. Four spring wheat cultivars were grown in climate chambers with three temperature regimes (day/night temperatures of 13/10, 18/15 and 23/20 °C) during grain filling. The temperature strongly influenced grain weight and protein content. Gluten quality measured by maximum resistance to extension (Rmax ) was highest in three cultivars grown at 13 °C. Rmax was positively correlated with the proportion of sodium dodecyl sulfate-unextractable polymeric proteins (%UPP). The proportions of ω-gliadins and D-type low-molecular-weight glutenin subunits (LMW-GS) increased and the proportions of α- and γ-gliadins and B-type LMW-GS decreased with higher temperature, while the proportion of high-molecular-weight glutenin subunits (HMW-GS) was constant between temperatures. The cultivar Berserk had strong and constant Rmax between the different temperatures. Constant low temperature, even as low as 13 °C, had no negative effects on gluten quality. The observed variation in Rmax related to temperature could be explained more by %UPP than by changes in the proportions of HMW-GS or other gluten proteins. The four cultivars responded differently to temperature, as gluten from Berserk was stronger and more stable over a wide range of temperatures. © 2015 Society of Chemical Industry.
NASA Astrophysics Data System (ADS)
Fanget, A.; Trumel, H.; Dragon, A.
1998-07-01
The dynamic behaviour of a propellant like material is modelized with viscoelastic-viscoplastic behaviour in the lagrangian finite strain frame work. Employment of logarithmic strain allows elastic-plastic decomposidon. The viscoelastic part is performed in differential form and is integrated by an explicit method. The plastic deformation is split into volumetric and distorsional parts which constitute two distinct state variables for compaction and yielding. This model has been implemented in a finite element 2D code. The algorithm of the implementation is presented and numerical and experimental results are shown.
NASA Astrophysics Data System (ADS)
Taskonak, Burak
Bilayer dental ceramic composites used for fixed partial dentures are becoming more widely used in dental practices because of their biocompatibility, aesthetic properties, and chemical durability. However, large statistical variations in the strength of ceramics are associated with the structural flaws as a result of processing and complex stress states within the surfaces of the materials because of thermal properties of each layer. In addition, partial delaminations of the veneer layer and connector fractures of bilayer ceramic fixed partial dentures (FPDs) have been observed in a clinical study which is a part of this dissertation. Analysis of fracture surfaces of failed FPDs reveals that such fractures of the veneering ceramic are most likely caused by lateral crack growth. Global residual stresses associated with the coefficient of thermal expansion differences between core and veneering ceramics can cause lateral crack initiation. Also, rapid cooling of bilayer ceramics from the sintering temperature of the glass veneer may not allow the interfacial stresses in the viscoelastic glass to relax to equilibrium values. This can further contribute to the propagation of lateral cracks. Furthermore, local residual stresses that develop in the plastic deformation zone below sharp contact areas on the occlusal surface are another contributor to lateral crack growth. Superposition of global residual stresses and a Boussinesq stress field can incrementally increase the possibility of lateral crack growth. The long-range goals of this study are to critically analyze the lateral crack growth mechanisms associated with residual stresses, to modify residual tensile stress distributions by controlled heat treatment, and to minimize the probability of veneering ceramic fractures. Four approaches were used to accomplish these goals: (1) clinical evaluation of a bilayer ceramic fixed partial denture system; (2) fracture surface analysis of clinically failed FPDs; (3
Anisotropic linear elastic properties of fractal-like composites.
Carpinteri, Alberto; Cornetti, Pietro; Pugno, Nicola; Sapora, Alberto
2010-11-01
In this work, the anisotropic linear elastic properties of two-phase composite materials, made up of square inclusions embedded in a matrix, are investigated. The inclusions present a fractal hierarchical distribution and are supposed to have the same Poisson's ratio as the matrix but a different Young's modulus. The effective elastic moduli of the medium are computed at each fractal iteration by coupling a position-space renormalization-group technique with a finite element analysis. The study allows to obtain and generalize some fundamental properties of fractal composite materials.
Anisotropic linear elastic properties of fractal-like composites
NASA Astrophysics Data System (ADS)
Carpinteri, Alberto; Cornetti, Pietro; Pugno, Nicola; Sapora, Alberto
2010-11-01
In this work, the anisotropic linear elastic properties of two-phase composite materials, made up of square inclusions embedded in a matrix, are investigated. The inclusions present a fractal hierarchical distribution and are supposed to have the same Poisson’s ratio as the matrix but a different Young’s modulus. The effective elastic moduli of the medium are computed at each fractal iteration by coupling a position-space renormalization-group technique with a finite element analysis. The study allows to obtain and generalize some fundamental properties of fractal composite materials.
NASA Astrophysics Data System (ADS)
Yamasaki, Tadashi; Houseman, Gregory; Hamling, Ian; Postek, Elek
2010-05-01
We have developed a new parallelized 3-D numerical code, OREGANO_VE, for the solution of the general visco-elastic problem in a rectangular block domain. The mechanical equilibrium equation is solved using the finite element method for a (non-)linear Maxwell visco-elastic rheology. Time-dependent displacement and/or traction boundary conditions can be applied. Matrix assembly is based on a tetrahedral element defined by 4 vertex nodes and 6 nodes located at the midpoints of the edges, and within which displacement is described by a quadratic interpolation function. For evaluating viscoelastic relaxation, an explicit time-stepping algorithm (Zienkiewicz and Cormeau, Int. J. Num. Meth. Eng., 8, 821-845, 1974) is employed. We test the accurate implementation of the OREGANO_VE by comparing numerical and analytic (or semi-analytic half-space) solutions to different problems in a range of applications: (1) equilibration of stress in a constant density layer after gravity is switched on at t = 0 tests the implementation of spatially variable viscosity and non-Newtonian viscosity; (2) displacement of the welded interface between two blocks of differing viscosity tests the implementation of viscosity discontinuities, (3) displacement of the upper surface of a layer under applied normal load tests the implementation of time-dependent surface tractions (4) visco-elastic response to dyke intrusion (compared with the solution in a half-space) tests the implementation of all aspects. In each case, the accuracy of the code is validated subject to use of a sufficiently small time step, providing assurance that the OREGANO_VE code can be applied to a range of visco-elastic relaxation processes in three dimensions, including post-seismic deformation and post-glacial uplift. The OREGANO_VE code includes a capability for representation of prescribed fault slip on an internal fault. The surface displacement associated with large earthquakes can be detected by some geodetic observations
Houanou, Agapi Kocouvi; Tchéhouali, Adolphe Dèfodji; Foudjet, Amos Erick
2014-01-01
Judicious and regulated use of wood as a building material is better than that of many other conventional materials in terms of environmental issues of this century. The study of the behavior of wood requires a better understanding of the characteristics in different possible cases of loading including loads applied instantly, loads applied for a short time and loads applied for a long time. The purpose of this study is to evaluate the influence of the loading duration on the linear viscoelastic parameters of tropical wood in creep test. Creep tests conducted on two species of tropical wood, Tectona grandis L.f and Diospyros mespiliformis, were carried out for a total loading duration of 15 hours by subjecting samples to bending test through with equal strain in all sections. After measuring the instantaneous deflection, the other measurements were carried out at regular time each 30 minutes. Each recorded deflection was converted into longitudinal deformation and the data were analyzed by considering fourteen loading durations. Using the least squares method, the dynamic modulus of elasticity and the modulus of dynamic viscosity were determined for each loading time. The results showed that the loading time has no influence on the modulus of dynamic viscosity. On the other hand, the dynamic modulus of elasticity decreases and tends towards zero. Good agreement between creep test data and dynamic modulus of elasticity was found using mathematical function in power. Suitably, the "power" function established between the elastic dynamic modulus and the loading duration can be used to extrapolate deformations values.
Viscoelastic properties of a synthetic meniscus implant.
Shemesh, Maoz; Asher, Roy; Zylberberg, Eyal; Guilak, Farshid; Linder-Ganz, Eran; Elsner, Jonathan J
2014-01-01
There are significant potential advantages for restoration of meniscal function using a bio-stable synthetic implant that combines long-term durability with a dependable biomechanical performance resembling that of the natural meniscus. A novel meniscus implant made of a compliant polycarbonate-urethane matrix reinforced with high modulus ultrahigh molecular weight polyethylene fibers was designed as a composite structure that mimics the structural elements of the natural medial meniscus. The overall success of such an implant is linked on its capability to replicate the stress distribution in the knee over the long-term. As this function of the device is directly dependent on its mechanical properties, changes to the material due to exposure to the joint environment and repeated loading could have non-trivial influences on the viscoelastic properties of the implant. Thus, the goal of this study was to measure and characterize the strain-rate response, as well as the viscoelastic properties of the implant as measured by creep, stress relaxation, and hysteresis after simulated use, by subjecting the implant to realistic joint loads up to 2 million cycles in a joint-like setting. The meniscus implant behaved as a non-linear viscoelastic material. The implant underwent minimal plastic deformation after 2 million fatigue loading cycles. Under low compressive loads, the implant was fairly flexible, and able to deform relatively easily (E=120-200 kPa). However as the compressive load applied on the implant was increased, the implant became stiffer (E=3.8-5.2 MPa), to resist deformation. The meniscus implant appears well-matched to the viscoelastic properties of the natural meniscus, and importantly, these properties were found to remain stable and minimally affected by potentially degradative and loading conditions associated with long-term use.
NASA Astrophysics Data System (ADS)
Sayyidmousavi, Alireza; Bougherara, Habiba; Fawaz, Zouheir
2015-06-01
A micromechanical approach is adopted to study the role of viscoelasticity on the fatigue behavior of polymer matrix composites. In particular, the study examines the interaction of fatigue and creep in angle ply carbon/epoxy at 25 and 114 °C. The matrix phase is modeled as a vicoelastic material using Schapery's single integral constitutive equation. Taking viscoelsticity into account allows the study of creep strain evolution during the fatigue loading. The fatigue failure criterion is expressed in terms of the fatigue failure functions of the constituent materials. The micromechanical model is also used to calculate these fatigue failure functions from the knowledge of the S-N diagrams of the composite material in longitudinal, transverse and shear loadings thus eliminating the need for any further experimentation. Unlike the previous works, the present study can distinguish between the strain evolution due to fatigue and creep. The results can clearly show the contribution made by the effect of viscoelasticity to the total strain evolution during the fatigue life of the specimen. Although the effect of viscoelsticity is found to increase with temperature, its contribution to strain development during fatigue is compromised by the shorter life of the specimen when compared to lower temperatures.
NASA Astrophysics Data System (ADS)
Verbaan, Cornelis A. M.; Peters, Gerrit W. M.; Steinbuch, Maarten
2017-01-01
In this paper we demonstrate the advantage of applying viscoelastic materials instead of purely viscous materials as damping medium in mechanical dampers. Although the loss modulus decreases as function of frequency in case of viscoelastic behavior, which can be interpreted as a decrease of damping, the viscoelastic behavior still leads to an increased modal damping for mechanical structures. This advantage holds for inertial-mass-type dampers that are tuned for broad-banded resonance damping. It turns out that an increase of the storage modulus as function of frequency contributes to the effectiveness of mechanical dampers with respect to energy dissipation at different mechanical resonance frequencies. It is shown that this phenomenon is medium specific and is independent of the amount of damper mass.
Linear versus nonlinear theories for laminated composite plates and shells
Qatu, M.S.
1995-11-01
Linear and nonlinear shear-deformation theories for laminated composite plates and shells are discussed in this paper. The emphasis here is on the range of validity for each class of theories. The finite element method is used to determine the maximum stresses for a wide range of statically loaded plate and shell panels with various thickness ratios. This paper concludes that for the vast majority of composite materials and for moderately thick plates and shells, stresses normally reach the maximum allowable stress before nonlinear terms can become important. This has been demonstrated by showing that for the limiting case of shear deformation theories (in which the minimum span length (or radius) to thickness ratio is 20), the material usually fails before the maximum deflection reaches the magnitude of the thickness (where nonlinear terms start to become significant).
NASA Astrophysics Data System (ADS)
Turzi, Stefano S.
2016-12-01
Nematic liquid crystals exhibit both crystallike and fluidlike features. In particular, the propagation of an acoustic wave shows an interesting occurrence of some of the solidlike features at the hydrodynamic level, namely, the frequency-dependent anisotropy of sound velocity and acoustic attenuation. The non-Newtonian behavior of nematics also emerges from the frequency-dependent viscosity coefficients. To account for these phenomena, we put forward a viscoelastic model of nematic liquid crystals, and we extend our previous theory to fully include the combined effects of compressibility, anisotropic elasticity, and dynamic relaxation, at any shear rate. The low-frequency limit agrees with the compressible Ericksen-Leslie theory, while at intermediate frequencies the model correctly captures the relaxation mechanisms underlying finite shear and bulk elastic moduli. We show that there are only four relaxation times allowed by the uniaxial symmetry.
NASA Technical Reports Server (NTRS)
Oden, J. T.; Becker, E. B.; Lin, T. L.; Hsieh, K. T.
1984-01-01
The formulation and numerical analysis of several problems related to the behavior of pneumatic tires are considered. These problems include the general rolling contact problem of a rubber-like viscoelastic cylinder undergoing finite deformations and the finite deformation of cord-reinforced rubber composites. New finite element models are developed for these problems. Numerical results obtained for several representative cases are presented.
Development of a viscoelastic continuum damage model for cyclic loading
NASA Astrophysics Data System (ADS)
Sullivan, R. W.
2008-12-01
A previously developed spectrum model for linear viscoelastic behavior of solids is used to describe the rate-dependent damage growth of a time dependent material under cyclic loading. Through the use of the iterative solution of a special Volterra integral equation, the cyclic strain history is described. The spectrum-based model is generalized for any strain rate and any uniaxial load history to formulate the damage function. Damage evolution in the body is described through the use of a rate-type evolution law which uses a pseudo strain to express the viscoelastic constitutive equation with damage. The resulting damage function is used to formulate a residual strength model. The methodology presented is demonstrated by comparing the peak values of the computed cyclic strain history as well as the residual strength model predictions to the experimental data of a polymer matrix composite.
Kawata, Yuki; Yamamoto, Takahiro; Kihara, Hideyuki; Yamamura, Yasuhisa; Saito, Kazuya; Ohno, Kohji
2016-11-02
Colloidal composites consisting of polymer-brush-afforded silica particles (P-SiPs) and a nematic liquid crystal (LC) exhibited three gel states with distinct viscoelastic and/or optical properties depending on temperature: (1) opaque hard gel, (2) translucent hard gel, and (3) translucent soft gel. We demonstrated that the transitions of the optical property and the hardness of the gels were due to the phase transition of the LC matrix and the glass transition of the grafted polymers of P-SiPs, respectively. We then revealed that the gelation (the formation of the translucent soft gel) was caused by the phase separation of P-SiPs and LC matrix in an isotropic phase based on spinodal decomposition. In addition, the particle concentration and molecular weight of the grafted polymer of P-SiPs were observed to significantly affect the elastic moduli and thermal stability of the composite gels. By the addition of an azobenzene derivative into an LC matrix, we achieved photochemical switching of the transparency of the composites based on the photoinduced phase transition of LCs, while keeping self-supporting ability of the composite gel.
NASA Astrophysics Data System (ADS)
Dutta, Pranamika; Karmakar, Pralay Kumar
2017-08-01
We present a theoretical model analysis to study the linear pulsational mode dynamics in viscoelastic complex self-gravitating infinitely extended clouds in the presence of active frictional coupling and dust-charge fluctuations. The complex cloud consists of uniformly distributed lighter hot mutually thermalized electrons and ions, and heavier cold dust grains amid partial ionization in a homogeneous, quasi-neutral, hydrostatic equilibrium configuration. A normal mode analysis over the closed set of slightly perturbed cloud governing equations is employed to obtain a generalized dispersion relation (septic) of unique analytic construct on the plasma parameters. Two extreme cases of physical interest depending on the perturbation scaling, hydrodynamic limits and kinetic limits are considered. It is shown that the grain mass and viscoelastic relaxation time associated with the charged dust fluid play stabilizing roles to the fluctuations in the hydrodynamic regime. In contrast, however in the kinetic regime, the stabilizing effects are introduced by the dust mass, dust equilibrium density and equilibrium ionic population distribution. Besides, the oscillatory and propagatory features are illustrated numerically and interpreted in detail. The results are in good agreement with the previously reported findings as special corollaries in like situations. Finally, a focalized indication to new implications and applications of the outcomes in the astronomical context is foregrounded.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic viscoelastic fluid mechanics
Fukuma, Masafumi; Sakatani, Yuho
2011-08-15
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Viscoelastic properties of ferrofluids.
Chirikov, D N; Fedotov, S P; Iskakova, L Yu; Zubarev, A Yu
2010-11-01
The paper deals with theoretical study of non linear viscoelastic phenomena in ferrofluids placed in magnetic field. Our attention is focused on the study of nonstationary flow and Maxwell-like relaxation of the macroscopical viscous stress after alternation of the shear rate. We propose that these phenomena can be explained by finite rate of evolution of chainlike aggregates, consisting of the ferrofluid particles. Statistical model of the chains growth-disintegration is suggested. In this model the chain-single particle mechanism of the chains evolution is considered, the effects of the chain-chain interaction are ignored. The proposed model allows us to estimate the time-dependent function of distribution over number of particles in the chain. Having determined this function and using methods of hydromechanics of ferrofluids with chainlike aggregates, we have studied evolution of the ferrofluid viscosity after stepwise alternation of the fluid shear rate. The estimated time of relaxation is in a reasonable agreement with experimental results. Thus, our analysis shows that the observed macroscopical viscoelastic phenomena in ferrofluids can be provided by evolution of the chain ensemble.
Viscoelastic Properties of Human Tracheal Tissues.
Safshekan, Farzaneh; Tafazzoli-Shadpour, Mohammad; Abdouss, Majid; Shadmehr, Mohammad B
2017-01-01
The physiological performance of trachea is highly dependent on its mechanical behavior, and therefore, the mechanical properties of its components. Mechanical characterization of trachea is key to succeed in new treatments such as tissue engineering, which requires the utilization of scaffolds which are mechanically compatible with the native human trachea. In this study, after isolating human trachea samples from brain-dead cases and proper storage, we assessed the viscoelastic properties of tracheal cartilage, smooth muscle, and connective tissue based on stress relaxation tests (at 5% and 10% strains for cartilage and 20%, 30%, and 40% for smooth muscle and connective tissue). After investigation of viscoelastic linearity, constitutive models including Prony series for linear viscoelasticity and quasi-linear viscoelastic, modified superposition, and Schapery models for nonlinear viscoelasticity were fitted to the experimental data to find the best model for each tissue. We also investigated the effect of age on the viscoelastic behavior of tracheal tissues. Based on the results, all three tissues exhibited a (nonsignificant) decrease in relaxation rate with increasing the strain, indicating viscoelastic nonlinearity which was most evident for cartilage and with the least effect for connective tissue. The three-term Prony model was selected for describing the linear viscoelasticity. Among different models, the modified superposition model was best able to capture the relaxation behavior of the three tracheal components. We observed a general (but not significant) stiffening of tracheal cartilage and connective tissue with aging. No change in the stress relaxation percentage with aging was observed. The results of this study may be useful in the design and fabrication of tracheal tissue engineering scaffolds.
Wang, K; McCarter, R; Wright, J; Beverly, J; Ramirez-Mitchell, R
1993-01-01
The mechanical roles of sarcomere-associated cytoskeletal lattices were investigated by studying the resting tension-sarcomere length curves of mechanically skinned rabbit psoas muscle fibers over a wide range of sarcomere strain. Correlative immunoelectron microscopy of the elastic titin filaments of the endosarcomeric lattice revealed biphasic extensibility behaviors and provided a structural interpretation of the multiphasic tension-length curves. We propose that the reversible change of contour length of the extensible segment of titin between the Z line and the end of thick filaments underlies the exponential rise of resting tension. At and beyond an elastic limit near 3.8 microns, a portion of the anchored titin segment that adheres to thick filaments is released from the distal ends of thick filament. This increase in extensible length of titin results in a net length increase in the unstrained extensible segment, thereby lowering the stiffness of the fiber, lengthening the slack sarcomere length, and shifting the yield point in postyield sarcomeres. Thus, the titin-myosin composite filament behaves as a dual-stage molecular spring, consisting of an elastic connector segment for normal response and a longer latent segment that is recruited at and beyond the elastic limit of the sarcomere. Exosarcomeric intermediate filaments contribute to resting tension only above 4.5 microns. We conclude that the interlinked endo- and exosarcomeric lattices are both viscoelastic force-bearing elements. These distinct cytoskeletal lattices appear to operate over two ranges of sarcomere strains and collectively enable myofibrils to respond viscoelastically over a broad range of sarcomere and fiber lengths. Images FIGURE 3 FIGURE 5 FIGURE 7 PMID:8494977
Composite-step product methods for solving nonsymmetric linear systems
Chan, T.F.; Szeto, T.
1994-12-31
The Biconjugate Gradient (BCG) algorithm is the {open_quotes}natural{close_quotes} generalization of the classical Conjugate Gradient method to nonsymmetric linear systems. It is an attractive method because of its simplicity and its good convergence properties. Unfortunately, BCG suffers from two kinds of breakdowns (divisions by 0): one due to the non-existence of the residual polynomial, and the other due to a breakdown in the recurrence relationship used. There are many look-ahead techniques in existence which are designed to handle these breakdowns. Although the step size needed to overcome an exact breakdown can be computed in principle, these methods can unfortunately be quite complicated for handling near breakdowns since the sizes of the look-ahead steps are variable (indeed, the breakdowns can be incurable). Recently, Bank and Chan introduced the Composite Step Biconjugate Gradient (CSBCG) algorithm, an alternative which cures only the first of the two breakdowns mentioned by skipping over steps for which the BCG iterate is not defined. This is done with a simple modification of BCG which needs only a maximum look-ahead step size of 2 to eliminate the (near) breakdown and to smooth the sometimes erratic convergence of BCG. Thus, instead of a more complicated (but less prone to breakdown) version, CSBCG cures only one kind of breakdown, but does so with a minimal modification to the usual implementation of BCG in the hope that its empirically observed stability will be inherited. The authors note, then, that the Composite Step idea can be incorporated anywhere the BCG polynomial is used; in particular, in product methods such as CGS, Bi-CGSTAB, and TFQMR. Doing this not only cures the breakdown mentioned above, but also takes on the advantages of these product methods, namely, no multiplications by the transpose matrix and a faster convergence rate than BCG.
Deformation and relaxation of an incompressible viscoelastic body with surface viscoelasticity
NASA Astrophysics Data System (ADS)
Liu, Liping; Yu, Miao; Lin, Hao; Foty, Ramsey
2017-01-01
Measuring mechanical properties of cells or cell aggregates has proven to be an involved process due to their geometrical and structural complexity. Past measurements are based on material models that completely neglect the elasticity of either the surface membrane or the interior bulk. In this work, we consider general material models to account for both surface and bulk viscoelasticity. The boundary value problems are formulated for deformations and relaxations of a closed viscoelastic surface coupled with viscoelastic media inside and outside of the surface. The linearized surface elasticity models are derived for the constant surface tension model and the Helfrich-Canham bending model for coupling with the bulk viscoelasticity. For quasi-spherical surfaces, explicit solutions are obtained for the deformation, stress-strain and relaxation behaviors under a variety of loading conditions. These solutions can be applied to extract the intrinsic surface and bulk viscoelastic properties of biological cells or cell aggregates in the indentation, electro-deformation and relaxation experiments.
2016-01-01
Summary Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip–sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surface as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young’s modulus. Relevant cases are discussed for single- and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip–sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. A multifrequency AFM simulation tool based on the above sample model is provided as supporting information. PMID:27335746
Solares, Santiago D
2016-01-01
Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surface as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single- and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. A multifrequency AFM simulation tool based on the above sample model is provided as supporting information.
Solares, Santiago D.
2016-04-15
Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surfacemore » as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single-and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. As a result, a multifrequency AFM simulation tool based on the above sample model is provided as supporting information.« less
Solares, Santiago D.
2016-04-15
Significant progress has been accomplished in the development of experimental contact-mode and dynamic-mode atomic force microscopy (AFM) methods designed to measure surface material properties. However, current methods are based on one-dimensional (1D) descriptions of the tip-sample interaction forces, thus neglecting the intricacies involved in the material behavior of complex samples (such as soft viscoelastic materials) as well as the differences in material response between the surface and the bulk. In order to begin to address this gap, a computational study is presented where the sample is simulated using an enhanced version of a recently introduced model that treats the surface as a collection of standard-linear-solid viscoelastic elements. The enhanced model introduces in-plane surface elastic forces that can be approximately related to a two-dimensional (2D) Young's modulus. Relevant cases are discussed for single-and multifrequency intermittent-contact AFM imaging, with focus on the calculated surface indentation profiles and tip-sample interaction force curves, as well as their implications with regards to experimental interpretation. A variety of phenomena are examined in detail, which highlight the need for further development of more physically accurate sample models that are specifically designed for AFM simulation. As a result, a multifrequency AFM simulation tool based on the above sample model is provided as supporting information.
Image indexing and retrieval using linear phase coefficient composite filters
NASA Astrophysics Data System (ADS)
Carlotto, Mark J.
1996-01-01
Content-based retrieval techniques can be characterized in several ways: by the manner in which image data are indexed, by the level of specificity/generality of the query and response of the system, by the type of query (e.g., iconic or symbolic), and by the kind of information used (intrinsic image features or attached information such as text). The method described in this paper automatically indexes images in the database, and is intended to retrieve specific objects by image query based on inherent image content. Our method is actually quite similar to object recognition except that instead of searching a single image for a given object, an entire database of images is examined. The approach uses linear phase coefficient composite (LPCC) filters to encode and match queries consisting of multiple images (e.g., representative views of an object of interest) against multiple images in the database simultaneously. Retrieval is a two-step process that first isolates those portions of the database containing images that match the query, and then identifies the specific images. Our use of LPCC filters exploits phase information to retrieve specific images that match the query from the database. The results from the experiments suggest that phase information can be used to index and retrieve multiple images from a database in parallel, and that large numbers of operations can be performed simultaneously using a complex number representation. In one experiment well over 100 real correlations were effectively performed by a single complex correlation. Problems encountered in processing video data are discussed.
Theory of reciprocating contact for viscoelastic solids
NASA Astrophysics Data System (ADS)
Putignano, Carmine; Carbone, Giuseppe; Dini, Daniele
2016-04-01
A theory of reciprocating contacts for linear viscoelastic materials is presented. Results are discussed for the case of a rigid sphere sinusoidally driven in sliding contact with a viscoelastic half-space. Depending on the size of the contact, the frequency and amplitude of the reciprocating motion, and on the relaxation time of the viscoelastic body, we establish that the contact behavior may range from the steady-state viscoelastic solution, in which traction forces always oppose the direction of the sliding rigid punch, to a more elaborate trend, which is due to the strong interaction between different regions of the path covered during the reciprocating motion. Practical implications span a number of applications, ranging from seismic engineering to biotechnology.
Human cervical spine ligaments exhibit fully nonlinear viscoelastic behavior.
Troyer, Kevin L; Puttlitz, Christian M
2011-02-01
Spinal ligaments provide stability and contribute to spinal motion patterns. These hydrated tissues exhibit time-dependent behavior during both static and dynamic loading regimes. Therefore, accurate viscoelastic characterization of these ligaments is requisite for development of computational analogues that model and predict time-dependent spine behavior. The development of accurate viscoelastic models must be preceded by rigorous, empirical evidence of linear viscoelastic, quasi-linear viscoelastic (QLV) or fully nonlinear viscoelastic behavior. This study utilized multiple physiological loading rates (frequencies) and strain amplitudes via cyclic loading and stress relaxation experiments in order to determine the viscoelastic behavior of the human lower cervical spine anterior longitudinal ligament, the posterior longitudinal ligament and the ligamentum flavum. The results indicated that the cyclic material properties of these ligaments were dependent on both strain amplitude and frequency. This strain amplitude-dependent behavior cannot be described using a linear viscoelastic formulation. Stress relaxation experiments at multiple strain magnitudes indicated that the shape of the relaxation curve was strongly dependent on strain magnitude, suggesting that a QLV formulation cannot adequately describe the comprehensive viscoelastic response of these ligaments. Therefore, a fully nonlinear viscoelastic formulation is requisite to model these lower cervical spine ligaments during activities of daily living. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A Thermodynamic Theory of Solid Viscoelasticity. Part II:; Nonlinear Thermo-viscoelasticity
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Leonov, Arkady I.; Gray, Hugh R. (Technical Monitor)
2002-01-01
This paper, second in the series of three papers, develops a general, nonlinear, non-isothermal, compressible theory for finite rubber viscoelasticity and specifies it in a form convenient for solving problems important to the rubber, tire, automobile, and air-space industries, among others. Based on the quasi-linear approach of non-equilibrium thermodynamics, a general nonlinear theory of differential type has been developed for arbitrary non-isothermal deformations of viscoelastic solids. In this theory, the constitutive equations were presented as the sum of a rubber elastic (equilibrium) and a liquid type viscoelastic (non-equilibrium) terms. These equations have then been simplified using several modeling and simplicity arguments.
Electrostatic streaming instability modes in complex viscoelastic quantum plasmas
NASA Astrophysics Data System (ADS)
Karmakar, P. K.; Goutam, H. P.
2016-11-01
A generalized quantum hydrodynamic model is procedurally developed to investigate the electrostatic streaming instability modes in viscoelastic quantum electron-ion-dust plasma. Compositionally, inertialess electrons are anticipated to be degenerate quantum particles owing to their large de Broglie wavelengths. In contrast, inertial ions and dust particulates are treated in the same classical framework of linear viscoelastic fluids (non-Newtonian). It considers a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D - 2)/3D], in electron quantum dynamics, with D symbolizing the problem dimensionality. Applying a regular Fourier-formulaic plane-wave analysis around the quasi-neutral hydrodynamic equilibrium, two distinct instabilities are explored to exist. They stem in ion-streaming (relative to electrons and dust) and dust-streaming (relative to electrons and ions). Their stability is numerically illustrated in judicious parametric windows in both the hydrodynamic and kinetic regimes. The non-trivial influential roles by the relative streams, viscoelasticities, and correction prefactor are analyzed. It is seen that γ acts as a stabilizer for the ion-stream case only. The findings alongside new entailments, as special cases of realistic interest, corroborate well with the earlier predictions in plasma situations. Applicability of the analysis relevant in cosmic and astronomical environments of compact dwarf stars is concisely indicated.
Method for evaluating material viscoelasticity
NASA Astrophysics Data System (ADS)
Fujii, Yusaku; Yamaguchi, Takao
2004-01-01
A method for evaluating the viscoelasticity of materials under oscillation load is proposed. In the method, a material under test is connected to a mass, which generates an oscillating inertial force after the mass is manually struck using a hammer. A pneumatic linear bearing is used to realize linear motion with sufficiently small friction acting on the mass that is the moving part of the bearing. The inertial force acting on the mass is determined highly accurately by means of measuring the velocity of the mass using an optical interferometer.
Dynamic crack propagation in a viscoelastic strip
NASA Astrophysics Data System (ADS)
Popelar, C. H.; Atkinson, C.
1980-04-01
THE DYNAMIC PROPAGATION of a semi-infinite crack in a finite linear viscoelastic strip subjected to Mode I loading is investigated. Through the use of integral transforms the problem is reduced to solving a Wiener-Hopf equation. The asymptotic properties of the transforms are exploited to establish the stress intensity factor. Plane-stress and plane-strain stress intensity factors as a function of crack speed for both fully-clamped and shear-free lateral boundaries are presented for the standard linear viscoelastic solid. Comparisons are made with previously obtained asymptotic stress intensity factors and with stress intensity factors for the equivalent elastic strips.
Mauri, Arabella; Ehret, Alexander E; De Focatiis, Davide S A; Mazza, Edoardo
2016-08-01
A viscoelastic, compressible model is proposed to rationalize the recently reported response of human amnion in multiaxial relaxation and creep experiments. The theory includes two viscoelastic contributions responsible for the short- and long-term time-dependent response of the material. These two contributions can be related to physical processes: water flow through the tissue and dissipative characteristics of the collagen fibers, respectively. An accurate agreement of the model with the mean tension and kinematic response of amnion in uniaxial relaxation tests was achieved. By variation of a single linear factor that accounts for the variability among tissue samples, the model provides very sound predictions not only of the uniaxial relaxation but also of the uniaxial creep and strip-biaxial relaxation behavior of individual samples. This suggests that a wide range of viscoelastic behaviors due to patient-specific variations in tissue composition can be represented by the model without the need of recalibration and parameter identification.
Fluorescent viscoelastic enhancement.
Smith, K D; Burt, W L
1992-11-01
By inserting an Erreger 485 exciter filter into the operating microscope, translucent yellow Healon (sodium hyaluronate) transforms into a brilliant opaque green viscoelastic. We have developed this technique and termed it "fluorescent viscoelastic enhancement." Using the technique, we demonstrated that the time required to remove Healon from the anterior chamber after intraocular lens insertion varies. Healon is usually aspirated quickly, in less than 17 seconds. Otherwise it traps behind the intraocular lens and requires more time for irrigation/aspiration (I/A) and manipulation of the I/A tip. Fluorescent viscoelastic enhancement minimized I/A time, reducing excess turbulence and manipulation in the anterior chamber, and thus may reduce corneal endothelial cell loss. This study also demonstrated that fluorescent viscoelastic enhancement prevented postoperative intraocular pressure rise, compared to the conventional removal of clear Healon. Fluorescent viscoelastic enhancement assures the surgeon that a large amount of Healon is not left behind.
Effective viscoelastic properties of shales.
NASA Astrophysics Data System (ADS)
Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel
2017-04-01
Shales are often characterized as being elasto-plastic: they deform elastically for stresses below a certain yield and plastically at the limit. This approach dismisses any time dependent behavior that occurs in nature. Our goal is to better understand this time dependency by considering the visco-elastic behavior of shales before plasticity is reached. Shales are also typically heterogeneous and the question arises as to how to derive their effective properties in order to model them as a homogeneous medium. We model shales using inclusion based models due to their versatility and their ability to represent the microstructure. The inclusions represent competent quartz or calcite grains which are set in a viscous matrix made of clay minerals. Our approach relies on both numerical and analytical results in two dimension and we use them to cross check each other. The numerical results are obtained using MILAMIN, a fast-finite element solver for large problems, while the analytical solutions are based on the correspondence principle of linear viscoelasticity. This principle allows us to use the results on effective properties already derived for elastic bodies and to adapt them to viscoelastic bodies. We start by revisiting the problem of a single inclusion in an infinite medium and then move on to consider many inclusions.
NASA Astrophysics Data System (ADS)
Goyal, Deepak
Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of
NASA Astrophysics Data System (ADS)
Bekas, D.; Grammatikos, S. A.; Kouimtzi, C.; Paipetis, A. S.
2015-02-01
Carbon nanotube (CNT) enhanced composite materials have attracted the interest of many scientists worldwide, especially in the aerospace industry. Fundamental to their qualification as materials in primary aircraft structures is the investigation of the relationship between their functional characteristics and their long-term behaviour under external combined loads. Conductive reinforcement at the nanoscale is by definition multifunctional as it may (i) enhance structural performance and (ii) provide structural health monitoring functionalities. It is now well established that reversible changes in the electrical resistance in nano composites are related to strain and irreversible monotonic changes are related to cumulative damage in the nano composite. In this study, the effect of damage in the hysteretic electrical behaviour of nano-enhanced reinforced composites was investigated. The nanocomposites were subjected to different levels of damage and their response to a cyclic electrical potential excitation was monitored as a function of frequency. Along with the dynamic electrical investigation, an Electrical Potential Mapping (EPM) technique was developed to pin-point artificial damage in CNT-enhanced matrix composite materials. The electrical potential field of the bulk material has shown to be characteristic of its internal structural state. The results of EPM technique were contradicted and validated with conventional C-scans.
A Raman Investigation of YBCO/Linear Low Density Polyethylene (LLDPE) Composites
NASA Astrophysics Data System (ADS)
Bhadrakumaria, S.; Predeep, P.
2011-10-01
A series of flexible composites are formed by mixing High Temperature Superconducting YBCO and Linear Low Density Polyethylene (LLDPE) and the behaviour of these composites are investigated using Raman Spectroscopy. This study indicated the presence of well defined Raman lines. Raman spectra of pure YBCO and composite samples showed sharp bands and the intensity of these bands is found to decrease with decreasing proportion of the polymer in the composite, indicating the presence of characteristic structural units.
NASA Astrophysics Data System (ADS)
Kimble, L. D.; Fakirov, S.; Bhattacharyya, D.
2015-05-01
Microfibrillar composites (MFCs) from petrochemical-derived polymers have been investigated for several years and the technique can result in significant improvements in mechanical properties when compared with the neat matrix material of the respective composite. The current work applies the technique to biodegradable, biocompatible polymers for potential applications in bioabsorbable medical devices. MFCs were prepared from melt blended poly(L-lactic acid) (PLLA) and poly(glycolic acid) (PGA) via cold drawing then compression molding of extruded yarn. These MFCs were shown to have higher Young's moduli than that of neat PLLA but for load-bearing applications the creep characteristics are of interest. The MFC sheets resulting from compression molding were subjected to tensile relaxation tests at 37°C in the fiber orientation direction. Specimens were also tested via dynamic mechanical thermal analysis (DMTA). Neat PLLA specimens were subjected to the same tests for comparison. Results indicate that at 37°C PLLA/PGA MFCs exhibit lower creep resistance than that of neat PLLA due to the more rapid relaxation of stress observed. DMTA results elucidate the loss modulus changes in PLLA/PGA MFCs which occur as the material approaches the glass transition temperature of PGA (˜45°C).
Continuous, linearly intermixed fiber tows and composite molded article thereform
NASA Technical Reports Server (NTRS)
McMahon, Paul E. (Inventor); Chung, Tai-Shung (Inventor); Ying, Lincoln (Inventor)
2000-01-01
The instant invention involves a process used in preparing fibrous tows which may be formed into polymeric plastic composites. The process involves the steps of (a) forming a carbon fiber tow; (b) forming a thermoplastic polymeric fiber tow; (c) intermixing the two tows; and (d) withdrawing the intermixed tow for further use.
