Sample records for linear-scaling density functional

  1. A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2007-11-28

    A density matrix-based time-dependent self-consistent field (D-TDSCF) method for the calculation of dynamic polarizabilities and first hyperpolarizabilities using the Hartree-Fock and Kohn-Sham density functional theory approaches is presented. The D-TDSCF method allows us to reduce the asymptotic scaling behavior of the computational effort from cubic to linear for systems with a nonvanishing band gap. The linear scaling is achieved by combining a density matrix-based reformulation of the TDSCF equations with linear-scaling schemes for the formation of Fock- or Kohn-Sham-type matrices. In our reformulation only potentially linear-scaling matrices enter the formulation and efficient sparse algebra routines can be employed. Furthermore, the corresponding formulas for the first hyperpolarizabilities are given in terms of zeroth- and first-order one-particle reduced density matrices according to Wigner's (2n+1) rule. The scaling behavior of our method is illustrated for first exemplary calculations with systems of up to 1011 atoms and 8899 basis functions.

  2. Variational and robust density fitting of four-center two-electron integrals in local metrics

    NASA Astrophysics Data System (ADS)

    Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjærgaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Høst, Stinne; Salek, Paweł

    2008-09-01

    Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.

  3. Variational and robust density fitting of four-center two-electron integrals in local metrics.

    PubMed

    Reine, Simen; Tellgren, Erik; Krapp, Andreas; Kjaergaard, Thomas; Helgaker, Trygve; Jansik, Branislav; Host, Stinne; Salek, Paweł

    2008-09-14

    Density fitting is an important method for speeding up quantum-chemical calculations. Linear-scaling developments in Hartree-Fock and density-functional theories have highlighted the need for linear-scaling density-fitting schemes. In this paper, we present a robust variational density-fitting scheme that allows for solving the fitting equations in local metrics instead of the traditional Coulomb metric, as required for linear scaling. Results of fitting four-center two-electron integrals in the overlap and the attenuated Gaussian damped Coulomb metric are presented, and we conclude that density fitting can be performed in local metrics at little loss of chemical accuracy. We further propose to use this theory in linear-scaling density-fitting developments.

  4. Linear-scaling method for calculating nuclear magnetic resonance chemical shifts using gauge-including atomic orbitals within Hartree-Fock and density-functional theory.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2007-08-07

    Details of a new density matrix-based formulation for calculating nuclear magnetic resonance chemical shifts at both Hartree-Fock and density functional theory levels are presented. For systems with a nonvanishing highest occupied molecular orbital-lowest unoccupied molecular orbital gap, the method allows us to reduce the asymptotic scaling order of the computational effort from cubic to linear, so that molecular systems with 1000 and more atoms can be tackled with today's computers. The key feature is a reformulation of the coupled-perturbed self-consistent field (CPSCF) theory in terms of the one-particle density matrix (D-CPSCF), which avoids entirely the use of canonical MOs. By means of a direct solution for the required perturbed density matrices and the adaptation of linear-scaling integral contraction schemes, the overall scaling of the computational effort is reduced to linear. A particular focus of our formulation is to ensure numerical stability when sparse-algebra routines are used to obtain an overall linear-scaling behavior.

  5. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package.

    PubMed

    Womack, James C; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-28

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  6. Self-consistent implementation of meta-GGA functionals for the ONETEP linear-scaling electronic structure package

    NASA Astrophysics Data System (ADS)

    Womack, James C.; Mardirossian, Narbe; Head-Gordon, Martin; Skylaris, Chris-Kriton

    2016-11-01

    Accurate and computationally efficient exchange-correlation functionals are critical to the successful application of linear-scaling density functional theory (DFT). Local and semi-local functionals of the density are naturally compatible with linear-scaling approaches, having a general form which assumes the locality of electronic interactions and which can be efficiently evaluated by numerical quadrature. Presently, the most sophisticated and flexible semi-local functionals are members of the meta-generalized-gradient approximation (meta-GGA) family, and depend upon the kinetic energy density, τ, in addition to the charge density and its gradient. In order to extend the theoretical and computational advantages of τ-dependent meta-GGA functionals to large-scale DFT calculations on thousands of atoms, we have implemented support for τ-dependent meta-GGA functionals in the ONETEP program. In this paper we lay out the theoretical innovations necessary to implement τ-dependent meta-GGA functionals within ONETEP's linear-scaling formalism. We present expressions for the gradient of the τ-dependent exchange-correlation energy, necessary for direct energy minimization. We also derive the forms of the τ-dependent exchange-correlation potential and kinetic energy density in terms of the strictly localized, self-consistently optimized orbitals used by ONETEP. To validate the numerical accuracy of our self-consistent meta-GGA implementation, we performed calculations using the B97M-V and PKZB meta-GGAs on a variety of small molecules. Using only a minimal basis set of self-consistently optimized local orbitals, we obtain energies in excellent agreement with large basis set calculations performed using other codes. Finally, to establish the linear-scaling computational cost and applicability of our approach to large-scale calculations, we present the outcome of self-consistent meta-GGA calculations on amyloid fibrils of increasing size, up to tens of thousands of atoms.

  7. Linear Scaling Density Functional Calculations with Gaussian Orbitals

    NASA Technical Reports Server (NTRS)

    Scuseria, Gustavo E.

    1999-01-01

    Recent advances in linear scaling algorithms that circumvent the computational bottlenecks of large-scale electronic structure simulations make it possible to carry out density functional calculations with Gaussian orbitals on molecules containing more than 1000 atoms and 15000 basis functions using current workstations and personal computers. This paper discusses the recent theoretical developments that have led to these advances and demonstrates in a series of benchmark calculations the present capabilities of state-of-the-art computational quantum chemistry programs for the prediction of molecular structure and properties.

  8. Redshift-space distortions with the halo occupation distribution - II. Analytic model

    NASA Astrophysics Data System (ADS)

    Tinker, Jeremy L.

    2007-01-01

    We present an analytic model for the galaxy two-point correlation function in redshift space. The cosmological parameters of the model are the matter density Ωm, power spectrum normalization σ8, and velocity bias of galaxies αv, circumventing the linear theory distortion parameter β and eliminating nuisance parameters for non-linearities. The model is constructed within the framework of the halo occupation distribution (HOD), which quantifies galaxy bias on linear and non-linear scales. We model one-halo pairwise velocities by assuming that satellite galaxy velocities follow a Gaussian distribution with dispersion proportional to the virial dispersion of the host halo. Two-halo velocity statistics are a combination of virial motions and host halo motions. The velocity distribution function (DF) of halo pairs is a complex function with skewness and kurtosis that vary substantially with scale. Using a series of collisionless N-body simulations, we demonstrate that the shape of the velocity DF is determined primarily by the distribution of local densities around a halo pair, and at fixed density the velocity DF is close to Gaussian and nearly independent of halo mass. We calibrate a model for the conditional probability function of densities around halo pairs on these simulations. With this model, the full shape of the halo velocity DF can be accurately calculated as a function of halo mass, radial separation, angle and cosmology. The HOD approach to redshift-space distortions utilizes clustering data from linear to non-linear scales to break the standard degeneracies inherent in previous models of redshift-space clustering. The parameters of the occupation function are well constrained by real-space clustering alone, separating constraints on bias and cosmology. We demonstrate the ability of the model to separately constrain Ωm,σ8 and αv in models that are constructed to have the same value of β at large scales as well as the same finger-of-god distortions at small scales.

  9. Canonical-ensemble extended Lagrangian Born-Oppenheimer molecular dynamics for the linear scaling density functional theory.

    PubMed

    Hirakawa, Teruo; Suzuki, Teppei; Bowler, David R; Miyazaki, Tsuyoshi

    2017-10-11

    We discuss the development and implementation of a constant temperature (NVT) molecular dynamics scheme that combines the Nosé-Hoover chain thermostat with the extended Lagrangian Born-Oppenheimer molecular dynamics (BOMD) scheme, using a linear scaling density functional theory (DFT) approach. An integration scheme for this canonical-ensemble extended Lagrangian BOMD is developed and discussed in the context of the Liouville operator formulation. Linear scaling DFT canonical-ensemble extended Lagrangian BOMD simulations are tested on bulk silicon and silicon carbide systems to evaluate our integration scheme. The results show that the conserved quantity remains stable with no systematic drift even in the presence of the thermostat.

  10. On the linearity of tracer bias around voids

    NASA Astrophysics Data System (ADS)

    Pollina, Giorgia; Hamaus, Nico; Dolag, Klaus; Weller, Jochen; Baldi, Marco; Moscardini, Lauro

    2017-07-01

    The large-scale structure of the Universe can be observed only via luminous tracers of the dark matter. However, the clustering statistics of tracers are biased and depend on various properties, such as their host-halo mass and assembly history. On very large scales, this tracer bias results in a constant offset in the clustering amplitude, known as linear bias. Towards smaller non-linear scales, this is no longer the case and tracer bias becomes a complicated function of scale and time. We focus on tracer bias centred on cosmic voids, I.e. depressions of the density field that spatially dominate the Universe. We consider three types of tracers: galaxies, galaxy clusters and active galactic nuclei, extracted from the hydrodynamical simulation Magneticum Pathfinder. In contrast to common clustering statistics that focus on auto-correlations of tracers, we find that void-tracer cross-correlations are successfully described by a linear bias relation. The tracer-density profile of voids can thus be related to their matter-density profile by a single number. We show that it coincides with the linear tracer bias extracted from the large-scale auto-correlation function and expectations from theory, if sufficiently large voids are considered. For smaller voids we observe a shift towards higher values. This has important consequences on cosmological parameter inference, as the problem of unknown tracer bias is alleviated up to a constant number. The smallest scales in existing data sets become accessible to simpler models, providing numerous modes of the density field that have been disregarded so far, but may help to further reduce statistical errors in constraining cosmology.

  11. The correlation function for density perturbations in an expanding universe. I - Linear theory

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1977-01-01

    The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.

  12. LSMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eisenbach, Markus; Li, Ying Wai; Liu, Xianglin

    2017-12-01

    LSMS is a first principles, Density Functional theory based, electronic structure code targeted mainly at materials applications. LSMS calculates the local spin density approximation to the diagonal part of the electron Green's function. The electron/spin density and energy are easily determined once the Green's function is known. Linear scaling with system size is achieved in the LSMS by using several unique properties of the real space multiple scattering approach to the Green's function.

  13. Computation of indirect nuclear spin-spin couplings with reduced complexity in pure and hybrid density functional approximations.

    PubMed

    Luenser, Arne; Kussmann, Jörg; Ochsenfeld, Christian

    2016-09-28

    We present a (sub)linear-scaling algorithm to determine indirect nuclear spin-spin coupling constants at the Hartree-Fock and Kohn-Sham density functional levels of theory. Employing efficient integral algorithms and sparse algebra routines, an overall (sub)linear scaling behavior can be obtained for systems with a non-vanishing HOMO-LUMO gap. Calculations on systems with over 1000 atoms and 20 000 basis functions illustrate the performance and accuracy of our reference implementation. Specifically, we demonstrate that linear algebra dominates the runtime of conventional algorithms for 10 000 basis functions and above. Attainable speedups of our method exceed 6 × in total runtime and 10 × in the linear algebra steps for the tested systems. Furthermore, a convergence study of spin-spin couplings of an aminopyrazole peptide upon inclusion of the water environment is presented: using the new method it is shown that large solvent spheres are necessary to converge spin-spin coupling values.

  14. Exchange Energy Density Functionals that reproduce the Linear Response Function of the Free Electron Gas

    NASA Astrophysics Data System (ADS)

    García-Aldea, David; Alvarellos, J. E.

    2009-03-01

    We present several nonlocal exchange energy density functionals that reproduce the linear response function of the free electron gas. These nonlocal functionals are constructed following a similar procedure used previously for nonlocal kinetic energy density functionals by Chac'on-Alvarellos-Tarazona, Garc'ia-Gonz'alez et al., Wang-Govind-Carter and Garc'ia-Aldea-Alvarellos. The exchange response function is not known but we have used the approximate response function developed by Utsumi and Ichimaru, even we must remark that the same ansatz can be used to reproduce any other response function with the same scaling properties. We have developed two families of new nonlocal functionals: one is constructed with a mathematical structure based on the LDA approximation -- the Dirac functional for the exchange - and for the second one the structure of the second order gradient expansion approximation is took as a model. The functionals are constructed is such a way that they can be used in localized systems (using real space calculations) and in extended systems (using the momentum space, and achieving a quasilinear scaling with the system size if a constant reference electron density is defined).

  15. Simulation of electron energy loss spectra of nanomaterials with linear-scaling density functional theory

    DOE PAGES

    Tait, E. W.; Ratcliff, L. E.; Payne, M. C.; ...

    2016-04-20

    Experimental techniques for electron energy loss spectroscopy (EELS) combine high energy resolution with high spatial resolution. They are therefore powerful tools for investigating the local electronic structure of complex systems such as nanostructures, interfaces and even individual defects. Interpretation of experimental electron energy loss spectra is often challenging and can require theoretical modelling of candidate structures, which themselves may be large and complex, beyond the capabilities of traditional cubic-scaling density functional theory. In this work, we present functionality to compute electron energy loss spectra within the onetep linear-scaling density functional theory code. We first demonstrate that simulated spectra agree withmore » those computed using conventional plane wave pseudopotential methods to a high degree of precision. The ability of onetep to tackle large problems is then exploited to investigate convergence of spectra with respect to supercell size. As a result, we apply the novel functionality to a study of the electron energy loss spectra of defects on the (1 0 1) surface of an anatase slab and determine concentrations of defects which might be experimentally detectable.« less

  16. Linear-scaling density-functional simulations of charged point defects in Al2O3 using hierarchical sparse matrix algebra.

    PubMed

    Hine, N D M; Haynes, P D; Mostofi, A A; Payne, M C

    2010-09-21

    We present calculations of formation energies of defects in an ionic solid (Al(2)O(3)) extrapolated to the dilute limit, corresponding to a simulation cell of infinite size. The large-scale calculations required for this extrapolation are enabled by developments in the approach to parallel sparse matrix algebra operations, which are central to linear-scaling density-functional theory calculations. The computational cost of manipulating sparse matrices, whose sizes are determined by the large number of basis functions present, is greatly improved with this new approach. We present details of the sparse algebra scheme implemented in the ONETEP code using hierarchical sparsity patterns, and demonstrate its use in calculations on a wide range of systems, involving thousands of atoms on hundreds to thousands of parallel processes.

  17. Effective model hierarchies for dynamic and static classical density functional theories

    NASA Astrophysics Data System (ADS)

    Majaniemi, S.; Provatas, N.; Nonomura, M.

    2010-09-01

    The origin and methodology of deriving effective model hierarchies are presented with applications to solidification of crystalline solids. In particular, it is discussed how the form of the equations of motion and the effective parameters on larger scales can be obtained from the more microscopic models. It will be shown that tying together the dynamic structure of the projection operator formalism with static classical density functional theories can lead to incomplete (mass) transport properties even though the linearized hydrodynamics on large scales is correctly reproduced. To facilitate a more natural way of binding together the dynamics of the macrovariables and classical density functional theory, a dynamic generalization of density functional theory based on the nonequilibrium generating functional is suggested.

  18. Linear Tidal Vestige Found in the WM Sheet

    NASA Astrophysics Data System (ADS)

    Lee, Jounghun; Kim, Suk; Rey, Soo-Chang

    2018-06-01

    We present a vestige of the linear tidal influence on the spin orientations of the constituent galaxies of the WM sheet discovered in the vicinity of the Virgo Cluster and the Local Void. The WM sheet is chosen as an optimal target since it has a rectangular parallelepiped-like shape whose three sides are in parallel with the supergalactic Cartesian axes. Determining three probability density functions of the absolute values of the supergalactic Cartesian components of the spin vectors of the WM sheet galaxies, we investigate their alignments with the principal directions of the surrounding large-scale tidal field. When the WM sheet galaxies located in the central region within the distance of 2 h ‑1 Mpc are excluded, the spin vectors of the remaining WM sheet galaxies are found to be weakly aligned, strongly aligned, and strongly anti-aligned with the minor, intermediate, and major principal directions of the surrounding large-scale tidal field, respectively. To examine whether or not the origin of the observed alignment tendency from the WM sheet is the linear tidal effect, we infer the eigenvalues of the linear tidal tensor from the axial ratios of the WM sheet with the help of the Zeldovich approximation and conduct a full analytic evaluation of the prediction of the linear tidal torque model for the three probability density functions. A detailed comparison between the analytical and the observational results reveals a good quantitative agreement not only in the behaviors but also in the amplitudes of the three probability density functions.

  19. Superfluidity in Strongly Interacting Fermi Systems with Applications to Neutron Stars

    NASA Astrophysics Data System (ADS)

    Khodel, Vladimir

    The rotational dynamics and cooling history of neutron stars is influenced by the superfluid properties of nucleonic matter. In this thesis a novel separation technique is applied to the analysis of the gap equation for neutron matter. It is shown that the problem can be recast into two tasks: solving a simple system of linear integral equations for the shape functions of various components of the gap function and solving a system of non-linear algebraic equations for their scale factors. Important simplifications result from the fact that the ratio of the gap amplitude to the Fermi energy provides a small parameter in this problem. The relationship between the analytic structure of the shape functions and the density interval for the existence of superfluid gap is discussed. It is shown that in 1S0 channel the position of the first zero of the shape function gives an estimate of the upper critical density. The relation between the resonant behavior of the two-neutron interaction in this channel and the density dependence of the gap is established. The behavior of the gap in the limits of low and high densities is analyzed. Various approaches to calculation of the scale factors are considered: model cases, angular averaging, and perturbation theory. An optimization-based approach is proposed. The shape functions and scale factors for Argonne υ14 and υ18 potentials are determined in singlet and triplet channels. Dependence of the solution on the value of effective mass and medium polarization is studied.

  20. Multi-scale and Multi-physics Numerical Methods for Modeling Transport in Mesoscopic Systems

    DTIC Science & Technology

    2014-10-13

    function and wide band Fast multipole methods for Hankel waves. (2) a new linear scaling discontinuous Galerkin density functional theory, which provide a...inflow boundary condition for Wigner quantum transport equations. Also, a book titled "Computational Methods for Electromagnetic Phenomena...equationsin layered media with FMM for Bessel functions , Science China Mathematics, (12 2013): 2561. doi: TOTAL: 6 Number of Papers published in peer

  1. Reconstructing the Initial Density Field of the Local Universe: Methods and Tests with Mock Catalogs

    NASA Astrophysics Data System (ADS)

    Wang, Huiyuan; Mo, H. J.; Yang, Xiaohu; van den Bosch, Frank C.

    2013-07-01

    Our research objective in this paper is to reconstruct an initial linear density field, which follows the multivariate Gaussian distribution with variances given by the linear power spectrum of the current cold dark matter model and evolves through gravitational instabilities to the present-day density field in the local universe. For this purpose, we develop a Hamiltonian Markov Chain Monte Carlo method to obtain the linear density field from a posterior probability function that consists of two components: a prior of a Gaussian density field with a given linear spectrum and a likelihood term that is given by the current density field. The present-day density field can be reconstructed from galaxy groups using the method developed in Wang et al. Using a realistic mock Sloan Digital Sky Survey DR7, obtained by populating dark matter halos in the Millennium simulation (MS) with galaxies, we show that our method can effectively and accurately recover both the amplitudes and phases of the initial, linear density field. To examine the accuracy of our method, we use N-body simulations to evolve these reconstructed initial conditions to the present day. The resimulated density field thus obtained accurately matches the original density field of the MS in the density range 0.3 \\lesssim \\rho /\\bar{\\rho } \\lesssim 20 without any significant bias. In particular, the Fourier phases of the resimulated density fields are tightly correlated with those of the original simulation down to a scale corresponding to a wavenumber of ~1 h Mpc-1, much smaller than the translinear scale, which corresponds to a wavenumber of ~0.15 h Mpc-1.

  2. The f ( R ) halo mass function in the cosmic web

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun-Bates, F. von; Winther, H.A.; Alonso, D.

    An important indicator of modified gravity is the effect of the local environment on halo properties. This paper examines the influence of the local tidal structure on the halo mass function, the halo orientation, spin and the concentration-mass relation. We use the excursion set formalism to produce a halo mass function conditional on large-scale structure. Our simple model agrees well with simulations on large scales at which the density field is linear or weakly non-linear. Beyond this, our principal result is that f ( R ) does affect halo abundances, the halo spin parameter and the concentration-mass relationship in anmore » environment-independent way, whereas we find no appreciable deviation from \\text(ΛCDM) for the mass function with fixed environment density, nor the alignment of the orientation and spin vectors of the halo to the eigenvectors of the local cosmic web. There is a general trend for greater deviation from \\text(ΛCDM) in underdense environments and for high-mass haloes, as expected from chameleon screening.« less

  3. Large-scale galaxy flow from a non-gravitational impulse

    NASA Technical Reports Server (NTRS)

    Hogan, Craig J.; Kaiser, Nick

    1989-01-01

    A theory is presented describing linear perturbations of an expanding universe containing multiple, independently perturbed, collisionless, gravitationally coupled constituents. Solutions are found in the limit where one initially unperturbed component dominates the total density. The theory is applied to perturbations generated by a nongravitational process in one or more of the light components, as would occur in explosive or radiation-pressure-instability theories of galaxy formation. The apparent dynamical density parameter and correlations between density and velocity amplitude for various populations, are evaluated as a function of cosmic scale factor.

  4. Preface: Introductory Remarks: Linear Scaling Methods

    NASA Astrophysics Data System (ADS)

    Bowler, D. R.; Fattebert, J.-L.; Gillan, M. J.; Haynes, P. D.; Skylaris, C.-K.

    2008-07-01

    It has been just over twenty years since the publication of the seminal paper on molecular dynamics with ab initio methods by Car and Parrinello [1], and the contribution of density functional theory (DFT) and the related techniques to physics, chemistry, materials science, earth science and biochemistry has been huge. Nevertheless, significant improvements are still being made to the performance of these standard techniques; recent work suggests that speed improvements of one or even two orders of magnitude are possible [2]. One of the areas where major progress has long been expected is in O(N), or linear scaling, DFT, in which the computer effort is proportional to the number of atoms. Linear scaling DFT methods have been in development for over ten years [3] but we are now in an exciting period where more and more research groups are working on these methods. Naturally there is a strong and continuing effort to improve the efficiency of the methods and to make them more robust. But there is also a growing ambition to apply them to challenging real-life problems. This special issue contains papers submitted following the CECAM Workshop 'Linear-scaling ab initio calculations: applications and future directions', held in Lyon from 3-6 September 2007. A noteworthy feature of the workshop is that it included a significant number of presentations involving real applications of O(N) methods, as well as work to extend O(N) methods into areas of greater accuracy (correlated wavefunction methods, quantum Monte Carlo, TDDFT) and large scale computer architectures. As well as explicitly linear scaling methods, the conference included presentations on techniques designed to accelerate and improve the efficiency of standard (that is non-linear-scaling) methods; this highlights the important question of crossover—that is, at what size of system does it become more efficient to use a linear-scaling method? As well as fundamental algorithmic questions, this brings up implementation questions relating to parallelization (particularly with multi-core processors starting to dominate the market) and inherent scaling and basis sets (in both normal and linear scaling codes). For now, the answer seems to lie between 100-1,000 atoms, though this depends on the type of simulation used among other factors. Basis sets are still a problematic question in the area of electronic structure calculations. The linear scaling community has largely split into two camps: those using relatively small basis sets based on local atomic-like functions (where systematic convergence to the full basis set limit is hard to achieve); and those that use necessarily larger basis sets which allow convergence systematically and therefore are the localised equivalent of plane waves. Related to basis sets is the study of Wannier functions, on which some linear scaling methods are based and which give a good point of contact with traditional techniques; they are particularly interesting for modelling unoccupied states with linear scaling methods. There are, of course, as many approaches to linear scaling solution for the density matrix as there are groups in the area, though there are various broad areas: McWeeny-based methods, fragment-based methods, recursion methods, and combinations of these. While many ideas have been in development for several years, there are still improvements emerging, as shown by the rich variety of the talks below. Applications using O(N) DFT methods are now starting to emerge, though they are still clearly not trivial. Once systems to be simulated cross the 10,000 atom barrier, only linear scaling methods can be applied, even with the most efficient standard techniques. One of the most challenging problems remaining, now that ab initio methods can be applied to large systems, is the long timescale problem. Although much of the work presented was concerned with improving the performance of the codes, and applying them to scientificallyimportant problems, there was another important theme: extending functionality. The search for greater accuracy has given an implementation of density functional designed to model van der Waals interactions accurately as well as local correlation, TDDFT and QMC and GW methods which, while not explicitly O(N), take advantage of localisation. All speakers at the workshop were invited to contribute to this issue, but not all were able to do this. Hence it is useful to give a complete list of the talks presented, with the names of the sessions; however, many talks fell within more than one area. This is an exciting time for linear scaling methods, which are already starting to contribute significantly to important scientific problems. Applications to nanostructures and biomolecules A DFT study on the structural stability of Ge 3D nanostructures on Si(001) using CONQUEST Tsuyoshi Miyazaki, D R Bowler, M J Gillan, T Otsuka and T Ohno Large scale electronic structure calculation theory and several applications Takeo Fujiwara and Takeo Hoshi ONETEP:Linear-scaling DFT with plane waves Chris-Kriton Skylaris, Peter D Haynes, Arash A Mostofi, Mike C Payne Maximally-localised Wannier functions as building blocks for large-scale electronic structure calculations Arash A Mostofi and Nicola Marzari A linear scaling three dimensional fragment method for ab initio calculations Lin-Wang Wang, Zhengji Zhao, Juan Meza Peta-scalable reactive Molecular dynamics simulation of mechanochemical processes Aiichiro Nakano, Rajiv K. Kalia, Ken-ichi Nomura, Fuyuki Shimojo and Priya Vashishta Recent developments and applications of the real-space multigrid (RMG) method Jerzy Bernholc, M Hodak, W Lu, and F Ribeiro Energy minimisation functionals and algorithms CONQUEST: A linear scaling DFT Code David R Bowler, Tsuyoshi Miyazaki, Antonio Torralba, Veronika Brazdova, Milica Todorovic, Takao Otsuka and Mike Gillan Kernel optimisation and the physical significance of optimised local orbitals in the ONETEP code Peter Haynes, Chris-Kriton Skylaris, Arash Mostofi and Mike Payne A miscellaneous overview of SIESTA algorithms Jose M Soler Wavelets as a basis set for electronic structure calculations and electrostatic problems Stefan Goedecker Wavelets as a basis set for linear scaling electronic structure calculationsMark Rayson O(N) Krylov subspace method for large-scale ab initio electronic structure calculations Taisuke Ozaki Linear scaling calculations with the divide-and-conquer approach and with non-orthogonal localized orbitals Weitao Yang Toward efficient wavefunction based linear scaling energy minimization Valery Weber Accurate O(N) first-principles DFT calculations using finite differences and confined orbitals Jean-Luc Fattebert Linear-scaling methods in dynamics simulations or beyond DFT and ground state properties An O(N) time-domain algorithm for TDDFT Guan Hua Chen Local correlation theory and electronic delocalization Joseph Subotnik Ab initio molecular dynamics with linear scaling: foundations and applications Eiji Tsuchida Towards a linear scaling Car-Parrinello-like approach to Born-Oppenheimer molecular dynamics Thomas Kühne, Michele Ceriotti, Matthias Krack and Michele Parrinello Partial linear scaling for quantum Monte Carlo calculations on condensed matter Mike Gillan Exact embedding of local defects in crystals using maximally localized Wannier functions Eric Cancès Faster GW calculations in larger model structures using ultralocalized nonorthogonal Wannier functions Paolo Umari Other approaches for linear-scaling, including methods formetals Partition-of-unity finite element method for large, accurate electronic-structure calculations of metals John E Pask and Natarajan Sukumar Semiclassical approach to density functional theory Kieron Burke Ab initio transport calculations in defected carbon nanotubes using O(N) techniques Blanca Biel, F J Garcia-Vidal, A Rubio and F Flores Large-scale calculations with the tight-binding (screened) KKR method Rudolf Zeller Acknowledgments We gratefully acknowledge funding for the workshop from the UK CCP9 network, CECAM and the ESF through the PsiK network. DRB, PDH and CKS are funded by the Royal Society. References [1] Car R and Parrinello M 1985 Phys. Rev. Lett. 55 2471 [2] Kühne T D, Krack M, Mohamed F R and Parrinello M 2007 Phys. Rev. Lett. 98 066401 [3] Goedecker S 1999 Rev. Mod. Phys. 71 1085

  5. Simulations of nanocrystals under pressure: combining electronic enthalpy and linear-scaling density-functional theory.

    PubMed

    Corsini, Niccolò R C; Greco, Andrea; Hine, Nicholas D M; Molteni, Carla; Haynes, Peter D

    2013-08-28

    We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.

  6. Simulations of nanocrystals under pressure: Combining electronic enthalpy and linear-scaling density-functional theory

    NASA Astrophysics Data System (ADS)

    Corsini, Niccolò R. C.; Greco, Andrea; Hine, Nicholas D. M.; Molteni, Carla; Haynes, Peter D.

    2013-08-01

    We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], 10.1103/PhysRevLett.94.145501, it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.

  7. Density distribution function of a self-gravitating isothermal compressible turbulent fluid in the context of molecular clouds ensembles

    NASA Astrophysics Data System (ADS)

    Donkov, Sava; Stefanov, Ivan Z.

    2018-03-01

    We have set ourselves the task of obtaining the probability distribution function of the mass density of a self-gravitating isothermal compressible turbulent fluid from its physics. We have done this in the context of a new notion: the molecular clouds ensemble. We have applied a new approach that takes into account the fractal nature of the fluid. Using the medium equations, under the assumption of steady state, we show that the total energy per unit mass is an invariant with respect to the fractal scales. As a next step we obtain a non-linear integral equation for the dimensionless scale Q which is the third root of the integral of the probability distribution function. It is solved approximately up to the leading-order term in the series expansion. We obtain two solutions. They are power-law distributions with different slopes: the first one is -1.5 at low densities, corresponding to an equilibrium between all energies at a given scale, and the second one is -2 at high densities, corresponding to a free fall at small scales.

  8. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals.

    PubMed

    Zuehlsdorff, T J; Hine, N D M; Payne, M C; Haynes, P D

    2015-11-28

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on a small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.

  9. Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations.

    PubMed

    Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg

    2017-05-09

    A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.

  10. Daubechies wavelets for linear scaling density functional theory.

    PubMed

    Mohr, Stephan; Ratcliff, Laura E; Boulanger, Paul; Genovese, Luigi; Caliste, Damien; Deutsch, Thierry; Goedecker, Stefan

    2014-05-28

    We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized adaptively contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energies and the forces acting on the ions can be calculated in this basis with the same accuracy as if they were calculated directly in a Daubechies wavelets basis, provided that the amplitude of these adaptively contracted basis functions is sufficiently small on the surface of the localization region, which is guaranteed by the optimization procedure described in this work. This approach reduces the computational costs of density functional theory calculations, and can be combined with sparse matrix algebra to obtain linear scaling with respect to the number of electrons in the system. Calculations on systems of 10,000 atoms or more thus become feasible in a systematic basis set with moderate computational resources. Further computational savings can be achieved by exploiting the similarity of the adaptively contracted basis functions for closely related environments, e.g., in geometry optimizations or combined calculations of neutral and charged systems.

  11. Generating log-normal mock catalog of galaxies in redshift space

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Makiya, Ryu; Chiang, Chi-Ting; Jeong, Donghui; Saito, Shun; Komatsu, Eiichiro

    2017-10-01

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear bias relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.

  12. On the Validity of the Streaming Model for the Redshift-Space Correlation Function in the Linear Regime

    NASA Astrophysics Data System (ADS)

    Fisher, Karl B.

    1995-08-01

    The relation between the galaxy correlation functions in real-space and redshift-space is derived in the linear regime by an appropriate averaging of the joint probability distribution of density and velocity. The derivation recovers the familiar linear theory result on large scales but has the advantage of clearly revealing the dependence of the redshift distortions on the underlying peculiar velocity field; streaming motions give rise to distortions of θ(Ω0.6/b) while variations in the anisotropic velocity dispersion yield terms of order θ(Ω1.2/b2). This probabilistic derivation of the redshift-space correlation function is similar in spirit to the derivation of the commonly used "streaming" model, in which the distortions are given by a convolution of the real-space correlation function with a velocity distribution function. The streaming model is often used to model the redshift-space correlation function on small, highly nonlinear, scales. There have been claims in the literature, however, that the streaming model is not valid in the linear regime. Our analysis confirms this claim, but we show that the streaming model can be made consistent with linear theory provided that the model for the streaming has the functional form predicted by linear theory and that the velocity distribution is chosen to be a Gaussian with the correct linear theory dispersion.

  13. Dispersion interactions in Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Andrinopoulos, Lampros; Hine, Nicholas; Mostofi, Arash

    2012-02-01

    Semilocal functionals in Density Functional Theory (DFT) achieve high accuracy simulating a wide range of systems, but miss the effect of dispersion (vdW) interactions, important in weakly bound systems. We study two different methods to include vdW in DFT: First, we investigate a recent approach [1] to evaluate the vdW contribution to the total energy using maximally-localized Wannier functions. Using a set of simple dimers, we show that it has a number of shortcomings that hamper its predictive power; we then develop and implement a series of improvements [2] and obtain binding energies and equilibrium geometries in closer agreement to quantum-chemical coupled-cluster calculations. Second, we implement the vdW-DF functional [3], using Soler's method [4], within ONETEP [5], a linear-scaling DFT code, and apply it to a range of systems. This method within a linear-scaling DFT code allows the simulation of weakly bound systems of larger scale, such as organic/inorganic interfaces, biological systems and implicit solvation models. [1] P. Silvestrelli, JPC A 113, 5224 (2009). [2] L. Andrinopoulos et al, JCP 135, 154105 (2011). [3] M. Dion et al, PRL 92, 246401 (2004). [4] G. Rom'an-P'erez, J.M. Soler, PRL 103, 096102 (2009). [5] C. Skylaris et al, JCP 122, 084119 (2005).

  14. A real-space stochastic density matrix approach for density functional electronic structure.

    PubMed

    Beck, Thomas L

    2015-12-21

    The recent development of real-space grid methods has led to more efficient, accurate, and adaptable approaches for large-scale electrostatics and density functional electronic structure modeling. With the incorporation of multiscale techniques, linear-scaling real-space solvers are possible for density functional problems if localized orbitals are used to represent the Kohn-Sham energy functional. These methods still suffer from high computational and storage overheads, however, due to extensive matrix operations related to the underlying wave function grid representation. In this paper, an alternative stochastic method is outlined that aims to solve directly for the one-electron density matrix in real space. In order to illustrate aspects of the method, model calculations are performed for simple one-dimensional problems that display some features of the more general problem, such as spatial nodes in the density matrix. This orbital-free approach may prove helpful considering a future involving increasingly parallel computing architectures. Its primary advantage is the near-locality of the random walks, allowing for simultaneous updates of the density matrix in different regions of space partitioned across the processors. In addition, it allows for testing and enforcement of the particle number and idempotency constraints through stabilization of a Feynman-Kac functional integral as opposed to the extensive matrix operations in traditional approaches.

  15. Back in the saddle: large-deviation statistics of the cosmic log-density field

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Codis, S.; Pichon, C.; Bernardeau, F.; Reimberg, P.

    2016-08-01

    We present a first principle approach to obtain analytical predictions for spherically averaged cosmic densities in the mildly non-linear regime that go well beyond what is usually achieved by standard perturbation theory. A large deviation principle allows us to compute the leading order cumulants of average densities in concentric cells. In this symmetry, the spherical collapse model leads to cumulant generating functions that are robust for finite variances and free of critical points when logarithmic density transformations are implemented. They yield in turn accurate density probability distribution functions (PDFs) from a straightforward saddle-point approximation valid for all density values. Based on this easy-to-implement modification, explicit analytic formulas for the evaluation of the one- and two-cell PDF are provided. The theoretical predictions obtained for the PDFs are accurate to a few per cent compared to the numerical integration, regardless of the density under consideration and in excellent agreement with N-body simulations for a wide range of densities. This formalism should prove valuable for accurately probing the quasi-linear scales of low-redshift surveys for arbitrary primordial power spectra.

  16. Linear scaling computation of the Fock matrix. II. Rigorous bounds on exchange integrals and incremental Fock build

    NASA Astrophysics Data System (ADS)

    Schwegler, Eric; Challacombe, Matt; Head-Gordon, Martin

    1997-06-01

    A new linear scaling method for computation of the Cartesian Gaussian-based Hartree-Fock exchange matrix is described, which employs a method numerically equivalent to standard direct SCF, and which does not enforce locality of the density matrix. With a previously described method for computing the Coulomb matrix [J. Chem. Phys. 106, 5526 (1997)], linear scaling incremental Fock builds are demonstrated for the first time. Microhartree accuracy and linear scaling are achieved for restricted Hartree-Fock calculations on sequences of water clusters and polyglycine α-helices with the 3-21G and 6-31G basis sets. Eightfold speedups are found relative to our previous method. For systems with a small ionization potential, such as graphitic sheets, the method naturally reverts to the expected quadratic behavior. Also, benchmark 3-21G calculations attaining microhartree accuracy are reported for the P53 tetramerization monomer involving 698 atoms and 3836 basis functions.

  17. On the Relation Between Soft Electron Precipitations in the Cusp Region and Solar Wind Coupling Functions

    NASA Astrophysics Data System (ADS)

    Dang, Tong; Zhang, Binzheng; Wiltberge, Michael; Wang, Wenbin; Varney, Roger; Dou, Xiankang; Wan, Weixing; Lei, Jiuhou

    2018-01-01

    In this study, the correlations between the fluxes of precipitating soft electrons in the cusp region and solar wind coupling functions are investigated utilizing the Lyon-Fedder-Mobarry global magnetosphere model simulations. We conduct two simulation runs during periods from 20 March 2008 to 16 April 2008 and from 15 to 24 December 2014, which are referred as "Equinox Case" and "Solstice Case," respectively. The simulation results of Equinox Case show that the plasma number density in the high-latitude cusp region scales well with the solar wind number density (ncusp/nsw=0.78), which agrees well with the statistical results from the Polar spacecraft measurements. For the Solstice Case, the plasma number density of high-latitude cusp in both hemispheres increases approximately linearly with upstream solar wind number density with prominent hemispheric asymmetry. Due to the dipole tilt effect, the average number density ratio ncusp/nsw in the Southern (summer) Hemisphere is nearly 3 times that in the Northern (winter) Hemisphere. In addition to the solar wind number density, 20 solar wind coupling functions are tested for the linear correlation with the fluxes of precipitating cusp soft electrons. The statistical results indicate that the solar wind dynamic pressure p exhibits the highest linear correlation with the cusp electron fluxes for both equinox and solstice conditions, with correlation coefficients greater than 0.75. The linear regression relations for equinox and solstice cases may provide an empirical calculation for the fluxes of cusp soft electron precipitation based on the upstream solar wind driving conditions.

  18. Generating log-normal mock catalog of galaxies in redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Aniket; Makiya, Ryu; Saito, Shun

    We present a public code to generate a mock galaxy catalog in redshift space assuming a log-normal probability density function (PDF) of galaxy and matter density fields. We draw galaxies by Poisson-sampling the log-normal field, and calculate the velocity field from the linearised continuity equation of matter fields, assuming zero vorticity. This procedure yields a PDF of the pairwise velocity fields that is qualitatively similar to that of N-body simulations. We check fidelity of the catalog, showing that the measured two-point correlation function and power spectrum in real space agree with the input precisely. We find that a linear biasmore » relation in the power spectrum does not guarantee a linear bias relation in the density contrasts, leading to a cross-correlation coefficient of matter and galaxies deviating from unity on small scales. We also find that linearising the Jacobian of the real-to-redshift space mapping provides a poor model for the two-point statistics in redshift space. That is, non-linear redshift-space distortion is dominated by non-linearity in the Jacobian. The power spectrum in redshift space shows a damping on small scales that is qualitatively similar to that of the well-known Fingers-of-God (FoG) effect due to random velocities, except that the log-normal mock does not include random velocities. This damping is a consequence of non-linearity in the Jacobian, and thus attributing the damping of the power spectrum solely to FoG, as commonly done in the literature, is misleading.« less

  19. Multiple Streaming and the Probability Distribution of Density in Redshift Space

    NASA Astrophysics Data System (ADS)

    Hui, Lam; Kofman, Lev; Shandarin, Sergei F.

    2000-07-01

    We examine several aspects of redshift distortions by expressing the redshift-space density in terms of the eigenvalues and orientation of the local Lagrangian deformation tensor. We explore the importance of multiple streaming using the Zeldovich approximation (ZA), and compute the average number of streams in both real and redshift space. We find that multiple streaming can be significant in redshift space but negligible in real space, even at moderate values of the linear fluctuation amplitude (σl<~1). Moreover, unlike their real-space counterparts, redshift-space multiple streams can flow past each other with minimal interactions. Such nonlinear redshift-space effects, which are physically distinct from the fingers-of-God due to small-scale virialized motions, might in part explain the well-known departure of redshift distortions from the classic linear prediction by Kaiser, even at relatively large scales where the corresponding density field in real space is well described by linear perturbation theory. We also compute, using the ZA, the probability distribution function (PDF) of the density, as well as S3, in real and redshift space, and compare it with the PDF measured from N-body simulations. The role of caustics in defining the character of the high-density tail is examined. We find that (non-Lagrangian) smoothing, due to both finite resolution or discreteness and small-scale velocity dispersions, is very effective in erasing caustic structures, unless the initial power spectrum is sufficiently truncated.

  20. Fourier imaging of non-linear structure formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandbyge, Jacob; Hannestad, Steen, E-mail: jacobb@phys.au.dk, E-mail: sth@phys.au.dk

    We perform a Fourier space decomposition of the dynamics of non-linear cosmological structure formation in ΛCDM models. From N -body simulations involving only cold dark matter we calculate 3-dimensional non-linear density, velocity divergence and vorticity Fourier realizations, and use these to calculate the fully non-linear mode coupling integrals in the corresponding fluid equations. Our approach allows for a reconstruction of the amount of mode coupling between any two wavenumbers as a function of redshift. With our Fourier decomposition method we identify the transfer of power from larger to smaller scales, the stable clustering regime, the scale where vorticity becomes important,more » and the suppression of the non-linear divergence power spectrum as compared to linear theory. Our results can be used to improve and calibrate semi-analytical structure formation models.« less

  1. Linear-scaling time-dependent density-functional theory beyond the Tamm-Dancoff approximation: Obtaining efficiency and accuracy with in situ optimised local orbitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zuehlsdorff, T. J., E-mail: tjz21@cam.ac.uk; Payne, M. C.; Hine, N. D. M.

    2015-11-28

    We present a solution of the full time-dependent density-functional theory (TDDFT) eigenvalue equation in the linear response formalism exhibiting a linear-scaling computational complexity with system size, without relying on the simplifying Tamm-Dancoff approximation (TDA). The implementation relies on representing the occupied and unoccupied subspaces with two different sets of in situ optimised localised functions, yielding a very compact and efficient representation of the transition density matrix of the excitation with the accuracy associated with a systematic basis set. The TDDFT eigenvalue equation is solved using a preconditioned conjugate gradient algorithm that is very memory-efficient. The algorithm is validated on amore » small test molecule and a good agreement with results obtained from standard quantum chemistry packages is found, with the preconditioner yielding a significant improvement in convergence rates. The method developed in this work is then used to reproduce experimental results of the absorption spectrum of bacteriochlorophyll in an organic solvent, where it is demonstrated that the TDA fails to reproduce the main features of the low energy spectrum, while the full TDDFT equation yields results in good qualitative agreement with experimental data. Furthermore, the need for explicitly including parts of the solvent into the TDDFT calculations is highlighted, making the treatment of large system sizes necessary that are well within reach of the capabilities of the algorithm introduced here. Finally, the linear-scaling properties of the algorithm are demonstrated by computing the lowest excitation energy of bacteriochlorophyll in solution. The largest systems considered in this work are of the same order of magnitude as a variety of widely studied pigment-protein complexes, opening up the possibility of studying their properties without having to resort to any semiclassical approximations to parts of the protein environment.« less

  2. An iterative reconstruction of cosmological initial density fields

    NASA Astrophysics Data System (ADS)

    Hada, Ryuichiro; Eisenstein, Daniel J.

    2018-05-01

    We present an iterative method to reconstruct the linear-theory initial conditions from the late-time cosmological matter density field, with the intent of improving the recovery of the cosmic distance scale from the baryon acoustic oscillations (BAOs). We present tests using the dark matter density field in both real and redshift space generated from an N-body simulation. In redshift space at z = 0.5, we find that the reconstructed displacement field using our iterative method are more than 80% correlated with the true displacement field of the dark matter particles on scales k < 0.10h Mpc-1. Furthermore, we show that the two-point correlation function of our reconstructed density field matches that of the initial density field substantially better, especially on small scales (<40h-1 Mpc). Our redshift-space results are improved if we use an anisotropic smoothing so as to account for the reduced small-scale information along the line of sight in redshift space.

  3. Stabilization of electron-scale turbulence by electron density gradient in national spherical torus experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz Ruiz, J.; White, A. E.; Ren, Y.

    2015-12-15

    Theory and experiments have shown that electron temperature gradient (ETG) turbulence on the electron gyro-scale, k{sub ⊥}ρ{sub e} ≲ 1, can be responsible for anomalous electron thermal transport in NSTX. Electron scale (high-k) turbulence is diagnosed in NSTX with a high-k microwave scattering system [D. R. Smith et al., Rev. Sci. Instrum. 79, 123501 (2008)]. Here we report on stabilization effects of the electron density gradient on electron-scale density fluctuations in a set of neutral beam injection heated H-mode plasmas. We found that the absence of high-k density fluctuations from measurements is correlated with large equilibrium density gradient, which ismore » shown to be consistent with linear stabilization of ETG modes due to the density gradient using the analytical ETG linear threshold in F. Jenko et al. [Phys. Plasmas 8, 4096 (2001)] and linear gyrokinetic simulations with GS2 [M. Kotschenreuther et al., Comput. Phys. Commun. 88, 128 (1995)]. We also found that the observed power of electron-scale turbulence (when it exists) is anti-correlated with the equilibrium density gradient, suggesting density gradient as a nonlinear stabilizing mechanism. Higher density gradients give rise to lower values of the plasma frame frequency, calculated based on the Doppler shift of the measured density fluctuations. Linear gyrokinetic simulations show that higher values of the electron density gradient reduce the value of the real frequency, in agreement with experimental observation. Nonlinear electron-scale gyrokinetic simulations show that high electron density gradient reduces electron heat flux and stiffness, and increases the ETG nonlinear threshold, consistent with experimental observations.« less

  4. Compensatory selection for roads over natural linear features by wolves in northern Ontario: Implications for caribou conservation

    PubMed Central

    Patterson, Brent R.; Anderson, Morgan L.; Rodgers, Arthur R.; Vander Vennen, Lucas M.; Fryxell, John M.

    2017-01-01

    Woodland caribou (Rangifer tarandus caribou) in Ontario are a threatened species that have experienced a substantial retraction of their historic range. Part of their decline has been attributed to increasing densities of anthropogenic linear features such as trails, roads, railways, and hydro lines. These features have been shown to increase the search efficiency and kill rate of wolves. However, it is unclear whether selection for anthropogenic linear features is additive or compensatory to selection for natural (water) linear features which may also be used for travel. We studied the selection of water and anthropogenic linear features by 52 resident wolves (Canis lupus x lycaon) over four years across three study areas in northern Ontario that varied in degrees of forestry activity and human disturbance. We used Euclidean distance-based resource selection functions (mixed-effects logistic regression) at the seasonal range scale with random coefficients for distance to water linear features, primary/secondary roads/railways, and hydro lines, and tertiary roads to estimate the strength of selection for each linear feature and for several habitat types, while accounting for availability of each feature. Next, we investigated the trade-off between selection for anthropogenic and water linear features. Wolves selected both anthropogenic and water linear features; selection for anthropogenic features was stronger than for water during the rendezvous season. Selection for anthropogenic linear features increased with increasing density of these features on the landscape, while selection for natural linear features declined, indicating compensatory selection of anthropogenic linear features. These results have implications for woodland caribou conservation. Prey encounter rates between wolves and caribou seem to be strongly influenced by increasing linear feature densities. This behavioral mechanism–a compensatory functional response to anthropogenic linear feature density resulting in decreased use of natural travel corridors–has negative consequences for the viability of woodland caribou. PMID:29117234

  5. Compensatory selection for roads over natural linear features by wolves in northern Ontario: Implications for caribou conservation.

    PubMed

    Newton, Erica J; Patterson, Brent R; Anderson, Morgan L; Rodgers, Arthur R; Vander Vennen, Lucas M; Fryxell, John M

    2017-01-01

    Woodland caribou (Rangifer tarandus caribou) in Ontario are a threatened species that have experienced a substantial retraction of their historic range. Part of their decline has been attributed to increasing densities of anthropogenic linear features such as trails, roads, railways, and hydro lines. These features have been shown to increase the search efficiency and kill rate of wolves. However, it is unclear whether selection for anthropogenic linear features is additive or compensatory to selection for natural (water) linear features which may also be used for travel. We studied the selection of water and anthropogenic linear features by 52 resident wolves (Canis lupus x lycaon) over four years across three study areas in northern Ontario that varied in degrees of forestry activity and human disturbance. We used Euclidean distance-based resource selection functions (mixed-effects logistic regression) at the seasonal range scale with random coefficients for distance to water linear features, primary/secondary roads/railways, and hydro lines, and tertiary roads to estimate the strength of selection for each linear feature and for several habitat types, while accounting for availability of each feature. Next, we investigated the trade-off between selection for anthropogenic and water linear features. Wolves selected both anthropogenic and water linear features; selection for anthropogenic features was stronger than for water during the rendezvous season. Selection for anthropogenic linear features increased with increasing density of these features on the landscape, while selection for natural linear features declined, indicating compensatory selection of anthropogenic linear features. These results have implications for woodland caribou conservation. Prey encounter rates between wolves and caribou seem to be strongly influenced by increasing linear feature densities. This behavioral mechanism-a compensatory functional response to anthropogenic linear feature density resulting in decreased use of natural travel corridors-has negative consequences for the viability of woodland caribou.

  6. A new method to measure galaxy bias by combining the density and weak lensing fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pujol, Arnau; Chang, Chihway; Gaztañaga, Enrique

    We present a new method to measure redshift-dependent galaxy bias by combining information from the galaxy density field and the weak lensing field. This method is based on the work of Amara et al., who use the galaxy density field to construct a bias-weighted convergence field κg. The main difference between Amara et al.'s work and our new implementation is that here we present another way to measure galaxy bias, using tomography instead of bias parametrizations. The correlation between κg and the true lensing field κ allows us to measure galaxy bias using different zero-lag correlations, such as / ormore » /. Our method measures the linear bias factor on linear scales, under the assumption of no stochasticity between galaxies and matter. We use the Marenostrum Institut de Ciències de l'Espai (MICE) simulation to measure the linear galaxy bias for a flux-limited sample (i < 22.5) in tomographic redshift bins using this method. This article is the first that studies the accuracy and systematic uncertainties associated with the implementation of the method and the regime in which it is consistent with the linear galaxy bias defined by projected two-point correlation functions (2PCF). We find that our method is consistent with a linear bias at the per cent level for scales larger than 30 arcmin, while non-linearities appear at smaller scales. This measurement is a good complement to other measurements of bias, since it does not depend strongly on σ8 as do the 2PCF measurements. We will apply this method to the Dark Energy Survey Science Verification data in a follow-up article.« less

  7. Multiple Streaming and the Probability Distribution of Density in Redshift Space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hui, Lam; Kofman, Lev; Shandarin, Sergei F.

    2000-07-01

    We examine several aspects of redshift distortions by expressing the redshift-space density in terms of the eigenvalues and orientation of the local Lagrangian deformation tensor. We explore the importance of multiple streaming using the Zeldovich approximation (ZA), and compute the average number of streams in both real and redshift space. We find that multiple streaming can be significant in redshift space but negligible in real space, even at moderate values of the linear fluctuation amplitude ({sigma}{sub l}(less-or-similar sign)1). Moreover, unlike their real-space counterparts, redshift-space multiple streams can flow past each other with minimal interactions. Such nonlinear redshift-space effects, which aremore » physically distinct from the fingers-of-God due to small-scale virialized motions, might in part explain the well-known departure of redshift distortions from the classic linear prediction by Kaiser, even at relatively large scales where the corresponding density field in real space is well described by linear perturbation theory. We also compute, using the ZA, the probability distribution function (PDF) of the density, as well as S{sub 3}, in real and redshift space, and compare it with the PDF measured from N-body simulations. The role of caustics in defining the character of the high-density tail is examined. We find that (non-Lagrangian) smoothing, due to both finite resolution or discreteness and small-scale velocity dispersions, is very effective in erasing caustic structures, unless the initial power spectrum is sufficiently truncated. (c) 2000 The American Astronomical Society.« less

  8. Hierarchical clustering in chameleon f(R) gravity

    NASA Astrophysics Data System (ADS)

    Hellwing, Wojciech A.; Li, Baojiu; Frenk, Carlos S.; Cole, Shaun

    2013-11-01

    We use a suite of high-resolution state-of-the-art N-body dark matter simulations of chameleon f(R) gravity to study the higher order volume-averaged correlation functions overline{ξ _n} together with the hierarchical nth-order correlation amplitudes S_n=overline{ξ }_n/overline{ξ }_2^{n-1} and density distribution functions (PDF). We show that under the non-linear modifications of gravity the hierarchical scaling of the reduced cumulants is preserved. This is however characterized by significant changes in the values of both overline{ξ _n} and Sn and their scale dependence with respect to General Relativity gravity (GR). In addition, we measure a significant increase of the non-linear σ8 parameter reaching 14, 5 and 0.5 per cent in excess of the GR value for the three flavours of our f(R) models. We further note that the values of the reduced cumulants up to order n = 9 are significantly increased in f(R) gravity for all our models at small scales R ≲ 30 h-1 Mpc. In contrast, the values of the hierarchical amplitudes, Sn, are smaller in f(R) indicating that the modified gravity density distribution functions are deviating from the GR case. Furthermore, we find that the redshift evolution of relative deviations of the f(R) hierarchical correlation amplitudes is fastest at high and moderate redshifts 1 ≤ z ≤ 4. The growth of these deviations significantly slows down in the low-redshift universe. We also compute the PDFs and show that for scales below ˜20 h-1 Mpc, they are significantly shifted in f(R) gravity towards the low densities. Finally, we discuss the implications of our theoretical predictions for measurements of the hierarchical clustering in galaxy redshift surveys, including the important problems of the galaxy biasing and redshift space distortions.