Ferrari, Marco; Sorrentino, Roberto; Zarone, Fernando; Apicella, Davide; Aversa, Raffaella; Apicella, Antonio
2008-07-01
The study aimed at estimating the effect of insertion length of posts with composite restorations on stress and strain distributions in central incisors and surrounding bone. The typical, average geometries were generated in a FEA environment. Dentin was considered as an elastic orthotropic material, and periodontal ligament was coupled with nonlinear viscoelastic mechanical properties. The model was then validated with experimental data on displacement of incisors from published literature. Three post lengths were investigated in this study: root insertion of 5, 7, and 9 mm. For control, a sound incisor model was generated. Then, a tearing load of 50 N was applied to both sound tooth and simulation models. Post restorations did not seem to affect the strain distribution in bone when compared to the control. All simulated post restorations affected incisor biomechanics and reduced the root's deforming capability, while the composite crowns underwent a higher degree of deformation than the sound crown. No differences could be noticed in incisor stress and strain. As for the influence of post length, it was not shown to affect the biomechanics of restored teeth.
Cochrane, Alexander P.; Merrett, Craig G.; Hilton, Harry H.
2014-12-10
The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (V{sub REV}{sup E}). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds V{sub REV<}{sup ≧}V{sub REV}{sup E}, but furthermore does so in time at 0 < t{sub REV} ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at
NASA Astrophysics Data System (ADS)
Cochrane, Alexander P.; Merrett, Craig G.; Hilton, Harry H.
2014-12-01
The advent of new structural concepts employing composites in primary load carrying aerospace structures in UAVs, MAVs, Boeing 787s, Airbus A380s, etc., necessitates the inclusion of flexibility as well as viscoelasticity in static structural and aero-viscoelastic analyses. Differences and similarities between aeroelasticity and aero-viscoelasticity have been investigated in [2]. An investigation is undertaken as to the dependence and sensitivity of aerodynamic and stability derivatives to elastic and viscoelastic structural flexibility and as to time dependent flight and maneuver velocities. Longitudinal, lateral and directional stabilities are investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings one of the critical static parameters is the velocity at which control reversal takes place (VREVE). Since elastic formulations constitute viscoelastic initial conditions, viscoelastic reversal may occur at speeds VREV<≧VREVE, but furthermore does so in time at 0 < tREV ≤ ∞. The influence of the twin effects of viscoelastic and elastic materials and of variable flight velocities on longitudinal, lateral, directional and spin stabilities are also investigated. It has been a well established fact that elastic lifting surfaces are subject to loss of control effectiveness and control reversal at certain flight speeds, which depend on aerodynamic, structural and material properties [5]. Such elastic analyses are here extended to linear viscoelastic materials under quasi-static, dynamic, and sudden and gradual loading conditions. In elastic wings the critical parameter is the velocity at which control reversal takes place (VREVE
NASA Astrophysics Data System (ADS)
Joo, Sung-Jun; Park, Buhm; Kim, Do-Hyoung; Kwak, Dong-Ok; Song, In-Sang; Park, Junhong; Kim, Hak-Sung
2015-03-01
Woven glass fabric/BT (bismaleimide triazine) composite laminate (BT core), copper (Cu), and photoimageable solder resist (PSR) are the most widely used materials for semiconductors in electronic devices. Among these materials, BT core and PSR contain polymeric materials that exhibit viscoelastic behavior. For this reason, these materials are considered to have time- and temperature-dependent moduli during warpage analysis. However, the thin geometry of multilayer printed circuit board (PCB) film makes it difficult to identify viscoelastic characteristics. In this work, a vibration test method was proposed for measuring the viscoelastic properties of a multilayer PCB film at different temperatures. The beam-shaped specimens, composed of a BT core, Cu laminated on a BT core, and PSR and Cu laminated on a BT core, were used in the vibration test. The frequency-dependent variation of the complex bending stiffness was determined using a transfer function method. The storage modulus (E‧) of the BT core, Cu, and PSR as a function of temperature and frequency were obtained, and their temperature-dependent variation was identified. The obtained properties were fitted using a viscoelastic model for the BT core and the PSR, and a linear elastic model for the Cu. Warpage of a line pattern specimen due to temperature variation was measured using a shadow Moiré analysis and compared to predictions using a finite element model. The results provide information on the mechanism of warpage, especially warpage due to temperature-dependent variation in viscoelastic properties.
Electrical analogous in viscoelasticity
NASA Astrophysics Data System (ADS)
Ala, Guido; Di Paola, Mario; Francomano, Elisa; Li, Yan; Pinnola, Francesco P.
2014-07-01
In this paper, electrical analogous models of fractional hereditary materials are introduced. Based on recent works by the authors, mechanical models of materials viscoelasticity behavior are firstly approached by using fractional mathematical operators. Viscoelastic models have elastic and viscous components which are obtained by combining springs and dashpots. Various arrangements of these elements can be used, and all of these viscoelastic models can be equivalently modeled as electrical circuits, where the spring and dashpot are analogous to the capacitance and resistance, respectively. The proposed models are validated by using modal analysis. Moreover, a comparison with numerical experiments based on finite difference time domain method shows that, for long time simulations, the correct time behavior can be obtained only with modal analysis. The use of electrical analogous in viscoelasticity can better reveal the real behavior of fractional hereditary materials.
String-merging of meso- viscoelastic droplets
NASA Astrophysics Data System (ADS)
Xu, Yuanze; Xu, Jianmao
2007-03-01
Great challenge exists in the multi-scale rheological modeling of immiscible polyblends with non-linear morphology changes, including viscoelastic drop break-up and collapse. A new type mechanism of merging and coalescence, called string-merging of meso- viscoelastic droplets was described and analyzed. By iterative stretching and relaxation in a four-roll mill rheometer, one droplet containing high molar mass PIB (polyisobutene), was separated into two droplets connected by a string in a dumbbell shape suspending in polydimethylsiloxane (PDMS) medium. In quiescent state, the string pulled the two spheres merging closer and collapsed into one spherical drop finally. The process exhibits interesting features, different from capillary breakup mechanism. By adding the viscoelasticity of the systems to the force balance of Laplace force and viscous drag, the phenomenon may be well analyzed. The necessity to involve the microscopic consideration of the highly oriented entangled state are discussed.
Bayesian inference to identify parameters in viscoelasticity
NASA Astrophysics Data System (ADS)
Rappel, Hussein; Beex, Lars A. A.; Bordas, Stéphane P. A.
2017-08-01
This contribution discusses Bayesian inference (BI) as an approach to identify parameters in viscoelasticity. The aims are: (i) to show that the prior has a substantial influence for viscoelasticity, (ii) to show that this influence decreases for an increasing number of measurements and (iii) to show how different types of experiments influence the identified parameters and their uncertainties. The standard linear solid model is the material description of interest and a relaxation test, a constant strain-rate test and a creep test are the tensile experiments focused on. The experimental data are artificially created, allowing us to make a one-to-one comparison between the input parameters and the identified parameter values. Besides dealing with the aforementioned issues, we believe that this contribution forms a comprehensible start for those interested in applying BI in viscoelasticity.
Approximations of thermoelastic and viscoelastic control systems
NASA Technical Reports Server (NTRS)
Burns, J. A.; Liu, Z. Y.; Miller, R. E.
1990-01-01
Well-posed models and computational algorithms are developed and analyzed for control of a class of partial differential equations that describe the motions of thermo-viscoelastic structures. An abstract (state space) framework and a general well-posedness result are presented that can be applied to a large class of thermo-elastic and thermo-viscoelastic models. This state space framework is used in the development of a computational scheme to be used in the solution of a linear quadratic regulator (LQR) control problem. A detailed convergence proof is provided for the viscoelastic model and several numerical results are presented to illustrate the theory and to analyze problems for which the theory is incomplete.
Optimal composite scores for longitudinal clinical trials under the linear mixed effects model.
Ard, M Colin; Raghavan, Nandini; Edland, Steven D
2015-01-01
Clinical trials of chronic, progressive conditions use rate of change on continuous measures as the primary outcome measure, with slowing of progression on the measure as evidence of clinical efficacy. For clinical trials with a single prespecified primary endpoint, it is important to choose an endpoint with the best signal-to-noise properties to optimize statistical power to detect a treatment effect. Composite endpoints composed of a linear weighted average of candidate outcome measures have also been proposed. Composites constructed as simple sums or averages of component tests, as well as composites constructed using weights derived from more sophisticated approaches, can be suboptimal, in some cases performing worse than individual outcome measures. We extend recent research on the construction of efficient linearly weighted composites by establishing the often overlooked connection between trial design and composite performance under linear mixed effects model assumptions and derive a formula for calculating composites that are optimal for longitudinal clinical trials of known, arbitrary design. Using data from a completed trial, we provide example calculations showing that the optimally weighted linear combination of scales can improve the efficiency of trials by almost 20% compared with the most efficient of the individual component scales. Additional simulations and analytical results demonstrate the potential losses in efficiency that can result from alternative published approaches to composite construction and explore the impact of weight estimation on composite performance. Copyright © 2015 John Wiley & Sons, Ltd.
Viscoelastic properties of cellular polypropylene ferroelectrets
NASA Astrophysics Data System (ADS)
Gaal, Mate; Bovtun, Viktor; Stark, Wolfgang; Erhard, Anton; Yakymenko, Yuriy; Kreutzbruck, Marc
2016-03-01
Viscoelastic properties of cellular polypropylene ferroelectrets (PP FEs) were studied at low frequencies (0.3-33 Hz) by dynamic mechanical analysis and at high frequencies (250 kHz) by laser Doppler vibrometry. Relaxation behavior of the in-plane Young's modulus ( Y11 ' ˜ 1500 MPa at room temperature) was observed and attributed to the viscoelastic response of polypropylene matrix. The out-of-plane Young's modulus is very small ( Y33 ' ≈ 0.1 MPa) at low frequencies, frequency- and stress-dependent, evidencing nonlinear viscoelastic response of PP FEs. The high-frequency mechanical response of PP FEs is shown to be linear viscoelastic with Y33 ' ≈ 0.8 MPa. It is described by thickness vibration mode and modeled as a damped harmonic oscillator with one degree of freedom. Frequency dependence of Y33 * in the large dynamic strain regime is described by the broad Cole-Cole relaxation with a mean frequency in kHz range attributed to the dynamics of the air flow between partially closed air-filled voids in PP FEs. Switching-off the relaxation contribution causes dynamic crossover from the nonlinear viscoelastic regime at low frequencies to the linear viscoelastic regime at high frequencies. In the small strain regime, contribution of the air flow seems to be insignificant and the power-law response, attributed to the mechanics of polypropylene cell walls and closed air voids, dominates in a broad frequency range. Mechanical relaxation caused by the air flow mechanism takes place in the sound and ultrasound frequency range (10 Hz-1 MHz) and, therefore, should be taken into account in ultrasonic applications of the PP FEs deal with strong exciting or receiving signals.
Temperature-dependent viscoelastic properties of the human supraspinatus tendon.
Huang, Chun-Yuh; Wang, Vincent M; Flatow, Evan L; Mow, Van C
2009-03-11
Temperature effects on the viscoelastic properties of the human supraspinatus tendon were investigated using static stress-relaxation experiments and the quasi-linear viscoelastic (QLV) theory. Twelve supraspinatus tendons were randomly assigned to one of two test groups for tensile testing using the following sequence of temperatures: (1) 37, 27, and 17 degrees C (Group I, n=6), or (2) 42, 32, and 22 degrees C (Group II, n=6). QLV parameter C was found to increase at elevated temperatures, suggesting greater viscous mechanical behavior at higher temperatures. Elastic parameters A and B showed no significant difference among the six temperatures studied, implying that the viscoelastic stress response of the supraspinatus tendon is not sensitive to temperature over shorter testing durations. Using regression analysis, an exponential relationship between parameter C and test temperature was implemented into QLV theory to model temperature-dependent viscoelastic behavior. This modified approach facilitates the theoretical determination of the viscoelastic behavior of tendons at arbitrary temperatures.
3D Viscoelastic traction force microscopy.
Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M; Henann, David L; Franck, Christian
2014-10-28
Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels.
Karimi, Samaneh; Abdulkhani, Ali; Tahir, Paridah Md; Dufresne, Alain
2016-10-01
Cellulosic nanofibers (NFs) from kenaf bast were used to reinforce glycerol plasticized thermoplastic starch (TPS) matrices with varying contents (0-10wt%). The composites were prepared by casting/evaporation method. Raw fibers (RFs) reinforced TPS films were prepared with the same contents and conditions. The aim of study was to investigate the effects of filler dimension and loading on linear and non-linear mechanical performance of fabricated materials. Obtained results clearly demonstrated that the NF-reinforced composites had significantly greater mechanical performance than the RF-reinforced counterparts. This was attributed to the high aspect ratio and nano dimension of the reinforcing agents, as well as their compatibility with the TPS matrix, resulting in strong fiber/matrix interaction. Tensile strength and Young's modulus increased by 313% and 343%, respectively, with increasing NF content from 0 to 10wt%. Dynamic mechanical analysis (DMA) revealed an elevational trend in the glass transition temperature of amylopectin-rich domains in composites. The most eminent record was +18.5°C shift in temperature position of the film reinforced with 8% NF. This finding implied efficient dispersion of nanofibers in the matrix and their ability to form a network and restrict mobility of the system.
Viscoelastic properties of the false vocal fold
NASA Astrophysics Data System (ADS)
Chan, Roger W.
2004-05-01
The biomechanical properties of vocal fold tissues have been the focus of many previous studies, as vocal fold viscoelasticity critically dictates the acoustics and biomechanics of phonation. However, not much is known about the viscoelastic response of the ventricular fold or false vocal fold. It has been shown both clinically and in computer simulations that the false vocal fold may contribute significantly to the aerodynamics and sound generation processes of human voice production, with or without flow-induced oscillation of the false fold. To better understand the potential role of the false fold in phonation, this paper reports some preliminary measurements on the linear and nonlinear viscoelastic behavior of false vocal fold tissues. Linear viscoelastic shear properties of human false fold tissue samples were measured by a high-frequency controlled-strain rheometer as a function of frequency, and passive uniaxial tensile stress-strain response of the tissue samples was measured by a muscle lever system as a function of strain and loading rate. Elastic moduli (Young's modulus and shear modulus) of the false fold tissues were calculated from the measured data. [Work supported by NIH.
Viscoelastic properties of oat ß-glucan-rich aqueous dispersions
USDA-ARS?s Scientific Manuscript database
C-trim is a healthy food product containing the dietary of soluble fiber ß-glucan. The suspension of C-trim in water is a hydrocolloid biopolymer. The linear and non-linear rheological properties for suspensions of C-trim biopolymers were investigated. The linear viscoelastic behaviors for C-trim...
Viscoelastic behavior of stock indices
NASA Astrophysics Data System (ADS)
Gündüz, Güngör; Gündüz, Yalin
2010-12-01
The scattering diagram of a stock index results in a complex network structure, which can be used to analyze the viscoelastic properties of the index. The change along x- or y-direction of the diagram corresponds to purely elastic (or spring like) movement whereas the diagonal change at an angle of 45° corresponds to purely viscous (or dashpot like) movement. The viscous component pushes the price from its current value to any other value, while the elastic component acts like a restoring force. Four indices, namely, DJI, S&P-500, NASDAQ-100, and NASDAQ-composite were studied for the period of 2001-2009. NASDAQ-composite displayed very high elasticity while NASDAQ-100 displayed the highest fluidity in the time period considered. The fluidity of DJI and S&P-500 came out to be close to each other, and they are almost the same in the second half of the period.
The fractional viscoelastic response of human breast tissue cells
NASA Astrophysics Data System (ADS)
Carmichael, B.; Babahosseini, H.; Mahmoodi, S. N.; Agah, M.
2015-07-01
The mechanical response of a living cell is notoriously complicated. The complex, heterogeneous characteristics of cellular structure introduce difficulties that simple linear models of viscoelasticity cannot overcome, particularly at deep indentation depths. Herein, a nano-scale stress-relaxation analysis performed with an atomic force microscope reveals that isolated human breast cells do not exhibit simple exponential relaxation capable of being modeled by the standard linear solid (SLS) model. Therefore, this work proposes the application of the fractional Zener (FZ) model of viscoelasticity to extract mechanical parameters from the entire relaxation response, improving upon existing physical techniques to probe isolated cells. The FZ model introduces a new parameter that describes the fractional time-derivative dependence of the response. The results show an exceptional increase in conformance to the experimental data compared to that predicted by the SLS model, and the order of the fractional derivative (α) is remarkably homogeneous across the populations, with a median value of 0.48 ± 0.06 for the malignant population and 0.51 ± 0.07 for the benign. The cells’ responses exhibit power-law behavior and complexity not associated with simple relaxation (SLS, α = 1) that supports the application of a fractional model. The distributions of some of the FZ parameters also preserve the distinction between the malignant and benign sample populations seen from the linear model and previous results while including the contribution of fast-relaxation behavior. The resulting viscosity, measured by a composite relaxation time, exhibits considerably less dispersion due to residual error than the distribution generated by the linear model and therefore serves as a more powerful marker for cell differentiation.
Model for bubble pulsation in liquid between parallel viscoelastic layers
Hay, Todd A.; Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hamilton, Mark F.
2012-01-01
A model is presented for a pulsating spherical bubble positioned at a fixed location in a viscous, compressible liquid between parallel viscoelastic layers of finite thickness. The Green’s function for particle displacement is found and utilized to derive an expression for the radiation load imposed on the bubble by the layers. Although the radiation load is derived for linear harmonic motion it may be incorporated into an equation for the nonlinear radial dynamics of the bubble. This expression is valid if the strain magnitudes in the viscoelastic layer remain small. Dependence of bubble pulsation on the viscoelastic and geometric parameters of the layers is demonstrated through numerical simulations. PMID:22779461
2-D hydro-viscoelastic model for convective drying of deformable and unsaturated porous material
NASA Astrophysics Data System (ADS)
Hassini, Lamine; Raja, Lamloumi; Lecompte-Nana, Gisèle Laure; Elcafsi, Mohamed Afif
2017-04-01
The aim of this work was to simulate in two dimensions the spatio-temporal evolution of the moisture content, the temperature, the solid (dry matter) concentration, the dry product total porosity, the gas porosity, and the mechanical stress within a deformable and unsaturated product during convective drying. The material under study was an elongated cellulose-clay composite sample with a square section placed in hot air flow. Currently, this innovative composite is used in the processing of boxes devoted to the preservation of heritage and precious objects against fire damage and other degradation (moisture, insects, etc.). A comprehensive and rigorous hydrothermal model had been merged with a dynamic linear viscoelasticity model based on Bishop's effective stress theory, assuming that the stress tensor is the sum of solid, liquid, and gas stresses. The material viscoelastic properties were measured by means of stress relaxation tests for different water contents. The viscoelastic behaviour was described by a generalized Maxwell model whose parameters were correlated to the water content. The equations of our model were solved by means of the 'COMSOL Multiphysics' software. The hydrothermal part of the model was validated by comparison with experimental drying curves obtained in a laboratory hot-air dryer. The simulations of the spatio-temporal distributions of mechanical stress were performed and interpreted in terms of material potential damage. The sample shape was also predicted all over the drying process.
Time Domain Viscoelastic Full Waveform Inversion
NASA Astrophysics Data System (ADS)
Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Giroux, Bernard
2017-03-01
Viscous attenuation can have a strong impact on seismic wave propagation, but it is rarely taken into account in full waveform inversion (FWI). When viscoelasticity is considered in time domain FWI, the displacement formulation of the wave equation is usually used instead of the popular velocity-stress formulation. However, inversion schemes rely on the adjoint equations, which are quite different for the velocity-stress formulation than for the displacement formulation. In this paper, we apply the adjoint state method to the isotropic viscoelastic wave equation in the velocity-stress formulation based on the generalized standard linear solid rheology. By applying linear transformations to the wave equation before deriving the adjoint state equations, we obtain two symmetric sets of partial differential equations for the forward and adjoint variables. The resulting sets of equations only differ by a sign change and can be solved by the same numerical implementation. We also investigate the crosstalk between parameter classes (velocity and attenuation) of the viscoelastic equation. More specifically, we show that the attenuation levels can be used to recover the quality factors of P- and S- waves, but that they are very sensitive to velocity errors. Finally, we present a synthetic example of viscoelastic FWI in the context of monitoring CO2 geological sequestration. We show that FWI based on our formulation can indeed recover P- and S- wave velocities and their attenuation levels when attenuation is high enough. Both changes in velocity and attenuation levels recovered with FWI can be used to track the CO2 plume during and after injection. Further studies are required to evaluate the performance of viscoelastic FWI on real data.
Time domain viscoelastic full waveform inversion
NASA Astrophysics Data System (ADS)
Fabien-Ouellet, Gabriel; Gloaguen, Erwan; Giroux, Bernard
2017-06-01
Viscous attenuation can have a strong impact on seismic wave propagation, but it is rarely taken into account in full waveform inversion (FWI). When viscoelasticity is considered in time domain FWI, the displacement formulation of the wave equation is usually used instead of the popular velocity-stress formulation. However, inversion schemes rely on the adjoint equations, which are quite different for the velocity-stress formulation than for the displacement formulation. In this paper, we apply the adjoint state method to the isotropic viscoelastic wave equation in the velocity-stress formulation based on the generalized standard linear solid rheology. By applying linear transformations to the wave equation before deriving the adjoint state equations, we obtain two symmetric sets of partial differential equations for the forward and adjoint variables. The resulting sets of equations only differ by a sign change and can be solved by the same numerical implementation. We also investigate the crosstalk between parameter classes (velocity and attenuation) of the viscoelastic equation. More specifically, we show that the attenuation levels can be used to recover the quality factors of P and S waves, but that they are very sensitive to velocity errors. Finally, we present a synthetic example of viscoelastic FWI in the context of monitoring CO2 geological sequestration. We show that FWI based on our formulation can indeed recover P- and S-wave velocities and their attenuation levels when attenuation is high enough. Both changes in velocity and attenuation levels recovered with FWI can be used to track the CO2 plume during and after injection. Further studies are required to evaluate the performance of viscoelastic FWI on real data.
A robust algorithm for the contact of viscoelastic materials
NASA Astrophysics Data System (ADS)
Spinu, S.; Cerlinca, D.
2016-08-01
Existing solutions for the contact problem involving viscoelastic materials often require numerical differentiation and integration, as well as resolution of transcendental equations, which can raise convergence issues. The algorithm advanced in this paper can tackle the contact behaviour of the viscoelastic materials without any convergence problems, for arbitrary contact geometry, arbitrary loading programs and complex constitutive models of linear viscoelasticity. An updated algorithm for the elastic frictionless contact, coupled with a semi-analytical method for the computation of viscoelastic displacement, is employed to solve the viscoelastic contact problem at a series of small time increments. The number of equations in the linear system resulting from the geometrical condition of deformation is set by the number of cells in the contact area, which is a priori unknown. A trial-and-error approach is implemented, resulting in a series of linear systems which are solved on evolving contact areas, until static equilibrium equations and complementarity conditions are fully satisfied for every cell in the computational domain. At any iteration, cells with negative pressure are excluded from the contact area, while cells with negative gap (i.e. cells where the contacting bodies are predicted to overlap) are reincluded. The solution is found when pressure is stabilized in relation to the imposed normal load. This robust algorithm is expected to solve a large variety of contact problems involving viscoelastic materials.
Organic composition of C/1999 S4 (LINEAR): a comet formed near Jupiter?
Mumma, M J; Dello Russo, N; DiSanti, M A; Magee-Sauer, K; Novak, R E; Brittain, S; Rettig, T; McLean, I S; Reuter, D C; Xu, L H
2001-05-18
In the current paradigm, Oort cloud comets formed in the giant planets' region of the solar nebula, where temperatures and other conditions varied greatly. The measured compositions of four such comets (Halley, Hyakutake, Hale-Bopp, and Lee) are consistent with formation from interstellar ices in the cold nebular region beyond Uranus. The composition of comet C/1999 S4 (LINEAR) differs greatly, which suggests that its ices condensed from processed nebular gas, probably in the Jupiter-Saturn region. Its unusual organic composition may require reevaluation of the prebiotic organic material delivered to the young Earth by comets.
Viscoelastic creep of high-temperature concrete
Pfeiffer, P.A.; Marchertas, A.H.; Bazant, Z.P.
1985-01-01
Presented in this report is the analytical model for analysis of high temperature creep response of concrete. The creep law used is linear (viscoelastic), the temperature and moisture effects on the creep rate and also aging are included. Both constant and transient temperature as well as constant and transient moisture conditions are considered. Examples are presented to correlate experimental data with parameters of the analytical model by the use of a finite element scheme.
Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites
Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto
2010-12-23
Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.
Tapanuli Organoclay Addition Into Linear Low Density Polyethylene-Pineapple Fiber Composites
NASA Astrophysics Data System (ADS)
Adawiyah, Robiatul; Juwono, Ariadne L.; Roseno, Seto
2010-12-01
Linear low density polyethylene-Tapanuli organoclay-pineapple fiber composites were succesfully synthesized by a melt intercalation method. The clay was modified as an organoclay by a cation exchange reaction using hexadecyl trimethyl ammonium bromide (HDTMABr) surfactant. The X-ray diffraction results of the organoclay exhibited a higher basal spacing of 1.87 nm compared to the unmodified clay of 1.46 nm. The composite tensile strength was enhanced up to 46.4% with the 1 wt% organoclay addition. Both tensile and flexural moduli increased up to 150.6% and 43% with the 3 wt% organoclay addition to the composites. However, the flexural strength of the composites was not improved with the organoclay addition. The addition of organoclay has also decreased the heat deflection temperature of the composites.
Exposing the nonlinear viscoelastic behavior of asphalt-aggregate mixes
NASA Astrophysics Data System (ADS)
Levenberg, Eyal; Uzan, Jacob
2012-05-01
In this study asphalt-aggregate mixes are treated as both viscoelastic and viscoplastic. Following a damage mechanics approach, a nonlinear viscoelastic constitutive formulation is generated from a linear formulation by replacing `applied stresses' with `effective viscoelastic stresses'. A non-dimensional scalar entity called `relative viscoelastic stiffness' is introduced; it is defined as the ratio of applied to effective viscoelastic stress and encapsulates different types of nonlinearities. The paper proposes a computational scheme for exposing these nonlinearities by uncovering, through direct analysis of any test data, changes experienced by the `relative viscoelastic stiffness'. In general terms, the method is based on simultaneous application of creep and relaxation formulations while preserving the interrelationship between the corresponding time functions. The proposed scheme is demonstrated by analyzing a uniaxial tension test and a uniaxial compression test (separately). Results are presented and discussed, unveiling and contrasting the character of viscoelastic nonlinearities in both cases. A conceptual viewpoint is offered to explain the observations, illustrating the requirements from any candidate constitutive theory.
Evaluation of fatigue damage accumulation in composites via linear and nonlinear guided wave methods
NASA Astrophysics Data System (ADS)
Zhao, Jinling; Chillara, Vamshi; Cho, Hwanjeong; Qiu, Jinhao; Lissenden, Cliff
2016-02-01
For non-destructive evaluation (NDE) of fatigue damage accumulation in composites, this research proposed a combined linear and a nonlinear ultrasonic guided wave method. For the linear Lamb waves approach, a laser-generation based imaging system (LGBI) is utilized to measure the phase velocities of guided waves in composites. The elastic moduli of the specimen are then obtained by inverting the measured phase velocities using genetic algorithms (GAs). The variation of the above two parameters (phase velocity and elastic moduli), together with the guided wave amplitudes, are then observed during the fatigue process. Nonlinear second harmonics in composites are studied theoretically and numerically. A third-order strain energy function of transversely isotropic materials is expressed by five invariants of the Green-Lagrange strain tensor. Results enable intelligent selection of primary modes for cumulative second harmonics generation. Meanwhile, finite element simulations are conducted to characterize second harmonics in light of the theory.
Viscoelastic effects during loading play an integral role in soft tissue mechanics.
Troyer, Kevin L; Estep, Donald J; Puttlitz, Christian M
2012-01-01
Viscoelastic relaxation during tensioning is an intrinsic protective mechanism of biological soft tissues. However, current viscoelastic characterization methodologies for these tissues either negate this important behavior or provide correction methods that are severely restricted to a specific viscoelastic formulation and/or assume an a priori (linear) strain ramp history. In order to address these shortcomings, we present a novel finite ramp time correction method for stress relaxation experiments (to incorporate relaxation manifested during loading) that is independent of a specific viscoelastic formulation and can accommodate an arbitrary strain ramp history. We demonstrate transferability of our correction method between viscoelastic formulations by applying it to quasi-linear viscoelastic (QLV) and fully nonlinear viscoelastic constitutive equations. The errors associated with currently accepted methodologies for QLV and fully nonlinear viscoelastic formulations are elucidated. Our correction method is validated by demonstrating the ability of its fitted parameters to predict an independent cyclic experiment across multiple strain amplitudes and frequencies. The results presented herein: (i) indicate that our correction method significantly reduces the errors associated with previous methodologies; and (ii) demonstrate the necessity for the use of a fully nonlinear viscoelastic formulation, which incorporates relaxation manifested during loading, to model the viscoelastic behavior of biological soft tissues. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Fang
In this dissertation, advances in linear and non-linear viscoelastic analysis and experimentation have been employed to investigate the properties of materials using nanoindentation. In the first study, a general linear-viscoelastic model was developed to measure the properties of polydimethylsiloxane (PDMS) using a flat punch indenter. Subsequently, linear viscoelastic nanoindentation was used to measure the young's relaxation modulus of a locally-heterogeneous thermally-aged bismaleimide resin using a Berkovich indenter. Nanoindentation measurements were conducted on both surface and cross section of aged bismaleimide resin specimens with different aging time at 200°C and 300°C respectively to extract the oxidation effect of sample under high temperatures. Finally, nanoindentation measurements were made on human tympanic membrane specimens with using a spherical nanoindenter tip in direct contact with the collagen fiber layer. Linear viscoelastic analysis was conducted to extract the Young's relaxation modulus distributions. The study also focused on the development of non-linear viscoelastic analysis of indentation experiments. Despite the fact that the nanoindentation technique is well established for the characterization of elasto-plastic materials, nanoindentation on viscoelastic materials is not fully understood especially in nonlinear viscoelastic region. In the dissertation, a nonlinear viscoelastic model was developed and implemented in Abaqus/Implicit Code to analyze the nonlinear visceoelastic behavior of polyvinyl acetate (PVA) under nanoindentation.
NDT and SHM of Carbon Fiber Composites using Linear Drive MWM-Arrays
NASA Technical Reports Server (NTRS)
Washabaugh, Andrew; Martin, Christopher; Lyons, Robert; Grundy, David; Goldfine, Neil; Russell, Richard; Wincheski, Russell
2012-01-01
Carbon fiber composites are used in a wide range of structural applications due to their excellent specific strength and stiffness. However, the anisotropic mechanical and electrical properties associated with the fibers within each composite layer present challenges, and opportunities, for Nondestructive Testing (NDT) methods used to characterize and assess the structure condition. This includes composite condition after manufacture (such as fiber orientation and density, porosity, delamination, and bond strength) and during usage (such as damage from impact, fiber breakage, thermal exposure or applied stress). Ultrasonic and thermographic methods can address some of these challenges, but eddy current methods provide an alternative method for composite structures that contain a conducting material, such as carbon fibers or a metallic liner. This presentation reviews recent advances in the development of eddy current sensors and arrays for carbon fiber composite NDT and Structural Health Monitoring (SHM) applications. The focus is on eddy current sensor constructs with linear drive windings, such as MWM -Arrays, that induce currents primarily within the linear fibers of the composite. By combining this type of sensor construct with micromechanical models that relate composite constituent properties to measurable sensor responses, insight is obtained into the volumetric distribution of electrical properties within the composite and the associated manufacturing, damage, or strain conditions. With knowledge of the fiber layup, this MWM-Array technology is able to detect damage and strain/stress as a function of depth and fiber orientation. This work has been funded by NASA, NA V AIR and the Army for applications ranging from composite overwrapped pressure vessels (COPVs) to aircraft structures and rotorcraft blades. This presentation will specifically present background on the MWM-Array technology, results from the micromechanical modeling effort, and results from
Teller, Sean S; Farran, Alexandra J E; Xiao, Longxi; Jiao, Tong; Duncan, Randall L; Clifton, Rodney J; Jia, Xinqiao
2012-10-01
The biomechanical function of the vocal folds (VFs) depends on their viscoelastic properties. Many conditions can lead to VF scarring that compromises voice function and quality. To identify candidate replacement materials, the structure, composition, and mechanical properties of native tissues need to be understood at phonation frequencies. Previously, the authors developed the torsional wave experiment (TWE), a stress-wave-based experiment to determine the linear viscoelastic shear properties of small, soft samples. Here, the viscoelastic properties of porcine and human VFs were measured over a frequency range of 10-200 Hz. The TWE utilizes resonance phenomena to determine viscoelastic properties; therefore, the specimen test frequency is determined by the sample size and material properties. Viscoelastic moduli are reported at resonance frequencies. Structure and composition of the tissues were determined by histology and immunochemistry. Porcine data from the TWE are separated into two groups: a young group, consisting of fetal and newborn pigs, and an adult group, consisting of 6-9-month olds and 2+-year olds. Adult tissues had an average storage modulus of 2309±1394 Pa and a loss tangent of 0.38±0.10 at frequencies of 36-200 Hz. The VFs of young pigs were significantly more compliant, with a storage modulus of 394±142 Pa and a loss tangent of 0.40±0.14 between 14 and 30 Hz. No gender dependence was observed. Histological staining showed that adult porcine tissues had a more organized, layered structure than the fetal tissues, with a thicker epithelium and a more structured lamina propria. Elastin fibers in fetal VF tissues were immature compared to those in adult tissues. Together, these structural changes in the tissues most likely contributed to the change in viscoelastic properties. Adult human VF tissues, recovered postmortem from adult patients with a history of smoking or disease, had an average storage modulus of 756±439 Pa and a loss tangent of 0
Novel AC Servo Rotating and Linear Composite Driving Device for Plastic Forming Equipment
NASA Astrophysics Data System (ADS)
Liang, Jin-Tao; Zhao, Sheng-Dun; Li, Yong-Yi; Zhu, Mu-Zhi
2017-07-01
The existing plastic forming equipment are mostly driven by traditional AC motors with long transmission chains, low efficiency, large size, low precision and poor dynamic response are the common disadvantages. In order to realize high performance forming processes, the driving device should be improved, especially for complicated processing motions. Based on electric servo direct drive technology, a novel AC servo rotating and linear composite driving device is proposed, which features implementing both spindle rotation and feed motion without transmission, so that compact structure and precise control can be achieved. Flux switching topology is employed in the rotating drive component for strong robustness, and fractional slot is employed in the linear direct drive component for large force capability. Then the mechanical structure for compositing rotation and linear motion is designed. A device prototype is manufactured, machining of each component and the whole assembly are presented respectively. Commercial servo amplifiers are utilized to construct the control system of the proposed device. To validate the effectiveness of the proposed composite driving device, experimental study on the dynamic test benches are conducted. The results indicate that the output torque can attain to 420 N·m and the dynamic tracking errors are less than about 0.3 rad in the rotating drive. the dynamic tracking errors are less than about 1.6 mm in the linear feed. The proposed research provides a method to construct high efficiency and accuracy direct driving device in plastic forming equipment.
Nonlinear viscoelastic response of vocal-fold tissues
NASA Astrophysics Data System (ADS)
Chan, Roger W.
2002-05-01
Previous rheological measurements of the viscoelastic shear properties of vocal-fold tissues have focused on the linear regime, in the small strain region typically with γ0<=1.0%. This imposed limit was necessary in order for the theory of linear viscoelasticity to be valid, yielding dynamic shear data that can be applicable for the biomechanical modeling of small-amplitude vocal-fold oscillation. Nonetheless, as the physiological range of phonation does involve more than small-amplitude oscillation, the large strain viscoelastic behaviors of vocal-fold tissues are equally important and remain to be quantified. This paper reports preliminary measurements of some of these viscoelastic behaviors in large strain shear. Excised sheep vocal-fold mucosal tissues were subject to stress relaxation, constant stress, and constant strain rate tests in a controlled-strain torsional rheometer. Results showed that vocal-fold tissues demonstrate nonlinear viscoelastic response in shear, including stress relaxation that is dependent on strain and strain creep that is dependent on stress. These findings cannot be adequately described by Y. C. Fung's quasilinear viscoelasticity formulation, which assumes strain dependence and time dependence to be separable. A more general constitutive model is being developed to better characterize the observed nonlinear response.
Nonlinear Viscoelastic Mechanics of Cross-linked Rubbers
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Leonov, Arkady I.; Gray, Hugh R. (Technical Monitor)
2002-01-01
The paper develops a general theory for finite rubber viscoelasticity, and specifies it in the form, convenient for solving problems important for rubber, tire and space industries. Based on the quasi-linear approach of non-equilibrium thermodynamics, a general nonlinear theory has been developed for arbitrary nonisothermal deformations of viscoelastic solids. In this theory, the constitutive equations are presented as the sum of known equilibrium (rubber elastic) and non-equilibrium (liquid polymer viscoelastic) terms. These equations are then simplified using several modeling arguments. Stability constraints for the proposed constitutive equations are also discussed. It is shown that only strong ellipticity criteria are applicable for assessing stability of the equations governing viscoelastic solids.
Flow properties of natural rubber composites filled with defatted soy flour
USDA-ARS?s Scientific Manuscript database
The linear and nonlinear viscoelastic properties of natural rubber composites reinforced with defatted soy flour were studied. Defatted soy flour is an abundant, renewable commodity, and its rigid nature makes it suitable as a reinforcement phase in rubber composites. At small strain, the elastic ...
NASA Astrophysics Data System (ADS)
Nciri, M.; Notta-Cuvier, D.; Lauro, F.; Chaari, F.; Zouari, B.; Maalej, Y.
2015-09-01
This paper presents an innovative approach for the modelling of viscous behaviour of short-fibre reinforced composites (SFRC) with complex distributions of fibre orientations and for a wide range of strain rates. As an alternative to more complex homogenisation methods, the model is based on an additive decomposition of the state potential for the computation of composite's macroscopic behaviour. Thus, the composite material is seen as the assembly of a matrix medium and several linear elastic fibre media. The division of short fibres into several families means that complex distributions of orientation or random orientation can be easily modelled. The matrix behaviour is strain-rate sensitive, i.e. viscoelastic and/or viscoplastic. Viscoelastic constitutive laws are based on a generalised linear Maxwell model and the modelling of the viscoplasticity is based on an overstress approach. The model is tested for the case of a polypropylene reinforced with short-glass fibres with distributed orientations and subjected to uniaxial tensile tests, in different loading directions and under different strain rates. Results demonstrate the efficiency of the model over a wide range of strain rates.