  9. Structure and properties of fullerene molecular crystals with linear-scaling van der Waals density functional theory

    NASA Astrophysics Data System (ADS)

    Mostofi, Arash; Andrinopoulos, Lampros; Hine, Nicholas

    2014-03-01

    Fullerene molecular crystals are of technological promise for their use in heterojunction photovoltaic cells. An improved theoretical understanding of their structure and properties would be a step towards the rational design of new devices. Simulations based on density-functional theory (DFT) are invaluable for developing such insight, but standard semi-local functionals do not capture the important inter-molecular van der Waals (vdW) interactions in fullerene crystals. Furthermore the computational cost associated with the large unit cells needed are at the limit or beyond the capabilities of traditional DFT methods. In this work we overcome these limitations by using our implementation of a number of vdW-DFs in the ONETEP linear-scaling DFT code to study the structural properties of C60 molecular crystals. Powder neutron diffraction shows that the low-temperature Pa-3 phase is orientationally ordered with individual C60 units rotated around the [111] direction. We fully explore the energy landscape associated with the rotation angle and find two stable structures that are energetically very close, one of which corresponds to the experimentally observed structure. We further consider the effect of orientational disorder in very large supercells of thousands of atoms.

  10. Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick

    The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a fewmore » orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. In conclusion, the method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.« less

  11. Fast large scale structure perturbation theory using one-dimensional fast Fourier transforms

    DOE PAGES

    Schmittfull, Marcel; Vlah, Zvonimir; McDonald, Patrick

    2016-05-01

    The usual fluid equations describing the large-scale evolution of mass density in the universe can be written as local in the density, velocity divergence, and velocity potential fields. As a result, the perturbative expansion in small density fluctuations, usually written in terms of convolutions in Fourier space, can be written as a series of products of these fields evaluated at the same location in configuration space. Based on this, we establish a new method to numerically evaluate the 1-loop power spectrum (i.e., Fourier transform of the 2-point correlation function) with one-dimensional fast Fourier transforms. This is exact and a fewmore » orders of magnitude faster than previously used numerical approaches. Numerical results of the new method are in excellent agreement with the standard quadrature integration method. This fast model evaluation can in principle be extended to higher loop order where existing codes become painfully slow. Our approach follows by writing higher order corrections to the 2-point correlation function as, e.g., the correlation between two second-order fields or the correlation between a linear and a third-order field. These are then decomposed into products of correlations of linear fields and derivatives of linear fields. In conclusion, the method can also be viewed as evaluating three-dimensional Fourier space convolutions using products in configuration space, which may also be useful in other contexts where similar integrals appear.« less

  12. A reformulation of the coupled perturbed self-consistent field equations entirely within a local atomic orbital density matrix-based scheme

    NASA Astrophysics Data System (ADS)

    Ochsenfeld, Christian; Head-Gordon, Martin

    1997-05-01

    To exploit the exponential decay found in numerical studies for the density matrix and its derivative with respect to nuclear displacements, we reformulate the coupled perturbed self-consistent field (CPSCF) equations and a quadratically convergent SCF (QCSCF) method for Hartree-Fock and density functional theory within a local density matrix-based scheme. Our D-CPSCF (density matrix-based CPSCF) and D-QCSCF schemes open the way for exploiting sparsity and to achieve asymptotically linear scaling of computational complexity with molecular size ( M), in case of D-CPSCF for all O( M) derivative densities. Furthermore, these methods are even for small molecules strongly competitive to conventional algorithms.

  13. Correlations in the three-dimensional Lyman-alpha forest contaminated by high column density absorbers

    NASA Astrophysics Data System (ADS)

    Rogers, Keir K.; Bird, Simeon; Peiris, Hiranya V.; Pontzen, Andrew; Font-Ribera, Andreu; Leistedt, Boris

    2018-05-01

    Correlations measured in three dimensions in the Lyman-alpha forest are contaminated by the presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen (H I; having column densities N(H I) > 1.6 × 10^{17} atoms cm^{-2}), which extend significantly beyond the redshift-space location of the absorber. We measure this effect as a function of the column density of the HCD absorbers and redshift by measuring three-dimensional (3D) flux power spectra in cosmological hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing the largest damping wings. We find that, even after this procedure, there is a scale-dependent correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of the matter density distribution, convolved with their Voigt profiles and integrated over the column density distribution function. We recommend the use of this model over existing models used in data analysis, which approximate the damping wings as top-hats and so miss shape information in the extended wings. The simple `linear Voigt model' is statistically consistent with our simulation results for a mock residual contamination up to small scales (|k| < 1 h Mpc^{-1}). It does not account for the effect of the highest column density absorbers on the smallest scales (e.g. |k| > 0.4 h Mpc^{-1} for small damped Lyman-alpha absorbers; HCD absorbers with N(H I) ˜ 10^{21} atoms cm^{-2}). However, these systems are in any case preferentially removed from survey data. Our model is appropriate for an accurate analysis of the baryon acoustic oscillations feature. It is additionally essential for reconstructing the full shape of the 3D flux power spectrum.

  14. Linear and non-linear bias: predictions versus measurements

    NASA Astrophysics Data System (ADS)

    Hoffmann, K.; Bel, J.; Gaztañaga, E.

    2017-02-01

    We study the linear and non-linear bias parameters which determine the mapping between the distributions of galaxies and the full matter density fields, comparing different measurements and predictions. Associating galaxies with dark matter haloes in the Marenostrum Institut de Ciències de l'Espai (MICE) Grand Challenge N-body simulation, we directly measure the bias parameters by comparing the smoothed density fluctuations of haloes and matter in the same region at different positions as a function of smoothing scale. Alternatively, we measure the bias parameters by matching the probability distributions of halo and matter density fluctuations, which can be applied to observations. These direct bias measurements are compared to corresponding measurements from two-point and different third-order correlations, as well as predictions from the peak-background model, which we presented in previous papers using the same data. We find an overall variation of the linear bias measurements and predictions of ˜5 per cent with respect to results from two-point correlations for different halo samples with masses between ˜1012and1015 h-1 M⊙ at the redshifts z = 0.0 and 0.5. Variations between the second- and third-order bias parameters from the different methods show larger variations, but with consistent trends in mass and redshift. The various bias measurements reveal a tight relation between the linear and the quadratic bias parameters, which is consistent with results from the literature based on simulations with different cosmologies. Such a universal relation might improve constraints on cosmological models, derived from second-order clustering statistics at small scales or higher order clustering statistics.

  15. The large-scale gravitational bias from the quasi-linear regime.

    NASA Astrophysics Data System (ADS)

    Bernardeau, F.

    1996-08-01

    It is known that in gravitational instability scenarios the nonlinear dynamics induces non-Gaussian features in cosmological density fields that can be investigated with perturbation theory. Here, I derive the expression of the joint moments of cosmological density fields taken at two different locations. The results are valid when the density fields are filtered with a top-hat filter window function, and when the distance between the two cells is large compared to the smoothing length. In particular I show that it is possible to get the generating function of the coefficients C_p,q_ defined by <δ^p^({vec}(x)_1_)δ^q^({vec}(x)_2_)>_c_=C_p,q_ <δ^2^({vec}(x))>^p+q-2^ <δ({vec}(x)_1_)δ({vec}(x)_2_)> where δ({vec}(x)) is the local smoothed density field. It is then possible to reconstruct the joint density probability distribution function (PDF), generalizing for two points what has been obtained previously for the one-point density PDF. I discuss the validity of the large separation approximation in an explicit numerical Monte Carlo integration of the C_2,1_ parameter as a function of |{vec}(x)_1_-{vec}(x)_2_|. A straightforward application is the calculation of the large-scale ``bias'' properties of the over-dense (or under-dense) regions. The properties and the shape of the bias function are presented in details and successfully compared with numerical results obtained in an N-body simulation with CDM initial conditions.

  16. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlapmore » matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Angstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.« less

  17. An accurate and linear-scaling method for calculating charge-transfer excitation energies and diabatic couplings.

    PubMed

    Pavanello, Michele; Van Voorhis, Troy; Visscher, Lucas; Neugebauer, Johannes

    2013-02-07

    Quantum-mechanical methods that are both computationally fast and accurate are not yet available for electronic excitations having charge transfer character. In this work, we present a significant step forward towards this goal for those charge transfer excitations that take place between non-covalently bound molecules. In particular, we present a method that scales linearly with the number of non-covalently bound molecules in the system and is based on a two-pronged approach: The molecular electronic structure of broken-symmetry charge-localized states is obtained with the frozen density embedding formulation of subsystem density-functional theory; subsequently, in a post-SCF calculation, the full-electron Hamiltonian and overlap matrix elements among the charge-localized states are evaluated with an algorithm which takes full advantage of the subsystem DFT density partitioning technique. The method is benchmarked against coupled-cluster calculations and achieves chemical accuracy for the systems considered for intermolecular separations ranging from hydrogen-bond distances to tens of Ångstroms. Numerical examples are provided for molecular clusters comprised of up to 56 non-covalently bound molecules.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jong-Won; Hirao, Kimihiko

    Long-range corrected density functional theory (LC-DFT) attracts many chemists’ attentions as a quantum chemical method to be applied to large molecular system and its property calculations. However, the expensive time cost to evaluate the long-range HF exchange is a big obstacle to be overcome to be applied to the large molecular systems and the solid state materials. Upon this problem, we propose a linear-scaling method of the HF exchange integration, in particular, for the LC-DFT hybrid functional.

  19. Effects of Grafting Density on Block Polymer Self-Assembly: From Linear to Bottlebrush.

    PubMed

    Lin, Tzu-Pin; Chang, Alice B; Luo, Shao-Xiong; Chen, Hsiang-Yun; Lee, Byeongdu; Grubbs, Robert H

    2017-11-28

    Grafting density is an important structural parameter that exerts significant influences over the physical properties of architecturally complex polymers. In this report, the physical consequences of varying the grafting density (z) were studied in the context of block polymer self-assembly. Well-defined block polymers spanning the linear, comb, and bottlebrush regimes (0 ≤ z ≤ 1) were prepared via grafting-through ring-opening-metathesis polymerization. ω-Norbornenyl poly(d,l-lactide) and polystyrene macromonomers were copolymerized with discrete comonomers in different feed ratios, enabling precise control over both the grafting density and molecular weight. Small-angle X-ray scattering experiments demonstrate that these graft block polymers self-assemble into long-range-ordered lamellar structures. For 17 series of block polymers with variable z, the scaling of the lamellar period with the total backbone degree of polymerization (d* ∼ N bb α ) was studied. The scaling exponent α monotonically decreases with decreasing z and exhibits an apparent transition at z ≈ 0.2, suggesting significant changes in the chain conformations. Comparison of two block polymer systems, one that is strongly segregated for all z (System I) and one that experiences weak segregation at low z (System II), indicates that the observed trends are primarily caused by the polymer architectures, not segregation effects. A model is proposed in which the characteristic ratio (C ∞ ), a proxy for the backbone stiffness, scales with N bb as a function of the grafting density: C ∞ ∼ N bb f(z) . The scaling behavior disclosed herein provides valuable insights into conformational changes with grafting density, thus introducing opportunities for block polymer and material design.

  20. Calibration sets and the accuracy of vibrational scaling factors: A case study with the X3LYP hybrid functional

    NASA Astrophysics Data System (ADS)

    Teixeira, Filipe; Melo, André; Cordeiro, M. Natália D. S.

    2010-09-01

    A linear least-squares methodology was used to determine the vibrational scaling factors for the X3LYP density functional. Uncertainties for these scaling factors were calculated according to the method devised by Irikura et al. [J. Phys. Chem. A 109, 8430 (2005)]. The calibration set was systematically partitioned according to several of its descriptors and the scaling factors for X3LYP were recalculated for each subset. The results show that the scaling factors are only significant up to the second digit, irrespective of the calibration set used. Furthermore, multivariate statistical analysis allowed us to conclude that the scaling factors and the associated uncertainties are independent of the size of the calibration set and strongly suggest the practical impossibility of obtaining vibrational scaling factors with more than two significant digits.

  1. Calibration sets and the accuracy of vibrational scaling factors: a case study with the X3LYP hybrid functional.

    PubMed

    Teixeira, Filipe; Melo, André; Cordeiro, M Natália D S

    2010-09-21

    A linear least-squares methodology was used to determine the vibrational scaling factors for the X3LYP density functional. Uncertainties for these scaling factors were calculated according to the method devised by Irikura et al. [J. Phys. Chem. A 109, 8430 (2005)]. The calibration set was systematically partitioned according to several of its descriptors and the scaling factors for X3LYP were recalculated for each subset. The results show that the scaling factors are only significant up to the second digit, irrespective of the calibration set used. Furthermore, multivariate statistical analysis allowed us to conclude that the scaling factors and the associated uncertainties are independent of the size of the calibration set and strongly suggest the practical impossibility of obtaining vibrational scaling factors with more than two significant digits.

  2. The three-point function as a probe of models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Frieman, Joshua A.; Gaztanaga, Enrique

    1993-01-01

    The consequences of models of structure formation for higher-order (n-point) galaxy correlation functions in the mildly non-linear regime are analyzed. Several variations of the standard Omega = 1 cold dark matter model with scale-invariant primordial perturbations were recently introduced to obtain more power on large scales, R(sub p) is approximately 20 h(sup -1) Mpc, e.g., low-matter-density (non-zero cosmological constant) models, 'tilted' primordial spectra, and scenarios with a mixture of cold and hot dark matter. They also include models with an effective scale-dependent bias, such as the cooperative galaxy formation scenario of Bower, etal. It is shown that higher-order (n-point) galaxy correlation functions can provide a useful test of such models and can discriminate between models with true large-scale power in the density field and those where the galaxy power arises from scale-dependent bias: a bias with rapid scale-dependence leads to a dramatic decrease of the hierarchical amplitudes Q(sub J) at large scales, r is approximately greater than R(sub p). Current observational constraints on the three-point amplitudes Q(sub 3) and S(sub 3) can place limits on the bias parameter(s) and appear to disfavor, but not yet rule out, the hypothesis that scale-dependent bias is responsible for the extra power observed on large scales.

  3. The large-scale correlations of multicell densities and profiles: implications for cosmic variance estimates

    NASA Astrophysics Data System (ADS)

    Codis, Sandrine; Bernardeau, Francis; Pichon, Christophe

    2016-08-01

    In order to quantify the error budget in the measured probability distribution functions of cell densities, the two-point statistics of cosmic densities in concentric spheres is investigated. Bias functions are introduced as the ratio of their two-point correlation function to the two-point correlation of the underlying dark matter distribution. They describe how cell densities are spatially correlated. They are computed here via the so-called large deviation principle in the quasi-linear regime. Their large-separation limit is presented and successfully compared to simulations for density and density slopes: this regime is shown to be rapidly reached allowing to get sub-percent precision for a wide range of densities and variances. The corresponding asymptotic limit provides an estimate of the cosmic variance of standard concentric cell statistics applied to finite surveys. More generally, no assumption on the separation is required for some specific moments of the two-point statistics, for instance when predicting the generating function of cumulants containing any powers of concentric densities in one location and one power of density at some arbitrary distance from the rest. This exact `one external leg' cumulant generating function is used in particular to probe the rate of convergence of the large-separation approximation.

  4. Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghosh, Swarnava; Suryanarayana, Phanish, E-mail: phanish.suryanarayana@ce.gatech.edu

    2016-02-15

    We present a real-space formulation and higher-order finite-difference implementation of periodic Orbital-free Density Functional Theory (OF-DFT). Specifically, utilizing a local reformulation of the electrostatic and kernel terms, we develop a generalized framework for performing OF-DFT simulations with different variants of the electronic kinetic energy. In particular, we propose a self-consistent field (SCF) type fixed-point method for calculations involving linear-response kinetic energy functionals. In this framework, evaluation of both the electronic ground-state and forces on the nuclei are amenable to computations that scale linearly with the number of atoms. We develop a parallel implementation of this formulation using the finite-difference discretization.more » We demonstrate that higher-order finite-differences can achieve relatively large convergence rates with respect to mesh-size in both the energies and forces. Additionally, we establish that the fixed-point iteration converges rapidly, and that it can be further accelerated using extrapolation techniques like Anderson's mixing. We validate the accuracy of the results by comparing the energies and forces with plane-wave methods for selected examples, including the vacancy formation energy in Aluminum. Overall, the suitability of the proposed formulation for scalable high performance computing makes it an attractive choice for large-scale OF-DFT calculations consisting of thousands of atoms.« less

  5. Estimating cosmic velocity fields from density fields and tidal tensors

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Angulo, Raul E.; Hoffman, Yehuda; Gottlöber, Stefan

    2012-10-01

    In this work we investigate the non-linear and non-local relation between cosmological density and peculiar velocity fields. Our goal is to provide an algorithm for the reconstruction of the non-linear velocity field from the fully non-linear density. We find that including the gravitational tidal field tensor using second-order Lagrangian perturbation theory based upon an estimate of the linear component of the non-linear density field significantly improves the estimate of the cosmic flow in comparison to linear theory not only in the low density, but also and more dramatically in the high-density regions. In particular we test two estimates of the linear component: the lognormal model and the iterative Lagrangian linearization. The present approach relies on a rigorous higher order Lagrangian perturbation theory analysis which incorporates a non-local relation. It does not require additional fitting from simulations being in this sense parameter free, it is independent of statistical-geometrical optimization and it is straightforward and efficient to compute. The method is demonstrated to yield an unbiased estimator of the velocity field on scales ≳5 h-1 Mpc with closely Gaussian distributed errors. Moreover, the statistics of the divergence of the peculiar velocity field is extremely well recovered showing a good agreement with the true one from N-body simulations. The typical errors of about 10 km s-1 (1σ confidence intervals) are reduced by more than 80 per cent with respect to linear theory in the scale range between 5 and 10 h-1 Mpc in high-density regions (δ > 2). We also find that iterative Lagrangian linearization is significantly superior in the low-density regime with respect to the lognormal model.

  6. Linear increases in carbon nanotube density through multiple transfer technique.

    PubMed

    Shulaker, Max M; Wei, Hai; Patil, Nishant; Provine, J; Chen, Hong-Yu; Wong, H-S P; Mitra, Subhasish

    2011-05-11

    We present a technique to increase carbon nanotube (CNT) density beyond the as-grown CNT density. We perform multiple transfers, whereby we transfer CNTs from several growth wafers onto the same target surface, thereby linearly increasing CNT density on the target substrate. This process, called transfer of nanotubes through multiple sacrificial layers, is highly scalable, and we demonstrate linear CNT density scaling up to 5 transfers. We also demonstrate that this linear CNT density increase results in an ideal linear increase in drain-source currents of carbon nanotube field effect transistors (CNFETs). Experimental results demonstrate that CNT density can be improved from 2 to 8 CNTs/μm, accompanied by an increase in drain-source CNFET current from 4.3 to 17.4 μA/μm.

  7. Non-linear non-local molecular electrodynamics with nano-optical fields.

    PubMed

    Chernyak, Vladimir Y; Saurabh, Prasoon; Mukamel, Shaul

    2015-10-28

    The interaction of optical fields sculpted on the nano-scale with matter may not be described by the dipole approximation since the fields may vary appreciably across the molecular length scale. Rather than incrementally adding higher multipoles, it is advantageous and more physically transparent to describe the optical process using non-local response functions that intrinsically include all multipoles. We present a semi-classical approach for calculating non-local response functions based on the minimal coupling Hamiltonian. The first, second, and third order response functions are expressed in terms of correlation functions of the charge and the current densities. This approach is based on the gauge invariant current rather than the polarization, and on the vector potential rather than the electric and magnetic fields.

  8. HOW THE DENSITY ENVIRONMENT CHANGES THE INFLUENCE OF THE DARK MATTER–BARYON STREAMING VELOCITY ON COSMOLOGICAL STRUCTURE FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Kyungjin, E-mail: kjahn@chosun.ac.kr

    We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich and Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new typemore » of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich and Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich and Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.« less

  9. Omega from the anisotropy of the redshift correlation function

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1993-01-01

    Peculiar velocities distort the correlation function of galaxies observed in redshift space. In the large scale, linear regime, the distortion takes a characteristic quadrupole plus hexadecapole form, with the amplitude of the distortion depending on the cosmological density parameter omega. Preliminary measurements are reported here of the harmonics of the correlation function in the CfA, SSRS, and IRAS 2 Jansky redshift surveys. The observed behavior of the harmonics agrees qualitatively with the predictions of linear theory on large scales in every survey. However, real anisotropy in the galaxy distribution induces large fluctuations in samples which do not yet probe a sufficiently fair volume of the Universe. In the CfA 14.5 sample in particular, the Great Wall induces a large negative quadrupole, which taken at face value implies an unrealistically large omega 20. The IRAS 2 Jy survey, which covers a substantially larger volume than the optical surveys and is less affected by fingers-of-god, yields a more reliable and believable value, omega = 0.5 sup +.5 sub -.25.

  10. Urban characteristics attributable to density-driven tie formation

    NASA Astrophysics Data System (ADS)

    Pan, Wei; Ghoshal, Gourab; Krumme, Coco; Cebrian, Manuel; Pentland, Alex

    2013-06-01

    Motivated by empirical evidence on the interplay between geography, population density and societal interaction, we propose a generative process for the evolution of social structure in cities. Our analytical and simulation results predict both super-linear scaling of social-tie density and information contagion as a function of the population. Here we demonstrate that our model provides a robust and accurate fit for the dependency of city characteristics with city-size, ranging from individual-level dyadic interactions (number of acquaintances, volume of communication) to population level variables (contagious disease rates, patenting activity, economic productivity and crime) without the need to appeal to heterogeneity, modularity, specialization or hierarchy.

  11. Kolmogorov-Kraichnan Scaling in the Inverse Energy Cascade of Two-Dimensional Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Antar, G. Y.

    2003-08-01

    Turbulence in plasmas that are magnetically confined, such as tokamaks or linear devices, is two dimensional or at least quasi two dimensional due to the strong magnetic field, which leads to extreme elongation of the fluctuations, if any, in the direction parallel to the magnetic field. These plasmas are also compressible fluid flows obeying the compressible Navier-Stokes equations. This Letter presents the first comprehensive scaling of the structure functions of the density and velocity fields up to 10th order in the PISCES linear plasma device and up to 6th order in the Mega-Ampère Spherical Tokamak (MAST). In the two devices, it is found that the scaling of the turbulent fields is in good agreement with the prediction of the Kolmogorov-Kraichnan theory for two-dimensional turbulence in the energy cascade subrange.

  12. Halo modelling in chameleon theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lombriser, Lucas; Koyama, Kazuya; Li, Baojiu, E-mail: lucas.lombriser@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk, E-mail: baojiu.li@durham.ac.uk

    2014-03-01

    We analyse modelling techniques for the large-scale structure formed in scalar-tensor theories of constant Brans-Dicke parameter which match the concordance model background expansion history and produce a chameleon suppression of the gravitational modification in high-density regions. Thereby, we use a mass and environment dependent chameleon spherical collapse model, the Sheth-Tormen halo mass function and linear halo bias, the Navarro-Frenk-White halo density profile, and the halo model. Furthermore, using the spherical collapse model, we extrapolate a chameleon mass-concentration scaling relation from a ΛCDM prescription calibrated to N-body simulations. We also provide constraints on the model parameters to ensure viability on localmore » scales. We test our description of the halo mass function and nonlinear matter power spectrum against the respective observables extracted from large-volume and high-resolution N-body simulations in the limiting case of f(R) gravity, corresponding to a vanishing Brans-Dicke parameter. We find good agreement between the two; the halo model provides a good qualitative description of the shape of the relative enhancement of the f(R) matter power spectrum with respect to ΛCDM caused by the extra attractive gravitational force but fails to recover the correct amplitude. Introducing an effective linear power spectrum in the computation of the two-halo term to account for an underestimation of the chameleon suppression at intermediate scales in our approach, we accurately reproduce the measurements from the N-body simulations.« less

  13. Fragment approach to constrained density functional theory calculations using Daubechies wavelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ratcliff, Laura E.; Genovese, Luigi; Mohr, Stephan

    2015-06-21

    In a recent paper, we presented a linear scaling Kohn-Sham density functional theory (DFT) code based on Daubechies wavelets, where a minimal set of localized support functions are optimized in situ and therefore adapted to the chemical properties of the molecular system. Thanks to the systematically controllable accuracy of the underlying basis set, this approach is able to provide an optimal contracted basis for a given system: accuracies for ground state energies and atomic forces are of the same quality as an uncontracted, cubic scaling approach. This basis set offers, by construction, a natural subset where the density matrix ofmore » the system can be projected. In this paper, we demonstrate the flexibility of this minimal basis formalism in providing a basis set that can be reused as-is, i.e., without reoptimization, for charge-constrained DFT calculations within a fragment approach. Support functions, represented in the underlying wavelet grid, of the template fragments are roto-translated with high numerical precision to the required positions and used as projectors for the charge weight function. We demonstrate the interest of this approach to express highly precise and efficient calculations for preparing diabatic states and for the computational setup of systems in complex environments.« less

  14. Three pillars for achieving quantum mechanical molecular dynamics simulations of huge systems: Divide-and-conquer, density-functional tight-binding, and massively parallel computation.

    PubMed

    Nishizawa, Hiroaki; Nishimura, Yoshifumi; Kobayashi, Masato; Irle, Stephan; Nakai, Hiromi

    2016-08-05

    The linear-scaling divide-and-conquer (DC) quantum chemical methodology is applied to the density-functional tight-binding (DFTB) theory to develop a massively parallel program that achieves on-the-fly molecular reaction dynamics simulations of huge systems from scratch. The functions to perform large scale geometry optimization and molecular dynamics with DC-DFTB potential energy surface are implemented to the program called DC-DFTB-K. A novel interpolation-based algorithm is developed for parallelizing the determination of the Fermi level in the DC method. The performance of the DC-DFTB-K program is assessed using a laboratory computer and the K computer. Numerical tests show the high efficiency of the DC-DFTB-K program, a single-point energy gradient calculation of a one-million-atom system is completed within 60 s using 7290 nodes of the K computer. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Evaluating the B-cell density with various activation functions using White Noise Path Integral Approach

    NASA Astrophysics Data System (ADS)

    Aban, C. J. G.; Bacolod, R. O.; Confesor, M. N. P.

    2015-06-01

    A The White Noise Path Integral Approach is used in evaluating the B-cell density or the number of B-cell per unit volume for a basic type of immune system response based on the modeling done by Perelson and Wiegel. From the scaling principles of Perelson [1], the B- cell density is obtained where antigens and antibodies mutates and activation function f(|S-SA|) is defined describing the interaction between a specific antigen and a B-cell. If the activation function f(|S-SA|) is held constant, the major form of the B-cell density evaluated using white noise analysis is similar to the form of the B-cell density obtained by Perelson and Wiegel using a differential approach.A piecewise linear functionis also used to describe the activation f(|S-SA|). If f(|S-SA|) is zero, the density decreases exponentially. If f(|S-SA|) = S-SA-SB, the B- cell density increases exponentially until it reaches a certain maximum value. For f(|S-SA|) = 2SA-SB-S, the behavior of B-cell density is oscillating and remains to be in small values.

  16. Effects of Grafting Density on Block Polymer Self-Assembly: From Linear to Bottlebrush

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Tzu-Pin; Chang, Alice B.; Luo, Shao-Xiong

    Grafting density is an important structural parameter that imparts significant influences over the physical properties of architecturally complex polymers. In this paper, the physical consequences of varying the grafting density (z) were studied in the context of block polymer self-assembly. Well-defined block polymers spanning the linear, comb, and bottlebrush regimes (0 ≤ z ≤ 1) were prepared via grafting-through ring-opening-metathesis polymerization (ROMP). ω-norbornenyl poly(D,L-lactide) (PLA) and polystyrene (PS) macromonomers were copolymerized with discrete co-monomers in different feed ratios, enabling precise control over the grafting density. Small-angle X-ray scattering (SAXS) experiments demonstrate that these graft block polymers can self-assemble into long-range-orderedmore » lamellar structures. For seventeen series of block polymers with variable z, the scaling of the lamellar period with the total backbone degree of polymerization (d* ~ N bb α) was studied. The scaling exponent α monotonically decreases with decreasing z and exhibits an apparent transition at z ≈ 0.2, suggesting significant changes in the chain conformations. Comparison of two block polymer systems, one that is strongly segregated for all z (System I) and one that experiences weak segregation at low z (System II), indicates that the observed trends are primarily caused by the polymer architectures, instead of segregation strengths. A model is pro-posed in which the characteristic ratio (C ∞), a proxy for the backbone stiffness, scales with N bb as a function of the grafting density: C ∞ ~ N bb f(z). To the best of our knowledge, this report represents the first study of scaling behavior for the self-assembly of block polymers with variable grafting density. Lastly, the relationships disclosed herein provide valuable insights into conformational changes with grafting density, thus introducing new opportunities for future block polymer design.« less

  17. Effects of Grafting Density on Block Polymer Self-Assembly: From Linear to Bottlebrush

    DOE PAGES

    Lin, Tzu-Pin; Chang, Alice B.; Luo, Shao-Xiong; ...

    2017-10-26

    Grafting density is an important structural parameter that imparts significant influences over the physical properties of architecturally complex polymers. In this paper, the physical consequences of varying the grafting density (z) were studied in the context of block polymer self-assembly. Well-defined block polymers spanning the linear, comb, and bottlebrush regimes (0 ≤ z ≤ 1) were prepared via grafting-through ring-opening-metathesis polymerization (ROMP). ω-norbornenyl poly(D,L-lactide) (PLA) and polystyrene (PS) macromonomers were copolymerized with discrete co-monomers in different feed ratios, enabling precise control over the grafting density. Small-angle X-ray scattering (SAXS) experiments demonstrate that these graft block polymers can self-assemble into long-range-orderedmore » lamellar structures. For seventeen series of block polymers with variable z, the scaling of the lamellar period with the total backbone degree of polymerization (d* ~ N bb α) was studied. The scaling exponent α monotonically decreases with decreasing z and exhibits an apparent transition at z ≈ 0.2, suggesting significant changes in the chain conformations. Comparison of two block polymer systems, one that is strongly segregated for all z (System I) and one that experiences weak segregation at low z (System II), indicates that the observed trends are primarily caused by the polymer architectures, instead of segregation strengths. A model is pro-posed in which the characteristic ratio (C ∞), a proxy for the backbone stiffness, scales with N bb as a function of the grafting density: C ∞ ~ N bb f(z). To the best of our knowledge, this report represents the first study of scaling behavior for the self-assembly of block polymers with variable grafting density. Lastly, the relationships disclosed herein provide valuable insights into conformational changes with grafting density, thus introducing new opportunities for future block polymer design.« less

  18. Low-memory iterative density fitting.

    PubMed

    Grajciar, Lukáš

    2015-07-30

    A new low-memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix-vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15-fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12-core CPU workstation. © 2015 Wiley Periodicals, Inc.

  19. On real-space Density Functional Theory for non-orthogonal crystal systems: Kronecker product formulation of the kinetic energy operator

    NASA Astrophysics Data System (ADS)

    Sharma, Abhiraj; Suryanarayana, Phanish

    2018-05-01

    We present an accurate and efficient real-space Density Functional Theory (DFT) framework for the ab initio study of non-orthogonal crystal systems. Specifically, employing a local reformulation of the electrostatics, we develop a novel Kronecker product formulation of the real-space kinetic energy operator that significantly reduces the number of operations associated with the Laplacian-vector multiplication, the dominant cost in practical computations. In particular, we reduce the scaling with respect to finite-difference order from quadratic to linear, thereby significantly bridging the gap in computational cost between non-orthogonal and orthogonal systems. We verify the accuracy and efficiency of the proposed methodology through selected examples.

  20. Multiresolution quantum chemistry in multiwavelet bases: excited states from time-dependent Hartree–Fock and density functional theory via linear response

    DOE PAGES

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory; ...

    2015-02-25

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  1. Weak lensing shear and aperture mass from linear to non-linear scales

    NASA Astrophysics Data System (ADS)

    Munshi, Dipak; Valageas, Patrick; Barber, Andrew J.

    2004-05-01

    We describe the predictions for the smoothed weak lensing shear, γs, and aperture mass,Map, of two simple analytical models of the density field: the minimal tree model and the stellar model. Both models give identical results for the statistics of the three-dimensional density contrast smoothed over spherical cells and only differ by the detailed angular dependence of the many-body density correlations. We have shown in previous work that they also yield almost identical results for the probability distribution function (PDF) of the smoothed convergence, κs. We find that the two models give rather close results for both the shear and the positive tail of the aperture mass. However, we note that at small angular scales (θs<~ 2 arcmin) the tail of the PDF, , for negative Map shows a strong variation between the two models, and the stellar model actually breaks down for θs<~ 0.4 arcmin and Map < 0. This shows that the statistics of the aperture mass provides a very precise probe of the detailed structure of the density field, as it is sensitive to both the amplitude and the detailed angular behaviour of the many-body correlations. On the other hand, the minimal tree model shows good agreement with numerical simulations over all the scales and redshifts of interest, while both models provide a good description of the PDF, , of the smoothed shear components. Therefore, the shear and the aperture mass provide robust and complementary tools to measure the cosmological parameters as well as the detailed statistical properties of the density field.

  2. Extracting physical quantities from BES data

    NASA Astrophysics Data System (ADS)

    Fox, Michael; Field, Anthony; Schekochihin, Alexander; van Wyk, Ferdinand; MAST Team

    2015-11-01

    We propose a method to extract the underlying physical properties of turbulence from measurements, thereby facilitating quantitative comparisons between theory and experiment. Beam Emission Spectroscopy (BES) diagnostics record fluctuating intensity time series, which are related to the density field in the plasma through Point-Spread Functions (PSFs). Assuming a suitable form for the correlation function of the underlying turbulence, analytical expressions are derived that relate the correlation parameters of the intensity field: the radial and poloidal correlation lengths and wavenumbers, the correlation time and the fluctuation amplitude, to the equivalent correlation properties of the density field. In many cases, the modification caused by the PSFs is substantial enough to change conclusions about physics. Our method is tested by applying PSFs to the ``real'' density field, generated by non-linear gyrokinetic simulations of MAST, to create synthetic turbulence data, from which the method successfully recovers the correlation function of the ``real'' density field. This method is applied to BES data from MAST to determine the scaling of the 2D structure of the ion-scale turbulence with equilibrium parameters, including the ExB flow shear. Work funded by the Euratom research and training programme 2014-2018 under grant agreement No 633053 and from the RCUK Energy Programme [grant number EP/I501045].

  3. Proton structure functions at small x

    DOE PAGES

    Hentschinski, Martin

    2015-11-03

    Proton structure functions are measured in electron-proton collision through inelastic scattering of virtual photons with virtuality Q on protons; x denotes the momentum fraction carried by the struck parton. Proton structure functions are currently described with excellent accuracy in terms of scale dependent parton distribution functions, defined in terms of collinear factorization and DGLAP evolution in Q. With decreasing x however, parton densities increase and are ultimately expected to saturate. In this regime DGLAP evolution will finally break down and non-linear evolution equations w.r.t x are expected to take over. In the first part of the talk we present recentmore » result on an implementation of physical DGLAP evolution. Unlike the conventional description in terms of parton distribution functions, the former describes directly the Q dependence of the measured structure functions. It is therefore physical insensitive to factorization scheme and scale ambiguities. It therefore provides a more stringent test of DGLAP evolution and eases the manifestation of (non-linear) small x effects. It however requires a precise measurement of both structure functions F 2 and F L, which will be only possible at future facilities, such as an Electron Ion Collider. In the second part we present a recent analysis of the small x region of the combined HERA data on the structure function F 2. We demonstrate that (linear) next-to-leading order BFKL evolution describes the effective Pomeron intercept, determined from the combined HERA data, once a resummation of collinear enhanced terms is included and the renormalization scale is fixed using the BLM optimal scale setting procedure. We also provide a detailed description of the Q and x dependence of the full structure functions F 2 in the small x region, as measured at HERA. As a result, predictions for the structure function F L are found to be in agreement with the existing HERA data.« less

  4. Composite polarizability and the construction of an invariant function of refraction and mass density for solutions.

    PubMed

    Szymański, Krzysztof; Petrache, Horia I

    2011-04-14

    Re-examination of dynamical ionic polarizabilities in water solutions leads to the formulation of a solution function r(c), which combines the indices of refraction and mass densities of solutions. We show that this function should be independent of ionic concentration if the composite polarizabilities of hydrated solute clusters are constant. Using existing experimental data for a number of aqueous salt and organic solutions, we find that the r(c) function is either constant or varies linearly with concentration, in most cases with negligible slope. We use this function to compare ionic polarizabilities of crystals and aqueous solutions and to highlight how solute polarizabilities at infinite dilution scale with the electronic valence shell of cations and anions. The proposed r(c) function can be used generally to verify the consistency of experimental measurements and of simulation results, and it provides a test of assumptions in current theories of ionic polarizabilities.

  5. Macroscopic dielectric function within time-dependent density functional theory—Real time evolution versus the Casida approach

    NASA Astrophysics Data System (ADS)

    Sander, Tobias; Kresse, Georg

    2017-02-01

    Linear optical properties can be calculated by solving the time-dependent density functional theory equations. Linearization of the equation of motion around the ground state orbitals results in the so-called Casida equation, which is formally very similar to the Bethe-Salpeter equation. Alternatively one can determine the spectral functions by applying an infinitely short electric field in time and then following the evolution of the electron orbitals and the evolution of the dipole moments. The long wavelength response function is then given by the Fourier transformation of the evolution of the dipole moments in time. In this work, we compare the results and performance of these two approaches for the projector augmented wave method. To allow for large time steps and still rely on a simple difference scheme to solve the differential equation, we correct for the errors in the frequency domain, using a simple analytic equation. In general, we find that both approaches yield virtually indistinguishable results. For standard density functionals, the time evolution approach is, with respect to the computational performance, clearly superior compared to the solution of the Casida equation. However, for functionals including nonlocal exchange, the direct solution of the Casida equation is usually much more efficient, even though it scales less beneficial with the system size. We relate this to the large computational prefactors in evaluating the nonlocal exchange, which renders the time evolution algorithm fairly inefficient.

  6. Functional response of sport divers to lobsters with application to fisheries management.

    PubMed

    Eggleston, David B; Parsons, Darren M; Kellison, G Todd; Plaia, Gayle R; Johnson, Eric G

    2008-01-01

    Fishery managers must understand the dynamics of fishers and their prey to successfully predict the outcome of management actions. We measured the impact of a two-day exclusively recreational fishery on Caribbean spiny lobster in the Florida Keys, USA, over large spatial scales (>100 km) and multiple years and used a theoretical, predator-prey functional response approach to identify whether or not sport diver catch rates were density-independent (type I) or density-dependent (type II or III functional response), and if catch rates were saturated (i.e., reached an asymptote) at relatively high lobster densities. We then describe how this predator-prey framework can be applied to fisheries management for spiny lobster and other species. In the lower Keys, divers exhibited a type-I functional response, whereby they removed a constant and relatively high proportion of lobsters (0.74-0.84) across all pre-fishing-season lobster densities. Diver fishing effort increased in a linear manner with lobster prey densities, as would be expected with a type-I functional response, and was an order of magnitude lower in the upper Keys than lower Keys. There were numerous instances in the upper Keys where the density of lobsters actually increased from before to after the fishing season, suggesting some type of "spill-in effect" from surrounding diver-disturbed areas. With the exception of isolated reefs in the upper Keys, the proportion of lobsters removed by divers was density independent (type-I functional response) and never reached saturation at natural lobster densities. Thus, recreational divers have a relatively simple predatory response to spiny lobster, whereby catch rates increase linearly with lobster density such that catch is a reliable indicator of abundance. Although diver predation is extremely high (approximately 80%), diver predation pressure is not expected to increase proportionally with a decline in lobster density (i.e., a depensatory response), which could exacerbate local extinction. Furthermore, management actions that reduce diver effort should have a concomitant and desired reduction in catch. The recreational diver-lobster predator-prey construct in this study provides a useful predictive framework to apply to both recreational and commercial fisheries, and on which to build as management actions are implemented.

  7. Quasi-linear regime of gravitational instability: Implication to density-velocity relation

    NASA Technical Reports Server (NTRS)

    Shandarin, Sergei F.

    1993-01-01

    The well known linear relation between density and peculiar velocity distributions is a powerful tool for studying the large-scale structure in the Universe. Potentially it can test the gravitational instability theory and measure Omega. At present it is used in both ways: the velocity is reconstructed, provided the density is given, and vice versa. Reconstructing the density from the velocity field usually makes use of the Zel'dovich approximation. However, the standard linear approximation in Eulerian space is used when the velocity is reconstructed from the density distribution. I show that the linearized Zel'dovich approximation, in other words the linear approximation in the Lagrangian space, is more accurate for reconstructing velocity. In principle, a simple iteration technique can recover both the density and velocity distributions in Lagrangian space, but its practical application may need an additional study.

  8. Cosmological Constraints from Fourier Phase Statistics

    NASA Astrophysics Data System (ADS)

    Ali, Kamran; Obreschkow, Danail; Howlett, Cullan; Bonvin, Camille; Llinares, Claudio; Oliveira Franco, Felipe; Power, Chris

    2018-06-01

    Most statistical inference from cosmic large-scale structure relies on two-point statistics, i.e. on the galaxy-galaxy correlation function (2PCF) or the power spectrum. These statistics capture the full information encoded in the Fourier amplitudes of the galaxy density field but do not describe the Fourier phases of the field. Here, we quantify the information contained in the line correlation function (LCF), a three-point Fourier phase correlation function. Using cosmological simulations, we estimate the Fisher information (at redshift z = 0) of the 2PCF, LCF and their combination, regarding the cosmological parameters of the standard ΛCDM model, as well as a Warm Dark Matter (WDM) model and the f(R) and Symmetron modified gravity models. The galaxy bias is accounted for at the level of a linear bias. The relative information of the 2PCF and the LCF depends on the survey volume, sampling density (shot noise) and the bias uncertainty. For a volume of 1h^{-3}Gpc^3, sampled with points of mean density \\bar{n} = 2× 10^{-3} h3 Mpc^{-3} and a bias uncertainty of 13%, the LCF improves the parameter constraints by about 20% in the ΛCDM cosmology and potentially even more in alternative models. Finally, since a linear bias only affects the Fourier amplitudes (2PCF), but not the phases (LCF), the combination of the 2PCF and the LCF can be used to break the degeneracy between the linear bias and σ8, present in 2-point statistics.

  9. When can a single-species, density-dependent model capture the dynamics of a consumer-resource system?

    PubMed

    Reynolds, Sara A; Brassil, Chad E

    2013-12-21

    Single-species population models often include density-dependence phenomenologically in order to approximate higher order mechanisms. Here we consider the common scenario in which density-dependence acts via depletion of a renewed resource. When the response of the resource is very quick relative to that of the consumer, the consumer dynamics can be captured by a single-species, density-dependent model. Time scale separation is used to show analytically how the shape of the density-dependent relationship depends on the type of resource and the form of the functional response. Resource types of abiotic, biotic, and biotic with migration are considered, in combination with linear and saturating functional responses. In some cases, we derive familiar forms of single-species models, adding to the justification for their use. In other scenarios novel forms of density-dependence are derived, for example an abiotic resource and a saturating functional response can result in a nonlinear density-dependent relationship in the associated single-species model of the consumer. In this case, the per capita relationship has both concave-up and concave-down sections. © 2013 Published by Elsevier Ltd. All rights reserved.

  10. Suppression of phase mixing in drift-kinetic plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parker, J. T., E-mail: joseph.parker@stfc.ac.uk; OCIAM, Mathematical Institute, University of Oxford, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG; Brasenose College, Radcliffe Square, Oxford OX1 4AJ

    2016-07-15

    Transfer of free energy from large to small velocity-space scales by phase mixing leads to Landau damping in a linear plasma. In a turbulent drift-kinetic plasma, this transfer is statistically nearly canceled by an inverse transfer from small to large velocity-space scales due to “anti-phase-mixing” modes excited by a stochastic form of plasma echo. Fluid moments (density, velocity, and temperature) are thus approximately energetically isolated from the higher moments of the distribution function, so phase mixing is ineffective as a dissipation mechanism when the plasma collisionality is small.

  11. Dispersion interactions with linear scaling DFT: a study of planar molecules on charged polar surfaces

    NASA Astrophysics Data System (ADS)

    Andrinopoulos, Lampros; Hine, Nicholas; Haynes, Peter; Mostofi, Arash

    2010-03-01

    The placement of organic molecules such as CuPc (copper phthalocyanine) on wurtzite ZnO (zinc oxide) charged surfaces has been proposed as a way of creating photovoltaic solar cellsfootnotetextG.D. Sharma et al., Solar Energy Materials & Solar Cells 90, 933 (2006) ; optimising their performance may be aided by computational simulation. Electronic structure calculations provide high accuracy at modest computational cost but two challenges are encountered for such layered systems. First, the system size is at or beyond the limit of traditional cubic-scaling Density Functional Theory (DFT). Second, traditional exchange-correlation functionals do not account for van der Waals (vdW) interactions, crucial for determining the structure of weakly bonded systems. We present an implementation of recently developed approachesfootnotetextP.L. Silvestrelli, P.R.L. 100, 102 (2008) to include vdW in DFT within ONETEPfootnotetextC.-K. Skylaris, P.D. Haynes, A.A. Mostofi and M.C. Payne, J.C.P. 122, 084119 (2005) , a linear-scaling package for performing DFT calculations using a basis of localised functions. We have applied this methodology to simple planar organic molecules, such as benzene and pentacene, on ZnO surfaces.

  12. Linear-response time-dependent density-functional theory with pairing fields.

    PubMed

    Peng, Degao; van Aggelen, Helen; Yang, Yang; Yang, Weitao

    2014-05-14

    Recent development in particle-particle random phase approximation (pp-RPA) broadens the perspective on ground state correlation energies [H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013), Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013); D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013)] and N ± 2 excitation energies [Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013)]. So far Hartree-Fock and approximated density-functional orbitals have been utilized to evaluate the pp-RPA equation. In this paper, to further explore the fundamentals and the potential use of pairing matrix dependent functionals, we present the linear-response time-dependent density-functional theory with pairing fields with both adiabatic and frequency-dependent kernels. This theory is related to the density-functional theory and time-dependent density-functional theory for superconductors, but is applied to normal non-superconducting systems for our purpose. Due to the lack of the proof of the one-to-one mapping between the pairing matrix and the pairing field for time-dependent systems, the linear-response theory is established based on the representability assumption of the pairing matrix. The linear response theory justifies the use of approximated density-functionals in the pp-RPA equation. This work sets the fundamentals for future density-functional development to enhance the description of ground state correlation energies and N ± 2 excitation energies.

  13. Linear stability analysis of the Vlasov-Poisson equations in high density plasmas in the presence of crossed fields and density gradients

    NASA Technical Reports Server (NTRS)

    Kaup, D. J.; Hansen, P. J.; Choudhury, S. Roy; Thomas, Gary E.

    1986-01-01

    The equations for the single-particle orbits in a nonneutral high density plasma in the presence of inhomogeneous crossed fields are obtained. Using these orbits, the linearized Vlasov equation is solved as an expansion in the orbital radii in the presence of inhomogeneities and density gradients. A model distribution function is introduced whose cold-fluid limit is exactly the same as that used in many previous studies of the cold-fluid equations. This model function is used to reduce the linearized Vlasov-Poisson equations to a second-order ordinary differential equation for the linearized electrostatic potential whose eigenvalue is the perturbation frequency.

  14. First-principles simulations of doping-dependent mesoscale screening of adatoms in graphene

    NASA Astrophysics Data System (ADS)

    Mostofi, Arash; Corsetti, Fabiano; Wong, Dillon; Crommie, Michael; Lischner, Johannes

    Adsorbed atoms and molecules play an important role in controlling and tuning the functional properties of 2D materials. Understanding and predicting this phenomenon from theory is challenging because of the need to capture both the local chemistry of the adsorbate-substrate interaction and its complex interplay with the long-range screening response of the substrate. To address this challenge, we have developed a first-principles multi-scale approach that combines linear-scaling density-functional theory, continuum screening theory and large-scale tight-binding simulations. Focussing on the case of a calcium adatom on graphene, we draw comparison between the effect of (i) non-linearity, (ii) intraband and interband transitions, and (iii) the exchange-correlation potential, thus providing insight into the relative importance of these different factors on the screening response. We also determine the charge transfer from the adatom to the graphene substrate (the key parameter used in continuum screening models), showing it to be significantly larger than previous estimates. AM and FC acknowledge support of the EPSRC under Grant EP/J015059/1, and JL under Grant EP/N005244/1.

  15. Are fractal dimensions of the spatial distribution of mineral deposits meaningful?

    USGS Publications Warehouse

    Raines, G.L.

    2008-01-01

    It has been proposed that the spatial distribution of mineral deposits is bifractal. An implication of this property is that the number of deposits in a permissive area is a function of the shape of the area. This is because the fractal density functions of deposits are dependent on the distance from known deposits. A long thin permissive area with most of the deposits in one end, such as the Alaskan porphyry permissive area, has a major portion of the area far from known deposits and consequently a low density of deposits associated with most of the permissive area. On the other hand, a more equi-dimensioned permissive area, such as the Arizona porphyry permissive area, has a more uniform density of deposits. Another implication of the fractal distribution is that the Poisson assumption typically used for estimating deposit numbers is invalid. Based on datasets of mineral deposits classified by type as inputs, the distributions of many different deposit types are found to have characteristically two fractal dimensions over separate non-overlapping spatial scales in the range of 5-1000 km. In particular, one typically observes a local dimension at spatial scales less than 30-60 km, and a regional dimension at larger spatial scales. The deposit type, geologic setting, and sample size influence the fractal dimensions. The consequence of the geologic setting can be diminished by using deposits classified by type. The crossover point between the two fractal domains is proportional to the median size of the deposit type. A plot of the crossover points for porphyry copper deposits from different geologic domains against median deposit sizes defines linear relationships and identifies regions that are significantly underexplored. Plots of the fractal dimension can also be used to define density functions from which the number of undiscovered deposits can be estimated. This density function is only dependent on the distribution of deposits and is independent of the definition of the permissive area. Density functions for porphyry copper deposits appear to be significantly different for regions in the Andes, Mexico, United States, and western Canada. Consequently, depending on which regional density function is used, quite different estimates of numbers of undiscovered deposits can be obtained. These fractal properties suggest that geologic studies based on mapping at scales of 1:24,000 to 1:100,000 may not recognize processes that are important in the formation of mineral deposits at scales larger than the crossover points at 30-60 km. ?? 2008 International Association for Mathematical Geology.

  16. Hunting high and low: disentangling primordial and late-time non-Gaussianity with cosmic densities in spheres

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Pajer, E.; Pichon, C.; Nishimichi, T.; Codis, S.; Bernardeau, F.

    2018-03-01

    Non-Gaussianities of dynamical origin are disentangled from primordial ones using the formalism of large deviation statistics with spherical collapse dynamics. This is achieved by relying on accurate analytical predictions for the one-point probability distribution function and the two-point clustering of spherically averaged cosmic densities (sphere bias). Sphere bias extends the idea of halo bias to intermediate density environments and voids as underdense regions. In the presence of primordial non-Gaussianity, sphere bias displays a strong scale dependence relevant for both high- and low-density regions, which is predicted analytically. The statistics of densities in spheres are built to model primordial non-Gaussianity via an initial skewness with a scale dependence that depends on the bispectrum of the underlying model. The analytical formulas with the measured non-linear dark matter variance as input are successfully tested against numerical simulations. For local non-Gaussianity with a range from fNL = -100 to +100, they are found to agree within 2 per cent or better for densities ρ ∈ [0.5, 3] in spheres of radius 15 Mpc h-1 down to z = 0.35. The validity of the large deviation statistics formalism is thereby established for all observationally relevant local-type departures from perfectly Gaussian initial conditions. The corresponding estimators for the amplitude of the non-linear variance σ8 and primordial skewness fNL are validated using a fiducial joint maximum likelihood experiment. The influence of observational effects and the prospects for a future detection of primordial non-Gaussianity from joint one- and two-point densities-in-spheres statistics are discussed.

  17. Towards time-dependent current-density-functional theory in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Escartín, J. M.; Vincendon, M.; Romaniello, P.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.

    2015-02-01

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  18. Towards time-dependent current-density-functional theory in the non-linear regime.

    PubMed

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  19. Breaking the theoretical scaling limit for predicting quasiparticle energies: the stochastic GW approach.

    PubMed

    Neuhauser, Daniel; Gao, Yi; Arntsen, Christopher; Karshenas, Cyrus; Rabani, Eran; Baer, Roi

    2014-08-15

    We develop a formalism to calculate the quasiparticle energy within the GW many-body perturbation correction to the density functional theory. The occupied and virtual orbitals of the Kohn-Sham Hamiltonian are replaced by stochastic orbitals used to evaluate the Green function G, the polarization potential W, and, thereby, the GW self-energy. The stochastic GW (sGW) formalism relies on novel theoretical concepts such as stochastic time-dependent Hartree propagation, stochastic matrix compression, and spatial or temporal stochastic decoupling techniques. Beyond the theoretical interest, the formalism enables linear scaling GW calculations breaking the theoretical scaling limit for GW as well as circumventing the need for energy cutoff approximations. We illustrate the method for silicon nanocrystals of varying sizes with N_{e}>3000 electrons.

  20. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods

    DOE PAGES

    Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.

    2017-04-26

    Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less

  1. Discovering charge density functionals and structure-property relationships with PROPhet: A general framework for coupling machine learning and first-principles methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolb, Brian; Lentz, Levi C.; Kolpak, Alexie M.

    Modern ab initio methods have rapidly increased our understanding of solid state materials properties, chemical reactions, and the quantum interactions between atoms. However, poor scaling often renders direct ab initio calculations intractable for large or complex systems. There are two obvious avenues through which to remedy this problem: (i) develop new, less expensive methods to calculate system properties, or (ii) make existing methods faster. This paper describes an open source framework designed to pursue both of these avenues. PROPhet (short for PROPerty Prophet) utilizes machine learning techniques to find complex, non-linear mappings between sets of material or system properties. Themore » result is a single code capable of learning analytical potentials, non-linear density functionals, and other structure-property or property-property relationships. These capabilities enable highly accurate mesoscopic simulations, facilitate computation of expensive properties, and enable the development of predictive models for systematic materials design and optimization. Here, this work explores the coupling of machine learning to ab initio methods through means both familiar (e.g., the creation of various potentials and energy functionals) and less familiar (e.g., the creation of density functionals for arbitrary properties), serving both to demonstrate PROPhet’s ability to create exciting post-processing analysis tools and to open the door to improving ab initio methods themselves with these powerful machine learning techniques.« less

  2. Coupling density functional theory to polarizable force fields for efficient and accurate Hamiltonian molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Schwörer, Magnus; Breitenfeld, Benedikt; Tröster, Philipp; Bauer, Sebastian; Lorenzen, Konstantin; Tavan, Paul; Mathias, Gerald

    2013-06-01

    Hybrid molecular dynamics (MD) simulations, in which the forces acting on the atoms are calculated by grid-based density functional theory (DFT) for a solute molecule and by a polarizable molecular mechanics (PMM) force field for a large solvent environment composed of several 103-105 molecules, pose a challenge. A corresponding computational approach should guarantee energy conservation, exclude artificial distortions of the electron density at the interface between the DFT and PMM fragments, and should treat the long-range electrostatic interactions within the hybrid simulation system in a linearly scaling fashion. Here we describe a corresponding Hamiltonian DFT/(P)MM implementation, which accounts for inducible atomic dipoles of a PMM environment in a joint DFT/PMM self-consistency iteration. The long-range parts of the electrostatics are treated by hierarchically nested fast multipole expansions up to a maximum distance dictated by the minimum image convention of toroidal boundary conditions and, beyond that distance, by a reaction field approach such that the computation scales linearly with the number of PMM atoms. Short-range over-polarization artifacts are excluded by using Gaussian inducible dipoles throughout the system and Gaussian partial charges in the PMM region close to the DFT fragment. The Hamiltonian character, the stability, and efficiency of the implementation are investigated by hybrid DFT/PMM-MD simulations treating one molecule of the water dimer and of bulk water by DFT and the respective remainder by PMM.

  3. Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Hung, Linda; Huang, Chen; Shin, Ilgyou; Ho, Gregory S.; Lignères, Vincent L.; Carter, Emily A.

    2010-12-01

    Orbital-free density functional theory (OFDFT) is a first principles quantum mechanics method to find the ground-state energy of a system by variationally minimizing with respect to the electron density. No orbitals are used in the evaluation of the kinetic energy (unlike Kohn-Sham DFT), and the method scales nearly linearly with the size of the system. The PRinceton Orbital-Free Electronic Structure Software (PROFESS) uses OFDFT to model materials from the atomic scale to the mesoscale. This new version of PROFESS allows the study of larger systems with two significant changes: PROFESS is now parallelized, and the ion-electron and ion-ion terms scale quasilinearly, instead of quadratically as in PROFESS v1 (L. Hung and E.A. Carter, Chem. Phys. Lett. 475 (2009) 163). At the start of a run, PROFESS reads the various input files that describe the geometry of the system (ion positions and cell dimensions), the type of elements (defined by electron-ion pseudopotentials), the actions you want it to perform (minimize with respect to electron density and/or ion positions and/or cell lattice vectors), and the various options for the computation (such as which functionals you want it to use). Based on these inputs, PROFESS sets up a computation and performs the appropriate optimizations. Energies, forces, stresses, material geometries, and electron density configurations are some of the values that can be output throughout the optimization. New version program summaryProgram Title: PROFESS Catalogue identifier: AEBN_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEBN_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 68 721 No. of bytes in distributed program, including test data, etc.: 1 708 547 Distribution format: tar.gz Programming language: Fortran 90 Computer: Intel with ifort; AMD Opteron with pathf90 Operating system: Linux Has the code been vectorized or parallelized?: Yes. Parallelization is implemented through domain composition using MPI. RAM: Problem dependent, but 2 GB is sufficient for up to 10,000 ions. Classification: 7.3 External routines: FFTW 2.1.5 ( http://www.fftw.org) Catalogue identifier of previous version: AEBN_v1_0 Journal reference of previous version: Comput. Phys. Comm. 179 (2008) 839 Does the new version supersede the previous version?: Yes Nature of problem: Given a set of coordinates describing the initial ion positions under periodic boundary conditions, recovers the ground state energy, electron density, ion positions, and cell lattice vectors predicted by orbital-free density functional theory. The computation of all terms is effectively linear scaling. Parallelization is implemented through domain decomposition, and up to ˜10,000 ions may be included in the calculation on just a single processor, limited by RAM. For example, when optimizing the geometry of ˜50,000 aluminum ions (plus vacuum) on 48 cores, a single iteration of conjugate gradient ion geometry optimization takes ˜40 minutes wall time. However, each CG geometry step requires two or more electron density optimizations, so step times will vary. Solution method: Computes energies as described in text; minimizes this energy with respect to the electron density, ion positions, and cell lattice vectors. Reasons for new version: To allow much larger systems to be simulated using PROFESS. Restrictions: PROFESS cannot use nonlocal (such as ultrasoft) pseudopotentials. A variety of local pseudopotential files are available at the Carter group website ( http://www.princeton.edu/mae/people/faculty/carter/homepage/research/localpseudopotentials/). Also, due to the current state of the kinetic energy functionals, PROFESS is only reliable for main group metals and some properties of semiconductors. Running time: Problem dependent: the test example provided with the code takes less than a second to run. Timing results for large scale problems are given in the PROFESS paper and Ref. [1].

  4. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    PubMed

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  5. Scaling Relations for Adsorption Energies on Doped Molybdenum Phosphide Surfaces

    DOE PAGES

    Fields, Meredith; Tsai, Charlie; Chen, Leanne D.; ...

    2017-03-10

    Molybdenum phosphide (MoP), a well-documented catalyst for applications ranging from hydrotreating reactions to electrochemical hydrogen evolution, has yet to be mapped from a more fundamental perspective, particularly in the context of transition-metal scaling relations. In this work, we use periodic density functional theory to extend linear scaling arguments to doped MoP surfaces and understand the behavior of the phosphorus active site. The derived linear relationships for hydrogenated C, N, and O species on a variety of doped surfaces suggest that phosphorus experiences a shift in preferred bond order depending on the degree of hydrogen substitution on the adsorbate molecule. Thismore » shift in phosphorus hybridization, dependent on the bond order of the adsorbate to the surface, can result in selective bond weakening or strengthening of chemically similar species. As a result, we discuss how this behavior deviates from transition-metal, sulfide, carbide, and nitride scaling relations, and we discuss potential applications in the context of electrochemical reduction reactions.« less

  6. Quadratic canonical transformation theory and higher order density matrices.

    PubMed

    Neuscamman, Eric; Yanai, Takeshi; Chan, Garnet Kin-Lic

    2009-03-28

    Canonical transformation (CT) theory provides a rigorously size-extensive description of dynamic correlation in multireference systems, with an accuracy superior to and cost scaling lower than complete active space second order perturbation theory. Here we expand our previous theory by investigating (i) a commutator approximation that is applied at quadratic, as opposed to linear, order in the effective Hamiltonian, and (ii) incorporation of the three-body reduced density matrix in the operator and density matrix decompositions. The quadratic commutator approximation improves CT's accuracy when used with a single-determinant reference, repairing the previous formal disadvantage of the single-reference linear CT theory relative to singles and doubles coupled cluster theory. Calculations on the BH and HF binding curves confirm this improvement. In multireference systems, the three-body reduced density matrix increases the overall accuracy of the CT theory. Tests on the H(2)O and N(2) binding curves yield results highly competitive with expensive state-of-the-art multireference methods, such as the multireference Davidson-corrected configuration interaction (MRCI+Q), averaged coupled pair functional, and averaged quadratic coupled cluster theories.

  7. Seagrass canopy photosynthetic response is a function of canopy density and light environment: a model for Amphibolis griffithii.

    PubMed

    Hedley, John D; McMahon, Kathryn; Fearns, Peter

    2014-01-01

    A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments.

  8. Seagrass Canopy Photosynthetic Response Is a Function of Canopy Density and Light Environment: A Model for Amphibolis griffithii

    PubMed Central

    Hedley, John D.; McMahon, Kathryn; Fearns, Peter

    2014-01-01

    A three-dimensional computer model of canopies of the seagrass Amphibolis griffithii was used to investigate the consequences of variations in canopy structure and benthic light environment on leaf-level photosynthetic saturation state. The model was constructed using empirical data of plant morphometrics from a previously conducted shading experiment and validated well to in-situ data on light attenuation in canopies of different densities. Using published values of the leaf-level saturating irradiance for photosynthesis, results show that the interaction of canopy density and canopy-scale photosynthetic response is complex and non-linear, due to the combination of self-shading and the non-linearity of photosynthesis versus irradiance (P-I) curves near saturating irradiance. Therefore studies of light limitation in seagrasses should consider variation in canopy structure and density. Based on empirical work, we propose a number of possible measures for canopy scale photosynthetic response that can be plotted to yield isoclines in the space of canopy density and light environment. These plots can be used to interpret the significance of canopy changes induced as a response to decreases in the benthic light environment: in some cases canopy thinning can lead to an equivalent leaf level light environment, in others physiological changes may also be required but these alone may be inadequate for canopy survival. By providing insight to these processes the methods developed here could be a valuable management tool for seagrass conservation during dredging or other coastal developments. PMID:25347849

  9. Time-dependent quantum transport: An efficient method based on Liouville-von-Neumann equation for single-electron density matrix

    NASA Astrophysics Data System (ADS)

    Xie, Hang; Jiang, Feng; Tian, Heng; Zheng, Xiao; Kwok, Yanho; Chen, Shuguang; Yam, ChiYung; Yan, YiJing; Chen, Guanhua

    2012-07-01

    Basing on our hierarchical equations of motion for time-dependent quantum transport [X. Zheng, G. H. Chen, Y. Mo, S. K. Koo, H. Tian, C. Y. Yam, and Y. J. Yan, J. Chem. Phys. 133, 114101 (2010), 10.1063/1.3475566], we develop an efficient and accurate numerical algorithm to solve the Liouville-von-Neumann equation. We solve the real-time evolution of the reduced single-electron density matrix at the tight-binding level. Calculations are carried out to simulate the transient current through a linear chain of atoms, with each represented by a single orbital. The self-energy matrix is expanded in terms of multiple Lorentzian functions, and the Fermi distribution function is evaluated via the Padè spectrum decomposition. This Lorentzian-Padè decomposition scheme is employed to simulate the transient current. With sufficient Lorentzian functions used to fit the self-energy matrices, we show that the lead spectral function and the dynamics response can be treated accurately. Compared to the conventional master equation approaches, our method is much more efficient as the computational time scales cubically with the system size and linearly with the simulation time. As a result, the simulations of the transient currents through systems containing up to one hundred of atoms have been carried out. As density functional theory is also an effective one-particle theory, the Lorentzian-Padè decomposition scheme developed here can be generalized for first-principles simulation of realistic systems.

  10. Scaled effective on-site Coulomb interaction in the DFT+U method for correlated materials

    NASA Astrophysics Data System (ADS)

    Nawa, Kenji; Akiyama, Toru; Ito, Tomonori; Nakamura, Kohji; Oguchi, Tamio; Weinert, M.

    2018-01-01

    The first-principles calculation of correlated materials within density functional theory remains challenging, but the inclusion of a Hubbard-type effective on-site Coulomb term (Ueff) often provides a computationally tractable and physically reasonable approach. However, the reported values of Ueff vary widely, even for the same ionic state and the same material. Since the final physical results can depend critically on the choice of parameter and the computational details, there is a need to have a consistent procedure to choose an appropriate one. We revisit this issue from constraint density functional theory, using the full-potential linearized augmented plane wave method. The calculated Ueff parameters for the prototypical transition-metal monoxides—MnO, FeO, CoO, and NiO—are found to depend significantly on the muffin-tin radius RMT, with variations of more than 2-3 eV as RMT changes from 2.0 to 2.7 aB. Despite this large variation in Ueff, the calculated valence bands differ only slightly. Moreover, we find an approximately linear relationship between Ueff(RMT) and the number of occupied localized electrons within the sphere, and give a simple scaling argument for Ueff; these results provide a rationalization for the large variation in reported values. Although our results imply that Ueff values are not directly transferable among different calculation methods (or even the same one with different input parameters such as RMT), use of this scaling relationship should help simplify the choice of Ueff.

  11. Cosmological constraints from a combination of galaxy clustering and lensing - III. Application to SDSS data

    NASA Astrophysics Data System (ADS)

    Cacciato, Marcello; van den Bosch, Frank C.; More, Surhud; Mo, Houjun; Yang, Xiaohu

    2013-04-01

    We simultaneously constrain cosmology and galaxy bias using measurements of galaxy abundances, galaxy clustering and galaxy-galaxy lensing taken from the Sloan Digital Sky Survey. We use the conditional luminosity function (which describes the halo occupation statistics as a function of galaxy luminosity) combined with the halo model (which describes the non-linear matter field in terms of its halo building blocks) to describe the galaxy-dark matter connection. We explicitly account for residual redshift-space distortions in the projected galaxy-galaxy correlation functions, and marginalize over uncertainties in the scale dependence of the halo bias and the detailed structure of dark matter haloes. Under the assumption of a spatially flat, vanilla Λ cold dark matter (ΛCDM) cosmology, we focus on constraining the matter density, Ωm, and the normalization of the matter power spectrum, σ8, and we adopt 7-year Wilkinson Microwave Anisotropy Probe (WMAP7) priors for the spectral index, n, the Hubble parameter, h, and the baryon density, Ωb. We obtain that Ωm = 0.278+ 0.023- 0.026 and σ8 = 0.763+ 0.064- 0.049 (95 per cent CL). These results are robust to uncertainties in the radial number density distribution of satellite galaxies, while allowing for non-Poisson satellite occupation distributions results in a slightly lower value for σ8 (0.744+ 0.056- 0.047). These constraints are in excellent agreement (at the 1σ level) with the cosmic microwave background constraints from WMAP. This demonstrates that the use of a realistic and accurate model for galaxy bias, down to the smallest non-linear scales currently observed in galaxy surveys, leads to results perfectly consistent with the vanilla ΛCDM cosmology.

  12. LFSPMC: Linear feature selection program using the probability of misclassification

    NASA Technical Reports Server (NTRS)

    Guseman, L. F., Jr.; Marion, B. P.

    1975-01-01

    The computational procedure and associated computer program for a linear feature selection technique are presented. The technique assumes that: a finite number, m, of classes exists; each class is described by an n-dimensional multivariate normal density function of its measurement vectors; the mean vector and covariance matrix for each density function are known (or can be estimated); and the a priori probability for each class is known. The technique produces a single linear combination of the original measurements which minimizes the one-dimensional probability of misclassification defined by the transformed densities.

  13. Past and present cosmic structure in the SDSS DR7 main sample

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jasche, J.; Leclercq, F.; Wandelt, B.D., E-mail: jasche@iap.fr, E-mail: florent.leclercq@polytechnique.org, E-mail: wandelt@iap.fr

    2015-01-01

    We present a chrono-cosmography project, aiming at the inference of the four dimensional formation history of the observed large scale structure from its origin to the present epoch. To do so, we perform a full-scale Bayesian analysis of the northern galactic cap of the Sloan Digital Sky Survey (SDSS) Data Release 7 main galaxy sample, relying on a fully probabilistic, physical model of the non-linearly evolved density field. Besides inferring initial conditions from observations, our methodology naturally and accurately reconstructs non-linear features at the present epoch, such as walls and filaments, corresponding to high-order correlation functions generated by late-time structuremore » formation. Our inference framework self-consistently accounts for typical observational systematic and statistical uncertainties such as noise, survey geometry and selection effects. We further account for luminosity dependent galaxy biases and automatic noise calibration within a fully Bayesian approach. As a result, this analysis provides highly-detailed and accurate reconstructions of the present density field on scales larger than ∼ 3 Mpc/h, constrained by SDSS observations. This approach also leads to the first quantitative inference of plausible formation histories of the dynamic large scale structure underlying the observed galaxy distribution. The results described in this work constitute the first full Bayesian non-linear analysis of the cosmic large scale structure with the demonstrated capability of uncertainty quantification. Some of these results will be made publicly available along with this work. The level of detail of inferred results and the high degree of control on observational uncertainties pave the path towards high precision chrono-cosmography, the subject of simultaneously studying the dynamics and the morphology of the inhomogeneous Universe.« less

  14. Final Technical Report [Scalable methods for electronic excitations and optical responses of nanostructures: mathematics to algorithms to observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saad, Yousef

    2014-03-19

    The master project under which this work is funded had as its main objective to develop computational methods for modeling electronic excited-state and optical properties of various nanostructures. The specific goals of the computer science group were primarily to develop effective numerical algorithms in Density Functional Theory (DFT) and Time Dependent Density Functional Theory (TDDFT). There were essentially four distinct stated objectives. The first objective was to study and develop effective numerical algorithms for solving large eigenvalue problems such as those that arise in Density Functional Theory (DFT) methods. The second objective was to explore so-called linear scaling methods ormore » Methods that avoid diagonalization. The third was to develop effective approaches for Time-Dependent DFT (TDDFT). Our fourth and final objective was to examine effective solution strategies for other problems in electronic excitations, such as the GW/Bethe-Salpeter method, and quantum transport problems.« less

  15. Kinetic-scale fluctuations resolved with the Fast Plasma Investigation on NASA's Magnetospheric Multiscale mission.

    NASA Astrophysics Data System (ADS)

    Gershman, D. J.; Figueroa-Vinas, A.; Dorelli, J.; Goldstein, M. L.; Shuster, J. R.; Avanov, L. A.; Boardsen, S. A.; Stawarz, J. E.; Schwartz, S. J.; Schiff, C.; Lavraud, B.; Saito, Y.; Paterson, W. R.; Giles, B. L.; Pollock, C. J.; Strangeway, R. J.; Russell, C. T.; Torbert, R. B.; Moore, T. E.; Burch, J. L.

    2017-12-01

    Measurements from the Fast Plasma Investigation (FPI) on NASA's Magnetospheric Multiscale (MMS) mission have enabled unprecedented analyses of kinetic-scale plasma physics. FPI regularly provides estimates of current density and pressure gradients of sufficient accuracy to evaluate the relative contribution of terms in plasma equations of motion. In addition, high-resolution three-dimensional velocity distribution functions of both ions and electrons provide new insights into kinetic-scale processes. As an example, for a monochromatic kinetic Alfven wave (KAW) we find non-zero, but out-of-phase parallel current density and electric field fluctuations, providing direct confirmation of the conservative energy exchange between the wave field and particles. In addition, we use fluctuations in current density and magnetic field to calculate the perpendicular and parallel wavelengths of the KAW. Furthermore, examination of the electron velocity distribution inside the KAW reveals a population of electrons non-linearly trapped in the kinetic-scale magnetic mirror formed between successive wave peaks. These electrons not only contribute to the wave's parallel electric field but also account for over half of the density fluctuations within the wave, supplying an unexpected mechanism for maintaining quasi-neutrality in a KAW. Finally, we demonstrate that the employed wave vector determination technique is also applicable to broadband fluctuations found in Earth's turbulent magnetosheath.

  16. Topology Trivialization and Large Deviations for the Minimum in the Simplest Random Optimization

    NASA Astrophysics Data System (ADS)

    Fyodorov, Yan V.; Le Doussal, Pierre

    2014-01-01

    Finding the global minimum of a cost function given by the sum of a quadratic and a linear form in N real variables over (N-1)-dimensional sphere is one of the simplest, yet paradigmatic problems in Optimization Theory known as the "trust region subproblem" or "constraint least square problem". When both terms in the cost function are random this amounts to studying the ground state energy of the simplest spherical spin glass in a random magnetic field. We first identify and study two distinct large-N scaling regimes in which the linear term (magnetic field) leads to a gradual topology trivialization, i.e. reduction in the total number {N}_{tot} of critical (stationary) points in the cost function landscape. In the first regime {N}_{tot} remains of the order N and the cost function (energy) has generically two almost degenerate minima with the Tracy-Widom (TW) statistics. In the second regime the number of critical points is of the order of unity with a finite probability for a single minimum. In that case the mean total number of extrema (minima and maxima) of the cost function is given by the Laplace transform of the TW density, and the distribution of the global minimum energy is expected to take a universal scaling form generalizing the TW law. Though the full form of that distribution is not yet known to us, one of its far tails can be inferred from the large deviation theory for the global minimum. In the rest of the paper we show how to use the replica method to obtain the probability density of the minimum energy in the large-deviation approximation by finding both the rate function and the leading pre-exponential factor.

  17. Local and linear chemical reactivity response functions at finite temperature in density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franco-Pérez, Marco, E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx; Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, México, D.F. 09340; Ayers, Paul W., E-mail: francopj@mcmaster.ca, E-mail: ayers@mcmaster.ca, E-mail: jlgm@xanum.uam.mx, E-mail: avela@cinvestav.mx

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dualmore » descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.« less

  18. Local and linear chemical reactivity response functions at finite temperature in density functional theory.

    PubMed

    Franco-Pérez, Marco; Ayers, Paul W; Gázquez, José L; Vela, Alberto

    2015-12-28

    We explore the local and nonlocal response functions of the grand canonical potential density functional at nonzero temperature. In analogy to the zero-temperature treatment, local (e.g., the average electron density and the local softness) and nonlocal (e.g., the softness kernel) intrinsic response functions are defined as partial derivatives of the grand canonical potential with respect to its thermodynamic variables (i.e., the chemical potential of the electron reservoir and the external potential generated by the atomic nuclei). To define the local and nonlocal response functions of the electron density (e.g., the Fukui function, the linear density response function, and the dual descriptor), we differentiate with respect to the average electron number and the external potential. The well-known mathematical relationships between the intrinsic response functions and the electron-density responses are generalized to nonzero temperature, and we prove that in the zero-temperature limit, our results recover well-known identities from the density functional theory of chemical reactivity. Specific working equations and numerical results are provided for the 3-state ensemble model.

  19. Influence of Scale-dependent Processes on Capelin (Mallotus villosus) Distributions in the Gulf of Alaska

    NASA Astrophysics Data System (ADS)

    McGowan, D. W.; Horne, J. K.

    2016-02-01

    As part of the Gulf of Alaska (GOA) Integrated Ecosystem Research Program (GOAIERP), scale-dependent relationships of capelin (Mallotus villosus) densities were quantified as a function of oceanographic gradients, zooplankton prey fields, predators, and a potential competitor (age-0 walleye pollock, Gadus chalcogrammus). Within GOA food webs, capelin occupy an intermediate trophic position as planktivores where they function as both predator and prey; facilitating energy transfer from secondary producers to higher trophic level piscivores. Variability in the distribution of capelin in the GOA has previously been attributed to physical and biological processes that operate across a range of spatial and temporal scales. Capelin distributions were quantified during an acoustic-trawl survey conducted in the summer and fall of 2011 and 2013. Densities were significantly higher in 2013 and primarily concentrated along the edges of shallow submarine banks over the continental shelf east of Kodiak in both years. Wavelet analysis was used to identify scales that maximize variability in capelin distributions. Wavelets decompose a data series in the frequency domain to identify periods that account for variance in the series while retaining nonstationary features that may be biologically meaningful. Variance peaks in capelin densities were identified along most transects at fine- (0.44 to 0.72 km) and coarse- (32.6 to 52.9 km) scales, likely corresponding to aggregation size and the width of banks. Linear and nonlinear models were used to identify factors and interactions that influence capelin distributions at the scale of a predator-prey interaction and at coarser environmental scales. Cross-wavelets measured coherence between capelin and individual factors across a range of scales. Preliminary results indicate that capelin distributions may be influenced by intrusions of cold, nutrient-rich water from the GOA basin on to the shelf.

  20. Wave generation by contaminant ions near a large spacecraft

    NASA Technical Reports Server (NTRS)

    Singh, N.

    1993-01-01

    Measurements from the space shuttle flights have revealed that a large spacecraft in a low earth orbit is accompanied by an extensive gas cloud which is primarily made up of water. The charge exchange between the water molecule and the ionospheric O(+) ions produces a water ion beam traversing downstream of the spacecraft. In this report we present results from a study on the generation of plasma waves by the interaction of the water ion beams with the ionospheric plasma. Since velocity distribution function is key to the understanding of the wave generation process, we have performed a test particle simulation to determine the nature of H2O(+) ions velocity distribution function. The simulations show that at the time scales shorter than the ion cyclotron period tau(sub c), the distribution function can be described by a beam. On the other hand, when the time scales are larger than tau(sub c), a ring distribution forms. A brief description of the linear instabilities driven by an ion beam streaming across a magnetic field in a plasma is presented. We have identified two types of instabilities occurring in low and high frequency bands; the low-frequency instability occurs over the frequency band from zero to about the lower hybrid frequency for a sufficiently low beam density. As the beam density increases, the linear instability occurs at decreasing frequencies below the lower-hybrid frequency. The high frequency instability occurs near the electron cyclotron frequency and its harmonics.

  1. A new time dependent density functional algorithm for large systems and plasmons in metal clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baseggio, Oscar; Fronzoni, Giovanna; Stener, Mauro, E-mail: stener@univ.trieste.it

    2015-07-14

    A new algorithm to solve the Time Dependent Density Functional Theory (TDDFT) equations in the space of the density fitting auxiliary basis set has been developed and implemented. The method extracts the spectrum from the imaginary part of the polarizability at any given photon energy, avoiding the bottleneck of Davidson diagonalization. The original idea which made the present scheme very efficient consists in the simplification of the double sum over occupied-virtual pairs in the definition of the dielectric susceptibility, allowing an easy calculation of such matrix as a linear combination of constant matrices with photon energy dependent coefficients. The methodmore » has been applied to very different systems in nature and size (from H{sub 2} to [Au{sub 147}]{sup −}). In all cases, the maximum deviations found for the excitation energies with respect to the Amsterdam density functional code are below 0.2 eV. The new algorithm has the merit not only to calculate the spectrum at whichever photon energy but also to allow a deep analysis of the results, in terms of transition contribution maps, Jacob plasmon scaling factor, and induced density analysis, which have been all implemented.« less

  2. Quinone 1 e – and 2 e – /2 H + Reduction Potentials: Identification and Analysis of Deviations from Systematic Scaling Relationships

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huynh, Mioy T.; Anson, Colin W.; Cavell, Andrew C.

    Quinones participate in diverse electron transfer and proton-coupled electron transfer processes in chemistry and biology. An experimental study of common quinones reveals a non-linear correlation between the 1 e – and 2 e –/2 H + reduction potentials. This unexpected observation prompted a computational study of 128 different quinones, probing their 1 e – reduction potentials, pKa values, and 2 e –/2 H + reduction potentials. The density functional theory calculations reveal an approximately linear correlation between these three properties and an effective Hammett constant associated with the quinone substituent(s). However, deviations from this linear scaling relationship are evident formore » quinones that feature halogen substituents, charged substituents, intramolecular hydrogen bonding in the hydroquinone, and/or sterically bulky substituents. These results, particularly the different substituent effects on the 1 e – versus 2 e – /2 H + reduction potentials, have important implications for designing quinones with tailored redox properties.« less

  3. Orthogonality of embedded wave functions for different states in frozen-density embedding theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zech, Alexander; Wesolowski, Tomasz A.; Aquilante, Francesco

    2015-10-28

    Other than lowest-energy stationary embedded wave functions obtained in Frozen-Density Embedding Theory (FDET) [T. A. Wesolowski, Phys. Rev. A 77, 012504 (2008)] can be associated with electronic excited states but they can be mutually non-orthogonal. Although this does not violate any physical principles — embedded wave functions are only auxiliary objects used to obtain stationary densities — working with orthogonal functions has many practical advantages. In the present work, we show numerically that excitation energies obtained using conventional FDET calculations (allowing for non-orthogonality) can be obtained using embedded wave functions which are strictly orthogonal. The used method preserves the mathematicalmore » structure of FDET and self-consistency between energy, embedded wave function, and the embedding potential (they are connected through the Euler-Lagrange equations). The orthogonality is built-in through the linearization in the embedded density of the relevant components of the total energy functional. Moreover, we show formally that the differences between the expectation values of the embedded Hamiltonian are equal to the excitation energies, which is the exact result within linearized FDET. Linearized FDET is shown to be a robust approximation for a large class of reference densities.« less

  4. A systematic way for the cost reduction of density fitting methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kállay, Mihály, E-mail: kallay@mail.bme.hu

    2014-12-28

    We present a simple approach for the reduction of the size of auxiliary basis sets used in methods exploiting the density fitting (resolution of identity) approximation for electron repulsion integrals. Starting out of the singular value decomposition of three-center two-electron integrals, new auxiliary functions are constructed as linear combinations of the original fitting functions. The new functions, which we term natural auxiliary functions (NAFs), are analogous to the natural orbitals widely used for the cost reduction of correlation methods. The use of the NAF basis enables the systematic truncation of the fitting basis, and thereby potentially the reduction of themore » computational expenses of the methods, though the scaling with the system size is not altered. The performance of the new approach has been tested for several quantum chemical methods. It is demonstrated that the most pronounced gain in computational efficiency can be expected for iterative models which scale quadratically with the size of the fitting basis set, such as the direct random phase approximation. The approach also has the promise of accelerating local correlation methods, for which the processing of three-center Coulomb integrals is a bottleneck.« less

  5. Comparison of Conjugate Gradient Density Matrix Search and Chebyshev Expansion Methods for Avoiding Diagonalization in Large-Scale Electronic Structure Calculations

    NASA Technical Reports Server (NTRS)

    Bates, Kevin R.; Daniels, Andrew D.; Scuseria, Gustavo E.

    1998-01-01

    We report a comparison of two linear-scaling methods which avoid the diagonalization bottleneck of traditional electronic structure algorithms. The Chebyshev expansion method (CEM) is implemented for carbon tight-binding calculations of large systems and its memory and timing requirements compared to those of our previously implemented conjugate gradient density matrix search (CG-DMS). Benchmark calculations are carried out on icosahedral fullerenes from C60 to C8640 and the linear scaling memory and CPU requirements of the CEM demonstrated. We show that the CPU requisites of the CEM and CG-DMS are similar for calculations with comparable accuracy.

  6. CMB hemispherical asymmetry from non-linear isocurvature perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan

    2015-04-01

    We investigate whether non-adiabatic perturbations from inflation could produce an asymmetric distribution of temperature anisotropies on large angular scales in the cosmic microwave background (CMB). We use a generalised non-linear δ N formalism to calculate the non-Gaussianity of the primordial density and isocurvature perturbations due to the presence of non-adiabatic, but approximately scale-invariant field fluctuations during multi-field inflation. This local-type non-Gaussianity leads to a correlation between very long wavelength inhomogeneities, larger than our observable horizon, and smaller scale fluctuations in the radiation and matter density. Matter isocurvature perturbations contribute primarily to low CMB multipoles and hence can lead to a hemisphericalmore » asymmetry on large angular scales, with negligible asymmetry on smaller scales. In curvaton models, where the matter isocurvature perturbation is partly correlated with the primordial density perturbation, we are unable to obtain a significant asymmetry on large angular scales while respecting current observational constraints on the observed quadrupole. However in the axion model, where the matter isocurvature and primordial density perturbations are uncorrelated, we find it may be possible to obtain a significant asymmetry due to isocurvature modes on large angular scales. Such an isocurvature origin for the hemispherical asymmetry would naturally give rise to a distinctive asymmetry in the CMB polarisation on large scales.« less

  7. THREE-POINT PHASE CORRELATIONS: A NEW MEASURE OF NONLINEAR LARGE-SCALE STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolstenhulme, Richard; Bonvin, Camille; Obreschkow, Danail

    2015-05-10

    We derive an analytical expression for a novel large-scale structure observable: the line correlation function. The line correlation function, which is constructed from the three-point correlation function of the phase of the density field, is a robust statistical measure allowing the extraction of information in the nonlinear and non-Gaussian regime. We show that, in perturbation theory, the line correlation is sensitive to the coupling kernel F{sub 2}, which governs the nonlinear gravitational evolution of the density field. We compare our analytical expression with results from numerical simulations and find a 1σ agreement for separations r ≳ 30 h{sup −1} Mpc.more » Fitting formulae for the power spectrum and the nonlinear coupling kernel at small scales allow us to extend our prediction into the strongly nonlinear regime, where we find a 1σ agreement with the simulations for r ≳ 2 h{sup −1} Mpc. We discuss the advantages of the line correlation relative to standard statistical measures like the bispectrum. Unlike the latter, the line correlation is independent of the bias, in the regime where the bias is local and linear. Furthermore, the variance of the line correlation is independent of the Gaussian variance on the modulus of the density field. This suggests that the line correlation can probe more precisely the nonlinear regime of gravity, with less contamination from the power spectrum variance.« less

  8. Redshift-space distortions around voids

    NASA Astrophysics Data System (ADS)

    Cai, Yan-Chuan; Taylor, Andy; Peacock, John A.; Padilla, Nelson

    2016-11-01

    We have derived estimators for the linear growth rate of density fluctuations using the cross-correlation function (CCF) of voids and haloes in redshift space. In linear theory, this CCF contains only monopole and quadrupole terms. At scales greater than the void radius, linear theory is a good match to voids traced out by haloes; small-scale random velocities are unimportant at these radii, only tending to cause small and often negligible elongation of the CCF near its origin. By extracting the monopole and quadrupole from the CCF, we measure the linear growth rate without prior knowledge of the void profile or velocity dispersion. We recover the linear growth parameter β to 9 per cent precision from an effective volume of 3( h-1Gpc)3 using voids with radius >25 h-1Mpc. Smaller voids are predominantly sub-voids, which may be more sensitive to the random velocity dispersion; they introduce noise and do not help to improve measurements. Adding velocity dispersion as a free parameter allows us to use information at radii as small as half of the void radius. The precision on β is reduced to 5 per cent. Voids show diverse shapes in redshift space, and can appear either elongated or flattened along the line of sight. This can be explained by the competing amplitudes of the local density contrast, plus the radial velocity profile and its gradient. The distortion pattern is therefore determined solely by the void profile and is different for void-in-cloud and void-in-void. This diversity of redshift-space void morphology complicates measurements of the Alcock-Paczynski effect using voids.

  9. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.

  10. Thermal Density Functional Theory: Time-Dependent Linear Response and Approximate Functionals from the Fluctuation-Dissipation Theorem

    DOE PAGES

    Pribram-Jones, Aurora; Grabowski, Paul E.; Burke, Kieron

    2016-06-08

    We present that the van Leeuwen proof of linear-response time-dependent density functional theory (TDDFT) is generalized to thermal ensembles. This allows generalization to finite temperatures of the Gross-Kohn relation, the exchange-correlation kernel of TDDFT, and fluctuation dissipation theorem for DFT. Finally, this produces a natural method for generating new thermal exchange-correlation approximations.

  11. Study of electronic structure and Compton profiles of transition metal diborides

    NASA Astrophysics Data System (ADS)

    Bhatt, Samir; Heda, N. L.; Kumar, Kishor; Ahuja, B. L.

    2017-08-01

    We report Compton profiles (CPs) of transition metal diborides (MB2; M= Ti and Zr) using a 740 GBq 137Cs Compton spectrometer measured at an intermediate resolution of 0.34 a.u. To validate the experimental momentum densities, we have employed the linear combination of atomic orbitals (LCAO) method to compute the theoretical CPs along with the energy bands, density of states (DOS) and Mulliken's population response. The LCAO computations have been performed in the frame work of density functional theory (DFT) and hybridization of Hartree-Fock and DFT (namely B3LYP and PBE0). For both the diborides, the CPs based on revised Perdew-Burke-Ernzerhof exchange and correlation functions (DFT-PBESol) lead to a better agreement with the experimental momentum densities than other reported approximations. Energy bands, DOS and real space analysis of CPs confirm a metallic-like character of both the borides. Further, a comparison of DFT-PBESol and experimental data on equal-valence-electron-density scale shows more ionicity in ZrB2 than that in TiB2, which is also supported by the Mulliken's population based charge transfer data.

  12. Sea-ice deformation in a coupled ocean-sea-ice model and in satellite remote sensing data

    NASA Astrophysics Data System (ADS)

    Spreen, Gunnar; Kwok, Ron; Menemenlis, Dimitris; Nguyen, An T.

    2017-07-01

    A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea-ice mass balance. Simulated sea-ice deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous-plastic (VP) sea-ice rheology are compared with synthetic aperture radar (SAR) satellite observations (RGPS, RADARSAT Geophysical Processor System) for the time period 1996-2008. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features (LKFs) are not adequately reproduced. The mean sea-ice total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs) of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous-plastic sea-ice simulations based on spatial distribution, time series, and power-law scaling metrics.

  13. Nonlocal kinetic energy functional from the jellium-with-gap model: Applications to orbital-free density functional theory

    NASA Astrophysics Data System (ADS)

    Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio

    2018-05-01

    Orbital-free density functional theory (OF-DFT) promises to describe the electronic structure of very large quantum systems, being its computational cost linear with the system size. However, the OF-DFT accuracy strongly depends on the approximation made for the kinetic energy (KE) functional. To date, the most accurate KE functionals are nonlocal functionals based on the linear-response kernel of the homogeneous electron gas, i.e., the jellium model. Here, we use the linear-response kernel of the jellium-with-gap model to construct a simple nonlocal KE functional (named KGAP) which depends on the band-gap energy. In the limit of vanishing energy gap (i.e., in the case of metals), the KGAP is equivalent to the Smargiassi-Madden (SM) functional, which is accurate for metals. For a series of semiconductors (with different energy gaps), the KGAP performs much better than SM, and results are close to the state-of-the-art functionals with sophisticated density-dependent kernels.

  14. Coarse-grained description of cosmic structure from Szekeres models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sussman, Roberto A.; Gaspar, I. Delgado; Hidalgo, Juan Carlos, E-mail: sussman@nucleares.unam.mx, E-mail: ismael.delgadog@uaem.edu.mx, E-mail: hidalgo@fis.unam.mx

    2016-03-01

    We show that the full dynamical freedom of the well known Szekeres models allows for the description of elaborated 3-dimensional networks of cold dark matter structures (over-densities and/or density voids) undergoing ''pancake'' collapse. By reducing Einstein's field equations to a set of evolution equations, which themselves reduce in the linear limit to evolution equations for linear perturbations, we determine the dynamics of such structures, with the spatial comoving location of each structure uniquely specified by standard early Universe initial conditions. By means of a representative example we examine in detail the density contrast, the Hubble flow and peculiar velocities ofmore » structures that evolved, from linear initial data at the last scattering surface, to fully non-linear 10–20 Mpc scale configurations today. To motivate further research, we provide a qualitative discussion on the connection of Szekeres models with linear perturbations and the pancake collapse of the Zeldovich approximation. This type of structure modelling provides a coarse grained—but fully relativistic non-linear and non-perturbative —description of evolving large scale cosmic structures before their virialisation, and as such it has an enormous potential for applications in cosmological research.« less

  15. Excess entropy scaling for the segmental and global dynamics of polyethylene melts.

    PubMed

    Voyiatzis, Evangelos; Müller-Plathe, Florian; Böhm, Michael C

    2014-11-28

    The range of validity of the Rosenfeld and Dzugutov excess entropy scaling laws is analyzed for unentangled linear polyethylene chains. We consider two segmental dynamical quantities, i.e. the bond and the torsional relaxation times, and two global ones, i.e. the chain diffusion coefficient and the viscosity. The excess entropy is approximated by either a series expansion of the entropy in terms of the pair correlation function or by an equation of state for polymers developed in the context of the self associating fluid theory. For the whole range of temperatures and chain lengths considered, the two estimates of the excess entropy are linearly correlated. The scaled bond and torsional relaxation times fall into a master curve irrespective of the chain length and the employed scaling scheme. Both quantities depend non-linearly on the excess entropy. For a fixed chain length, the reduced diffusion coefficient and viscosity scale linearly with the excess entropy. An empirical reduction to a chain length-independent master curve is accessible for both dynamic quantities. The Dzugutov scheme predicts an increased value of the scaled diffusion coefficient with increasing chain length which contrasts physical expectations. The origin of this trend can be traced back to the density dependence of the scaling factors. This finding has not been observed previously for Lennard-Jones chain systems (Macromolecules, 2013, 46, 8710-8723). Thus, it limits the applicability of the Dzugutov approach to polymers. In connection with diffusion coefficients and viscosities, the Rosenfeld scaling law appears to be of higher quality than the Dzugutov approach. An empirical excess entropy scaling is also proposed which leads to a chain length-independent correlation. It is expected to be valid for polymers in the Rouse regime.

  16. Biomolecular Force Field Parameterization via Atoms-in-Molecule Electron Density Partitioning.

    PubMed

    Cole, Daniel J; Vilseck, Jonah Z; Tirado-Rives, Julian; Payne, Mike C; Jorgensen, William L

    2016-05-10

    Molecular mechanics force fields, which are commonly used in biomolecular modeling and computer-aided drug design, typically treat nonbonded interactions using a limited library of empirical parameters that are developed for small molecules. This approach does not account for polarization in larger molecules or proteins, and the parametrization process is labor-intensive. Using linear-scaling density functional theory and atoms-in-molecule electron density partitioning, environment-specific charges and Lennard-Jones parameters are derived directly from quantum mechanical calculations for use in biomolecular modeling of organic and biomolecular systems. The proposed methods significantly reduce the number of empirical parameters needed to construct molecular mechanics force fields, naturally include polarization effects in charge and Lennard-Jones parameters, and scale well to systems comprised of thousands of atoms, including proteins. The feasibility and benefits of this approach are demonstrated by computing free energies of hydration, properties of pure liquids, and the relative binding free energies of indole and benzofuran to the L99A mutant of T4 lysozyme.

  17. Using Dark Matter Haloes to Learn about Cosmic Acceleration: A New Proposal for a Universal Mass Function

    NASA Technical Reports Server (NTRS)

    Prescod-Weinstein, Chanda; Afshordi, Niayesh

    2011-01-01

    Structure formation provides a strong test of any cosmic acceleration model because a successful dark energy model must not inhibit or overpredict the development of observed large-scale structures. Traditional approaches to studies of structure formation in the presence of dark energy or a modified gravity implement a modified Press-Schechter formalism, which relates the linear overdensities to the abundance of dark matter haloes at the same time. We critically examine the universality of the Press-Schechter formalism for different cosmologies, and show that the halo abundance is best correlated with spherical linear overdensity at 94% of collapse (or observation) time. We then extend this argument to ellipsoidal collapse (which decreases the fractional time of best correlation for small haloes), and show that our results agree with deviations from modified Press-Schechter formalism seen in simulated mass functions. This provides a novel universal prescription to measure linear density evolution, based on current and future observations of cluster (or dark matter) halo mass function. In particular, even observations of cluster abundance in a single epoch will constrain the entire history of linear growth of cosmological of perturbations.

  18. Study on the mapping of dark matter clustering from real space to redshift space

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Song, Yong-Seon

    2016-08-01

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown in this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ``one-point" FoG term being independent of the separation vector between two different points, and 2) the ``correlated" FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k~ 0.2 Mpc-1, considering the resolution of future experiments.

  19. Two-Component Noncollinear Time-Dependent Spin Density Functional Theory for Excited State Calculations.

    PubMed

    Egidi, Franco; Sun, Shichao; Goings, Joshua J; Scalmani, Giovanni; Frisch, Michael J; Li, Xiaosong

    2017-06-13

    We present a linear response formalism for the description of the electronic excitations of a noncollinear reference defined via Kohn-Sham spin density functional methods. A set of auxiliary variables, defined using the density and noncollinear magnetization density vector, allows the generalization of spin density functional kernels commonly used in collinear DFT to noncollinear cases, including local density, GGA, meta-GGA and hybrid functionals. Working equations and derivations of functional second derivatives with respect to the noncollinear density, required in the linear response noncollinear TDDFT formalism, are presented in this work. This formalism takes all components of the spin magnetization into account independent of the type of reference state (open or closed shell). As a result, the method introduced here is able to afford a nonzero local xc torque on the spin magnetization while still satisfying the zero-torque theorem globally. The formalism is applied to a few test cases using the variational exact-two-component reference including spin-orbit coupling to illustrate the capabilities of the method.

  20. Using nonlinear quantile regression to estimate the self-thinning boundary curve

    Treesearch

    Quang V. Cao; Thomas J. Dean

    2015-01-01

    The relationship between tree size (quadratic mean diameter) and tree density (number of trees per unit area) has been a topic of research and discussion for many decades. Starting with Reineke in 1933, the maximum size-density relationship, on a log-log scale, has been assumed to be linear. Several techniques, including linear quantile regression, have been employed...

  1. Solvation of fluoro-acetonitrile in water by 2D-IR spectroscopy: A combined experimental-computational study

    NASA Astrophysics Data System (ADS)

    Cazade, Pierre-André; Tran, Halina; Bereau, Tristan; Das, Akshaya K.; Kläsi, Felix; Hamm, Peter; Meuwly, Markus

    2015-06-01

    The solvent dynamics around fluorinated acetonitrile is characterized by 2-dimensional infrared spectroscopy and atomistic simulations. The lineshape of the linear infrared spectrum is better captured by semiempirical (density functional tight binding) mixed quantum mechanical/molecular mechanics simulations, whereas force field simulations with multipolar interactions yield lineshapes that are significantly too narrow. For the solvent dynamics, a relatively slow time scale of 2 ps is found from the experiments and supported by the mixed quantum mechanical/molecular mechanics simulations. With multipolar force fields fitted to the available thermodynamical data, the time scale is considerably faster—on the 0.5 ps time scale. The simulations provide evidence for a well established CF-HOH hydrogen bond (population of 25%) which is found from the radial distribution function g(r) from both, force field and quantum mechanics/molecular mechanics simulations.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Escartín, J. M.; CNRS, UMR5152, F-31062 Toulouse Cedex; Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT.more » This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na{sub 2}. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.« less

  3. Ramp and periodic dynamics across non-Ising critical points

    NASA Astrophysics Data System (ADS)

    Ghosh, Roopayan; Sen, Arnab; Sengupta, K.

    2018-01-01

    We study ramp and periodic dynamics of ultracold bosons in an one-dimensional (1D) optical lattice which supports quantum critical points separating a uniform and a Z3 or Z4 symmetry broken density-wave ground state. Our protocol involves both linear and periodic drives which takes the system from the uniform state to the quantum critical point (for linear drive protocol) or to the ordered state and back (for periodic drive protocols) via controlled variation of a parameter of the system Hamiltonian. We provide exact numerical computation, for finite-size boson chains with L ≤24 using exact diagonalization (ED), of the excitation density D , the wave function overlap F , and the excess energy Q at the end of the drive protocol. For the linear ramp protocol, we identify the range of ramp speeds for which D and Q show Kibble-Zurek scaling. We find, based on numerical analysis with L ≤24 , that such scaling is consistent with that expected from critical exponents of the q -state Potts universality class with q =3 ,4 . For the periodic protocol, we show that the model displays near-perfect dynamical freezing at specific frequencies; at these frequencies D ,Q →0 and |F |→1 . We provide a semi-analytic explanation of such freezing behavior and relate this phenomenon to a many-body version of Stuckelberg interference. We suggest experiments which can test our theory.

  4. Long-range corrected density functional theory with accelerated Hartree-Fock exchange integration using a two-Gaussian operator [LC-ωPBE(2Gau)].

    PubMed

    Song, Jong-Won; Hirao, Kimihiko

    2015-10-14

    Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular and periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.

  5. Scaling within the spectral function approach

    NASA Astrophysics Data System (ADS)

    Sobczyk, J. E.; Rocco, N.; Lovato, A.; Nieves, J.

    2018-03-01

    Scaling features of the nuclear electromagnetic response functions unveil aspects of nuclear dynamics that are crucial for interpreting neutrino- and electron-scattering data. In the large momentum-transfer regime, the nucleon-density response function defines a universal scaling function, which is independent of the nature of the probe. In this work, we analyze the nucleon-density response function of 12C, neglecting collective excitations. We employ particle and hole spectral functions obtained within two distinct many-body methods, both widely used to describe electroweak reactions in nuclei. We show that the two approaches provide compatible nucleon-density scaling functions that for large momentum transfers satisfy first-kind scaling. Both methods yield scaling functions characterized by an asymmetric shape, although less pronounced than that of experimental scaling functions. This asymmetry, only mildly affected by final state interactions, is mostly due to nucleon-nucleon correlations, encoded in the continuum component of the hole spectral function.

  6. Anharmonic Infrared Spectroscopy through the Fourier Transform of Time Correlation Function Formalism in ONETEP.

    PubMed

    Vitale, Valerio; Dziedzic, Jacek; Dubois, Simon M-M; Fangohr, Hans; Skylaris, Chris-Kriton

    2015-07-14

    Density functional theory molecular dynamics (DFT-MD) provides an efficient framework for accurately computing several types of spectra. The major benefit of DFT-MD approaches lies in the ability to naturally take into account the effects of temperature and anharmonicity, without having to introduce any ad hoc or a posteriori corrections. Consequently, computational spectroscopy based on DFT-MD approaches plays a pivotal role in the understanding and assignment of experimental peaks and bands at finite temperature, particularly in the case of floppy molecules. Linear-scaling DFT methods can be used to study large and complex systems, such as peptides, DNA strands, amorphous solids, and molecules in solution. Here, we present the implementation of DFT-MD IR spectroscopy in the ONETEP linear-scaling code. In addition, two methods for partitioning the dipole moment within the ONETEP framework are presented. Dipole moment partitioning allows us to compute spectra of molecules in solution, which fully include the effects of the solvent, while at the same time removing the solvent contribution from the spectra.

  7. Evolution of the phase-space density and the Jeans scale for dark matter derived from the Vlasov-Einstein equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piattella, O.F.; Rodrigues, D.C.; Fabris, J.C.

    2013-11-01

    We discuss solutions of Vlasov-Einstein equation for collisionless dark matter particles in the context of a flat Friedmann universe. We show that, after decoupling from the primordial plasma, the dark matter phase-space density indicator Q = ρ/(σ{sub 1D}{sup 2}){sup 3/2} remains constant during the expansion of the universe, prior to structure formation. This well known result is valid for non-relativistic particles and is not ''observer dependent'' as in solutions derived from the Vlasov-Poisson system. In the linear regime, the inclusion of velocity dispersion effects permits to define a physical Jeans length for collisionless matter as function of the primordial phase-spacemore » density indicator: λ{sub J} = (5π/G){sup 1/2}Q{sup −1/3}ρ{sub dm}{sup −1/6}. The comoving Jeans wavenumber at matter-radiation equality is smaller by a factor of 2-3 than the comoving wavenumber due to free-streaming, contributing to the cut-off of the density fluctuation power spectrum at the lowest scales. We discuss the physical differences between these two scales. For dark matter particles of mass equal to 200 GeV, the derived Jeans mass is 4.3 × 10{sup −6}M{sub ⊙}.« less

  8. Reionization and the cosmic microwave background in an open universe

    NASA Technical Reports Server (NTRS)

    Persi, Fred M.

    1995-01-01

    If the universe was reionized at high reshift (z greater than or approximately equal to 30) or never recombined, then photon-electron scattering can erase fluctuations in the cosmic microwave background at scales less than or approximately equal to 1 deg. Peculiar motion at the surface of last scattering will then have given rise to new anisotropy at the 1 min level through the Vishniac effect. Here the observed fluctuations in galaxy counts are extrapolated to high redshifts using linear theory, and the expected anisotropy is computed. The predicted level of anisotropies is a function of Omega(sub 0) and the ratio of the density in ionized baryons to the critical density and is shown to depend strongly on the large- and small-scale power. It is not possible to make general statements about the viability of all reionized models based on current observations, but it is possible to rule out specific models for structure formation, particularly those with high baryonic content or small-scale power. The induced fluctuations are shown to scale with cosmological parameters and optical depth.

  9. On the estimation of the current density in space plasmas: Multi- versus single-point techniques

    NASA Astrophysics Data System (ADS)

    Perri, Silvia; Valentini, Francesco; Sorriso-Valvo, Luca; Reda, Antonio; Malara, Francesco

    2017-06-01

    Thanks to multi-spacecraft mission, it has recently been possible to directly estimate the current density in space plasmas, by using magnetic field time series from four satellites flying in a quasi perfect tetrahedron configuration. The technique developed, commonly called ;curlometer; permits a good estimation of the current density when the magnetic field time series vary linearly in space. This approximation is generally valid for small spacecraft separation. The recent space missions Cluster and Magnetospheric Multiscale (MMS) have provided high resolution measurements with inter-spacecraft separation up to 100 km and 10 km, respectively. The former scale corresponds to the proton gyroradius/ion skin depth in ;typical; solar wind conditions, while the latter to sub-proton scale. However, some works have highlighted an underestimation of the current density via the curlometer technique with respect to the current computed directly from the velocity distribution functions, measured at sub-proton scales resolution with MMS. In this paper we explore the limit of the curlometer technique studying synthetic data sets associated to a cluster of four artificial satellites allowed to fly in a static turbulent field, spanning a wide range of relative separation. This study tries to address the relative importance of measuring plasma moments at very high resolution from a single spacecraft with respect to the multi-spacecraft missions in the current density evaluation.

  10. Linear perturbation theory for tidal streams and the small-scale CDM power spectrum

    NASA Astrophysics Data System (ADS)

    Bovy, Jo; Erkal, Denis; Sanders, Jason L.

    2017-04-01

    Tidal streams in the Milky Way are sensitive probes of the population of low-mass dark matter subhaloes predicted in cold dark matter (CDM) simulations. We present a new calculus for computing the effect of subhalo fly-bys on cold streams based on the action-angle representation of streams. The heart of this calculus is a line-of-parallel-angle approach that calculates the perturbed distribution function of a stream segment by undoing the effect of all relevant impacts. This approach allows one to compute the perturbed stream density and track in any coordinate system in minutes for realizations of the subhalo distribution down to 105 M⊙, accounting for the stream's internal dispersion and overlapping impacts. We study the statistical properties of density and track fluctuations with large suites of simulations of the effect of subhalo fly-bys. The one-dimensional density and track power spectra along the stream trace the subhalo mass function, with higher mass subhaloes producing power only on large scales, while lower mass subhaloes cause structure on smaller scales. We also find significant density and track bispectra that are observationally accessible. We further demonstrate that different projections of the track all reflect the same pattern of perturbations, facilitating their observational measurement. We apply this formalism to data for the Pal 5 stream and make a first rigorous determination of 10^{+11}_{-6} dark matter subhaloes with masses between 106.5 and 109 M⊙ within 20 kpc from the Galactic centre [corresponding to 1.4^{+1.6}_{-0.9} times the number predicted by CDM-only simulations or to fsub(r < 20 kpc) ≈ 0.2 per cent] assuming that the Pal 5 stream is 5 Gyr old. Improved data will allow measurements of the subhalo mass function down to 105 M⊙, thus definitively testing whether dark matter is clumpy on the smallest scales relevant for galaxy formation.

  11. Born-Oppenheimer Interatomic Forces from Simple, Local Kinetic Energy Density Functionals

    NASA Astrophysics Data System (ADS)

    Karasiev, V. V.; Trickey, S. B.; Harris, Frank E.