Viscoelasticity of biomaterials
Glasser, W.G.; Hatakeyama, H.
1992-01-01
Viscoelasticity of Biomaterials is divided into three sections. The first offers a materials design lesson on the architectural arrangement of biopolymers in collagen. Included also are reviews on solution properties of polysacchardies, chiral and liquid crystalline solution characteristics of cellulose derivatives, and viscoelastic properties of wood and wood fiber reinforced thermoplastics. The second section, Biogels and Gelation, discusses the molecular arrangements of highly hydrated biomaterials such as mucus, gums, skinlike tissue, and silk fibroin. The physical effects that result from the transition from a liquid to a solid state are the subject of the third section, which focuses on relaxation phenomena. Gel formation, the conformation of domain structures, and motional aspects of complex biomaterials are described in terms of recent experimental advances in various fields. A relevant chapter on the effects of ionizing radiation on connective tissue is abstracted separately.
Viscoelasticity of stepped interfaces
NASA Astrophysics Data System (ADS)
Skirlo, S. A.; Demkowicz, M. J.
2013-10-01
Using molecular dynamics modeling, we show that interfaces in sputter deposited Cu-Nb superlattices exhibit time-dependent elasticity, i.e., viscoelasticity, under shear loading. In the high temperature and small strain rate limit, the interfacial shear modulus approaches a value proportional to the density of steps in the interface. It may therefore be possible to tailor the low-frequency shear moduli of interfaces by controlling their step densities.
Fractional viscoelastic beam under torsion
NASA Astrophysics Data System (ADS)
Colinas-Armijo, N.; Cutrona, S.; Di Paola, M.; Pirrotta, A.
2017-07-01
This paper introduces a study on twisted viscoelastic beams, having considered fractional calculus to capture the viscoelastic behaviour. Further another novelty of this paper is extending a recent numerical approach, labelled line elementless method (LEM), to viscoelastic beams. The latter does not require any discretization neither in the domain nor in the boundary. Some numerical applications have been reported to demonstrate the efficiency and accuracy of the method.
A Viscoelastic Constitutive Law For FRP Materials
NASA Astrophysics Data System (ADS)
Ascione, Luigi; Berardi, Valentino Paolo; D'Aponte, Anna
2011-09-01
The present study deals with the long-term behavior of fiber-reinforced polymer (FRP) materials in civil engineering. More specifically, the authors propose a mechanical model capable of predicting the viscoelastic behavior of FRP laminates in the field of linear viscoelasticity, starting from that of the matrix material and fiber. The model is closely connected with the low FRP stress levels in civil engineering applications. The model is based on a micromechanical approach which assumes that there is a perfect adhesion between the matrix and fiber. The long-term behavior of the phases is described through a four-parameter rheological law. A validation of the model has also been developed by matching the predicted behavior with an experimental one available in the literature.
Viscoelasticity of a homeotropic nematic slab
NASA Astrophysics Data System (ADS)
Oswald, Patrick
2015-12-01
The viscoelastic behavior of a homeotropic nematic slab is studied when it is subjected to a (dilation-compression) sinusoidal deformation of small amplitude (linear regime). I show that the nematic phase behaves as an isotropic liquid of viscosity ηc (ν3) at low (high) frequency, where ηc is the third Miesowicz viscosity and ν3 a smaller viscosity first introduced by Martin, Parodi, and Pershan. The crossover frequency f⊙ between these two asymptotic regimes scales as h2/D , where h is the sample thickness and D =K3/γ1 is the orientational diffusivity (with K3 the bend constant and γ1 the rotational viscosity). Between these two limits the sample behaves as a viscoelastic fluid whose elastic and loss moduli G' and G'' are calculated. These predictions are tested experimentally with a piezoelectric rheometer.
Enhanced diffusion for oscillatory viscoelastic flow
NASA Astrophysics Data System (ADS)
Manopoulos, C.; Tsangaris, S.
2014-08-01
This paper examines the enhanced axial solute dispersion of a linear viscoelastic fluid, subjected to a longitudinal pressure gradient sinusoidal oscillation, in a duct between parallel walls. The viscoelastic fluid follows the material law of the Jeffrey fluid. An extension of Watson’s theory, developed in 1983, is used to solve the problem analytically. The diffusivity enhancement results are shown in dimensionless form and are presented as functions of the dimensionless group β = h(2ω/ν)1/2 as defined by Watson, the dimensionless retardation time, and the Schmidt, elasticity, and Euler dimensionless numbers. This paper compares the dispersion enhancement of the Jeffrey fluid, in relation to the Newtonian one, for several intervals of the dimensionless parameters. The results indicate very high dispersion enhancement in several cases, especially for high realistic Schmidt number values, and peaks appear at certain dimensionless parameter β values.
Viscoelastic study of an adhesively bonded joint
NASA Technical Reports Server (NTRS)
Joseph, P. F.
1983-01-01
The plane strain problem of two dissimilar orthotropic plates bonded with an isotropic, linearly viscoelastic adhesive is considered. Both the shear and the normal stresses in the adhesive are calculated for various geometries and loading conditions. Transverse shear deformations of the adherends are taken into account, and their effect on the solution is shown in the results. All three inplane strains of the adhesive are included. Attention is given to the effect of temperature, both in the adhesive joint problem and to the heat generation in a viscoelastic material under cyclic loading. This separate study is included because heat generation and or spatially varying temperature are at present too difficult to account for in the analytical solution of the bonded joint, but whose effect can not be ignored in design.
NASA Astrophysics Data System (ADS)
Miyata, Shogo; Tateishi, Tetsuya; Furukawa, Katsuko; Ushida, Takashi
Recently, many types of methodologies have been developed to regenerate articular cartilage. It is important to assess whether the reconstructed cartilaginous tissue has the appropriate mechanical functions to qualify as hyaline (articular) cartilage. In some cases, the reconstructed tissue may become fibrocartilage and not hyaline cartilage. In this study, we determined the dynamic viscoelastic properties of these two types of cartilage by using compression and shear tests, respectively. Hyaline cartilage specimens were harvested from the articular surface of bovine knee joints and fibrocartilage specimens were harvested from the meniscus tissue of the same. The results of this study revealed that the compressive energy dissipation of hyaline cartilage showed a strong dependence on testing frequency at low frequencies, while that of fibrocartilage did not. Therefore, the compressive energy dissipation that is indicated by the loss tangent could become the criterion for the in vitro assessment of the mechanical function of regenerated cartilage.
Ferromagnetic viscoelastic liquid crystalline materials
NASA Astrophysics Data System (ADS)
Schlesier, Cristina; Shibaev, Petr; McDonald, Scott
2012-02-01
Novel ferromagnetic liquid crystalline materials were designed by mixing ferromagnetic nanoparticles with glass forming oligomers and low molar mass liquid crystals. The matrix in which nanoparticles are embedded is highly viscous that reduces aggregation of nanoparticles and stabilizes the whole composition. Mechanical and optical properties of the composite material are studied in the broad range of nanoparticle concentrations. The mechanical properties of the viscoelastic composite material resemble those of chemically crosslinked elastomers (elasticity and reversibility of deformations). The optical properties of ferromagnetic cholesteric materials are discussed in detail. It is shown that application of magnetic field leads to the shift of the selective reflection band of the cholesteric material and dramatically change its color. Theoretical model is suggested to account for the observed effects; physical properties of the novel materials and liquid crystalline elastomers are compared and discussed. [1] P.V. Shibaev, C. Schlesier, R. Uhrlass, S. Woodward, E. Hanelt, Liquid Crystals, 37, 1601 (2010) [2] P.V. Shibaev, R. Uhrlass, S. Woodward, C. Schlesier, Md R. Ali, E. Hanelt, Liquid Crystals, 37, 587 (2010)
Palomba, Simona; Cavella, Silvana; Torrieri, Elena; Piccolo, Alessandro; Mazzei, Pierluigi; Blaiotta, Giuseppe; Ventorino, Valeria; Pepe, Olimpia
2012-04-01
After isolation from different doughs and sourdoughs, 177 strains of lactic acid bacteria were screened at the phenotypic level for exopolysaccharide production on media containing different carbohydrate sources. Two exopolysaccharide-producing lactic acid bacteria (Lactobacillus curvatus 69B2 and Leuconostoc lactis 95A) were selected through quantitative analysis on solid media containing sucrose and yeast extract. The PCR detection of homopolysaccharide (gtf and lev) and heteropolysaccharide (epsA, epsB, epsD and epsE, and epsEFG) genes showed different distributions within species and strains of the lactic acid bacteria studied. Moreover, in some strains both homopolysaccharide and heteropolysaccharide genes were detected. Proton nuclear magnetic resonance spectra suggest that Lactobacillus curvatus 69B2 and Leuconostoc lactis 95A produced the same exopolysaccharide, which was constituted by a single repeating glucopyranosyl unit linked by an α-(1→6) glycosidic bond in a dextran-type carbohydrate. Microbial growth, acidification, and viscoelastic properties of sourdoughs obtained by exopolysaccharide-producing and nonproducing lactic acid bacterial strains were evaluated. Sourdough obtained after 15 h at 30°C with exopolysaccharide-producing lactic acid bacteria reached higher total titratable acidity as well as elastic and dissipative modulus curves with respect to the starter not producing exopolysaccharide, but they showed similar levels of pH and microbial growth. On increasing the fermentation time, no difference in the viscoelastic properties of exopolysaccharide-producing and nonproducing samples was observed. This study suggests that dextran-producing Leuconostoc lactis 95A and Lactobacillus curvatus 69B2 can be employed to prepare sourdough, and this would be particularly useful to improve the quality of baked goods while avoiding the use of commercially available hydrocolloids as texturizing additives.
One-way absorber for linearly polarized electromagnetic wave utilizing composite metamaterial.
Zhao, Junming; Sun, Liang; Zhu, Bo; Feng, Yijun
2015-02-23
This paper presents the proposal and practical design of a one-way absorber for selective linearly polarized electromagnetic (EM) wave. The EM wave polarization rotation property has been combined with polarization selective absorption utilizing a composite metamaterial slab. The energy of certain linearly polarized EM wave can be absorbed along one particular incident direction, but will be fully transmitted through the opposite direction. For the cross polarized wave, the direction dependent propagation properties are totally reversed. A prototype designed with a total slab thickness of only one-sixth of the operating wavelength is verified through both full-wave simulation and experimental measurement in the microwave regime. It achieves absorption efficiency over 83% along one direction, while transmission efficiency over 83% along the opposite direction for one particular linearly polarized wave. The proposed one-way absorber can be applied in EM devices achieving asymmetric transmission for linearly polarized wave or polarization control. The composite metamaterial that combines different functionalities into one design may provide more potential in metamaterial designs for various applications.
NASA Astrophysics Data System (ADS)
Shafiq, Muhammad; Yasin, Tariq
2012-01-01
Radiation crosslinking is generally used to improve the thermo-mechanical properties of the composites. A study has been carried out to investigate the effect of gamma radiation on the thermo-mechanical properties of linear low density polyethylene containing magnesium hydroxide (MH) and sepiolite (SP) as non-halogenated flame retardant additives. The developed composites are irradiated at different doses upto maximum of 150 kGy. Infrared spectra of the irradiated composites reveal the reduction in the intensity of O-H band with increase in the absorbed doses, thus indicates a distinct structural change in MH at higher doses. The thermogravimetric analysis results of unirradiated and composites irradiated at low doses (≤75 kGy) show two steps weight loss, which is changed to single step at higher doses with lower thermal stability. The melting temperature ( Tm) and crystallization temperature ( Tc) of irradiated composites are lowered with irradiation whereas Vicat softening temperature (VST) is increased. The increasing trend in gel content with increase in the absorbed dose confirms the presence of crosslinked network. The mechanical properties, results show significant improvement in the modulus of irradiated composites. The results also confirm that MH gradually loses its OH functionality with irradiation.
Yamamoto, Takahiro; Kawata, Yuki; Yoshida, Masaru
2013-05-01
We investigated the effects of the nematic and smectic A (SmA) phase structures of liquid crystalline matrices on the viscoelastic properties of microparticle/liquid-crystal composite gels. The storage (G') and loss (G″) moduli of the gels were largely increased in gels containing SmA matrices with a layered molecular assembly. However, the critical strain at which the gel state transformed into the sol state by the application of mechanical strain showed no significant changes with variation in the liquid crystal phase of the matrix. These results indicate that the introduction of a layered molecular assembly could be effective for rigidification of composite gels, while maintaining their critical strains. However, the composite gels tended to show a metastable state when SmA matrices were used because G' and G″ of the gels were close to each other in the entire frequency region. This behavior was in contrast to the gels with nematic matrices, which showed a larger value in G' than that in G″. The metastable state of gels with SmA matrices was also reflected in the frequency dependence of G' and in the deterioration of the recovery of the gel state after mechanical breakdown. Copyright © 2013 Elsevier Inc. All rights reserved.
Nonlinear viscoelastic characterization of the porcine spinal cord.
Shetye, Snehal S; Troyer, Kevin L; Streijger, Femke; Lee, Jae H T; Kwon, Brian K; Cripton, Peter A; Puttlitz, Christian M
2014-02-01
Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted root mean squared error for a Heaviside ramp fit was 2.8 kPa, which was significantly greater (p<0.001) than that of the nonlinear (comprehensive viscoelastic characterization method) fit (0.365 kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high-resolution finite elements models of the spine. Copyright © 2013 Acta Materialia Inc. All rights reserved.
Nonlinear Viscoelastic Characterization of the Porcine Spinal Cord
Shetye, Snehal; Troyer, Kevin; Streijger, Femke; Lee, Jae H. T.; Kwon, Brian K.; Cripton, Peter; Puttlitz, Christian M.
2014-01-01
Although quasi-static and quasi-linear viscoelastic properties of the spinal cord have been reported previously, there are no published studies that have investigated the fully (strain-dependent) nonlinear viscoelastic properties of the spinal cord. In this study, stress relaxation experiments and dynamic cycling were performed on six fresh porcine lumbar cord specimens to examine their viscoelastic mechanical properties. The stress relaxation data were fitted to a modified superposition formulation and a novel finite ramp time correction technique was applied. The parameters obtained from this fitting methodology were used to predict the average dynamic cyclic viscoelastic behavior of the porcine cord. The data indicate that the porcine spinal cord exhibited fully nonlinear viscoelastic behavior. The average weighted RMSE for a Heaviside ramp fit was 2.8kPa, which was significantly greater (p < 0.001) than that of the nonlinear (comprehensive viscoelastic characterization (CVC) method) fit (0.365kPa). Further, the nonlinear mechanical parameters obtained were able to accurately predict the dynamic behavior, thus exemplifying the reliability of the obtained nonlinear parameters. These parameters will be important for future studies investigating various damage mechanisms of the spinal cord and studies developing high resolution finite elements models of the spine. PMID:24211612
NASA Astrophysics Data System (ADS)
Ashrafi, Nariman; Shafahi, Mehdi
2016-11-01
The squeeze flow of a nonlinear viscoelastic flow is studied. In particular the flow of an upper-convected Maxwell fluid between two approaching disks of is analyzed. The momentum and continuity equations together with constitutive relations are solved by a low-order method. Both no slip and slip boundary conditions are considered. Next, stress components are evaluated and flow stability is investigated. It is observed that as the disks approach velocity is increased the developed stresses, which are interrelated to velocity gradients through the constitutive relation, are altered exponentially. This analysis is applicable to many industrial instances of such as lubrication as well as natural joints. nariman ashrafi.
Viscoelastic Properties of Polymer Blends
NASA Technical Reports Server (NTRS)
Hong, S. D.; Moacanin, J.; Soong, D.
1982-01-01
Viscosity, shear modulus and other viscoelastic properties of multicomponent polymer blends are predicted from behavior of individual components, using a mathematical model. Model is extension of two-component-blend model based on Rouse-Bueche-Zimm theory of polymer viscoelasticity. Extension assumes that probabilities of forming various possible intracomponent and intercomponent entanglements among polymer molecules are proportional to relative abundances of components.
Aerobic fitness, hippocampal viscoelasticity, and relational memory performance.
Schwarb, Hillary; Johnson, Curtis L; Daugherty, Ana M; Hillman, Charles H; Kramer, Arthur F; Cohen, Neal J; Barbey, Aron K
2017-03-30
The positive relationship between hippocampal structure, aerobic fitness, and memory performance is often observed among children and older adults; but evidence of this relationship among young adults, for whom the hippocampus is neither developing nor atrophying, is less consistent. Studies have typically relied on hippocampal volumetry (a gross proxy of tissue composition) to assess individual differences in hippocampal structure. While volume is not specific to microstructural tissue characteristics, microstructural differences in hippocampal integrity may exist even among healthy young adults when volumetric differences are not diagnostic of tissue health or cognitive function. Magnetic resonance elastography (MRE) is an emerging noninvasive imaging technique for measuring viscoelastic tissue properties and provides quantitative measures of tissue integrity. We have previously demonstrated that individual differences in hippocampal viscoelasticity are related to performance on a relational memory task; however, little is known about health correlates to this novel measure. In the current study, we investigated the relationship between hippocampal viscoelasticity and cardiovascular health, and their mutual effect on relational memory in a group of healthy young adults (N=51). We replicated our previous finding that hippocampal viscoelasticity correlates with relational memory performance. We extend this work by demonstrating that better aerobic fitness, as measured by VO2max, was associated with hippocampal viscoelasticity that mediated the benefits of fitness on memory function. Hippocampal volume, however, did not account for individual differences in memory. Therefore, these data suggest that hippocampal viscoelasticity may provide a more sensitive measure to microstructural tissue organization and its consequences to cognition among healthy young adults.
NASA Astrophysics Data System (ADS)
Singh, Gajbir; Venkateswara Rao, G.; Iyengar, N. G. R.
1995-03-01
The influence of finite amplitudes on the free flexural vibration response of moderately thick laminated plates is investigated. For this purpose, a simple higher order theory involving only four unknowns and satisfying the stress free conditions at the top and bottom surface of the composite plate is proposed. The proposed theory eliminates the use of shear correction factors which are otherwise required in Mindlin's plate theory. A rectangular four-node[formula]continuous finite element is developed based on this theory. The non-linear finite element equations are reduced to two non-linear ordinary differential equations governing the response of positive and negative deflection cycles. Direct numerical integration method is then employed to obtain the periods or non-linear frequencies. The finite element developed and the direct numerical integration method employed are validated for the case of isotropic rectangular plates. It is found that unsymmetrically laminated rectangular plates with hinged-hinged edge conditions oscillate with different amplitudes in the positive and negative deflection cycles. Furthermore, such plates would oscillate with a frequency less than the fundamental frequency for finite small amplitudes of oscillation. It is shown that this behaviour is strongly influenced by the boundary conditions. Results are presented for many configurations of composite plates.
New low-cost dimensionally stable composite linear absolute position encoder scale
NASA Astrophysics Data System (ADS)
Hassler, William L., Jr.; Nakayama, Robert K.
1990-11-01
A major problem in the use of standard linear position encoders is that the etched glass scales they use have a coefficient of thermal expansion (C. T. E. ) of about 1 1 . Oppm/ C. This means that their position measurements drift with changes in environmental temperature proportional to their C. T. E. . A new low cost dimensionally stable composite scale was made for use in a new absolute linear position encoder. The unidirectional Polyphenylene Sulfide/AS4 carbon fiber composite material that this scale is made of was tested for dimensional stability with respect to changes in temperature humidity and creep. The C. T. E. of the scale material was measured to be nominally 0. 29 ppm/ C with a standard deviation of 0. 12 over the operating temperature range of -2 to 62 C. The overall displacement strain due to 98 moisture absorption relative to 0 moisture absorption was measured to be 9 ppm. The strain due to stress-relief creep was found to be a maximum of 3 ppm over a period of 173 days. These results show that a linear position encoder scale made of this material is superior to those made of the standard glass currently being used and more cost effective than fused silica for most applications. 1.
Non-linear temperature-dependent curvature of a phase change composite bimorph beam
NASA Astrophysics Data System (ADS)
Blonder, Greg
2017-06-01
Bimorph films curl in response to temperature. The degree of curvature typically varies in proportion to the difference in thermal expansion of the individual layers, and linearly with temperature. In many applications, such as controlling a thermostat, this gentle linear behavior is acceptable. In other cases, such as opening or closing a valve or latching a deployable column into place, an abrupt motion at a fixed temperature is preferred. To achieve this non-linear motion, we describe the fabrication and performance of a new bilayer structure we call a ‘phase change composite bimorph (PCBM)’. In a PCBM, one layer in the bimorph is a composite containing small inclusions of phase change materials. When the inclusions melt, their large (generally positive and >1%) expansion coefficient induces a strong, reversible step function jump in bimorph curvature. The measured jump amplitude and thermal response is consistent with theory, and can be harnessed by a new class of actuators and sensors.
Bounding solutions of geometrically nonlinear viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, J. M.; Simitses, G. J.
1986-01-01
Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.
Bounding solutions of geometrically nonlinear viscoelastic problems
NASA Technical Reports Server (NTRS)
Stubstad, J. M.; Simitses, G. J.
1985-01-01
Integral transform techniques, such as the Laplace transform, provide simple and direct methods for solving viscoelastic problems formulated within a context of linear material response and using linear measures for deformation. Application of the transform operator reduces the governing linear integro-differential equations to a set of algebraic relations between the transforms of the unknown functions, the viscoelastic operators, and the initial and boundary conditions. Inversion either directly or through the use of the appropriate convolution theorem, provides the time domain response once the unknown functions have been expressed in terms of sums, products or ratios of known transforms. When exact inversion is not possible approximate techniques may provide accurate results. The overall problem becomes substantially more complex when nonlinear effects must be included. Situations where a linear material constitutive law can still be productively employed but where the magnitude of the resulting time dependent deformations warrants the use of a nonlinear kinematic analysis are considered. The governing equations will be nonlinear integro-differential equations for this class of problems. Thus traditional as well as approximate techniques, such as cited above, cannot be employed since the transform of a nonlinear function is not explicitly expressible.
Latorre, Marcos; Montáns, Francisco J
2017-10-01
Soft connective tissues sustain large strains of viscoelastic nature. The rate-independent component is frequently modeled by means of anisotropic hyperelastic models. The rate-dependent component is usually modeled through linear rheological models or quasi-linear viscoelastic (QLV) models. These viscoelastic models are unable, in general, to capture the strain-level dependency of the viscoelastic properties present in many viscoelastic tissues. In linear viscoelastic models, strain-level dependency is frequently accounted for by including the dependence of multipliers of Prony series on strains through additional evolution laws, but the determination of the material parameters is a difficult task and the obtained accuracy is usually not sufficient. In this work, we introduce a model for fully nonlinear viscoelasticity in which the instantaneous and quasi-static behaviors are exactly captured and the relaxation curves are predicted to a high accuracy. The model is based on a fully nonlinear standard rheological model and does not necessitate optimization algorithms to obtain material parameters. Furthermore, in contrast to most models used in modeling the viscoelastic behavior of soft tissues, it is valid for the large deviations from thermodynamic equilibrium typically observed in soft tissues.
Wideband MR elastography for viscoelasticity model identification
Yasar, Temel K.; Royston, Thomas J.; Magin, Richard L.
2012-01-01
The growing clinical use of MR Elastography (MRE) requires the development of new quantitative standards for measuring tissue stiffness. Here, we examine a soft tissue mimicking phantom material (Ecoflex) over a wide frequency range (200 Hz to 7.75 kHz). The recorded data are fit to a cohort of viscoelastic models of varying complexity (integer and fractional order). This was accomplished using multiple sample sizes by employing geometric focusing of the shear wave front to compensate for the changes in wavelength and attenuation over this broad range of frequencies. The simple axisymmetric geometry and shear wave front of this experiment allows us to calculate the frequency-dependent complex-valued shear modulus of the material. The data were fit to several common models of linear viscoelasticity, including those with fractional derivative operators, and we identified the best possible matches over both a limited frequency band (often used in clinical studies) and over the entire frequency span considered. In addition to demonstrating the superior capability of the fractional order viscoelastic models, this study highlights the advantages of measuring the complex-valued shear modulus over as wide a range of frequencies as possible. PMID:23001852
A composite step conjugate gradients squared algorithm for solving nonsymmetric linear systems
NASA Astrophysics Data System (ADS)
Chan, Tony; Szeto, Tedd
1994-03-01
We propose a new and more stable variant of the CGS method [27] for solving nonsymmetric linear systems. The method is based on squaring the Composite Step BCG method, introduced recently by Bank and Chan [1,2], which itself is a stabilized variant of BCG in that it skips over steps for which the BCG iterate is not defined and causes one kind of breakdown in BCG. By doing this, we obtain a method (Composite Step CGS or CSCGS) which not only handles the breakdowns described above, but does so with the advantages of CGS, namely, no multiplications by the transpose matrix and a faster convergence rate than BCG. Our strategy for deciding whether to skip a step does not involve any machine dependent parameters and is designed to skip near breakdowns as well as produce smoother iterates. Numerical experiments show that the new method does produce improved performance over CGS on practical problems.
The linear shrinkage and microhardness of packable composites polymerized by QTH or PAC unit.
Park, Song-Ho; Noh, Byng-Duk; Cho, Yong-Sik; Kim, Su-Sun
2006-01-01
This study evaluated the effectiveness of a plasma arc curing (PAC) unit for packable resin composite curing. The amount and speed of polymerization shrinkage and the microhardness of packable composites were evaluated in order to compare the PAC unit's effectiveness with a quartz tungsten halogen (QTH) unit. Sure Fil (Dentsply Caulk), Pyramid (BISCO Inc) and Synergy Compact (Colténe/Whaledent) were used as the packable composites. In the case of curing with the PAC unit, the composites were light cured with Apollo 95E (DMD System Inc) for 1 second (Group 1), 2 seconds (Group 2), 3 seconds (Group 3), 6 seconds (Group 4) and 12 seconds (Group 5). For light curing with the QTH unit, the composites were light cured for 60 seconds using XL3000 (Group 6). The linear polymerization shrinkage of each composite was measured using a custom made linometer, and the data was stored in a computer every 0.5 to 0.55 seconds for a total of 60 seconds. For each composite, the amount of polymerization was compared using one-way ANOVA with Tukey at the 95% confidence level. In order to compare the speed of polymerization, the peak time (PT), showing the highest speed of polymerization and maximum speed of polymerization (Smax), were determined from the data and compared using one-way ANOVA with Tukey at the 95% confidence level for each material. Based on the statistical analysis among the PAC-cure groups (Groups 1 through 5), the group that was not statistically different from the QTH-cure group (Group 6) in the amount of linear polymerization shrinkage was determined for each material, and the corresponding curing time of the group was defined as the tentative minimum PAC-curing time (TMPT). For microhardness measurements, the samples were placed in a 2-mm thick Teflon plate. Twenty specimens, randomly divided into the PAC-cure group (Group 1) or the QTH-cure group (Group 2), were prepared for each material. In Group 1, each composite was light cured for TMPT with the PAC unit. In
Viscoelasticity of Concentrated Proteoglycan Solutions
NASA Astrophysics Data System (ADS)
Meechai, Nispa; Jamieson, Alex; Blackwell, John; Carrino, David
2001-03-01
Proteoglycan Aggregate (PGA) is the principal macromolecular component of the energy-absorbing matrix of cartilage and tendon. Its brush-like supramolecular structure consists of highly-ionic subunits, non-covalently bound to a hyaluronate chain. We report viscoelastic behavior of concentrated solutions of PGA, purified by column fractionation to remove free subunits. At physiological ionic strength, these preparations exhibit a sol-to-gel transition when the concentration is increased above molecular overlap. The strain dependence of concentrated solutions shows a pronounced non-linearity above a critical strain, at which the storage modulus decreases suddenly, and the loss modulus exhibits a maximum. This response is similar to that observed for close-packed dispersions of soft spheres, when the applied strain is sufficient to move a sphere past its neighbors. At low and high ionic strength, the elasticity of solutions near the overlap concentration decreases. The former is interpreted as due to a decrease in intramolecular and intermolecular electrostatic repulsions, because of strong trapping of counterions within the PGA brush, the latter to salt-induced brush collapse.
Blow-up of a hyperbolic equation of viscoelasticity with supercritical nonlinearities
NASA Astrophysics Data System (ADS)
Guo, Yanqiu; Rammaha, Mohammad A.; Sakuntasathien, Sawanya
2017-02-01
We investigate a hyperbolic PDE, modeling wave propagation in viscoelastic media, under the influence of a linear memory term of Boltzmann type, and a nonlinear damping modeling friction, as well as an energy-amplifying supercritical nonlinear source:
Creep behavior of fiber-reinforced polymeric composites: a review of the technical literature
Scott, D.W.; Lai, J.S.; Zureick, A.
1995-06-01
This report provides a review of the technical literature related to the creep behavior of fiber reinforced polymer (FRP) composites. The review presented here was directed toward those papers that define the direction and line of thinking in the area of experimental techniques that may be candidates for the development of accelerated test methods to predict the long-term performance of FRP composite materials for highway structural applications. Linear and nonlinear viscoelastic theories as they relate to the modeling and prediction of the viscoelastic response of FRP materials under constant loads are included. Accelerated characterization techniques for the viscoelastic behavior of FRP composites including the use of elevated temperatures and frequency domain loading are reviewed. The effects of moisture and temperature on the creep behavior of composites are briefly considered. The interaction between creep behavior and fatigue behavior is also included in the discussion. 60 refs.
Viscoelastic effective properties of two types of heterogeneous materials.
NASA Astrophysics Data System (ADS)
Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel
2015-04-01
In the past, a lot of efforts have been put to describe two end cases of rock behaviors: elasticity and viscosity. In recent years, more focus has been brought on the intermediate viscoelastic cases which describe better the rheology of rocks such as shales. Shales are typically heterogeneous and the question arises as to how to derive their effective properties so that they can be approximated as homogeneous media. This question has already been dealt with at the elastic and viscous limit but still remains for some cases in between. Using MILAMIN, a fast finite element solver for large problems, we numerically investigate different approaches to derive the effective properties of several viscoelastic media. Two types of geometries are considered: layered and inclusion based media. We focus on two dimensional plane strain problems considering two phase composites deformed under pure shear. We start by investigating the case of transversely isotropic layered media made of two Maxwell materials. Using the Backus averaging method we discuss the degree of relevance of this averaging by considering some parameters as: layer periodicity, layer thickness and layer interface roughness. Other averaging methods are also discussed which provide a broader perspective on the performances of Backus averaging. In a second part we move on to inclusion based models. The advantage of these models compared to the previous one is that they provide a better approximation to real microstructures in rocks. The setup we consider in this part is the following: some viscous circular inclusions are embedded in an elastic matrix. Both the inclusions and the matrix are homogeneous but the inclusions are purely isotropic while the matrix can also be anisotropic. In order to derive the effective viscoelastic properties of the medium we use two approaches: the self-consistent averaging and the differential effective medium theory. The idea behind self-consistency is to assume that the inclusions
NASA Astrophysics Data System (ADS)
Lebon, Luc; Limat, Laurent; Gaillard, Antoine; Beaumont, Julien; Lhuissier, Henri; Laboratoire MSC Team
2015-11-01
We have investigated experimentally the properties and stability of viscoelastic curtains, falling from a long thin slot and maintained laterally by two highly wetting wires. We have observed several original facts, compared to the seminal work of Brown and Taylor on Newtonian curtains: (1) The stability with respect to breaking is considerably enhanced by the use of appropriate polymers. Even strange tree-like falling filament structures can be also stabilised, though less interesting for applications. (2) Specific instabilities can be observed, when the amount of polymers is excessive, with spatial and temporal modulations of the coating thickness. (3) Even the base state is modified, and does NOT reduce at large scale to a free fall, even slightly displaced vertically from the expected profile. We present this experimental exploration and also some attempts of analytical modeling based on Rheological theories of complex fluids.
A preliminary investigation of the dynamic viscoelastic relaxation of bovine cortical bone
NASA Astrophysics Data System (ADS)
Loete, T. J. C.; Paul, G.; Ismail, E. B.
2015-09-01
A new experimental approach is proposed to characterize the dynamic viscoelastic relaxation behaviour of cortical bone. Theoretical models are presented to show that a linear viscoelastic material, when allowed to relax between two long elastic bars, will produce stress, strain and strain rate histories that contain characteristic features. Furthermore, typical experimental results are presented to show that these characteristic features are observed during split Hopkinson bar tests on bovine cortical bone using a Cone-in-Tube striker. The interpretation of this behaviour in the context of a standard linear viscoelastic model is discussed.
Belli, Renan; Petschelt, Anselm; Lohbauer, Ulrich
2014-04-01
The aim of this study was to measure the linear elastic material properties of direct dental resin composites and correlate them with their fatigue strength under cyclic loading. Bar specimens of twelve resin composites were produced according to ISO 4049 and tested for elastic modulus (Emod) in 3-point bending (n=10), flexural strength (FS) (n=15) and single-edge-notch-beam fracture toughness (FT) (n=15), both in 4-point bending. Using the same specimen geometry, the flexural fatigue strength (FFS) was determined using the staircase approach after 10(4) cycles at 0.5 Hz in 4-point bending (n=25). The observation of the fracture surface and fracture profiles was conducted using a scanning electron microscope in order to evaluate the respective fracture mechanisms according to the two different loading conditions. Materials were ranked differently according to the tested parameters. Only weak correlations were found between any of the initial properties and FFS or strength loss. The best correlation to FFS was found to be the Emod (r(2)=0.679), although only slightly. Crack path in both loading conditions was mainly interparticle, with the crack propagating mainly within the matrix phase for fatigued specimens and eventually through the filler/matrix interface for statically loaded specimens. Fracture of large particles or prepolymerized fillers was only observed in specimens of FS and FT. Initial properties were better associated with microstructural features, whereas the fatigue resistance showed to be more dependent on aspects relating to the matrix phase. Our results show that linear elastic properties such as elastic modulus, flexural strength and fracture toughness are not good descriptors of the fatigue resistance of dental resin composite under cyclic bending, and may therefore have limited clinical relevance. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Suspended particulate composition: evolution along a river linear and influence of regime flow
NASA Astrophysics Data System (ADS)
Le Meur, Mathieu; Montargès-Pelletier, Emmanuelle; Bauer, Allan; Gley, Renaud; Migot, Sylvie; Mansuy-Huault, Laurence; Lorgeoux, Catherine; Razafitianamaharavo, Angelina; Villièras, Frédéric
2015-04-01
Suspended Particulate Matters are recognized to play a crucial role in the transport and fate of chemicals like trace metal elements. The affinity of trace metals with natural SPM is influenced by (i) the nature of metal (ii) physical-chemical conditions of the water column (iii) SPM physical characteristics (grain size, surface area) (iiii) SPM chemical characteristics (elemental composition, mineralogy, organic composition). Some authors observed that the SPM composition was the predominant factor controlling the affinity of trace metals with natural SPM. One purpose of this work is to follow the physical and chemical characteristics of SPM along the river linear in order to better understand the affinity between SPM and heavy metals. One other purpose is to study the influence of regime flow on SPM physical and chemical composition in order to detect any variation of SPM composition with regime flow. SPM were sampled along Moselle river (North East of France) following an urbanization gradient. Two tributaries were also sampled, the Madon river which drains an agricultural catchment and the Fensch stream which flows through an ancient steel-making basin. SPM were sampled several times during high flow and low flow. Particulate matter was extracted on field using continuous flow field centrifuge. Frozen-dried samples were then characterized in terms of size distribution, elemental composition (ICP - AES, ICP - MS), mineralogy (XRD, FTIR, SEM, TEM), surface properties (gas adsorption techniques) and organic composition (Py-GC-MS and GC-MS). Grain size distribution evidenced the presence of coarser particles during high flow but no difference in the grain size distribution could be evidenced between the different stations. The grain size distribution of collected SPM appeared globally identical, although the increase of conductivity due to the junction of Meurthe river . In terms of composition, major element contents in SPM are characterized by the predominance of
Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks.
Hardin, James O; Ober, Thomas J; Valentine, Alexander D; Lewis, Jennifer A
2015-06-03
Multimaterial 3D printing using microfluidic printheads specifically designed for seamless switching between two visco-elastic materials "on-the-fly" during fabrication is demonstrated. This approach opens new avenues for the digital assembly of functional matter with controlled compositional and property gradients at the microscale.
Modeling viscoelastic flow in a multiflux static mixer
NASA Astrophysics Data System (ADS)
Köpplmayr, T.; Miethlinger, J.
2014-05-01
We present a numerical and experimental study of the polymer flow in a multiflux static mixer. Various geometrical configurations are compared in terms of layer homogeneity. To evaluate the layer-forming process in different geometries, we applied a general and precise approach based on trajectory calculations for a large set of material points, followed by a statistical analysis. A simulation of viscous flow using the Carreau-Yasuda constitutive equation produced results which deviated from our experimental findings. Therefore, we used the Giesekus constitutive equation, taking into account viscoelastic effects, such as extrudate swell and secondary motions inside the mixer. Parallel plate rheometry was employed to collect dynamic mechanical data in the linear viscoelastic flow regime. Weissenberg numbers were calculated, and the maximum relaxation time in the obtained spectrum was limited to avoid divergence issues. The results of our study provide deeper insights into the layerforming process of viscoelastic melts in a multiflux static mixer.
Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges
Peterson, Brandon W.; He, Yan; Ren, Yijin; Zerdoum, Aidan; Libera, Matthew R.; Sharma, Prashant K.; van Winkelhoff, Arie-Jan; Neut, Danielle; Stoodley, Paul; van der Mei, Henny C.; Busscher, Henk J.
2015-01-01
We summarize different studies describing mechanisms through which bacteria in a biofilm mode of growth resist mechanical and chemical challenges. Acknowledging previous microscopic work describing voids and channels in biofilms that govern a biofilms response to such challenges, we advocate a more quantitative approach that builds on the relation between structure and composition of materials with their viscoelastic properties. Biofilms possess features of both viscoelastic solids and liquids, like skin or blood, and stress relaxation of biofilms has been found to be a corollary of their structure and composition, including the EPS matrix and bacterial interactions. Review of the literature on viscoelastic properties of biofilms in ancient and modern environments as well as of infectious biofilms reveals that the viscoelastic properties of a biofilm relate with antimicrobial penetration in a biofilm. In addition, also the removal of biofilm from surfaces appears governed by the viscoelasticity of a biofilm. Herewith, it is established that the viscoelasticity of biofilms, as a corollary of structure and composition, performs a role in their protection against mechanical and chemical challenges. Pathways are discussed to make biofilms more susceptible to antimicrobials by intervening with their viscoelasticity, as a quantifiable expression of their structure and composition. PMID:25725015
Corneal hyper-viscoelastic model: derivations, experiments, and simulations.