    2006-10-01

    Rapid calculation of Born-Oppenheimer (B-O) forces is essential for driving the so-called quantum region of a multi-scale molecular dynamics simulation. The success of density functional theory (DFT) with modern exchange-correlation approximations makes DFT an appealing choice for this role. But conventional Kohn-Sham DFT, even with various linear-scaling implementations, really is not fast enough to meet the challenge of complicated chemo-mechanical phenomena (e.g. stress-induced cracking in the presence of a solvent). Moreover, those schemes involve approximations that are difficult to check practically or to validate formally. A popular alternative, Car-Parrinello dynamics, does not guarantee motion on the B-O surface. Another approach, orbital-free DFT, is appealing but has proven difficult to implement because of the challenge of constructing reliable orbital-free (OF) approximations to the kinetic energy (KE) functional. To be maximally useful for multi-scale simulations, an OF-KE functional must be local (i.e. one-point). This requirement eliminates the two-point functionals designed to have proper linear-response behavior in the weakly inhomogeneous limit. In the face of these difficulties, we demonstrate that there is a way forward. By requiring only that the approximate functional deliver high-quality forces, by exploiting the “conjointness” hypothesis of Lee, Lee, and Parr, by enforcing a basic positivity constraint, and by parameterizing to a carefully selected, small set of molecules we are able to generate a KE functional that does a good job of describing various H q Si m O n clusters as well as CO (providing encouraging evidence of transferability). In addition to that positive result, we discuss several major negative results. First is definitive proof that the conjointness hypothesis is not correct, but nevertheless is useful. The second is the failure of a considerable variety of published KE functionals of the generalized gradient approximation type. Those functionals yield no minimum on the energy surface and give completely incorrect forces. In all cases, the problem can be traced to incorrect behavior of the functionals near the nuclei. Third, the seemingly obvious strategy of direct numerical fitting of OF-KE functional parameters to reproduce the energy surface of selected molecules is unsuccessful. The functionals that result are completely untransferable.

  12. Highly efficient implementation of pseudospectral time-dependent density-functional theory for the calculation of excitation energies of large molecules.

    PubMed

    Cao, Yixiang; Hughes, Thomas; Giesen, Dave; Halls, Mathew D; Goldberg, Alexander; Vadicherla, Tati Reddy; Sastry, Madhavi; Patel, Bhargav; Sherman, Woody; Weisman, Andrew L; Friesner, Richard A

    2016-06-15

    We have developed and implemented pseudospectral time-dependent density-functional theory (TDDFT) in the quantum mechanics package Jaguar to calculate restricted singlet and restricted triplet, as well as unrestricted excitation energies with either full linear response (FLR) or the Tamm-Dancoff approximation (TDA) with the pseudospectral length scales, pseudospectral atomic corrections, and pseudospectral multigrid strategy included in the implementations to improve the chemical accuracy and to speed the pseudospectral calculations. The calculations based on pseudospectral time-dependent density-functional theory with full linear response (PS-FLR-TDDFT) and within the Tamm-Dancoff approximation (PS-TDA-TDDFT) for G2 set molecules using B3LYP/6-31G*(*) show mean and maximum absolute deviations of 0.0015 eV and 0.0081 eV, 0.0007 eV and 0.0064 eV, 0.0004 eV and 0.0022 eV for restricted singlet excitation energies, restricted triplet excitation energies, and unrestricted excitation energies, respectively; compared with the results calculated from the conventional spectral method. The application of PS-FLR-TDDFT to OLED molecules and organic dyes, as well as the comparisons for results calculated from PS-FLR-TDDFT and best estimations demonstrate that the accuracy of both PS-FLR-TDDFT and PS-TDA-TDDFT. Calculations for a set of medium-sized molecules, including Cn fullerenes and nanotubes, using the B3LYP functional and 6-31G(**) basis set show PS-TDA-TDDFT provides 19- to 34-fold speedups for Cn fullerenes with 450-1470 basis functions, 11- to 32-fold speedups for nanotubes with 660-3180 basis functions, and 9- to 16-fold speedups for organic molecules with 540-1340 basis functions compared to fully analytic calculations without sacrificing chemical accuracy. The calculations on a set of larger molecules, including the antibiotic drug Ramoplanin, the 46-residue crambin protein, fullerenes up to C540 and nanotubes up to 14×(6,6), using the B3LYP functional and 6-31G(**) basis set with up to 8100 basis functions show that PS-FLR-TDDFT CPU time scales as N(2.05) with the number of basis functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Exploring variable patterns of density-dependent larval settlement among corals with distinct and shared functional traits

    NASA Astrophysics Data System (ADS)

    Doropoulos, Christopher; Gómez-Lemos, Luis A.; Babcock, Russell C.

    2018-03-01

    Coral settlement is a key process for the recovery and maintenance of coral reefs, yet interspecific variations in density-dependent settlement are unknown. Settlement of the submassive Goniastrea retiformis and corymbose Acropora digitifera and A. millepora was quantified at densities ranging from 1 to 50 larvae per 20 mL from 110 to 216 h following spawning. Settlement patterns were distinct for each species. Goniastrea settlement was rapid and increased linearly with time, whereas both Acropora spp. hardly settled until crustose coralline algae was provided. Both Goniastrea and A. digitifera showed positive density-dependent settlement, but the relationship was exponential for Goniastrea but linear for A. digitifera. Settlement was highest but density independent in A. millepora. Our results suggest that larval density can have significant effects on settler replenishment, and highlight variability in density-dependent settlement among corals with distinct functional traits as well as those with similar functional forms.

  14. Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V

    NASA Astrophysics Data System (ADS)

    Mardirossian, Narbe; Head-Gordon, Martin

    2015-02-01

    A meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 1010 choices carved out of a functional space of almost 1040 possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.

  15. Communication: Biological applications of coupled-cluster frozen-density embedding

    NASA Astrophysics Data System (ADS)

    Heuser, Johannes; Höfener, Sebastian

    2018-04-01

    We report the implementation of the Laplace-transform scaled opposite-spin (LT-SOS) resolution-of-the-identity second-order approximate coupled-cluster singles and doubles (RICC2) combined with frozen-density embedding for excitation energies and molecular properties. In the present work, we furthermore employ the Hartree-Fock density for the interaction energy leading to a simplified Lagrangian which is linear in the Lagrangian multipliers. This approximation has the key advantage of a decoupling of the coupled-cluster amplitude and multipliers, leading also to a significant reduction in computation time. Using the new simplified Lagrangian in combination with efficient wavefunction models such as RICC2 or LT-SOS-RICC2 and density-functional theory (DFT) for the environment molecules (CC2-in-DFT) enables the efficient study of biological applications such as the rhodopsin and visual cone pigments using ab initio methods as routine applications.

  16. RADC Multi-Dimensional Signal-Processing Research Program.

    DTIC Science & Technology

    1980-09-30

    Formulation 7 3.2.2 Methods of Accelerating Convergence 8 3.2.3 Application to Image Deblurring 8 3.2.4 Extensions 11 3.3 Convergence of Iterative Signal... noise -driven linear filters, permit development of the joint probability density function oz " kelihood function for the image. With an expression...spatial linear filter driven by white noise (see Fig. i). If the probability density function for the white noise is known, Fig. t. Model for image

  17. Synthesis, spectroscopic characterization and quantum chemical computational studies of (S)-N-benzyl-1-phenyl-5-(pyridin-2-yl)-pent-4-yn-2-amine

    NASA Astrophysics Data System (ADS)

    Kose, Etem; Atac, Ahmet; Karabacak, Mehmet; Karaca, Caglar; Eskici, Mustafa; Karanfil, Abdullah

    2012-11-01

    The synthesis and characterization of a novel compound (S)-N-benzyl-1-phenyl-5-(pyridin-2-yl)-pent-4-yn-2-amine (abbreviated as BPPPYA) was presented in this study. The spectroscopic properties of the compound were investigated by FT-IR, NMR and UV spectroscopy experimentally and theoretically. The molecular geometry and vibrational frequencies of the BPPPYA in the ground state were calculated by using density functional theory (DFT) B3LYP method invoking 6-311++G(d,p) basis set. The geometry of the BPPPYA was fully optimized, vibrational spectra were calculated and fundamental vibrations were assigned on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method and PQS program. The results of the energy and oscillator strength calculated by time-dependent density functional theory (TD-DFT) and CIS approach complement with the experimental findings. Total and partial density of state (TDOS and PDOS) and also overlap population density of state (COOP or OPDOS) diagrams analysis were presented. The theoretical NMR chemical shifts (1H and 13C) complement with experimentally measured ones. The dipole moment, linear polarizability and first hyperpolarizability values were also computed. The linear polarizabilities and first hyper polarizabilities of the studied molecule indicate that the compound is a good candidate of nonlinear optical materials. The calculated vibrational wavenumbers, absorption wavelengths and chemical shifts showed the best agreement with the experimental results.

  18. The non-linear power spectrum of the Lyman alpha forest

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arinyo-i-Prats, Andreu; Miralda-Escudé, Jordi; Viel, Matteo

    2015-12-01

    The Lyman alpha forest power spectrum has been measured on large scales by the BOSS survey in SDSS-III at z∼ 2.3, has been shown to agree well with linear theory predictions, and has provided the first measurement of Baryon Acoustic Oscillations at this redshift. However, the power at small scales, affected by non-linearities, has not been well examined so far. We present results from a variety of hydrodynamic simulations to predict the redshift space non-linear power spectrum of the Lyα transmission for several models, testing the dependence on resolution and box size. A new fitting formula is introduced to facilitate themore » comparison of our simulation results with observations and other simulations. The non-linear power spectrum has a generic shape determined by a transition scale from linear to non-linear anisotropy, and a Jeans scale below which the power drops rapidly. In addition, we predict the two linear bias factors of the Lyα forest and provide a better physical interpretation of their values and redshift evolution. The dependence of these bias factors and the non-linear power on the amplitude and slope of the primordial fluctuations power spectrum, the temperature-density relation of the intergalactic medium, and the mean Lyα transmission, as well as the redshift evolution, is investigated and discussed in detail. A preliminary comparison to the observations shows that the predicted redshift distortion parameter is in good agreement with the recent determination of Blomqvist et al., but the density bias factor is lower than observed. We make all our results publicly available in the form of tables of the non-linear power spectrum that is directly obtained from all our simulations, and parameters of our fitting formula.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Liang; Abild-Pedersen, Frank

    On the basis of an extensive set of density functional theory calculations, it is shown that a simple scheme provides a fundamental understanding of variations in the transition state energies and structures of reaction intermediates on transition metal surfaces across the periodic table. The scheme is built on the bond order conservation principle and requires a limited set of input data, still achieving transition state energies as a function of simple descriptors with an error smaller than those of approaches based on linear fits to a set of calculated transition state energies. Here, we have applied this approach together withmore » linear scaling of adsorption energies to obtain the energetics of the NH 3 decomposition reaction on a series of stepped fcc(211) transition metal surfaces. Moreover, this information is used to establish a microkinetic model for the formation of N 2 and H 2, thus providing insight into the components of the reaction that determines the activity.« less

  20. Study on the mapping of dark matter clustering from real space to redshift space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Yi; Song, Yong-Seon, E-mail: yizheng@kasi.re.kr, E-mail: ysong@kasi.re.kr

    The mapping of dark matter clustering from real space to redshift space introduces the anisotropic property to the measured density power spectrum in redshift space, known as the redshift space distortion effect. The mapping formula is intrinsically non-linear, which is complicated by the higher order polynomials due to indefinite cross correlations between the density and velocity fields, and the Finger-of-God effect due to the randomness of the peculiar velocity field. Whilst the full higher order polynomials remain unknown, the other systematics can be controlled consistently within the same order truncation in the expansion of the mapping formula, as shown inmore » this paper. The systematic due to the unknown non-linear density and velocity fields is removed by separately measuring all terms in the expansion directly using simulations. The uncertainty caused by the velocity randomness is controlled by splitting the FoG term into two pieces, 1) the ''one-point' FoG term being independent of the separation vector between two different points, and 2) the ''correlated' FoG term appearing as an indefinite polynomials which is expanded in the same order as all other perturbative polynomials. Using 100 realizations of simulations, we find that the Gaussian FoG function with only one scale-independent free parameter works quite well, and that our new mapping formulation accurately reproduces the observed 2-dimensional density power spectrum in redshift space at the smallest scales by far, up to k ∼ 0.2 Mpc{sup -1}, considering the resolution of future experiments.« less

  1. Estimating Ω from Galaxy Redshifts: Linear Flow Distortions and Nonlinear Clustering

    NASA Astrophysics Data System (ADS)

    Bromley, B. C.; Warren, M. S.; Zurek, W. H.

    1997-02-01

    We propose a method to determine the cosmic mass density Ω from redshift-space distortions induced by large-scale flows in the presence of nonlinear clustering. Nonlinear structures in redshift space, such as fingers of God, can contaminate distortions from linear flows on scales as large as several times the small-scale pairwise velocity dispersion σv. Following Peacock & Dodds, we work in the Fourier domain and propose a model to describe the anisotropy in the redshift-space power spectrum; tests with high-resolution numerical data demonstrate that the model is robust for both mass and biased galaxy halos on translinear scales and above. On the basis of this model, we propose an estimator of the linear growth parameter β = Ω0.6/b, where b measures bias, derived from sampling functions that are tuned to eliminate distortions from nonlinear clustering. The measure is tested on the numerical data and found to recover the true value of β to within ~10%. An analysis of IRAS 1.2 Jy galaxies yields β=0.8+0.4-0.3 at a scale of 1000 km s-1, which is close to optimal given the shot noise and finite size of the survey. This measurement is consistent with dynamical estimates of β derived from both real-space and redshift-space information. The importance of the method presented here is that nonlinear clustering effects are removed to enable linear correlation anisotropy measurements on scales approaching the translinear regime. We discuss implications for analyses of forthcoming optical redshift surveys in which the dispersion is more than a factor of 2 greater than in the IRAS data.

  2. A scaling theory for linear systems

    NASA Technical Reports Server (NTRS)

    Brockett, R. W.; Krishnaprasad, P. S.

    1980-01-01

    A theory of scaling for rational (transfer) functions in terms of transformation groups is developed. Two different four-parameter scaling groups which play natural roles in studying linear systems are identified and the effect of scaling on Fisher information and related statistical measures in system identification are studied. The scalings considered include change of time scale, feedback, exponential scaling, magnitude scaling, etc. The scaling action of the groups studied is tied to the geometry of transfer functions in a rather strong way as becomes apparent in the examination of the invariants of scaling. As a result, the scaling process also provides new insight into the parameterization question for rational functions.

  3. Impact of Many-Body Effects on Landau Levels in Graphene

    NASA Astrophysics Data System (ADS)

    Sonntag, J.; Reichardt, S.; Wirtz, L.; Beschoten, B.; Katsnelson, M. I.; Libisch, F.; Stampfer, C.

    2018-05-01

    We present magneto-Raman spectroscopy measurements on suspended graphene to investigate the charge carrier density-dependent electron-electron interaction in the presence of Landau levels. Utilizing gate-tunable magnetophonon resonances, we extract the charge carrier density dependence of the Landau level transition energies and the associated effective Fermi velocity vF. In contrast to the logarithmic divergence of vF at zero magnetic field, we find a piecewise linear scaling of vF as a function of the charge carrier density, due to a magnetic-field-induced suppression of the long-range Coulomb interaction. We quantitatively confirm our experimental findings by performing tight-binding calculations on the level of the Hartree-Fock approximation, which also allow us to estimate an excitonic binding energy of ≈6 meV contained in the experimentally extracted Landau level transitions energies.

  4. Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin, E-mail: mhg@cchem.berkeley.edu; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

    2015-02-21

    A meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional is presented. The functional form is selected from more than 10{sup 10} choices carved out of a functional space of almost 10{sup 40} possibilities. Raw data come from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filtered based onmore » a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.« less

  5. Mapping the genome of meta-generalized gradient approximation density functionals: The search for B97M-V

    DOE PAGES

    Mardirossian, Narbe; Head-Gordon, Martin

    2015-02-20

    We present a meta-generalized gradient approximation density functional paired with the VV10 nonlocal correlation functional. The functional form is selected from more than 10 10 choices carved out of a functional space of almost 10 40 possibilities. This raw data comes from training a vast number of candidate functional forms on a comprehensive training set of 1095 data points and testing the resulting fits on a comprehensive primary test set of 1153 data points. Functional forms are ranked based on their ability to reproduce the data in both the training and primary test sets with minimum empiricism, and filteredmore » based on a set of physical constraints and an often-overlooked condition of satisfactory numerical precision with medium-sized integration grids. The resulting optimal functional form has 4 linear exchange parameters, 4 linear same-spin correlation parameters, and 4 linear opposite-spin correlation parameters, for a total of 12 fitted parameters. The final density functional, B97M-V, is further assessed on a secondary test set of 212 data points, applied to several large systems including the coronene dimer and water clusters, tested for the accurate prediction of intramolecular and intermolecular geometries, verified to have a readily attainable basis set limit, and checked for grid sensitivity. Compared to existing density functionals, B97M-V is remarkably accurate for non-bonded interactions and very satisfactory for thermochemical quantities such as atomization energies, but inherits the demonstrable limitations of existing local density functionals for barrier heights.« less

  6. Galaxy clustering and the origin of large-scale flows

    NASA Technical Reports Server (NTRS)

    Juszkiewicz, R.; Yahil, A.

    1989-01-01

    Peebles's 'cosmic virial theorem' is extended from its original range of validity at small separations, where hydrostatic equilibrium holds, to large separations, in which linear gravitational stability theory applies. The rms pairwise velocity difference at separation r is shown to depend on the spatial galaxy correlation function xi(x) only for x less than r. Gravitational instability theory can therefore be tested by comparing the two up to the maximum separation for which both can reliably be determined, and there is no dependence on the poorly known large-scale density and velocity fields. With the expected improvement in the data over the next few years, however, this method should yield a reliable determination of omega.

  7. Natural bond orbital analysis, electronic structure, non-linear properties and vibrational spectral analysis of L-histidinium bromide monohydrate: a density functional theory.

    PubMed

    Sajan, D; Joseph, Lynnette; Vijayan, N; Karabacak, M

    2011-10-15

    The spectroscopic properties of the crystallized nonlinear optical molecule L-histidinium bromide monohydrate (abbreviated as L-HBr-mh) have been recorded and analyzed by FT-IR, FT-Raman and UV techniques. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the crystal were calculated with the help of density functional theory computations. The optimized geometric bond lengths and bond angles obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The natural bond orbital (NBO) analysis confirms the occurrence of strong intra and intermolecular N-H⋯O hydrogen bonding. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Molecular structure, vibrational spectra, NBO analysis, first hyperpolarizability, and HOMO-LUMO studies of 2-amino-4-hydroxypyrimidine by density functional method

    NASA Astrophysics Data System (ADS)

    Jeyavijayan, S.

    2015-04-01

    This study is a comparative analysis of FTIR and FT-Raman spectra of 2-amino-4-hydroxypyrimidine. The total energies of different conformations have been obtained from DFT (B3LYP) method with 6-31+G(d,p) and 6-311++G(d,p) basis sets. The barrier of planarity between the most stable and planar form is also predicted. The molecular structure, vibrational wavenumbers, infrared intensities, Raman scattering activities were calculated for the molecule using the B3LYP density functional theory (DFT) method. The computed values of frequencies are scaled using multiple scaling factors to yield good coherence with the observed values. Reliable vibrational assignments were made on the basis of total energy distribution (TED) along with scaled quantum mechanical (SQM) method. The stability of the molecule arising from hyperconjugative interactions, charge delocalization has been analyzed using natural bond orbital (NBO) analysis. Non-linear properties such as electric dipole moment (μ), polarizability (α), and hyperpolarizability (β) values of the investigated molecule have been computed using B3LYP quantum chemical calculation. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. Besides, molecular electrostatic potential (MEP), Mulliken's charges analysis, and several thermodynamic properties were performed by the DFT method.

  9. Power-law tails and non-Markovian dynamics in open quantum systems: An exact solution from Keldysh field theory

    NASA Astrophysics Data System (ADS)

    Chakraborty, Ahana; Sensarma, Rajdeep

    2018-03-01

    The Born-Markov approximation is widely used to study the dynamics of open quantum systems coupled to external baths. Using Keldysh formalism, we show that the dynamics of a system of bosons (fermions) linearly coupled to a noninteracting bosonic (fermionic) bath falls outside this paradigm if the bath spectral function has nonanalyticities as a function of frequency. In this case, we show that the dissipative and noise kernels governing the dynamics have distinct power-law tails. The Green's functions show a short-time "quasi"-Markovian exponential decay before crossing over to a power-law tail governed by the nonanalyticity of the spectral function. We study a system of bosons (fermions) hopping on a one-dimensional lattice, where each site is coupled linearly to an independent bath of noninteracting bosons (fermions). We obtain exact expressions for the Green's functions of this system, which show power-law decay ˜|t - t'|-3 /2 . We use these to calculate the density and current profile, as well as unequal-time current-current correlators. While the density and current profiles show interesting quantitative deviations from Markovian results, the current-current correlators show qualitatively distinct long-time power-law tails |t - t'|-3 characteristic of non-Markovian dynamics. We show that the power-law decays survive in the presence of interparticle interaction in the system, but the crossover time scale is shifted to larger values with increasing interaction strength.

  10. Non-local bias in the halo bispectrum with primordial non-Gaussianity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tellarini, Matteo; Ross, Ashley J.; Wands, David

    2015-07-01

    Primordial non-Gaussianity can lead to a scale-dependent bias in the density of collapsed halos relative to the underlying matter density. The galaxy power spectrum already provides constraints on local-type primordial non-Gaussianity complementary those from the cosmic microwave background (CMB), while the bispectrum contains additional shape information and has the potential to outperform CMB constraints in future. We develop the bias model for the halo density contrast in the presence of local-type primordial non-Gaussianity, deriving a bivariate expansion up to second order in terms of the local linear matter density contrast and the local gravitational potential in Lagrangian coordinates. Nonlinear evolutionmore » of the matter density introduces a non-local tidal term in the halo model. Furthermore, the presence of local-type non-Gaussianity in the Lagrangian frame leads to a novel non-local convective term in the Eulerian frame, that is proportional to the displacement field when going beyond the spherical collapse approximation. We use an extended Press-Schechter approach to evaluate the halo mass function and thus the halo bispectrum. We show that including these non-local terms in the halo bispectra can lead to corrections of up to 25% for some configurations, on large scales or at high redshift.« less

  11. The longitudinal development of social and executive functions in late adolescence and early adulthood

    PubMed Central

    Taylor, Sophie J.; Barker, Lynne A.; Heavey, Lisa; McHale, Sue

    2015-01-01

    Our earlier work suggests that, executive functions and social cognition show protracted development into late adolescence and early adulthood (Taylor et al., 2013). However, it remains unknown whether these functions develop linearly or non-linearly corresponding to dynamic changes to white matter density at these age ranges. Executive functions are particularly in demand during the transition to independence and autonomy associated with this age range (Ahmed and Miller, 2011). Previous research examining executive function (Romine and Reynolds, 2005) and social cognition (Dumontheil et al., 2010a) in late adolescence has utilized a cross sectional design. The current study employed a longitudinal design with 58 participants aged 17, 18, and 19 years completing social cognition and executive function tasks, Wechsler Abbreviated Scale of Intelligence (Wechsler, 1999), Positive and Negative Affect Schedule (Watson et al., 1988), and Hospital Anxiety and Depression Scale (Zigmond and Snaith, 1983) at Time 1 with follow up testing 12–16 months later. Inhibition, rule detection, strategy generation and planning executive functions and emotion recognition with dynamic stimuli showed longitudinal development between time points. Self-report empathy and emotion recognition functions using visual static and auditory stimuli were stable by age 17 whereas concept formation declined between time points. The protracted development of some functions may reflect continued brain maturation into late adolescence and early adulthood including synaptic pruning (Sowell et al., 2001) and changes to functional connectivity (Stevens et al., 2007) and/or environmental change. Clinical implications, such as assessing the effectiveness of rehabilitation following Head Injury, are discussed. PMID:26441579

  12. Efficient mixing scheme for self-consistent all-electron charge density

    NASA Astrophysics Data System (ADS)

    Shishidou, Tatsuya; Weinert, Michael

    2015-03-01

    In standard ab initio density-functional theory calculations, the charge density ρ is gradually updated using the ``input'' and ``output'' densities of the current and previous iteration steps. To accelerate the convergence, Pulay mixing has been widely used with great success. It expresses an ``optimal'' input density ρopt and its ``residual'' Ropt by a linear combination of the densities of the iteration sequences. In large-scale metallic systems, however, the long range nature of Coulomb interaction often causes the ``charge sloshing'' phenomenon and significantly impacts the convergence. Two treatments, represented in reciprocal space, are known to suppress the sloshing: (i) the inverse Kerker metric for Pulay optimization and (ii) Kerker-type preconditioning in mixing Ropt. In all-electron methods, where the charge density does not have a converging Fourier representation, treatments equivalent or similar to (i) and (ii) have not been described so far. In this work, we show that, by going through the calculation of Hartree potential, one can accomplish the procedures (i) and (ii) without entering the reciprocal space. Test calculations are done with a FLAPW method.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ko, L.F.

    Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T < T/sub c/ and T > T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. Inmore » Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations.« less

  14. Theoretical prediction of the impact of Auger recombination on charge collection from an ion track

    NASA Technical Reports Server (NTRS)

    Edmonds, Larry D.

    1991-01-01

    A recombination mechanism that significantly reduces charge collection from very dense ion tracks in silicon devices was postulated by Zoutendyk et al. The theoretical analysis presented here concludes that Auger recombination is such a mechanism and is of marginal importance for higher density tracks produced by 270-MeV krypton, but of major importance for higher density tracks. The analysis shows that recombination loss is profoundly affected by track diffusion. As the track diffuses, the density and recombination rate decrease so fast that the linear density (number of electron-hole pairs per unit length) approaches a non-zero limiting value as t yields infinity. Furthermore, the linear density is very nearly equal to this limiting value in a few picoseconds or less. When Auger recombination accompanies charge transport processes that have much longer time scales, it can be simulated by assigning a reduced linear energy transfer to the ion.

  15. The use of modified scaling factors in the design of high-power, non-linear, transmitting rod-core antennas

    NASA Astrophysics Data System (ADS)

    Jordan, Jared Williams; Dvorak, Steven L.; Sternberg, Ben K.

    2010-10-01

    In this paper, we develop a technique for designing high-power, non-linear, transmitting rod-core antennas by using simple modified scale factors rather than running labor-intensive numerical models. By using modified scale factors, a designer can predict changes in magnetic moment, inductance, core series loss resistance, etc. We define modified scale factors as the case when all physical dimensions of the rod antenna are scaled by p, except for the cross-sectional area of the individual wires or strips that are used to construct the core. This allows one to make measurements on a scaled-down version of the rod antenna using the same core material that will be used in the final antenna design. The modified scale factors were derived from prolate spheroidal analytical expressions for a finite-length rod antenna and were verified with experimental results. The modified scaling factors can only be used if the magnetic flux densities within the two scaled cores are the same. With the magnetic flux density constant, the two scaled cores will operate with the same complex permeability, thus changing the non-linear problem to a quasi-linear problem. We also demonstrate that by holding the number of turns times the drive current constant, while changing the number of turns, the inductance and core series loss resistance change by the number of turns squared. Experimental measurements were made on rod cores made from varying diameters of black oxide, low carbon steel wires and different widths of Metglas foil. Furthermore, we demonstrate that the modified scale factors work even in the presence of eddy currents within the core material.

  16. Linear response to long wavelength fluctuations using curvature simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldauf, Tobias; Zaldarriaga, Matias; Seljak, Uroš

    2016-09-01

    We study the local response to long wavelength fluctuations in cosmological N -body simulations, focusing on the matter and halo power spectra, halo abundance and non-linear transformations of the density field. The long wavelength mode is implemented using an effective curved cosmology and a mapping of time and distances. The method provides an alternative, more direct, way to measure the isotropic halo biases. Limiting ourselves to the linear case, we find generally good agreement between the biases obtained from the curvature method and the traditional power spectrum method at the level of a few percent. We also study the responsemore » of halo counts to changes in the variance of the field and find that the slope of the relation between the responses to density and variance differs from the naïve derivation assuming a universal mass function by approximately 8–20%. This has implications for measurements of the amplitude of local non-Gaussianity using scale dependent bias. We also analyze the halo power spectrum and halo-dark matter cross-spectrum response to long wavelength fluctuations and derive second order halo bias from it, as well as the super-sample variance contribution to the galaxy power spectrum covariance matrix.« less

  17. Density scaling on n  =  1 error field penetration in ohmically heated discharges in EAST

    NASA Astrophysics Data System (ADS)

    Wang, Hui-Hui; Sun, You-Wen; Shi, Tong-Hui; Zang, Qing; Liu, Yue-Qiang; Yang, Xu; Gu, Shuai; He, Kai-Yang; Gu, Xiang; Qian, Jin-Ping; Shen, Biao; Luo, Zheng-Ping; Chu, Nan; Jia, Man-Ni; Sheng, Zhi-Cai; Liu, Hai-Qing; Gong, Xian-Zu; Wan, Bao-Nian; Contributors, EAST

    2018-05-01

    Density scaling of error field penetration in EAST is investigated with different n  =  1 magnetic perturbation coil configurations in ohmically heated discharges. The density scalings of error field penetration thresholds under two magnetic perturbation spectra are br\\propto n_e0.5 and br\\propto n_e0.6 , where b r is the error field and n e is the line averaged electron density. One difficulty in understanding the density scaling is that key parameters other than density in determining the field penetration process may also be changed when the plasma density changes. Therefore, they should be determined from experiments. The estimated theoretical analysis (br\\propto n_e0.54 in lower density region and br\\propto n_e0.40 in higher density region), using the density dependence of viscosity diffusion time, electron temperature and mode frequency measured from the experiments, is consistent with the observed scaling. One of the key points to reproduce the observed scaling in EAST is that the viscosity diffusion time estimated from energy confinement time is almost constant. It means that the plasma confinement lies in saturation ohmic confinement regime rather than the linear Neo-Alcator regime causing weak density dependence in the previous theoretical studies.

  18. Influence of riparian and watershed alterations on sandbars in a Great Plains river

    USGS Publications Warehouse

    Fischer, Jeffrey M.; Paukert, Craig P.; Daniels, M.L.

    2014-01-01

    Anthropogenic alterations have caused sandbar habitats in rivers and the biota dependent on them to decline. Restoring large river sandbars may be needed as these habitats are important components of river ecosystems and provide essential habitat to terrestrial and aquatic organisms. We quantified factors within the riparian zone of the Kansas River, USA, and within its tributaries that influenced sandbar size and density using aerial photographs and land use/land cover (LULC) data. We developed, a priori, 16 linear regression models focused on LULC at the local, adjacent upstream river bend, and the segment (18–44 km upstream) scales and used an information theoretic approach to determine what alterations best predicted the size and density of sandbars. Variation in sandbar density was best explained by the LULC within contributing tributaries at the segment scale, which indicated reduced sandbar density with increased forest cover within tributary watersheds. Similarly, LULC within contributing tributary watersheds at the segment scale best explained variation in sandbar size. These models indicated that sandbar size increased with agriculture and forest and decreased with urban cover within tributary watersheds. Our findings suggest that sediment supply and delivery from upstream tributary watersheds may be influential on sandbars within the Kansas River and that preserving natural grassland and reducing woody encroachment within tributary watersheds in Great Plains rivers may help improve sediment delivery to help restore natural river function.

  19. Searching for a 4 α linear-chain structure in excited states of 16O with covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Yao, J. M.; Itagaki, N.; Meng, J.

    2014-11-01

    A study of the 4 α linear-chain structure in high-lying collective excitation states of 16O with covariant density functional theory is presented. The low-spin states are obtained by configuration mixing of particle-number and angular-momentum projected quadrupole deformed mean-field states with the generator coordinate method. The high-spin states are determined by cranking calculations. These two calculations are based on the same energy density functional PC-PK1. We have found a rotational band at low spin with the dominant intrinsic configuration considered to be the one whereby 4 α clusters stay along a common axis. The strongly deformed rod shape also appears in the high-spin region with the angular momentum 13 ℏ to18 ℏ ; however, whether the state is a pure 4 α linear chain is less obvious than for the low-spin states.

  20. Iterative initial condition reconstruction

    NASA Astrophysics Data System (ADS)

    Schmittfull, Marcel; Baldauf, Tobias; Zaldarriaga, Matias

    2017-07-01

    Motivated by recent developments in perturbative calculations of the nonlinear evolution of large-scale structure, we present an iterative algorithm to reconstruct the initial conditions in a given volume starting from the dark matter distribution in real space. In our algorithm, objects are first moved back iteratively along estimated potential gradients, with a progressively reduced smoothing scale, until a nearly uniform catalog is obtained. The linear initial density is then estimated as the divergence of the cumulative displacement, with an optional second-order correction. This algorithm should undo nonlinear effects up to one-loop order, including the higher-order infrared resummation piece. We test the method using dark matter simulations in real space. At redshift z =0 , we find that after eight iterations the reconstructed density is more than 95% correlated with the initial density at k ≤0.35 h Mpc-1 . The reconstruction also reduces the power in the difference between reconstructed and initial fields by more than 2 orders of magnitude at k ≤0.2 h Mpc-1 , and it extends the range of scales where the full broadband shape of the power spectrum matches linear theory by a factor of 2-3. As a specific application, we consider measurements of the baryonic acoustic oscillation (BAO) scale that can be improved by reducing the degradation effects of large-scale flows. In our idealized dark matter simulations, the method improves the BAO signal-to-noise ratio by a factor of 2.7 at z =0 and by a factor of 2.5 at z =0.6 , improving standard BAO reconstruction by 70% at z =0 and 30% at z =0.6 , and matching the optimal BAO signal and signal-to-noise ratio of the linear density in the same volume. For BAO, the iterative nature of the reconstruction is the most important aspect.

  1. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinski, Peter; Riplinger, Christoph; Neese, Frank, E-mail: evaleev@vt.edu, E-mail: frank.neese@cec.mpg.de

    2015-07-21

    In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implementsmore » sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.« less

  2. Sparse maps—A systematic infrastructure for reduced-scaling electronic structure methods. I. An efficient and simple linear scaling local MP2 method that uses an intermediate basis of pair natural orbitals.

    PubMed

    Pinski, Peter; Riplinger, Christoph; Valeev, Edward F; Neese, Frank

    2015-07-21

    In this work, a systematic infrastructure is described that formalizes concepts implicit in previous work and greatly simplifies computer implementation of reduced-scaling electronic structure methods. The key concept is sparse representation of tensors using chains of sparse maps between two index sets. Sparse map representation can be viewed as a generalization of compressed sparse row, a common representation of a sparse matrix, to tensor data. By combining few elementary operations on sparse maps (inversion, chaining, intersection, etc.), complex algorithms can be developed, illustrated here by a linear-scaling transformation of three-center Coulomb integrals based on our compact code library that implements sparse maps and operations on them. The sparsity of the three-center integrals arises from spatial locality of the basis functions and domain density fitting approximation. A novel feature of our approach is the use of differential overlap integrals computed in linear-scaling fashion for screening products of basis functions. Finally, a robust linear scaling domain based local pair natural orbital second-order Möller-Plesset (DLPNO-MP2) method is described based on the sparse map infrastructure that only depends on a minimal number of cutoff parameters that can be systematically tightened to approach 100% of the canonical MP2 correlation energy. With default truncation thresholds, DLPNO-MP2 recovers more than 99.9% of the canonical resolution of the identity MP2 (RI-MP2) energy while still showing a very early crossover with respect to the computational effort. Based on extensive benchmark calculations, relative energies are reproduced with an error of typically <0.2 kcal/mol. The efficiency of the local MP2 (LMP2) method can be drastically improved by carrying out the LMP2 iterations in a basis of pair natural orbitals. While the present work focuses on local electron correlation, it is of much broader applicability to computation with sparse tensors in quantum chemistry and beyond.

  3. Caracterisation dielectrique de nanocomposites LLDPE/nano-glaises: Fidelite des techniques et proprietes electriques

    NASA Astrophysics Data System (ADS)

    Daran-Daneau, Cyril

    In order to answer the energetic needs of the future, insulation, which is the central piece of high voltage equipment, has to be reinvented. Nanodielectrics seem to be the promise of a mayor technological breakthrough. Based on nanocomposites with a linear low density polyethylene matrix reinforced by nano-clays and manufactured from a commercial master batch, the present thesis aims to characterise the accuracy of measurement techniques applied on nanodielectrics and also the dielectric properties of these materials. Thus, dielectric spectroscopy accuracy both in frequency and time domain is analysed with a specific emphasis on the impact of gold sputtering of the samples and on the measurements transposition from time domain to frequency domain. Also, when measuring dielectric strength, the significant role of surrounding medium and sample thickness on the variation of the alpha scale factor is shown and analysed in relation with the presence of surface partial discharges. Taking into account these limits and for different nanoparticles composition, complex permittivity as a function of frequency, linearity and conductivity as a function of applied electric field is studied with respect to the role that seems to play nanometrics interfaces. Similarly, dielectric strength variation as a function of nano-clays content is investigated with respect to the partial discharge resistance improvement that seems be induced by nanoparticle addition. Finally, an opening towards nanostructuration of underground cables' insulation is proposed considering on one hand the dielectric characterisation of polyethylene matrix reinforced by nano-clays or nano-silica nanodielectrics and on the other hand a succinct cost analysis. Keywords: nanodielectric, linear low density polyethylene, nanoclays, dielectric spectroscopy, dielectric breakdown

  4. Modeling of Interfacial Modification Effects on Thermal Conductivity of Carbon Nanotube Composites

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2006-01-01

    The effect of functionalization of carbon nanotubes on the thermal conductivity of nanocomposites has been studied using a multi-scale modeling approach. These results predict that grafting linear hydrocarbon chains to the surface of a single wall carbon nanotube with covalent chemical bonds should result in a significant increase in the thermal conductivity of these nanocomposites. This is due to the decrease in the interfacial thermal (Kapitza) resistance between the single wall carbon nanotube and the surrounding polymer matrix upon chemical functionalization. The nanocomposites studied here consist of single wall carbon nanotubes in a bulk poly(ethylene vinyl acetate) matrix. The nanotubes are functionalized by end-grafting linear hydrocarbon chains of varying length to the surface of the nanotube. The effect which this functionalization has on the interfacial thermal resistance is studied by molecular dynamics simulation. Interfacial thermal resistance values are calculated for a range of chemical grafting densities and with several chain lengths. These results are subsequently used in an analytical model to predict the resulting effect on the bulk thermal conductivity of the nanocomposite.

  5. STAR FORMATION ON SUBKILOPARSEC SCALE TRIGGERED BY NON-LINEAR PROCESSES IN NEARBY SPIRAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Momose, Rieko; Koda, Jin; Donovan Meyer, Jennifer

    We report a super-linear correlation for the star formation law based on new CO(J = 1-0) data from the CARMA and NOBEYAMA Nearby-galaxies (CANON) CO survey. The sample includes 10 nearby spiral galaxies, in which structures at sub-kpc scales are spatially resolved. Combined with the star formation rate surface density traced by H{alpha} and 24 {mu}m images, CO(J = 1-0) data provide a super-linear slope of N = 1.3. The slope becomes even steeper (N = 1.8) when the diffuse stellar and dust background emission is subtracted from the H{alpha} and 24 {mu}m images. In contrast to the recent resultsmore » with CO(J = 2-1) that found a constant star formation efficiency (SFE) in many spiral galaxies, these results suggest that the SFE is not independent of environment, but increases with molecular gas surface density. We suggest that the excitation of CO(J = 2-1) is likely enhanced in the regions with higher star formation and does not linearly trace the molecular gas mass. In addition, the diffuse emission contaminates the SFE measurement most in regions where the star formation rate is law. These two effects can flatten the power-law correlation and produce the apparent linear slope. The super-linear slope from the CO(J = 1-0) analysis indicates that star formation is enhanced by non-linear processes in regions of high gas density, e.g., gravitational collapse and cloud-cloud collisions.« less

  6. Nanoprobe diffusion in entangled polymer solutions: Linear vs. unconcatenated ring chains

    NASA Astrophysics Data System (ADS)

    Nahali, Negar; Rosa, Angelo

    2018-05-01

    We employ large-scale molecular dynamics computer simulations to study the problem of nanoprobe diffusion in entangled solutions of linear polymers and unknotted and unconcatenated circular (ring) polymers. By tuning both the diameter of the nanoprobe and the density of the solution, we show that nanoprobes of diameter smaller than the entanglement distance (tube diameter) of the solution display the same (Rouse-like) behavior in solutions of both polymer architectures. Instead, nanoprobes with larger diameters appear to diffuse markedly faster in solutions of rings than in solutions of linear chains. Finally, by analysing the distribution functions of spatial displacements, we find that nanoprobe motion in rings' solutions shows both Gaussian and ergodic behaviors, in all regimes considered, while, in solutions of linear chains, nanoprobes exceeding the size of the tube diameter show a transition to non-Gaussian and non-ergodic motion. Our results emphasize the role of chain architecture in the motion of nanoprobes dispersed in polymer solutions.

  7. The non-linear, interactive effects of population density and climate drive the geographical patterns of waterfowl survival

    USGS Publications Warehouse

    Zhao, Qing; Boomer, G. Scott; Kendall, William L.

    2018-01-01

    On-going climate change has major impacts on ecological processes and patterns. Understanding the impacts of climate on the geographical patterns of survival can provide insights to how population dynamics respond to climate change and provide important information for the development of appropriate conservation strategies at regional scales. It is challenging to understand the impacts of climate on survival, however, due to the fact that the non-linear relationship between survival and climate can be modified by density-dependent processes. In this study we extended the Brownie model to partition hunting and non-hunting mortalities and linked non-hunting survival to covariates. We applied this model to four decades (1972–2014) of waterfowl band-recovery, breeding population survey, and precipitation and temperature data covering multiple ecological regions to examine the non-linear, interactive effects of population density and climate on waterfowl non-hunting survival at a regional scale. Our results showed that the non-linear effect of temperature on waterfowl non-hunting survival was modified by breeding population density. The concave relationship between non-hunting survival and temperature suggested that the effects of warming on waterfowl survival might be multifaceted. Furthermore, the relationship between non-hunting survival and temperature was stronger when population density was higher, suggesting that high-density populations may be less buffered against warming than low-density populations. Our study revealed distinct relationships between waterfowl non-hunting survival and climate across and within ecological regions, highlighting the importance of considering different conservation strategies according to region-specific population and climate conditions. Our findings and associated novel modelling approach have wide implications in conservation practice.

  8. Perturbation theory for BAO reconstructed fields: One-loop results in the real-space matter density field

    NASA Astrophysics Data System (ADS)

    Hikage, Chiaki; Koyama, Kazuya; Heavens, Alan

    2017-08-01

    We compute the power spectrum at one-loop order in standard perturbation theory for the matter density field to which a standard Lagrangian baryonic acoustic oscillation (BAO) reconstruction technique is applied. The BAO reconstruction method corrects the bulk motion associated with the gravitational evolution using the inverse Zel'dovich approximation (ZA) for the smoothed density field. We find that the overall amplitude of one-loop contributions in the matter power spectrum substantially decreases after reconstruction. The reconstructed power spectrum thereby approaches the initial linear spectrum when the smoothed density field is close enough to linear, i.e., the smoothing scale Rs≳10 h-1 Mpc . On smaller Rs, however, the deviation from the linear spectrum becomes significant on large scales (k ≲Rs-1 ) due to the nonlinearity in the smoothed density field, and the reconstruction is inaccurate. Compared with N-body simulations, we show that the reconstructed power spectrum at one-loop order agrees with simulations better than the unreconstructed power spectrum. We also calculate the tree-level bispectrum in standard perturbation theory to investigate non-Gaussianity in the reconstructed matter density field. We show that the amplitude of the bispectrum significantly decreases for small k after reconstruction and that the tree-level bispectrum agrees well with N-body results in the weakly nonlinear regime.

  9. Variational Optimization of the Second-Order Density Matrix Corresponding to a Seniority-Zero Configuration Interaction Wave Function.

    PubMed

    Poelmans, Ward; Van Raemdonck, Mario; Verstichel, Brecht; De Baerdemacker, Stijn; Torre, Alicia; Lain, Luis; Massaccesi, Gustavo E; Alcoba, Diego R; Bultinck, Patrick; Van Neck, Dimitri

    2015-09-08

    We perform a direct variational determination of the second-order (two-particle) density matrix corresponding to a many-electron system, under a restricted set of the two-index N-representability P-, Q-, and G-conditions. In addition, we impose a set of necessary constraints that the two-particle density matrix must be derivable from a doubly occupied many-electron wave function, i.e., a singlet wave function for which the Slater determinant decomposition only contains determinants in which spatial orbitals are doubly occupied. We rederive the two-index N-representability conditions first found by Weinhold and Wilson and apply them to various benchmark systems (linear hydrogen chains, He, N2, and CN(-)). This work is motivated by the fact that a doubly occupied many-electron wave function captures in many cases the bulk of the static correlation. Compared to the general case, the structure of doubly occupied two-particle density matrices causes the associate semidefinite program to have a very favorable scaling as L(3), where L is the number of spatial orbitals. Since the doubly occupied Hilbert space depends on the choice of the orbitals, variational calculation steps of the two-particle density matrix are interspersed with orbital-optimization steps (based on Jacobi rotations in the space of the spatial orbitals). We also point to the importance of symmetry breaking of the orbitals when performing calculations in a doubly occupied framework.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jong-Won; Hirao, Kimihiko, E-mail: hirao@riken.jp

    Since the advent of hybrid functional in 1993, it has become a main quantum chemical tool for the calculation of energies and properties of molecular systems. Following the introduction of long-range corrected hybrid scheme for density functional theory a decade later, the applicability of the hybrid functional has been further amplified due to the resulting increased performance on orbital energy, excitation energy, non-linear optical property, barrier height, and so on. Nevertheless, the high cost associated with the evaluation of Hartree-Fock (HF) exchange integrals remains a bottleneck for the broader and more active applications of hybrid functionals to large molecular andmore » periodic systems. Here, we propose a very simple yet efficient method for the computation of long-range corrected hybrid scheme. It uses a modified two-Gaussian attenuating operator instead of the error function for the long-range HF exchange integral. As a result, the two-Gaussian HF operator, which mimics the shape of the error function operator, reduces computational time dramatically (e.g., about 14 times acceleration in C diamond calculation using periodic boundary condition) and enables lower scaling with system size, while maintaining the improved features of the long-range corrected density functional theory.« less

  11. Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata

    PubMed Central

    Chen, Yangzhou; Guo, Yuqi; Wang, Ying

    2017-01-01

    In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research. PMID:28353664

  12. Modeling and Density Estimation of an Urban Freeway Network Based on Dynamic Graph Hybrid Automata.

    PubMed

    Chen, Yangzhou; Guo, Yuqi; Wang, Ying

    2017-03-29

    In this paper, in order to describe complex network systems, we firstly propose a general modeling framework by combining a dynamic graph with hybrid automata and thus name it Dynamic Graph Hybrid Automata (DGHA). Then we apply this framework to model traffic flow over an urban freeway network by embedding the Cell Transmission Model (CTM) into the DGHA. With a modeling procedure, we adopt a dual digraph of road network structure to describe the road topology, use linear hybrid automata to describe multi-modes of dynamic densities in road segments and transform the nonlinear expressions of the transmitted traffic flow between two road segments into piecewise linear functions in terms of multi-mode switchings. This modeling procedure is modularized and rule-based, and thus is easily-extensible with the help of a combination algorithm for the dynamics of traffic flow. It can describe the dynamics of traffic flow over an urban freeway network with arbitrary topology structures and sizes. Next we analyze mode types and number in the model of the whole freeway network, and deduce a Piecewise Affine Linear System (PWALS) model. Furthermore, based on the PWALS model, a multi-mode switched state observer is designed to estimate the traffic densities of the freeway network, where a set of observer gain matrices are computed by using the Lyapunov function approach. As an example, we utilize the PWALS model and the corresponding switched state observer to traffic flow over Beijing third ring road. In order to clearly interpret the principle of the proposed method and avoid computational complexity, we adopt a simplified version of Beijing third ring road. Practical application for a large-scale road network will be implemented by decentralized modeling approach and distributed observer designing in the future research.

  13. An efficient implementation of a high-order filter for a cubed-sphere spectral element model

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Gyu; Cheong, Hyeong-Bin

    2017-03-01

    A parallel-scalable, isotropic, scale-selective spatial filter was developed for the cubed-sphere spectral element model on the sphere. The filter equation is a high-order elliptic (Helmholtz) equation based on the spherical Laplacian operator, which is transformed into cubed-sphere local coordinates. The Laplacian operator is discretized on the computational domain, i.e., on each cell, by the spectral element method with Gauss-Lobatto Lagrange interpolating polynomials (GLLIPs) as the orthogonal basis functions. On the global domain, the discrete filter equation yielded a linear system represented by a highly sparse matrix. The density of this matrix increases quadratically (linearly) with the order of GLLIP (order of the filter), and the linear system is solved in only O (Ng) operations, where Ng is the total number of grid points. The solution, obtained by a row reduction method, demonstrated the typical accuracy and convergence rate of the cubed-sphere spectral element method. To achieve computational efficiency on parallel computers, the linear system was treated by an inverse matrix method (a sparse matrix-vector multiplication). The density of the inverse matrix was lowered to only a few times of the original sparse matrix without degrading the accuracy of the solution. For better computational efficiency, a local-domain high-order filter was introduced: The filter equation is applied to multiple cells, and then the central cell was only used to reconstruct the filtered field. The parallel efficiency of applying the inverse matrix method to the global- and local-domain filter was evaluated by the scalability on a distributed-memory parallel computer. The scale-selective performance of the filter was demonstrated on Earth topography. The usefulness of the filter as a hyper-viscosity for the vorticity equation was also demonstrated.

  14. Accurate and Efficient Parallel Implementation of an Effective Linear-Scaling Direct Random Phase Approximation Method.

    PubMed

    Graf, Daniel; Beuerle, Matthias; Schurkus, Henry F; Luenser, Arne; Savasci, Gökcen; Ochsenfeld, Christian

    2018-05-08

    An efficient algorithm for calculating the random phase approximation (RPA) correlation energy is presented that is as accurate as the canonical molecular orbital resolution-of-the-identity RPA (RI-RPA) with the important advantage of an effective linear-scaling behavior (instead of quartic) for large systems due to a formulation in the local atomic orbital space. The high accuracy is achieved by utilizing optimized minimax integration schemes and the local Coulomb metric attenuated by the complementary error function for the RI approximation. The memory bottleneck of former atomic orbital (AO)-RI-RPA implementations ( Schurkus, H. F.; Ochsenfeld, C. J. Chem. Phys. 2016 , 144 , 031101 and Luenser, A.; Schurkus, H. F.; Ochsenfeld, C. J. Chem. Theory Comput. 2017 , 13 , 1647 - 1655 ) is addressed by precontraction of the large 3-center integral matrix with the Cholesky factors of the ground state density reducing the memory requirements of that matrix by a factor of [Formula: see text]. Furthermore, we present a parallel implementation of our method, which not only leads to faster RPA correlation energy calculations but also to a scalable decrease in memory requirements, opening the door for investigations of large molecules even on small- to medium-sized computing clusters. Although it is known that AO methods are highly efficient for extended systems, where sparsity allows for reaching the linear-scaling regime, we show that our work also extends the applicability when considering highly delocalized systems for which no linear scaling can be achieved. As an example, the interlayer distance of two covalent organic framework pore fragments (comprising 384 atoms in total) is analyzed.

  15. Dynamical mean-field theory and weakly non-linear analysis for the phase separation of active Brownian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speck, Thomas; Menzel, Andreas M.; Bialké, Julian

    2015-06-14

    Recently, we have derived an effective Cahn-Hilliard equation for the phase separation dynamics of active Brownian particles by performing a weakly non-linear analysis of the effective hydrodynamic equations for density and polarization [Speck et al., Phys. Rev. Lett. 112, 218304 (2014)]. Here, we develop and explore this strategy in more detail and show explicitly how to get to such a large-scale, mean-field description starting from the microscopic dynamics. The effective free energy emerging from this approach has the form of a conventional Ginzburg-Landau function. On the coarsest scale, our results thus agree with the mapping of active phase separation ontomore » that of passive fluids with attractive interactions through a global effective free energy (motility-induced phase transition). Particular attention is paid to the square-gradient term necessary for the phase separation kinetics. We finally discuss results from numerical simulations corroborating the analytical results.« less

  16. Next Generation Extended Lagrangian Quantum-based Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Negre, Christian

    2017-06-01

    A new framework for extended Lagrangian first-principles molecular dynamics simulations is presented, which overcomes shortcomings of regular, direct Born-Oppenheimer molecular dynamics, while maintaining important advantages of the unified extended Lagrangian formulation of density functional theory pioneered by Car and Parrinello three decades ago. The new framework allows, for the first time, energy conserving, linear-scaling Born-Oppenheimer molecular dynamics simulations, which is necessary to study larger and more realistic systems over longer simulation times than previously possible. Expensive, self-consinstent-field optimizations are avoided and normal integration time steps of regular, direct Born-Oppenheimer molecular dynamics can be used. Linear scaling electronic structure theory is presented using a graph-based approach that is ideal for parallel calculations on hybrid computer platforms. For the first time, quantum based Born-Oppenheimer molecular dynamics simulation is becoming a practically feasible approach in simulations of +100,000 atoms-representing a competitive alternative to classical polarizable force field methods. In collaboration with: Anders Niklasson, Los Alamos National Laboratory.

  17. Frequency Upconversion and Parametric Surface Instabilities in Microwave Plasma Interactions.

    NASA Astrophysics Data System (ADS)

    Rappaport, Harold Lee

    In this thesis the interaction of radiation with plasmas whose density profiles are nearly step functions of space and/or time are studied. The wavelengths of radiation discussed are large compared with plasma density gradient scale lengths. The frequency spectra are evaluated and the energy balance investigated for the transmitted and reflected transient electromagnetic waves that are generated when a monochromatic source drives a finite width plasma in which a temporal step increase in density occurs. Transmission resonances associated with the abrupt boundaries manifest themselves as previously unreported multiple frequency peaks in the transmitted electromagnetic spectrum. A tunneling effect is described in which a burst of energy is transmitted from the plasma immediately following a temporal density transition. Stability of an abruptly bounded plasma, one for which the incident radiation wavelength is large compared with the plasma density gradient scale length, is investigated for both s and p polarized radiation types. For s-polarized radiation a new formalism is introduced in which pump induced perturbations are expressed as an explicit superposition of linear and non-linear plasma half-space modes. Results for a particular regime and a summary of relevant literature is presented. We conclude that when s-polarized radiation acts alone on an abrupt diffusely bounded underdense plasma stimulated excitation of electron surface modes is suppressed. For p-polarized radiation the recently proposed Lagrangian Frame Two-Plasmon Decay mode (LFTPD) ^dag is investigated in the regime in which the instability is not resonantly coupled to surface waves propagating along the boundary region. In this case, spatially dependent growth rate profiles and spatially dependent transit layer magnetic fields are reported. The regime is of interest because we have found that when the perturbation wavenumber parallel to the boundary is less than the pump frequency divided by twice the speed of light, energy radiates from the boundary region and these emissions can serve as an experimental signature for this mode. The theory of surface wave linear mode conversion is reviewed with special attention paid to power flow and energy conservation in this system. ftn^ dagYu. M. Aliev and G. Brodin, Phys. Rev. A 42, 2374 (1990).