Su, Peng; Yang, Yang; Xiao, Jingjing; Song, Yanming
2015-01-01
The aim of this study is to propose a method to construct corneal biomechanical model which is the foundation for simulation of corneal microsurgery. Corneal material has two significant characteristics: hyperelastic and viscoelastic. Firstly, Mooney-Rivlin hyperelastic model of cornea obtained based on stored-energy function can be simplified as a linear equation with two unknown parameters. Then, modified Maxwell viscoelastic model of the cornea, whose analytical form is consistent with the generalized Prony-series model, is proposed from the perspective of material mechanics. Parameters of the model are determined by the uniaxial tensile tests and the stress-relaxation tests. Corneal material properties are simulated to verify the hyper-viscoelastic model and measure the effectiveness of the model in the finite element simulation. On this basis, an in vivo model of the corneal is built. And the simulation of extrusion in vivo cornea shows that the force is roughly nonlinearly increasing with displacement, and it is consistent with the results obtained by extrusion experiment of in vivo cornea. Conlusions: This paper derives a corneal hyper-viscoelastic model to describe the material properties more accurately, and explains the mathematical method for determination of the model parameters. The model is an effective biomechanical model, which can be directly used for simulation of trephine and suture in keratoplasty. Although the corneal hyper-viscoelastic model is taken as the object of study, the method has certain adaptability in biomechanical research of ophthalmology.
TEMPERATURE-DEPENDENT VISCOELASTIC PROPERTIES OF THE HUMAN SUPRASPINATUS TENDON
Huang, Chun-Yuh; Wang, Vincent M.; Flatow, Evan L.; Mow, Van C.
2009-01-01
Temperature effects on the viscoelastic properties of the human supraspinatus tendon were investigated using static stress-relaxation experiments and Quasi-Linear Viscoelastic (QLV) theory. Twelve supraspinatus tendons were randomly assigned to one of two test groups for tensile testing using the following sequence of temperatures: (1) 37°C, 27°C, and 17°C (Group I, n=6), or (2) 42°C, 32°C, and 22°C (Group II, n=6). QLV parameter C was found to increase at elevated temperatures, suggesting greater viscous mechanical behavior at higher temperatures. Elastic parameters A and B showed no significant difference among the six temperatures studied, implying that the viscoelastic stress response of the supraspinatus tendon is not sensitive to temperature over shorter testing durations. Using regression analysis, an exponential relationship between parameter C and test temperature was implemented into QLV theory to model temperature-dependent viscoelastic behavior. This modified approach facilitates the theoretical determination of the viscoelastic behavior of tendons at arbitrary temperatures. PMID:19159888
Linear and nonlinear finite element analysis of laminated composite structures at high temperatures
NASA Astrophysics Data System (ADS)
Wilt, Thomas Edmund
The use of composite materials in aerospace applications, particularly engine components, is becoming more prevalent due to the materials high strength, yet low weight. In addition to thermomechanical deformation response, life prediction and damage modeling analysis is also required to assess the component's service life. These complex and computationally intensive analyses require the development of simple, efficient and robust finite element analysis capabilities. A simple robust finite element which can effectively model the multi-layer composite material is developed. This will include thermal gradient capabilities necessary for a complete thermomechanical analysis. In order to integrate the numerically stiff rate dependent viscoplastic equations, efficient, stable numerical algorithms are developed. In addition, consistent viscoplastic/plastic tangent matrices will also be formulated. The finite element is formulated based upon a generalized mixed variational principle with independently assumed displacements and layer number independent strains. A unique scheme utilizing nodal temperatures is used to model a linear thermal gradient through the thickness of the composite. The numerical integration algorithms are formulated in the context of a fully implicit backward Euler scheme. The consistent tangent matrices arise directly from the formulation. The multi-layer composite finite element demonstrates good performance in terms of static displacement and stress predictions, and dynamic response. Also, the element appears to be relatively insensitive to mesh distortions. The robustness and efficiency of the fully implicit integration algorithms is effectively demonstrated in the numerical results. That is, large time steps and a significant reduction in global iterations, as a direct result of utilizing the consistent tangent matrices, is shown.
NASA Astrophysics Data System (ADS)
Ye, Hong-Ling; Wang, Wei-Wei; Chen, Ning; Sui, Yun-Kang
2016-08-01
In this paper, a model of topology optimization with linear buckling constraints is established based on an independent and continuous mapping method to minimize the plate/shell structure weight. A composite exponential function (CEF) is selected as filtering functions for element weight, the element stiffness matrix and the element geometric stiffness matrix, which recognize the design variables, and to implement the changing process of design variables from "discrete" to "continuous" and back to "discrete". The buckling constraints are approximated as explicit formulations based on the Taylor expansion and the filtering function. The optimization model is transformed to dual programming and solved by the dual sequence quadratic programming algorithm. Finally, three numerical examples with power function and CEF as filter function are analyzed and discussed to demonstrate the feasibility and efficiency of the proposed method.
Zhang, Wei; Liu, Yi; Kassab, Ghassan S
2007-10-01
The mechanical behavior of blood vessels is known to be viscoelastic rather than elastic. The functional role of viscoelasticity, however, has remained largely unclear. The hypothesis of this study is that viscoelasticity reduces the stresses and strains in the vessel wall, which may have a significant impact on the fatigue life of the blood vessel wall. To verify the hypothesis, the pulsatile stress in rabbit thoracic artery at physiological loading condition was investigated with a quasi-linear viscoelastic model, where the normalized stress relaxation function is assumed to be isotropic, while the stress-strain relationship is anisotropic and nonlinear. The artery was subjected to the same boundary condition, and the mechanical equilibrium equation was solved for both the viscoelastic and an elastic (which has a constant relaxation function) model. Numerical results show that, compared with purely elastic response, the viscoelastic property of arteries reduces the magnitudes and temporal variations of circumferential stress and strain. The radial wall movement is also reduced due to viscoelasticity. These findings imply that viscoelasticity may be beneficial for the fatigue life of blood vessels, which undergo millions of cyclic mechanical loadings each year of life.
Stress-controlled viscoelastic tensile response of bovine cornea.
Boyce, B L; Jones, R E; Nguyen, T D; Grazier, J M
2007-01-01
The viscoelastic response of bovine corneas was characterized using in vitro load-controlled uniaxial tension experiments. Specifically, two types of tests were employed: cycled ramp tests over a range of loading rates and creep tests over a range of hold stresses. Multiple replicates of each were used to quantify natural variability as well as mean trends. A preconditioning protocol was used to obtain a unique reference state before testing and to overcome the effects of non-physiological loading. A quasi-linear viscoelastic model incorporating a representation of the microstructure of the cornea was compared to the experimental results. For low stresses and moderate durations this model compares favorably, but overall the material displays non-linearities that cannot be represented within the quasi-linear framework.
Viscoelastic properties of demineralized dentin matrix.
Pashley, David H; Agee, Kelli A; Wataha, John C; Rueggeberg, Frederick; Ceballos, Laura; Itou, Kousuke; Yoshiyama, Masahiro; Carvalho, Ricardo M; Tay, Franklin R
2003-12-01
To evaluate the viscoelastic properties of demineralized dentin matrix. Stress-relaxation studies were done on matrices in tension and strain elongation or creep studies were done in both tension and compression. Mid-coronal dentin disks were prepared from extracted unerupted human third molars. Disks were 0.5 mm thick for stress-relaxation or tensile creep experiments and 0.2-0.3 mm thick for compressive creep studies. 'I' beam specimens were prepared from dentin disks and the middle region was demineralized in 0.5 M EDTA (pH 7) for 4 days. The specimens were held in miniature friction grips in water and pulled at 100 micro m s(-1) to strains of 5, 10, 15 or 20% and then held for 10 min to follow the decay of stress over time. Creep was determined on demineralized dentin immersed in water in tension and in compression. Compressive creep was measured using an LVDT contact probe with loads of 0.02-0.5 N. Strain data were converted to compliance-time curves (strain/stress) and expressed as total compliance (J(t)), instantaneous elastic compliance (J(o)), retarded elastic compliance (J(R)) and viscous response (t/eta) or creep. The dentin matrix exhibits both stress-relaxation and creep behavior. Stress-relaxation and tensile creep were independent of strain but compressive creep rates were inversely related to compressive strain. Creep values were about 10% at low compressive strains, but fell progressively to 1% at high strains. Compliance-time curves fell with stress and came closer together. However, tensile creep was about 3% regardless of the strain. The dentin matrix exhibits viscoelastic properties, but is not linearly viscoelastic. The relatively high creep rates of the matrix under low compressive loads may cause viscous deformations in poorly infiltrated hybrid layers in resin-bonded teeth under function.
Viscoelastic properties of semiflexible filamentous bacteriophage fd.
Schmidt, F G; Hinner, B; Sackmann, E; Tang, J X
2000-10-01
The cytoskeletal protein filament F-actin has been treated in a number of recent studies as a model physical system for semiflexible filaments. In this work, we studied the viscoelastic properties of entangled solutions of the filamentous bacteriophage fd as an alternative to F-actin with similar physical parameters. We present both microrheometric and macrorheometric measurements of the viscoelastic storage and loss moduli, G'(f ) and G"(f ), respectively, in a frequency range 0.01
Interrogating the viscoelastic properties of tissue using viscoelastic response (VISR) ultrasound
NASA Astrophysics Data System (ADS)
Selzo, Mallory Renee
Affecting approximately 1 in 3,500 newborn males, Duchenne muscular dystrophy (DMD) is one of the most common lethal genetic disorders in humans. Boys with DMD suffer progressive loss of muscle strength and function, leading to wheelchair dependence, cardiac and respiratory compromise, and death during young adulthood. There are currently no treatments that can halt or reverse the disease progression, and translating prospective treatments into clinical trials has been delayed by inadequate outcome measures. Current outcome measures, such as functional and muscle strength assessments, lack sensitivity to individual muscles, require subjective effort of the child, and are impacted by normal childhood growth and development. The goal of this research is to develop Viscoelastic Response (VisR) ultrasound which can be used to delineate compositional changes in muscle associated with DMD. In VisR, acoustic radiation force (ARF) is used to produce small, localized displacements within the muscle. Using conventional ultrasound to track the motion, the displacement response of the tissue can be evaluated against a mechanical model. In order to develop signal processing techniques and assess mechanical models, finite element method simulations are used to model the response of a viscoelastic material to ARF excitations. Results are then presented demonstrating VisR differentiation of viscoelastic changes with progressive dystrophic degeneration in a dog model of DMD. Finally, clinical feasibility of VisR imaging is demonstrated in two boys with DMD.
REVIEW ARTICLE: Viscoelastic phase separation
NASA Astrophysics Data System (ADS)
Tanaka, Hajime
2000-04-01
Descriptions of phase separation in condensed matter have so far been classified into a solid model (model B) and a fluid model (model H). In the former the diffusion is the only transport process, while in the latter material can be transported by both diffusion and hydrodynamic flow. It has recently been found that in addition to these well-known models a new model of phase separation, the `viscoelastic model', is required to describe the phase-separation behaviour of a dynamically asymmetric mixture, which is composed of fast and slow components. Such `dynamic asymmetry' can be induced by either the large size difference or the difference in glass-transition temperature between the components of a mixture. The former often exists in so-called complex fluids, such as polymer solutions, micellar solutions, colloidal suspensions, emulsions and protein solutions. The latter, on the other hand, can exist in any mixture in principle. This new type of phase separation is called `viscoelastic phase separation' since viscoelastic effects play a dominant role. Viscoelastic phase separation may be a `general' model of phase separation, which includes solid and fluid models as special cases: for example, fluid phase separation described by model H, which is believed to be the usual case, can be viewed as a `special' (rather rare) case of viscoelastic phase separation. Here we review the experiments, theories and numerical simulations for viscoelastic phase separation. In dynamically asymmetric mixtures, phase separation generally leads to the formation of a long-lived `interaction network' (a transient gel) of slow-component molecules (or particles), if the attractive interactions between them are strong enough. Because of its long relaxation time, it cannot catch up with the deformation rate of the phase separation itself and as a result the stress is asymmetrically divided between the components. This leads to the transient formation of networklike or spongelike
Quasi-static and dynamic response of viscoelastic helical rods
NASA Astrophysics Data System (ADS)
Temel, Beytullah; Fırat Çalim, Faruk; Tütüncü, Naki
2004-04-01
In this study, the dynamic behaviour of cylindrical helical rods made of linear viscoelastic materials are investigated in the Laplace domain. The governing equations for naturally twisted and curved spatial rods obtained using the Timoshenko beam theory are rewritten for cylindrical helical rods. The curvature of the rod axis, effect of rotary inertia, and shear and axial deformations are considered in the formulation. The material of the rod is assumed to be homogeneous, isotropic and linear viscoelastic. In the viscoelastic material case, according to the correspondence principle, the material constants are replaced with their complex counterparts in the Laplace domain. Ordinary differential equations in scalar form obtained in the Laplace domain are solved numerically using the complementary functions method to calculate the dynamic stiffness matrix of the problem. In the solutions, the Kelvin model is employed. The solutions obtained are transformed to the real space using the Durbin's numerical inverse Laplace transform method. Numerical results for quasi-static and dynamic response of viscoelastic models are presented in the form of graphics.
Thermorheologically complex behavior of multi-phase viscoelastic materials
NASA Astrophysics Data System (ADS)
Brinson, L. C.; Knauss, W. G.
T HE DYNAMIC correspondence principle of viscoelasticity is used to study the nature of time-temperature behavior of multi-phase composites by means of finite element computation. The composite considered contains viscoelastic inclusions embedded in a viscoelastic matrix. Each phase of the composite is considered to be thermorheologically simple, but the resulting mechanical properties of the composite are thermorheologically complex. The deviation of the composite moduli from thermorheologically simple behavior of the matrix material is shown to occur at frequencies and temperatures where the glass-to-rubber transition of the included phases are reached. Properties of a styrene-butadiene-styrene (SBS) block copolymer are investigated based on the individual phase properties of polystyrene and polybutadiene. To achieve congruence of the results with experimental data, it is necessary to consider a transition phase of properties "intermediate" to those of polystyrene and polybutadiene. Using accurate physical information on the individual phase properties and on the interphase region, it is possible to predict properties of multiphase composites. Although detailed a priori knowledge of such an interphase is usually lacking, it is shown that the computational procedure presented here together with an extended range of test frequencies will aid in estimating the properties of the phase in question.
Acquah, Gifty E; Via, Brian K; Billor, Nedret; Fasina, Oladiran O; Eckhardt, Lori G
2016-08-27
As new markets, technologies and economies evolve in the low carbon bioeconomy, forest logging residue, a largely untapped renewable resource will play a vital role. The feedstock can however be variable depending on plant species and plant part component. This heterogeneity can influence the physical, chemical and thermochemical properties of the material, and thus the final yield and quality of products. Although it is challenging to control compositional variability of a batch of feedstock, it is feasible to monitor this heterogeneity and make the necessary changes in process parameters. Such a system will be a first step towards optimization, quality assurance and cost-effectiveness of processes in the emerging biofuel/chemical industry. The objective of this study was therefore to qualitatively classify forest logging residue made up of different plant parts using both near infrared spectroscopy (NIRS) and Fourier transform infrared spectroscopy (FTIRS) together with linear discriminant analysis (LDA). Forest logging residue harvested from several Pinus taeda (loblolly pine) plantations in Alabama, USA, were classified into three plant part components: clean wood, wood and bark and slash (i.e., limbs and foliage). Five-fold cross-validated linear discriminant functions had classification accuracies of over 96% for both NIRS and FTIRS based models. An extra factor/principal component (PC) was however needed to achieve this in FTIRS modeling. Analysis of factor loadings of both NIR and FTIR spectra showed that, the statistically different amount of cellulose in the three plant part components of logging residue contributed to their initial separation. This study demonstrated that NIR or FTIR spectroscopy coupled with PCA and LDA has the potential to be used as a high throughput tool in classifying the plant part makeup of a batch of forest logging residue feedstock. Thus, NIR/FTIR could be employed as a tool to rapidly probe/monitor the variability of forest
Viscoelastic Taylor-Couette instability as analog of the magnetorotational instability.
Bai, Yang; Crumeyrolle, Olivier; Mutabazi, Innocent
2015-09-01
A linear stability analysis and an experimental study of a viscoelastic Taylor-Couette flow corotating in the Keplerian ratio allow us to elucidate the analogy between the viscoelastic instability and the magnetorotational instability (MRI). A generalized Rayleigh criterion allows us to determine the potentially unstable zone to pure-elasticity-driven perturbations. Experiments with a viscoelastic polymer solution yield four modes: one pure-elasticity mode and three elastorotational instability (ERI) modes that represent the MRI-analog modes. The destabilization by the polymer viscosity is evidenced for the ERI modes.
Two-phase viscoelastic jetting
Yu, J-D; Sakai, S.; Sethian, J.A.
2008-12-10
A coupled finite difference algorithm on rectangular grids is developed for viscoelastic ink ejection simulations. The ink is modeled by the Oldroyd-B viscoelastic fluid model. The coupled algorithm seamlessly incorporates several things: (1) a coupled level set-projection method for incompressible immiscible two-phase fluid flows; (2) a higher-order Godunov type algorithm for the convection terms in the momentum and level set equations; (3) a simple first-order upwind algorithm for the convection term in the viscoelastic stress equations; (4) central difference approximations for viscosity, surface tension, and upper-convected derivative terms; and (5) an equivalent circuit model to calculate the inflow pressure (or flow rate) from dynamic voltage.
Squirming propulsion in viscoelastic fluids
NASA Astrophysics Data System (ADS)
de Corato, Marco; Greco, Francesco; Maffettone, Pier Luca
2015-11-01
The locomotion of organisms in Newtonian fluids at low-Reynolds numbers displays very different features from that at large Reynolds numbers; indeed, in this regime the viscous forces are dominant over the inertial ones and propulsion is possible only with non-time-reversible swimming strokes. In many situations of biological interest, however, small organisms are propelling themselves through non-Newtonian fluids such as mucus or biofilms, which display highly viscoelastic properties. Fluid viscoelasticity affects in a complex way both the micro-organisms' swimming velocity and dissipated power, possibly affecting their collective behavior. In our work, we employ the so called ``squirmer'' model to study the motion of spherical ciliated organisms in a viscoelastic fluid. We derive analytical formulas for the squirmer swimming velocity and dissipated power that show a complex interplay between the fluid constitutive behavior and the propulsion mechanism.
Composite Nd:YAG-SiC-bonding laser with orthogonal-linear-polarization output.
Zhou, Yan; Xu, Jianqiu; Tang, Yulong
2017-01-23
We report a multiple-gain-element Nd:YAG laser where the gain media (three pieces of slab crystal) are alternately bonded to two optical quality 4H-SiC wafers. Such composite gain configuration can efficiently remove waste heat from the gain medium, preventing thermal lensing and heat-induced birefringence/distortion under high power laser operation. Through near Brewster's angles incidence designing and polarization discrimination, two orthogonally linearly polarized (P and S polarized) laser beams are generated simultaneously from different parts of the same system. Based on a T = 3% output coupler, this continuous wave laser produces maximum power of 5.34 W (0.83 W) with a slope efficiency of 21.1% (3.6%) for the S (P) polarized laser beam. At the 5-W level, the S polarized beam has a beam quality of M^{2}~1.2. The wavelengths of these two perpendicularly polarized laser beams differ about 0.6 nm (1063.7 and 1064.3 nm). Polarized output behavior dependent on the output-coupler transmission is also studied, and it is found that increasing the transmission leads to steady growth of the P polarized laser beam; when a T = 1.3% output coupler is adopted, more than 99% of the output is the S polarized beam. The highest total output power is 6.75 W obtained with the T = 1.3% output coupler, corresponding to slope efficiency of 25.7%. This composite laser scheme, bonding multiple gain media with high-thermal-conductivity materials, opens a new avenue for high-power high-beam-quality solid-state lasers with multiple-polarization output beams.
Comparison of viscoelastic properties of the pharyngeal tissue: human and canine.
Kim, S M; McCulloch, T M; Rim, K
1999-01-01
The viscoelastic properties of the human and canine pharyngeal tissue in tension were evaluated, based on both an experimental protocol-consisting of cyclic load, tensile stress relaxation, and incremental step load tests-and the quasi-linear viscoelastic theory. The reduced stress relaxation function and the elastic response of the pharyngeal tissues were derived from the experimental results specifically obtained from those tissues. The characteristic features of viscoelastic property were obtained for both human and canine pharyngeal tissues by applying the quasi-linear viscoelastic theory and compared with each other. The material properties of the pharyngeal tissue were sought to facilitate the three-dimensional biomechanical model of the pharyngeal function by using the finite element method.
Individual chromosomes as viscoelastic copolymers
NASA Astrophysics Data System (ADS)
Almagro, S.; Dimitrov, S.; Hirano, T.; Vallade, M.; Riveline, D.
2003-09-01
We report elastic measurements of individual chromosomes observed in vitro. Free fluctuations of shapes show that a chromosome can be seen as a copolymer, exhibiting rigid regions alternating with semi-flexible regions. We characterize this behavior and compare it with known biopolymers. We further show that the inner part of a chromosome exhibits viscoelasticity, as extracted by the loading rate dependence of the stretch modulus. Taken together, these data suggest an organization for the chromosome as a copolymer composed of an inner rigid core exhibiting viscoelasticity surrounded by an elastic soft envelope.
How to use composite indicator and linear programming model for determine sustainable tourism.
Ziaabadi, Maryam; Malakootian, Mohammad; Zare Mehrjerdi, Mohammad Reza; Jalaee, Seied Abdolmajid; Mehrabi Boshrabadi, Hosein
2017-01-01
The tourism industry which is one of the most dynamic economic activities in today's world plays a significant role in the sustainable development. Therefore, in addition to paying attention to tourism, sustainable tourism must be taken into huge account; otherwise, the environment and its health will be damaged irreparably. To determine the level of sustainability in this study, indicators of sustainable tourism were first presented in three environmental health, economic and social aspects. Then, the levels of sustainable tourism and environmental sustainability were practically measured in different cities of Kerman Province using a composite indicator, a linear programming model, Delphi method and the questionnaire technique. Finally, the study cities (tourist attractions) were ranked. Result of this study showed that unfortunately the tourism opportunities were not used appropriately in these cities and tourist destinations, and that environmental aspect (health and environmental sustainability) had very bad situations compared to social and economic aspects. In other words, environmental health had the lowest levels of sustainability. The environment is a place for all human activities like tourism, social and economic issues; therefore, its stability and health is of great importance. Thus, it is necessary to pay more attention to sustainability of activities, management and environmental health in planning sustainable development in regional and national policy.
Scaling the Non-linear Impact Response of Flat and Curved Composite Panels
NASA Technical Reports Server (NTRS)
Ambur, Damodar R.; Chunchu, Prasad B.; Rose, Cheryl A.; Feraboli, Paolo; Jackson, Wade C.
2005-01-01
The application of scaling laws to thin flat and curved composite panels exhibiting nonlinear response when subjected to low-velocity transverse impact is investigated. Previous research has shown that the elastic impact response of structural configurations exhibiting geometrically linear response can be effectively scaled. In the present paper, a preliminary experimental study is presented to assess the applicability of the scaling laws to structural configurations exhibiting geometrically nonlinear deformations. The effect of damage on the scalability of the structural response characteristics, and the effect of scale on damage development are also investigated. Damage is evaluated using conventional methods including C-scan, specimen de-plying and visual inspection of the impacted panels. Coefficient of restitution and normalized contact duration are also used to assess the extent of damage. The results confirm the validity of the scaling parameters for elastic impacts. However, for the panels considered in the study, the extent and manifestation of damage do not scale according to the scaling laws. Furthermore, the results indicate that even though the damage does not scale, the overall panel response characteristics, as indicated by contact force profiles, do scale for some levels of damage.
Viscoelastic properties of actin-coated membranes
NASA Astrophysics Data System (ADS)
Helfer, E.; Harlepp, S.; Bourdieu, L.; Robert, J.; Mackintosh, F. C.; Chatenay, D.
2001-02-01
In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (ω=0) two-dimensional (2D) shear modulus G02D~0.5 to 5 μN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G'2D(f )~f0.85+/-0.07] and of the bending modulus (κACM(f)~f0.55+/-0.21) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.
Prediction of the Viscoelastic Bulk Modulus
NASA Astrophysics Data System (ADS)
Guo, Jiaxi; Simon, Sindee
2010-03-01
The bulk and shear viscoelastic responses for several materials appear to arise from the same molecular mechanisms at short times, i.e., Andrade creep where the KWW beta parameter is approximately 0.3. If this is indeed the case, prediction and placement of the bulk viscoelastic response can be made simply by knowing the limiting elastic and rubbery bulk moduli and the viscoelastic shear response. The proposed methodology, which uses only easily measured functions, is considerably less time- and labor-intensive than direct measurement of the viscoelastic bulk modulus. Here we investigate this hypothesis and compare the calculated viscoelastic bulk responses for several materials to existing data in the literature.
Li, L P; Herzog, W
2004-01-01
The relative importance of fluid-dependent and fluid-independent transient mechanical behavior in articular cartilage was examined for tensile and unconfined compression testing using a fibril reinforced model. The collagen matrix of articular cartilage was modeled as viscoelastic using a quasi-linear viscoelastic formulation with strain-dependent elastic modulus, while the proteoglycan matrix was considered as linearly elastic. The collagen viscoelastic properties were obtained by fitting experimental data from a tensile test. These properties were used to investigate unconfined compression testing, and the sensitivity of the properties was also explored. It was predicted that the stress relaxation observed in tensile tests was not caused by fluid pressurization at the macroscopic level. A multi-step tensile stress relaxation test could be approximated using a hereditary integral in which the elastic fibrillar modulus was taken to be a linear function of the fibrillar strain. Applying the same formulation to the radial fibers in unconfined compression, stress relaxation could not be simulated if fluid pressurization were absent. Collagen viscoelasticity was found to slightly weaken fluid pressurization in unconfined compression, and this effect was relatively more significant at moderate strain rates. Therefore, collagen viscoelasticity appears to play an import role in articular cartilage in tensile testing, while fluid pressurization dominates the transient mechanical behavior in compression. Collagen viscoelasticity plays a minor role in the mechanical response of cartilage in unconfined compression if significant fluid flow is present.
Viscoelastic behaviour of pumpkin balloons
NASA Astrophysics Data System (ADS)
Gerngross, T.; Xu, Y.; Pellegrino, S.
2008-11-01
The lobes of the NASA ULDB pumpkin-shaped super-pressure balloons are made of a thin polymeric film that shows considerable time-dependent behaviour. A nonlinear viscoelastic model based on experimental measurements has been recently established for this film. This paper presents a simulation of the viscoelastic behaviour of ULDB balloons with the finite element software ABAQUS. First, the standard viscoelastic modelling capabilities available in ABAQUS are examined, but are found of limited accuracy even for the case of simple uniaxial creep tests on ULDB films. Then, a nonlinear viscoelastic constitutive model is implemented by means of a user-defined subroutine. This approach is verified by means of biaxial creep experiments on pressurized cylinders and is found to be accurate provided that the film anisotropy is also included in the model. A preliminary set of predictions for a single lobe of a ULDB is presented at the end of the paper. It indicates that time-dependent effects in a balloon structure can lead to significant stress redistribution and large increases in the transverse strains in the lobes.
Failure criteria for viscoelastic materials
NASA Technical Reports Server (NTRS)
Knauss, W. G.
1974-01-01
Research projects concerned with developing a theory of fracture of materials are discussed. The effects of the geometry of the structure and the loads acting on the structure as they influence the failure process are analyzed. The effects of the viscoelastic deformation characteristics of the bulk elastomer on failure behavior are examined. Additional material parameters which control the fracture process are identified.
Acquah, Gifty E.; Via, Brian K.; Billor, Nedret; Fasina, Oladiran O.; Eckhardt, Lori G.
2016-01-01
As new markets, technologies and economies evolve in the low carbon bioeconomy, forest logging residue, a largely untapped renewable resource will play a vital role. The feedstock can however be variable depending on plant species and plant part component. This heterogeneity can influence the physical, chemical and thermochemical properties of the material, and thus the final yield and quality of products. Although it is challenging to control compositional variability of a batch of feedstock, it is feasible to monitor this heterogeneity and make the necessary changes in process parameters. Such a system will be a first step towards optimization, quality assurance and cost-effectiveness of processes in the emerging biofuel/chemical industry. The objective of this study was therefore to qualitatively classify forest logging residue made up of different plant parts using both near infrared spectroscopy (NIRS) and Fourier transform infrared spectroscopy (FTIRS) together with linear discriminant analysis (LDA). Forest logging residue harvested from several Pinus taeda (loblolly pine) plantations in Alabama, USA, were classified into three plant part components: clean wood, wood and bark and slash (i.e., limbs and foliage). Five-fold cross-validated linear discriminant functions had classification accuracies of over 96% for both NIRS and FTIRS based models. An extra factor/principal component (PC) was however needed to achieve this in FTIRS modeling. Analysis of factor loadings of both NIR and FTIR spectra showed that, the statistically different amount of cellulose in the three plant part components of logging residue contributed to their initial separation. This study demonstrated that NIR or FTIR spectroscopy coupled with PCA and LDA has the potential to be used as a high throughput tool in classifying the plant part makeup of a batch of forest logging residue feedstock. Thus, NIR/FTIR could be employed as a tool to rapidly probe/monitor the variability of forest
Dynamic viscoelastic models of human skin using optical elastography
Kearney, Steven P.; Khan, Altaf; Dai, Zoujun; Royston, Thomas J.
2015-01-01
A novel technique for measuring in vivo human skin viscoelastic properties using optical elastography has been developed. The technique uses geometrically focused surface (GFS) waves that allow for wide bandwidth measurements of the wave field. An analytical solution for the case of a radiating annular disk surface source was fit to experimentally measured GFS waves, enabling an estimate of the frequency-dependent surface wavenumber, which can then be related to the dynamic shear modulus. Several viscoelastic models were then fit to the dynamic shear modulus dispersion curve. Viscoelastic models were evaluated based on their overall quality of fit and variability amongst healthy volunteers. An Ecoflex phantom was used to validate the procedure and results by comparison to similar studies using the same type of phantom. For skin results, it was found that the “α” parameters from the fractional models had the least variability, with coefficients of variability of 0.15, and 0.16. The best fitting models were the standard linear solid, and the fractional Voigt, with a mean fit correlation coefficient, R2, of 0.93, 0.89, respectively. This study has demonstrated the efficacy of this new method, and with larger studies the viscoelastic skin models could be used to identify various skin diseases and their response to treatment. PMID:26305137
Post-seismic relaxation theory on laterally heterogeneous viscoelastic model
Pollitz, F.F.
2003-01-01
Investigation was carried out into the problem of relaxation of a laterally heterogeneous viscoelastic Earth following an impulsive moment release event. The formal solution utilizes a semi-analytic solution for post-seismic deformation on a laterally homogeneous Earth constructed from viscoelastic normal modes, followed by application of mode coupling theory to derive the response on the aspherical Earth. The solution is constructed in the Laplace transform domain using the correspondence principle and is valid for any linear constitutive relationship between stress and strain. The specific implementation described in this paper is a semi-analytic discretization method which assumes isotropic elastic structure and a Maxwell constitutive relation. It accounts for viscoelastic-gravitational coupling under lateral variations in elastic parameters and viscosity. For a given viscoelastic structure and minimum wavelength scale, the computational effort involved with the numerical algorithm is proportional to the volume of the laterally heterogeneous region. Examples are presented of the calculation of post-seismic relaxation with a shallow, laterally heterogeneous volume following synthetic impulsive seismic events, and they illustrate the potentially large effect of regional 3-D heterogeneities on regional deformation patterns.
Cell poking: quantitative analysis of indentation of thick viscoelastic layers.
Duszyk, M; Schwab, B; Zahalak, G I; Qian, H; Elson, E L
1989-04-01
A recently introduced device, the cell poker, measures the force required to indent the exposed surface of a cell adherent to a rigid substratum. The cell poker has provided phenomenological information about the viscoelastic properties of several different types of cells, about mechanical changes triggered by external stimuli, and about the role of the cytoskeleton in these mechanical functions. Except in special cases, however, it has not been possible to extract quantitative estimates of viscosity and elasticity moduli from cell poker measurements. This paper presents cell poker measurements of well characterized viscoelastic polymeric materials, polydimethylsiloxanes of different degrees of polymerization, in a simple shape, a flat, thick layer, which for our purposes can be treated as a half space. Analysis of the measurements in terms of a linear viscoelasticity theory yields viscosity values for three polymer samples in agreement with those determined by measurements on a macroscopic scale. Theoretical analysis further indicates that the measured limiting static elasticity of the layers may result from the tension generated at the interface between the polymer and water. This work demonstrates the possibility of obtaining quantitative viscoelastic material properties from cell poker measurements and represents the first step in extending these quantitative studies to more complicated structures including cells.
Cell poking: quantitative analysis of indentation of thick viscoelastic layers.
Duszyk, M; Schwab, B; Zahalak, G I; Qian, H; Elson, E L
1989-01-01
A recently introduced device, the cell poker, measures the force required to indent the exposed surface of a cell adherent to a rigid substratum. The cell poker has provided phenomenological information about the viscoelastic properties of several different types of cells, about mechanical changes triggered by external stimuli, and about the role of the cytoskeleton in these mechanical functions. Except in special cases, however, it has not been possible to extract quantitative estimates of viscosity and elasticity moduli from cell poker measurements. This paper presents cell poker measurements of well characterized viscoelastic polymeric materials, polydimethylsiloxanes of different degrees of polymerization, in a simple shape, a flat, thick layer, which for our purposes can be treated as a half space. Analysis of the measurements in terms of a linear viscoelasticity theory yields viscosity values for three polymer samples in agreement with those determined by measurements on a macroscopic scale. Theoretical analysis further indicates that the measured limiting static elasticity of the layers may result from the tension generated at the interface between the polymer and water. This work demonstrates the possibility of obtaining quantitative viscoelastic material properties from cell poker measurements and represents the first step in extending these quantitative studies to more complicated structures including cells. PMID:2720066
Viscoelasticity of brain corpus callosum in biaxial tension
NASA Astrophysics Data System (ADS)
Labus, Kevin M.; Puttlitz, Christian M.
2016-11-01
Computational models of the brain rely on accurate constitutive relationships to model the viscoelastic behavior of brain tissue. Current viscoelastic models have been derived from experiments conducted in a single direction at a time and therefore lack information on the effects of multiaxial loading. It is also unclear if the time-dependent behavior of brain tissue is dependent on either strain magnitude or the direction of loading when subjected to tensile stresses. Therefore, biaxial stress relaxation and cyclic experiments were conducted on corpus callosum tissue isolated from fresh ovine brains. Results demonstrated the relaxation behavior to be independent of strain magnitude, and a quasi-linear viscoelastic (QLV) model was able to accurately fit the experimental data. Also, an isotropic reduced relaxation tensor was sufficient to model the stress-relaxation in both the axonal and transverse directions. The QLV model was fitted to the averaged stress relaxation tests at five strain magnitudes while using the measured strain history from the experiments. The resulting model was able to accurately predict the stresses from cyclic tests at two strain magnitudes. In addition to deriving a constitutive model from the averaged experimental data, each specimen was fitted separately and the resulting distributions of the model parameters were reported and used in a probabilistic analysis to determine the probability distribution of model predictions and the sensitivity of the model to the variance of the parameters. These results can be used to improve the viscoelastic constitutive models used in computational studies of the brain.
Viscoelasticity of colloidal polycrystals doped with impurities
NASA Astrophysics Data System (ADS)
Louhichi, Ameur; Tamborini, Elisa; Oberdisse, Julian; Cipelletti, Luca; Ramos, Laurence
2015-09-01
We investigate how the microstructure of a colloidal polycrystal influences its linear visco-elasticity. We use thermosensitive copolymer micelles that arrange in water in a cubic crystalline lattice, yielding a colloidal polycrystal. The polycrystal is doped with a small amount of nanoparticles, of size comparable to that of the micelles, which behave as impurities and thus partially segregate in the grain boundaries. We show that the shear elastic modulus only depends on the packing of the micelles and varies neither with the presence of nanoparticles nor with the crystal microstructure. By contrast, we find that the loss modulus is strongly affected by the presence of nanoparticles. A comparison between rheology data and small-angle neutron-scattering data suggests that the loss modulus is dictated by the total amount of nanoparticles in the grain boundaries, which in turn depends on the sample microstructure.
Generalized Fractional Derivative Anisotropic Viscoelastic Characterization
Hilton, Harry H.
2012-01-01
Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated. PMID:28817038
Viscoelastic properties of vis-breaking polypropylenes
NASA Astrophysics Data System (ADS)
Nobile, Maria Rossella; Moad, Graeme; Habsuda, Jana; Li, Guoxin; Nichols, Lance; Dagley, Ian; Simon, George P.
2015-12-01
In this work hydrogen peroxide is used as a green initiator to cause scissioning of polypropylene (PP) with water as the only by-product replacing the organic peroxides that are usually used. The rheological properties of a commercial polypropylene and of the scissioned samples are determined by dynamic rheology and an inversion procedure for converting the linear viscoelastic data into molar mass distribution has been adopted. The results presented show that the molar mass distribution of the PP polymer is narrowed on scissioning. The process is found to produce polymers similar in molecular architecture and behavior to organic peroxide cleaved materials, the results of which are given as a comparison in this work.