  18. A simple method for finding explicit analytic transition densities of diffusion processes with general diploid selection.

    PubMed

    Song, Yun S; Steinrücken, Matthias

    2012-03-01

    The transition density function of the Wright-Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright-Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation-selection balance.

  19. A Simple Method for Finding Explicit Analytic Transition Densities of Diffusion Processes with General Diploid Selection

    PubMed Central

    Song, Yun S.; Steinrücken, Matthias

    2012-01-01

    The transition density function of the Wright–Fisher diffusion describes the evolution of population-wide allele frequencies over time. This function has important practical applications in population genetics, but finding an explicit formula under a general diploid selection model has remained a difficult open problem. In this article, we develop a new computational method to tackle this classic problem. Specifically, our method explicitly finds the eigenvalues and eigenfunctions of the diffusion generator associated with the Wright–Fisher diffusion with recurrent mutation and arbitrary diploid selection, thus allowing one to obtain an accurate spectral representation of the transition density function. Simplicity is one of the appealing features of our approach. Although our derivation involves somewhat advanced mathematical concepts, the resulting algorithm is quite simple and efficient, only involving standard linear algebra. Furthermore, unlike previous approaches based on perturbation, which is applicable only when the population-scaled selection coefficient is small, our method is nonperturbative and is valid for a broad range of parameter values. As a by-product of our work, we obtain the rate of convergence to the stationary distribution under mutation–selection balance. PMID:22209899

  20. A question of separation: disentangling tracer bias and gravitational non-linearity with counts-in-cells statistics

    NASA Astrophysics Data System (ADS)

    Uhlemann, C.; Feix, M.; Codis, S.; Pichon, C.; Bernardeau, F.; L'Huillier, B.; Kim, J.; Hong, S. E.; Laigle, C.; Park, C.; Shin, J.; Pogosyan, D.

    2018-02-01

    Starting from a very accurate model for density-in-cells statistics of dark matter based on large deviation theory, a bias model for the tracer density in spheres is formulated. It adopts a mean bias relation based on a quadratic bias model to relate the log-densities of dark matter to those of mass-weighted dark haloes in real and redshift space. The validity of the parametrized bias model is established using a parametrization-independent extraction of the bias function. This average bias model is then combined with the dark matter PDF, neglecting any scatter around it: it nevertheless yields an excellent model for densities-in-cells statistics of mass tracers that is parametrized in terms of the underlying dark matter variance and three bias parameters. The procedure is validated on measurements of both the one- and two-point statistics of subhalo densities in the state-of-the-art Horizon Run 4 simulation showing excellent agreement for measured dark matter variance and bias parameters. Finally, it is demonstrated that this formalism allows for a joint estimation of the non-linear dark matter variance and the bias parameters using solely the statistics of subhaloes. Having verified that galaxy counts in hydrodynamical simulations sampled on a scale of 10 Mpc h-1 closely resemble those of subhaloes, this work provides important steps towards making theoretical predictions for density-in-cells statistics applicable to upcoming galaxy surveys like Euclid or WFIRST.

  1. Localized overlap algorithm for unexpanded dispersion energies

    NASA Astrophysics Data System (ADS)

    Rob, Fazle; Misquitta, Alston J.; Podeszwa, Rafał; Szalewicz, Krzysztof

    2014-03-01

    First-principles-based, linearly scaling algorithm has been developed for calculations of dispersion energies from frequency-dependent density susceptibility (FDDS) functions with account of charge-overlap effects. The transition densities in FDDSs are fitted by a set of auxiliary atom-centered functions. The terms in the dispersion energy expression involving products of such functions are computed using either the unexpanded (exact) formula or from inexpensive asymptotic expansions, depending on the location of these functions relative to the dimer configuration. This approach leads to significant savings of computational resources. In particular, for a dimer consisting of two elongated monomers with 81 atoms each in a head-to-head configuration, the most favorable case for our algorithm, a 43-fold speedup has been achieved while the approximate dispersion energy differs by less than 1% from that computed using the standard unexpanded approach. In contrast, the dispersion energy computed from the distributed asymptotic expansion differs by dozens of percent in the van der Waals minimum region. A further increase of the size of each monomer would result in only small increased costs since all the additional terms would be computed from the asymptotic expansion.

  2. Understanding redshift space distortions in density-weighted peculiar velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N., E-mail: nao.s.sugiyama@gmail.com, E-mail: teppei.oku@gmail.com, E-mail: dns@astro.princeton.edu

    2016-07-01

    Observations of the kinetic Sunyaev-Zel'dovich (kSZ) effect measure the density-weighted velocity field, a potentially powerful cosmological probe. This paper presents an analytical method to predict the power spectrum and two-point correlation function of the density-weighted velocity in redshift space, the direct observables in kSZ surveys. We show a simple relation between the density power spectrum and the density-weighted velocity power spectrum that holds for both dark matter and halos. Using this relation, we can then extend familiar perturbation expansion techniques to the kSZ power spectrum. One of the most important features of density-weighted velocity statistics in redshift space is themore » change in sign of the cross-correlation between the density and density-weighted velocity at mildly small scales due to nonlinear redshift space distortions. Our model can explain this characteristic feature without any free parameters. As a result, our results can precisely predict the non-linear behavior of the density-weighted velocity field in redshift space up to ∼ 30 h {sup -1} Mpc for dark matter particles at the redshifts of z =0.0, 0.5, and 1.0.« less

  3. Isolating relativistic effects in large-scale structure

    NASA Astrophysics Data System (ADS)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  4. Core turbulence behavior moving from ion-temperature-gradient regime towards trapped-electron-mode regime in the ASDEX Upgrade tokamak and comparison with gyrokinetic simulation

    NASA Astrophysics Data System (ADS)

    Happel, T.; Navarro, A. Bañón; Conway, G. D.; Angioni, C.; Bernert, M.; Dunne, M.; Fable, E.; Geiger, B.; Görler, T.; Jenko, F.; McDermott, R. M.; Ryter, F.; Stroth, U.

    2015-03-01

    Additional electron cyclotron resonance heating (ECRH) is used in an ion-temperature-gradient instability dominated regime to increase R / L Te in order to approach the trapped-electron-mode instability regime. The radial ECRH deposition location determines to a large degree the effect on R / L Te . Accompanying scale-selective turbulence measurements at perpendicular wavenumbers between k⊥ = 4-18 cm-1 (k⊥ρs = 0.7-4.2) show a pronounced increase of large-scale density fluctuations close to the ECRH radial deposition location at mid-radius, along with a reduction in phase velocity of large-scale density fluctuations. Measurements are compared with results from linear and non-linear flux-matched gyrokinetic (GK) simulations with the gyrokinetic code GENE. Linear GK simulations show a reduction of phase velocity, indicating a pronounced change in the character of the dominant instability. Comparing measurement and non-linear GK simulation, as a central result, agreement is obtained in the shape of radial turbulence level profiles. However, the turbulence intensity is increasing with additional heating in the experiment, while gyrokinetic simulations show a decrease.

  5. Small scale clustering of late forming dark matter

    NASA Astrophysics Data System (ADS)

    Agarwal, S.; Corasaniti, P.-S.; Das, S.; Rasera, Y.

    2015-09-01

    We perform a study of the nonlinear clustering of matter in the late-forming dark matter (LFDM) scenario in which dark matter results from the transition of a nonminimally coupled scalar field from radiation to collisionless matter. A distinct feature of this model is the presence of a damped oscillatory cutoff in the linear matter power spectrum at small scales. We use a suite of high-resolution N-body simulations to study the imprints of LFDM on the nonlinear matter power spectrum, the halo mass and velocity functions and the halo density profiles. The model largely satisfies high-redshift matter power spectrum constraints from Lyman-α forest measurements, while it predicts suppressed abundance of low-mass halos (˜109- 1010 h-1 M⊙ ) at all redshifts compared to a vanilla Λ CDM model. The analysis of the LFDM halo velocity function shows a better agreement than the Λ CDM prediction with the observed abundance of low-velocity galaxies in the local volume. Halos with mass M ≳1011 h-1 M⊙ show minor departures of the density profiles from Λ CDM expectations, while smaller-mass halos are less dense, consistent with the fact that they form later than their Λ CDM counterparts.

  6. Nonlinear Dynamics of the Cosmic Neutrino Background

    NASA Astrophysics Data System (ADS)

    Inman, Derek

    At least two of the three neutrino species are known to be massive, but their exact masses are currently unknown. Cosmic neutrinos decoupled from the rest of the primordial plasma early on when the Universe was over a billion times hotter than it is today. These relic particles, which have cooled and are now non-relativistic, constitute the Cosmic Neutrino Background and permeate the Universe. While they are not observable directly, their presence can be inferred by measuring the suppression of the matter power spectrum. This suppression is a linear effect caused by the large thermal velocities of neutrinos, which prevent them from collapsing gravitationally on small scales. Unfortunately, it is difficult to measure because of degeneracies with other cosmological parameters and biases arising from the fact that we typically observe point-like galaxies rather than a continous matter field. It is therefore important to look for new effects beyond linear suppression that may be more sensitive to neutrinos. This thesis contributes to the understanding of the nonlinear dynamics of the cosmological neutrino background in the following ways: (i) the development of a new injection scheme for neutrinos in cosmological N-body simulations which circumvents many issues associated with simulating neutrinos at large redshifts, (ii) the numerical study of the relative velocity field between cold dark matter and neutrinos including its reconstruction from density fields, (iii) the theoretical description of neutrinos as a dispersive fluid and its use in modelling the nonlinear evolution of the neutrino density power spectrum, (iv) the derivation of the dipole correlation function using linear response which allows for the Fermi-Dirac velocity distribution to be properly included, and (v) the numerical study and detection of the dipole correlation function in the TianNu simulation. In totality, this thesis is a comprehensive study of neutrino density and velocity fields that may lead to a new technique for constraining neutrino properties via the dipole correlation function.

  7. Assigning uncertainties in the inversion of NMR relaxation data.

    PubMed

    Parker, Robert L; Song, Yi-Qaio

    2005-06-01

    Recovering the relaxation-time density function (or distribution) from NMR decay records requires inverting a Laplace transform based on noisy data, an ill-posed inverse problem. An important objective in the face of the consequent ambiguity in the solutions is to establish what reliable information is contained in the measurements. To this end we describe how upper and lower bounds on linear functionals of the density function, and ratios of linear functionals, can be calculated using optimization theory. Those bounded quantities cover most of those commonly used in the geophysical NMR, such as porosity, T(2) log-mean, and bound fluid volume fraction, and include averages over any finite interval of the density function itself. In the theory presented statistical considerations enter to account for the presence of significant noise in the signal, but not in a prior characterization of density models. Our characterization of the uncertainties is conservative and informative; it will have wide application in geophysical NMR and elsewhere.

  8. Complete Mie-Gruneisen Equation of State (update)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2016-03-14

    The Mie-Gruneisen equation of state (EOS) is frequently used in hydro simulations to model solids at high pressure (up to a few Mb). It is an incomplete EOS characterized by a Gr¨uneisen coefficient, = -V (@eP)V , that is a function of only V . Expressions are derived for isentropes and isotherms. This enables the extension to a complete EOS. Thermodynamic consistency requires that the specific heat is a function of a single scaled-temperature. A complete extension is uniquely determined by the temperature dependence of the specific heat at a fixed reference density. In addition we show that if themore » domain of the EOS extends to T = 0 and the specific heat vanishes on the zero isotherm then a function of only V is equivalent to a specific heat with a single temperature scale. If the EOS domain does not include the zero isotherm, then a specific heat with a single temperature scale leads to a generalization of the Mie-Gr¨uneisen EOS in which the pressure is linear in both the specific energy and the temperature. This corresponds to the limiting case of two temperature scales with one of the scales in the high temperature limit. Such an EOS has previously been used to model liquid nitromethane.« less

  9. Plane wave density functional molecular dynamics study of exothermic reactions of Al/CuO thermites

    NASA Astrophysics Data System (ADS)

    Oloriegbe, Suleiman; Sewell, Thomas; Chen, Zhen; Jiang, Shan; Gan, Yong

    2014-03-01

    Exothermic reactions between nanosize aluminum (Al) and copper oxide (CuO) structures are of current interest because of their high reaction enthalpy and energy density which exceed those of traditional monomolecular energetic compounds such as TNT, RDX, and HMX. In this work, molecular dynamics simulations with forces obtained from plane wave density functional theory are used to investigate the atomic-scale and electronic processes that occur during the fast thermite reactions between Al and CuO nanostructures under adiabatic conditions. Aluminum surfaces in contact with O-exposed and Cu-exposed CuO surfaces are studied. Starting from initial temperature T = 800 K, we have observed: faster chemical reaction at the oxygen-rich interface during the initial 0.5 ps, linear temperature rise, and fast oxygen diffusion into the Al region with the rate 1.87 X 10-3 cm2/s. The density-derived electrostatic and chemical method is used to evaluate the net atomic charges and charge transfer during the important redox processes. High charge density around the oxygen-exposed interface may be responsible for the faster initial reactions at that interface. The overall reaction rate, determined using the time evolution of Cu-O charge orbital overlap population, is approximately first order.

  10. Local existence of solutions to the Euler-Poisson system, including densities without compact support

    NASA Astrophysics Data System (ADS)

    Brauer, Uwe; Karp, Lavi

    2018-01-01

    Local existence and well posedness for a class of solutions for the Euler Poisson system is shown. These solutions have a density ρ which either falls off at infinity or has compact support. The solutions have finite mass, finite energy functional and include the static spherical solutions for γ = 6/5. The result is achieved by using weighted Sobolev spaces of fractional order and a new non-linear estimate which allows to estimate the physical density by the regularised non-linear matter variable. Gamblin also has studied this setting but using very different functional spaces. However we believe that the functional setting we use is more appropriate to describe a physical isolated body and more suitable to study the Newtonian limit.

  11. Performance of linear and nonlinear texture measures in 2D and 3D for monitoring architectural changes in osteoporosis using computer-generated models of trabecular bone

    NASA Astrophysics Data System (ADS)

    Boehm, Holger F.; Link, Thomas M.; Monetti, Roberto A.; Mueller, Dirk; Rummeny, Ernst J.; Raeth, Christoph W.

    2005-04-01

    Osteoporosis is a metabolic bone disease leading to de-mineralization and increased risk of fracture. The two major factors that determine the biomechanical competence of bone are the degree of mineralization and the micro-architectural integrity. Today, modern imaging modalities (high resolution MRI, micro-CT) are capable of depicting structural details of trabecular bone tissue. From the image data, structural properties obtained by quantitative measures are analysed with respect to the presence of osteoporotic fractures of the spine (in-vivo) or correlated with biomechanical strength as derived from destructive testing (in-vitro). Fairly well established are linear structural measures in 2D that are originally adopted from standard histo-morphometry. Recently, non-linear techniques in 2D and 3D based on the scaling index method (SIM), the standard Hough transform (SHT), and the Minkowski Functionals (MF) have been introduced, which show excellent performance in predicting bone strength and fracture risk. However, little is known about the performance of the various parameters with respect to monitoring structural changes due to progression of osteoporosis or as a result of medical treatment. In this contribution, we generate models of trabecular bone with pre-defined structural properties which are exposed to simulated osteoclastic activity. We apply linear and non-linear texture measures to the models and analyse their performance with respect to detecting architectural changes. This study demonstrates, that the texture measures are capable of monitoring structural changes of complex model data. The diagnostic potential varies for the different parameters and is found to depend on the topological composition of the model and initial "bone density". In our models, non-linear texture measures tend to react more sensitively to small structural changes than linear measures. Best performance is observed for the 3rd and 4th Minkowski Functionals and for the scaling index method.

  12. Density fluctuation in HT-6M tokamak by CO2 laser scattering

    NASA Astrophysics Data System (ADS)

    Zeng, Lei; Cao, Jinxiang; Zhu, Guoliang; Ding, Weixing; Yu, Chang-Xuan; Zhang, Daqing; Li, Youyi

    1993-09-01

    The small scale density fluctuations in the interior of HT-6M Ohmic plasma have been studied by CO2 laser collective scattering system in deuterium discharges covering a wide range of nqa (chord-average density times safety factor at the limiter) and energy confinement time. The relative density fluctuation level in the interior is inversely proportional to the toroidal magnetic field and average density, and the energy confinement time (tau) E decreases with the fluctuation level increasing in the region where (tau) E linearly increases with nq0.5a and satisfies the Goldston scaling law. It is suggested that the microturbulence in the interior zone is responsible for anomalous transport in tokamaks.

  13. Equilibrium finite-frequency noise of an interacting mesoscopic capacitor studied in time-dependent density functional theory

    NASA Astrophysics Data System (ADS)

    Dittmann, Niklas; Splettstoesser, Janine; Helbig, Nicole

    2018-03-01

    We calculate the frequency-dependent equilibrium noise of a mesoscopic capacitor in time-dependent density functional theory (TDDFT). The capacitor is modeled as a single-level quantum dot with on-site Coulomb interaction and tunnel coupling to a nearby reservoir. The noise spectra are derived from linear-response conductances via the fluctuation-dissipation theorem. Thereby, we analyze the performance of a recently derived exchange-correlation potential with time-nonlocal density dependence in the finite-frequency linear-response regime. We compare our TDDFT noise spectra with real-time perturbation theory and find excellent agreement for noise frequencies below the reservoir temperature.

  14. Microturbulence in HT-6M Tokamak

    NASA Astrophysics Data System (ADS)

    Zeng, Lei; Yu, Changxuan; Cao, Jinxiang; Zhu, Guoliang; Zhang, Daqing; Li, Youyi

    1993-08-01

    The small scale density fluctuations in the interior of HT-6M Ohmic plasma have been studied by CO2 laser collective scattering system in deuterium discharges covering a range of bar neqa (chord-average density times safety factor at the limiter) and energy confinement time. The relative density fluctuation level in the interior is inversely proportional to the toroidal magnetic field and average density, and the energy confinement time τE decreases with the fluctuation level increasing in the region where τE linearly increases with bar neqa and statisfies the Goldston scaling law. It is suggested that the microturbulence in the interior zone is responsible for anomalous transport in tokamaks.

  15. Measurements relating fire radiative energy density and surface fuel consumption - RxCADRE 2011 and 2012

    Treesearch

    Andrew T. Hudak; Matthew B. Dickinson; Benjamin C. Bright; Robert L. Kremens; E. Louise Loudermilk; Joseph J. O' Brien; Benjamin S. Hornsby; Roger D. Ottmar

    2016-01-01

    Small-scale experiments have demonstrated that fire radiative energy is linearly related to fuel combusted but such a relationship has not been shown at the landscape level of prescribed fires. This paper presents field and remotely sensed measures of pre-fire fuel loads, consumption, fire radiative energy density (FRED) and fire radiative power flux density (FRFD),...

  16. Electron dynamics inside a vacuum tube diode through linear differential equations

    NASA Astrophysics Data System (ADS)

    González, Gabriel; Orozco, Fco. Javier González; Orozco

    2014-04-01

    In this paper we analyze the motion of charged particles in a vacuum tube diode by solving linear differential equations. Our analysis is based on expressing the volume charge density as a function of the current density and coordinates only, i.e. ρ=ρ(J,z), while in the usual scheme the volume charge density is expressed as a function of the current density and electrostatic potential, i.e. ρ=ρ(J,V). We show that, in the case of slow varying charge density, the space-charge-limited current is reduced up to 50%. Our approach gives the well-known behavior of the classical current density proportional to the three-halves power of the bias potential and inversely proportional to the square of the gap distance between electrodes, and does not require the solution of the nonlinear differential equation normally associated with the Child-Langmuir formulation.

  17. Speed-of-light limitations in passive linear media

    NASA Astrophysics Data System (ADS)

    Welters, Aaron; Avniel, Yehuda; Johnson, Steven G.

    2014-08-01

    We prove that well-known speed-of-light restrictions on electromagnetic energy velocity can be extended to a new level of generality, encompassing even nonlocal chiral media in periodic geometries, while at the same time weakening the underlying assumptions to only passivity and linearity of the medium (either with a transparency window or with dissipation). As was also shown by other authors under more limiting assumptions, passivity alone is sufficient to guarantee causality and positivity of the energy density (with no thermodynamic assumptions). Our proof is general enough to include a very broad range of material properties, including anisotropy, bianisotropy (chirality), nonlocality, dispersion, periodicity, and even delta functions or similar generalized functions. We also show that the "dynamical energy density" used by some previous authors in dissipative media reduces to the standard Brillouin formula for dispersive energy density in a transparency window. The results in this paper are proved by exploiting deep results from linear-response theory, harmonic analysis, and functional analysis that had previously not been brought together in the context of electrodynamics.

  18. KINK AND SAUSAGE MODES IN NONUNIFORM MAGNETIC SLABS WITH CONTINUOUS TRANSVERSE DENSITY DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Hui; Li, Bo; Chen, Shao-Xia

    2015-11-20

    We examine the influence of a continuous density structuring transverse to coronal slabs on the dispersive properties of fundamental standing kink and sausage modes supported therein. We derive generic dispersion relations (DRs) governing linear fast waves in pressureless straight slabs with general transverse density distributions, and focus on cases where the density inhomogeneity takes place in a layer of arbitrary width and in arbitrary form. The physical relevance of the solutions to the DRs is demonstrated by the corresponding time-dependent computations. For all profiles examined, the lowest order kink modes are trapped regardless of longitudinal wavenumber k. A continuous density distribution introducesmore » a difference to their periods of ≲13% when k is the observed range relative to the case where the density profile takes a step function form. Sausage modes and other branches of kink modes are leaky at small k, and their periods and damping times are heavily influenced by how the transverse density profile is prescribed, in particular the length scale. These modes have sufficiently high quality to be observable only for physical parameters representative of flare loops. We conclude that while the simpler DR pertinent to a step function profile can be used for the lowest order kink modes, the detailed information on the transverse density structuring needs to be incorporated into studies of sausage modes and higher order kink modes.« less

  19. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: effect of smoothing of density field on reconstruction and anisotropic BAO analysis

    NASA Astrophysics Data System (ADS)

    Vargas-Magaña, Mariana; Ho, Shirley; Fromenteau, Sebastien.; Cuesta, Antonio. J.

    2017-05-01

    The reconstruction algorithm introduced by Eisenstein et al., which is widely used in clustering analysis, is based on the inference of the first-order Lagrangian displacement field from the Gaussian smoothed galaxy density field in redshift space. The smoothing scale applied to the density field affects the inferred displacement field that is used to move the galaxies, and partially erases the non-linear evolution of the density field. In this article, we explore this crucial step in the reconstruction algorithm. We study the performance of the reconstruction technique using two metrics: first, we study the performance using the anisotropic clustering, extending previous studies focused on isotropic clustering; secondly, we study its effect on the displacement field. We find that smoothing has a strong effect in the quadrupole of the correlation function and affects the accuracy and precision with which we can measure DA(z) and H(z). We find that the optimal smoothing scale to use in the reconstruction algorithm applied to Baryonic Oscillations Spectroscopic Survey-Constant (stellar) MASS (CMASS) is between 5 and 10 h-1 Mpc. Varying from the `usual' 15-5 h-1 Mpc shows ˜0.3 per cent variations in DA(z) and ˜0.4 per cent H(z) and uncertainties are also reduced by 40 per cent and 30 per cent, respectively. We also find that the accuracy of velocity field reconstruction depends strongly on the smoothing scale used for the density field. We measure the bias and uncertainties associated with different choices of smoothing length.

  20. Multiparameter Flowfield Measurements in High-Pressure, Cryogenic Environments Using Femtosecond Lasers

    NASA Technical Reports Server (NTRS)

    Burns, Ross A.; Danehy, Paul M.; Peters, Christopher J.

    2016-01-01

    Femtosecond laser electronic excitation tagging (FLEET) and Rayleigh scattering (RS) from a femtosecond laser are demonstrated in the NASA Langley 0.3-m Transonic Cryogenic Tunnel (TCT). The measured signals from these techniques are examined for their thermodynamic dependencies in pure nitrogen. The FLEET signal intensity and signal lifetimes are found to scale primarily with the gas density, as does the RS signal. Several models are developed, which capture these physical behaviors. Notably, the FLEET and Rayleigh scattering intensities scale linearly with the flow density, while the FLEET signal decay rates are a more complex function of the thermodynamic state of the gas. The measurement of various flow properties are demonstrated using these techniques. While density was directly measured from the signal intensities and FLEET signal lifetime, temperature and pressure were measured using the simultaneous FLEET velocity measurements while assuming the flow had a constant total enthalpy. Measurements of density, temperature, and pressure from the FLEET signal are made with accuracies as high as 5.3 percent, 0.62 percent, and 6.2 percent, respectively, while precisions were approximately 10 percent, 0.26 percent, and 11 percent for these same quantities. Similar measurements of density from Rayleigh scattering showed an overall accuracy of 3.5 percent and a precision of 10.2 percent over a limited temperature range (T greater than 195 K). These measurements suggest a high degree of utility at using the femtosecond-laser based diagnostics for making multiparameter measurements in high-pressure, cryogenic environments such as large-scale TCT facilities.

  1. Bond Order Conservation Strategies in Catalysis Applied to the NH 3 Decomposition Reaction

    DOE PAGES

    Yu, Liang; Abild-Pedersen, Frank

    2016-12-14

    On the basis of an extensive set of density functional theory calculations, it is shown that a simple scheme provides a fundamental understanding of variations in the transition state energies and structures of reaction intermediates on transition metal surfaces across the periodic table. The scheme is built on the bond order conservation principle and requires a limited set of input data, still achieving transition state energies as a function of simple descriptors with an error smaller than those of approaches based on linear fits to a set of calculated transition state energies. Here, we have applied this approach together withmore » linear scaling of adsorption energies to obtain the energetics of the NH 3 decomposition reaction on a series of stepped fcc(211) transition metal surfaces. Moreover, this information is used to establish a microkinetic model for the formation of N 2 and H 2, thus providing insight into the components of the reaction that determines the activity.« less

  2. The Gaussian streaming model and convolution Lagrangian effective field theory

    DOE PAGES

    Vlah, Zvonimir; Castorina, Emanuele; White, Martin

    2016-12-05

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM tomore » a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.« less

  3. The Gaussian streaming model and convolution Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; Castorina, Emanuele; White, Martin, E-mail: zvlah@stanford.edu, E-mail: ecastorina@berkeley.edu, E-mail: mwhite@berkeley.edu

    We update the ingredients of the Gaussian streaming model (GSM) for the redshift-space clustering of biased tracers using the techniques of Lagrangian perturbation theory, effective field theory (EFT) and a generalized Lagrangian bias expansion. After relating the GSM to the cumulant expansion, we present new results for the real-space correlation function, mean pairwise velocity and pairwise velocity dispersion including counter terms from EFT and bias terms through third order in the linear density, its leading derivatives and its shear up to second order. We discuss the connection to the Gaussian peaks formalism. We compare the ingredients of the GSM tomore » a suite of large N-body simulations, and show the performance of the theory on the low order multipoles of the redshift-space correlation function and power spectrum. We highlight the importance of a general biasing scheme, which we find to be as important as higher-order corrections due to non-linear evolution for the halos we consider on the scales of interest to us.« less

  4. Influence of geographical scale on the detection of density dependence in the host-parasite system, Arvicola terrestris and Taenia taeniaeformis.

    PubMed

    Deter, J; Berthier, K; Chaval, Y; Cosson, J F; Morand, S; Charbonnel, N

    2006-04-01

    Infection by the cestode Taenia taeniaeformis was investigated within numerous cyclic populations of the fossorial water vole Arvicola terrestris sampled during 4 years in Franche-Comté (France). The relative influence of different rodent demographic parameters on the presence of this cestode was assessed by considering (1) the demographic phase of the cycle; (2) density at the local geographical scale (<0.1 km2); (3) mean density at a larger scale (>10 km2). The local scale corresponded to the rodent population (intermediate host), while the large scale corresponded to the definitive host population (wild and feral cats). General linear models based on analyses of 1804 voles revealed the importance of local density but also of year, rodent age, season and interactions between year and season and between age and season. Prevalence was significantly higher in low vole densities than during local outbreaks. By contrast, the large geographical scale density and the demographic phase had less influence on infection by the cestode. The potential impacts of the cestode on the fitness of the host were assessed and infection had no effect on the host body mass, litter size or sexual activity of voles.

  5. Transport equations for linear surface waves with random underlying flows

    NASA Astrophysics Data System (ADS)

    Bal, Guillaume; Chou, Tom

    1999-11-01

    We define the Wigner distribution and use it to develop equations for linear surface capillary-gravity wave propagation in the transport regime. The energy density a(r, k) contained in waves propagating with wavevector k at field point r is given by dota(r,k) + nabla_k[U_⊥(r,z=0) \\cdotk + Ω(k)]\\cdotnabla_ra [13pt] \\: hspace1in - (nabla_r\\cdotU_⊥)a - nabla_r(k\\cdotU_⊥)\\cdotnabla_ka = Σ(δU^2) where U_⊥(r, z=0) is a slowly varying surface current, and Ω(k) = √(k^3+k)tanh kh is the free capillary-gravity dispersion relation. Note that nabla_r\\cdotU_⊥(r,z=0) neq 0, and that the surface currents exchange energy density with the propagating waves. When an additional weak random current √\\varepsilon δU(r/\\varepsilon) varying on the scale of k-1 is included, we find an additional scattering term Σ(δU^2) as a function of correlations in δU. Our results can be applied to the study of surface wave energy transport over a turbulent ocean.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lepori, Francesca; Viel, Matteo; Baccigalupi, Carlo

    We investigate the Alcock Paczy'nski (AP) test applied to the Baryon Acoustic Oscillation (BAO) feature in the galaxy correlation function. By using a general formalism that includes relativistic effects, we quantify the importance of the linear redshift space distortions and gravitational lensing corrections to the galaxy number density fluctuation. We show that redshift space distortions significantly affect the shape of the correlation function, both in radial and transverse directions, causing different values of galaxy bias to induce offsets up to 1% in the AP test. On the other hand, we find that the lensing correction around the BAO scale modifiesmore » the amplitude but not the shape of the correlation function and therefore does not introduce any systematic effect. Furthermore, we investigate in details how the AP test is sensitive to redshift binning: a window function in transverse direction suppresses correlations and shifts the peak position toward smaller angular scales. We determine the correction that should be applied in order to account for this effect, when performing the test with data from three future planned galaxy redshift surveys: Euclid, the Dark Energy Spectroscopic Instrument (DESI) and the Square Kilometer Array (SKA).« less

  7. Microwave moisture sensing through use of a piecewise density-independent function

    USDA-ARS?s Scientific Manuscript database

    Microwave moisture sensing provides a means to determine nondestructively the amount of water in materials. This is accomplished through the correlation of dielectric properties with moisture in the material. In this study, linear relationships between a density-independent function of the dielectri...

  8. Spatial mismatch analysis among hotspots of alien plant species, road and railway networks in Germany and Austria

    PubMed Central

    Morelli, Federico

    2017-01-01

    Road and railway networks are pervasive elements of all environments, which have expanded intensively over the last century in all European countries. These transportation infrastructures have major impacts on the surrounding landscape, representing a threat to biodiversity. Roadsides and railways may function as corridors for dispersal of alien species in fragmented landscapes. However, only few studies have explored the spread of invasive species in relationship to transport network at large spatial scales. We performed a spatial mismatch analysis, based on a spatially explicit correlation test, to investigate whether alien plant species hotspots in Germany and Austria correspond to areas of high density of roads and railways. We tested this independently of the effects of dominant environments in each spatial unit, in order to focus just on the correlation between occurrence of alien species and density of linear transportation infrastructures. We found a significant spatial association between alien plant species hotspots distribution and roads and railways density in both countries. As expected, anthropogenic landscapes, such as urban areas, harbored more alien plant species, followed by water bodies. However, our findings suggested that the distribution of neobiota is strongest correlated to road/railways density than to land use composition. This study provides new evidence, from a transnational scale, that alien plants can use roadsides and rail networks as colonization corridors. Furthermore, our approach contributes to the understanding on alien plant species distribution at large spatial scale by the combination with spatial modeling procedures. PMID:28829818

  9. Multireference Density Functional Theory with Generalized Auxiliary Systems for Ground and Excited States.

    PubMed

    Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao

    2017-09-21

    To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.

  10. Micro-computed tomography: Applications for high-resolution skeletal density determinations: An example using annually banded crustose coralline algae

    NASA Astrophysics Data System (ADS)

    Chan, P.; Halfar, J.; Norley, C. J. D.; Pollmann, S. I.; Adey, W.; Holdsworth, D. W.

    2017-09-01

    Warming and acidification of the world's oceans are expected to have widespread consequences for marine biodiversity and ecosystem functioning. However, due to the relatively short record of instrumental observations, one has to rely upon geochemical and physical proxy information stored in biomineralized shells and skeletons of calcareous marine organisms as in situ recorders of past environments. Of particular interest is the response of marine calcifiers to ocean acidification through the examination of structural growth characteristics. Here we demonstrate the application of micro-computed tomography (micro-CT) for three-dimensional visualization and analysis of growth, skeletal density, and calcification in a slow-growing, annually banded crustose coralline alga Clathromorphum nereostratum (increment width ˜380 µm). X-ray images and time series of skeletal density were generated at 20 µm resolution and rebinned to 40, 60, 80, and 100 µm for comparison in a sensitivity analysis. Calcification rates were subsequently calculated as the product of density and growth (linear extension). While both skeletal density and calcification rates do not significantly differ at varying spatial resolutions (the latter being strongly influenced by growth rates), clear visualization of micron-scale growth features and the quantification of structural changes on subannual time scales requires higher scanning resolutions. In the present study, imaging at 20 µm resolution reveals seasonal cycles in density that correspond to summer/winter variations in skeletal structure observed using scanning electron microscopy (SEM). Micro-CT is a fast, nondestructive, and high-resolution technique for structural and morphometric analyses of temporally banded paleoclimate archives, particularly those that exhibit slow or compressed growth or micron-scale structures.

  11. The mean density and two-point correlation function for the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1988-01-01

    The effect of large-scale inhomogeneities on the determination of the mean number density and the two-point spatial correlation function were investigated for two complete slices of the extension of the Center for Astrophysics (CfA) redshift survey (de Lapparent et al., 1986). It was found that the mean galaxy number density for the two strips is uncertain by 25 percent, more so than previously estimated. The large uncertainty in the mean density introduces substantial uncertainty in the determination of the two-point correlation function, particularly at large scale; thus, for the 12-deg slice of the CfA redshift survey, the amplitude of the correlation function at intermediate scales is uncertain by a factor of 2. The large uncertainties in the correlation functions might reflect the lack of a fair sample.

  12. Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks

    NASA Astrophysics Data System (ADS)

    Mignan, Arnaud

    2018-03-01

    The aftershock productivity law is an exponential function of the form K ∝ exp(αM), with K being the number of aftershocks triggered by a given mainshock of magnitude M and α ≈ ln(10) being the productivity parameter. This law remains empirical in nature although it has also been retrieved in static stress simulations. Here, we parameterize this law using the solid seismicity postulate (SSP), the basis of a geometrical theory of seismicity where seismicity patterns are described by mathematical expressions obtained from geometric operations on a permanent static stress field. We first test the SSP that relates seismicity density to a static stress step function. We show that it yields a power exponent q = 1.96 ± 0.01 for the power-law spatial linear density distribution of aftershocks, once uniform noise is added to the static stress field, in agreement with observations. We then recover the exponential function of the productivity law with a break in scaling obtained between small and large M, with α = 1.5ln(10) and ln(10), respectively, in agreement with results from previous static stress simulations. Possible biases of aftershock selection, proven to exist in epidemic-type aftershock sequence (ETAS) simulations, may explain the lack of break in scaling observed in seismicity catalogues. The existence of the theoretical kink, however, remains to be proven. Finally, we describe how to estimate the solid seismicity parameters (activation density δ+, aftershock solid envelope r∗ and background stress amplitude range Δo∗) for large M values.

  13. Reduction, analysis, and properties of electric current systems in solar active regions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Demoulin, Pascal

    1995-01-01

    The specific attraction and, in large part, the significance of solar magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 deg ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 deg ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local `preferred' direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar (beta) (gamma) (delta)-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA/sq m and have a linear decreasing distribution to a diameter of 30 Mn.

  14. Reduction, Analysis, and Properties of Electric Current Systems in Solar Active Regions

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; Demoulin, Pascal

    1995-01-01

    The specific attraction and, in large part, the significance of solar vector magnetograms lie in the fact that they give the most important data on the electric currents and the nonpotentiality of active regions. Using the vector magnetograms from the Marshall Space Flight Center (MSFC), we employ a unique technique in the area of data analysis for resolving the 180 degree ambiguity in order to calculate the spatial structure of the vertical electric current density. The 180 degree ambiguity is resolved by applying concepts from the nonlinear multivariable optimization theory. The technique is shown to be of particular importance in very nonpotential active regions. The characterization of the vertical electric current density for a set of vector magnetograms using this method then gives the spatial scale, locations, and magnitude of these current systems. The method, which employs an intermediate parametric function which covers the magnetogram and which defines the local "preferred" direction, minimizes a specific functional of the observed transverse magnetic field. The specific functional that is successful is the integral of the square of the vertical current density. We find that the vertical electric current densities have common characteristics for the extended bipolar beta gamma delta-regions studied. The largest current systems have j(sub z)'s which maximizes around 30 mA per square meter and have a linear decreasing distribution to a diameter of 30 Mm.

  15. Molecular mechanics and structure of the fluid-solid interface in simple fluids

    NASA Astrophysics Data System (ADS)

    Wang, Gerald J.; Hadjiconstantinou, Nicolas G.

    2017-09-01

    Near a fluid-solid interface, the fluid spatial density profile is highly nonuniform at the molecular scale. This nonuniformity can have profound effects on the dynamical behavior of the fluid and has been shown to play an especially important role when modeling a wide variety of nanoscale heat and momentum transfer phenomena. We use molecular-mechanics arguments and molecular-dynamics (MD) simulations to develop a better understanding of the structure of the first fluid layer directly adjacent to the solid in the layering regime, as delineated by a nondimensional number that compares the effects of wall-fluid interaction to thermal energy. Using asymptotic analysis of the Nernst-Planck equation, we show that features of the fluid density profile close to the wall, such as the areal density of the first layer ΣFL (defined as the number of atoms in this layer per unit of fluid-solid interfacial area), can be expressed as polynomial functions of the fluid average density ρave. This is found to be in agreement with MD simulations, which also show that the width of the first layer hFL is a linear function of the average density and only a weak function of the temperature T . These results can be combined to show that, for system average densities corresponding to a dense fluid (ρave≥0.7 ), the ratio C ≡ΣFLρavehFL, representing a density enhancement with respect to the bulk fluid, depends only weakly on temperature and is essentially independent of density. Further MD simulations suggest that the above results, nominally valid for large systems (solid in contact with semi-infinite fluid), also describe fluid-solid interfaces under considerable nanoconfinement, provided ρave is appropriately defined.

  16. Nonlinear spherical perturbations in quintessence models of dark energy

    NASA Astrophysics Data System (ADS)

    Pratap Rajvanshi, Manvendra; Bagla, J. S.

    2018-06-01

    Observations have confirmed the accelerated expansion of the universe. The accelerated expansion can be modelled by invoking a cosmological constant or a dynamical model of dark energy. A key difference between these models is that the equation of state parameter w for dark energy differs from ‑1 in dynamical dark energy (DDE) models. Further, the equation of state parameter is not constant for a general DDE model. Such differences can be probed using the variation of scale factor with time by measuring distances. Another significant difference between the cosmological constant and DDE models is that the latter must cluster. Linear perturbation analysis indicates that perturbations in quintessence models of dark energy do not grow to have a significant amplitude at small length scales. In this paper we study the response of quintessence dark energy to non-linear perturbations in dark matter. We use a fully relativistic model for spherically symmetric perturbations. In this study we focus on thawing models. We find that in response to non-linear perturbations in dark matter, dark energy perturbations grow at a faster rate than expected in linear perturbation theory. We find that dark energy perturbation remains localised and does not diffuse out to larger scales. The dominant drivers of the evolution of dark energy perturbations are the local Hubble flow and a supression of gradients of the scalar field. We also find that the equation of state parameter w changes in response to perturbations in dark matter such that it also becomes a function of position. The variation of w in space is correlated with density contrast for matter. Variation of w and perturbations in dark energy are more pronounced in response to large scale perturbations in matter while the dependence on the amplitude of matter perturbations is much weaker.

  17. Statistical Measures of Large-Scale Structure

    NASA Astrophysics Data System (ADS)

    Vogeley, Michael; Geller, Margaret; Huchra, John; Park, Changbom; Gott, J. Richard

    1993-12-01

    \\inv Mpc} To quantify clustering in the large-scale distribution of galaxies and to test theories for the formation of structure in the universe, we apply statistical measures to the CfA Redshift Survey. This survey is complete to m_{B(0)}=15.5 over two contiguous regions which cover one-quarter of the sky and include ~ 11,000 galaxies. The salient features of these data are voids with diameter 30-50\\hmpc and coherent dense structures with a scale ~ 100\\hmpc. Comparison with N-body simulations rules out the ``standard" CDM model (Omega =1, b=1.5, sigma_8 =1) at the 99% confidence level because this model has insufficient power on scales lambda >30\\hmpc. An unbiased open universe CDM model (Omega h =0.2) and a biased CDM model with non-zero cosmological constant (Omega h =0.24, lambda_0 =0.6) match the observed power spectrum. The amplitude of the power spectrum depends on the luminosity of galaxies in the sample; bright (L>L(*) ) galaxies are more strongly clustered than faint galaxies. The paucity of bright galaxies in low-density regions may explain this dependence. To measure the topology of large-scale structure, we compute the genus of isodensity surfaces of the smoothed density field. On scales in the ``non-linear" regime, <= 10\\hmpc, the high- and low-density regions are multiply-connected over a broad range of density threshold, as in a filamentary net. On smoothing scales >10\\hmpc, the topology is consistent with statistics of a Gaussian random field. Simulations of CDM models fail to produce the observed coherence of structure on non-linear scales (>95% confidence level). The underdensity probability (the frequency of regions with density contrast delta rho //lineρ=-0.8) depends strongly on the luminosity of galaxies; underdense regions are significantly more common (>2sigma ) in bright (L>L(*) ) galaxy samples than in samples which include fainter galaxies.

  18. Excited-state absorption in tetrapyridyl porphyrins: comparing real-time and quadratic-response time-dependent density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowman, David N.; Asher, Jason C.; Fischer, Sean A.

    2017-01-01

    Threemeso-substituted tetrapyridyl porphyrins (free base, Ni(ii), and Cu(ii)) were investigated for their optical limiting (OL) capabilities using real-time (RT-), linear-response (LR-), and quadratic-response (QR-) time-dependent density functional theory (TDDFT) methods.

  19. Complete Mie-Gruneisen Equation of State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menikoff, Ralph

    2012-06-28

    The Mie-Gruneisen equation of state (EOS) is frequently used in hydro simulations to model solids at high pressure (up to a few Mb). It is an incomplete EOS characterized by a Gruneisen coefficient, {Lambda} = -V({partial_derivative}{sub e}P){sub V}, that is a function of only V. Expressions are derived for isentropes and isotherms. This enables the extension to a complete EOS. Thermodynamic consistency requires that the specific heat is a function of a single scaled temperature. A complete extension is uniquely determined by the temperature dependence of the specific heat at a fixed reference density. In addition we show that ifmore » the domain of the EOS extends to T = 0 and the specific heat vanishes on the zero isotherm then {Lambda} a function of only V is equivalent to a specific heat with a single temperature scale. If the EOS domain does not include the zero isotherm, then a specific heat with a single temperature scale leads to a generalization of the Mie-Gruneisen EOS in which the pressure is linear in both the specific energy and the temperature. Such an EOS has previously been used to model liquid nitromethane.« less

  20. COSMOS: STOCHASTIC BIAS FROM MEASUREMENTS OF WEAK LENSING AND GALAXY CLUSTERING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jullo, Eric; Rhodes, Jason; Kiessling, Alina

    2012-05-01

    In the theory of structure formation, galaxies are biased tracers of the underlying matter density field. The statistical relation between galaxy and matter density field is commonly referred to as galaxy bias. In this paper, we test the linear bias model with weak-lensing and galaxy clustering measurements in the 2 deg{sup 2} COSMOS field. We estimate the bias of galaxies between redshifts z = 0.2 and z = 1 and over correlation scales between R = 0.2 h{sup -1} Mpc and R = 15 h{sup -1} Mpc. We focus on three galaxy samples, selected in flux (simultaneous cuts I{sub 814W}more » < 26.5 and K{sub s} < 24) and in stellar mass (10{sup 9} < M{sub *} < 10{sup 10} h{sup -2} M{sub Sun} and 10{sup 10} < M{sub *} < 10{sup 11} h{sup -2} M{sub Sun }). At scales R > 2 h{sup -1} Mpc, our measurements support a model of bias increasing with redshift. The Tinker et al. fitting function provides a good fit to the data. We find the best-fit mass of the galaxy halos to be log (M{sub 200}/h{sup -1} M{sub Sun }) = 11.7{sup +0.6}{sub -1.3} and log (M{sub 200}/h{sup -1} M{sub Sun }) = 12.4{sup +0.2}{sub -2.9}, respectively, for the low and high stellar-mass samples. In the halo model framework, bias is scale dependent with a change of slope at the transition scale between the one and the two halo terms. We detect a scale dependence of bias with a turndown at scale R = 2.3 {+-} 1.5 h{sup -1} Mpc, in agreement with previous galaxy clustering studies. We find no significant amount of stochasticity, suggesting that a linear bias model is sufficient to describe our data. We use N-body simulations to quantify both the amount of cosmic variance and systematic errors in the measurement.« less

  1. Accelerating large scale Kohn-Sham density functional theory calculations with semi-local functionals and hybrid functionals

    NASA Astrophysics Data System (ADS)

    Lin, Lin

    The computational cost of standard Kohn-Sham density functional theory (KSDFT) calculations scale cubically with respect to the system size, which limits its use in large scale applications. In recent years, we have developed an alternative procedure called the pole expansion and selected inversion (PEXSI) method. The PEXSI method solves KSDFT without solving any eigenvalue and eigenvector, and directly evaluates physical quantities including electron density, energy, atomic force, density of states, and local density of states. The overall algorithm scales as at most quadratically for all materials including insulators, semiconductors and the difficult metallic systems. The PEXSI method can be efficiently parallelized over 10,000 - 100,000 processors on high performance machines. The PEXSI method has been integrated into a number of community electronic structure software packages such as ATK, BigDFT, CP2K, DGDFT, FHI-aims and SIESTA, and has been used in a number of applications with 2D materials beyond 10,000 atoms. The PEXSI method works for LDA, GGA and meta-GGA functionals. The mathematical structure for hybrid functional KSDFT calculations is significantly different. I will also discuss recent progress on using adaptive compressed exchange method for accelerating hybrid functional calculations. DOE SciDAC Program, DOE CAMERA Program, LBNL LDRD, Sloan Fellowship.

  2. An investigation of ionospheric upper transition height variations at low and equatorial latitudes deduced from combined COSMIC and C/NOFS measurements

    NASA Astrophysics Data System (ADS)

    Yang, Changjun; Zhao, Biqiang; Zhu, Jie; Yue, Xinan; Wan, Weixing

    2017-10-01

    In this study we propose the combination of topside in-situ ion density data from the Communication/Navigation Outage Forecast System (C/NOFS) along with the electron density profile measurement from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellites Radio Occultation (RO) for studying the spatial and temporal variations of the ionospheric upper transition height (hT) and the oxygen ion (O+) density scale height. The latitudinal, local time and seasonal distributions of upper transition height show more consistency between hT re-calculated by the profile of the O+ using an α-Chapman function with linearly variable scale height and that determined from direct in-situ ion composition measurements, than with constant scale height and only the COSMIC data. The discrepancy in the values of hT between the C/NOFS measurement and that derived by the combination of COSMIC and C/NOFS satellites observations with variable scale height turns larger as the solar activity decreases, which suggests that the photochemistry and the electrodynamics of the equatorial ionosphere during the extreme solar minimum period produce abnormal structures in the vertical plasma distribution. The diurnal variation of scale heights (Hm) exhibits a minimum after sunrise and a maximum around noon near the geomagnetic equator. Further, the values of Hm exhibit a maximum in the summer hemisphere during daytime, whereas in the winter hemisphere the maximum is during night. Those features of Hm consistently indicate the prominent role of the vertical electromagnetic (E × B) drift in the equatorial ionosphere.

  3. An investigation of ionospheric upper transition height variations at low and equatorial latitudes deduced from combined COSMIC and C/NOFS measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Biqiang

    2017-04-01

    In this study we propose the combination of topside in-situ ion density data from the Communication/Navigation Outage Forecast System (C/NOFS) along with the electron density profile measurement from Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) satellites Radio Occultation (RO) for studying the spatial and temporal variations of the ionospheric upper transition height (hT) and the oxygen ion (O+) density scale height. The latitudinal, local time and seasonal distributions of upper transition height show more consistency between hT re-calculated by the profile of the O+ using an a-Chapman function with linearly variable scale height and that determined from direct in-situ ion composition measurements, than with constant scale height and only the COSMIC data. The discrepancy in the values of hT between the C/NOFS measurement and that derived by the combination of COSMIC and C/NOFS satellites observations with variable scale height turns larger as the solar activity decreases, which suggests that the photochemistry and the electrodynamics of the equatorial ionosphere during the extreme solar minimum period produce abnormal structures in the vertical plasma distribution. The diurnal variation of scale heights (Hm) exhibits a minimum after sunrise and a maximum around noon near the geomagnetic equator. Further, the values of Hm exhibit a maximum in the summer hemisphere during daytime, whereas in the winter hemisphere the maximum is during night. Those features of Hm consistently indicate the prominent role of the vertical electromagnetic (E×B) drift in the equatorial ionosphere.

  4. Analytic reconstruction of magnetic resonance imaging signal obtained from a periodic encoding field.

    PubMed

    Rybicki, F J; Hrovat, M I; Patz, S

    2000-09-01

    We have proposed a two-dimensional PERiodic-Linear (PERL) magnetic encoding field geometry B(x,y) = g(y)y cos(q(x)x) and a magnetic resonance imaging pulse sequence which incorporates two fields to image a two-dimensional spin density: a standard linear gradient in the x dimension, and the PERL field. Because of its periodicity, the PERL field produces a signal where the phase of the two dimensions is functionally different. The x dimension is encoded linearly, but the y dimension appears as the argument of a sinusoidal phase term. Thus, the time-domain signal and image spin density are not related by a two-dimensional Fourier transform. They are related by a one-dimensional Fourier transform in the x dimension and a new Bessel function integral transform (the PERL transform) in the y dimension. The inverse of the PERL transform provides a reconstruction algorithm for the y dimension of the spin density from the signal space. To date, the inverse transform has been computed numerically by a Bessel function expansion over its basis functions. This numerical solution used a finite sum to approximate an infinite summation and thus introduced a truncation error. This work analytically determines the basis functions for the PERL transform and incorporates them into the reconstruction algorithm. The improved algorithm is demonstrated by (1) direct comparison between the numerically and analytically computed basis functions, and (2) reconstruction of a known spin density. The new solution for the basis functions also lends proof of the system function for the PERL transform under specific conditions.

  5. Air density dependence of the response of the PTW SourceCheck 4pi ionization chamber for 125I brachytherapy seeds.

    PubMed

    Torres Del Río, J; Tornero-López, A M; Guirado, D; Pérez-Calatayud, J; Lallena, A M

    2017-06-01

    To analyze the air density dependence of the response of the new SourceCheck 4pi ionization chamber, manufactured by PTW. The air density dependence of three different SourceCheck 4pi chambers was studied by measuring 125 I sources. Measurements were taken by varying the pressure from 746.6 to 986.6hPa in a pressure chamber. Three different HDR 1000 Plus ionization chambers were also analyzed under similar conditions. A linear and a potential-like function of the air density were fitted to experimental data and their achievement in describing them was analyzed. SourceCheck 4pi chamber response showed a residual dependence on the air density once the standard pressure and temperature factor was applied. The chamber response was overestimated when the air density was below that under normal atmospheric conditions. A similar dependence was found for the HDR 1000 Plus chambers analyzed. A linear function of the air density permitted a very good description of this residual dependence, better than with a potential function. No significant variability between the different specimens of the same chamber model studied was found. The effect of overestimation observed in the chamber responses once they are corrected for the standard pressure and temperature may represent a non-negligible ∼4% overestimation in high altitude cities as ours (700m AMSL). This overestimation behaves linearly with the air density in all cases analyzed. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  6. Electrodynamics in the Friedmann Robertson Walker universe: Maxwell and Dirac fields in Newman Penrose formalism

    NASA Astrophysics Data System (ADS)

    Khanal, U.

    2006-07-01

    Maxwell and Dirac fields in Friedmann Robertson Walker (FRW) spacetime are investigated using the Newman Penrose method. The variables are all separable, with the angular dependence given by spin-weighted spherical harmonics. All the radial parts reduce to the barrier penetration problem, with mostly repulsive potentials representing the centrifugal energies. Both the helicity states of the photon field see the same potential, but that of the Dirac field see different ones; one component even sees attractive potential in the open universe. The massless fields have the usual exponential time dependences; that of the massive Dirac field is coupled to the evolution of the cosmic scale factor a. The case of the radiation-filled flat universe is solved in terms of the Whittaker function. A formal series solution, valid in any FRW universe, is also presented. The energy density of the Maxwell field is explicitly shown to scale as a-4. The co-moving particle number density of the massless Dirac field is found to be conserved, but that of the massive one is not. Particles flow out of certain regions, and into others, creating regions that are depleted of certain linear and angular momenta states, and others with excess. Such a current of charged particles would constitute an electric current that could generate a cosmic magnetic field. In contrast, the energy density of these massive particles still scales as a-4.

  7. Stochastic sediment property inversion in Shallow Water 06.

    PubMed

    Michalopoulou, Zoi-Heleni

    2017-11-01

    Received time-series at a short distance from the source allow the identification of distinct paths; four of these are direct, surface and bottom reflections, and sediment reflection. In this work, a Gibbs sampling method is used for the estimation of the arrival times of these paths and the corresponding probability density functions. The arrival times for the first three paths are then employed along with linearization for the estimation of source range and depth, water column depth, and sound speed in the water. Propagating densities of arrival times through the linearized inverse problem, densities are also obtained for the above parameters, providing maximum a posteriori estimates. These estimates are employed to calculate densities and point estimates of sediment sound speed and thickness using a non-linear, grid-based model. Density computation is an important aspect of this work, because those densities express the uncertainty in the inversion for sediment properties.