Viscoelastic properties of polymer based layered-silicate nanocomposites
NASA Astrophysics Data System (ADS)
Ren, Jiaxiang
Polymer based layered-silicate nanocomposites offer the potential for dramatically improved mechanical, thermal, and barrier properties while keeping the material density low. Understanding the linear and non-linear viscoelastic response for such materials is crucial because of the ability of such measurements to elucidate the mesoscale dispersion of layered-silicates and changes in such dispersion to applied flows as would be encountered in processing of these materials. A series of intercalated polystyrene (and derivatives of polystyrene) layered-silicate nanocomposites are studied to demonstrate the influence of mesoscale dispersion and organic---inorganic interactions on the linear and non-linear viscoelastic properties. A layered-silicate network structure is exhibited for the nanocomposites with strong polymer-silicate interaction such as montmorillonite (2C18M) and fluorohectorite (C18F) and the percolation threshold is ˜ 6 wt % for the 2C18M based hybrids. However, the nanocomposites based on hectorite (2C18H) with weak polymer-silicate interaction exhibit liquid-like terminal zone behavior. Furthermore, the enhanced terminal zone elastic modulus and viscosity of high brominated polystyrene and high molecular weight polystyrene based 2C18M nanocomposites suggest an improved delamination and dispersion of layered-silicates in the polymer matrix. The non-linear viscoelastic properties, specifically, the non-linear stress relaxation behavior and the applicability of time---strain separability, the effect of increasing strain amplitude on the oscillatory shear flow properties, and the shear rate dependence of the steady shear flow properties are examined. The silicate sheets (or collections of sheets) exhibit the ability to be oriented by the applied flow. Experimentally, the empirical Cox - Merz rule is demonstrated to be inapplicable for the hybrids. Furthermore, the K-BKZ constitutive model is used to model the steady shear properties. While being able to
Viscoelastic properties of entangled polymers - Ternary blends of monodisperse homopolymers
NASA Technical Reports Server (NTRS)
Soong, D.; Shen, M.; Hong, S. D.; Moacanin, J.; Shyu, S. S.
1979-01-01
In a previous publication from this laboratory, the Rouse-Bueche-Zimm molecular theory of viscoelasticity has been extended by using a transient network model to apply to binary blends of monodisperse polymers with chain entanglements. The dynamics of the entanglements were modeled both by the enhanced frictional coefficients and by the additional elastic couplings. It was recognized that entanglements not only may form between chains of the same lengths (intracomponent entanglements) but also between those of different lengths (intercomponent entanglements). At a given intercomponent entanglement, the longer chain was assumed to have the frictional coefficient of the shorter chain. Similarly, for blends consisting of several monodisperse components with different molecular weights, such modifications are also required to predict their linear viscoelastic behavior. The frequency of these interactions is assumed to be proportional to the weight ratio of the respective component chains in the blend. Equations of motion are formulated for each component and solved numerically for the relaxation time spectra. Linear viscoelastic properties such as the dynamic mechanical moduli, stress relaxation moduli, and zero-shear viscosity can then be computed for these systems by linear summation of those of the components.
NASA Astrophysics Data System (ADS)
Szumski, Richard Gerard
1993-01-01
The equations of motion for the vibration study of a partially elastic and partially linearly viscoelastic structure are developed in the time domain. The unique feature of these equations is that they contain both differential and integral terms. The integral terms are convolution integrals whose convolution is made between the time derivative of the viscoelastic relaxation modulus and the displacement history. They account for viscoelastic damping of the structure. The equations are simplified through the solution of a real eigenvalue problem which is subsequently used to decouple all but the damping term. A numerical solution procedure is presented using the finite element method for the spatial domain and a Runge Kutta-Verner numerical integration routine for temporal domain of the problem. Partial decoupling of the equations of motion reduces computation time and saves storage space. The convolution integrals are evaluated at each time step using the trapezoidal rule. Two new viscoelastic constitutive laws are introduced that are shown to characterize material properties over a broad frequency spectrum with few material parameters. They are convenient to work with because they have simple rational forms in both the time and frequency domains and also unconditionally obey the second law of thermodynamics. To verify the theory, computer program, and new viscoelastic constitutive laws, a simple elastic-viscoelastic structure known as a constrained layer damper was constructed and tested. The displacement history of the constrained layer damper was measured as an initial static displacement was suddenly released. Good agreement was obtained between the measurements and the numerical simulation of the same event using the theory developed here with the new constitutive laws. The solution procedure is a viable method for solving for the vibratory response of viscoelastically damped structures and is suitable for large-scale finite element analysis through a modified
Structure-induced nonlinear viscoelasticity of non-woven fibrous matrices.
Rizvi, Mohd Suhail; Pal, Anupam; Das, Sovan Lal
2016-12-01
Fibrous materials are widely utilized as tissue engineering scaffolds for tissue regeneration and other bioengineering applications. The structural as well as mechanical characteristics of the fibrous matrices under static and dynamic mechanical loading conditions influence the response of the cells. In this paper, we study the mechanical response of the non-woven fibrous matrices under oscillatory loading conditions and its dependence on the structural properties of fibrous matrix. We demonstrate that under oscillatory shear and elongation, the fibrous matrices demonstrate nonlinear viscoelasticity at all strain amplitudes. This is contrary to the behavior of other soft polymeric materials for which nonlinearity in the viscoelastic response vanishes for small strains. These observations suggest that despite their prevalence, the measures of linear viscoelasticity (e.g., storage and loss moduli) are inadequate for the general description of the viscoelastic nature of the fibrous materials. It was, however, found that linear viscoelastic nature of fibrous matrices for small amplitudes is restored when a pre-stretch is applied to the fibrous matrix along with oscillatory strains. Further, we also explored the influence of the structural properties of the fibrous matrices (fiber orientation, alignment and curvature) on their viscoelastic nature.
Rippie, E G; Danielson, D W
1981-05-01
The processes of nonequilibrium generation and decay of axial and radial stresses within tablet compacts were analyzed in terms of three-dimensional linear viscoelastic theory. A rotary tablet press was instrumented to measure punch and die wall stresses during the compression and postcompression periods. Following compression, tablets were permitted to remain at the compression site within the die, and the die wall stress was followed. Microcrystalline cellulose, spray-processed lactose, and sulfacetamide are known to have different compression characteristics and were found to differ significantly in their viscoelastic parameters. Compacts assumed their final viscoelastic state prior to the time of punch separation. Theory permits separation of material behavior into dilation and distortion components. Dilation, thought to be dependent on voids, was elastic in all cases. Distortion effects could be described well by a Kelvin solid model. Results indicate that viscoelastic properties are functions of compression conditions and may be useful in adjusting compression conditions to avoid problems such as capping.
Mathematical model of Rayleigh-Taylor and Richtmyer-Meshkov instabilities for viscoelastic fluids.
Rollin, Bertrand; Andrews, Malcolm J
2011-04-01
We extended the Goncharov model [V. N. Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] for nonlinear Rayleigh-Taylor instability of perfect fluids to the case of Rivlin-Ericksen viscoelastic fluids [R. S. Rivlin and J. L. Ericksen, Rat. Mech. Anal. 4, 323 (1955)], with surface tension. For Rayleigh-Taylor instability, viscosity, surface tension, and viscoelasticity decrease the exponential growth rate predicted by linear stability analysis. In particular, we find that viscosity and surface tension decrease the terminal bubble velocity, whereas viscoelasticity is found to have no effect. All three properties increase the saturation height of the bubble. In Richmyer-Meshkov instability, the decay of the asymptotic velocity depends on the balance between viscosity and surface tension, and viscoelasticity tends to slow the asymptotic velocity decay.
NASA Astrophysics Data System (ADS)
Meric de Bellefon, G.; van Duysen, J. C.; Sridharan, K.
2017-08-01
The stacking fault energy (SFE) plays an important role in deformation behavior and radiation damage of FCC metals and alloys such as austenitic stainless steels. In the present communication, existing expressions to calculate SFE in those steels from chemical composition are reviewed and an improved multivariate linear regression with random intercepts is used to analyze a new database of 144 SFE measurements collected from 30 literature references. It is shown that the use of random intercepts can account for experimental biases in these literature references. A new expression to predict SFE from austenitic stainless steel compositions is proposed.
NASA Astrophysics Data System (ADS)
Inaniwa, Taku; Kanematsu, Nobuyuki; Noda, Koji; Kamada, Tadashi
2017-06-01
The biological effect of charged-particle beams depends on both dose and particle spectrum. As one of the physical quantities describing the particle spectrum of charged-particle beams, we considered the linear energy transfer (LET) throughout this study. We investigated a new therapeutic technique using two or more ion species in one treatment session, which we call an intensity modulated composite particle therapy (IMPACT), for optimizing the physical dose and dose-averaged LET distributions in a patient as its proof of principle. Protons and helium, carbon, and oxygen ions were considered as ion species for IMPACT. For three cubic targets of 4 × 4 × 4, 8 × 8 × 8, and 12 × 12 × 12 cm3, defined at the center of the water phantom of 20 × 20 × 20 cm3, we made IMPACT plans of two composite fields with opposing and orthogonal geometries. The prescribed dose to the target was fixed at 1 Gy, while the prescribed LET to the target was varied from 1 keV µm-1 to 120 keV µm-1 to investigate the range of LET valid for prescription. The minimum and maximum prescribed LETs, (L T_min, L T_max), by the opposing-field geometry, were (3 keV µm-1, 115 keV µm-1), (2 keV µm-1, 84 keV µm-1),and (2 keV µm-1, 66 keV µm-1), while those by the orthogonal-field geometry were (8 keV µm-1, 98 keV µm-1), (7 keV µm-1, 72 keV µm-1), and (8 keV µm-1, 57 keV µm-1) for the three targets, respectively. To show the proof of principle of IMPACT in a clinical situation, we made IMPACT plans for a prostate case. In accordance with the prescriptions, the LETs in prostate, planning target volume (PTV), and rectum could be adjusted at 80 keV µm-1, at 50 keV µm-1, and below 30 keV µm-1, respectively, while keeping the dose to the PTV at 2 Gy uniformly. IMPACT enables the optimization of the dose and the LET distributions in a patient, which will maximize the
NASA Astrophysics Data System (ADS)
Sahoo, Amaresh Kumar; Sk, Md Palashuddin; Ghosh, Siddhartha Sankar; Chattopadhyay, Arun
2011-10-01
Herein, we report the generation of a composite comprised of p-hydroxyacetanilide dimer and Ag nanoparticles (NPs) by reaction of AgNO3 and p-hydroxyacetanilide. The formation of the composite was established by UV-vis, FTIR and NMR spectroscopy, transmission electron microscopy and X-ray diffraction along with substantiation by mass spectrometry. Interestingly, the composite exhibited an emission spectrum with a peak at 435 nm when excited by light of wavelength 320 nm. The composite showed superior antimicrobial activity with respect to its individual components against a wide range of Gram positive and Gram negative bacteria at relatively low concentrations of Ag NPs and at which there was no apparent cytotoxicity against mammalian cells. Our results suggest that the composite strongly interacted with the bacterial cell walls leading to cell bursting. Interestingly, enhancement in the reactive oxygen species (ROS) generation in bacteria was observed in the presence of the composite. It is proposed that the ROS generation led to oxidation of the dimer to N-acetyl-p-benzoquinone imine (NAPQI). The generated NAPQI acted as a DNA gyrase inhibitor causing cell death following linearization of DNA.Herein, we report the generation of a composite comprised of p-hydroxyacetanilide dimer and Ag nanoparticles (NPs) by reaction of AgNO3 and p-hydroxyacetanilide. The formation of the composite was established by UV-vis, FTIR and NMR spectroscopy, transmission electron microscopy and X-ray diffraction along with substantiation by mass spectrometry. Interestingly, the composite exhibited an emission spectrum with a peak at 435 nm when excited by light of wavelength 320 nm. The composite showed superior antimicrobial activity with respect to its individual components against a wide range of Gram positive and Gram negative bacteria at relatively low concentrations of Ag NPs and at which there was no apparent cytotoxicity against mammalian cells. Our results suggest that the
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Lee, S. S.; Nayebhashemi, H.
1979-01-01
A model is developed relating composite constituents properties with ultrasonic energy loss factors for longitudinal waves propagating in the principal directions of a unidirectional graphite/epoxy fiber composite. All the constituents are assumed to behave as linear viscoelastic materials with energy dissipation properties defined by loss factors. It is found that by introducing a new constituent called the interface material, the composite and constituent properties can be brought into consistency with simple series and parallel models. An expression relating the composite loss factors to the loss factors of the constituents is derived and its coefficients are evaluated.
Viscoelastic behavior of dense microemulsions
NASA Astrophysics Data System (ADS)
Cametti, C.; Codastefano, P.; D'arrigo, G.; Tartaglia, P.; Rouch, J.; Chen, S. H.
1990-09-01
We have performed extensive measurements of shear viscosity, ultrasonic absorption, and sound velocity in a ternary system consisting of water-decane-sodium di(2-ethylhexyl)sulfo- succinate(AOT), in the one-phase region where it forms a water-in-oil microemulsion. We observe a rapid increase of the static shear viscosity in the dense microemulsion region. Correspondingly the sound absorption shows unambiguous evidence of a viscoelastic behavior. The absorption data for various volume fractions and temperatures can be reduced to a universal curve by scaling both the absorption and the frequency by the measured static shear viscosity. The sound absorption can be interpreted as coming from the high-frequency tail of the viscoelastic relaxation, describable by a Cole-Cole relaxation formula with unusually small elastic moduli.
Viscoelastic properties of heavy oils
NASA Astrophysics Data System (ADS)
Rojas Luces, Maria Alejandra
Rheological low frequency measurements were carried out to analyze the viscoelastic properties of four heavy oil samples. At room conditions, the heavy oil samples exhibit non-Newtonian or viscoelastic behavior since they have a viscous component and an elastic component. The latter becomes very important for temperatures below 30°C, and for seismic to ultrasonic frequencies. Above this temperature, the viscous component increases significantly in comparison to the elastic component, and for seismic frequencies heavy oils can be considered as Newtonian fluids. A new viscosity model based on the concept of activation energy was derived to predict viscosity in terms of frequency and temperature for temperatures below 60°C. A new frequency-temperature dispersion model was derived to address the variation of the complex shear modulus (G*) with frequency and temperature for the heavy oil samples. This model fits the data well for seismic and sonic frequencies but it overpredicts G* at ultrasonic frequencies.
Viscoelastic properties of the ovine posterior spinal ligaments are strain dependent.
Ambrosetti-Giudici, Sveva; Gédet, Philippe; Ferguson, Stephen J; Chegini, Salman; Burger, Juergen
2010-02-01
The biomechanical role of the posterior spinal ligaments for spinal stability has been stated in previous studies. The investigation of the viscoelastic properties of human lumbar spinal ligaments is essential for the understanding of physiological differences between healthy and degenerated tissues. The stress-relaxation behavior of biological tissues is commonly described with the quasi-linear viscoelastic model of Fung, which assumes that the stress-relaxation response is independent of the applied strain. The goal of this study was to investigate the stress-relaxation response of ovine posterior spinal ligaments at different elongations to verify the above-mentioned hypothesis. Twenty-four ovine lumbar spinal segments, consisting of only the supraspinous and interspinous ligaments and adjoining spinous processes, were elongated uniaxially to different strain levels within the physiological elastic region (5-20%). The experimental data were described with a non-linear viscoelastic model: the modified superposition method of Findley. A linear dependency of the relaxation rate to the applied strains was observed on intact segments, when both ligaments were considered, as well as on each individual ligament. This result can be applied to the human spinal ligaments, due to similarities observed between the sheep and human spinal segment under physiological loading. The non-linear viscoelastic modified superposition method of Findley is an appropriate model for describing the viscoelastic properties of lumbar spinal ligaments in vitro due to its ability to address variation in applied strain during the force relaxation measurements. Copyright (c) 2009 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.
2012-11-01
Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)
Adaptive multifunctional composites
NASA Astrophysics Data System (ADS)
Wang, Ya; Inman, Daniel J.
2013-05-01
The adaptive multifunctional composite structure studied here is to address two issues remaining in lightweight structural composites required by many engineering applications. The first is to add additional functionality to multifunctional composites and the second is to provide adaptive damping in structures that cover a wide range of frequencies and temperatures. Because of its potential for practical payoffs, passive structural damping can find wide application through the use of high-damping viscoelastic polymers or elastomers. However, all passive damping using these damping materials suffer from failing at certain temperatures and in certain frequency ranges. The extreme environments often seen by engineering systems provide high temperature, which is exactly where damping levels in structures reduce causing unacceptable vibrations. In addition, as loading frequencies reduce damping levels also fall off, and many loads experienced by large structures are low frequency. The proposed research addresses increasing the range of effectiveness of damping by addressing the temperature and frequency dependence of material damping by using a multifunctional composite system containing an active element. Previous research has yielded a finite element model of linear viscoelastic material and structural behavior that captures characteristic frequency-dependent behavior, continuing research has addressed the accommodation of temperature dependence, and the examination of the new concept of `electronic damping' or `e-damping'. The resulting modeling approach is validated through experimental validation.
Cavitation dynamics in a viscoelastic medium with nonlinear elasticity
NASA Astrophysics Data System (ADS)
Gaudron, Renaud; Johnsen, Eric
2013-11-01
Past methods for modeling the dynamics of a spherical cavitation bubble in a viscoelastic medium (e.g., soft tissue) usually assume the elasticity to be linear. In this work, we develop a general framework to study cavitation in nonlinear (visco)elastic media, which are expected to be more accurate for large-amplitude bubble oscillations. By following an approach based on deformation tensors and Cauchy stresses, the models presented here not only take into account the usual viscous, inertial, pressure and surface tension effects, but also complex nonlinear elasticity directly derived from specific strain-energy functions. The present results are consistent with past studies of linear viscoelasticity, but additional elastic terms with different exponents emerge in the bubble dynamics equation (e.g., Rayleigh-Plesset) for more complicated strain-energy functions. Key quantities in cavitation dynamics (bubble natural frequency, minimum radius, etc.) are reported for the neo-Hookean model, the simplest nonlinear elastic model. This approach also readily leads to a full description of the physical variables of the medium where the bubble oscillates (pressure, strain/strain rate, stress, etc.).
A master relation defines the nonlinear viscoelasticity of single fibroblasts.
Fernández, Pablo; Pullarkat, Pramod A; Ott, Albrecht
2006-05-15
Cell mechanical functions such as locomotion, contraction, and division are controlled by the cytoskeleton, a dynamic biopolymer network whose mechanical properties remain poorly understood. We perform single-cell uniaxial stretching experiments on 3T3 fibroblasts. By superimposing small amplitude oscillations on a mechanically prestressed cell, we find a transition from linear viscoelastic behavior to power law stress stiffening. Data from different cells over several stress decades can be uniquely scaled to obtain a master relation between the viscoelastic moduli and the average force. Remarkably, this relation holds independently of deformation history, adhesion biochemistry, and intensity of active contraction. In particular, it is irrelevant whether force is actively generated by the cell or externally imposed by stretching. We propose that the master relation reflects the mechanical behavior of the force-bearing actin cytoskeleton, in agreement with stress stiffening known from semiflexible filament networks.
Nonlinear vibration of viscoelastic beams described using fractional order derivatives
NASA Astrophysics Data System (ADS)
Lewandowski, Roman; Wielentejczyk, Przemysław
2017-07-01
The problem of non-linear, steady state vibration of beams, harmonically excited by harmonic forces is investigated in the paper. The viscoelastic material of the beams is described using the Zener rheological model with fractional derivatives. The constitutive equation, which contains derivatives of both stress and strain, significantly complicates the solution to the problem. The von Karman theory is applied to take into account geometric nonlinearities. Amplitude equations are obtained using the finite element method together with the harmonic balance method, and solved using the continuation method. The tangent matrix of the amplitude equations is determined in an explicit form. The stability of the steady-state solution is also examined. A parametric study is carried out to determine the influence of viscoelastic properties of the material on the beam's responses.
A Numerical Model of Viscoelastic Flow in Microchannels
Trebotich, D; Colella, P; Miller, G; Liepmann, D
2002-11-14
The authors present a numerical method to model non-Newtonian, viscoelastic flow at the microscale. The equations of motion are the incompressible Navier-Stokes equations coupled with the Oldroyd-B constitutive equation. This constitutive equation is chosen to model a Boger fluid which is representative of complex biological solutions exhibiting elastic behavior due to macromolecules in the solution (e.g., DNA solution). The numerical approach is a projection method to impose the incompressibility constraint and a Lax-Wendroff method to predict velocities and stresses while recovering both viscous and elastic limits. The method is second-order accurate in space and time, free-stream preserving, has a time step constraint determined by the advective CFL condition, and requires the solution of only well-behaved linear systems amenable to the use of fast iterative methods. They demonstrate the method for viscoelastic incompressible flow in simple microchannels (2D) and microducts (3D).
Reservoir performance in viscoelastic porous media
Rago, F.M.; Ohkuma, H.; Sepehrnoori, K.; Thompson, T.W.
1982-01-01
The mass balance equations for a two-phase two-component fluid system are written for viscoelastic porous media. The resulting equations are approximated by finite differences and the resulting numerical simulator is used to conduct a sensitivity study on the effects of uniaxial viscoelastic deformation in geopressured aquifers. Results of this study indicate that viscoelastic deformation may have considerable influence on the pressure maintenance of these aquifers. A numerical model of the geopressured aquifer in Brazoria County, Texas, is constructed and the numerical simulator is used to predict the ultimate recovery of solution gas from this viscoelastic geopressured aquifer.
Causal analysis of the viscoelastic Lamb problem.
Moura, André
2010-03-01
A mathematical development is given for the generation of viscoelastic waves by an impulsive line source acting on the interface of a viscoelastic half space, where the viscoelasticity is characterized by two relaxation processes. The considered idealized viscoelastic medium is isotropic and characterized by two Lame constants appropriate for low frequencies, by their increments associated with the shift from low to high frequencies, and by separate relation times associated with each of the Lame constants. A causal solution is developed using integral transforms and an extension of Cagniard's method.
Viscoelastic properties of actin-coated membranes.
Helfer, E; Harlepp, S; Bourdieu, L; Robert, J; MacKintosh, F C; Chatenay, D
2001-02-01
In living cells, cytoskeletal filaments interact with the plasma membrane to form structures that play a key role in cell shape and mechanical properties. To study the interaction between these basic components, we designed an in vitro self-assembled network of actin filaments attached to the outer surface of giant unilamellar vesicles. Optical tweezers and single-particle tracking experiments are used to study the rich dynamics of these actin-coated membranes (ACM). We show that microrheology studies can be carried out on such an individual microscopic object. The principle of the experiment consists in measuring the thermally excited position fluctuations of a probe bead attached biochemically to the membrane. We propose a model that relates the power spectrum of these thermal fluctuations to the viscoelastic properties of the membrane. The presence of the actin network modifies strongly the membrane dynamics with respect to a fluid, lipid bilayer one. It induces first a finite (omega=0) two-dimensional (2D) shear modulus G(0)(2D) approximately 0.5 to 5 microN/m in the membrane plane. Moreover, the frequency dependence at high frequency of the shear modulus [G(')(2D)(f ) approximately f(0.85+/-0.07)] and of the bending modulus (kappa(ACM)(f) approximately f(0.55+/-0.21)) demonstrate the viscoelastic behavior of the composite membrane. These results are consistent with a common exponent of 0.75 for both moduli as expected from our model and from prior measurements on actin solutions.
Characterization of metal matrix composites by linear ultrasonics and finite element modeling.
Chen, Xuesheng; Sharples, Steve D; Clark, Matt; Wright, David
2013-02-01
Titanium metal matrix composites (TiMMCs) offer advantages over traditional materials for aerospace applications due to the increased mechanical strength of the materials. But the non-destructive inspection of these materials, especially with ultrasound, is in an infancy stage. If the manufacturing process of TiMMC is not correctly controlled, then disbonds and voids between the fibers can result. The effective microstructure of the composite makes difficulty to interpret results from traditional ultrasound techniques because of the scattering caused by fibers; the scattering prevents the ultrasound from penetrating far into the composite region and produces a background signal masking any reflections from voids. In this paper, relatively low frequency ultrasound is used to probe the composite region, and the state of the composite (porosity) is inferred from the velocity of the ultrasound traversing the composite. The relationship between the velocity and porosity is complex in this regime, so finite element (FE) analysis is used to model the composite regions and relate the velocity to the porosity. The FE simulated results are validated by ultrasound velocity measurements.
Hyaluronan derivatives: Alkyl chain length boosts viscoelastic behavior to depolymerization.
Pavan, Mauro; Galesso, Devis; Menon, Giampaolo; Renier, Davide; Guarise, Cristian
2013-09-12
Five amide derivatives of Hyaluronic Acid (HA) were synthesized with C8, C12, C15, C16 and C18 linear alkyl-amines. These polymers (Hyadd) were tested against thermal, oxidative and hyaluronidase degradation by means of rheological experiments and SEC analysis and compared to non-modified HA. First of all, no free hexadecylamine was detected in the treated samples, meaning that under these stressing conditions only cleavage of glycosidic bonds occurs. Then, viscoelastic properties were assessed during thermal degradation and their variation as a function of time was expressed by means of a decay constant k(G'): while no significant difference in the decrease rate was observed between Hyadd-C8 and Hyadd-C12, a marked stabilization of viscoelastic properties during thermal treatment was detected for Hyadd-C15, Hyadd-C16 and Hyadd-C18. On the other hand, no difference was observed between the MW decrease rate (kMW decay constant) of HA and Hyadd-C12 to-C18; the depolymerization takes place on the backbone of the polymers independently whether they are derivatized or not, but longer alkyl chains lead to higher viscoelasticity in the depolymerized products. Finally, both oxidative and enzymatic degradation were carried out analyzing the changes in elastic modulus and in dynamic viscosity: once again, the amide side chain came out with similar behavior to chemical cross-linked HA (HBC) and with improved performances respect to linear HA in terms of preservation of viscoelasticity after chain depolymerization.
Investigation of Mechanisms of Viscoelastic Behavior of Collagen Molecule
Ghodsi, Hossein; Darvish, Kurosh
2015-01-01
Unique mechanical properties of collagen molecule make it one of the most important and abundant proteins in animals. Many tissues such as connective tissues rely on these properties to function properly. In the past decade, molecular dynamics (MD) simulations have been used extensively to study the mechanical behavior of molecules. For collagen, MD simulations were primarily used to determine its elastic properties. In this study, constant force steered MD simulations were used to perform creep tests on collagen molecule segments. The mechanical behavior of the segments, with lengths of approximately 20 (1X), 38 (2X), 74 (4X), and 290 nm (16X), was characterized using a quasi-linear model to describe the observed viscoelastic responses. To investigate the mechanisms of the viscoelastic behavior, hydrogen bonds (H-bonds) rupture/formation time history of the segments were analyzed and it was shown that the formation growth rate of H-bonds in the system is correlated with the creep growth rate of the segment ( β = 2.41 βH). In addition, a linear relationship between H-bonds formation growth rate and the length of the segment was quantified. Based on these findings, a general viscoelastic model was developed and verified where, using the smallest segment as a building block, the viscoelastic properties of larger segments could be predicted. In addition, the effect of temperature control methods on the mechanical properties were studied, and it was shown that application of Langevin Dynamics had adverse effect on these properties while the Lowe-Anderson method was shown to be more appropriate for this application. This study provides information that is essential for multi-scale modeling of collagen fibrils using a bottom-up approach. PMID:26256473
Investigation of mechanisms of viscoelastic behavior of collagen molecule.
Ghodsi, Hossein; Darvish, Kurosh
2015-11-01
Unique mechanical properties of collagen molecule make it one of the most important and abundant proteins in animals. Many tissues such as connective tissues rely on these properties to function properly. In the past decade, molecular dynamics (MD) simulations have been used extensively to study the mechanical behavior of molecules. For collagen, MD simulations were primarily used to determine its elastic properties. In this study, constant force steered MD simulations were used to perform creep tests on collagen molecule segments. The mechanical behavior of the segments, with lengths of approximately 20 (1X), 38 (2X), 74 (4X), and 290 nm (16X), was characterized using a quasi-linear model to describe the observed viscoelastic responses. To investigate the mechanisms of the viscoelastic behavior, hydrogen bonds (H-bonds) rupture/formation time history of the segments were analyzed and it was shown that the formation growth rate of H-bonds in the system is correlated with the creep growth rate of the segment (β=2.41βH). In addition, a linear relationship between H-bonds formation growth rate and the length of the segment was quantified. Based on these findings, a general viscoelastic model was developed and verified here, using the smallest segment as a building block, the viscoelastic properties of larger segments could be predicted. In addition, the effect of temperature control methods on the mechanical properties were studied, and it was shown that application of Langevin Dynamics had adverse effect on these properties while the Lowe-Anderson method was shown to be more appropriate for this application. This study provides information that is essential for multi-scale modeling of collagen fibrils using a bottom-up approach. Copyright © 2015 Elsevier Ltd. All rights reserved.
A High-Frequency Linear Ultrasonic Array Utilizing an Interdigitally Bonded 2-2 Piezo-Composite
Cannata, Jonathan M.; Williams, Jay A.; Zhang, Lequan; Hu, Chang-Hong; Shung, K. Kirk
2011-01-01
This paper describes the development of a high-frequency 256-element linear ultrasonic array utilizing an interdigitally bonded (IB) piezo-composite. Several IB composites were fabricated with different commercial and experimental piezoelectric ceramics and evaluated to determine a suitable formulation for use in high-frequency linear arrays. It was found that the fabricated fine-scale 2–2 IB composites outperformed 1–3 IB composites with identical pillar- and kerf-widths. This result was not expected and lead to the conclusion that dicing damage was likely the cause of the discrepancy. Ultimately, a 2–2 composite fabricated using a fine-grain piezoelectric ceramic was chosen for the array. The composite was manufactured using one IB operation in the azimuth direction to produce approximately 19-μm-wide pillars separated by 6-μm-wide kerfs. The array had a 50 μm (one wavelength in water) azimuth pitch, two matching layers, and 2 mm elevation length focused to 7.3 mm using a polymethylpentene (TPX) lens. The measured pulse-echo center frequency for a representative array element was 28 MHz and −6-dB band-width was 61%. The measured single-element transmit −6-dB directivity was estimated to be 50°. The measured insertion loss was 19 dB after compensating for the effects of attenuation and diffraction in the water bath. A fine-wire phantom was used to assess the lateral and axial resolution of the array when paired with a prototype system utilizing a 64-channel analog beamformer. The −6-dB lateral and axial resolutions were estimated to be 125 and 68 μm, respectively. An anechoic cyst phantom was also imaged to determine the minimum detectable spherical inclusion, and thus the 3-D resolution of the array and beamformer. The minimum anechoic cyst detected was approximately 300 μm in diameter. PMID:21989884
NASA Technical Reports Server (NTRS)
Gramoll, K. C.; Dillard, D. A.; Brinson, H. F.
1989-01-01
In response to the tremendous growth in the development of advanced materials, such as fiber-reinforced plastic (FRP) composite materials, a new numerical method is developed to analyze and predict the time-dependent properties of these materials. Basic concepts in viscoelasticity, laminated composites, and previous viscoelastic numerical methods are presented. A stable numerical method, called the nonlinear differential equation method (NDEM), is developed to calculate the in-plane stresses and strains over any time period for a general laminate constructed from nonlinear viscoelastic orthotropic plies. The method is implemented in an in-plane stress analysis computer program, called VCAP, to demonstrate its usefulness and to verify its accuracy. A number of actual experimental test results performed on Kevlar/epoxy composite laminates are compared to predictions calculated from the numerical method.
A viscoelastic model for axonal microtubule rupture.
Shamloo, Amir; Manuchehrfar, Farid; Rafii-Tabar, Hashem
2015-05-01
Axon is an important part of the neuronal cells and axonal microtubules are bundles in axons. In axons, microtubules are coated with microtubule-associated protein tau, a natively unfolded filamentous protein in the central nervous system. These proteins are responsible for cross-linking axonal microtubule bundles. Through complimentary dimerization with other tau proteins, bridges are formed between nearby microtubules creating bundles. Formation of bundles of microtubules causes their transverse reinforcement and has been shown to enhance their ability to bear compressive loads. Though microtubules are conventionally regarded as bearing compressive loads, in certain circumstances during traumatic brain injuries, they are placed in tension. In our model, microtubule bundles were formed from a large number of discrete masses. We employed Standard Linear Solid model (SLS), a viscoelastic model, to computationally simulate microtubules. In this study, we investigated the dynamic responses of two dimensional axonal microtubules under suddenly applied end forces by implementing discrete masses connected to their neighboring masses with a Standard Linear Solid unit. We also investigated the effect of the applied force rate and magnitude on the deformation of bundles. Under tension, a microtubule fiber may rupture as a result of a sudden force. Using the developed model, we could predict the critical regions of the axonal microtubule bundles in the presence of varying end forces. We finally analyzed the nature of microtubular failure under varying mechanical stresses. Copyright © 2015 Elsevier Ltd. All rights reserved.
A comparison of viscoelastic damping models
NASA Technical Reports Server (NTRS)
Slater, Joseph C.; Belvin, W. Keith; Inman, Daniel J.
1993-01-01
Modern finite element methods (FEM's) enable the precise modeling of mass and stiffness properties in what were in the past overwhelmingly large and complex structures. These models allow the accurate determination of natural frequencies and mode shapes. However, adequate methods for modeling highly damped and high frequency dependent structures did not exist until recently. The most commonly used method, Modal Strain Energy, does not correctly predict complex mode shapes since it is based on the assumption that the mode shapes of a structure are real. Recently, many techniques have been developed which allow the modeling of frequency dependent damping properties of materials in a finite element compatible form. Two of these methods, the Golla-Hughes-McTavish method and the Lesieutre-Mingori method, model the frequency dependent effects by adding coordinates to the existing system thus maintaining the linearity of the model. The third model, proposed by Bagley and Torvik, is based on the Fractional Calculus method and requires fewer empirical parameters to model the frequency dependence at the expense of linearity of the governing equations. This work examines the Modal Strain Energy, Golla-Hughes-McTavish and Bagley and Torvik models and compares them to determine the plausibility of using them for modeling viscoelastic damping in large structures.
Multiscale characterization and representation of composite materials during processing.
Zobeiry, Navid; Forghani, Alireza; Li, Chao; Gordnian, Kamyar; Thorpe, Ryan; Vaziri, Reza; Fernlund, Goran; Poursartip, Anoush
2016-07-13
Given the importance of residual stresses and dimensional changes in composites manufacturing, process simulation has been the focus of many studies in recent years. Consequently, various constitutive models and simulation approaches have been developed and implemented for composites process simulation. In this paper, various constitutive models, ranging from elastic to nonlinear viscoelastic; and simulation approaches ranging from separated flow/solid phases to multiscale integrated phases are presented and their applicability for process simulation is discussed. Attention has been paid to practical aspects of the problem where the complexity of the model coupled with the complexity and size scaling of the structure increases the characterization and simulation costs. Two specific approaches and their application are presented in detail: the pseudo-viscoelastic cure hardening instantaneously linear elastic (CHILE) and linear viscoelastic (VE). It is shown that CHILE can predict the residual stress formation in simple cure cycles such as the one-hold cycle for HEXCEL AS4/8552 where the material does not devitrify during processing. It is also shown that using this simple approach, the cure cycle can be modified to lower the residual stress level and therefore increase the mechanical performance of the composite laminate. For a more complex cure cycle where the material is devitrified during a post-cure, it is shown that a more complex model such as VE is required. This article is part of the themed issue 'Multiscale modelling of the structural integrity of composite materials'.
Two-dimensional time-domain finite-difference modeling for viscoelastic seismic wave propagation
NASA Astrophysics Data System (ADS)
Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing
2016-09-01
Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a trade-off between accuracy and computational costs to incorporate Q into 2-D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second order in time and fourth order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.
Viscoelasticity of hyaluronic acid-gelatin hydrogels for vocal fold tissue engineering.
Kazemirad, Siavash; Heris, Hossein K; Mongeau, Luc
2016-02-01
Crosslinked injectable hyaluronic acid (HA)-gelatin (Ge) hydrogels have remarkable viscoelastic and biological properties for vocal fold tissue engineering. Patient-specific tuning of the viscoelastic properties of this injectable biomaterial could improve tissue regeneration. The frequency-dependent viscoelasticity of crosslinked HA-Ge hydrogels was measured as a function of the concentration of HA, Ge, and crosslinker. Synthetic extracellular matrix hydrogels were fabricated using thiol-modified HA and Ge, and crosslinked by poly(ethylene glycol) diacrylate. A recently developed characterization method based on Rayleigh wave propagation was used to quantify the frequency-dependent viscoelastic properties of these hydrogels, including shear storage and loss moduli, over a broad frequency range; that is, from 40 to 4000 Hz. The viscoelastic properties of the hydrogels increased with frequency. The storage and loss moduli values and the rate of increase with frequency varied with the concentrations of the constituents. The range of the viscoelastic properties of the hydrogels was within that of human vocal fold tissue obtained from in vivo and ex vivo measurements. Frequency-dependent parametric relations were obtained using a linear least-squares regression. The results are useful to better fine-tune the storage and loss moduli of HA-Ge hydrogels by varying the concentrations of the constituents for use in patient-specific treatments. © 2015 Wiley Periodicals, Inc.
Viscoelasticity of hyaluronic acid-gelatin hydrogels for vocal fold tissue engineering
Kazemirad, Siavash; Heris, Hossein K.; Mongeau, Luc
2015-01-01
Cross-linked injectable hyaluronic acid-gelatin hydrogels have remarkable viscoelastic and biological properties for vocal fold tissue engineering. Patient-specific tuning of the viscoelastic properties of this injectable biomaterial could improve tissue regeneration. The frequency-dependent viscoelasticity of cross-linked hyaluronic acid-gelatin hydrogels was measured as a function of the concentration of hyaluronic acid, gelatin, and cross-linker. Synthetic extracellular matrix hydrogels were fabricated using thiol-modified hyaluronic acid and gelatin, and cross-linked by Poly(ethylene glycol)diacrylate. A recently developed characterization method based on Rayleigh wave propagation was used to quantify the frequency-dependent viscoelastic properties of these hydrogels, including shear storage and loss moduli, over a broad frequency range; i.e., from 40 to 4000 Hz. The viscoelastic properties of the hydrogels increased with frequency. The storage and loss moduli values and the rate of increase with frequency varied with the concentrations of the constituents. The range of the viscoelastic properties of the hydrogels was within that of human vocal fold tissue obtained from in vivo and ex vivo measurements. Frequency-dependent parametric relations were obtained using a linear least-squares regression. The results are useful to better fine-tune the storage and loss moduli of hyaluronic acid-gelatin hydrogels by varying the concentrations of the constituents for use in patient-specific treatments. PMID:25728914
Fractional-order viscoelasticity in one-dimensional blood flow models
NASA Astrophysics Data System (ADS)
Perdikaris, Paris; Karniadakis, George; Crunch Group Team
2013-11-01
In this work, we have integrated different integer, and for the first time, fractional order viscoelastic models in a one-dimensional blood flow solver, and we study their behavior by presenting an in-silico study on a patient-specific arterial network. Integer-order models are directly derived from the QLV (quasi linear viscoelasticity) theory and are comprised by simple combinations of springs and dashpots. Fractional-order models employ fractional derivatives and naturally introduce a new element, the so called ``spring-pot.'' We perform one-dimensional blood flow simulations in a large patient-specific cranial network using four different viscoelastic parameter data-sets. The results aim to quantify the effect of arterial wall viscoelasticity on pulse wave propagation, as well as reflect any sensitivity on the input parameters that define each model. To this end, we provide a comparison of several viscoelastic models, highlight the important role played by the fractional order, and carry out a detailed global sensitivity analysis study on a stochastic fractional order viscoelastic model. This work was supported by the DOE Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) and the DOE/INCITE program.
NASA Astrophysics Data System (ADS)
Nestore, O.; Kajaks, J.; Vancovicha, I.; Reihmane, S.
2013-01-01
The influence of the content and fiber length of textile waste (cotton, flax, and hemp) on the deformation and strength properties (in tension and bending) of a linear low-density polyethylene (LLDPE) was investigated. It was found that the tensile strength increased for all composites containing hemp fibers of up to 30 wt.%. The elongation at break rapidly decreased when the filler content was raised to 10 wt.%, but thereafter changed insignificantly. The flexural strength and modulus increased considerably with filler content in the composites. On the contrary, their deformability, as expected, decreased. The influence of hemp fibers on the physicalmechanical properties of the LLDPE was somewhat more pronounced. The optimum content of fibers in the composites (30 wt.%) was significantly smaller than that usually obtained (40-50 wt.% natural fibers) for other polyolefin composites, for example, with low-density polyethylene and polypropylene matrices. The highest values of strength parameters, both in tension and bending, were reached for systems with a fiber length of up to 1 mm. The melt flow index decreased considerably with increasing fiber content in the LLDPE matrix (from 4.4 dg/min for LLDPE to 0.05-0.14 dg/min for systems containing 30 wt.% fibers). Nevertheless, processing of the composites was possible by traditional methods, for example, extrusion.
NASA Astrophysics Data System (ADS)
Yang, Pengliang; Brossier, Romain; Métivier, Ludovic; Virieux, Jean
2016-10-01
In this paper, we study 3-D multiparameter full waveform inversion (FWI) in viscoelastic media based on the generalized Maxwell/Zener body including arbitrary number of attenuation mechanisms. We present a frequency-domain energy analysis to establish the stability condition of a full anisotropic viscoelastic system, according to zero-valued boundary condition and the elastic-viscoelastic correspondence principle: the real-valued stiffness matrix becomes a complex-valued one in Fourier domain when seismic attenuation is taken into account. We develop a least-squares optimization approach to linearly relate the quality factor with the anelastic coefficients by estimating a set of constants which are independent of the spatial coordinates, which supplies an explicit incorporation of the parameter Q in the general viscoelastic wave equation. By introducing the Lagrangian multipliers into the matrix expression of the wave equation with implicit time integration, we build a systematic formulation of multiparameter FWI for full anisotropic viscoelastic wave equation, while the equivalent form of the state and adjoint equation with explicit time integration is available to be resolved efficiently. In particular, this formulation lays the foundation for the inversion of the parameter Q in the time domain with full anisotropic viscoelastic properties. In the 3-D isotropic viscoelastic settings, the anelastic coefficients and the quality factors using bulk and shear moduli parametrization can be related to the counterparts using P and S velocity. Gradients with respect to any other parameter of interest can be found by chain rule. Pioneering numerical validations as well as the real applications of this most generic framework will be carried out to disclose the potential of viscoelastic FWI when adequate high-performance computing resources and the field data are available.
Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites
NASA Astrophysics Data System (ADS)
Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.
2016-10-01
Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material
Modular-based multiscale modeling on viscoelasticity of polymer nanocomposites
NASA Astrophysics Data System (ADS)
Li, Ying; Liu, Zeliang; Jia, Zheng; Liu, Wing Kam; Aldousari, Saad M.; Hedia, Hassan S.; Asiri, Saeed A.
2017-02-01
Polymer nanocomposites have been envisioned as advanced materials for improving the mechanical performance of neat polymers used in aerospace, petrochemical, environment and energy industries. With the filler size approaching the nanoscale, composite materials tend to demonstrate remarkable thermomechanical properties, even with addition of a small amount of fillers. These observations confront the classical composite theories and are usually attributed to the high surface-area-to-volume-ratio of the fillers, which can introduce strong nanoscale interfacial effect and relevant long-range perturbation on polymer chain dynamics. Despite decades of research aimed at understanding interfacial effect and improving the mechanical performance of composite materials, it is not currently possible to accurately predict the mechanical properties of polymer nanocomposites directly from their molecular constituents. To overcome this challenge, different theoretical, experimental and computational schemes will be used to uncover the key physical mechanisms at the relevant spatial and temporal scales for predicting and tuning constitutive behaviors in silico, thereby establishing a bottom-up virtual design principle to achieve unprecedented mechanical performance of nanocomposites. A modular-based multiscale modeling approach for viscoelasticity of polymer nanocomposites has been proposed and discussed in this study, including four modules: (A) neat polymer toolbox; (B) interphase toolbox; (C) microstructural toolbox and (D) homogenization toolbox. Integrating these modules together, macroscopic viscoelasticity of polymer nanocomposites could be directly predicted from their molecular constituents. This will maximize the computational ability to design novel polymer composites with advanced performance. More importantly, elucidating the viscoelasticity of polymer nanocomposites through fundamental studies is a critical step to generate an integrated computational material
Undulatory swimming in viscoelastic fluids.
Shen, X N; Arratia, P E
2011-05-20
The effects of fluid elasticity on the swimming behavior of the nematode Caenorhabditis elegans are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to up to 35% slower propulsion. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.
Measuring Viscoelastic Deformation with an Optical Mouse
ERIC Educational Resources Information Center
Ng, T. W.
2004-01-01
The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.
Measuring Viscoelastic Deformation with an Optical Mouse
ERIC Educational Resources Information Center
Ng, T. W.
2004-01-01
The feasibility of using an optical mouse to track the viscoelastic deformation of low-density polyethylene films that have a fixed attached load is presented. It is seen that using an optical mouse and with rudimentary experiment paraphernalia and arrangement, it is possible to get good measurements of viscoelastic deformation.
Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials.
Lang, Liu; Song, Ki-Il; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo
2016-05-17
Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.
Couvreur, S; Hurtaud, C; Lopez, C; Delaby, L; Peyraud, J L
2006-06-01
Fresh grass in the cow diet improves the rheological and nutritional properties of butter. However, the relationship between the proportion of fresh grass in the diet and these properties is still unknown. The objective of the study was to determine the relationship between the proportion of fresh grass in the diet and the properties of milk and butter. Four groups of 2 cows were fed 4 isoenergetic diets characterized by increasing amounts of fresh grass (0, 30, 60, and 100% dry matter of forage) according to a Youden square design. Energy levels were similar among all diets. Thus, no effect of mobilization was observed and the results were only due to the proportion of fresh grass in the diet. Milk yield linearly increased with the proportion of fresh grass in the diet (+0.21 kg/d per 10% of grass). Fat yield remained unchanged. Thus, by effect of dilution, increasing the proportion of fresh grass in the diet induced a linear decrease in fat content. Milk fat globule size decreased by 0.29 mum when the proportion of grass reached 30% in the diet. Increasing the proportion of fresh grass in the diet induced a linear increase in unsaturated fatty acids percentages at the expense of saturated fatty acids. Relationships were +0.38, +0.12, +0.05 and -0.69 points/10% of fresh grass in the diet for C18:1 trans-11, C18:2 cis-9,trans-11, C18:3n-3, and C16:0, respectively. These modifications in fatty acid composition, and in particular in the spreadability index, C16:0/C18:1, were responsible for linear decreases in final melting temperature and solid fat content in butter fat, perceived in sensory analysis by a linear decrease in firmness in mouth. The nutritional value of butter was also linearly improved by the proportion of fresh grass in the diet by halving the atherogenicity index.
NASA Astrophysics Data System (ADS)
Dabiri, Arman; Butcher, Eric A.; Nazari, Morad
2017-02-01
Compliant impacts can be modeled using linear viscoelastic constitutive models. While such impact models for realistic viscoelastic materials using integer order derivatives of force and displacement usually require a large number of parameters, compliant impact models obtained using fractional calculus, however, can be advantageous since such models use fewer parameters and successfully capture the hereditary property. In this paper, we introduce the fractional Chebyshev collocation (FCC) method as an approximation tool for numerical simulation of several linear fractional viscoelastic compliant impact models in which the overall coefficient of restitution for the impact is studied as a function of the fractional model parameters for the first time. Other relevant impact characteristics such as hysteresis curves, impact force gradient, penetration and separation depths are also studied.
The nonlinear viscoelasticity of hyaluronic acid and its role in joint lubrication.
Zhang, Zhenhuan; Christopher, Gordon F
2015-04-07
Hyaluronic acid solutions have been widely studied due to their relevance to the rheological behavior of synovial fluid and joint lubrication. Ambulatory joint motion is typically large oscillatory deflections; therefore, large amplitude oscillatory shear strain experiments are used to examine the relevant non-linear viscoelastic properties of these solutions. Using the sequence of physical processes method to analyze data provides time dependent viscoelastic moduli, which exhibit a clear physiologically relevant behavior to hyaluronic acids non-linear viscoelasticity. In particular, it is seen that during peak strain/acceleration, the time dependent elastic modulus peaks and the loss modulus is at a minimum. The hyaluronic acid can provide an immediate elastic response to sudden forces, acting like a shock absorber during sudden changes in direction of motion or maximum deflection. However, during peak rate, the elastic modulus is at a minimum and the loss modulus is at a maximum, which provides greater efficacy to hydrodynamic shear lubrication.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
Warnez, M. T.; Johnsen, E.
2015-01-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller–Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin–Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time. PMID:26130967
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
NASA Astrophysics Data System (ADS)
Warnez, M. T.; Johnsen, E.
2015-06-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation.
Warnez, M T; Johnsen, E
2015-06-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.
Nonlinear viscoelasticity and generalized failure criterion for biopolymer gels
NASA Astrophysics Data System (ADS)
Divoux, Thibaut; Keshavarz, Bavand; Manneville, Sébastien; McKinley, Gareth
2016-11-01
Biopolymer gels display a multiscale microstructure that is responsible for their solid-like properties. Upon external deformation, these soft viscoelastic solids exhibit a generic nonlinear mechanical response characterized by pronounced stress- or strain-stiffening prior to irreversible damage and failure, most often through macroscopic fractures. Here we show on a model acid-induced protein gel that the nonlinear viscoelastic properties of the gel can be described in terms of a 'damping function' which predicts the gel mechanical response quantitatively up to the onset of macroscopic failure. Using a nonlinear integral constitutive equation built upon the experimentally-measured damping function in conjunction with power-law linear viscoelastic response, we derive the form of the stress growth in the gel following the start up of steady shear. We also couple the shear stress response with Bailey's durability criteria for brittle solids in order to predict the critical values of the stress σc and strain γc for failure of the gel, and how they scale with the applied shear rate. This provides a generalized failure criterion for biopolymer gels in a range of different deformation histories. This work was funded by the MIT-France seed fund and by the CNRS PICS-USA scheme (#36939). BK acknowledges financial support from Axalta Coating Systems.
Stability Analysis of a Spinning and Precessing Viscoelastic Rotor Model
NASA Astrophysics Data System (ADS)
Bose, S.; Nandi, A.; Neogy, S.
2013-10-01
The present work deals with stability analysis of a spinning and precessing gyroscopic systems, where the spin axis and precession axis intersect at right angle. The nutation speed is zero, the spin and precession speeds are considered to be uniform and the precession axis is located at one end of the shaft. The properties of the shaft material correspond to a four element type linear viscoelastic model. The shaft disk system is assumed to be axially and torsionally stiff. For analysis, a simple rotor has been considered with the rigid disk placed on a massless viscoelastic shaft at specified locations from one end of the shaft. The governing parametric equations for such a rotor are derived in the simultaneously spinning and precessing frame. A stability analysis is performed considering both two- and four-degree of freedom models. The stability borderlines are computed considering spin and precession speeds as parameters. It is shown that though viscoelastic material may appear attractive for its large material damping, for gyroscopic systems it may lead to unstable vibrations.
A Nonlinear Viscoelastic Model for Ceramics at High Temperatures
NASA Technical Reports Server (NTRS)
Powers, Lynn M.; Panoskaltsis, Vassilis P.; Gasparini, Dario A.; Choi, Sung R.
2002-01-01
High-temperature creep behavior of ceramics is characterized by nonlinear time-dependent responses, asymmetric behavior in tension and compression, and nucleation and coalescence of voids leading to creep rupture. Moreover, creep rupture experiments show considerable scatter or randomness in fatigue lives of nominally equal specimens. To capture the nonlinear, asymmetric time-dependent behavior, the standard linear viscoelastic solid model is modified. Nonlinearity and asymmetry are introduced in the volumetric components by using a nonlinear function similar to a hyperbolic sine function but modified to model asymmetry. The nonlinear viscoelastic model is implemented in an ABAQUS user material subroutine. To model the random formation and coalescence of voids, each element is assigned a failure strain sampled from a lognormal distribution. An element is deleted when its volumetric strain exceeds its failure strain. Element deletion has been implemented within ABAQUS. Temporal increases in strains produce a sequential loss of elements (a model for void nucleation and growth), which in turn leads to failure. Nonlinear viscoelastic model parameters are determined from uniaxial tensile and compressive creep experiments on silicon nitride. The model is then used to predict the deformation of four-point bending and ball-on-ring specimens. Simulation is used to predict statistical moments of creep rupture lives. Numerical simulation results compare well with results of experiments of four-point bending specimens. The analytical model is intended to be used to predict the creep rupture lives of ceramic parts in arbitrary stress conditions.
Viscoelastic and failure properties of spine ligament collagen fascicles.
Lucas, Scott R; Bass, Cameron R; Crandall, Jeff R; Kent, Richard W; Shen, Francis H; Salzar, Robert S
2009-12-01
The microstructural volume fractions, orientations, and interactions among components vary widely for different ligament types. If these variations are understood, however, it is conceivable to develop a general ligament model that is based on microstructural properties. This paper presents a part of a much larger effort needed to develop such a model. Viscoelastic and failure properties of porcine posterior longitudinal ligament (PLL) collagen fascicles were determined. A series of subfailure and failure tests were performed at fast and slow strain rates on isolated collagen fascicles from porcine lumbar spine PLLs. A finite strain quasi-linear viscoelastic model was used to fit the fascicle experimental data. There was a significant strain rate effect in fascicle failure strain (P < 0.05), but not in failure force or failure stress. The corresponding average fast-rate and slow-rate failure strains were 0.098 ± 0.062 and 0.209 ± 0.081. The average failure force for combined fast and slow rates was 2.25 ± 1.17 N. The viscoelastic and failure properties in this paper were used to develop a microstructural ligament failure model that will be published in a subsequent paper.
Saravanan, Vijayakumar; Gautham, Namasivayam
2015-10-01
Proteins embody epitopes that serve as their antigenic determinants. Epitopes occupy a central place in integrative biology, not to mention as targets for novel vaccine, pharmaceutical, and systems diagnostics development. The presence of T-cell and B-cell epitopes has been extensively studied due to their potential in synthetic vaccine design. However, reliable prediction of linear B-cell epitope remains a formidable challenge. Earlier studies have reported discrepancy in amino acid composition between the epitopes and non-epitopes. Hence, this study proposed and developed a novel amino acid composition-based feature descriptor, Dipeptide Deviation from Expected Mean (DDE), to distinguish the linear B-cell epitopes from non-epitopes effectively. In this study, for the first time, only exact linear B-cell epitopes and non-epitopes have been utilized for developing the prediction method, unlike the use of epitope-containing regions in earlier reports. To evaluate the performance of the DDE feature vector, models have been developed with two widely used machine-learning techniques Support Vector Machine and AdaBoost-Random Forest. Five-fold cross-validation performance of the proposed method with error-free dataset and dataset from other studies achieved an overall accuracy between nearly 61% and 73%, with balance between sensitivity and specificity metrics. Performance of the DDE feature vector was better (with accuracy difference of about 2% to 12%), in comparison to other amino acid-derived features on different datasets. This study reflects the efficiency of the DDE feature vector in enhancing the linear B-cell epitope prediction performance, compared to other feature representations. The proposed method is made as a stand-alone tool available freely for researchers, particularly for those interested in vaccine design and novel molecular target development for systems therapeutics and diagnostics: https://github.com/brsaran/LBEEP.
Composite propellant technology research: Mechanical property characterization
NASA Technical Reports Server (NTRS)
Bower, Mark V.
1991-01-01
Proof for the existence of a single Poisson's ratio function in isotropic linear viscoelastic materials is presented. An in-depth discussion is given of three dimensional viscoelastic material properties and their relationships to linear isotropic and orthotropic viscoelastic materials. A discussion of the alternate invariant definition as used by Abaqus and how it relates to the form used by Dr. S. Peng is presented.
The viscoelastic behavior of dental adhesives: a nanoindentation study.
Sadr, Alireza; Shimada, Yasushi; Lu, Hongbing; Tagami, Junji
2009-01-01
In order to predict the long-term performance of dental adhesives, it is necessary to understand their mechanical properties. The objective of this study was to use a new nanoindentation technique to characterize the in-plane linear viscoelastic properties of dental adhesive layers. The dental adhesives used were Clearfil SE Bond (CSE) and Clearfil Tri-S Bond (CTS) by Kuraray Medical and Single Bond (SIB) and Single Bond Plus (SBP) by 3M ESPE. A thin film of each adhesive was made on a micro-glass slide, and was then tested on a nanoindenter system (ENT 1100, Elionix) with a Berkovich indenter at a constant loading rate of 0.1 mN/s up to a maximum load of 1.8 mN. The load-displacement data of the loading segment were fitted to a curve to find best fit parameters for a generalized Kelvin viscoelastic model, from which creep compliance and Young's modulus were calculated. The modulus results were compared to the values calculated by the nanoindentation device. The experimental data fitted well to the viscoelastic model for all materials (R>0.9999). SIB and CTS showed higher creep compliance compared to SBP and CSE. The modulus values obtained using the model were 4.0, 2.6, 2.4 and 4.2GPa for CSE, CTS, SIB and SBP, respectively. The nanoindentation default software designed for time-independent materials significantly overestimated the modulus values up to 2.5 times. As generally expected for polymer materials, the adhesives tested showed time-dependent viscoelastic behavior. The mechanical evaluation techniques developed for time-independent materials ignore this behavior and may not be appropriate for dental adhesives.
Matrix deposition modulates the viscoelastic shear properties of hydrogel-based cartilage grafts.
Wan, Leo Q; Jiang, Jie; Miller, Diana E; Guo, X Edward; Mow, Van C; Lu, Helen H
2011-04-01
Hydrogel-based scaffolds such as alginate have been extensively investigated for cartilage tissue engineering, largely due to their biocompatibility, ambient gelling conditions, and the ability to support chondrocyte phenotype. While it is well established that the viscoelastic response of articular cartilage is essential for articulation and load bearing, the time-dependent mechanical properties of hydrogel-based cartilage scaffolds have not been extensively studied. Therefore, the objective of this study was to characterize the intrinsic viscoelastic shear properties of chondrocyte-laden alginate scaffolds and determine the effects of seeding density and culturing time on these properties. Specifically, the viscoelastic properties (equilibrium and dynamic shear moduli and dynamic phase shift angle) of these engineered cartilage grafts were measured under torsional shear. In addition, the rapid ramp-step shear stress relaxation of the alginate-based cartilage scaffolds was modeled using the quasi-linear viscoelastic (QLV) theory. It was found that scaffold stiffness increased with both culturing time and cell density, whereas viscosity did not change significantly with cell density (30 vs. 60 million/mL). Similar to native cartilage, the energy dissipation of engineered scaffolds under pure shear is highly correlated to the glycosaminoglycan content. In contrast, collagen content was not strongly correlated to scaffold shear modulus, especially the instantaneous shear modulus predicted by the quasi-linear viscoelastic model. The findings of this study provide new insights into the structure-function relationship of engineered cartilage and design of functional grafts for cartilage repair.
Matrix Deposition Modulates the Viscoelastic Shear Properties of Hydrogel-Based Cartilage Grafts
Wan, Leo Q.; Jiang, Jie; Miller, Diana E.; Guo, X. Edward; Mow, Van C.
2011-01-01
Hydrogel-based scaffolds such as alginate have been extensively investigated for cartilage tissue engineering, largely due to their biocompatibility, ambient gelling conditions, and the ability to support chondrocyte phenotype. While it is well established that the viscoelastic response of articular cartilage is essential for articulation and load bearing, the time-dependent mechanical properties of hydrogel-based cartilage scaffolds have not been extensively studied. Therefore, the objective of this study was to characterize the intrinsic viscoelastic shear properties of chondrocyte-laden alginate scaffolds and determine the effects of seeding density and culturing time on these properties. Specifically, the viscoelastic properties (equilibrium and dynamic shear moduli and dynamic phase shift angle) of these engineered cartilage grafts were measured under torsional shear. In addition, the rapid ramp-step shear stress relaxation of the alginate-based cartilage scaffolds was modeled using the quasi-linear viscoelastic (QLV) theory. It was found that scaffold stiffness increased with both culturing time and cell density, whereas viscosity did not change significantly with cell density (30 vs. 60 million/mL). Similar to native cartilage, the energy dissipation of engineered scaffolds under pure shear is highly correlated to the glycosaminoglycan content. In contrast, collagen content was not strongly correlated to scaffold shear modulus, especially the instantaneous shear modulus predicted by the quasi-linear viscoelastic model. The findings of this study provide new insights into the structure–function relationship of engineered cartilage and design of functional grafts for cartilage repair. PMID:21142626
Adhesive joint and composites modeling in SIERRA.
Ohashi, Yuki; Brown, Arthur A.; Hammerand, Daniel Carl; Adolf, Douglas Brian; Chambers, Robert S.; Foulk, James W., III
2005-11-01
Polymers and fiber-reinforced polymer matrix composites play an important role in many Defense Program applications. Recently an advanced nonlinear viscoelastic model for polymers has been developed and incorporated into ADAGIO, Sandia's SIERRA-based quasi-static analysis code. Standard linear elastic shell and continuum models for fiber-reinforced polymer-matrix composites have also been added to ADAGIO. This report details the use of these models for advanced adhesive joint and composites simulations carried out as part of an Advanced Simulation and Computing Advanced Deployment (ASC AD) project. More specifically, the thermo-mechanical response of an adhesive joint when loaded during repeated thermal cycling is simulated, the response of some composite rings under internal pressurization is calculated, and the performance of a composite container subjected to internal pressurization, thermal loading, and distributed mechanical loading is determined. Finally, general comparisons between the continuum and shell element approaches for modeling composites using ADAGIO are given.
Craiem, Damian; Magin, Richard L
2010-01-20
New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such 'spring-pots' exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress-strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues.
Craiem, Damian; Magin, Richard L
2011-01-01
New lumped-element models of red blood cell mechanics can be constructed using fractional order generalizations of springs and dashpots. Such ‘spring-pots’ exhibit a fractional order viscoelastic behavior that captures a wide spectrum of experimental results through power-law expressions in both the time and frequency domains. The system dynamics is fully described by linear fractional order differential equations derived from first order stress–strain relationships using the tools of fractional calculus. Changes in the composition or structure of the membrane are conveniently expressed in the fractional order of the model system. This approach provides a concise way to describe and quantify the biomechanical behavior of membranes, cells and tissues. PMID:20090192
The effects of physical aging at elevated temperatures on the viscoelastic creep on IM7/K3B
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Feldman, Mark
1994-01-01
Physical aging at elevated temperature of the advanced composite IM7/K3B was investigated through the use of creep compliance tests. Testing consisted of short term isothermal, creep/recovery with the creep segments performed at constant load. The matrix dominated transverse tensile and in-plane shear behavior were measured at temperatures ranging from 200 to 230 C. Through the use of time based shifting procedures, the aging shift factors, shift rates and momentary master curve parameters were found at each temperature. These material parameters were used as input to a predictive methodology, which was based upon effective time theory and linear viscoelasticity combined with classical lamination theory. Long term creep compliance test data was compared to predictions to verify the method. The model was then used to predict the long term creep behavior for several general laminates.
Viscoelastic properties of poly(ethylene oxide) solution.
Yu, D M; Amidon, G L; Weiner, N D; Goldberg, A H
1994-10-01
The viscoelastic properties of poly(ethylene oxide) (PEO) solution were investigated using the dynamic oscillatory testing technique. With this technique, the effect of PEO molecular weight (MW), concentration, composition of mixed solvent systems consisting of propylene glycol, glycerol formal, and water, and the effect of NaCl salt on the viscoelastic properties of PEO solution were determined. Dynamic moduli (G1, G2), magnitude of complex viscosity (magnitude of eta*), and loss tangent (tan delta) were examined over a frequency range of 10(-3)-2.5 Hz at 30 degrees C. The results indicated that low MW PEOs show liquidlike behavior while high elasticity is exhibited by high MW PEOs due to entanglement formation. The complex viscosity, magnitude of eta*, exhibits shear thinning (power-law) characteristics under oscillatory measurements. The relationship between steady shear and complex viscosities follows the Cox-Merz rule over the shear rate and frequency region studied. Both the storage (G1) and loss (G2) modulus increase drastically as the proportion of water in the mixed solvent system increases. Similarly, both G1 and G2 are found to increase while the tan delta decreases with increasing concentration of PEOs. The addition of up to 2% w/w NaCl in an aqueous solution of 10% w/w 2 million MW PEO has no observed detrimental effect on the viscoelastic behavior.
Dynamic viscoelastic behavior of resin cements measured by torsional resonance.
Papadogiannis, Y; Boyer, D B; Helvatjoglu-Antoniades, M; Lakes, R S; Kapetanios, C
2003-09-01
The purpose of the study was to measure the viscoelastic properties of four dental resin composite cements using a dynamic mechanical analysis technique. Dynamic torsional loading was conducted in the frequency range from 1 to 80 Hz. Cement specimens were tested after storage in 37 degrees C water for 24 h. One group was thermal cycled prior to testing. Measurements were taken at 21, 37, and 50 degrees C. Storage modulus, loss tangent and other viscoelastic parameters were determined from the amplitude/frequency curves. Storage moduli of the cements ranged from 2.9 to 4.1 GPa at 37 degrees C. Loss tangents ranged from 0.054 to 0.084. Storage moduli decreased in a regular way with increasing temperature, whereas, loss tangents increased. Thermal cycling caused small decreases in storage moduli. Resin cements with higher filler loading were found to have higher storage moduli and lower loss tangents. Since these properties have been associated with better clinical performance in the areas of retention and prevention of fracture of porcelain and resin restorations, the more highly filled cements may be recommended. Temperature variations influenced viscoelastic behavior of the cements. However, within the temperature range studied no sharp drop in modulus was seen, so the materials should function satisfactorily in the oral cavity.
Non-linear numerical analysis of the Iosipescu specimen for composite materials
NASA Technical Reports Server (NTRS)
Ho, Henjen; Morton, John; Farley, Gary L.
1994-01-01
A nonlinear elastic finite element analysis is presented of the Iosipescu shear specimen tested in the modified Wyoming fixture for unidirectional graphite/epoxy composites. It is shown that the nonlinear effects due to specimen-to-fixture contact interactions and specimen geometry on the overall shear response are negligible. It is proposed that the tangential shear modulus should be used to characterize the shear resistance of composite materials with highly nonlinear shear response. The correction factors, which are needed to compensate for the nonuniformity of the shear stress or strain distribution in the specimen test section for shear modulus measurement, have to be defined carefully. Strain contours in the nonlinear response ranges are presented and the initiation of failure in the notch regions is investigated.
Method for characterizing viscoelasticity of human gluteal tissue.
Then, C; Vogl, T J; Silber, G
2012-04-30
Characterizing compressive transient large deformation properties of biological tissue is becoming increasingly important in impact biomechanics and rehabilitation engineering, which includes devices interfacing with the human body and virtual surgical guidance simulation. Individual mechanical in vivo behaviour, specifically of human gluteal adipose and passive skeletal muscle tissue compressed with finite strain, has, however, been sparsely characterised. Employing a combined experimental and numerical approach, a method is presented to investigate the time-dependent properties of in vivo gluteal adipose and passive skeletal muscle tissue. Specifically, displacement-controlled ramp-and-hold indentation relaxation tests were performed and documented with magnetic resonance imaging. A time domain quasi-linear viscoelasticity (QLV) formulation with Prony series valid for finite strains was used in conjunction with a hyperelastic model formulation for soft tissue constitutive model parameter identification and calibration of the relaxation test data. A finite element model of the indentation region was employed. Strong non-linear elastic but linear viscoelastic tissue material behaviour at finite strains was apparent for both adipose and passive skeletal muscle mechanical properties with orthogonal skin and transversal muscle fibre loading. Using a force-equilibrium assumption, the employed material model was well suited to fit the experimental data and derive viscoelastic model parameters by inverse finite element parameter estimation. An individual characterisation of in vivo gluteal adipose and muscle tissue could thus be established. Initial shear moduli were calculated from the long-term parameters for human gluteal skin/fat: G(∞,S/F)=1850 Pa and for cross-fibre gluteal muscle tissue: G(∞,M)=881 Pa. Instantaneous shear moduli were found at the employed ramp speed: G(0,S/F)=1920 Pa and G(0,M)=1032 Pa. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Drugan, W. J.; Willis, J. R.
2016-06-01
A variational formulation employing the minimum potential and complementary energy principles is used to derive a micromechanics-based nonlocal constitutive equation for random linear elastic composite materials, relating ensemble averages of stress and strain in the most general situation when mean fields vary spatially. All information contained in the energy principles is retained; we employ stress polarization trial fields utilizing one-point statistics so that the resulting nonlocal constitutive equation incorporates up through three-point statistics. The variational structure is developed first for arbitrary heterogeneous linear elastic materials, then for randomly inhomogeneous materials, then for general n-phase composite materials, and finally for two-phase composite materials, in which case explicit variational upper and lower bounds on the nonlocal effective modulus tensor operator are derived. For statistically uniform infinite-body composites, these bounds are determined even more explicitly in Fourier transform space. We evaluate these in detail in an example case: longitudinal shear of an aligned fiber or void composite. We determine the full permissible ranges of the terms involving two- and three-point statistics in these bounds, and thereby exhibit explicit results that encompass arbitrary isotropic in-plane phase distributions; we also develop a nonlocal "Milton parameter", the variation of whose eigenvalues throughout the interval [0, 1] describes the full permissible range of the three-point term. Example plots of the new bounds show them to provide substantial improvement over the (two-point) Hashin-Shtrikman bounds on the nonlocal operator tensor, for all permissible values of the two- and three-point parameters. We next discuss further applications of the general nonlocal operator bounds: to any three-dimensional scalar transport problem e.g. conductivity, for which explicit results are given encompassing the full permissible ranges of the
NASA Astrophysics Data System (ADS)
Monclus, M. A.; Jennett, N. M.
2011-03-01
Industry requires validated high-resolution methods for the characterisation viscoelastic materials to obtain local (or small volume) polymer properties for input to part design (e.g. micro-mouldings, packaging, coatings, composite interfaces, etc.). This paper examines the capability of dynamic (oscillatory) indentation (DI) and simple force-controlled "force-increase ramp and hold" indentation creep methods to deliver equivalent results compatible with those obtained on the same materials by dynamic mechanical analysis (DMA) and uniaxial tensile testing. We test three commercial polymers (two photo stress materials and polyoxymethylene (POM)). A creep analysis based on conical-pyramidal elastic-viscoelastic correspondence 1 and a three-element standard linear solid (SLS) model is used to give an output of two elastic moduli (E 1 and E 2) and a viscosity (η). Mathematically, E 1, E 2 and η can be used to calculate loss and storage modulus values at any frequency without further measurement. Indentation creep results obtained using various maximum forces (P max) and two indenter geometries (pyramidal (Berkovich) and conical (0.6 µm tip radius)) are compared with DI and DMA measurements at 40 Hz on the same materials and with tensile data from the POM sample fitted using the same SLS creep model. Between-method agreement of storage modulus values for all materials is sufficient to suggest that a route to validated measurement methods is available. However, simple models (as commonly used in DI and DMA) are inadequate to generate reproducible quantitative values for viscosity parameters. We show that more complex models are necessary to successfully produce loss/viscosity parameters that are equivalent.
Viscoelastic modelling of tennis ball properties
NASA Astrophysics Data System (ADS)
Sissler, L.; Jones, R.; Leaney, P. G.; Harland, A.
2010-06-01
An explicit finite element (FE) tennis ball model which illustrates the effects of the viscoelastic materials of a tennis ball on ball deformation and bounce during normal impacts is presented. A tennis ball is composed of a rubber core and a fabric cover comprised of a wool-nylon mix which exhibit non-linear strain rate properties during high velocity impacts. The rubber core model was developed and validated using low strain rate tensile tests on rubber samples as well as high velocity normal impacts of pressurised cores at velocities ranging from 15 m/s to 50 m/s. The impacts were recorded using a high speed video (HSV) camera to determine deformation, impact time and coefficient of restitution (COR). The material properties of the core model were tuned to match the HSV results. A two component anisotropic fabric model was created which included artificial Rayleigh damping to account for hysteresis effects, and the core model 'tuning' process was used to refine the cloth layer. The ball model's parameters were in good agreement with experimental data at all velocities for both cores and complete balls, and a time sequenced comparison of HSV ball motion and FE model confirmed the validity of the model.
Modeling of the viscoelastic mechano-sorptive behavior in wood
NASA Astrophysics Data System (ADS)
Dubois, Frédéric; Husson, Jean-Marie; Sauvat, Nicolas; Manfoumbi, Nicaise
2012-11-01
This paper focuses on the modeling of linearly viscoelastic, mechano-sorptive behavior and its effects during moisture content changes in timber. A generalized Kelvin-Voigt model integrating specific hygro-lock springs is developed and associated, in series, with a shrinkage-swelling element. The coupling between moisture content state and mechanical state implies an evolution in rheological parameters. This alternative approach leads to incorporating strain blockings during the drying period as well as memory effects during wetting phases after unloading. An incremental formulation is also established using a finite-element software, and, moreover, an experimental validation from tensile creep-recovery tests is presented.
NASA Astrophysics Data System (ADS)
Chevellard, G.; Ravi-Chandar, K.; Liechti, K. M.
2012-05-01
The pressure-dependent behavior of polyurea was examined under monotonic loading in the confined compression configuration. Additional data from Arcan shear and uniaxial compression was used to respectively complete parameter selection for the linear and nonlinear behavior and then validate it. The bulk and shear relaxation behavior were both pressure dependent. Under ramp loadings, the shear and tensile responses were quite nonlinearly viscoelastic.
Dynamic tensile properties of bovine periodontal ligament: A nonlinear viscoelastic model.
Oskui, Iman Z; Hashemi, Ata
2016-03-21
As a support to the tooth, the mechanical response of the periodontal ligament (PDL) is complex. Like other connective tissues, the PDL exhibits non-linear and time-dependent behavior. The viscoelasticity of the PDL plays a significant role in low and high loading rates. Little information, however, is available on the short-term viscoelastic behavior of the PDL. Also, due to the highly non-linear stress-strain response, it was hypothesized that the dynamic viscoelastic properties of the PDL would be greatly dependent on the preload. Therefore, the present study was designed to explore the dynamic tensile properties of the bovine PDL as a function of loading frequency and preload. The in vitro dynamic tensile tests were performed over a wide range of frequencies (0.01-100Hz) with dynamic force amplitude of 1N and different preloads of 3, 5 and 10N. The generalized Maxwell model was utilized to describe the non-linear viscoelastic behavior of the PDL. The low loss factor of the bovine PDL, measured between 0.04 and 0.08, indicates low energy dissipation due to the high content of collagen fibers. Moreover, the influence of viscous components in the linear region of the stress-strain curve (10N preload) was lower than those of the toe region (3N preload). The data reported in this study could be used in developing accurate computational models of the PDL.
NASA Astrophysics Data System (ADS)
Shirley, James H.; Jamieson, Corey S.; Dalton, J. Bradley
2016-08-01
Quantitative estimates of the abundance of surface materials and of water ice particle grain sizes at five widely separated locations on the surface of Europa have been obtained by two independent methods in order to search for possible discrepancies that may be attributed to differences in the methods employed. Results of radiative transfer (RT) compositional modeling (also known as intimate mixture modeling) from two prior studies are here employed without modification. Areal (or "checkerboard") mixture modeling, also known as linear mixture (LM) modeling, was performed to allow direct comparisons. The failure to model scattering processes (whose effects may be strongly nonlinear) in the LM approach is recognized as a potential source of errors. RT modeling accounts for nonlinear spectral responses due to scattering but is subject to other uncertainties. By comparing abundance estimates for H2SO4 · nH2O and water ice, obtained through both methods as applied to identical spectra, we may gain some insight into the importance of "volume scattering" effects for investigations of Europa's surface composition. We find that both methods return similar abundances for each location analyzed; linear correlation coefficients of ≥ 0.98 are found between the derived H2SO4 · nH2O and water ice abundances returned by both methods. We thus find no evidence of a significant influence of volume scattering on the compositional solutions obtained by LM modeling for these locations. Some differences in the results obtained for water ice grain sizes are attributed to the limited selection of candidate materials allowed in the RT investigations.