  8. Divide-and-conquer density functional theory on hierarchical real-space grids: Parallel implementation and applications

    NASA Astrophysics Data System (ADS)

    Shimojo, Fuyuki; Kalia, Rajiv K.; Nakano, Aiichiro; Vashishta, Priya

    2008-02-01

    A linear-scaling algorithm based on a divide-and-conquer (DC) scheme has been designed to perform large-scale molecular-dynamics (MD) simulations, in which interatomic forces are computed quantum mechanically in the framework of the density functional theory (DFT). Electronic wave functions are represented on a real-space grid, which is augmented with a coarse multigrid to accelerate the convergence of iterative solutions and with adaptive fine grids around atoms to accurately calculate ionic pseudopotentials. Spatial decomposition is employed to implement the hierarchical-grid DC-DFT algorithm on massively parallel computers. The largest benchmark tests include 11.8×106 -atom ( 1.04×1012 electronic degrees of freedom) calculation on 131 072 IBM BlueGene/L processors. The DC-DFT algorithm has well-defined parameters to control the data locality, with which the solutions converge rapidly. Also, the total energy is well conserved during the MD simulation. We perform first-principles MD simulations based on the DC-DFT algorithm, in which large system sizes bring in excellent agreement with x-ray scattering measurements for the pair-distribution function of liquid Rb and allow the description of low-frequency vibrational modes of graphene. The band gap of a CdSe nanorod calculated by the DC-DFT algorithm agrees well with the available conventional DFT results. With the DC-DFT algorithm, the band gap is calculated for larger system sizes until the result reaches the asymptotic value.

  9. Magnetotransport in a Model of a Disordered Strange Metal

    NASA Astrophysics Data System (ADS)

    Patel, Aavishkar A.; McGreevy, John; Arovas, Daniel P.; Sachdev, Subir

    2018-04-01

    Despite much theoretical effort, there is no complete theory of the "strange" metal state of the high temperature superconductors, and its linear-in-temperature T resistivity. Recent experiments showing an unexpected linear-in-field B magnetoresistivity have deepened the puzzle. We propose a simple model of itinerant electrons, interacting via random couplings, with electrons localized on a lattice of "quantum dots" or "islands." This model is solvable in a particular large-N limit and can reproduce observed behavior. The key feature of our model is that the electrons in each quantum dot are described by a Sachdev-Ye-Kitaev model describing electrons without quasiparticle excitations. For a particular choice of the interaction between the itinerant and localized electrons, this model realizes a controlled description of a diffusive marginal-Fermi liquid (MFL) without momentum conservation, which has a linear-in-T resistivity and a T ln T specific heat as T →0 . By tuning the strength of this interaction relative to the bandwidth of the itinerant electrons, we can additionally obtain a finite-T crossover to a fully incoherent regime that also has a linear-in-T resistivity. We describe the magnetotransport properties of this model and show that the MFL regime has conductivities that scale as a function of B /T ; however, the magnetoresistance saturates at large B . We then consider a macroscopically disordered sample with domains of such MFLs with varying densities of electrons and islands. Using an effective-medium approximation, we obtain a macroscopic electrical resistance that scales linearly in the magnetic field B applied perpendicular to the plane of the sample, at large B . The resistance also scales linearly in T at small B , and as T f (B /T ) at intermediate B . We consider implications for recent experiments reporting linear transverse magnetoresistance in the strange metal phases of the pnictides and cuprates.

  10. Functional differentiability in time-dependent quantum mechanics.

    PubMed

    Penz, Markus; Ruggenthaler, Michael

    2015-03-28

    In this work, we investigate the functional differentiability of the time-dependent many-body wave function and of derived quantities with respect to time-dependent potentials. For properly chosen Banach spaces of potentials and wave functions, Fréchet differentiability is proven. From this follows an estimate for the difference of two solutions to the time-dependent Schrödinger equation that evolve under the influence of different potentials. Such results can be applied directly to the one-particle density and to bounded operators, and present a rigorous formulation of non-equilibrium linear-response theory where the usual Lehmann representation of the linear-response kernel is not valid. Further, the Fréchet differentiability of the wave function provides a new route towards proving basic properties of time-dependent density-functional theory.

  11. Effective spatial scales for evaluating environmental determinants of population density in Yakushima macaques.

    PubMed

    Agetsuma, Naoki; Koda, Ryosuke; Tsujino, Riyou; Agetsuma-Yanagihara, Yoshimi

    2015-02-01

    Population densities of wildlife species tend to be correlated with resource productivity of habitats. However, wildlife density has been greatly modified by increasing human influences. For effective conservation, we must first identify the significant factors that affect wildlife density, and then determine the extent of the areas in which the factors should be managed. Here, we propose a protocol that accomplishes these two tasks. The main threats to wildlife are thought to be habitat alteration and hunting, with increases in alien carnivores being a concern that has arisen recently. Here, we examined the effect of these anthropogenic disturbances, as well as natural factors, on the local density of Yakushima macaques (Macaca fuscata yakui). We surveyed macaque densities at 30 sites across their habitat using data from 403 automatic cameras. We quantified the effect of natural vegetation (broad-leaved forest, mixed coniferous/broad-leaved forest, etc.), altered vegetation (forestry area and agricultural land), hunting pressure, and density of feral domestic dogs (Canis familiaris). The effect of each vegetation type was analyzed at numerous spatial scales (between 150 and 3,600-m radii from the camera locations) to determine the best scale for explaining macaque density (effective spatial scale). A model-selection procedure (generalized linear mixed model) was used to detect significant factors affecting macaque density. We detected that the most effective spatial scale was 400 m in radius, a scale that corresponded to group range size of the macaques. At this scale, the amount of broad-leaved forest was selected as a positive factor, whereas mixed forest and forestry area were selected as negative factors for macaque density. This study demonstrated the importance of the simultaneous evaluation of all possible factors of wildlife population density at the appropriate spatial scale. © 2014 Wiley Periodicals, Inc.

  12. A well-scaling natural orbital theory

    DOE PAGES

    Gebauer, Ralph; Cohen, Morrel H.; Car, Roberto

    2016-11-01

    Here, we introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree–Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals ofmore » the oneparticle density matrix.« less

  13. A well-scaling natural orbital theory

    PubMed Central

    Gebauer, Ralph; Cohen, Morrel H.; Car, Roberto

    2016-01-01

    We introduce an energy functional for ground-state electronic structure calculations. Its variables are the natural spin-orbitals of singlet many-body wave functions and their joint occupation probabilities deriving from controlled approximations to the two-particle density matrix that yield algebraic scaling in general, and Hartree–Fock scaling in its seniority-zero version. Results from the latter version for small molecular systems are compared with those of highly accurate quantum-chemical computations. The energies lie above full configuration interaction calculations, close to doubly occupied configuration interaction calculations. Their accuracy is considerably greater than that obtained from current density-functional theory approximations and from current functionals of the one-particle density matrix. PMID:27803328

  14. The multifacet graphically contracted function method. I. Formulation and implementation

    NASA Astrophysics Data System (ADS)

    Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R.

    2014-08-01

    The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N2n4) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.

  15. The multifacet graphically contracted function method. I. Formulation and implementation.

    PubMed

    Shepard, Ron; Gidofalvi, Gergely; Brozell, Scott R

    2014-08-14

    The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that both the energy and the gradient computation scale as O(N(2)n(4)) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N2 dissociation, cubic H8 dissociation, the symmetric dissociation of H2O, and the insertion of Be into H2. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.

  16. Status of the Topside Vary-Chap Ionospheric Model

    NASA Astrophysics Data System (ADS)

    Reinisch, Bodo; Nsumei, Patrick; Huang, Xueqin; Bilitza, Dieter

    Status of the Topside Vary-Chap Ionospheric Model The general alpha-Chapman function for a multi-constituent gas which includes a continuously varying scale height and was therefore dubbed the Vary-Chap function, can present the topside electron density profiles in analytical form. The Vary-Chap profile is defined by the scale height function H(h) and the height and density of the F2 layer peak. By expressing 80,000 ISIS-2 measured topside density profiles as Vary-Chap functions we derived 80,000 scale height functions, which form the basis for the topside density profile modeling. The normalized scale height profiles Hn = H(h)/Hm were grouped according to season, MLAT, and MLT for each 50 km height bin from 200 km to 1400 km, and the median, lower, and upper quartiles for each bin were calculated. Hm is the scale height at the F2 layer peak. The resulting Hn functions are modeled in terms of hyperbolic tangent functions using 5 parameters that are determined by multivariate least squares, including the transition height hT where the scale height gradient has a maximum. These normalized scale height functions, representing the model of the topside electron density profiles from hmF2 to 1,400 km altitude, are independent of hmF2 and NmF2 and can therefore be directly used for the topside Ne profile in IRI. Similarly, this model can extend measured bottomside profiles to the topside, replacing the simple alpha-Chapman function with constant scale height that is currently used for construction of the topside profile in the Digisondes / ARTIST of the Global Ionospheric Radio Observatory (GIRO). It turns out that Hm(top) calculated from the topside profiles is generally several times larger than Hm(bot) derived from the bottomside profiles. This follows necessarily from the difference in the definition of the scale height functions for the topside and bottomside profiles. The diurnal variations of the ratio Hm(top) / Hm(bot) has been determined for different latitudes which makes it now possible to specify the topside profile for any given bottomside profile.

  17. Modelling Stream-Fish Functional Traits in Reference Conditions: Regional and Local Environmental Correlates

    PubMed Central

    Oliveira, João M.; Segurado, Pedro; Santos, José M.; Teixeira, Amílcar; Ferreira, Maria T.; Cortes, Rui V.

    2012-01-01

    Identifying the environmental gradients that control the functional structure of biological assemblages in reference conditions is fundamental to help river management and predict the consequences of anthropogenic stressors. Fish metrics (density of ecological guilds, and species richness) from 117 least disturbed stream reaches in several western Iberia river basins were modelled with generalized linear models in order to investigate the importance of regional- and local-scale abiotic gradients to variation in functional structure of fish assemblages. Functional patterns were primarily associated with regional features, such as catchment elevation and slope, rainfall, and drainage area. Spatial variations of fish guilds were thus associated with broad geographic gradients, showing (1) pronounced latitudinal patterns, affected mainly by climatic factors and topography, or (2) at the basin level, strong upstream-downstream patterns related to stream position in the longitudinal gradient. Maximum native species richness was observed in midsize streams in accordance with the river continuum concept. The findings of our study emphasized the need to use a multi-scale approach in order to fully assess the factors that govern the functional organization of biotic assemblages in ‘natural’ streams, as well as to improve biomonitoring and restoration of fluvial ecosystems. PMID:23029242

  18. Fiber networks amplify active stress

    NASA Astrophysics Data System (ADS)

    Lenz, Martin; Ronceray, Pierre; Broedersz, Chase

    Large-scale force generation is essential for biological functions such as cell motility, embryonic development, and muscle contraction. In these processes, forces generated at the molecular level by motor proteins are transmitted by disordered fiber networks, resulting in large-scale active stresses. While fiber networks are well characterized macroscopically, this stress generation by microscopic active units is not well understood. I will present a comprehensive theoretical study of force transmission in these networks. I will show that the linear, small-force response of the networks is remarkably simple, as the macroscopic active stress depends only on the geometry of the force-exerting unit. In contrast, as non-linear buckling occurs around these units, local active forces are rectified towards isotropic contraction and strongly amplified. This stress amplification is reinforced by the networks' disordered nature, but saturates for high densities of active units. I will show that our predictions are quantitatively consistent with experiments on reconstituted tissues and actomyosin networks, and that they shed light on the role of the network microstructure in shaping active stresses in cells and tissue.

  19. HOLLOTRON switch for megawatt lightweight space inverters

    NASA Technical Reports Server (NTRS)

    Poeschel, R. L.; Goebel, D. M.; Schumacher, R. W.

    1991-01-01

    The feasibility of satisfying the switching requirements for a megawatt ultralight inverter system using HOLLOTRON switch technology was determined. The existing experimental switch hardware was modified to investigate a coaxial HOLLOTRON switch configuration and the results were compared with those obtained for a modified linear HOLLOTRON configuration. It was concluded that scaling the HOLLOTRON switch to the current and voltage specifications required for a megawatt converter system is indeed feasible using a modified linear configuration. The experimental HOLLOTRON switch operated at parameters comparable to the scaled coaxial HOLLOTRON. However, the linear HOLLOTRON data verified the capability for meeting all the design objectives simultaneously including current density (greater than 2 A/sq cm), voltage (5 kV), switching frequency (20 kHz), switching time (300 ns), and forward voltage drop (less than or equal to 20 V). Scaling relations were determined and a preliminary design was completed for an engineering model linear HOLLOTRON switch to meet the megawatt converter system specifications.

  20. Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table.

    PubMed

    Aquilante, Francesco; Autschbach, Jochen; Carlson, Rebecca K; Chibotaru, Liviu F; Delcey, Mickaël G; De Vico, Luca; Fdez Galván, Ignacio; Ferré, Nicolas; Frutos, Luis Manuel; Gagliardi, Laura; Garavelli, Marco; Giussani, Angelo; Hoyer, Chad E; Li Manni, Giovanni; Lischka, Hans; Ma, Dongxia; Malmqvist, Per Åke; Müller, Thomas; Nenov, Artur; Olivucci, Massimo; Pedersen, Thomas Bondo; Peng, Daoling; Plasser, Felix; Pritchard, Ben; Reiher, Markus; Rivalta, Ivan; Schapiro, Igor; Segarra-Martí, Javier; Stenrup, Michael; Truhlar, Donald G; Ungur, Liviu; Valentini, Alessio; Vancoillie, Steven; Veryazov, Valera; Vysotskiy, Victor P; Weingart, Oliver; Zapata, Felipe; Lindh, Roland

    2016-02-15

    In this report, we summarize and describe the recent unique updates and additions to the Molcas quantum chemistry program suite as contained in release version 8. These updates include natural and spin orbitals for studies of magnetic properties, local and linear scaling methods for the Douglas-Kroll-Hess transformation, the generalized active space concept in MCSCF methods, a combination of multiconfigurational wave functions with density functional theory in the MC-PDFT method, additional methods for computation of magnetic properties, methods for diabatization, analytical gradients of state average complete active space SCF in association with density fitting, methods for constrained fragment optimization, large-scale parallel multireference configuration interaction including analytic gradients via the interface to the Columbus package, and approximations of the CASPT2 method to be used for computations of large systems. In addition, the report includes the description of a computational machinery for nonlinear optical spectroscopy through an interface to the QM/MM package Cobramm. Further, a module to run molecular dynamics simulations is added, two surface hopping algorithms are included to enable nonadiabatic calculations, and the DQ method for diabatization is added. Finally, we report on the subject of improvements with respects to alternative file options and parallelization. © 2015 Wiley Periodicals, Inc.

  1. Weak gravitational lensing effects on the determination of Omega_mega_m and Omega_mega Lambda from SNeIa

    NASA Astrophysics Data System (ADS)

    Valageas, P.

    2000-02-01

    In this article we present an analytical calculation of the probability distribution of the magnification of distant sources due to weak gravitational lensing from non-linear scales. We use a realistic description of the non-linear density field, which has already been compared with numerical simulations of structure formation within hierarchical scenarios. Then, we can directly express the probability distribution P(mu ) of the magnification in terms of the probability distribution of the density contrast realized on non-linear scales (typical of galaxies) where the local slope of the initial linear power-spectrum is n=-2. We recover the behaviour seen by numerical simulations: P(mu ) peaks at a value slightly smaller than the mean < mu >=1 and it shows an extended large mu tail (as described in another article our predictions also show a good quantitative agreement with results from N-body simulations for a finite smoothing angle). Then, we study the effects of weak lensing on the derivation of the cosmological parameters from SNeIa. We show that the inaccuracy introduced by weak lensing is not negligible: {cal D}lta Omega_mega_m >~ 0.3 for two observations at z_s=0.5 and z_s=1. However, observations can unambiguously discriminate between Omega_mega_m =0.3 and Omega_mega_m =1. Moreover, in the case of a low-density universe one can clearly distinguish an open model from a flat cosmology (besides, the error decreases as the number of observ ed SNeIa increases). Since distant sources are more likely to be ``demagnified'' the most probable value of the observed density parameter Omega_mega_m is slightly smaller than its actual value. On the other hand, one may obtain some valuable information on the properties of the underlying non-linear density field from the measure of weak lensing distortions.

  2. Work-function calculations for a symmetrical total-charge-density profile at the metallic surface

    NASA Astrophysics Data System (ADS)

    Wojciechowski, K. F.; Sobańska-Nowotnik, M.

    1983-07-01

    It is shown that, if the total-charge-density profile nT(x) at the surface of jellium satisfies the Budd-Vannimenus constraint and also is a symmetrical function of x, relative to the ordinate axis, then the work-function variation versus the Wigner-Seitz radius rs does not depend on the form of nT(x). Also the simple linear-density profile is used to calculate the work function by application of the variational principle for the energy, including the first and second density-gradient corrections to the kinetic energy and the first gradient correction to the exchange and correlation energy. The results for the work function are in good agreement with the polycrystalline values for low-density metals.

  3. Relations among several nuclear and electronic density functional reactivity indexes

    NASA Astrophysics Data System (ADS)

    Torrent-Sucarrat, Miquel; Luis, Josep M.; Duran, Miquel; Toro-Labbé, Alejandro; Solà, Miquel

    2003-11-01

    An expansion of the energy functional in terms of the total number of electrons and the normal coordinates within the canonical ensemble is presented. A comparison of this expansion with the expansion of the energy in terms of the total number of electrons and the external potential leads to new relations among common density functional reactivity descriptors. The formulas obtained provide explicit links between important quantities related to the chemical reactivity of a system. In particular, the relation between the nuclear and the electronic Fukui functions is recovered. The connection between the derivatives of the electronic energy and the nuclear repulsion energy with respect to the external potential offers a proof for the "Quantum Chemical le Chatelier Principle." Finally, the nuclear linear response function is defined and the relation of this function with the electronic linear response function is given.

  4. Density-Decomposed Orbital-Free Density Functional Theory for Covalent Systems and Application to Li-Si alloys

    NASA Astrophysics Data System (ADS)

    Xia, Junchao; Carter, Emily

    2014-03-01

    We propose a density decomposition scheme using a Wang-Govind-Carter (WGC)-based kinetic energy density functional (KEDF) to accurately and efficiently simulate covalent systems within orbital-free (OF) density functional theory (DFT). By using a local, density-dependent scale function, the total density is decomposed into a localized density within covalent bond regions and a flattened delocalized density, with the former described by semilocal KEDFs and the latter treated by the WGC KEDF. The new model predicts reasonable equilibrium volumes, bulk moduli, and phase ordering energies for various semiconductors compared to Kohn-Sham (KS) DFT benchmarks. The surface energy of Si(100) also agrees well with KSDFT. We further apply the model to study mechanical properties of Li-Si alloys, which have been recently recognized as a promising candidate for next-generation anodes of Li-ion batteries with outstanding capacity. We study multiple crystalline Li-Si alloys. The WGCD KEDF predicts accurate cell lattice vectors, equilibrium volumes, elastic moduli, electron densities, alloy formation and Li adsorption energies. Because of its quasilinear scaling, coupled with the level of accuracy shown here, OFDFT appears quite promising for large-scale simulation of such materials phenomena. Office of Naval Research, National Science Foundation, Tigress High Performance Computing Center.

  5. Voids in Gravitational Instability Scenarios - Part One - Global Density and Velocity Fields in an Einstein - De-Sitter Universe

    NASA Astrophysics Data System (ADS)

    van de Weygaert, R.; van Kampen, E.

    1993-07-01

    The first results of an extensive study of the structure and dynamics of underdense regions in gravitational instability scenarios are presented. Instead of adopting spherically symmetric voids with some idealized initial density and velocity profile, underdense regions of a given size and depth, embedded in an initial density fluctuation field, are generated. In order to accomplish this in a consistent way, these initial conditions are set up by means of Bertschinger's constrained random field code. The generated particle samples of 64^3^ particles in a box of side 100 Mpc are followed into the non-linear regime by Bertschinger's PM N- body code. In this way we address the dependence of the structure and kinematics of the void both on the initial depth of the void and on the fluctuation field in which it is embedded. In particular, this study provides some understanding of how far fluctuations on small scales modify the dynamics of the large-scale void, and especially of how far the properties of small structures inside the void are affected by the global properties of the void. One of the conspicuous features of the initial density fields inside protovoids appears to be the existence of a `void hierarchy', with small voids embedded in larger voids. The survival of this hierarchy during the riot evolution of the void depends critically on the initial depth as well as on the clustering scenario involved. As well as presenting a qualitative discussion of the structure of underdense regions in initial density fields in different scenarios, and the results of simulations of the ensuing non-linear evolution, we concentrate in particular on a comparison of the global density and velocity fields in voids with predictions from linear theory as well as from the spherical outflow model. The relation between the initial linear depth, the resulting non-linear depth and the excess expansion velocities in voids is addressed. In addition, we find that, while near its centre a void becomes more and more spherical, the shape of its boundary is influenced to a large extent by the structures surrounding the void and therefore is generally more irregular. In this first study we concentrate on single voids in Einstein-de Sitter universes. The underdense regions considered are linear 1 σ_0_, 2 σ_0_ and 3 σ_0_ dips in fields that are Gaussian-smoothed on a scale of R_G_ = 10 h^-1^ Mpc, approximately half the size of the Bootes void. These regions are studied in terms of the Cold Dark Matter and Hot Dark Matter scenarios as well as in terms of the scale-free scenarios P(k) is proportional to k^0^, k^-1^ and k^-2^. The Hubble constant is taken to be H_0_ = 100 h km s^-1^ Mpc^-1^.

  6. Density-dependent clustering: I. Pulling back the curtains on motions of the BAO peak

    NASA Astrophysics Data System (ADS)

    Neyrinck, Mark C.; Szapudi, István; McCullagh, Nuala; Szalay, Alexander S.; Falck, Bridget; Wang, Jie

    2018-05-01

    The most common statistic used to analyze large-scale structure surveys is the correlation function, or power spectrum. Here, we show how `slicing' the correlation function on local density brings sensitivity to interesting non-Gaussian features in the large-scale structure, such as the expansion or contraction of baryon acoustic oscillations (BAO) according to the local density. The sliced correlation function measures the large-scale flows that smear out the BAO, instead of just correcting them as reconstruction algorithms do. Thus, we expect the sliced correlation function to be useful in constraining the growth factor, and modified gravity theories that involve the local density. Out of the studied cases, we find that the run of the BAO peak location with density is best revealed when slicing on a ˜40 h-1 Mpc filtered density. But slicing on a ˜100 h-1 Mpc filtered density may be most useful in distinguishing between underdense and overdense regions, whose BAO peaks are separated by a substantial ˜5 h-1 Mpc at z = 0. We also introduce `curtain plots' showing how local densities drive particle motions toward or away from each other over the course of an N-body simulation.

  7. Examining boreal peatland vulnerability to wildfire: a cross-scale perspective (Invited)

    NASA Astrophysics Data System (ADS)

    Thompson, D. K.; Waddington, J. M.; Parisien, M.; Simpson, B. N.; Morris, P. J.; Kettridge, N.

    2013-12-01

    The contemporary state of peatlands in boreal western Canada is largely a reflection of the equilibrium between peat accumulation and a natural wildfire disturbance regime. However, additional disturbances of climate change and direct anthropogenic impacts are compounding natural wildfire disturbance, leading to the potential of more severe fire and in cases complete ecosystem shifts away from peatlands altogether. Here we present a cross-scale perspective on the vulnerability of peatlands to wildfire in the context of cumulative anthropogenic impacts. At the plot scale, laboratory burning and modelling has identified the exposure of high density humified peat at the surface as being more vulnerable to deep combustion compared to low-density features such as hummock microforms. At the stand scale, studies of tree impacts on moss light availability has identified critically high tree densities where combustion-resistant Sphagnum mosses are out-competed by drier and more flammable feathermosses. Widespread resource development has created seismic lines, cutlines, and associated linear disturbances at densities approaching 1.5 km km-2 in some areas. Our modelling of wind and solar radiation across varying linear disturbance widths and canopy heights reveals increased risk of wildfire ignition and spread at specific width-height ratios. Regionally, we show that streamflow observations can offer insight into drought and seasonal wildfire risk in peatland-dominated portions of the boreal plain. Integrated wildfire management in the boreal forest can benefit from the inclusion of these cross-scale processes and feedbacks we have identified when balancing the often competing interests of ecosystem integrity, economics, and community protection.

  8. A unified stochastic formulation of dissipative quantum dynamics. II. Beyond linear response of spin baths

    NASA Astrophysics Data System (ADS)

    Hsieh, Chang-Yu; Cao, Jianshu

    2018-01-01

    We use the "generalized hierarchical equation of motion" proposed in Paper I [C.-Y. Hsieh and J. Cao, J. Chem. Phys. 148, 014103 (2018)] to study decoherence in a system coupled to a spin bath. The present methodology allows a systematic incorporation of higher-order anharmonic effects of the bath in dynamical calculations. We investigate the leading order corrections to the linear response approximations for spin bath models. Two kinds of spin-based environments are considered: (1) a bath of spins discretized from a continuous spectral density and (2) a bath of localized nuclear or electron spins. The main difference resides with how the bath frequency and the system-bath coupling parameters are distributed in an environment. When discretized from a continuous spectral density, the system-bath coupling typically scales as ˜1 /√{NB } where NB is the number of bath spins. This scaling suppresses the non-Gaussian characteristics of the spin bath and justifies the linear response approximations in the thermodynamic limit. For the nuclear/electron spin bath models, system-bath couplings are directly deduced from spin-spin interactions and do not necessarily obey the 1 /√{NB } scaling. It is not always possible to justify the linear response approximations in this case. Furthermore, if the spin-spin Hamiltonian is highly symmetrical, there exist additional constraints that generate highly non-Markovian and persistent dynamics that is beyond the linear response treatments.

  9. Guaiacol hydrodeoxygenation mechanism on Pt(111): Insights from density functional theory and linear free energy relations

    USDA-ARS?s Scientific Manuscript database

    In this study density functional theory (DFT) was used to study the adsorption of guaiacol and its initial hydrodeoxygenation (HDO) reactions on Pt(111). Previously reported Brønsted–Evans–Polanyi (BEP) correlations for small open chain molecules are found to be inadequate in estimating the reaction...

  10. The Inverted Student Density and Test Scores.

    ERIC Educational Resources Information Center

    Boldt, Robert F.

    The inverted density is one whose contour lines are spheroidal as in the normal distribution, but whose moments differ from those of the normal in that its conditional arrays are not homoscedastic, being quadratic functions of the values of the linear regression functions. It is also platykurtic, its measure of kurtosis ranging from that of the…

  11. Habitat Composition and Connectivity Predicts Bat Presence and Activity at Foraging Sites in a Large UK Conurbation

    PubMed Central

    Hale, James D.; Fairbrass, Alison J.; Matthews, Tom J.; Sadler, Jon P.

    2012-01-01

    Background Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. Methodology/Principal Findings We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km2 scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of ∼60% built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species. Conclusions/Significance Our results suggest that increasing urban density negatively impacts the study species. This has implications for infill development policy, built density targets and the compact city debate. Bats were also sensitive to the composition and structure of the urban form at a range of spatial scales, with implications for land-use planning and management. Protecting and establishing tree networks may improve the resilience of some bat populations to urban densification. PMID:22428015

  12. Habitat composition and connectivity predicts bat presence and activity at foraging sites in a large UK conurbation.

    PubMed

    Hale, James D; Fairbrass, Alison J; Matthews, Tom J; Sadler, Jon P

    2012-01-01

    Urbanization is characterized by high levels of sealed land-cover, and small, geometrically complex, fragmented land-use patches. The extent and density of urbanized land-use is increasing, with implications for habitat quality, connectivity and city ecology. Little is known about densification thresholds for urban ecosystem function, and the response of mammals, nocturnal and cryptic taxa are poorly studied in this respect. Bats (Chiroptera) are sensitive to changing urban form at a species, guild and community level, so are ideal model organisms for analyses of this nature. We surveyed bats around urban ponds in the West Midlands conurbation, United Kingdom (UK). Sites were stratified between five urban land classes, representing a gradient of built land-cover at the 1 km(2) scale. Models for bat presence and activity were developed using land-cover and land-use data from multiple radii around each pond. Structural connectivity of tree networks was used as an indicator of the functional connectivity between habitats. All species were sensitive to measures of urban density. Some were also sensitive to landscape composition and structural connectivity at different spatial scales. These results represent new findings for an urban area. The activity of Pipistrellus pipistrellus (Schreber 1774) exhibited a non-linear relationship with the area of built land-cover, being much reduced beyond the threshold of ∼60% built surface. The presence of tree networks appears to mitigate the negative effects of urbanization for this species. Our results suggest that increasing urban density negatively impacts the study species. This has implications for infill development policy, built density targets and the compact city debate. Bats were also sensitive to the composition and structure of the urban form at a range of spatial scales, with implications for land-use planning and management. Protecting and establishing tree networks may improve the resilience of some bat populations to urban densification.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yanai, Takeshi; Fann, George I.; Beylkin, Gregory

    Using the fully numerical method for time-dependent Hartree–Fock and density functional theory (TD-HF/DFT) with the Tamm–Dancoff (TD) approximation we use a multiresolution analysis (MRA) approach to present our findings. From a reformulation with effective use of the density matrix operator, we obtain a general form of the HF/DFT linear response equation in the first quantization formalism. It can be readily rewritten as an integral equation with the bound-state Helmholtz (BSH) kernel for the Green's function. The MRA implementation of the resultant equation permits excited state calculations without virtual orbitals. Moreover, the integral equation is efficiently and adaptively solved using amore » numerical multiresolution solver with multiwavelet bases. Our implementation of the TD-HF/DFT methods is applied for calculating the excitation energies of H 2, Be, N 2, H 2O, and C 2H 4 molecules. The numerical errors of the calculated excitation energies converge in proportion to the residuals of the equation in the molecular orbitals and response functions. The energies of the excited states at a variety of length scales ranging from short-range valence excitations to long-range Rydberg-type ones are consistently accurate. It is shown that the multiresolution calculations yield the correct exponential asymptotic tails for the response functions, whereas those computed with Gaussian basis functions are too diffuse or decay too rapidly. Finally, we introduce a simple asymptotic correction to the local spin-density approximation (LSDA) so that in the TDDFT calculations, the excited states are correctly bound.« less

  14. Electrostatic lower hybrid waves excited by electromagnetic whistler mode waves scattering from planar magnetic-field-aligned plasma density irregularities

    NASA Technical Reports Server (NTRS)

    Bell, T. F.; Ngo, H. D.

    1990-01-01

    This paper presents a theoretical model for electrostatic lower hybrid waves excited by electromagnetic whistler mode waves propagating in regions of the magnetosphere and the topside ionosphere, where small-scale magnetic-field-aligned plasma density irregularities are thought to exist. In this model, the electrostatic waves are excited by linear mode coupling as the incident electromagnetic whistler mode waves scatter from the magnetic-field-aligned plasma density irregularities. Results indicate that high-amplitude short-wavelength (5 to 100 m) quasi-electrostatic whistler mode waves can be excited when electromagnetic whistler mode waves scatter from small-scale planar magnetic-field-aligned plasma density irregularities in the topside ionosphere and magnetosphere.

  15. Nonlinear calculations of the time evolution of black hole accretion disks

    NASA Technical Reports Server (NTRS)

    Luo, C.

    1994-01-01

    Based on previous works on black hole accretion disks, I continue to explore the disk dynamics using the finite difference method to solve the highly nonlinear problem of time-dependent alpha disk equations. Here a radially zoned model is used to develop a computational scheme in order to accommodate functional dependence of the viscosity parameter alpha on the disk scale height and/or surface density. This work is based on the author's previous work on the steady disk structure and the linear analysis of disk dynamics to try to apply to x-ray emissions from black candidates (i.e., multiple-state spectra, instabilities, QPO's, etc.).

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Constantin, Lucian A.; Fabiano, Eduardo; Della Sala, Fabio

    We introduce a novel non-local ingredient for the construction of exchange density functionals: the reduced Hartree parameter, which is invariant under the uniform scaling of the density and represents the exact exchange enhancement factor for one- and two-electron systems. The reduced Hartree parameter is used together with the conventional meta-generalized gradient approximation (meta-GGA) semilocal ingredients (i.e., the electron density, its gradient, and the kinetic energy density) to construct a new generation exchange functional, termed u-meta-GGA. This u-meta-GGA functional is exact for the exchange of any one- and two-electron systems, is size-consistent and non-empirical, satisfies the uniform density scaling relation, andmore » recovers the modified gradient expansion derived from the semiclassical atom theory. For atoms, ions, jellium spheres, and molecules, it shows a good accuracy, being often better than meta-GGA exchange functionals. Our construction validates the use of the reduced Hartree ingredient in exchange-correlation functional development, opening the way to an additional rung in the Jacob’s ladder classification of non-empirical density functionals.« less

  17. Large-scale structure of randomly jammed spheres

    NASA Astrophysics Data System (ADS)

    Ikeda, Atsushi; Berthier, Ludovic; Parisi, Giorgio

    2017-05-01

    We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.

  18. A MATLAB implementation of the minimum relative entropy method for linear inverse problems

    NASA Astrophysics Data System (ADS)

    Neupauer, Roseanna M.; Borchers, Brian

    2001-08-01

    The minimum relative entropy (MRE) method can be used to solve linear inverse problems of the form Gm= d, where m is a vector of unknown model parameters and d is a vector of measured data. The MRE method treats the elements of m as random variables, and obtains a multivariate probability density function for m. The probability density function is constrained by prior information about the upper and lower bounds of m, a prior expected value of m, and the measured data. The solution of the inverse problem is the expected value of m, based on the derived probability density function. We present a MATLAB implementation of the MRE method. Several numerical issues arise in the implementation of the MRE method and are discussed here. We present the source history reconstruction problem from groundwater hydrology as an example of the MRE implementation.

  19. On the self-organizing process of large scale shear flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, Andrew P. L.; Kim, Eun-jin; Liu, Han-Li

    2013-09-15

    Self organization is invoked as a paradigm to explore the processes governing the evolution of shear flows. By examining the probability density function (PDF) of the local flow gradient (shear), we show that shear flows reach a quasi-equilibrium state as its growth of shear is balanced by shear relaxation. Specifically, the PDFs of the local shear are calculated numerically and analytically in reduced 1D and 0D models, where the PDFs are shown to converge to a bimodal distribution in the case of finite correlated temporal forcing. This bimodal PDF is then shown to be reproduced in nonlinear simulation of 2Dmore » hydrodynamic turbulence. Furthermore, the bimodal PDF is demonstrated to result from a self-organizing shear flow with linear profile. Similar bimodal structure and linear profile of the shear flow are observed in gulf stream, suggesting self-organization.« less

  20. Flexoelectricity in Carbon Nanostructures: Nanotubes, Fullerenes, and Nanocones.

    PubMed

    Kvashnin, Alexander G; Sorokin, Pavel B; Yakobson, Boris I

    2015-07-16

    We report theoretical analysis of the electronic flexoelectric effect associated with nanostructures of sp(2) carbon (curved graphene). Through the density functional theory calculations, we establish the universality of the linear dependence of flexoelectric atomic dipole moments on local curvature in various carbon networks (carbon nanotubes, fullerenes with high and low symmetry, and nanocones). The usefulness of such dependence is in the possibility to extend the analysis of any carbon systems with local deformations with respect to their electronic properties. This result is exemplified by exploring of flexoelectric effect in carbon nanocones that display large dipole moment, cumulative over their surface yet surprisingly scaling exactly linearly with the length, and with sine-law dependence on the apex angle, dflex ~ L sin(α). Our study points out the opportunity of predicting the electric dipole moment distribution on complex graphene-based nanostructures based only on the local curvature information.

  1. The Linear Bias in the Zeldovich Approximation and a Relation between the Number Density and the Linear Bias of Dark Halos

    NASA Astrophysics Data System (ADS)

    Fan, Zuhui

    2000-01-01

    The linear bias of the dark halos from a model under the Zeldovich approximation is derived and compared with the fitting formula of simulation results. While qualitatively similar to the Press-Schechter formula, this model gives a better description for the linear bias around the turnaround point. This advantage, however, may be compromised by the large uncertainty of the actual behavior of the linear bias near the turnaround point. For a broad class of structure formation models in the cold dark matter framework, a general relation exists between the number density and the linear bias of dark halos. This relation can be readily tested by numerical simulations. Thus, instead of laboriously checking these models one by one, numerical simulation studies can falsify a whole category of models. The general validity of this relation is important in identifying key physical processes responsible for the large-scale structure formation in the universe.

  2. Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabec, Jiri; Lin, Lin; Shao, Meiyue

    We present two iterative algorithms for approximating the absorption spectrum of molecules within linear response of time-dependent density functional theory (TDDFT) framework. These methods do not attempt to compute eigenvalues or eigenvectors of the linear response matrix. They are designed to approximate the absorption spectrum as a function directly. They take advantage of the special structure of the linear response matrix. Neither method requires the linear response matrix to be constructed explicitly. They only require a procedure that performs the multiplication of the linear response matrix with a vector. These methods can also be easily modified to efficiently estimate themore » density of states (DOS) of the linear response matrix without computing the eigenvalues of this matrix. We show by computational experiments that the methods proposed in this paper can be much more efficient than methods that are based on the exact diagonalization of the linear response matrix. We show that they can also be more efficient than real-time TDDFT simulations. We compare the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost.« less

  3. Linear study of the precessional fishbone instability

    NASA Astrophysics Data System (ADS)

    Idouakass, M.; Faganello, M.; Berk, H. L.; Garbet, X.; Benkadda, S.

    2016-10-01

    The precessional fishbone instability is an m = n = 1 internal kink mode destabilized by a population of trapped energetic particles. The linear phase of this instability is studied here, analytically and numerically, with a simplified model. This model uses the reduced magneto-hydrodynamics equations for the bulk plasma and the Vlasov equation for a population of energetic particles with a radially decreasing density. A threshold condition for the instability is found, as well as a linear growth rate and frequency. It is shown that the mode frequency is given by the precession frequency of the deeply trapped energetic particles at the position of strongest radial gradient. The growth rate is shown to scale with the energetic particle density and particle energy while it is decreased by continuum damping.

  4. Nonlinear Excitation of the Ablative Rayleigh-Taylor Instability for All Wave Numbers

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Betti, R.; Gopalaswamy, V.; Aluie, H.; Yan, R.

    2017-10-01

    Small-scale modes of the ablative Rayleigh-Taylor instability (ARTI) are often neglected because they are linearly stable when their wavelength is shorter than a linear cutoff. Using 2-D and 3-D numerical simulations, it is shown that linearly stable modes of any wavelength can be destabilized. This instability regime requires finite amplitude initial perturbations. Compared to 2-D, linearly stable ARTI modes are more easily destabilized in 3-D and the penetrating bubbles have a higher density because of enhanced vorticity. It is shown that for conditions found in laser fusion targets, short-wavelength ARTI modes are more efficient at driving mixing of ablated material throughout the target since the nonlinear bubble density increases with the wave number and small-scale bubbles carry a larger mass flux of mixed material. This work was supported by the Office of Fusion Energy Sciences Nos. DE-FG02-04ER54789, DE-SC0014318, the Department of Energy National Nuclear Security Administration under Award No. DE-NA0001944, the Ministerio de Ciencia e Innovacion of Spain (Grant No. ENE2011-28489), and the NANL LDRD program through Project Number 20150568ER.

  5. Systematic simulations of modified gravity: chameleon models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Davis, Anne-Christine; Li, Baojiu

    2013-04-01

    In this work we systematically study the linear and nonlinear structure formation in chameleon theories of modified gravity, using a generic parameterisation which describes a large class of models using only 4 parameters. For this we have modified the N-body simulation code ecosmog to perform a total of 65 simulations for different models and parameter values, including the default ΛCDM. These simulations enable us to explore a significant portion of the parameter space. We have studied the effects of modified gravity on the matter power spectrum and mass function, and found a rich and interesting phenomenology where the difference withmore » the ΛCDM paradigm cannot be reproduced by a linear analysis even on scales as large as k ∼ 0.05 hMpc{sup −1}, since the latter incorrectly assumes that the modification of gravity depends only on the background matter density. Our results show that the chameleon screening mechanism is significantly more efficient than other mechanisms such as the dilaton and symmetron, especially in high-density regions and at early times, and can serve as a guidance to determine the parts of the chameleon parameter space which are cosmologically interesting and thus merit further studies in the future.« less

  6. A divide-conquer-recombine algorithmic paradigm for large spatiotemporal quantum molecular dynamics simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shimojo, Fuyuki; Hattori, Shinnosuke; Department of Physics, Kumamoto University, Kumamoto 860-8555

    We introduce an extension of the divide-and-conquer (DC) algorithmic paradigm called divide-conquer-recombine (DCR) to perform large quantum molecular dynamics (QMD) simulations on massively parallel supercomputers, in which interatomic forces are computed quantum mechanically in the framework of density functional theory (DFT). In DCR, the DC phase constructs globally informed, overlapping local-domain solutions, which in the recombine phase are synthesized into a global solution encompassing large spatiotemporal scales. For the DC phase, we design a lean divide-and-conquer (LDC) DFT algorithm, which significantly reduces the prefactor of the O(N) computational cost for N electrons by applying a density-adaptive boundary condition at themore » peripheries of the DC domains. Our globally scalable and locally efficient solver is based on a hybrid real-reciprocal space approach that combines: (1) a highly scalable real-space multigrid to represent the global charge density; and (2) a numerically efficient plane-wave basis for local electronic wave functions and charge density within each domain. Hybrid space-band decomposition is used to implement the LDC-DFT algorithm on parallel computers. A benchmark test on an IBM Blue Gene/Q computer exhibits an isogranular parallel efficiency of 0.984 on 786 432 cores for a 50.3 × 10{sup 6}-atom SiC system. As a test of production runs, LDC-DFT-based QMD simulation involving 16 661 atoms is performed on the Blue Gene/Q to study on-demand production of hydrogen gas from water using LiAl alloy particles. As an example of the recombine phase, LDC-DFT electronic structures are used as a basis set to describe global photoexcitation dynamics with nonadiabatic QMD (NAQMD) and kinetic Monte Carlo (KMC) methods. The NAQMD simulations are based on the linear response time-dependent density functional theory to describe electronic excited states and a surface-hopping approach to describe transitions between the excited states. A series of techniques are employed for efficiently calculating the long-range exact exchange correction and excited-state forces. The NAQMD trajectories are analyzed to extract the rates of various excitonic processes, which are then used in KMC simulation to study the dynamics of the global exciton flow network. This has allowed the study of large-scale photoexcitation dynamics in 6400-atom amorphous molecular solid, reaching the experimental time scales.« less

  7. Bypassing the Kohn-Sham equations with machine learning.

    PubMed

    Brockherde, Felix; Vogt, Leslie; Li, Li; Tuckerman, Mark E; Burke, Kieron; Müller, Klaus-Robert

    2017-10-11

    Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.

  8. Dynamic Structure Factor: An Introduction

    NASA Astrophysics Data System (ADS)

    Sturm, K.

    1993-02-01

    The doubly differential cross-section for weak inelastic scattering of waves or particles by manybody systems is derived in Born approximation and expressed in terms of the dynamic structure factor according to van Hove. The application of this very general scheme to scattering of neutrons, x-rays and high-energy electrons is discussed briefly. The dynamic structure factor, which is the space and time Fourier transform of the density-density correlation function, is a property of the many-body system independent of the external probe and carries information on the excitation spectrum of the system. The relation of the electronic structure factor to the density-density response function defined in linear-response theory is shown using the fluctuation-dissipation theorem. This is important for calculations, since the response function can be calculated approximately from the independent-particle response function in self-consistent field approximations, such as the random-phase approximation or the local-density approximation of the density functional theory. Since the density-density response function also determines the dielectric function, the dynamic structure can be expressed by the dielectric function.

  9. FARADAY ROTATION STRUCTURE ON KILOPARSEC SCALES IN THE RADIO LOBES OF CENTAURUS A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feain, I. J.; Ekers, R. D.; Norris, R. P.

    2009-12-10

    We present the results of an Australia Telescope Compact Array 1.4 GHz spectropolarimetric aperture synthesis survey of 34 deg{sup 2} centered on Centaurus A-NGC 5128. A catalog of 1005 extragalactic compact radio sources in the field to a continuum flux density of 3 mJy beam{sup -1} is provided along with a table of Faraday rotation measures (RMs) and linear polarized intensities for the 28% of sources with high signal to noise in linear polarization. We use the ensemble of 281 background polarized sources as line-of-sight probes of the structure of the giant radio lobes of Centaurus A. This is themore » first time such a method has been applied to radio galaxy lobes and we explain how it differs from the conventional methods that are often complicated by depth and beam depolarization effects. Assuming a magnetic field strength in the lobes of 1.3 B {sub 1} muG, where B {sub 1} = 1 is implied by equipartition between magnetic fields and relativistic particles, the upper limit we derive on the maximum possible difference between the average RM of 121 sources behind Centaurus A and the average RM of the 160 sources along sightlines outside Centaurus A implies an upper limit on the volume-averaged thermal plasma density in the giant radio lobes of (n{sub e} ) < 5 x 10{sup -5} B {sup -1} {sub 1} cm{sup -3}. We use an RM structure function analysis and report the detection of a turbulent RM signal, with rms sigma{sub RM} = 17 rad m{sup -2} and scale size 0.{sup 0}3, associated with the southern giant lobe. We cannot verify whether this signal arises from turbulent structure throughout the lobe or only in a thin skin (or sheath) around the edge, although we favor the latter. The RM signal is modeled as possibly arising from a thin skin with a thermal plasma density equivalent to the Centaurus intragroup medium density and a coherent magnetic field that reverses its sign on a spatial scale of 20 kpc. For a thermal density of n {sub 1} 10{sup -3} cm{sup -3}, the skin magnetic field strength is 0.8 n {sup -1} {sub 1} muG.« less

  10. Impact of the pedestal plasma density on dynamics of edge localized mode crashes and energy loss scaling

    DOE PAGES

    Xu, X. Q.; Ma, J. F.; Li, G. Q.

    2014-12-29

    The latest BOUT++ studies show an emerging understanding of dynamics of edge localized mode(ELM) crashes and the consistent collisionality scaling of ELMenergy losses with the world multi-tokamak database. A series of BOUT++ simulations are conducted to investigate the scaling characteristics of the ELMenergy losses vs collisionality via a density scan. Moreover, the linear results demonstrate that as the pedestal collisionality decreases, the growth rate of the peeling-ballooning modes decreases for high n but increases for low n (1 < n < 5), therefore the width of the growth rate spectrum γ(n) becomes narrower and the peak growth shifts to lowermore » n. For nonlinear BOUT++ simulations show a two-stage process of ELM crash evolution of (i) initial bursts of pressure blob and void creation and (ii) inward void propagation. The inward void propagation stirs the top of pedestal plasma and yields an increasing ELM size with decreasing collisionality after a series of micro-bursts. The pedestal plasma density plays a major role in determining the ELMenergy loss through its effect on the edge bootstrap current and ion diamagnetic stabilization. Finally, the critical trend emerges as a transition (1) linearly from ballooning-dominated states at high collisionality to peeling-dominated states at low collisionality with decreasing density and (2) nonlinearly from turbulence spreading dynamics at high collisionality into avalanche-like dynamics at low collisionality.« less

  11. The Power Spectrum of Ionic Nanopore Currents: The Role of Ion Correlations.

    PubMed

    Zorkot, Mira; Golestanian, Ramin; Bonthuis, Douwe Jan

    2016-04-13

    We calculate the power spectrum of electric-field-driven ion transport through nanometer-scale membrane pores using both linearized mean-field theory and Langevin dynamics simulations. Remarkably, the linearized mean-field theory predicts a plateau in the power spectral density at low frequency ω, which is confirmed by the simulations at low ion concentration. At high ion concentration, however, the power spectral density follows a power law that is reminiscent of the 1/ω(α) dependence found experimentally at low frequency. On the basis of simulations with and without ion-ion interactions, we attribute the low-frequency power-law dependence to ion-ion correlations. We show that neither a static surface charge density, nor an increased pore length, nor an increased ion valency have a significant effect on the shape of the power spectral density at low frequency.

  12. Efficient Computation of Sparse Matrix Functions for Large-Scale Electronic Structure Calculations: The CheSS Library.

    PubMed

    Mohr, Stephan; Dawson, William; Wagner, Michael; Caliste, Damien; Nakajima, Takahito; Genovese, Luigi

    2017-10-10

    We present CheSS, the "Chebyshev Sparse Solvers" library, which has been designed to solve typical problems arising in large-scale electronic structure calculations using localized basis sets. The library is based on a flexible and efficient expansion in terms of Chebyshev polynomials and presently features the calculation of the density matrix, the calculation of matrix powers for arbitrary powers, and the extraction of eigenvalues in a selected interval. CheSS is able to exploit the sparsity of the matrices and scales linearly with respect to the number of nonzero entries, making it well-suited for large-scale calculations. The approach is particularly adapted for setups leading to small spectral widths of the involved matrices and outperforms alternative methods in this regime. By coupling CheSS to the DFT code BigDFT, we show that such a favorable setup is indeed possible in practice. In addition, the approach based on Chebyshev polynomials can be massively parallelized, and CheSS exhibits excellent scaling up to thousands of cores even for relatively small matrix sizes.

  13. A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts

    NASA Astrophysics Data System (ADS)

    Singh, Satya Pal

    2017-04-01

    Monte Carlo simulation has been performed to study the rupturing process of thin polymer film under strong confinement. The change in mean square displacement; pair correlation function; density distribution; average bond length and microscopic viscosity are sampled by varying the molecular interaction parameters such as the strength and the equilibrium positions of the bonding, non-bonding potentials and the sizes of the beads. The variation in mean square angular displacement χθ = [ < Δθ2 > - < Δθ>2 ] fits very well to a function of type y (t) = A + B *e-t/τ. This may help to study the viscous properties of the films and its dependence on different parameters. The ultra thin film annealed at high temperature gets ruptured and holes are created in the film mimicking spinodal dewetting. The pair correlation function and density profile reveal rich information about the equilibrium structure of the film. The strength and equilibrium bond length of finite extensible non-linear elastic potential (FENE) and non-bonding Morse potential have clear impact on microscopic rupturing of the film. The beads show Rouse or repetition motion forming rim like structures near the holes created inside the film. The higher order interaction as dipole-quadrupole may get prominence under strong confinement. The enhanced excluded volume interaction under strong confinement may overlap with the molecular dispersion forces. It can work to reorganize the molecules at the bottom of the scale and can imprint its signature in complex patterns evolved.

  14. First principle study of transport properties of a graphene nano structure

    NASA Astrophysics Data System (ADS)

    Kumar, Naveen; Sharma, Munish; Sharma, Jyoti Dhar; Ahluwalia, P. K.

    2013-06-01

    The first principle quantum transport calculations have been performed for graphene using Tran SIESTA which calculates transport properties using nonequilibrium Green's function method in conjunction with density-functional theory. Transmission functions, electron density of states and current-voltage characteristic have been calculated for a graphene nano structure using graphene electrodes. Transmission function, density of states and projected density of states show a discrete band structure which varies with applied voltage. The value of current is very low for applied voltage between 0.0 V to 5.0 V and lies in the range of pico ampere. In the V-I characteristic current shows non-linear fluctuating pattern with increase in voltage.

  15. Gradient-based stochastic estimation of the density matrix

    NASA Astrophysics Data System (ADS)

    Wang, Zhentao; Chern, Gia-Wei; Batista, Cristian D.; Barros, Kipton

    2018-03-01

    Fast estimation of the single-particle density matrix is key to many applications in quantum chemistry and condensed matter physics. The best numerical methods leverage the fact that the density matrix elements f(H)ij decay rapidly with distance rij between orbitals. This decay is usually exponential. However, for the special case of metals at zero temperature, algebraic decay of the density matrix appears and poses a significant numerical challenge. We introduce a gradient-based probing method to estimate all local density matrix elements at a computational cost that scales linearly with system size. For zero-temperature metals, the stochastic error scales like S-(d+2)/2d, where d is the dimension and S is a prefactor to the computational cost. The convergence becomes exponential if the system is at finite temperature or is insulating.

  16. Transient GaAs plasmonic metasurfaces at terahertz frequencies

    DOE PAGES

    Yang, Yuanmu; Kamaraju, N.; Campione, Salvatore; ...

    2016-12-09

    Here we demonstrate the ultrafast formation of terahertz (THz) metasurfaces through all-optical creation of spatially modulated carrier density profiles in a deep-subwavelength GaAs film. The switch-on of the transient plasmon mode, governed by the GaAs effective electron mass and electron–phonon interactions, is revealed by structured-optical pump THz probe spectroscopy, on a time scale of 500 fs. By modulating the carrier density using different pump fluences, we observe a wide tuning of the electric dipole resonance of the transient GaAs metasurface from 0.5 THz to 1.7 THz. Furthermore, we numerically demonstrate that the metasurface presented here can be generalized to moremore » complex architectures for realizing functionalities such as perfect absorption, leading to a 30 dB modulation depth. In conclusion, the platform also provides a pathway to achieve ultrafast manipulation of infrared beams in the linear and, potentially, nonlinear regime.« less

  17. Functional Connectivity Density Mapping of Depressive Symptoms and Loneliness in Non-Demented Elderly Male

    PubMed Central

    Lan, Chen-Chia; Tsai, Shih-Jen; Huang, Chu-Chung; Wang, Ying-Hsiu; Chen, Tong-Ru; Yeh, Heng-Liang; Liu, Mu-En; Lin, Ching-Po; Yang, Albert C.

    2016-01-01

    Background: Depression and loneliness are prevalent and highly correlated phenomena among the elderly and influence both physical and mental health. Brain functional connectivity changes associated with depressive symptoms and loneliness are not fully understood. Methods: A cross-sectional functional MRI study was conducted among 85 non-demented male elders. Geriatric depression scale-short form (GDS) and loneliness scale were used to evaluate the severity of depressive symptoms and loneliness, respectively. Whole brain voxel-wise resting-state functional connectivity density (FCD) mapping was performed to delineate short-range FCD (SFCD) and long-range FCD (LFCD). Regional correlations between depressive symptoms or loneliness and SFCD or LFCD were examined using general linear model (GLM), with age incorporated as a covariate and depressive symptoms and loneliness as predictors. Results: Positive correlations between depressive symptoms and LFCD were observed in left rectal gyrus, left superior frontal gyrus, right supraorbital gyrus, and left inferior temporal gyrus. Positive correlations between depressive symptoms and SFCD were observed in left middle frontal gyrus, left superior frontal gyrus, bilateral superior medial frontal gyrus, left inferior temporal gyrus, and left middle occipital region. Positive correlations between SFCD and loneliness were centered over bilateral lingual gyrus. Conclusion: Depressive symptoms are associated with FCD changes over frontal and temporal regions, which may involve the cognitive control, affective regulation, and default mode networks. Loneliness is associated with FCD changes in bilateral lingual gyri that are known to be important in social cognition. Depressive symptoms and loneliness may be associated with different brain regions in non-demented elderly male. PMID:26793101

  18. Influence of landscape-scale factors in limiting brook trout populations in Pennsylvania streams

    USGS Publications Warehouse

    Kocovsky, P.M.; Carline, R.F.