McComas, D J; Nordholt, J E; Bame, S J; Barraclough, B L; Gosling, J T
1990-01-01
A revolutionary type of three-dimensional space plasma composition analyzer has been developed that combines very high-resolution mass composition measurements on a fraction of the incident ions simultaneously with lower mass resolution but high sensitivity measurements of the remaining population in a single compact and robust sensor design. Whereas the lower mass resolution measurements are achieved using conventional energy/charge (E/q) and linear time-of-flight analysis, the high mass resolution measurements are made by timing reflected E/q analyzed ions in a linear electric field (LEF). In a LEF the restoring (reflecting) force that an ion experiences in the direction parallel to the field is proportional to the depth it travels into the LEF region, and its equation of motion in that direction is that of a simple harmonic oscillator. Consequently, an ion's travel time is independent of its initial angle and energy and is simply proportional to the square root of the ion's mass/charge (m/q). The measured m/q resolution, (m/q)/Delta(m/q), for a small LEF-based prototype that we have developed and tested is approximately 20. In addition, our laboratory measurements with the prototype instrument show that characteristic time-of-flight spectra allow the resolution of atomic and molecular species with nearly identical m/q values. The measured response of the prototype is in excellent agreement with computer simulations of the device. Advanced design work using this computer simulation indicates that three-dimensional plasma composition analyzers with m/q resolutions of at least 50 are readily achievable. PMID:11607095
Cake Filtration in Viscoelastic Polymer Solutions
NASA Astrophysics Data System (ADS)
Surý, Alexander; Machač, Ivan
2009-07-01
In this contribution, the filtration equations for a cake filtration in viscoelastic fluids are presented. They are based on a capillary hybrid model for the flow of a power law fluid. In order to express the elastic pressure drop excess in the flow of viscoelastic filtrate through the filter cake and filter screen, modified Deborah number correction functions are included into these equations. Their validity was examined experimentally. Filtration experiments with suspensions of hardened polystyrene particles (Krasten) in viscoelastic aqueous solutions of polyacryl amides (0.4% and 0.6%wt. Kerafloc) were carried out at a constant pressure on a cylindrical filtration unit using filter screens of different resistance.
Nonlinear viscoelastic characterization of thin polyethylene film
NASA Technical Reports Server (NTRS)
Wilbeck, J. S.
1981-01-01
In order to understand the state of stress and strain in a typical balloon fabricated from thin polyethylene film, experiment data in the literature reviewed. It was determined that the film behaves as a nonlinear viscoelasticity material and should be characterized accordingly. A simple uniaxial, nonlinear viscoelastic model was developed for predicting stress given a certain strain history. The simple model showed good qualitative agreement with results of constant rate, uniaxial accurately predicting stresses for cyclic strain histories typical of balloon flights. A program was outlined which will result in the development of a more complex nonlinear viscoelastic model.
Viscoelastic properties of Ionomer Melt
NASA Astrophysics Data System (ADS)
Goswami, Monojoy; Kumar, Sanat
2007-03-01
Viscoelastic prperties of a model telechelic ionomer, i.e., a melt of non-polar polymers with a charge at each chain end along with neutralizing counterions, have been examined using molecular dynamics simulation. Equlibrium calculation of the loss modulus G^''(φ) and storage modulus G^'(φ) shows plateau at lower temperatures when the systems are not relaxed. In this situation the specific heat (Cv) peak corresponds to the self-assembly of the system, at lower temperatures the specific heat begins to plateau. Similarities of the dynamic features found for telechelic melts with those observed in glass-forming liquids and entangled polymers have been shown. Furthremore, using an athermal 'probe', the properties of these materials is being distinctly classified as 'strong' glass or physical gels.
Viscoelastic response of a model endothelial glycocalyx
NASA Astrophysics Data System (ADS)
Nijenhuis, Nadja; Mizuno, Daisuke; Spaan, Jos A. E.; Schmidt, Christoph F.
2009-06-01
Many cells cover themselves with a multifunctional polymer coat, the pericellular matrix (PCM), to mediate mechanical interactions with the environment. A particular PCM, the endothelial glycocalyx (EG), is formed by vascular endothelial cells at their luminal side, forming a mechanical interface between the flowing blood and the endothelial cell layer. The glycosaminoglycan (GAG) hyaluronan (HA) is involved in the main functions of the EG, mechanotransduction of fluid shear stress and molecular sieving. HA, due to its length, is the only GAG in the EG or any other PCM able to form an entangled network. The mechanical functions of the EG are, however, impaired when any one of its components is removed. We here used microrheology to measure the effect of the EG constituents heparan sulfate, chondroitin sulfate, whole blood plasma and albumin on the high-bandwidth mechanical properties of a HA solution. Furthermore, we probed the effect of the hyaldherin aggrecan, a constituent of the PCM of chondrocytes, and very similar to versican (present in the PCM of various cells, and possibly in the EG). We show that components directly interacting with HA (chondroitin sulfate and aggrecan) can increase the viscoelastic shear modulus of the polymer composite.
Sucrose ester nanodispersions: microviscosity and viscoelastic properties.
Ullrich, Sebastian; Metz, Hendrik; Mäder, Karsten
2008-10-01
Sucrose esters have the potential to enhance both drug solubility and drug absorption. They are therefore alternatives to the widely used glycerides in the formulation of lipid-based drug delivery systems. A simple production of aqueous nanosized drug carrier systems consisting of amphiphilic sucrose fatty acid esters using exclusively nontoxic materials has been achieved. By only using 2 wt% of the emulsifier a high viscosity of the sample could be reached. Diverse history of fabrication led to the differences in the macroviscosity of SE dispersions with equal chemical composition. Combining the well-established oscillating rheology with the electron paramagnetic resonance technique, three orders of magnitude difference in macroviscosity between the dispersions containing 2 wt% of the amphiphilic SE were obtained, whereas the viscosities at the molecular level were all close to the viscosity of water. Viscoelastic behaviour could also be shown for these systems. TEM experiments visualized coexisting irregular micelles and lamellar structures in the SE dispersions. The results are important to understand the complex LDDS based on amphiphilic SE.
Modeling Electrically Active Viscoelastic Membranes
Roy, Sitikantha; Brownell, William E.; Spector, Alexander A.
2012-01-01
The membrane protein prestin is native to the cochlear outer hair cell that is crucial to the ear's amplification and frequency selectivity throughout the whole acoustic frequency range. The outer hair cell exhibits interrelated dimensional changes, force generation, and electric charge transfer. Cells transfected with prestin acquire unique active properties similar to those in the native cell that have also been useful in understanding the process. Here we propose a model describing the major electromechanical features of such active membranes. The model derived from thermodynamic principles is in the form of integral relationships between the history of voltage and membrane resultants as independent variables and the charge density and strains as dependent variables. The proposed model is applied to the analysis of an active force produced by the outer hair cell in response to a harmonic electric field. Our analysis reveals the mechanism of the outer hair cell active (isometric) force having an almost constant amplitude and phase up to 80 kHz. We found that the frequency-invariance of the force is a result of interplay between the electrical filtering associated with prestin and power law viscoelasticity of the surrounding membrane. Paradoxically, the membrane viscoelasticity boosts the force balancing the electrical filtering effect. We also consider various modes of electromechanical coupling in membrane with prestin associated with mechanical perturbations in the cell. We consider pressure or strains applied step-wise or at a constant rate and compute the time course of the resulting electric charge. The results obtained here are important for the analysis of electromechanical properties of membranes, cells, and biological materials as well as for a better understanding of the mechanism of hearing and the role of the protein prestin in this mechanism. PMID:22701528
Cycloid Formation in Europa's Viscoelastic Ice Shell
NASA Astrophysics Data System (ADS)
Rhoden, A.; Hurford, T. A.; Jara-Orue, H.; Vermeersen, B. L.
2013-12-01
Cycloids are linked arcuate segments that are thought to form as tensile fractures in response to daily-varying tidal stress on Europa (e.g. Hoppa et al., 2001). Their shapes appear to record subtle differences in the stress field that led to their formation, which makes cycloids excellent tools with which to investigate Europa's rotation history. Good fits to observed cycloids have been achieved using formation models that assume the shell behaves elastically (e.g. Rhoden et al., 2010). However, computations for a rheologically-layered Europa have revealed that both the magnitude and the timing of diurnal tidal stress differ from the elastic shell model (Wahr et al., 2009; Jara-Orue and Vermeersen, 2011). The deviations are even more pronounced for long-term sources of stress such as non-synchronous rotation (NSR). In order to assess the influence of rheological layering on cycloid formation we have now incorporated the viscoelastic computations of tidal stress into our existing cycloid modeling software (see Rhoden et al., 2010). We test two interior structure models, both of which assume a linear viscoelastic Maxwell rheology. They both include a 30-km ice shell in which the upper 5km have a viscosity of 1E21 Pa*s. In one case, the remaining 25km are effectively elastic on diurnal timescales (visc = 1E17 Pa*s), and in the other, they are highly dissipative (visc = 1E14 Pa*s). We first assess the changes in the paths of hypothetical cycloids at various locations on Europa using typical values for the mechanical parameters involved with cycloid formation. We find small but noticeable changes in cycloid paths between the two interior models. We then assess the role of non-synchronous rotation using the more viscous model (i.e. visc = 1E21 Pa*s for upper 5km, 1E14 Pa*s for lower 25km). Our maps of hypothetical cycloids confirm the findings of Jara-Orue and Vermeersen (2011), that NSR periods shorter than (of order) 1Myr generate stresses that swamp out the diurnal
Quantitative nondestructive characterization of visco-elastic materials at high pressure
Aizawa, Tatsuhiko; Kihara, Junji; Ohno, Jun
1995-11-01
New anvil apparatus was developed to realize high pressure atmosphere suitable to investigation of viscoelastic behaviors of such soft materials as polymers, lubricants, proteins and so forth. In addition, ultrasonic spectroscopy system was also newly constructed to make quantitative nondestructive evaluation of elasticity and viscosity of soft materials at high pressure. In order to demonstrate the validity and effectiveness of the developed system and methodology for quantitative nondestructive visco-elastic characterization, various silicone oils are employed, and measured spectra are compared to the theoretical results calculated by the three linear element model.
NASA Astrophysics Data System (ADS)
Chen, Li-Qun; Zhao, Wei-Jia; Zu, Jean W.
2004-12-01
This paper deals with the transverse vibration of an initially stressed moving viscoelastic string obeying a fractional differentiation constitutive law. The governing equation is derived from Newtonian second law of motion, and reduced to a set of non-linear differential-integral equations based on Galerkin's truncation. A numerical approach is proposed to solve numerically the differential-integral equation through developing an approximate expression of the fractional derivatives involved. Some numerical examples are presented to highlight the effects of viscoelastic parameters and frequencies of parametric excitations on the transient responses of the axially moving string.
Lundkvist, A.; Lilleodden, E.; Sickhaus, W.; Kinney, J.; Pruitt, L.; Balooch, M.
1998-02-09
Using an Atomic Force Microscope with an attachment for indentation, we have measured local, in vitro mechanical properties of healthy femoral artery tissue held in saline solution. The elastic modulus (34. 3 kPa) and viscoelastic response ({tau}sub{epsilon} {equals} 16.9 s and {tau}sub{sigma} {equals} 29.3 s) of the unstretched,intimal vessel wall have been determined using Sneddon theory and a three element model(standard linear solid) for viscoelastic materials. The procedures necessary to employ the indenting attachment to detect elastic moduli in the kPa range in liquid are described.
Frank, Christian; Frielinghaus, Henrich; Allgaier, Jürgen; Prast, Hartmut
2007-06-05
Nonionic alcohol ethoxylates are widely used as surfactants in many different applications. They are available in a large number of structural varieties as technical grade products. This variety is mainly based on the use of different alcohols, which can be linear or branched and contain primary, secondary, or tertiary OH groups. Technical grade products are poorly defined as they are composed of alcohol mixtures being different in chain length and structure. On the other hand, monodisperse alcohol ethoxylates are commercially available; however, these surfactants exist only with primary and linear alcohols. In the field of microemulsion research the monodisperse alcohol ethoxylates are widely used. The phase behavior and film properties of these surfactants were studied intensively with respect to the size of the hydrophilic and hydrophobic moieties. Due to the lack of appropriate model surfactants until now, there is little information on how the structure of the hydrocarbon tail influences the microemulsion behavior. To examine structural influences, we synthesized a series of surfactants with the composition C10E5 and having different linear and branched hydrocarbon tails. The surfactants were monodisperse with respect to the hydrocarbon tail but polydisperse with respect to the ethoxylation degree. However, a detailed characterization showed that they were similar concerning the average ethoxylation degree and EO chain length distribution. The phase behavior was investigated for bicontinuous microemulsions, and the film properties were analyzed by small-angle neutron scattering (SANS). Our results show that the structure of the hydrocarbon tail strongly influences the microemulsion behavior. The most efficient surfactant is obtained if the hydrocarbon tail is linear and the hydrophilic group is attached in the C-1 position. Surfactants having the hydrophilic group bound to the C-2 or C-4 position or which contain a branched hydrocarbon tail are less efficient
Lum, Jordan S; Dove, Jacob D; Murray, Todd W; Borden, Mark A
2016-09-20
Lipid monolayer rheology plays an important role in a variety of interfacial phenomena, the physics of biological membranes, and the dynamic response of acoustic bubbles and drops. We show here measurements of lipid monolayer elasticity and viscosity for very small strains at megahertz frequency. Individual plasmonic microbubbles of 2-6 μm radius were photothermally activated with a short laser pulse, and the subsequent nanometer-scale radial oscillations during ring-down were monitored by optical scatter. This method provided average dynamic response measurements of single microbubbles. Each microbubble was modeled as an underdamped linear oscillator to determine the damping ratio and eigenfrequency, and thus the lipid monolayer viscosity and elasticity. Our nonisothermal measurement technique revealed viscoelastic trends for different lipid shell compositions. We observed a significant increase in surface elasticity with the lipid acyl chain length for 16 to 20 carbons, and this effect was explained by an intermolecular forces model that accounts for the lipid composition, packing, and hydration. The surface viscosity was found to be equivalent for these lipid shells. We also observed an anomalous decrease in elasticity and an increase in viscosity when increasing the acyl chain length from 20 to 22 carbons. These results illustrate the use of a novel nondestructive optical technique to investigate lipid monolayer rheology in new regimes of frequency and strain, possibly elucidating the phase behavior, as well as how the dynamic response of a microbubble can be tuned by the lipid intermolecular forces.
Crustal deformation, the earthquake cycle, and models of viscoelastic flow in the asthenosphere
NASA Technical Reports Server (NTRS)
Cohen, S. C.; Kramer, M. J.
1983-01-01
The crustal deformation patterns associated with the earthquake cycle can depend strongly on the rheological properties of subcrustal material. Substantial deviations from the simple patterns for a uniformly elastic earth are expected when viscoelastic flow of subcrustal material is considered. The detailed description of the deformation pattern and in particular the surface displacements, displacement rates, strains, and strain rates depend on the structure and geometry of the material near the seismogenic zone. The origin of some of these differences are resolved by analyzing several different linear viscoelastic models with a common finite element computational technique. The models involve strike-slip faulting and include a thin channel asthenosphere model, a model with a varying thickness lithosphere, and a model with a viscoelastic inclusion below the brittle slip plane. The calculations reveal that the surface deformation pattern is most sensitive to the rheology of the material that lies below the slip plane in a volume whose extent is a few times the fault depth. If this material is viscoelastic, the surface deformation pattern resembles that of an elastic layer lying over a viscoelastic half-space. When the thickness or breath of the viscoelastic material is less than a few times the fault depth, then the surface deformation pattern is altered and geodetic measurements are potentially useful for studying the details of subsurface geometry and structure. Distinguishing among the various models is best accomplished by making geodetic measurements not only near the fault but out to distances equal to several times the fault depth. This is where the model differences are greatest; these differences will be most readily detected shortly after an earthquake when viscoelastic effects are most pronounced.
Crustal deformation, the earthquake cycle, and models of viscoelastic flow in the asthenosphere
NASA Technical Reports Server (NTRS)
Cohen, S. C.; Kramer, M. J.
1984-01-01
The crustal deformation patterns associated with the earthquake cycle can depend strongly on the rheological properties of subcrustal material. Substantial deviations from the simple patterns for a uniformly elastic earth are expected when viscoelastic flow of subcrustal material is considered. The detailed description of the deformation pattern and in particular the surface displacements, displacement rates, strains, and strain rates depend on the structure and geometry of the material near the seismogenic zone. The origin of some of these differences are resolved by analyzing several different linear viscoelastic models with a common finite element computational technique. The models involve strike-slip faulting and include a thin channel asthenosphere model, a model with a varying thickness lithosphere, and a model with a viscoelastic inclusion below the brittle slip plane. The calculations reveal that the surface deformation pattern is most sensitive to the rheology of the material that lies below the slip plane in a volume whose extent is a few times the fault depth. If this material is viscoelastic, the surface deformation pattern resembles that of an elastic layer lying over a viscoelastic half-space. When the thickness or breath of the viscoelastic material is less than a few times the fault depth, then the surface deformation pattern is altered and geodetic measurements are potentially useful for studying the details of subsurface geometry and structure. Distinguishing among the various models is best accomplished by making geodetic measurements not only near the fault but out to distances equal to several times the fault depth. This is where the model differences are greatest; these differences will be most readily detected shortly after an earthquake when viscoelastic effects are most pronounced.
Viscoelastic properties of human cerebellum using magnetic resonance elastography.
Zhang, John; Green, Michael A; Sinkus, Ralph; Bilston, Lynne E
2011-07-07
The cerebellum has never been mechanically characterised, despite its physiological importance in the control of motion and the clinical prevalence of cerebellar pathologies. The aim of this study was to measure the linear viscoelastic properties of the cerebellum in human volunteers using Magnetic Resonance Elastography (MRE). Coronal plane brain 3D MRE data was performed on eight healthy adult volunteers, at 80 Hz, to compare the properties of cerebral and cerebellar tissues. The linear viscoelastic storage (G') and loss moduli (G″) were estimated from the MRE wave images by solving the wave equation for propagation through an isotropic linear viscoelastic solid. Contributions of the compressional wave were removed via application of the curl-operator. The storage modulus for the cerebellum was found to be significantly lower than that for the cerebrum, for both white and grey matter. Cerebrum: white matter (mean±SD) G'=2.41±0.23 kPa, grey matter G'=2.34±0.22 kPa; cerebellum: white matter, G'=1.85±0.18 kPa, grey matter G'=1.77±0.24 kPa; cerebrum vs cerebellum, p<0.001. For the viscous behaviour, there were differences in between regions and also by tissue type, with the white matter being more viscous than grey matter and the cerebrum more viscous than the cerebellum. Cerebrum: white matter G″=1.21±0.21 kPa, grey matter G″=1.11±0.03 kPa; cerebellum: white matter G″=1.1±0.23 kPa, grey matter G″=0.94±0.17 kPa. These data represent the first available data on the viscoelastic properties of cerebellum, which suggest that the cerebellum is less physically stiff than the cerebrum, possibly leading to a different response to mechanical loading. These data will be useful for modelling of the cerebellum for a range of purposes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dynamics and Stability of Rolling Viscoelastic Tires
Potter, Trevor
2013-04-30
Current steady state rolling tire calculations often do not include treads because treads destroy the rotational symmetry of the tire. We describe two methodologies to compute time periodic solutions of a two-dimensional viscoelastic tire with treads: solving a minimization problem and solving a system of equations. We also expand on work by Oden and Lin on free spinning rolling elastic tires in which they disovered a hierachy of N-peak steady state standing wave solutions. In addition to discovering a two-dimensional hierarchy of standing wave solutions that includes their N-peak hiearchy, we consider the eects of viscoelasticity on the standing wave solutions. Finally, a commonplace model of viscoelasticity used in our numerical experiments led to non-physical elastic energy growth for large tire speeds. We show that a viscoelastic model of Govindjee and Reese remedies the problem.
Dynamic response of visco-elastic plates
NASA Astrophysics Data System (ADS)
Kadıoǧlu, Fethi; Tekin, Gülçin
2016-12-01
In this study, a comprehensive analysis about the dynamic response characteristics of visco-elastic plates is given. To construct the functional in the Laplace-Carson domain for the analysis of visco-elastic plates based on the Kirchhoff hypothesis, functional analysis method is employed. By using this new energy functional in the Laplace-Carson domain, moment values that are important for engineers can be obtained directly with excellent accuracy and element equations can be written explicitly. Three-element model is considered for modelling the visco-elastic material behavior. The solutions obtained in the Laplace-Carson domain by utilizing mixed finite element formulation are transformed to the time domain using the Durbin's inverse Laplace transform technique. The proposed mixed finite element formulation is shown to be simple to implement and gives satisfactory results for dynamic response of visco-elastic plates.
NASA Technical Reports Server (NTRS)
1997-01-01
The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels.
NASA Technical Reports Server (NTRS)
1997-01-01
The bibliography contains citations concerning analytical techniques using constitutive equations, applied to materials under stress. The properties explored with these techniques include viscoelasticity, thermoelasticity, and plasticity. While many of the references are general as to material type, most refer to specific metals or composites, or to specific shapes, such as flat plate or spherical vessels.
Mixed FE analysis of viscoelastic cylindrical helixes
NASA Astrophysics Data System (ADS)
Arıbaş, Ü. N.; Omurtag, M. H.
2012-09-01
In this study, analysis of viscoelastic cylindrical helixes with circular and square cross section is investigated by using the mixed FEM based on Timoshenko beam theory. The Kelvin model is used for the viscoelastic behavior. The analysis is performed in the Laplace domain and the results are transformed back to time domain numerically by Modified Durbin algorithm. The outcome is quite satisfactory besides the necessary engineering precision.
Dynamic response of a viscoelastic Timoshenko beam
NASA Technical Reports Server (NTRS)
Kalyanasundaram, S.; Allen, D. H.; Schapery, R. A.
1987-01-01
The analysis presented in this study deals with the vibratory response of viscoelastic Timoshenko (1955) beams under the assumption of small material loss tangents. The appropriate method of analysis employed here may be applied to more complex structures. This study compares the damping ratios obtained from the Timoshenko and Euler-Bernoulli theories for a given viscoelastic material system. From this study the effect of shear deformation and rotary inertia on damping ratios can be identified.
A Nonlinear Hyperbolic Volterra Equation in Viscoelasticity.
1980-06-01
35L55, 35L67, 47H10, 47H15 Key Words: nonlinear viscoelastic motion, materials with memory, stress- strain relaxation functions, nonlinear Volterra...homogeneous body. Here the dissipation mechanism which is induced by memory effects of the viscoelastic materials (stress-strain relaxation function - the...GREENBERG, J. M., A priori estimates for flows in dissipative materials , J. Math. Anal. Appl. 60 (1977), 617-630. CMD/JAN/scr Ii -31- SECURITY
Adjustment of the human arm viscoelastic properties to the direction of reaching.
Frolov, A A; Prokopenko, R A; Dufossè, M; Ouezdou, F B
2006-02-01
The viscoelastic properties of the human arm were measured by means of short force perturbations during fast reaching movements in two orthogonal directions. A linear spring model with time delay described the neuromuscular system of the human arm. The obtained viscoelastic parameters ensured movement stability in spite of the time delay of 50 ms. The stiffness and viscosity ellipses appeared to be predominantly orthogonal to the movement direction, which reduced the effect of force perturbation in the direction orthogonal to the reaching movement. Thus, it can be argued that the viscoelastic properties of the neuromuscular system of the human arm are adjusted to the direction of movement according to a "path preserving" strategy, which minimizes the deviation of the movement path from a straight line, when exposed to an unexpected external force.
Nonlinear viscoelastic behavior of human knee ligaments subjected to complex loading histories.
van Dommelen, J A W; Jolandan, M Minary; Ivarsson, B J; Millington, S A; Raut, M; Kerrigan, J R; Crandall, J R; Diduch, D R
2006-06-01
The nonlinear viscoelastic structural response of the major human knee ligaments when subjected to complex loading histories is investigated, with emphasis on the collateral ligaments. Bone-ligament-bone specimens are tested in knee distraction loading, where the ligaments are in the anatomical position corresponding to a fully extended knee. Temporal nonlinearities for time scales in the range of 1
Non-Linear Finite Element Analysis of Viscoelastic Materials
1998-07-01
requiring a K of infinity. In this case, the hyperelastic model actually becomes the classical Mooney - Rivlin form. The maximum hydrostatic pressure...describe the behavior of materials that exhibit elastic response up to large strains, as rubber , solid propellant, and other elastomeric materials...Most solid rubber like materials are almost incompressible and have a bulk modulus, K, that is several orders of magnitude larger than their shear
Numerical solution of an elastic and viscoelastic gravitational models by the finite element method
NASA Astrophysics Data System (ADS)
Arjona Almodóvar, A.; Chacón Rebollo, T.; Gómez Marmol, M.
2014-12-01
Volcanic areas present a lower effective viscosity than usually in the Earth's crust. Both the elastic-gravitational and the viscoelastic-gravitational models allow the computation of gravity, deformation, and gravitational potential changes in order to investigate crustal deformations of Earth (see for instance Battaglia & Segall, 2004; Fernández et al. 1999, 2001; Rundle 1980 and 1983). These models can be represented by a coupled system of linear parabolic (for the elastic deformations), hyperbolic (for the viscoelastic deformations) and elliptic partial differential equations (for gravitational potential changes) (see for instance Arjona et al. 2008 and 2010). The existence and uniqueness of weak solutions for both the elastic-gravitational and viscoelastic-gravitational problem was demonstrated in Arjona et al. (2008 and 2014). The stabilization to solutions of the associated stationary system was proved in Arjona and Díaz (2007). Here we consider the internal source as response to the effect of a pressurized magma reservoir into a multilayered, elastic-gravitational and viscoelastic-gravitational earth model. We introduce the numerical analysis of a simplified steady elastic-gravitational model, solved by means of the finite element method. We also present some numerical tests in realistic situations that confirm the predictions of theoretical order of convergence. Finally, we describe the methodology for both the elastic-gravitational and the viscoelastic-gravitational models using 2D and 3D test examples performed with FreeFEM++.
NASA Astrophysics Data System (ADS)
Kadooka, Kevin; Imamura, Hiroya; Taya, Minoru
2016-10-01
This work presents a linear viscoelastic model to describe the time-dependent actuation behavior of multilayer unimorph dielectric elastomer actuators (MUDEA), with experimental validation by actuators produced by a robotic dispenser system. MUDEA are a type of soft actuator which can produce large bending deformation without prestretch typically required by dielectric elastomer actuators. Current analytical and finite element models of MUDEA do not consider material viscoelasticity and cannot predict the change over time of performance metrics such as tip displacement and blocking force. The linear viscoelastic model presented in this work is based on a linear elastic model for the MUDEA extended to account for viscous effects by the elastic-viscoelastic correspondence principle. The model is easily implemented because it is based on explicit expressions which can be evaluated numerically by any computer algebra system. The model was used to predict the tip displacement and blocking force of MUDEAs consisting of two, four, six, eight, and ten layers of dielectric elastomer material. The model predictions agreed well with experimental data obtained from MUDEA produced by a robotic dispenser system, which was capable of producing multilayered structures of thin layers of dielectric elastomer and carbon nanotube based electrode material.
Nonlinear viscoelastic characterization of bovine trabecular bone.
Manda, Krishnagoud; Wallace, Robert J; Xie, Shuqiao; Levrero-Florencio, Francesc; Pankaj, Pankaj
2017-02-01
The time-independent elastic properties of trabecular bone have been extensively investigated, and several stiffness-density relations have been proposed. Although it is recognized that trabecular bone exhibits time-dependent mechanical behaviour, a property of viscoelastic materials, the characterization of this behaviour has received limited attention. The objective of the present study was to investigate the time-dependent behaviour of bovine trabecular bone through a series of compressive creep-recovery experiments and to identify its nonlinear constitutive viscoelastic material parameters. Uniaxial compressive creep and recovery experiments at multiple loads were performed on cylindrical bovine trabecular bone samples ([Formula: see text]). Creep response was found to be significant and always comprised of recoverable and irrecoverable strains, even at low stress/strain levels. This response was also found to vary nonlinearly with applied stress. A systematic methodology was developed to separate recoverable (nonlinear viscoelastic) and irrecoverable (permanent) strains from the total experimental strain response. We found that Schapery's nonlinear viscoelastic constitutive model describes the viscoelastic response of the trabecular bone, and parameters associated with this model were estimated from the multiple load creep-recovery (MLCR) experiments. Nonlinear viscoelastic recovery compliance was found to have a decreasing and then increasing trend with increasing stress level, indicating possible stiffening and softening behaviour of trabecular bone due to creep. The obtained parameters from MLCR tests, expressed as second-order polynomial functions of stress, showed a similar trend for all the samples, and also demonstrate stiffening-softening behaviour with increasing stress.
Droplet impact on soft viscoelastic surfaces.
Chen, Longquan; Bonaccurso, Elmar; Deng, Peigang; Zhang, Haibo
2016-12-01
In this work, we experimentally investigate the impact of water droplets onto soft viscoelastic surfaces with a wide range of impact velocities. Several impact phenomena, which depend on the dynamic interaction between the droplets and viscoelastic surfaces, have been identified and analyzed. At low We, complete rebound is observed when the impact velocity is between a lower and an upper threshold, beyond which droplets are deposited on the surface after impact. At intermediate We, entrapment of an air bubble inside the impinging droplets is found on soft surfaces, while a bubble entrapment on the surface is observed on rigid surfaces. At high We, partial rebound is only identified on the most rigid surface at We≳92. Rebounding droplets behave similarly to elastic drops rebounding on superhydrophobic surfaces and the impact process is independent of surface viscoelasticity. Further, surface viscoelasticity does not influence drop spreading after impact-as the surfaces behave like rigid surfaces-but it does affect drop recoiling. Also, the postimpact drop oscillation on soft viscoelastic surfaces is influenced by dynamic wettability of these surfaces. Comparing sessile drop oscillation with a damped harmonic oscillator allows us to conclude that surface viscoelasticity affects the damping coefficient and liquid surface tension sets the spring constant of the system.
Droplet impact on soft viscoelastic surfaces
NASA Astrophysics Data System (ADS)
Chen, Longquan; Bonaccurso, Elmar; Deng, Peigang; Zhang, Haibo
2016-12-01
In this work, we experimentally investigate the impact of water droplets onto soft viscoelastic surfaces with a wide range of impact velocities. Several impact phenomena, which depend on the dynamic interaction between the droplets and viscoelastic surfaces, have been identified and analyzed. At low We , complete rebound is observed when the impact velocity is between a lower and an upper threshold, beyond which droplets are deposited on the surface after impact. At intermediate We , entrapment of an air bubble inside the impinging droplets is found on soft surfaces, while a bubble entrapment on the surface is observed on rigid surfaces. At high We , partial rebound is only identified on the most rigid surface at We ≳92 . Rebounding droplets behave similarly to elastic drops rebounding on superhydrophobic surfaces and the impact process is independent of surface viscoelasticity. Further, surface viscoelasticity does not influence drop spreading after impact—as the surfaces behave like rigid surfaces—but it does affect drop recoiling. Also, the postimpact drop oscillation on soft viscoelastic surfaces is influenced by dynamic wettability of these surfaces. Comparing sessile drop oscillation with a damped harmonic oscillator allows us to conclude that surface viscoelasticity affects the damping coefficient and liquid surface tension sets the spring constant of the system.
Viscoelastic flow simulations in model porous media
NASA Astrophysics Data System (ADS)
De, S.; Kuipers, J. A. M.; Peters, E. A. J. F.; Padding, J. T.
2017-05-01
We investigate the flow of unsteadfy three-dimensional viscoelastic fluid through an array of symmetric and asymmetric sets of cylinders constituting a model porous medium. The simulations are performed using a finite-volume methodology with a staggered grid. The solid-fluid interfaces of the porous structure are modeled using a second-order immersed boundary method [S. De et al., J. Non-Newtonian Fluid Mech. 232, 67 (2016), 10.1016/j.jnnfm.2016.04.002]. A finitely extensible nonlinear elastic constitutive model with Peterlin closure is used to model the viscoelastic part. By means of periodic boundary conditions, we model the flow behavior for a Newtonian as well as a viscoelastic fluid through successive contractions and expansions. We observe the presence of counterrotating vortices in the dead ends of our geometry. The simulations provide detailed insight into how flow structure, viscoelastic stresses, and viscoelastic work change with increasing Deborah number De. We observe completely different flow structures and different distributions of the viscoelastic work at high De in the symmetric and asymmetric configurations, even though they have the exact same porosity. Moreover, we find that even for the symmetric contraction-expansion flow, most energy dissipation is occurring in shear-dominated regions of the flow domain, not in extensional-flow-dominated regions.
Ligament Mediated Fragmentation of Viscoelastic Liquids
NASA Astrophysics Data System (ADS)
Keshavarz, Bavand; Houze, Eric C.; Moore, John R.; Koerner, Michael R.; McKinley, Gareth H.
2016-10-01
The breakup and atomization of complex fluids can be markedly different than the analogous processes in a simple Newtonian fluid. Atomization of paint, combustion of fuels containing antimisting agents, as well as physiological processes such as sneezing are common examples in which the atomized liquid contains synthetic or biological macromolecules that result in viscoelastic fluid characteristics. Here, we investigate the ligament-mediated fragmentation dynamics of viscoelastic fluids in three different canonical flows. The size distributions measured in each viscoelastic fragmentation process show a systematic broadening from the Newtonian solvent. In each case, the droplet sizes are well described by Gamma distributions which correspond to a fragmentation-coalescence scenario. We use a prototypical axial step strain experiment together with high-speed video imaging to show that this broadening results from the pronounced change in the corrugated shape of viscoelastic ligaments as they separate from the liquid core. These corrugations saturate in amplitude and the measured distributions for viscoelastic liquids in each process are given by a universal probability density function, corresponding to a Gamma distribution with nmin=4 . The breadth of this size distribution for viscoelastic filaments is shown to be constrained by a geometrical limit which can not be exceeded in ligament-mediated fragmentation phenomena.
Visco-elastic effects on wave dispersion in three-phase acoustic metamaterials
NASA Astrophysics Data System (ADS)
Krushynska, A. O.; Kouznetsova, V. G.; Geers, M. G. D.
2016-11-01
This paper studies the wave attenuation performance of dissipative solid acoustic metamaterials (AMMs) with local resonators possessing subwavelength band gaps. The metamaterial is composed of dense rubber-coated inclusions of a circular shape embedded periodically in a matrix medium. Visco-elastic material losses present in a matrix and/or resonator coating are introduced by either the Kelvin-Voigt or generalized Maxwell models. Numerical solutions are obtained in the frequency domain by means of k(ω)-approach combined with the finite element method. Spatially attenuating waves are described by real frequencies ω and complex-valued wave vectors k. Complete 3D band structure diagrams including complex-valued pass bands are evaluated for the undamped linear elastic and several visco-elastic AMM cases. The changes in the band diagrams due to the visco-elasticity are discussed in detail; the comparison between the two visco-elastic models representing artificial (Kelvin-Voigt model) and experimentally characterized (generalized Maxwell model) damping is performed. The interpretation of the results is facilitated by using attenuation and transmission spectra. Two mechanisms of the energy absorption, i.e. due to the resonance of the inclusions and dissipative effects in the materials, are discussed separately. It is found that the visco-elastic damping of the matrix material decreases the attenuation performance of AMMs within band gaps; however, if the matrix material is slightly damped, it can be modeled as linear elastic without the loss of accuracy given the resonator coating is dissipative. This study also demonstrates that visco-elastic losses properly introduced in the resonator coating improve the attenuation bandwidth of AMMs although the attenuation on the resonance peaks is reduced.
Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media
Zhang, K.; Luo, Y.; Xia, J.; Chen, C.
2011-01-01
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P
Atomistic Mechanisms for Viscoelastic Damping in Inorganic Solids
NASA Astrophysics Data System (ADS)
Ranganathan, Raghavan
Viscoelasticity, a ubiquitous material property, can be tuned to engineer a wide range of fascinating applications such as mechanical dampers, artificial tissues, functional foams and optoelectronics, among others. Traditionally, soft matter such as polymers and polymer composites have been used extensively for viscoelastic damping applications, owing to the inherent viscous nature of interactions between polymer chains. Although this leads to good damping characteristics, the stiffness in these materials is low, which in turn leads to limitations. In this context, hard inorganic materials and composites are promising candidates for enhanced damping, owing to their large stiffness and, in some cases large loss modulus. Viscoelasticity in these materials has been relatively unexplored and atomistic mechanisms responsible for damping are not apparent. Therefore, the overarching goal of this work is to understand mechanisms for viscoelastic damping in various classes of inorganic composites and alloys at an atomistic level from molecular dynamics simulations. We show that oscillatory shear deformation serves as a powerful probe to explain mechanisms for exceptional damping in hitherto unexplored systems. The first class of inorganic materials consists of crystalline phases of a stiff inclusion in a soft matrix. The two crystals within the composite, namely the soft and a stiff phase, individually show a highly elastic behavior and a very small loss modulus. On the other hand, a composite with the two phases is seen to exhibit damping that is about 20 times larger than predicted theoretical bounds. The primary reason for the damping is due to large anharmonicity in phonon-phonon coupling, resulting from the composite microstructure. A concomitant effect is the distribution of shear strain, which is observed to be highly inhomogeneous and mostly concentrated in the soft phase. Interestingly, the shear frequency at which the damping is greatest is observed to scale with
A kinematically driven anisotropic viscoelastic constitutive model applied to tires
NASA Astrophysics Data System (ADS)
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1995-08-01
Aircraft tires are composite structures manufactured with viscoelastic materials such as carbon black filled rubber and nylon cords. When loaded they experience large deflections and moderately large strains. Detailed structural models of tires require the use of either nonlinear shell or nonlinear three dimensional solid finite elements. Computational predictions of the dynamic response of tires must consider the composite viscoelastic material behavior in a realistic fashion. We describe a modification to a nonlinear anisotropic shell finite element so it can be used to model viscoelastic stresses during general deformations. The model is developed by introducing internal variables of the type used to model elastic strain energy. The internal variables are strains, curvatures, and transverse shear angles which are in a one-to-one correspondence with the generalized coordinates used to model the elastic strain energy for nonlinear response. A difference-relaxation equation is used to relate changes in the observable strain field to changes in the internal strain field. The internal stress state is introduced into the equilibrium equations by converting it to nodal loads associated with the element's displacement degrees of freedom. In this form the tangent matrix in the Newton-Raphson solution algorithm is not modified from its form for the nonlinear statics problem. Only the gradient vector is modified and the modification is not computationally costly. The existing finite element model for the Space Shuttle nose gear tire is used to provide examples of the algorithm. In the first example, the tire's rim is displaced at a constant rate up to a fixed value. In the second example, the tire's rim is enforced to follow a saw tooth load and unload curve to generate hysteresis loops.