    2006-01-01

    Landscapes influence the capacity of streams to produce trout through their effect on water chemistry and other factors at the reach scale. Trout abundance also fluctuates over time; thus, to thoroughly understand how spatial factors at landscape scales affect trout populations, one must assess the changes in populations over time to provide a context for interpreting the importance of spatial factors. We used data from the Pennsylvania Fish and Boat Commission's fisheries management database to investigate spatial factors that affect the capacity of streams to support brook trout Salvelinus fontinalis and to provide models useful for their management. We assessed the relative importance of spatial and temporal variation by calculating variance components and comparing relative standard errors for spatial and temporal variation. We used binary logistic regression to predict the presence of harvestable-length brook trout and multiple linear regression to assess the mechanistic links between landscapes and trout populations and to predict population density. The variance in trout density among streams was equal to or greater than the temporal variation for several streams, indicating that differences among sites affect population density. Logistic regression models correctly predicted the absence of harvestable-length brook trout in 60% of validation samples. The r 2-value for the linear regression model predicting density was 0.3, indicating low predictive ability. Both logistic and linear regression models supported buffering capacity against acid episodes as an important mechanistic link between landscapes and trout populations. Although our models fail to predict trout densities precisely, their success at elucidating the mechanistic links between landscapes and trout populations, in concert with the importance of spatial variation, increases our understanding of factors affecting brook trout abundance and will help managers and private groups to protect and enhance populations of wild brook trout. ?? Copyright by the American Fisheries Society 2006.

  19. Likelihood reconstruction method of real-space density and velocity power spectra from a redshift galaxy survey

    NASA Astrophysics Data System (ADS)

    Tang, Jiayu; Kayo, Issha; Takada, Masahiro

    2011-09-01

    We develop a maximum likelihood based method of reconstructing the band powers of the density and velocity power spectra at each wavenumber bin from the measured clustering features of galaxies in redshift space, including marginalization over uncertainties inherent in the small-scale, non-linear redshift distortion, the Fingers-of-God (FoG) effect. The reconstruction can be done assuming that the density and velocity power spectra depend on the redshift-space power spectrum having different angular modulations of μ with μ2n (n= 0, 1, 2) and that the model FoG effect is given as a multiplicative function in the redshift-space spectrum. By using N-body simulations and the halo catalogues, we test our method by comparing the reconstructed power spectra with the spectra directly measured from the simulations. For the spectrum of μ0 or equivalently the density power spectrum Pδδ(k), our method recovers the amplitudes to an accuracy of a few per cent up to k≃ 0.3 h Mpc-1 for both dark matter and haloes. For the power spectrum of μ2, which is equivalent to the density-velocity power spectrum Pδθ(k) in the linear regime, our method can recover, within the statistical errors, the input power spectrum for dark matter up to k≃ 0.2 h Mpc-1 and at both redshifts z= 0 and 1, if the adequate FoG model being marginalized over is employed. However, for the halo spectrum that is least affected by the FoG effect, the reconstructed spectrum shows greater amplitudes than the spectrum Pδθ(k) inferred from the simulations over a range of wavenumbers 0.05 ≤k≤ 0.3 h Mpc-1. We argue that the disagreement may be ascribed to a non-linearity effect that arises from the cross-bispectra of density and velocity perturbations. Using the perturbation theory and assuming Einstein gravity as in simulations, we derive the non-linear correction term to the redshift-space spectrum, and find that the leading-order correction term is proportional to μ2 and increases the μ2-power spectrum amplitudes more significantly at larger k, at lower redshifts and for more massive haloes. We find that adding the non-linearity correction term to the simulation Pδθ(k) can fairly well reproduce the reconstructed Pδθ(k) for haloes up to k≃ 0.2 h Mpc-1.

  20. Modeling and Simulation of Linear and Nonlinear MEMS Scale Electromagnetic Energy Harvesters for Random Vibration Environments

    PubMed Central

    Sassani, Farrokh

    2014-01-01

    The simulation results for electromagnetic energy harvesters (EMEHs) under broad band stationary Gaussian random excitations indicate the importance of both a high transformation factor and a high mechanical quality factor to achieve favourable mean power, mean square load voltage, and output spectral density. The optimum load is different for random vibrations and for sinusoidal vibration. Reducing the total damping ratio under band-limited random excitation yields a higher mean square load voltage. Reduced bandwidth resulting from decreased mechanical damping can be compensated by increasing the electrical damping (transformation factor) leading to a higher mean square load voltage and power. Nonlinear EMEHs with a Duffing spring and with linear plus cubic damping are modeled using the method of statistical linearization. These nonlinear EMEHs exhibit approximately linear behaviour under low levels of broadband stationary Gaussian random vibration; however, at higher levels of such excitation the central (resonant) frequency of the spectral density of the output voltage shifts due to the increased nonlinear stiffness and the bandwidth broadens slightly. Nonlinear EMEHs exhibit lower maximum output voltage and central frequency of the spectral density with nonlinear damping compared to linear damping. Stronger nonlinear damping yields broader bandwidths at stable resonant frequency. PMID:24605063

  1. Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach.

    PubMed

    Plehn, Thomas; May, Volkhard

    2017-01-21

    The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.

  2. Charge and energy migration in molecular clusters: A stochastic Schrödinger equation approach

    NASA Astrophysics Data System (ADS)

    Plehn, Thomas; May, Volkhard

    2017-01-01

    The performance of stochastic Schrödinger equations for simulating dynamic phenomena in large scale open quantum systems is studied. Going beyond small system sizes, commonly used master equation approaches become inadequate. In this regime, wave function based methods profit from their inherent scaling benefit and present a promising tool to study, for example, exciton and charge carrier dynamics in huge and complex molecular structures. In the first part of this work, a strict analytic derivation is presented. It starts with the finite temperature reduced density operator expanded in coherent reservoir states and ends up with two linear stochastic Schrödinger equations. Both equations are valid in the weak and intermediate coupling limit and can be properly related to two existing approaches in literature. In the second part, we focus on the numerical solution of these equations. The main issue is the missing norm conservation of the wave function propagation which may lead to numerical discrepancies. To illustrate this, we simulate the exciton dynamics in the Fenna-Matthews-Olson complex in direct comparison with the data from literature. Subsequently a strategy for the proper computational handling of the linear stochastic Schrödinger equation is exposed particularly with regard to large systems. Here, we study charge carrier transfer kinetics in realistic hybrid organic/inorganic para-sexiphenyl/ZnO systems of different extension.

  3. Estimating the population size and colony boundary of subterranean termites by using the density functions of directionally averaged capture probability.

    PubMed

    Su, Nan-Yao; Lee, Sang-Hee

    2008-04-01

    Marked termites were released in a linear-connected foraging arena, and the spatial heterogeneity of their capture probabilities was averaged for both directions at distance r from release point to obtain a symmetrical distribution, from which the density function of directionally averaged capture probability P(x) was derived. We hypothesized that as marked termites move into the population and given sufficient time, the directionally averaged capture probability may reach an equilibrium P(e) over the distance r and thus satisfy the equal mixing assumption of the mark-recapture protocol. The equilibrium capture probability P(e) was used to estimate the population size N. The hypothesis was tested in a 50-m extended foraging arena to simulate the distance factor of field colonies of subterranean termites. Over the 42-d test period, the density functions of directionally averaged capture probability P(x) exhibited four phases: exponential decline phase, linear decline phase, equilibrium phase, and postequilibrium phase. The equilibrium capture probability P(e), derived as the intercept of the linear regression during the equilibrium phase, correctly projected N estimates that were not significantly different from the known number of workers in the arena. Because the area beneath the probability density function is a constant (50% in this study), preequilibrium regression parameters and P(e) were used to estimate the population boundary distance 1, which is the distance between the release point and the boundary beyond which the population is absent.

  4. Charged-particle pseudorapidity distributions in Au+Au collisions at sNN=62.4 GeV

    NASA Astrophysics Data System (ADS)

    Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Decowski, M. P.; García, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Hołyński, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Lin, W. T.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Nieuwenhuizen, G. J. Van; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Wenger, E.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wysłouch, B.

    2006-08-01

    The charged-particle pseudorapidity density for Au+Au collisions at sNN=62.4 GeV has been measured over a wide range of impact parameters and compared to results obtained at other energies. As a function of collision energy, the pseudorapidity distribution grows systematically both in height and width. The midrapidity density is found to grow approximately logarithmically between BNL Alternating Gradient Synchrotron (AGS) energies and the top BNL Relativistic Heavy Ion Collider (RHIC) energy. There is also an approximate factorization of the centrality and energy dependence of the midrapidity yields. The new results at sNN=62.4 GeV confirm the previously observed phenomenon of “extended longitudinal scaling” in the pseudorapidity distributions when viewed in the rest frame of one of the colliding nuclei. It is also found that the evolution of the shape of the distribution with centrality is energy independent, when viewed in this reference frame. As a function of centrality, the total charged particle multiplicity scales linearly with the number of participant pairs as it was observed at other energies.

  5. A Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  6. A Lagrangian effective field theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro, E-mail: zvlah@stanford.edu, E-mail: mwhite@berkeley.edu, E-mail: aviles@berkeley.edu

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The 'new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. All the perturbative models fare better than linear theory.« less

  7. A Lagrangian effective field theory

    DOE PAGES

    Vlah, Zvonimir; White, Martin; Aviles, Alejandro

    2015-09-02

    We have continued the development of Lagrangian, cosmological perturbation theory for the low-order correlators of the matter density field. We provide a new route to understanding how the effective field theory (EFT) of large-scale structure can be formulated in the Lagrandian framework and a new resummation scheme, comparing our results to earlier work and to a series of high-resolution N-body simulations in both Fourier and configuration space. The `new' terms arising from EFT serve to tame the dependence of perturbation theory on small-scale physics and improve agreement with simulations (though with an additional free parameter). We find that all ofmore » our models fare well on scales larger than about two to three times the non-linear scale, but fail as the non-linear scale is approached. This is slightly less reach than has been seen previously. At low redshift the Lagrangian model fares as well as EFT in its Eulerian formulation, but at higher z the Eulerian EFT fits the data to smaller scales than resummed, Lagrangian EFT. Furthermore, all the perturbative models fare better than linear theory.« less

  8. Uniform magnetic fields in density-functional theory

    NASA Astrophysics Data System (ADS)

    Tellgren, Erik I.; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M.

    2018-01-01

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  9. Uniform magnetic fields in density-functional theory.

    PubMed

    Tellgren, Erik I; Laestadius, Andre; Helgaker, Trygve; Kvaal, Simen; Teale, Andrew M

    2018-01-14

    We construct a density-functional formalism adapted to uniform external magnetic fields that is intermediate between conventional density functional theory and Current-Density Functional Theory (CDFT). In the intermediate theory, which we term linear vector potential-DFT (LDFT), the basic variables are the density, the canonical momentum, and the paramagnetic contribution to the magnetic moment. Both a constrained-search formulation and a convex formulation in terms of Legendre-Fenchel transformations are constructed. Many theoretical issues in CDFT find simplified analogs in LDFT. We prove results concerning N-representability, Hohenberg-Kohn-like mappings, existence of minimizers in the constrained-search expression, and a restricted analog to gauge invariance. The issue of additivity of the energy over non-interacting subsystems, which is qualitatively different in LDFT and CDFT, is also discussed.

  10. Isobaric Reconstruction of the Baryonic Acoustic Oscillation

    NASA Astrophysics Data System (ADS)

    Wang, Xin; Yu, Hao-Ran; Zhu, Hong-Ming; Yu, Yu; Pan, Qiaoyin; Pen, Ue-Li

    2017-06-01

    In this Letter, we report a significant recovery of the linear baryonic acoustic oscillation (BAO) signature by applying the isobaric reconstruction algorithm to the nonlinear matter density field. Assuming only the longitudinal component of the displacement being cosmologically relevant, this algorithm iteratively solves the coordinate transform between the Lagrangian and Eulerian frames without requiring any specific knowledge of the dynamics. For dark matter field, it produces the nonlinear displacement potential with very high fidelity. The reconstruction error at the pixel level is within a few percent and is caused only by the emergence of the transverse component after the shell-crossing. As it circumvents the strongest nonlinearity of the density evolution, the reconstructed field is well described by linear theory and immune from the bulk-flow smearing of the BAO signature. Therefore, this algorithm could significantly improve the measurement accuracy of the sound horizon scale s. For a perfect large-scale structure survey at redshift zero without Poisson or instrumental noise, the fractional error {{Δ }}s/s is reduced by a factor of ˜2.7, very close to the ideal limit with the linear power spectrum and Gaussian covariance matrix.

  11. Magnetized cosmological perturbations in the post-recombination era

    NASA Astrophysics Data System (ADS)

    Vasileiou, Hera; Tsagas, Christos G.

    2016-01-01

    We study inhomogeneous magnetized cosmologies through the post-recombination era in the framework of Newtonian gravity and the ideal-magnetohydrodynamic limit. The non-linear kinematic and dynamic equations are derived and linearized around the Newtonian counterpart of the Einstein-de Sitter universe. This allows for a direct comparison with the earlier relativistic treatments of the issue. Focusing on the evolution of linear density perturbations, we provide new analytic solutions which include the effects of the magnetic pressure as well as those of the field's tension. We confirm that the pressure of field inhibits the growth of density distortions and can induce a purely magnetic Jeans length. On scales larger than the aforementioned characteristic length the inhomogeneities grow, though slower than in non-magnetized universes. Wavelengths smaller than the magnetic Jeans length typically oscillate with decreasing amplitude. We also identify a narrow range of scales, just below the Jeans length, where the perturbations exhibit a slower power-law decay. In all cases, the effect of the field is proportional to its strength and increases as we move to progressively smaller lengths.

  12. Vectorial structures of linear-polarized Butterfly-Gauss vortex beams in the far zone

    NASA Astrophysics Data System (ADS)

    Cheng, Ke; Zhou, Yan; Lu, Gang; Yao, Na; Zhong, Xianqiong

    2018-05-01

    By introducing the Butterfly catastrophe to optics, the far-zone vectorial structures of Butterfly-Gauss beam with vortex and non-vortex are studied using the angular spectrum representation and stationary phase method. The influence of topological charge, linear-polarized angle, off-axis distance and scaling length on the far-zone vectorial structures, especially in the Poynting vector and angular momentum density of the corresponding beam is emphasized. The results show that the embedded optical vortex at source plane lead to special dark zones in the far zone, where the number of dark zone equals the absolute value of topological charge of optical vortex. Furthermore, the symmetry and direction of the special dark zones can be controlled by off-axis distance and scaling length, respectively. The linear-polarized angle adjusts only the Poynting vectors of TE and TM terms, but it does not affect those of whole beam. Finally, the vectorial expressions also indicate that the total angular momentum density is certainly zero owing to the far-zone stable structures rather than rotation behaviors.

  13. Lower hybrid to whistler mode conversion on a density striation

    NASA Astrophysics Data System (ADS)

    Camporeale, E.; Delzanno, G. L.; Colestock, P.

    2012-10-01

    When a wave packet composed of short wavelength lower hybrid modes traveling in an homogeneous plasma region encounters an inhomogeneity, it can resonantly excite long wavelength whistler waves via a linear mechanism known as mode conversion. An enhancement of lower hybrid/whistler activity has been often observed by sounding rockets and satellites in the presence of density depletions (striations) in the upper ionosphere. We address here the process of linear mode conversion of lower hybrid to whistler waves, mediated by a density striation, using a scalar-field formalism (in the limit of cold plasma linear theory) which we solve numerically. We show that the mode conversion can effectively transfer a large amount of energy from the short to the long wavelength modes. We also study how the efficiency scales by changing the properties (width and amplitude) of the density striation. We present a general criterion for the width of the striation that, if fulfilled, maximizes the conversion efficiency. Such a criterion could provide an interpretation of recent laboratory experiments carried out on the Large Plasma Device at UCLA.

  14. Linear and quadratic static response functions and structure functions in Yukawa liquids.

    PubMed

    Magyar, Péter; Donkó, Zoltán; Kalman, Gabor J; Golden, Kenneth I

    2014-08-01

    We compute linear and quadratic static density response functions of three-dimensional Yukawa liquids by applying an external perturbation potential in molecular dynamics simulations. The response functions are also obtained from the equilibrium fluctuations (static structure factors) in the system via the fluctuation-dissipation theorems. The good agreement of the quadratic response functions, obtained in the two different ways, confirms the quadratic fluctuation-dissipation theorem. We also find that the three-point structure function may be factorizable into two-point structure functions, leading to a cluster representation of the equilibrium triplet correlation function.

  15. The multifacet graphically contracted function method. I. Formulation and implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shepard, Ron; Brozell, Scott R.; Gidofalvi, Gergely

    2014-08-14

    The basic formulation for the multifacet generalization of the graphically contracted function (MFGCF) electronic structure method is presented. The analysis includes the discussion of linear dependency and redundancy of the arc factor parameters, the computation of reduced density matrices, Hamiltonian matrix construction, spin-density matrix construction, the computation of optimization gradients for single-state and state-averaged calculations, graphical wave function analysis, and the efficient computation of configuration state function and Slater determinant expansion coefficients. Timings are given for Hamiltonian matrix element and analytic optimization gradient computations for a range of model problems for full-CI Shavitt graphs, and it is observed that bothmore » the energy and the gradient computation scale as O(N{sup 2}n{sup 4}) for N electrons and n orbitals. The important arithmetic operations are within dense matrix-matrix product computational kernels, resulting in a computationally efficient procedure. An initial implementation of the method is used to present applications to several challenging chemical systems, including N{sub 2} dissociation, cubic H{sub 8} dissociation, the symmetric dissociation of H{sub 2}O, and the insertion of Be into H{sub 2}. The results are compared to the exact full-CI values and also to those of the previous single-facet GCF expansion form.« less

  16. Linear velocity fields in non-Gaussian models for large-scale structure

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.

    1992-01-01

    Linear velocity fields in two types of physically motivated non-Gaussian models are examined for large-scale structure: seed models, in which the density field is a convolution of a density profile with a distribution of points, and local non-Gaussian fields, derived from a local nonlinear transformation on a Gaussian field. The distribution of a single component of the velocity is derived for seed models with randomly distributed seeds, and these results are applied to the seeded hot dark matter model and the global texture model with cold dark matter. An expression for the distribution of a single component of the velocity in arbitrary local non-Gaussian models is given, and these results are applied to such fields with chi-squared and lognormal distributions. It is shown that all seed models with randomly distributed seeds and all local non-Guassian models have single-component velocity distributions with positive kurtosis.

  17. Four-Component Damped Density Functional Response Theory Study of UV/Vis Absorption Spectra and Phosphorescence Parameters of Group 12 Metal-Substituted Porphyrins.

    PubMed

    Fransson, Thomas; Saue, Trond; Norman, Patrick

    2016-05-10

    The influences of group 12 (Zn, Cd, Hg) metal-substitution on the valence spectra and phosphorescence parameters of porphyrins (P) have been investigated in a relativistic setting. In order to obtain valence spectra, this study reports the first application of the damped linear response function, or complex polarization propagator, in the four-component density functional theory framework [as formulated in Villaume et al. J. Chem. Phys. 2010 , 133 , 064105 ]. It is shown that the steep increase in the density of states as due to the inclusion of spin-orbit coupling yields only minor changes in overall computational costs involved with the solution of the set of linear response equations. Comparing single-frequency to multifrequency spectral calculations, it is noted that the number of iterations in the iterative linear equation solver per frequency grid-point decreases monotonously from 30 to 0.74 as the number of frequency points goes from one to 19. The main heavy-atom effect on the UV/vis-absorption spectra is indirect and attributed to the change of point group symmetry due to metal-substitution, and it is noted that substitutions using heavier atoms yield small red-shifts of the intense Soret-band. Concerning phosphorescence parameters, the adoption of a four-component relativistic setting enables the calculation of such properties at a linear order of response theory, and any higher-order response functions do not need to be considered-a real, conventional, form of linear response theory has been used for the calculation of these parameters. For the substituted porphyrins, electronic coupling between the lowest triplet states is strong and results in theoretical estimates of lifetimes that are sensitive to the wave function and electron density parametrization. With this in mind, we report our best estimates of the phosphorescence lifetimes to be 460, 13.8, 11.2, and 0.00155 s for H2P, ZnP, CdP, and HgP, respectively, with the corresponding transition energies being equal to 1.46, 1.50, 1.38, and 0.89 eV.

  18. Charge density on thin straight wire, revisited

    NASA Astrophysics Data System (ADS)

    Jackson, J. D.

    2000-09-01

    The question of the equilibrium linear charge density on a charged straight conducting "wire" of finite length as its cross-sectional dimension becomes vanishingly small relative to the length is revisited in our didactic presentation. We first consider the wire as the limit of a prolate spheroidal conductor with semi-minor axis a and semi-major axis c when a/c<<1. We then treat an azimuthally symmetric straight conductor of length 2c and variable radius r(z) whose scale is defined by a parameter a. A procedure is developed to find the linear charge density λ(z) as an expansion in powers of 1/Λ, where Λ≡ln(4c2/a2), beginning with a uniform line charge density λ0. We show, for this rather general wire, that in the limit Λ>>1 the linear charge density becomes essentially uniform, but that the tiny nonuniformity (of order 1/Λ) is sufficient to produce a tangential electric field (of order Λ0) that cancels the zeroth-order field that naively seems to belie equilibrium. We specialize to a right circular cylinder and obtain the linear charge density explicitly, correct to order 1/Λ2 inclusive, and also the capacitance of a long isolated charged cylinder, a result anticipated in the published literature 37 years ago. The results for the cylinder are compared with published numerical computations. The second-order correction to the charge density is calculated numerically for a sampling of other shapes to show that the details of the distribution for finite 1/Λ vary with the shape, even though density becomes constant in the limit Λ→∞. We give a second method of finding the charge distribution on the cylinder, one that approximates the charge density by a finite polynomial in z2 and requires the solution of a coupled set of linear algebraic equations. Perhaps the most striking general observation is that the approach to uniformity as a/c→0 is extremely slow.

  19. Restricted cross-scale habitat selection by American beavers.

    PubMed

    Francis, Robert A; Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-12-01

    Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection.

  20. Restricted cross-scale habitat selection by American beavers

    PubMed Central

    Taylor, Jimmy D; Dibble, Eric; Strickland, Bronson; Petro, Vanessa M; Easterwood, Christine; Wang, Guiming

    2017-01-01

    Abstract Animal habitat selection, among other ecological phenomena, is spatially scale dependent. Habitat selection by American beavers Castor canadensis (hereafter, beaver) has been studied at singular spatial scales, but to date no research addresses multi-scale selection. Our objectives were to determine if beaver habitat selection was specialized to semiaquatic habitats and if variables explaining habitat selection are consistent between landscape and fine spatial scales. We built maximum entropy (MaxEnt) models to relate landscape-scale presence-only data to landscape variables, and used generalized linear mixed models to evaluate fine spatial scale habitat selection using global positioning system (GPS) relocation data. Explanatory variables between the landscape and fine spatial scale were compared for consistency. Our findings suggested that beaver habitat selection at coarse (study area) and fine (within home range) scales was congruent, and was influenced by increasing amounts of woody wetland edge density and shrub edge density, and decreasing amounts of open water edge density. Habitat suitability at the landscape scale also increased with decreasing amounts of grass frequency. As territorial, central-place foragers, beavers likely trade-off open water edge density (i.e., smaller non-forested wetlands or lodges closer to banks) for defense and shorter distances to forage and obtain construction material. Woody plants along edges and expanses of open water for predator avoidance may limit beaver fitness and subsequently determine beaver habitat selection. PMID:29492032

  1. Wave induced density modification in RF sheaths and close to wave launchers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Eester, D., E-mail: d.van.eester@fz-juelich.de; Crombé, K.; Department of Applied Physics, Ghent University, Ghent

    2015-12-10

    With the return to full metal walls - a necessary step towards viable fusion machines - and due to the high power densities of current-day ICRH (Ion Cyclotron Resonance Heating) or RF (radio frequency) antennas, there is ample renewed interest in exploring the reasons for wave-induced sputtering and formation of hot spots. Moreover, there is experimental evidence on various machines that RF waves influence the density profile close to the wave launchers so that waves indirectly influence their own coupling efficiency. The present study presents a return to first principles and describes the wave-particle interaction using a 2-time scale modelmore » involving the equation of motion, the continuity equation and the wave equation on each of the time scales. Through the changing density pattern, the fast time scale dynamics is affected by the slow time scale events. In turn, the slow time scale density and flows are modified by the presence of the RF waves through quasilinear terms. Although finite zero order flows are identified, the usual cold plasma dielectric tensor - ignoring such flows - is adopted as a first approximation to describe the wave response to the RF driver. The resulting set of equations is composed of linear and nonlinear equations and is tackled in 1D in the present paper. Whereas the former can be solved using standard numerical techniques, the latter require special handling. At the price of multiple iterations, a simple ’derivative switch-on’ procedure allows to reformulate the nonlinear problem as a sequence of linear problems. Analytical expressions allow a first crude assessment - revealing that the ponderomotive potential plays a role similar to that of the electrostatic potential arising from charge separation - but numerical implementation is required to get a feeling of the full dynamics. A few tentative examples are provided to illustrate the phenomena involved.« less

  2. Variation in sensitivity, absorption and density of the central rod distribution with eccentricity.

    PubMed

    Tornow, R P; Stilling, R

    1998-01-01

    To assess the human rod photopigment distribution and sensitivity with high spatial resolution within the central +/-15 degrees and to compare the results of pigment absorption, sensitivity and rod density distribution (number of rods per square degree). Rod photopigment density distribution was measured with imaging densitometry using a modified Rodenstock scanning laser ophthalmoscope. Dark-adapted sensitivity profiles were measured with green stimuli (17' arc diameter, 1 degrees spacing) using a T ubingen manual perimeter. Sensitivity profiles were plotted on a linear scale and rod photopigment optical density distribution profiles were converted to absorption profiles of the rod photopigment layer. Both the absorption profile of the rod photopigment and the linear sensitivity profile for green stimuli show a minimum at the foveal center and increase steeply with eccentricity. The variation with eccentricity corresponds to the rod density distribution. Rod photopigment absorption profiles, retinal sensitivity profiles, and the rod density distribution are linearly related within the central +/-15 degrees. This is in agreement with theoretical considerations. Both methods, imaging retinal densitometry using a scanning laser ophthalmoscope and dark-adapted perimetry with small green stimuli, are useful for assessing the central rod distribution and sensitivity. However, at present, both methods have limitations. Suggestions for improving the reliability of both methods are given.

  3. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1977-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are obtained. The approach is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. A general representation for optimum estimates and recursive equations for minimum mean squared error (MMSE) estimates are obtained. MMSE estimates are nonlinear functions of the observations. The problem of estimating the rate of a DTJP when the rate is a random variable with a probability density function of the form cx super K (l-x) super m and show that the MMSE estimates are linear in this case. This class of density functions explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  4. Optimal estimation for discrete time jump processes

    NASA Technical Reports Server (NTRS)

    Vaca, M. V.; Tretter, S. A.

    1978-01-01

    Optimum estimates of nonobservable random variables or random processes which influence the rate functions of a discrete time jump process (DTJP) are derived. The approach used is based on the a posteriori probability of a nonobservable event expressed in terms of the a priori probability of that event and of the sample function probability of the DTJP. Thus a general representation is obtained for optimum estimates, and recursive equations are derived for minimum mean-squared error (MMSE) estimates. In general, MMSE estimates are nonlinear functions of the observations. The problem is considered of estimating the rate of a DTJP when the rate is a random variable with a beta probability density function and the jump amplitudes are binomially distributed. It is shown that the MMSE estimates are linear. The class of beta density functions is rather rich and explains why there are insignificant differences between optimum unconstrained and linear MMSE estimates in a variety of problems.

  5. Re-examination of the relationship between marine virus and microbial cell abundances.

    PubMed

    Wigington, Charles H; Sonderegger, Derek; Brussaard, Corina P D; Buchan, Alison; Finke, Jan F; Fuhrman, Jed A; Lennon, Jay T; Middelboe, Mathias; Suttle, Curtis A; Stock, Charles; Wilson, William H; Wommack, K Eric; Wilhelm, Steven W; Weitz, Joshua S

    2016-01-25

    Marine viruses are critical drivers of ocean biogeochemistry, and their abundances vary spatiotemporally in the global oceans, with upper estimates exceeding 10(8) per ml. Over many years, a consensus has emerged that virus abundances are typically tenfold higher than microbial cell abundances. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5,671 microbial cell and virus abundance estimates from 25 distinct marine surveys and find substantial variation in the virus-to-microbial cell ratio, in which a 10:1 model has either limited or no explanatory power. Instead, virus abundances are better described as nonlinear, power-law functions of microbial cell abundances. The fitted scaling exponents are typically less than 1, implying that the virus-to-microbial cell ratio decreases with microbial cell density, rather than remaining fixed. The observed scaling also implies that viral effect sizes derived from 'representative' abundances require substantial refinement to be extrapolated to regional or global scales.

  6. Synthesis, characterization and calculated non-linear optical properties of two new chalcones

    NASA Astrophysics Data System (ADS)

    Singh, Ashok Kumar; Saxena, Gunjan; Prasad, Rajendra; Kumar, Abhinav

    2012-06-01

    Two new chalcones viz 3-(4-(benzyloxy)phenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (1) and 3-(4-chlorophenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2) have been prepared and characterized by micro analyses, 1H NMR, IR, UV-Vis spectroscopy and single crystal X-ray. The first static hyperpolarizability (β) for both the compounds has been investigated by density functional theory (DFT). Also, the solvent-induced effects on the non-linear optical properties (NLO) were studied by using self-consistent reaction field (SCRF) method. As the solvent polarity increases, the β value increases monotonically. The electronic absorption bands of both 1 and 2 have been assigned by time dependent density functional theory (TD-DFT). Both the compounds displayed better non-linear optical (NLO) responses than the standard p-nitroaniline (pNA).

  7. Statistics of primordial density perturbations from discrete seed masses

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Bertschinger, Edmund

    1991-01-01

    The statistics of density perturbations for general distributions of seed masses with arbitrary matter accretion is examined. Formal expressions for the power spectrum, the N-point correlation functions, and the density distribution function are derived. These results are applied to the case of uncorrelated seed masses, and power spectra are derived for accretion of both hot and cold dark matter plus baryons. The reduced moments (cumulants) of the density distribution are computed and used to obtain a series expansion for the density distribution function. Analytic results are obtained for the density distribution function in the case of a distribution of seed masses with a spherical top-hat accretion pattern. More generally, the formalism makes it possible to give a complete characterization of the statistical properties of any random field generated from a discrete linear superposition of kernels. In particular, the results can be applied to density fields derived by smoothing a discrete set of points with a window function.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seljak, Uroš; McDonald, Patrick, E-mail: useljak@berkeley.edu, E-mail: pvmcdonald@lbl.gov

    We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if kμu/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and μ = cos θ, with θ being the angle between the Fourier mode and the line of sight. We perform an expansionmore » of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum. We show that the dominant term of μ{sup 2} dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to μ{sup 2} and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term comes with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to μ{sup 4} dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter, highlighting the issue of scale dependent bias of velocity moments correlators.« less

  9. Time dependent density functional calculation of plasmon response in clusters

    NASA Astrophysics Data System (ADS)

    Wang, Feng; Zhang, Feng-Shou; Eric, Suraud

    2003-02-01

    We have introduced a theoretical scheme for the efficient description of the optical response of a cluster based on the time-dependent density functional theory. The practical implementation is done by means of the fully fledged time-dependent local density approximation scheme, which is solved directly in the time domain without any linearization. As an example we consider the simple Na2 cluster and compute its surface plasmon photoabsorption cross section, which is in good agreement with the experiments.

  10. Global-scale patterns of nutrient density and partitioning in forests in relation to climate.

    PubMed

    Zhang, Kerong; Song, Conghe; Zhang, Yulong; Dang, Haishan; Cheng, Xiaoli; Zhang, Quanfa

    2018-01-01

    Knowledge of nutrient storage and partitioning in forests is imperative for ecosystem models and ecological theory. Whether the nutrients (N, P, K, Ca, and Mg) stored in forest biomass and their partitioning patterns vary systematically across climatic gradients remains unknown. Here, we explored the global-scale patterns of nutrient density and partitioning using a newly compiled dataset including 372 forest stands. We found that temperature and precipitation were key factors driving the nutrients stored in living biomass of forests at global scale. The N, K, and Mg stored in living biomass tended to be greater in increasingly warm climates. The mean biomass N density was 577.0, 530.4, 513.2, and 336.7 kg/ha for tropical, subtropical, temperate, and boreal forests, respectively. Around 76% of the variation in biomass N density could be accounted by the empirical model combining biomass density, phylogeny (i.e., angiosperm, gymnosperm), and the interaction of mean annual temperature and precipitation. Climate, stand age, and biomass density significantly affected nutrients partitioning at forest community level. The fractional distribution of nutrients to roots decreased significantly with temperature, suggesting that forests in cold climates allocate greater nutrients to roots. Gymnosperm forests tended to allocate more nutrients to leaves as compared with angiosperm forests, whereas the angiosperm forests distributed more nutrients in stems. The nutrient-based Root:Shoot ratios (R:S), averaged 0.30 for R:S N , 0.36 for R:S P , 0.32 for R:S K , 0.27 for R:S Ca , and 0.35 for R:S Mg , respectively. The scaling exponents of the relationships describing root nutrients as a function of shoot nutrients were more than 1.0, suggesting that as nutrient allocated to shoot increases, nutrient allocated to roots increases faster than linearly with nutrient in shoot. Soil type significantly affected the total N, P, K, Ca, and Mg stored in living biomass of forests, and the Acrisols group displayed the lowest P, K, Ca, and Mg. © 2017 John Wiley & Sons Ltd.

  11. Is blue intensity ready to replace maximum latewood density as a strong temperature proxy? A tree-ring case study on Scots pine from northern Sweden

    NASA Astrophysics Data System (ADS)

    Björklund, J. A.; Gunnarson, B. E.; Seftigen, K.; Esper, J.; Linderholm, H. W.

    2013-09-01

    At high latitudes, where low temperatures mainly limit tree-growth, measurements of wood density (e.g. Maximum Latewood Density, MXD) using the X-Ray methodology provide a temperature proxy that is superior to that of TRW. Density measurements are however costly and time consuming and have lead to experimentation with optical flatbed scanners to produce Maximum Blue Intensity (BImax). BImax is an excellent proxy for density on annual scale but very limited in skill on centennial scale. Discolouration between samples is limiting BImax where specific brightnesses can have different densities. To overcome this, the new un-exploited parameter Δ blue intensity (ΔBI) was constructed by using the brightness in the earlywood (BIEW) as background, (BImax - BIEW = ΔBI). This parameter was tested on X-Ray material (MXD - earlywood density = ΔMXD) and showed great potential both as a quality control and as a booster of climate signals. Unfortunately since the relationship between grey scale and density is not linear, and between-sample brightness can differ tremendously for similar densities, ΔBI cannot fully match ΔMXD in skill as climate proxy on centennial scale. For ΔBI to stand alone, the range of brightness/density offset must be reduced. Further studies are needed to evaluate this possibility, and solutions might include heavier sample treatment (reflux with chemicals) or image-data treatment (digitally manipulating base-line levels of brightness).

  12. Topology of large-scale structure in seeded hot dark matter models

    NASA Technical Reports Server (NTRS)

    Beaky, Matthew M.; Scherrer, Robert J.; Villumsen, Jens V.

    1992-01-01

    The topology of the isodensity surfaces in seeded hot dark matter models, in which static seed masses provide the density perturbations in a universe dominated by massive neutrinos is examined. When smoothed with a Gaussian window, the linear initial conditions in these models show no trace of non-Gaussian behavior for r0 equal to or greater than 5 Mpc (h = 1/2), except for very low seed densities, which show a shift toward isolated peaks. An approximate analytic expression is given for the genus curve expected in linear density fields from randomly distributed seed masses. The evolved models have a Gaussian topology for r0 = 10 Mpc, but show a shift toward a cellular topology with r0 = 5 Mpc; Gaussian models with an identical power spectrum show the same behavior.

  13. A density functional theory for colloids with two multiple bonding associating sites.

    PubMed

    Haghmoradi, Amin; Wang, Le; Chapman, Walter G

    2016-06-22

    Wertheim's multi-density formalism is extended for patchy colloidal fluids with two multiple bonding patches. The theory is developed as a density functional theory to predict the properties of an associating inhomogeneous fluid. The equation of state developed for this fluid depends on the size of the patch, and includes formation of cyclic, branched and linear clusters of associated species. The theory predicts the density profile and the fractions of colloids in different bonding states versus the distance from one wall as a function of bulk density and temperature. The predictions from our theory are compared with previous results for a confined fluid with four single bonding association sites. Also, comparison between the present theory and Monte Carlo simulation indicates a good agreement.

  14. Scaling laws and deformation mechanisms of nanoporous copper under adiabatic uniaxial strain compression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Fuping, E-mail: fpyuan@lnm.imech.ac.cn; Wu, Xiaolei, E-mail: xlwu@imech.ac.cn

    2014-12-15

    A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative densitymore » ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions.« less

  15. From information theory to quantitative description of steric effects.

    PubMed

    Alipour, Mojtaba; Safari, Zahra

    2016-07-21

    Immense efforts have been made in the literature to apply the information theory descriptors for investigating the electronic structure theory of various systems. In the present study, the information theoretic quantities, such as Fisher information, Shannon entropy, Onicescu information energy, and Ghosh-Berkowitz-Parr entropy, have been used to present a quantitative description for one of the most widely used concepts in chemistry, namely the steric effects. Taking the experimental steric scales for the different compounds as benchmark sets, there are reasonable linear relationships between the experimental scales of the steric effects and theoretical values of steric energies calculated from information theory functionals. Perusing the results obtained from the information theoretic quantities with the two representations of electron density and shape function, the Shannon entropy has the best performance for the purpose. On the one hand, the usefulness of considering the contributions of functional groups steric energies and geometries, and on the other hand, dissecting the effects of both global and local information measures simultaneously have also been explored. Furthermore, the utility of the information functionals for the description of steric effects in several chemical transformations, such as electrophilic and nucleophilic reactions and host-guest chemistry, has been analyzed. The functionals of information theory correlate remarkably with the stability of systems and experimental scales. Overall, these findings show that the information theoretic quantities can be introduced as quantitative measures of steric effects and provide further evidences of the quality of information theory toward helping theoreticians and experimentalists to interpret different problems in real systems.

  16. Study of ion-gyroscale fluctuations in low-density L-mode plasmas heated by NBI on KSTAR

    NASA Astrophysics Data System (ADS)

    Lee, W.; Ko, S. H.; Leem, J.; Yun, G. S.; Park, H. K.; Wang, W. X.; Budny, R. V.; Kim, K. W.; Luhmann, N. C., Jr.; The KSTAR Team

    2018-04-01

    Broadband density fluctuations with peak frequency ranging from 150 to 400 kHz were measured using a multichannel microwave imaging reflectometer in core region of the low-density L-mode plasmas heated by neutral beam injection on KSTAR. These fluctuations have been studied by comparing the dominant mode scales estimated from the measurement with those predicted from linear gyrokinetic simulation. The measured poloidal wavenumbers are qualitatively comparable to those of the ‘fastest growing modes’ from simulations, whereas they are larger than those of the ‘transport-dominant modes’ by about a factor of three. The agreement on wavenumbers between the measurement and linear simulation (for the fastest growing modes) is probably due to sufficiently weak E × B flow shear compared to the maximum linear growth rate. Meanwhile, the transport-dominant modes seem to be related to the fluctuations in lower frequencies (˜80-150 kHz) observed in some of the measurement.

  17. Testing higher-order Lagrangian perturbation theory against numerical simulation. 1: Pancake models

    NASA Technical Reports Server (NTRS)

    Buchert, T.; Melott, A. L.; Weiss, A. G.

    1993-01-01

    We present results showing an improvement of the accuracy of perturbation theory as applied to cosmological structure formation for a useful range of quasi-linear scales. The Lagrangian theory of gravitational instability of an Einstein-de Sitter dust cosmogony investigated and solved up to the third order is compared with numerical simulations. In this paper we study the dynamics of pancake models as a first step. In previous work the accuracy of several analytical approximations for the modeling of large-scale structure in the mildly non-linear regime was analyzed in the same way, allowing for direct comparison of the accuracy of various approximations. In particular, the Zel'dovich approximation (hereafter ZA) as a subclass of the first-order Lagrangian perturbation solutions was found to provide an excellent approximation to the density field in the mildly non-linear regime (i.e. up to a linear r.m.s. density contrast of sigma is approximately 2). The performance of ZA in hierarchical clustering models can be greatly improved by truncating the initial power spectrum (smoothing the initial data). We here explore whether this approximation can be further improved with higher-order corrections in the displacement mapping from homogeneity. We study a single pancake model (truncated power-spectrum with power-spectrum with power-index n = -1) using cross-correlation statistics employed in previous work. We found that for all statistical methods used the higher-order corrections improve the results obtained for the first-order solution up to the stage when sigma (linear theory) is approximately 1. While this improvement can be seen for all spatial scales, later stages retain this feature only above a certain scale which is increasing with time. However, third-order is not much improvement over second-order at any stage. The total breakdown of the perturbation approach is observed at the stage, where sigma (linear theory) is approximately 2, which corresponds to the onset of hierarchical clustering. This success is found at a considerable higher non-linearity than is usual for perturbation theory. Whether a truncation of the initial power-spectrum in hierarchical models retains this improvement will be analyzed in a forthcoming work.

  18. Microhartree precision in density functional theory calculations

    NASA Astrophysics Data System (ADS)

    Gulans, Andris; Kozhevnikov, Anton; Draxl, Claudia

    2018-04-01

    To address ultimate precision in density functional theory calculations we employ the full-potential linearized augmented plane-wave + local-orbital (LAPW + lo) method and justify its usage as a benchmark method. LAPW + lo and two completely unrelated numerical approaches, the multiresolution analysis (MRA) and the linear combination of atomic orbitals, yield total energies of atoms with mean deviations of 0.9 and 0.2 μ Ha , respectively. Spectacular agreement with the MRA is reached also for total and atomization energies of the G2-1 set consisting of 55 molecules. With the example of α iron we demonstrate the capability of LAPW + lo to reach μ Ha /atom precision also for periodic systems, which allows also for the distinction between the numerical precision and the accuracy of a given functional.

  19. Flexible and scalable methods for quantifying stochastic variability in the era of massive time-domain astronomical data sets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, Brandon C.; Becker, Andrew C.; Sobolewska, Malgosia

    2014-06-10

    We present the use of continuous-time autoregressive moving average (CARMA) models as a method for estimating the variability features of a light curve, and in particular its power spectral density (PSD). CARMA models fully account for irregular sampling and measurement errors, making them valuable for quantifying variability, forecasting and interpolating light curves, and variability-based classification. We show that the PSD of a CARMA model can be expressed as a sum of Lorentzian functions, which makes them extremely flexible and able to model a broad range of PSDs. We present the likelihood function for light curves sampled from CARMA processes, placingmore » them on a statistically rigorous foundation, and we present a Bayesian method to infer the probability distribution of the PSD given the measured light curve. Because calculation of the likelihood function scales linearly with the number of data points, CARMA modeling scales to current and future massive time-domain data sets. We conclude by applying our CARMA modeling approach to light curves for an X-ray binary, two active galactic nuclei, a long-period variable star, and an RR Lyrae star in order to illustrate their use, applicability, and interpretation.« less

  20. Community coalitions as a system: effects of network change on adoption of evidence-based substance abuse prevention.

    PubMed

    Valente, Thomas W; Chou, Chich Ping; Pentz, Mary Ann

    2007-05-01

    We examined the effect of community coalition network structure on the effectiveness of an intervention designed to accelerate the adoption of evidence-based substance abuse prevention programs. At baseline, 24 cities were matched and randomly assigned to 3 conditions (control, satellite TV training, and training plus technical assistance). We surveyed 415 community leaders at baseline and 406 at 18-month follow-up about their attitudes and practices toward substance abuse prevention programs. Network structure was measured by asking leaders whom in their coalition they turned to for advice about prevention programs. The outcome was a scale with 4 subscales: coalition function, planning, achievement of benchmarks, and progress in prevention activities. We used multiple linear regression and path analysis to test hypotheses. Intervention had a significant effect on decreasing the density of coalition networks. The change in density subsequently increased adoption of evidence-based practices. Optimal community network structures for the adoption of public health programs are unknown, but it should not be assumed that increasing network density or centralization are appropriate goals. Lower-density networks may be more efficient for organizing evidence-based prevention programs in communities.

  1. Effects of sudden density changes in disordered superconductors and semiconductors

    NASA Astrophysics Data System (ADS)

    Assi, Hiba; Chaturvedi, Harshwardhan; Pleimling, Michel; Täuber, Uwe

    Vortices in type-II superconductors in the presence of extended, linear defects display the strongly pinned Bose glass phase at low temperatures. This disorder-dominated thermodynamic state is characterized by suppressed lateral flux line fluctuations and very slow structural relaxation kinetics: The vortices migrate between different columnar pinning centers to minimize the mutual repulsive interactions and eventually optimize the system's pinning configuration. To monitor the flux lines' late-time structural relaxations, we employ a mapping between an effectively two-dimensional Bose glass system and a modified Coulomb glass model, originally developed to describe disordered semiconductors at low temperatures. By means of Monte Carlo simulations, we investigate the effects of the introduction of random bare site energies and sudden changes in the vortex or charge carrier density on the soft Coulomb gap that appears in the density of states due to the emerging spatial anticorrelations. The non-equilibrium relaxation properties of the Bose and Coulomb glass states and the ensuing aging kinetics are studied through the two-time density autocorrelation function and its various scaling forms. Research supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-FG02-09ER46613.

  2. Intrinsic alignments of galaxies in the MassiveBlack-II simulation: Analysis of two-point statistics

    DOE PAGES

    Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; ...

    2015-03-11

    The intrinsic alignment of galaxies with the large-scale density field in an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (w g₊) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II (MB-II) simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reducedmore » tensor but that luminosity versus mass weighting has only negligible effects. Both ED and w g₊ correlations increase in amplitude with subhalo mass (in the range of 10¹⁰ – 6.0 X 10¹⁴h⁻¹ M ⊙), with a weak redshift dependence (from z = 1 to z = 0.06) at fixed mass. At z ~ 0.3, we predict a w g₊ that is in reasonable agreement with SDSS LRG measurements and that decreases in amplitude by a factor of ~ 5–18 for galaxies in the LSST survey. We also compared the intrinsic alignment of centrals and satellites, with clear detection of satellite radial alignments within the host halos. Finally, we show that w g₊ (using subhalos as tracers of density and w δ (using dark matter density) predictions from the simulations agree with that of non-linear alignment models (NLA) at scales where the 2-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The 1-halo term induces a scale dependent bias at small scales which is not modeled in the NLA model.« less

  3. Intrinsic alignments of galaxies in the MassiveBlack-II simulation: analysis of two-point statistics

    NASA Astrophysics Data System (ADS)

    Tenneti, Ananth; Singh, Sukhdeep; Mandelbaum, Rachel; di Matteo, Tiziana; Feng, Yu; Khandai, Nishikanta

    2015-04-01

    The intrinsic alignment of galaxies with the large-scale density field is an important astrophysical contaminant in upcoming weak lensing surveys. We present detailed measurements of the galaxy intrinsic alignments and associated ellipticity-direction (ED) and projected shape (wg+) correlation functions for galaxies in the cosmological hydrodynamic MassiveBlack-II simulation. We carefully assess the effects on galaxy shapes, misalignment of the stellar component with the dark matter shape and two-point statistics of iterative weighted (by mass and luminosity) definitions of the (reduced and unreduced) inertia tensor. We find that iterative procedures must be adopted for a reliable measurement of the reduced tensor but that luminosity versus mass weighting has only negligible effects. Both ED and wg+ correlations increase in amplitude with subhalo mass (in the range of 1010-6.0 × 1014 h-1 M⊙), with a weak redshift dependence (from z = 1 to 0.06) at fixed mass. At z ˜ 0.3, we predict a wg+ that is in reasonable agreement with Sloan Digital Sky Survey luminous red galaxy measurements and that decreases in amplitude by a factor of ˜5-18 for galaxies in the Large Synoptic Survey Telescope survey. We also compared the intrinsic alignments of centrals and satellites, with clear detection of satellite radial alignments within their host haloes. Finally, we show that wg+ (using subhaloes as tracers of density) and wδ+ (using dark matter density) predictions from the simulations agree with that of non-linear alignment (NLA) models at scales where the two-halo term dominates in the correlations (and tabulate associated NLA fitting parameters). The one-halo term induces a scale-dependent bias at small scales which is not modelled in the NLA model.

  4. Global hybrids from the semiclassical atom theory satisfying the local density linear response.

    PubMed

    Fabiano, Eduardo; Constantin, Lucian A; Cortona, Pietro; Della Sala, Fabio

    2015-01-13

    We propose global hybrid approximations of the exchange-correlation (XC) energy functional which reproduce well the modified fourth-order gradient expansion of the exchange energy in the semiclassical limit of many-electron neutral atoms and recover the full local density approximation (LDA) linear response. These XC functionals represent the hybrid versions of the APBE functional [Phys. Rev. Lett. 2011, 106, 186406] yet employing an additional correlation functional which uses the localization concept of the correlation energy density to improve the compatibility with the Hartree-Fock exchange as well as the coupling-constant-resolved XC potential energy. Broad energetic and structural testing, including thermochemistry and geometry, transition metal complexes, noncovalent interactions, gold clusters and small gold-molecule interfaces, as well as an analysis of the hybrid parameters, show that our construction is quite robust. In particular, our testing shows that the resulting hybrid, including 20% of Hartree-Fock exchange and named hAPBE, performs remarkably well for a broad palette of systems and properties, being generally better than popular hybrids (PBE0 and B3LYP). Semiempirical dispersion corrections are also provided.

  5. Long-lived light mediator to dark matter and primordial small scale spectrum

    DOE PAGES

    Zhang, Yue

    2015-05-01

    We calculate the early universe evolution of perturbations in the dark matter energy density in the context of simple dark sector models containing a GeV scale light mediator. We consider the case that the mediator is long-lived, with lifetime up to a second, and before decaying it temporarily dominates the energy density of the universe. We show that for primordial perturbations that enter the horizon around this period, the interplay between linear growth during matter domination and collisional damping can generically lead to a sharp peak in the spectrum of dark matter density perturbation. Finally, as a result, the populationmore » of the smallest DM halos gets enhanced. Possible implications of this scenario are discussed.« less

  6. The accuracy of the Gaussian-and-finite-element-Coulomb (GFC) method for the calculation of Coulomb integrals.

    PubMed

    Przybytek, Michal; Helgaker, Trygve

    2013-08-07

    We analyze the accuracy of the Coulomb energy calculated using the Gaussian-and-finite-element-Coulomb (GFC) method. In this approach, the electrostatic potential associated with the molecular electronic density is obtained by solving the Poisson equation and then used to calculate matrix elements of the Coulomb operator. The molecular electrostatic potential is expanded in a mixed Gaussian-finite-element (GF) basis set consisting of Gaussian functions of s symmetry centered on the nuclei (with exponents obtained from a full optimization of the atomic potentials generated by the atomic densities from symmetry-averaged restricted open-shell Hartree-Fock theory) and shape functions defined on uniform finite elements. The quality of the GF basis is controlled by means of a small set of parameters; for a given width of the finite elements d, the highest accuracy is achieved at smallest computational cost when tricubic (n = 3) elements are used in combination with two (γ(H) = 2) and eight (γ(1st) = 8) Gaussians on hydrogen and first-row atoms, respectively, with exponents greater than a given threshold (αmin (G)=0.5). The error in the calculated Coulomb energy divided by the number of atoms in the system depends on the system type but is independent of the system size or the orbital basis set, vanishing approximately like d(4) with decreasing d. If the boundary conditions for the Poisson equation are calculated in an approximate way, the GFC method may lose its variational character when the finite elements are too small; with larger elements, it is less sensitive to inaccuracies in the boundary values. As it is possible to obtain accurate boundary conditions in linear time, the overall scaling of the GFC method for large systems is governed by another computational step-namely, the generation of the three-center overlap integrals with three Gaussian orbitals. The most unfavorable (nearly quadratic) scaling is observed for compact, truly three-dimensional systems; however, this scaling can be reduced to linear by introducing more effective techniques for recognizing significant three-center overlap distributions.

  7. Beyond δ: Tailoring marked statistics to reveal modified gravity

    NASA Astrophysics Data System (ADS)

    Valogiannis, Georgios; Bean, Rachel

    2018-01-01

    Models which attempt to explain the accelerated expansion of the universe through large-scale modifications to General Relativity (GR), must satisfy the stringent experimental constraints of GR in the solar system. Viable candidates invoke a “screening” mechanism, that dynamically suppresses deviations in high density environments, making their overall detection challenging even for ambitious future large-scale structure surveys. We present methods to efficiently simulate the non-linear properties of such theories, and consider how a series of statistics that reweight the density field to accentuate deviations from GR can be applied to enhance the overall signal-to-noise ratio in differentiating the models from GR. Our results demonstrate that the cosmic density field can yield additional, invaluable cosmological information, beyond the simple density power spectrum, that will enable surveys to more confidently discriminate between modified gravity models and ΛCDM.

  8. The correlation function for density perturbations in an expanding universe. IV - The evolution of the correlation function. [galaxy distribution

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1979-01-01

    The evolution of the two-point correlation function for the large-scale distribution of galaxies in an expanding universe is studied on the assumption that the perturbation densities lie in a Gaussian distribution centered on any given mass scale. The perturbations are evolved according to the Friedmann equation, and the correlation function for the resulting distribution of perturbations at the present epoch is calculated. It is found that: (1) the computed correlation function gives a satisfactory fit to the observed function in cosmological models with a density parameter (Omega) of approximately unity, provided that a certain free parameter is suitably adjusted; (2) the power-law slope in the nonlinear regime reflects the initial fluctuation spectrum, provided that the density profile of individual perturbations declines more rapidly than the -2.4 power of distance; and (3) both positive and negative contributions to the correlation function are predicted for cosmological models with Omega less than unity.