A kinematically driven anisotropic viscoelastic constitutive model applied to tires
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1995-01-01
Aircraft tires are composite structures manufactured with viscoelastic materials such as carbon black filled rubber and nylon cords. When loaded they experience large deflections and moderately large strains. Detailed structural models of tires require the use of either nonlinear shell or nonlinear three dimensional solid finite elements. Computational predictions of the dynamic response of tires must consider the composite viscoelastic material behavior in a realistic fashion. We describe a modification to a nonlinear anisotropic shell finite element so it can be used to model viscoelastic stresses during general deformations. The model is developed by introducing internal variables of the type used to model elastic strain energy. The internal variables are strains, curvatures, and transverse shear angles which are in a one-to-one correspondence with the generalized coordinates used to model the elastic strain energy for nonlinear response. A difference-relaxation equation is used to relate changes in the observable strain field to changes in the internal strain field. The internal stress state is introduced into the equilibrium equations by converting it to nodal loads associated with the element's displacement degrees of freedom. In this form the tangent matrix in the Newton-Raphson solution algorithm is not modified from its form for the nonlinear statics problem. Only the gradient vector is modified and the modification is not computationally costly. The existing finite element model for the Space Shuttle nose gear tire is used to provide examples of the algorithm. In the first example, the tire's rim is displaced at a constant rate up to a fixed value. In the second example, the tire's rim is enforced to follow a saw tooth load and unload curve to generate hysteresis loops.
A kinematically driven anisotropic viscoelastic constitutive model applied to tires
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1995-01-01
Aircraft tires are composite structures manufactured with viscoelastic materials such as carbon black filled rubber and nylon cords. When loaded they experience large deflections and moderately large strains. Detailed structural models of tires require the use of either nonlinear shell or nonlinear three dimensional solid finite elements. Computational predictions of the dynamic response of tires must consider the composite viscoelastic material behavior in a realistic fashion. We describe a modification to a nonlinear anisotropic shell finite element so it can be used to model viscoelastic stresses during general deformations. The model is developed by introducing internal variables of the type used to model elastic strain energy. The internal variables are strains, curvatures, and transverse shear angles which are in a one-to-one correspondence with the generalized coordinates used to model the elastic strain energy for nonlinear response. A difference-relaxation equation is used to relate changes in the observable strain field to changes in the internal strain field. The internal stress state is introduced into the equilibrium equations by converting it to nodal loads associated with the element's displacement degrees of freedom. In this form the tangent matrix in the Newton-Raphson solution algorithm is not modified from its form for the nonlinear statics problem. Only the gradient vector is modified and the modification is not computationally costly. The existing finite element model for the Space Shuttle nose gear tire is used to provide examples of the algorithm. In the first example, the tire's rim is displaced at a constant rate up to a fixed value. In the second example, the tire's rim is enforced to follow a saw tooth load and unload curve to generate hysteresis loops.
Hurtaud, C; Faucon, F; Couvreur, S; Peyraud, J-L
2010-04-01
The aim of this experiment was to compare the effects of increasing amounts of extruded linseed in dairy cow diet on milk fat yield, milk fatty acid (FA) composition, milk fat globule size, and butter properties. Thirty-six Prim'Holstein cows at 104 d in milk were sorted into 3 groups by milk production and milk fat globule size. Three diets were assigned: a total mixed ration (control) consisting of corn silage (70%) and concentrate (30%), or a supplemented ration based on the control ration but where part of the concentrate energy was replaced on a dry matter basis by 2.1% (LIN1) or 4.3% (LIN2) extruded linseed. The increased amounts of extruded linseed linearly decreased milk fat content and milk fat globule size and linearly increased the percentage of milk unsaturated FA, specifically alpha-linolenic acid and trans FA. Extruded linseed had no significant effect on butter color or on the sensory properties of butters, with only butter texture in the mouth improved. The LIN2 treatment induced a net improvement of milk nutritional properties but also created problems with transforming the cream into butter. The butters obtained were highly spreadable and melt-in-the-mouth, with no pronounced deficiency in taste. The LIN1 treatment appeared to offer a good tradeoff of improved milk FA profile and little effect on butter-making while still offering butters with improved functional properties.
Elastic and viscoelastic properties of a type I collagen fiber.
Sopakayang, Ratchada; De Vita, Raffaella; Kwansa, Albert; Freeman, Joseph W
2012-01-21
A new mathematical model is presented to describe the elastic and viscoelastic properties of a single collagen fiber. The model is formulated by accounting for the mechanical contribution of the collagen fiber's main constituents: the microfibrils, the interfibrillar matrix and crosslinks. The collagen fiber is modeled as a linear elastic spring, which represents the mechanical contribution of the microfibrils, and an arrangement in parallel of elastic springs and viscous dashpots, which represent the mechanical contributions of the crosslinks and interfibrillar matrix, respectively. The linear elastic spring and the arrangement in parallel of elastic springs and viscous dashpots are then connected in series. The crosslinks are assumed to gradually break under strain and, consequently, the interfibrillar is assumed to change its viscous properties. Incremental stress relaxation tests are conducted on dry collagen fibers reconstituted from rat tail tendons to determine their elastic and viscoelastic properties. The elastic and total stress-strain curves and the stress relaxation at different levels of strain collected by performing these tests are then used to estimate the parameters of the model and evaluate its predictive capabilities.
NASA Astrophysics Data System (ADS)
Deng, Bin; Shen, ZhiBin; Duan, JingBo; Tang, GuoJin
2014-05-01
This paper studies the damage-viscoelastic behavior of composite solid propellants of solid rocket motors (SRM). Based on viscoelastic theories and strain equivalent hypothesis in damage mechanics, a three-dimensional (3-D) nonlinear viscoelastic constitutive model incorporating with damage is developed. The resulting viscoelastic constitutive equations are numerically discretized by integration algorithm, and a stress-updating method is presented by solving nonlinear equations according to the Newton-Raphson method. A material subroutine of stress-updating is made up and embedded into commercial code of Abaqus. The material subroutine is validated through typical examples. Our results indicate that the finite element results are in good agreement with the analytical ones and have high accuracy, and the suggested method and designed subroutine are efficient and can be further applied to damage-coupling structural analysis of practical SRM grain.
Optically operated linear electrooptical effect in δ-Bi1-xNdxB3O6/polymer composites
NASA Astrophysics Data System (ADS)
Chrunik, M.; Ebothé, J.; Majchrowski, A.; Michel, J.; Jaroszewicz, L. R.; Kityk, I. V.
2016-04-01
A novel type of laser operated polymer composites based on orthorhombic δ-Bi1-xNdxB3O6 powders (where x=0.025÷0.100) was prepared. The powders were synthesized by means of polymeric precursor method through the citrate way. They were analyzed using XRD, and HRTEM methods, then embedded into polyvinyl alcohol (PVA) photopolymer. During solidification the additional DC-electric field alignment was carried out. The composite films with thickness up to 0.4 mm were studied using the Senarmont method at wavelength of CW He-Ne laser 633 nm with simultaneous application of the DC-electric field at 50 kHz frequency possessing rectangular symmetrical form. As a source of photoinducing beam we used polarized 1064 nm Nd:YAG laser radiation and its power density was varied using a Glan prism polarizer. The linear electrooptical (EO) effect measurements were carried out during and after Nd:YAG laser treatment at different temperatures. The laser stimulated EO effect was explored versus the Nd3+ content and temperature. It was shown that the Nd3+ ion content plays the crucial role in the observed EO effect efficiency. The contribution of the piezo-electrical and piezo-optical phenomena as well as phonons in the observed effects is discussed.
Accelerated viscoelastic characterization of T300-5208 graphite-epoxy laminates
NASA Technical Reports Server (NTRS)
Tuttle, M. E.; Brinson, H. F.
1985-01-01
A viscoelastic response scheme for the accelerated characterization of polymer-based composite laminates in applied to T300/5208 graphite/epoxy. The response of uni-directional specimens is modeled. The transient component of the viscoelastic creep compliance is assumed to follow a power law approximation. A recursive relationship is developed, based upon the Schapery single-integral equation, which allows approximation of a continuous time-varying uniaxial load using discrete steps in stress. The viscoelastic response of T300/5208 to transverse normal and shear stresses is determined unsing 90 deg and 10 deg off-axis tensile specimens. In each case the seven viscoelastic material parameters required in the analysis are determined experimentally using short-term creep and creep recovery tests. It is shown that an accurate measure of the power law exponent is crucial for accurate long-term prediction. A short term test cycle selection procedure is proposed, which should provide useful guidelines for the evaluation of other viscoelastic materials.
Viscoelastic properties of levan polysaccharides
NASA Astrophysics Data System (ADS)
Noll, Kenneth; Rende, Deniz; Ozisik, Rahmi; Toksoy-Oner, Ebru
2014-03-01
Levan is a naturally occurring polysaccharide that is composed of β-D-fructofuranose units with β(2-6) linkages between fructose rings. It is synthesized by the action of a secreted levansucrase (EC 2.4.1.10) that converts sucrose into the levan externally (exopolysaccharide). Levan is a homopolysaccharide that is non-toxic, water soluble,, and has anti-tumor activity and low immunological response. Therefore, levan presents great potential to be used as a novel functional biopolymer in foods, feeds, cosmetics, pharmaceutical and chemical industries. Despite these favorable properties, levan has a moderately low mechanical properties and poor film forming capability. In the current study, the agglomeration behavior of levan in water and in saline solutions was investigated at 298 and 310 K by dynamic light scattering and transmission electron microscopy (TEM). The viscoelastic properties of neat and oxidized levan films were studied via nanoindentation experiments in the quasi-static and dynamic modes The material is partially based upon work supported by NSF under Grant Nos. 1200270 and 1003574, and TUBITAK 111M232.
Nonlinear Dynamics in Viscoelastic Jets
NASA Astrophysics Data System (ADS)
Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth
2008-11-01
Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.
Nonlinear Dynamics in Viscoelastic Jets
NASA Astrophysics Data System (ADS)
Majmudar, Trushant; Varagnat, Matthieu; McKinley, Gareth
2009-03-01
Instabilities in free surface continuous jets of non-Newtonian fluids, although relevant for many industrial processes, remain poorly understood in terms of fundamental fluid dynamics. Inviscid, and viscous Newtonian jets have been studied in considerable detail, both theoretically and experimentally. Instability in viscous jets leads to regular periodic coiling of the jet, which exhibits a non-trivial frequency dependence with the height of the fall. Here we present a systematic study of the effect of viscoelasticity on the dynamics of continuous jets of worm-like micellar surfactant solutions of varying viscosities and elasticities. We observe complex nonlinear spatio-temporal dynamics of the jet, and uncover a transition from periodic to quasi-periodic to a multi-frequency, broad-spectrum dynamics. Beyond this regime, the jet dynamics smoothly crosses over to exhibit the ``leaping shampoo'' or the Kaye effect. We examine different dynamical regimes in terms of scaling variables, which depend on the geometry (dimensionless height), kinematics (dimensionless flow rate), and the fluid properties (elasto-gravity number) and present a regime map of the dynamics of the jet in terms of these dimensionless variables.
NASA Astrophysics Data System (ADS)
Ribeiro, Eduardo Afonso; Pereira, Jucélio Tomás; Alberto Bavastri, Carlos
2015-09-01
One of the major reasons for inserting damping into bearings is that rotating machines are often requested in critical functioning conditions having sometimes to function under dynamic instability or close to critical speeds. Hydrodynamic and magnetic bearings have usually been used for this purpose, but they present limitations regarding costs and operation, rendering the use of viscoelastic supports a feasible solution for vibration control in rotating machines. Most papers in the area use simple analytic or single degree of freedom models for the rotor as well as classic mechanical models of linear viscoelasticity for the support - like Maxwell, Kelvin-Voigt, Zenner, four-element, GHM models and even frequency independent models - but they lack the accuracy of fractional models in a large range of frequency and temperature regarding the same number of coefficients. Even in those works, the need to consider the addition of degrees of freedom to the support is evident. However, so far no paper has been published focusing on a methodology to determine the optimal constructive form for any viscoelastic support in which the rotor is discretized by finite elements associated to an accurate model for characterizing the viscoelastic material. In general, the support is meant to be a simple isolation system, and the fact the stiffness matrix is complex and frequency-temperature dependent - due to its viscoelastic properties - forces the traditional methods to require an extremely long computing time, thus rendering them too time consuming in an optimization environment. The present work presents a robust methodology based mainly on generalized equivalent parameters (GEP) - for an optimal design of viscoelastic supports for rotating machinery - aiming at minimizing the unbalance frequency response of the system using a hybrid optimization technique (genetic algorithms and Nelder-Mead method). The rotor is modeled based on the finite element method using Timoshenko's thick
A viscoelastic higher-order beam finite element
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tressler, Alexander
1996-01-01
A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.
Viscoelasticity of subcortical gray matter structures.
Johnson, Curtis L; Schwarb, Hillary; D J McGarry, Matthew; Anderson, Aaron T; Huesmann, Graham R; Sutton, Bradley P; Cohen, Neal J
2016-12-01
Viscoelastic mechanical properties of the brain assessed with magnetic resonance elastography (MRE) are sensitive measures of microstructural tissue health in neurodegenerative conditions. Recent efforts have targeted measurements localized to specific neuroanatomical regions differentially affected in disease. In this work, we present a method for measuring the viscoelasticity in subcortical gray matter (SGM) structures, including the amygdala, hippocampus, caudate, putamen, pallidum, and thalamus. The method is based on incorporating high spatial resolution MRE imaging (1.6 mm isotropic voxels) with a mechanical inversion scheme designed to improve local measures in pre-defined regions (soft prior regularization [SPR]). We find that in 21 healthy, young volunteers SGM structures differ from each other in viscoelasticity, quantified as the shear stiffness and damping ratio, but also differ from the global viscoelasticity of the cerebrum. Through repeated examinations on a single volunteer, we estimate the uncertainty to be between 3 and 7% for each SGM measure. Furthermore, we demonstrate that the use of specific methodological considerations-higher spatial resolution and SPR-both decrease uncertainty and increase sensitivity of the SGM measures. The proposed method allows for reliable MRE measures of SGM viscoelasticity for future studies of neurodegenerative conditions. Hum Brain Mapp 37:4221-4233, 2016. © 2016 Wiley Periodicals, Inc.
Linear and nonlinear optical properties of nanostructured Zn(1-x)SrxO-PVA composite thin films
NASA Astrophysics Data System (ADS)
Tamgadge, Y. S.; Sunatkari, A. L.; Talwatkar, S. S.; Pahurkar, V. G.; Muley, G. G.
2014-11-01
We investigate the effect of strontium doping on the linear and third order nonlinear optical properties of ZnO-polyvinyl alcohol (PVA) nano-composite thin films. Strontium doped ZnO nanoparticles capped with L-arginine were synthesized by low cost soft chemical route. These nanoparticles were characterized by X-ray powder diffraction, scanning electron microscopy and energy dispersive X-ray spectroscopy for its crystal structure and surface morphology studies. Linear optical responses of these samples were studied by using ultraviolet-visible (UV-vis) spectroscopy and Fourier transform infrared (FT-IR) spectroscopy. Presence of excitonic peaks for doped and undoped ZnO was revealed by UV-vis data and shift of excitonic peaks towards lower energy with increase in dopant concentration was observed. Rotational and vibrational signatures of capping agent and ZnO were confirmed by FT-IR spectroscopy. Third order nonlinearity (nonlinear refraction and absorption) of Zn(1-x)SrxO-PVA thin films, deposited on the good optical quality glass substrate, were studied by z-scan technique using He-Ne laser (wavelength 632.8 nm) in continuous wavelength regime which shows negative nonlinearity with self-defocusing effect. The large value of n2 (10-4 cm2/W) is obtained for 5 wt% strontium doped ZnO-PVA thin film and is attributed to the thermal effect. Enhanced nonlinear absorption due to reverse saturable absorption and weak free carrier absorption is observed for all undoped and doped ZnO-PVA thin films and is prominent for 5 wt% doping of strontium. Third order nonlinear susceptibility χeff(3) is calculated for all samples.
Ghavi Hossein-Zadeh, N
2016-02-01
In order to describe the lactation curves of milk yield (MY) and composition in buffaloes, seven non-linear mathematical equations (Wood, Dhanoa, Sikka, Nelder, Brody, Dijkstra and Rook) were used. Data were 116,117 test-day records for MY, fat (FP) and protein (PP) percentages of milk from the first three lactations of buffaloes which were collected from 893 herds in the period from 1992 to 2012 by the Animal Breeding Center of Iran. Each model was fitted to monthly production records of dairy buffaloes using the NLIN and MODEL procedures in SAS and the parameters were estimated. The models were tested for goodness of fit using adjusted coefficient of determination (Radj(2)), root means square error (RMSE), Durbin-Watson statistic and Akaike's information criterion (AIC). The Dijkstra model provided the best fit of MY and PP of milk for the first three parities of buffaloes due to the lower values of RMSE and AIC than other models. For the first-parity buffaloes, Sikka and Brody models provided the best fit of FP, but for the second- and third-parity buffaloes, Sikka model and Brody equation provided the best fit of lactation curve for FP, respectively. The results of this study showed that the Wood and Dhanoa equations were able to estimate the time to the peak MY more accurately than the other equations. In addition, Nelder and Dijkstra equations were able to estimate the peak time at second and third parities more accurately than other equations, respectively. Brody function provided more accurate predictions of peak MY over the first three parities of buffaloes. There was generally a positive relationship between 305-day MY and persistency measures and also between peak yield and 305-day MY, calculated by different models, within each lactation in the current study. Overall, evaluation of the different equations used in the current study indicated the potential of the non-linear models for fitting monthly productive records of buffaloes.
NASA Astrophysics Data System (ADS)
Ansari, R.; Faraji Oskouie, M.; Gholami, R.
2016-01-01
In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.
Pollitz, F.; Banerjee, P.; Grijalva, K.; Nagarajan, B.; Burgmann, R.
2008-01-01
The 2004 M=9.2 Sumatra-Andaman earthquake profoundly altered the state of stress in a large volume surrounding the ???1400 km long rupture. Induced mantle flow fields and coupled surface deformation are sensitive to the 3-D rheology structure. To predict the post-seismic motions from this earthquake, relaxation of a 3-D spherical viscoelastic earth model is simulated using the theory of coupled normal modes. The quasi-static deformation basis set and solution on the 3-D model is constructed using: a spherically stratified viscoelastic earth model with a linear stress-strain relation; an aspherical perturbation in viscoelastic structure; a 'static'mode basis set consisting of Earth's spheroidal and toroidal free oscillations; a "viscoelastic" mode basis set; and interaction kernels that describe the coupling among viscoelastic and static modes. Application to the 2004 Sumatra-Andaman earthquake illustrates the profound modification of the post-seismic flow field at depth by a slab structure and similarly large effects on the near-field post-seismic deformation field at Earth's surface. Comparison with post-seismic GPS observations illustrates the extent to which viscoelastic relaxation contributes to the regional post-seismic deformation. ?? Journal compilation ?? 2008 RAS.
Banerjee, Saikat; Ghosh, Rikhia; Bagchi, Biman
2012-03-29
Water-ethanol mixtures exhibit many interesting anomalies, such as negative excess partial molar volume of ethanol, excess sound absorption coefficient at low concentrations, and positive deviation from Raoult's law for vapor pressure, to mention a few. These anomalies have been attributed to different, often contradictory origins, but a quantitative understanding is still lacking. We show by computer simulation and theoretical analyses that these anomalies arise from the sudden emergence of a bicontinuous phase that occurs at a relatively low ethanol concentration of x(eth) ≈ 0.06-0.10 (that amounts to a volume fraction of 0.17-0.26, which is a significant range!). The bicontinuous phase is formed by aggregation of ethanol molecules, resulting in a weak phase transition whose nature is elucidated. We find that the microheterogeneous structure of the mixture gives rise to a pronounced nonmonotonic composition dependence of local compressibility and nonmonotonic dependence in the peak value of the radial distribution function of ethyl groups. A multidimensional free energy surface of pair association is shown to provide a molecular explanation of the known negative excess partial volume of ethanol in terms of parallel orientation and hence better packing of the ethyl groups in the mixture due to hydrophobic interactions. The energy distribution of the ethanol molecules indicates additional energy decay channels that explain the excess sound attenuation coefficient in aqueous alcohol mixtures. We studied the dependence of the solvation of a linear polymer chain on the composition of the water-ethanol solvent. We find that there is a sudden collapse of the polymer at x(eth) ≈ 0.05-a phenomenon which we attribute to the formation of the microheterogeneous structures in the binary mixture at low ethanol concentrations. Together with recent single molecule pulling experiments, these results provide new insight into the behavior of polymer chain and foreign solutes
Udagedara, Indika B; Rukhlenko, Ivan D; Premaratne, Malin
2011-10-10
The energy transport properties of plasmonic waveguides can be analyzed by solving the dispersion relation for surface plasmon-polaritons (SPPs). We use this approach to derive an approximate analytical expression for SPP propagation length when the waveguide is composed of linearly arranged metallic nanoparticles, while assuming that metal losses are small or partially compensated by gain. Applied to metal-dielectric (composite) nanospheres, the obtained expression allows us to optimize the performance of the waveguide and arrive at a number of practical design rules. Specifically, we show that SPP attenuation can be minimized at a certain interparticle distance for transverse modes, but gradually grows for both longitudinal and transverse modes with the increase of particle separation. We also show that the two basic methods of supplying gain to the system, i.e., embedding the particles into a gain medium or having a metal-gain composition for the particles, do not perform equally well and the former method is more efficient, but the way the two methods affect depends on the polarization of SPPs. To investigate the role of the nanoparticles' arrangement in determining SPP characteristics, we follow a purely numerical approach and consider a two-segment bent waveguide as an example. Analyzing the waveguide's transmission shows that it behaves in an oscillatory manner with respect to the angle between the two segments and is therefore higher for certain angles than for the others. This suggests that, in the design of waveguides with bends, careful attention needs to be paid in order to avoid bend angles that yield low transmission and to choose angles that give maximum transmission.
Parametric imaging of viscoelasticity using optical coherence elastography
NASA Astrophysics Data System (ADS)
Wijesinghe, Philip; McLaughlin, Robert A.; Sampson, David D.; Kennedy, Brendan F.
2015-03-01
We demonstrate imaging of soft tissue viscoelasticity using optical coherence elastography. Viscoelastic creep deformation is induced in tissue using step-like compressive loading and the resulting time-varying deformation is measured using phase-sensitive optical coherence tomography. From a series of co-located B-scans, we estimate the local strain rate as a function of time, and parameterize it using a four-parameter Kelvin-Voigt model of viscoelastic creep. The estimated viscoelastic strain and time constant are used to visualize viscoelastic creep in 2D, dual-parameter viscoelastograms. We demonstrate our technique on six silicone tissue-simulating phantoms spanning a range of viscoelastic parameters. As an example in soft tissue, we report viscoelastic contrast between muscle and connective tissue in fresh, ex vivo rat gastrocnemius muscle and mouse abdominal transection. Imaging viscoelastic creep deformation has the potential to provide complementary contrast to existing imaging modalities, and may provide greater insight into disease pathology.
Doyley, Marvin M.; Perreard, Irina; Patterson, Adam. J.; Weaver, John B.; Paulsen, Keith M.
2010-01-01
Purpose: The clinical efficacy of breast elastography may be limited when the authors employ the assumption that soft tissues exhibit linear, frequency-independent isotropic mechanical properties during the recovery of shear modulus. Thus, the purpose of this research was to evaluate the degradation in performance incurred when linear-elastic MR reconstruction methods are applied to phantoms that are fabricated using viscoelastic materials. Methods: To develop phantoms with frequency-dependent mechanical properties, the authors measured the complex modulus of two groups of cylindrical-shaped gelatin samples over a wide frequency range (up to 1 kHz) with the established principles of time-temperature superposition (TTS). In one group of samples, the authors added varying amounts of agar (1%–4%); in the other group, the authors added varying amounts of sucrose (2.5%–20%). To study how viscosity affected the performance of the linear-elastic reconstruction method, the authors constructed an elastically heterogeneous MR phantom to simulate the case where small viscoelastic lesions were surrounded by relatively nonviscous breast tissue. The breast phantom contained four linear, viscoelastic spherical inclusions (10 mm diameter) that were embedded in normal gelatin. The authors imaged the breast phantom with a clinical prototype of a MRE system and recovered the shear-modulus distribution using the overlapping-subzone-linear-elastic image-reconstruction method. The authors compared the recovered shear modulus to that measured using the TTS method. Results: The authors demonstrated that viscoelastic phantoms could be fabricated by including sucrose in the gelation process and that small viscoelastic inclusions were visible in MR elastograms recovered using a linear-elastic MR reconstruction process; however, artifacts that degraded contrast and spatial resolution were more prominent in highly viscoelastic inclusions. The authors also established that the accuracy of
NASA Astrophysics Data System (ADS)
Izbassarov, Daulet; Muradoglu, Metin
2016-01-01
Two-phase viscoelastic systems are computationally studied in a pressure-driven flow with a sudden contraction and expansion using a finite-difference/front-tracking method. The effects of viscoelasticity in drop and bulk fluids are investigated including high Weissenberg and Reynolds number cases up to Wi = 100 and Re = 100. The Finitely Extensible Non-linear Elastic-Chilcott and Rallison (FENE-CR) model is used to account for the fluid viscoelasticity. Extensive computations are performed to examine drop dynamics for a wide range of parameters. It is found that viscoelasticity interacts with drop interface in a non-monotonic and complicated way, and the two-phase viscoelastic systems exhibit very rich dynamics especially in the expansion region. At high Re, the drop undergoes large deformation in the contraction region followed by strong shape oscillations in the downstream of the expansion. For a highly viscous drop, a re-entrant cavity develops in the contraction region at the trailing edge which, in certain cases, grows and eventually causes encapsulation of ambient fluid. The re-entrant cavity formation is initiated at the entrance of the contraction and is highly influenced by the viscoelasticity. Compared to the corresponding straight channel case, the effects of viscoelasticity are reversed in the constricted channel: Viscoelasticity in drop/continuous phase hinders/enhances formation of the re-entrant cavity and entrainment of ambient fluid into main drop. Encapsulation of ambient fluid into main droplet may be another route to produce a compound droplet in microfluidic applications.
Dynamics of slender viscoelastic free jets
NASA Astrophysics Data System (ADS)
Forest, M. Gregory; Wang, Q.
1994-08-01
Previous studies of slender viscoelastic and Newtonian free surface jets have focused mainly on steady state predictions, guided primarily by industrial textile applications. Dynamical analyses and simulations of fiber flows, even the linearized stability analysis of nontrivial steady states, have lagged behind considerable experimental and textile processing observations and advances. The foundational work of Chang and Lodge and Petrie has been extended by the axisymmetric modeling and simulation of Beris and Liu, for Maxwell fluids, and Markovich and Renardy for Johnson-Segalman fluids. The model is a single, nonlinear parabolic equation in which elastic retardation provides dominant smoothing effects. The Maxwell slender jet model that is considered here consists of a quasilinear system of four first-order partial differential equations in one space dimension (along the jet axis). The authors focus on hyperbolic behavior in the slender free surface flow dominated by surface tension, inertia, viscosity, elastic relaxation, and gravity. Analyses and numerical computations of the governing system of quasilinear partial differential equations are presented. Results presented consist of the following: (1) a classification of all locally well-posed boundary conditions; (2) boundary conditions relevant for a take-up fiber spinning simulation, computations of the draw ratio (where we define draw ratio as the ratio of take-up speed to initial speed of the filament) as a function of model parameters; (3) classes of exact and numerical steady solutions together with linearized stability analyses, including temporal stability (to superimposed spatial perturbations) and spatial stability (to time-dependent boundary fluctuations); (4) an upwind numerical algorithm for the full initial-boundary value problem of this 4 x 4 quasilinear hyperbolic system; and (5) dynamical nonlinear simulations in the neighborhood of the steady states to ascertain spatial and temporal stability
Stability analysis of a viscoelastic model for ion-irradiated silicon
NASA Astrophysics Data System (ADS)
Norris, Scott A.
2012-04-01
Recently, elastic stress has been among several mechanisms hypothesized to induce the formation of ordered structures in Si irradiated at normal incidence by energetic ions. To test this hypothesis, we model the thin amorphous film atop ion-irradiated Si as a viscoelastic continuum into which the ion beam continually injects biaxial compressive stress. We find that at normal incidence, the model predicts a steady compressive stress of a magnitude comparable to experiment and molecular dynamics simulation. However, linear stability analysis at normal incidence reveals that this mechanism of stress generation is unconditionally stabilizing due to a purely kinematic material flow, depending on none of the material parameters. Thus, despite plausible conjectures in the literature as to its potential role in pattern formation, we conclude that compressive stress induced by normal-incidence ion bombardment is unlikely to be a source of instability at any energy. In fact, with this result, all hypothesized mechanisms suggested to explain structures on pure materials under normal incidence irradiation have now been overturned, supporting recent theories attributing hexagonal ordered dots to the effects of composition. In addition to this result, we find that the elastic moduli appear in neither the steady film stress nor the leading-order smoothening, suggesting that the primary effects of stress can be captured even if elasticity is neglected. This supports the basic framework recently adopted by other authors and should allow future analytical studies of highly nonplanar surface evolution, in which the beam-injected stress is considered to be an important effect.
NASA Astrophysics Data System (ADS)
Lewis, Christopher; Stewart, Kathleen; Anthamatten, Mitchell
2013-03-01
Reversible hydrogen-bonding between side-groups of linear polymers can sharply influence a material's dynamic mechanical behavior, giving rise to valuable shape memory and self-healing properties. Here, we investigate how bond-strength affects the bulk rheological behavior of functional poly(n-butyl acrylate) (PBA) melts. A series of random copolymers containing three different reversibly bonding groups (aminopyridine, carboxylic acid, and ureidopyrimidinone) were synthesized to systematically vary the side-group hydrogen bond strength (~26, 40, 70 kJ/mol). The materials' volumetric hydrogen-bond energy densities can be tuned by adjusting the side-group composition. By comparing the viscoelastic behavior of materials containing an equivalent bond energy density, with different bonding groups, the efficacy and cooperativity of reversible binding can be directly examined. Melt rheology results are interpreted using a state-of-ease model that assumes continuous mechanical equilibrium between applied stress and resistive stresses of entropic origin arising from a network of reversible bonds. The authors acknowledge support from funding provided by the National Science Foundation under Grant DMR-0906627
Optimized chatter resistance of viscoelastic turning bars
NASA Astrophysics Data System (ADS)
Saffury, J.; Altus, E.
2009-07-01
The regenerative-chatter resistance of a viscoelastic cantilever beam is analyzed and compared to the common dynamic vibration absorber (DVA) system. The beam represents a tool holder for turning operation in machining. The optimum structural parameters are found by maximizing the most negative real part of the frequency response function (FRF). The FRF is found analytically by using an appropriate Green's function. Keeping the cantilever static stiffness constant, further increase in the optimal resistance is achieved by changing the ratio between the two elastic moduli in the 3-parameter solid viscoelastic material model. Three additional chatter resistance indicators are also investigated: the most positive real part of the FRF, the magnitude of the FRF and the resonant frequency. It is found that in contrast to the DVA system, the chatter resistance of the viscoelastic beam is optimal with respect to the above indicators for approximately unique set of the same material parameters.
Viscoelastic love-type surface waves
Borcherdt, Roger D.
2008-01-01
The general theoretical solution for Love-Type surface waves in viscoelastic media provides theoreticalexpressions for the physical characteristics of the waves in elastic as well as anelastic media with arbitraryamounts of intrinsic damping. The general solution yields dispersion and absorption-coefficient curves for the waves as a function of frequency and theamount of intrinsic damping for any chosen viscoelastic model.Numerical results valid for a variety of viscoelastic models provide quantitative estimates of the physicalcharacteristics of the waves pertinent to models of Earth materials ranging from small amounts of damping in the Earth’s crust to moderate and large amounts of damping in soft soils and water-saturated sediments. Numerical results, presented herein, are valid for a wide range of solids and applications.
Collective motion of microswimmers in viscoelastic fluids
NASA Astrophysics Data System (ADS)
Li, Gaojin; Ardekani, Arezoo
2015-11-01
The dynamics of suspension of self-propelled microorganisms show fascinating hydrodynamic phenomena, such as, large scale swarming motion, locally correlated motion, enhanced particle diffusion, and enhanced fluid mixing. Even though many studies have been conducted in a Newtonian fluid, the collective motion of microorganisms in non-Newtonian fluids is less understood. The non-Newtonian fluid rheological properties, such as viscoelasticity and shear-dependent viscosity in saliva, mucus and biofilm, significantly affect the swimming properties and hydrodynamic interaction of microorganisms. In this work, we use direct numerical simulation to investigate the collective motion of rod-like swimmers in viscoelastic fluids. Two swimming types, pusher and puller, are investigated. The background viscoelastic fluid is modeled using an Oldroyd-B constitutive equation. This work is supported by NSF CBET-1445955 and Indiana CTSI TR001108.
Surface energy and viscoelasticity influence caramel adhesiveness.
Wagoner, Ty B; Foegeding, Edward Allen
2017-08-26
Adhesion is an important textural attribute that directs consumer eating patterns and behaviors and can be a negative attribute during food processing. The objectives of this study were to modify caramel formulation and compare adhesion to different materials to quantify the influence of surface energetics and viscoelasticity on caramel adhesiveness. Mechanical adhesion was viewed in the context of pressure sensitive tack theory, where adhesion is controlled by viscoelasticity of the adhesive material and the surface energy relationship of material and probe. Caramel samples varied in total amount of fat and protein, and mechanical adhesion was measured using a series of materials with total surface energies of 39.7-53.2 mJ/m(2) . Adhesiveness decreased as fat and protein content increased, with a significant effect of total surface energy. Viscoelasticity was modeled using creep recovery data fit to a four-element Burger mechanistic model. Burger model parameters representing retarded elasticity correlated strongly with adhesiveness. The results suggest two zones of adhesion based on formulation, one driven by both surface energy relationships-most notably dispersive and total surface energy-and viscoelasticity, and the other driven solely by viscoelasticity. Relationships between mechanical properties and adhesion have been explored but are still not well understood, and could aid in the design of food products with a controlled level of adhesion. The results of this study indicate the importance of considering material surface energy when measuring mechanical adhesion or texture profile analysis. Understanding the relationships between viscoelastic behavior and adhesion can be used to make inferences on perceived texture. © 2017 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Freed, Alan; Leonov, Arkady I.
2002-01-01
This paper, the last in the series, continues developing the nonlinear constitutive relations for non-isothermal, compressible, solid viscoelasticity. We initially discuss a single integral approach, more suitable for the glassy state of rubber-like materials, with basic functionals involved in the thermodynamic description for this type of viscoelasticity. Then we switch our attention to analyzing stability constraints, imposed on the general formulation of the nonlinear theory of solid viscoelasticity. Finally, we discuss specific (known from the literature or new) expressions for material functions that are involved in the constitutive formulations of both the rubber-like and glassy-like, complementary parts of the theory.
Viscoelasticity imaging using ultrasound: parameters and error analysis.
Sridhar, M; Liu, J; Insana, M F
2007-05-07
Techniques are being developed to image viscoelastic features of soft tissues from time-varying strain. A compress-hold-release stress stimulus commonly used in creep-recovery measurements is applied to samples to form images of elastic strain and strain retardance times. While the intended application is diagnostic breast imaging, results in gelatin hydrogels are presented to demonstrate the techniques. The spatiotemporal behaviour of gelatin is described by linear viscoelastic theory formulated for polymeric solids. Measured creep responses of polymers are frequently modelled as sums of exponentials whose time constants describe the delay or retardation of the full strain response. We found the spectrum of retardation times tau to be continuous and bimodal, where the amplitude at each tau represents the relative number of molecular bonds with a given strength and conformation. Such spectra indicate that the molecular weight of the polymer fibres between bonding points is large. Imaging parameters are found by summarizing these complex spectral distributions at each location in the medium with a second-order Voigt rheological model. This simplification reduces the dimensionality of the data for selecting imaging parameters while preserving essential information on how the creeping deformation describes fluid flow and collagen matrix restructuring in the medium. The focus of this paper is on imaging parameter estimation from ultrasonic echo data, and how jitter from hand-held force applicators used for clinical applications propagate through the imaging chain to generate image noise.
Stability of Couette flow past a viscoelastic solid
NASA Astrophysics Data System (ADS)
Hess, Andrew; Gao, Tong
2016-11-01
Soft materials such as polymer gels have been widely used in engineering applications such as microfluidics, micro-optics, and active surfaces. It is important to obtain fundamental understandings of the dynamics of various soft materials when interacting with fluid. Here we investigate the material behavior of a viscoelastic solid film immersed in a simple Newtonian Couette flow. An Eulerian formulation of the Zener model is used to model the solid phase with the surface tension effect. A linear stability analysis is first performed to predict the material instabilities induced by the shear flow field, and provide an analytical basis to the numerical results. The nonlinear fluid/elastic structure interactions are further explored by using the direct numerical simulations. Phase tracking is accomplished through the use of a generalized Cahn-Hilliard model for the surface tension between the gel-like material and the ambient fluid. The coupled Cahn-Hilliard/Navier-Stokes/Zener equations are then solved on a staggered grid through a finite difference method. The results are compared with previous studies for both the hyperelastic and viscoelastic materials.
Nonlinearly viscoelastic analysis of asphalt mixes subjected to shear loading
NASA Astrophysics Data System (ADS)
Huang, Chien-Wei; Masad, Eyad; Muliana, Anastasia H.; Bahia, Hussain
2007-06-01
This study presents the characterization of the nonlinearly viscoelastic behavior of hot mix asphalt (HMA) at different temperatures and strain levels using Schapery’s model. A recursive-iterative numerical algorithm is generated for the nonlinearly viscoelastic response and implemented in a displacement-based finite element (FE) code. Then, this model is employed to describe experimental frequency sweep measurements of two asphalt mixes with fine and coarse gradations under several combined temperatures and shear strain levels. The frequency sweep measurements are converted to creep responses in the time domain using a phenomenological model (Prony series). The master curve is created for each strain level using the time temperature superposition principle (TTSP) with a reference temperature of 40°C. The linear time-dependent parameters of the Prony series are first determined by fitting a master curve created at the lowest strain level, which in this case is 0.01%. The measurements at strain levels higher than 0.01% are analyzed and used to determine the nonlinear parameters. These parameters are shown to increase with increasing strain levels, while the time temperature shift function is found to be independent of strain levels. The FE model with the calibrated time-dependent and nonlinear material parameters is used to simulate the creep experimental tests, and reasonable predictions are shown.
Viscoelasticity imaging using ultrasound: parameters and error analysis
Sridhar, M; Liu, J
2009-01-01
Techniques are being developed to image viscoelastic features of soft tissues from time-varying strain. A compress-hold-release stress stimulus commonly used in creep-recovery measurements is applied to samples to form images of elastic strain and strain retardance times. While the intended application is diagnostic breast imaging, results in gelatin hydrogels are presented to demonstrate the techni