  9. Local control theory using trajectory surface hopping and linear-response time-dependent density functional theory.

    PubMed

    Curchod, Basile F E; Penfold, Thomas J; Rothlisberger, Ursula; Tavernelli, Ivano

    2013-01-01

    The implementation of local control theory using nonadiabatic molecular dynamics within the framework of linear-response time-dependent density functional theory is discussed. The method is applied to study the photoexcitation of lithium fluoride, for which we demonstrate that this approach can efficiently generate a pulse, on-the-fly, able to control the population transfer between two selected electronic states. Analysis of the computed control pulse yields insights into the photophysics of the process identifying the relevant frequencies associated to the curvature of the initial and final state potential energy curves and their energy differences. The limitations inherent to the use of the trajectory surface hopping approach are also discussed.

  10. Galaxy Clustering, Photometric Redshifts and Diagnosis of Systematics in the DES Science Verification Data

    DOE PAGES

    Crocce, M.

    2015-12-09

    We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 × 106 galaxies over a contiguous 116 deg 2 region in five bins of photometric redshift width Δz = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-zalgorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterizemore » and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we then measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Λ cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with χ 2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. Furthermore, we test a ‘linear bias’ model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 percent accuracy down to scales at least 4–10 times smaller than those on which linear theory is expected to be sufficient.« less

  11. Galaxy Clustering, Photometric Redshifts and Diagnosis of Systematics in the DES Science Verification Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crocce, M.

    We study the clustering of galaxies detected at i < 22.5 in the Science Verification observations of the Dark Energy Survey (DES). Two-point correlation functions are measured using 2.3 × 106 galaxies over a contiguous 116 deg 2 region in five bins of photometric redshift width Δz = 0.2 in the range 0.2 < z < 1.2. The impact of photometric redshift errors is assessed by comparing results using a template-based photo-zalgorithm (BPZ) to a machine-learning algorithm (TPZ). A companion paper presents maps of several observational variables (e.g. seeing, sky brightness) which could modulate the galaxy density. Here we characterizemore » and mitigate systematic errors on the measured clustering which arise from these observational variables, in addition to others such as Galactic dust and stellar contamination. After correcting for systematic effects, we then measure galaxy bias over a broad range of linear scales relative to mass clustering predicted from the Planck Λ cold dark matter model, finding agreement with the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) measurements with χ 2 of 4.0 (8.7) with 5 degrees of freedom for the TPZ (BPZ) redshifts. Furthermore, we test a ‘linear bias’ model, in which the galaxy clustering is a fixed multiple of the predicted non-linear dark matter clustering. The precision of the data allows us to determine that the linear bias model describes the observed galaxy clustering to 2.5 percent accuracy down to scales at least 4–10 times smaller than those on which linear theory is expected to be sufficient.« less

  12. Shock-driven transition to turbulence: Emergence of power-law scaling

    DOE PAGES

    Olmstead, D.; Wayne, P.; Simons, D.; ...

    2017-05-25

    Here, we consider two cases of interaction between a planar shock and a cylindrical density interface. In the first case (planar normal shock), the axis of the gas cylinder is parallel to the shock front and baroclinic vorticity deposited by the shock is predominantly two dimensional (directed along the axis of the cylinder). In the second case, the cylinder is tilted, resulting in an oblique shock interaction and a fully-three-dimensional shock-induced vorticity field. Furthermore, the statistical properties of the flow for both cases are analyzed based on images from two orthogonal visualization planes, using structure functions of the intensity mapsmore » of fluorescent tracer premixed with heavy gas. And at later times, these structure functions exhibit power-law-like behavior over a considerable range of scales. Manifestation of this behavior is remarkably consistent in terms of dimensionless time τ defined based on Richtmyer's linear theory within the range of Mach numbers from 1.1 to 2.0 and the range of gas cylinder tilt angles with respect to the plane of the shock front (0–30°).« less

  13. A 2 per cent distance to z = 0.35 by reconstructing baryon acoustic oscillations - I. Methods and application to the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Padmanabhan, Nikhil; Xu, Xiaoying; Eisenstein, Daniel J.; Scalzo, Richard; Cuesta, Antonio J.; Mehta, Kushal T.; Kazin, Eyal

    2012-12-01

    We present the first application to density field reconstruction to a galaxy survey to undo the smoothing of the baryon acoustic oscillation (BAO) feature due to non-linear gravitational evolution and thereby improve the precision of the distance measurements possible. We apply the reconstruction technique to the clustering of galaxies from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7) luminous red galaxy (LRG) sample, sharpening the BAO feature and achieving a 1.9 per cent measurement of the distance to z = 0.35. We update the reconstruction algorithm of Eisenstein et al. to account for the effects of survey geometry as well as redshift-space distortions and validate it on 160 LasDamas simulations. We demonstrate that reconstruction sharpens the BAO feature in the angle averaged galaxy correlation function, reducing the non-linear smoothing scale Σnl from 8.1 to 4.4 Mpc h-1. Reconstruction also significantly reduces the effects of redshift-space distortions at the BAO scale, isotropizing the correlation function. This sharpened BAO feature yields an unbiased distance estimate (<0.2 per cent) and reduces the scatter from 3.3 to 2.1 per cent. We demonstrate the robustness of these results to the various reconstruction parameters, including the smoothing scale, the galaxy bias and the linear growth rate. Applying this reconstruction algorithm to the SDSS LRG DR7 sample improves the significance of the BAO feature in these data from 3.3σ for the unreconstructed correlation function to 4.2σ after reconstruction. We estimate a relative distance scale DV/rs to z = 0.35 of 8.88 ± 0.17, where rs is the sound horizon and DV≡(DA2H-1)1/3 is a combination of the angular diameter distance DA and Hubble parameter H. Assuming a sound horizon of 154.25 Mpc, this translates into a distance measurement DV(z = 0.35) = 1.356 ± 0.025 Gpc. We find that reconstruction reduces the distance error in the DR7 sample from 3.5 to 1.9 per cent, equivalent to a survey with three times the volume of SDSS.

  14. Comparison of large-scale structures and velocities in the local universe

    NASA Technical Reports Server (NTRS)

    Yahil, Amos

    1994-01-01

    Comparison of the large-scale density and velocity fields in the local universe shows detailed agreement, strengthening the standard paradigm of the gravitational origin of these structures. Quantitative analysis can determine the cosmological density parameter, Omega, and biasing factor, b; there is virtually no sensitivity in any local analyses to the cosmologial constant, lambda. Comparison of the dipole anisotropy of the cosmic microwave background with the acceleration due to the Infrared Astronomy Satellite (IRAS) galaxies puts the linear growth factor in the range beta approximately equals Omega (exp 0.6)/b = 0.6(+0.7/-0.3) (95% confidence). A direct comparison of the density and velocity fields of nearby galaxies gives beta = 1.3 (+0.7/-0.6), and from nonlinear analysis the weaker limit (Omega greater than 0.45 for b greater than 0.5 (again 95% confidence). A tighter limit (Omega greater than 0.3 (4-6 sigma)), is obtained by a reconstruction of the probability distribution function of the initial fluctuations from which the structures observed today arose. The last two methods depend critically on the smooth velocity field determined from the observed velocities of nearby galaxies by the POTENT method. A new analysis of these velocities, with more than three times the data used to obtain the above quoted results, is now underway and promises to tighten the uncertainties considerably, as well as reduce systematic bias.

  15. The virialization density of peaks with general density profiles under spherical collapse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, Douglas; Loeb, Abraham, E-mail: dsrubin@physics.harvard.edu, E-mail: aloeb@cfa.harvard.edu

    2013-12-01

    We calculate the non-linear virialization density, Δ{sub c}, of halos under spherical collapse from peaks with an arbitrary initial and final density profile. This is in contrast to the standard calculation of Δ{sub c} which assumes top-hat profiles. Given our formalism, the non-linear halo density can be calculated once the shape of the initial peak's density profile and the shape of the virialized halo's profile are provided. We solve for Δ{sub c} for halos in an Einstein de-Sitter and a ΛCDM universe. As examples, we consider power-law initial profiles as well as spherically averaged peak profiles calculated from the statisticsmore » of a Gaussian random field. We find that, depending on the profiles used, Δ{sub c} is smaller by a factor of a few to as much as a factor of 10 as compared to the density given by the standard calculation ( ≈ 200). Using our results, we show that, for halo finding algorithms that identify halos through an over-density threshold, the halo mass function measured from cosmological simulations can be enhanced at all halo masses by a factor of a few. This difference could be important when using numerical simulations to assess the validity of analytic models of the halo mass function.« less

  16. Scaled Quantum Mechanical scale factors for vibrational calculations using alternate polarized and augmented basis sets with the B3LYP density functional calculation model

    NASA Astrophysics Data System (ADS)

    Legler, C. R.; Brown, N. R.; Dunbar, R. A.; Harness, M. D.; Nguyen, K.; Oyewole, O.; Collier, W. B.

    2015-06-01

    The Scaled Quantum Mechanical (SQM) method of scaling calculated force constants to predict theoretically calculated vibrational frequencies is expanded to include a broad array of polarized and augmented basis sets based on the split valence 6-31G and 6-311G basis sets with the B3LYP density functional. Pulay's original choice of a single polarized 6-31G(d) basis coupled with a B3LYP functional remains the most computationally economical choice for scaled frequency calculations. But it can be improved upon with additional polarization functions and added diffuse functions for complex molecular systems. The new scale factors for the B3LYP density functional and the 6-31G, 6-31G(d), 6-31G(d,p), 6-31G+(d,p), 6-31G++(d,p), 6-311G, 6-311G(d), 6-311G(d,p), 6-311G+(d,p), 6-311G++(d,p), 6-311G(2d,p), 6-311G++(2d,p), 6-311G++(df,p) basis sets are shown. The double d polarized models did not perform as well and the source of the decreased accuracy was investigated. An alternate system of generating internal coordinates that uses the out-of plane wagging coordinate whenever it is possible; makes vibrational assignments via potential energy distributions more meaningful. Automated software to produce SQM scaled vibrational calculations from different molecular orbital packages is presented.

  17. Inviscid linear stability analysis of two vertical columns of different densities in a gravitational acceleration field

    DOE PAGES

    Prathama, Aditya Heru; Pantano, Carlos

    2017-08-09

    Here, we study the inviscid linear stability of a vertical interface separating two fluids of different densities and subject to a gravitational acceleration field parallel to the interface. In this arrangement, the two free streams are constantly accelerated, which means that the linear stability analysis is not amenable to Fourier or Laplace solution in time. Instead, we derive the equations analytically by the initial-value problem method and express the solution in terms of the well-known parabolic cylinder function. The results, which can be classified as an accelerating Kelvin–Helmholtz configuration, show that even in the presence of surface tension, the interfacemore » is unconditionally unstable at all wavemodes. This is a consequence of the ever increasing momentum of the free streams, as gravity accelerates them indefinitely. The instability can be shown to grow as the exponential of a quadratic function of time.« less

  18. Energy level alignment of self-assembled linear chains of benzenediamine on Au(111) from first principles

    NASA Astrophysics Data System (ADS)

    Li, Guo; Rangel, Tonatiuh; Liu, Zhen-Fei; Cooper, Valentino R.; Neaton, Jeffrey B.

    2016-03-01

    Using density functional theory (DFT) with a van der Waals density functional, we calculate the adsorption energetics and geometry of benzenediamine (BDA) molecules on Au(111) surfaces. Our results demonstrate that the reported self-assembled linear chain structure of BDA, stabilized via hydrogen bonds between amine groups, is energetically favored over previously studied monomeric phases. Moreover, using a model, which includes nonlocal polarization effects from the substrate and the neighboring molecules and incorporates many-body perturbation theory calculations within the GW approximation, we obtain approximate self-energy corrections to the DFT highest occupied molecular orbital (HOMO) energy associated with BDA adsorbate phases. We find that, independent of coverage, the HOMO energy of the linear chain phase is lower relative to the Fermi energy than that of the monomer phase, and in good agreement with values measured with ultraviolet photoelectron spectroscopy and x-ray photoelectron spectroscopy.

  19. Deer density and disease prevalence influence transmission of Chronic Wasting Disease in White-tailed Deer

    USGS Publications Warehouse

    Samuel, Michael D.; Richards, Bryan J.; Storm, Daniel J.; Rolley, Robert E.; Shelton, Paul; Nicholas S. Keuler,; Timothy R. Van Deelen,

    2013-01-01

    Host-parasite dynamics and strategies for managing infectious diseases of wildlife depend on the functional relationship between disease transmission rates and host density. However, the disease transmission function is rarely known for free-living wildlife, leading to uncertainty regarding the impacts of diseases on host populations and effective control actions. We evaluated the influence of deer density, landscape features, and soil clay content on transmission of chronic wasting disease (CWD) in young (<2-year-old) white-tailed deer (Odocoileus virginianus) in south-central Wisconsin, USA. We evaluated how frequency-dependent, density-dependent, and intermediate transmission models predicted CWD incidence rates in harvested yearling deer. An intermediate transmission model, incorporating both disease prevalence and density of infected deer, performed better than simple density- and frequency-dependent models. Our results indicate a combination of social structure, non-linear relationships between infectious contact and deer density, and distribution of disease among groups are important factors driving CWD infection in young deer. The landscape covariates % deciduous forest cover and forest edge density also were positively associated with infection rates, but soil clay content had no measurable influences on CWD transmission. Lack of strong density-dependent transmission rates indicates that controlling CWD by reducing deer density will be difficult. The consequences of non-linear disease transmission and aggregation of disease on cervid populations deserves further consideration.

  20. Density functional theory calculations of the water interactions with ZrO2 nanoparticles Y2O3 doped

    NASA Astrophysics Data System (ADS)

    Subhoni, Mekhrdod; Kholmurodov, Kholmirzo; Doroshkevich, Aleksandr; Asgerov, Elmar; Yamamoto, Tomoyuki; Lyubchyk, Andrei; Almasan, Valer; Madadzada, Afag

    2018-03-01

    Development of a new electricity generation techniques is one of the most relevant tasks, especially nowadays under conditions of extreme growth in energy consumption. The exothermic heterogeneous electrochemical energy conversion to the electric energy through interaction of the ZrO2 based nanopowder system with atmospheric moisture is one of the ways of electric energy obtaining. The questions of conversion into the electric form of the energy of water molecules adsorption in 3 mol% Y2O3 doped ZrO2 nanopowder systems were investigated using the density functional theory calculations. The density functional theory calculations has been realized as in the Kohn-Sham formulation, where the exchange-correlation potential is approximated by a functional of the electronic density. The electronic density, total energy and band structure calculations are carried out using the all-electron, full potential, linear augmented plane wave method of the electronic density and related approximations, i.e. the local density, the generalized gradient and their hybrid approximations.

  1. Tight-binding approximations to time-dependent density functional theory — A fast approach for the calculation of electronically excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rüger, Robert, E-mail: rueger@scm.com; Department of Theoretical Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam; Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Linnéstr. 2, 04103 Leipzig

    2016-05-14

    We propose a new method of calculating electronically excited states that combines a density functional theory based ground state calculation with a linear response treatment that employs approximations used in the time-dependent density functional based tight binding (TD-DFTB) approach. The new method termed time-dependent density functional theory TD-DFT+TB does not rely on the DFTB parametrization and is therefore applicable to systems involving all combinations of elements. We show that the new method yields UV/Vis absorption spectra that are in excellent agreement with computationally much more expensive TD-DFT calculations. Errors in vertical excitation energies are reduced by a factor of twomore » compared to TD-DFTB.« less

  2. ωB97X-V: A 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mardirossian, Narbe; Head-Gordon, Martin

    2013-12-18

    A 10-parameter, range-separated hybrid (RSH), generalized gradient approximation (GGA) density functional with nonlocal correlation (VV10) is presented in this paper. Instead of truncating the B97-type power series inhomogeneity correction factors (ICF) for the exchange, same-spin correlation, and opposite-spin correlation functionals uniformly, all 16 383 combinations of the linear parameters up to fourth order (m = 4) are considered. These functionals are individually fit to a training set and the resulting parameters are validated on a primary test set in order to identify the 3 optimal ICF expansions. Through this procedure, it is discovered that the functional that performs best onmore » the training and primary test sets has 7 linear parameters, with 3 additional nonlinear parameters from range-separation and nonlocal correlation. The resulting density functional, ωB97X-V, is further assessed on a secondary test set, the parallel-displaced coronene dimer, as well as several geometry datasets. Finally and furthermore, the basis set dependence and integration grid sensitivity of ωB97X-V are analyzed and documented in order to facilitate the use of the functional.« less

  3. 50 Years of ``Scaling'' Jack Kilby's Invention

    NASA Astrophysics Data System (ADS)

    Doering, Robert

    2008-03-01

    This year is the 50th anniversary of Jack Kilby's 1958 invention of the integrated circuit (IC), for which he won the 2000 Nobel Prize in Physics. Since that invention in a laboratory at Texas Instruments, IC components have been continuously miniaturized, which has resulted in exponential improvement trends in their performance, energy efficiency, and cost per function. These improvements have created a semiconductor industry that has grown to over 250B in annual sales. The process of reducing integrated-circuit component size and associated parameters in a coordinated fashion is traditionally called ``feature-size scaling.'' Kilby's original circuit had active (transistor) and passive (resistor, capacitor) components with dimensions of a few millimeters. Today, the minimum feature sizes on integrated circuits are less than 30 nanometers for patterned line widths and down to about one nanometer for film thicknesses. Thus, we have achieved about five orders of magnitude in linear-dimension scaling over the past fifty years, which has resulted in about ten orders of magnitude increase in the density of IC components, a representation of ``Moore's Law.'' As IC features are approaching atomic dimensions, increasing emphasis is now being given to the parallel effort of further diversifying the types of components in integrated circuits. This is called ``functional scaling'' and ``more then Moore.'' Of course, the enablers for both types of scaling have been developed at many laboratories around the world. This talk will review a few of the highlights in scaling and its applications from R&D projects at Texas Instruments.

  4. Density Functional Theory Calculations of the Dissociation of H[2] on (100) 2H-MoS[2] Surfaces: A Key Step in the Hydroprocessing of Crude Oil

    ERIC Educational Resources Information Center

    Todorova, Teodora; Alexiev, Valentin; Weber, Thomas

    2006-01-01

    Hydrogen activation on the (100) surface of MoS[2] structures was investigated by means of density functional theory calculations. Linear and quadratic synchronous transit methods with a conjugate gradient refinement of the saddle point were used to localize transition states. The calculations include heterolytic and homolytic dissociation of…

  5. Vanishing-Overhead Linear-Scaling Random Phase Approximation by Cholesky Decomposition and an Attenuated Coulomb-Metric.

    PubMed

    Luenser, Arne; Schurkus, Henry F; Ochsenfeld, Christian

    2017-04-11

    A reformulation of the random phase approximation within the resolution-of-the-identity (RI) scheme is presented, that is competitive to canonical molecular orbital RI-RPA already for small- to medium-sized molecules. For electronically sparse systems drastic speedups due to the reduced scaling behavior compared to the molecular orbital formulation are demonstrated. Our reformulation is based on two ideas, which are independently useful: First, a Cholesky decomposition of density matrices that reduces the scaling with basis set size for a fixed-size molecule by one order, leading to massive performance improvements. Second, replacement of the overlap RI metric used in the original AO-RPA by an attenuated Coulomb metric. Accuracy is significantly improved compared to the overlap metric, while locality and sparsity of the integrals are retained, as is the effective linear scaling behavior.

  6. A quantum relaxation-time approximation for finite fermion systems

    NASA Astrophysics Data System (ADS)

    Reinhard, P.-G.; Suraud, E.

    2015-03-01

    We propose a relaxation time approximation for the description of the dynamics of strongly excited fermion systems. Our approach is based on time-dependent density functional theory at the level of the local density approximation. This mean-field picture is augmented by collisional correlations handled in relaxation time approximation which is inspired from the corresponding semi-classical picture. The method involves the estimate of microscopic relaxation rates/times which is presently taken from the well established semi-classical experience. The relaxation time approximation implies evaluation of the instantaneous equilibrium state towards which the dynamical state is progressively driven at the pace of the microscopic relaxation time. As test case, we consider Na clusters of various sizes excited either by a swift ion projectile or by a short and intense laser pulse, driven in various dynamical regimes ranging from linear to strongly non-linear reactions. We observe a strong effect of dissipation on sensitive observables such as net ionization and angular distributions of emitted electrons. The effect is especially large for moderate excitations where typical relaxation/dissipation time scales efficiently compete with ionization for dissipating the available excitation energy. Technical details on the actual procedure to implement a working recipe of such a quantum relaxation approximation are given in appendices for completeness.

  7. Regional co-location pattern scoping on a street network considering distance decay effects of spatial interaction

    PubMed Central

    Yu, Wenhao

    2017-01-01

    Regional co-location scoping intends to identify local regions where spatial features of interest are frequently located together. Most of the previous researches in this domain are conducted on a global scale and they assume that spatial objects are embedded in a 2-D space, but the movement in urban space is actually constrained by the street network. In this paper we refine the scope of co-location patterns to 1-D paths consisting of nodes and segments. Furthermore, since the relations between spatial events are usually inversely proportional to their separation distance, the proposed method introduces the “Distance Decay Effects” to improve the result. Specifically, our approach first subdivides the street edges into continuous small linear segments. Then a value representing the local distribution intensity of events is estimated for each linear segment using the distance-decay function. Each kind of geographic feature can lead to a tessellated network with density attribute, and the generated multiple networks for the pattern of interest will be finally combined into a composite network by calculating the co-location prevalence measure values, which are based on the density variation between different features. Our experiments verify that the proposed approach is effective in urban analysis. PMID:28763496

  8. Simplified model of statistically stationary spacecraft rotation and associated induced gravity environments

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H.; Holland, R. L.

    1978-01-01

    A stochastic model of spacecraft motion was developed based on the assumption that the net torque vector due to crew activity and rocket thruster firings is a statistically stationary Gaussian vector process. The process had zero ensemble mean value, and the components of the torque vector were mutually stochastically independent. The linearized rigid-body equations of motion were used to derive the autospectral density functions of the components of the spacecraft rotation vector. The cross-spectral density functions of the components of the rotation vector vanish for all frequencies so that the components of rotation were mutually stochastically independent. The autospectral and cross-spectral density functions of the induced gravity environment imparted to scientific apparatus rigidly attached to the spacecraft were calculated from the rotation rate spectral density functions via linearized inertial frame to body-fixed principal axis frame transformation formulae. The induced gravity process was a Gaussian one with zero mean value. Transformation formulae were used to rotate the principal axis body-fixed frame to which the rotation rate and induced gravity vector were referred to a body-fixed frame in which the components of the induced gravity vector were stochastically independent. Rice's theory of exceedances was used to calculate expected exceedance rates of the components of the rotation and induced gravity vector processes.

  9. Study on the Electronic Transport Properties of Zigzag GaN Nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Enling; Wang, Xiqiang; Hou, Liping; Zhao, Danna; Dai, Yuanbin; Wang, Xuewen

    2011-02-01

    The electronic transport properties of zigzag GaN nanotubes (n, 0) (4 <= n <= 9) have been calculated using the density functional theory and non-equilibrium Green's functions method. Firstly, the density functional theory (DFT) is used to optimize and calculate the electronic structure of GaNNTs (n, 0) (4<=n<=9). Secondly, DFT and non-equilibrium Green function (NEGF) method are also used to predict the electronic transport properties of GaNNTs two-probe system. The results showed: there is a corresponding relation between the electronic transport properties and the valley of state density of each GaNNT. In addition, the volt-ampere curve of GaNNT is approximately linear.

  10. The probability density function (PDF) of Lagrangian Turbulence

    NASA Astrophysics Data System (ADS)

    Birnir, B.

    2012-12-01

    The statistical theory of Lagrangian turbulence is derived from the stochastic Navier-Stokes equation. Assuming that the noise in fully-developed turbulence is a generic noise determined by the general theorems in probability, the central limit theorem and the large deviation principle, we are able to formulate and solve the Kolmogorov-Hopf equation for the invariant measure of the stochastic Navier-Stokes equations. The intermittency corrections to the scaling exponents of the structure functions require a multiplicative (multipling the fluid velocity) noise in the stochastic Navier-Stokes equation. We let this multiplicative noise, in the equation, consists of a simple (Poisson) jump process and then show how the Feynmann-Kac formula produces the log-Poissonian processes, found by She and Leveque, Waymire and Dubrulle. These log-Poissonian processes give the intermittency corrections that agree with modern direct Navier-Stokes simulations (DNS) and experiments. The probability density function (PDF) plays a key role when direct Navier-Stokes simulations or experimental results are compared to theory. The statistical theory of turbulence is determined, including the scaling of the structure functions of turbulence, by the invariant measure of the Navier-Stokes equation and the PDFs for the various statistics (one-point, two-point, N-point) can be obtained by taking the trace of the corresponding invariant measures. Hopf derived in 1952 a functional equation for the characteristic function (Fourier transform) of the invariant measure. In distinction to the nonlinear Navier-Stokes equation, this is a linear functional differential equation. The PDFs obtained from the invariant measures for the velocity differences (two-point statistics) are shown to be the four parameter generalized hyperbolic distributions, found by Barndorff-Nilsen. These PDF have heavy tails and a convex peak at the origin. A suitable projection of the Kolmogorov-Hopf equations is the differential equation determining the generalized hyperbolic distributions. Then we compare these PDFs with DNS results and experimental data.

  11. Quantum criticality of the two-channel pseudogap Anderson model: universal scaling in linear and non-linear conductance.

    PubMed

    Wu, Tsan-Pei; Wang, Xiao-Qun; Guo, Guang-Yu; Anders, Frithjof; Chung, Chung-Hou

    2016-05-05

    The quantum criticality of the two-lead two-channel pseudogap Anderson impurity model is studied. Based on the non-crossing approximation (NCA) and numerical renormalization group (NRG) approaches, we calculate both the linear and nonlinear conductance of the model at finite temperatures with a voltage bias and a power-law vanishing conduction electron density of states, ρc(ω) proportional |ω − μF|(r) (0 < r < 1) near the Fermi energy μF. At a fixed lead-impurity hybridization, a quantum phase transition from the two-channel Kondo (2CK) to the local moment (LM) phase is observed with increasing r from r = 0 to r = rc < 1. Surprisingly, in the 2CK phase, different power-law scalings from the well-known [Formula: see text] or [Formula: see text] form is found. Moreover, novel power-law scalings in conductances at the 2CK-LM quantum critical point are identified. Clear distinctions are found on the critical exponents between linear and non-linear conductance at criticality. The implications of these two distinct quantum critical properties for the non-equilibrium quantum criticality in general are discussed.

  12. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Measuring non-linear galaxy bias at z ~ 0.8

    NASA Astrophysics Data System (ADS)

    Di Porto, C.; Branchini, E.; Bel, J.; Marulli, F.; Bolzonella, M.; Cucciati, O.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Marinoni, C.; Moscardini, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Cappi, A.; Coupon, J.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Marchetti, A.; Martizzi, D.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Viel, M.; Wolk, M.; Zamorani, G.

    2016-10-01

    Aims: We use the first release of the VImos Public Extragalactic Redshift Survey of galaxies (VIPERS) of ~50 000 objects to measure the biasing relation between galaxies and mass in the redshift range z = [ 0.5,1.1 ]. Methods: We estimate the 1-point distribution function [PDF] of VIPERS galaxies from counts in cells and, assuming a model for the mass PDF, we infer their mean bias relation. The reconstruction of the bias relation is performed through a novel method that accounts for Poisson noise, redshift distortions, inhomogeneous sky coverage. and other selection effects. With this procedure we constrain galaxy bias and its deviations from linearity down to scales as small as 4 h-1 Mpc and out to z = 1.1. Results: We detect small (up to 2%) but statistically significant (up to 3σ) deviations from linear bias. The mean biasing function is close to linear in regions above the mean density. The mean slope of the biasing relation is a proxy to the linear bias parameter. This slope increases with luminosity, which is in agreement with results of previous analyses. We detect a strong bias evolution only for z> 0.9, which is in agreement with some, but not all, previous studies. We also detect a significant increase of the bias with the scale, from 4 to 8 h-1 Mpc , now seen for the first time out to z = 1. The amplitude of non-linearity depends on redshift, luminosity, and scale, but no clear trend is detected. Owing to the large cosmic volume probed by VIPERS, we find that the mismatch between the previous estimates of bias at z ~ 1 from zCOSMOS and VVDS-Deep galaxy samples is fully accounted for by cosmic variance. Conclusions: The results of our work confirm the importance of going beyond the over-simplistic linear bias hypothesis showing that non-linearities can be accurately measured through the applications of the appropriate statistical tools to existing datasets like VIPERS. Based on observations collected at the European Southern Observatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the Very Large Telescope, and also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://vipers.inaf.it/

  13. Intuitive Density Functional Theory-Based Energy Decomposition Analysis for Protein-Ligand Interactions.

    PubMed

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2017-04-11

    First-principles quantum mechanical calculations with methods such as density functional theory (DFT) allow the accurate calculation of interaction energies between molecules. These interaction energies can be dissected into chemically relevant components such as electrostatics, polarization, and charge transfer using energy decomposition analysis (EDA) approaches. Typically EDA has been used to study interactions between small molecules; however, it has great potential to be applied to large biomolecular assemblies such as protein-protein and protein-ligand interactions. We present an application of EDA calculations to the study of ligands that bind to the thrombin protein, using the ONETEP program for linear-scaling DFT calculations. Our approach goes beyond simply providing the components of the interaction energy; we are also able to provide visual representations of the changes in density that happen as a result of polarization and charge transfer, thus pinpointing the functional groups between the ligand and protein that participate in each kind of interaction. We also demonstrate with this approach that we can focus on studying parts (fragments) of ligands. The method is relatively insensitive to the protocol that is used to prepare the structures, and the results obtained are therefore robust. This is an application to a real protein drug target of a whole new capability where accurate DFT calculations can produce both energetic and visual descriptors of interactions. These descriptors can be used to provide insights for tailoring interactions, as needed for example in drug design.

  14. Lunar Surface Material - Spacecraft Measurements of Density and Strength

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.

    1969-01-01

    The relation of the density of the lunar surface layer to depth is probably best determined from spacecraft measurements of the bearing capacity as a function of depth. A comparison of these values with laboratory measurements of the bearing capacity of low-cohesion particulate materials as a function of the percentage of solid indicates that the bulk density at the lunar surface is about 1.1 grams per cubic centimeter and that it increases nearly linearly to about 1.6 grams per cubic centimeter at a depth of 5 centimeters.

  15. Functional thermo-dynamics: a generalization of dynamic density functional theory to non-isothermal situations.

    PubMed

    Anero, Jesús G; Español, Pep; Tarazona, Pedro

    2013-07-21

    We present a generalization of Density Functional Theory (DFT) to non-equilibrium non-isothermal situations. By using the original approach set forth by Gibbs in his consideration of Macroscopic Thermodynamics (MT), we consider a Functional Thermo-Dynamics (FTD) description based on the density field and the energy density field. A crucial ingredient of the theory is an entropy functional, which is a concave functional. Therefore, there is a one to one connection between the density and energy fields with the conjugate thermodynamic fields. The connection between the three levels of description (MT, DFT, FTD) is clarified through a bridge theorem that relates the entropy of different levels of description and that constitutes a generalization of Mermin's theorem to arbitrary levels of description whose relevant variables are connected linearly. Although the FTD level of description does not provide any new information about averages and correlations at equilibrium, it is a crucial ingredient for the dynamics in non-equilibrium states. We obtain with the technique of projection operators the set of dynamic equations that describe the evolution of the density and energy density fields from an initial non-equilibrium state towards equilibrium. These equations generalize time dependent density functional theory to non-isothermal situations. We also present an explicit model for the entropy functional for hard spheres.

  16. Double-hybrid density-functional theory with meta-generalized-gradient approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souvi, Sidi M. O., E-mail: sidi.souvi@irsn.fr; Sharkas, Kamal; Toulouse, Julien, E-mail: julien.toulouse@upmc.fr

    2014-02-28

    We extend the previously proposed one-parameter double-hybrid density-functional theory [K. Sharkas, J. Toulouse, and A. Savin, J. Chem. Phys. 134, 064113 (2011)] to meta-generalized-gradient-approximation (meta-GGA) exchange-correlation density functionals. We construct several variants of one-parameter double-hybrid approximations using the Tao-Perdew-Staroverov-Scuseria (TPSS) meta-GGA functional and test them on test sets of atomization energies and reaction barrier heights. The most accurate variant uses the uniform coordinate scaling of the density and of the kinetic energy density in the correlation functional, and improves over both standard Kohn-Sham TPSS and second-order Møller-Plesset calculations.

  17. Revisiting the Stability of Spatially Heterogeneous Predator-Prey Systems Under Eutrophication.

    PubMed

    Farkas, J Z; Morozov, A Yu; Arashkevich, E G; Nikishina, A

    2015-10-01

    We employ partial integro-differential equations to model trophic interaction in a spatially extended heterogeneous environment. Compared to classical reaction-diffusion models, this framework allows us to more realistically describe the situation where movement of individuals occurs on a faster time scale than on the demographic (population) time scale, and we cannot determine population growth based on local density. However, most of the results reported so far for such systems have only been verified numerically and for a particular choice of model functions, which obviously casts doubts about these findings. In this paper, we analyse a class of integro-differential predator-prey models with a highly mobile predator in a heterogeneous environment, and we reveal the main factors stabilizing such systems. In particular, we explore an ecologically relevant case of interactions in a highly eutrophic environment, where the prey carrying capacity can be formally set to 'infinity'. We investigate two main scenarios: (1) the spatial gradient of the growth rate is due to abiotic factors only, and (2) the local growth rate depends on the global density distribution across the environment (e.g. due to non-local self-shading). For an arbitrary spatial gradient of the prey growth rate, we analytically investigate the possibility of the predator-prey equilibrium in such systems and we explore the conditions of stability of this equilibrium. In particular, we demonstrate that for a Holling type I (linear) functional response, the predator can stabilize the system at low prey density even for an 'unlimited' carrying capacity. We conclude that the interplay between spatial heterogeneity in the prey growth and fast displacement of the predator across the habitat works as an efficient stabilizing mechanism. These results highlight the generality of the stabilization mechanisms we find in spatially structured predator-prey ecological systems in a heterogeneous environment.

  18. Burst and inter-burst duration statistics as empirical test of long-range memory in the financial markets

    NASA Astrophysics Data System (ADS)

    Gontis, V.; Kononovicius, A.

    2017-10-01

    We address the problem of long-range memory in the financial markets. There are two conceptually different ways to reproduce power-law decay of auto-correlation function: using fractional Brownian motion as well as non-linear stochastic differential equations. In this contribution we address this problem by analyzing empirical return and trading activity time series from the Forex. From the empirical time series we obtain probability density functions of burst and inter-burst duration. Our analysis reveals that the power-law exponents of the obtained probability density functions are close to 3 / 2, which is a characteristic feature of the one-dimensional stochastic processes. This is in a good agreement with earlier proposed model of absolute return based on the non-linear stochastic differential equations derived from the agent-based herding model.

  19. Direct construction of mesoscopic models from microscopic simulations

    NASA Astrophysics Data System (ADS)

    Lei, Huan; Caswell, Bruce; Karniadakis, George Em

    2010-02-01

    Starting from microscopic molecular-dynamics (MD) simulations of constrained Lennard-Jones (LJ) clusters (with constant radius of gyration Rg ), we construct two mesoscopic models [Langevin dynamics and dissipative particle dynamics (DPD)] by coarse graining the LJ clusters into single particles. Both static and dynamic properties of the coarse-grained models are investigated and compared with the MD results. The effective mean force field is computed as a function of the intercluster distance, and the corresponding potential scales linearly with the number of particles per cluster and the temperature. We verify that the mean force field can reproduce the equation of state of the atomistic systems within a wide density range but the radial distribution function only within the dilute and the semidilute regime. The friction force coefficients for both models are computed directly from the time-correlation function of the random force field of the microscopic system. For high density or a large cluster size the friction force is overestimated and the diffusivity underestimated due to the omission of many-body effects as a result of the assumed pairwise form of the coarse-grained force field. When the many-body effect is not as pronounced (e.g., smaller Rg or semidilute system), the DPD model can reproduce the dynamic properties of the MD system.

  20. Complex-energy approach to sum rules within nuclear density functional theory

    DOE PAGES

    Hinohara, Nobuo; Kortelainen, Markus; Nazarewicz, Witold; ...

    2015-04-27

    The linear response of the nucleus to an external field contains unique information about the effective interaction, correlations governing the behavior of the many-body system, and properties of its excited states. To characterize the response, it is useful to use its energy-weighted moments, or sum rules. By comparing computed sum rules with experimental values, the information content of the response can be utilized in the optimization process of the nuclear Hamiltonian or nuclear energy density functional (EDF). But the additional information comes at a price: compared to the ground state, computation of excited states is more demanding. To establish anmore » efficient framework to compute energy-weighted sum rules of the response that is adaptable to the optimization of the nuclear EDF and large-scale surveys of collective strength, we have developed a new technique within the complex-energy finite-amplitude method (FAM) based on the quasiparticle random- phase approximation. The proposed sum-rule technique based on the complex-energy FAM is a tool of choice when optimizing effective interactions or energy functionals. The method is very efficient and well-adaptable to parallel computing. As a result, the FAM formulation is especially useful when standard theorems based on commutation relations involving the nuclear Hamiltonian and external field cannot be used.« less

  1. Spherical collapse of dark matter haloes in tidal gravitational fields

    NASA Astrophysics Data System (ADS)

    Reischke, Robert; Pace, Francesco; Meyer, Sven; Schäfer, Björn Malte

    2016-11-01

    We study the spherical collapse model in the presence of external gravitational tidal shear fields for different dark energy scenarios and investigate the impact on the mass function and cluster number counts. While previous studies of the influence of shear and rotation on δc have been performed with heuristically motivated models, we try to avoid this model dependence and sample the external tidal shear values directly from the statistics of the underlying linearly evolved density field based on first-order Lagrangian perturbation theory. Within this self-consistent approach, in the sense that we restrict our treatment to scales where linear theory is still applicable, only fluctuations larger than the scale of the considered objects are included into the sampling process which naturally introduces a mass dependence of δc. We find that shear effects are predominant for smaller objects and at lower redshifts, I. e. the effect on δc is at or below the percent level for the ΛCDM model. For dark energy models we also find small but noticeable differences, similar to ΛCDM. The virial overdensity ΔV is nearly unaffected by the external shear. The now mass dependent δc is used to evaluate the mass function for different dark energy scenarios and afterwards to predict cluster number counts, which indicate that ignoring the shear contribution can lead to biases of the order of 1σ in the estimation of cosmological parameters like Ωm, σ8 or w.

  2. Gauge invariance of excitonic linear and nonlinear optical response

    NASA Astrophysics Data System (ADS)

    Taghizadeh, Alireza; Pedersen, T. G.

    2018-05-01

    We study the equivalence of four different approaches to calculate the excitonic linear and nonlinear optical response of multiband semiconductors. These four methods derive from two choices of gauge, i.e., length and velocity gauges, and two ways of computing the current density, i.e., direct evaluation and evaluation via the time-derivative of the polarization density. The linear and quadratic response functions are obtained for all methods by employing a perturbative density-matrix approach within the mean-field approximation. The equivalence of all four methods is shown rigorously, when a correct interaction Hamiltonian is employed for the velocity gauge approaches. The correct interaction is written as a series of commutators containing the unperturbed Hamiltonian and position operators, which becomes equivalent to the conventional velocity gauge interaction in the limit of infinite Coulomb screening and infinitely many bands. As a case study, the theory is applied to hexagonal boron nitride monolayers, and the linear and nonlinear optical response found in different approaches are compared.

  3. Nonlinear functional for solvation in Density Functional Theory

    NASA Astrophysics Data System (ADS)

    Gunceler, Deniz; Sundararaman, Ravishankar; Schwarz, Kathleen; Letchworth-Weaver, Kendra; Arias, T. A.

    2013-03-01

    Density functional calculations of molecules and surfaces in a liquid can accelerate the development of many technologies ranging from solar energy harvesting to lithium batteries. Such studies require the development of robust functionals describing the liquid. Polarizable continuum models (PCM's) have been applied to some solvated systems; but they do not sufficiently capture solvation effects to describe highly polar systems like surfaces of ionic solids. In this work, we present a nonlinear fluid functional within the framework of Joint Density Functional Theory. The fluid is treated not as a linear dielectric, but as a distribution of dipoles that responds to the solute, which we describe starting from the exact free energy functional for point dipoles. We also show PCM's can be recovered as the linear limit of our functional. Our description is of similar computational cost to PCM's, and captures complex solvation effects like dielectric saturation without requiring new fit parameters. For polar and nonpolar molecules, it achieves millihartree level agreement with experimental solvation energies. Furthermore, our functional now makes it possible to investigate chemistry on the surface of lithium battery materials, which PCM's predict to be unstable. Supported as part of the Energy Materials Center at Cornell, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001086

  4. Frequency-dependent scaling from mesoscale to macroscale in viscoelastic random composites

    PubMed Central

    Zhang, Jun

    2016-01-01

    This paper investigates the scaling from a statistical volume element (SVE; i.e. mesoscale level) to representative volume element (RVE; i.e. macroscale level) of spatially random linear viscoelastic materials, focusing on the quasi-static properties in the frequency domain. Requiring the material statistics to be spatially homogeneous and ergodic, the mesoscale bounds on the RVE response are developed from the Hill–Mandel homogenization condition adapted to viscoelastic materials. The bounds are obtained from two stochastic initial-boundary value problems set up, respectively, under uniform kinematic and traction boundary conditions. The frequency and scale dependencies of mesoscale bounds are obtained through computational mechanics for composites with planar random chessboard microstructures. In general, the frequency-dependent scaling to RVE can be described through a complex-valued scaling function, which generalizes the concept originally developed for linear elastic random composites. This scaling function is shown to apply for all different phase combinations on random chessboards and, essentially, is only a function of the microstructure and mesoscale. PMID:27274689

  5. THE RELATION BETWEEN GAS DENSITY AND VELOCITY POWER SPECTRA IN GALAXY CLUSTERS: QUALITATIVE TREATMENT AND COSMOLOGICAL SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhuravleva, I.; Allen, S. W.; Churazov, E. M.

    2014-06-10

    We address the problem of evaluating the power spectrum of the velocity field of the intracluster medium using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed clusters there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: (δρ{sub k}/ρ){sup 2}=η{sub 1}{sup 2}(V{sub 1,k}/c{sub s}){sup 2}, where δρ {sub k}/ρ is the spectral amplitude of the density perturbations at wavenumber k, V{sub 1,k}{sup 2}=V{sub k}{supmore » 2}/3 is the mean square component of the velocity field, c{sub s} is the sound speed, and η{sub 1} is a dimensionless constant of the order of unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find η{sub 1} ≈ 1 ± 0.3. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters across a wide range of scales.« less

  6. Finite-size Scaling of the Density of States in Photonic Band Gap Crystals

    NASA Astrophysics Data System (ADS)

    Hasan, Shakeeb Bin; Mosk, Allard P.; Vos, Willem L.; Lagendijk, Ad

    2018-06-01

    The famous vanishing of the density of states (DOS) in a band gap, be it photonic or electronic, pertains to the infinite-crystal limit. In contrast, all experiments and device applications refer to finite crystals, which raises the question: Upon increasing the linear size L of a crystal, how fast does the DOS approach the infinite-crystal limit? We present a theory for finite crystals that includes Bloch-mode broadening due to the presence of crystal boundaries. Our results demonstrate that the DOS for frequencies inside a band gap has a 1 /L scale dependence for crystals in one, two and three dimensions.

  7. Characterization of the Earwig, Doru lineare, as a Predator of Larvae of the Fall Armyworm, Spodoptera frugiperda: A Functional Response Study

    PubMed Central

    Sueldo, Mabel Romero; Bruzzone, Octavio A.; Virla, Eduardo G.

    2010-01-01

    Spodoptera frugiperda Smith (Lepidoptera: Noctuidae) is considered as the most important pest of maize in almost all tropical America. In Argentina, the earwig Doru lineare Eschscholtz (Dermaptera: Forficulidae) has been observed preying on S. frugiperda egg masses in corn crops, but no data about its potential role as a biocontrol agent of this pest have been provided. The predation efficiency of D. lineare on newly emerged S. frugiperda larva was evaluated through a laboratory functional response study. D. lineare showed type II functional response to S. frugiperda larval density, and disc equation estimations of searching efficiency and handling time were (a) = 0.374 and (t) = 182.9 s, respectively. Earwig satiation occurred at 39.4 S. frugiperda larvae. PMID:20575739

  8. Multiscale functions, scale dynamics, and applications to partial differential equations

    NASA Astrophysics Data System (ADS)

    Cresson, Jacky; Pierret, Frédéric

    2016-05-01

    Modeling phenomena from experimental data always begins with a choice of hypothesis on the observed dynamics such as determinism, randomness, and differentiability. Depending on these choices, different behaviors can be observed. The natural question associated to the modeling problem is the following: "With a finite set of data concerning a phenomenon, can we recover its underlying nature? From this problem, we introduce in this paper the definition of multi-scale functions, scale calculus, and scale dynamics based on the time scale calculus [see Bohner, M. and Peterson, A., Dynamic Equations on Time Scales: An Introduction with Applications (Springer Science & Business Media, 2001)] which is used to introduce the notion of scale equations. These definitions will be illustrated on the multi-scale Okamoto's functions. Scale equations are analysed using scale regimes and the notion of asymptotic model for a scale equation under a particular scale regime. The introduced formalism explains why a single scale equation can produce distinct continuous models even if the equation is scale invariant. Typical examples of such equations are given by the scale Euler-Lagrange equation. We illustrate our results using the scale Newton's equation which gives rise to a non-linear diffusion equation or a non-linear Schrödinger equation as asymptotic continuous models depending on the particular fractional scale regime which is considered.

  9. Scale Up Considerations for Sediment Microbial Fuel Cells

    DTIC Science & Technology

    2013-01-01

    density calculations were made once WPs stabilized for each system. Linear sweep voltametry was then used on these systems to generate polarization and...power density curves. The systems were allowed to equilibrate under open circuit conditions (about 12 h) before a potential sweep was performed with a...reference. The potential sweep was set to begin at the anode potential under open circuit conditions (20.4 V vs. Ag/AgCl) and was raised to the

  10. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates

    NASA Astrophysics Data System (ADS)

    Farace, Paolo

    2014-11-01

    A two-steps procedure is presented to convert dual-energy CT data to stopping power ratio (SPR), relative to water. In the first step the relative electron density (RED) is calculated from dual-energy CT-numbers by means of a bi-linear relationship: RED = a HUscH + b HUscL + c, where HUscH and HUscL are scaled units (HUsc = HU + 1000) acquired at high and low energy respectively, and the three parameters a, b and c has to be determined for each CT scanner. In the second step the RED values were converted into SPR by means of published poly-line functions, which are invariant as they do not depend on a specific CT scanner. The comparison with other methods provides encouraging results, with residual SPR error on human tissue within 1%. The distinctive features of the proposed method are its simplicity and the generality of the conversion functions.

  11. Evolution of anisotropy in bcc Fe distorted by interstitial boron

    NASA Astrophysics Data System (ADS)

    Gölden, Dominik; Zhang, Hongbin; Radulov, Iliya; Dirba, Imants; Komissinskiy, Philipp; Hildebrandt, Erwin; Alff, Lambert

    2018-01-01

    The evolution of magnetic anisotropy in bcc Fe as a function of interstitial boron atoms was investigated in thin films grown by molecular beam epitaxy. The thermodynamic nonequilibrium conditions during film growth allowed one to stabilize an interstitial boron content of about 14 at .% accompanied by lattice tetragonalization. The c /a ratio scaled linearly with the boron content up to a maximum value of 1.05 at 300 °C substrate growth temperature, with a room-temperature magnetization of. In contrast to nitrogen interstitials, the magnetic easy axis remained in-plane with an anisotropy of approximately -5.1 ×106erg /cm3 . Density functional theory calculations using the measured lattice parameters confirm this value and show that boron local ordering indeed favors in-plane magnetization. Given the increased temperature stability of boron interstitials as compared to nitrogen interstitials, this study will help to find possible ways to manipulate boron interstitials into a more favorable local order.

  12. Semiclassics, Goldstone bosons and CFT data

    NASA Astrophysics Data System (ADS)

    Monin, A.; Pirtskhalava, D.; Rattazzi, R.; Seibold, F. K.

    2017-06-01

    Hellerman et al. (arXiv:1505.01537) have shown that in a generic CFT the spectrum of operators carrying a large U(1) charge can be analyzed semiclassically in an expansion in inverse powers of the charge. The key is the operator state correspondence by which such operators are associated with a finite density superfluid phase for the theory quantized on the cylinder. The dynamics is dominated by the corresponding Goldstone hydrodynamic mode and the derivative expansion coincides with the inverse charge expansion. We illustrate and further clarify this situation by first considering simple quantum mechanical analogues. We then systematize the approach by employing the coset construction for non-linearly realized space-time symmetries. Focussing on CFT3 we illustrate the case of higher rank and non-abelian groups and the computation of higher point functions. Three point function coefficients turn out to satisfy universal scaling laws and correlations as the charge and spin are varied.

  13. Experimental verification of ion stopping power prediction from dual energy CT data in tissue surrogates.

    PubMed

    Farace, Paolo

    2014-11-21

    A two-steps procedure is presented to convert dual-energy CT data to stopping power ratio (SPR), relative to water. In the first step the relative electron density (RED) is calculated from dual-energy CT-numbers by means of a bi-linear relationship: RED=a HUscH+b HUscL+c, where HUscH and HUscL are scaled units (HUsc=HU+1000) acquired at high and low energy respectively, and the three parameters a, b and c has to be determined for each CT scanner. In the second step the RED values were converted into SPR by means of published poly-line functions, which are invariant as they do not depend on a specific CT scanner. The comparison with other methods provides encouraging results, with residual SPR error on human tissue within 1%. The distinctive features of the proposed method are its simplicity and the generality of the conversion functions.

  14. Sub-structure formation in starless cores

    NASA Astrophysics Data System (ADS)

    Toci, C.; Galli, D.; Verdini, A.; Del Zanna, L.; Landi, S.

    2018-02-01

    Motivated by recent observational searches of sub-structure in starless molecular cloud cores, we investigate the evolution of density perturbations on scales smaller than the Jeans length embedded in contracting isothermal clouds, adopting the same formalism developed for the expanding Universe and the solar wind. We find that initially small amplitude, Jeans-stable perturbations (propagating as sound waves in the absence of a magnetic field) are amplified adiabatically during the contraction, approximately conserving the wave action density, until they either become non-linear and steepen into shocks at a time tnl, or become gravitationally unstable when the Jeans length decreases below the scale of the perturbations at a time tgr. We evaluate analytically the time tnl at which the perturbations enter the non-linear stage using a Burgers' equation approach, and we verify numerically that this time marks the beginning of the phase of rapid dissipation of the kinetic energy of the perturbations. We then show that for typical values of the rms Mach number in molecular cloud cores, tnl is smaller than tgr, and therefore density perturbations likely dissipate before becoming gravitational unstable. Solenoidal modes grow at a faster rate than compressible modes, and may eventually promote fragmentation through the formation of vortical structures.

  15. Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene

    NASA Astrophysics Data System (ADS)

    Sand, Andrew M.; Truhlar, Donald G.; Gagliardi, Laura

    2017-01-01

    The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.

  16. Efficient algorithm for multiconfiguration pair-density functional theory with application to the heterolytic dissociation energy of ferrocene.

    PubMed

    Sand, Andrew M; Truhlar, Donald G; Gagliardi, Laura

    2017-01-21

    The recently developed multiconfiguration pair-density functional theory (MC-PDFT) combines multiconfiguration wave function theory with a density functional that depends on the on-top pair density of an electronic system. In an MC-PDFT calculation, there are two steps: a conventional multiconfiguration self-consistent-field (MCSCF) calculation and a post-MCSCF evaluation of the energy with an on-top density functional. In this work, we present the details of the MC-PDFT algorithm that avoids steeply scaling steps that are present in other post-self-consistent-field multireference calculations of dynamic correlation energy. We demonstrate the favorable scaling by considering systems of H 2 molecules with active spaces of several different sizes. We then apply the MC-PDFT method to calculate the heterolytic dissociation enthalpy of ferrocene. We find that MC-PDFT yields results that are at least as accurate as complete active space second-order perturbation theory and are more stable with respect to basis set, but at a fraction of the cost in both time and memory.

  17. Fault Damage Zone Permeability in Crystalline Rocks from Combined Field and Laboratory Measurements

    NASA Astrophysics Data System (ADS)

    Mitchell, T.; Faulkner, D.

    2008-12-01

    In nature, permeability is enhanced in the damage zone of faults, where fracturing occurs on a wide range of scales. Here we analyze the contribution of microfracture damage on the permeability of faults that cut through low porosity, crystalline rocks by combining field and laboratory measurements. Microfracture densities surrounding strike-slip faults with well-constrained displacements ranging over 3 orders of magnitude (~0.12 m - 5000 m) have been analyzed. The faults studied are excellently exposed within the Atacama Fault Zone, where exhumation from 6-10 km has occurred. Microfractures in the form of fluid inclusion planes (FIPs) show a log-linear decrease in fracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement, and an empirical relationship for microfracture density distribution throughout the damage zone with displacement is derived. Damage zone rocks will have experienced differential stresses that were less than, but some proportion of, the failure stress. As such, permeability data from progressively loaded, initially intact laboratory samples, in the pre-failure region provide useful insights into fluid flow properties of various parts of the damage zone. The permeability evolution of initially intact crystalline rocks under increasing differential load leading to macroscopic failure was determined at water pore pressures of 50 MPa and effective pressure of 10 MPa. Permeability is seen to increase by up to, and over, two orders of magnitude prior to macroscopic failure. Further experiments were stopped at various points in the loading history in order to correlate microfracture density within the samples with permeability. By combining empirical relationships determined from both quantitative fieldwork and experiments we present a model that allows microfracture permeability distribution throughout the damage zone to be determined as function of increasing fault displacement.

  18. A Linear Electromagnetic Piston Pump

    NASA Astrophysics Data System (ADS)

    Hogan, Paul H.

    Advancements in mobile hydraulics for human-scale applications have increased demand for a compact hydraulic power supply. Conventional designs couple a rotating electric motor to a hydraulic pump, which increases the package volume and requires several energy conversions. This thesis investigates the use of a free piston as the moving element in a linear motor to eliminate multiple energy conversions and decrease the overall package volume. A coupled model used a quasi-static magnetic equivalent circuit to calculate the motor inductance and the electromagnetic force acting on the piston. The force was an input to a time domain model to evaluate the mechanical and pressure dynamics. The magnetic circuit model was validated with finite element analysis and an experimental prototype linear motor. The coupled model was optimized using a multi-objective genetic algorithm to explore the parameter space and maximize power density and efficiency. An experimental prototype linear pump coupled pistons to an off-the-shelf linear motor to validate the mechanical and pressure dynamics models. The magnetic circuit force calculation agreed within 3% of finite element analysis, and within 8% of experimental data from the unoptimized prototype linear motor. The optimized motor geometry also had good agreement with FEA; at zero piston displacement, the magnetic circuit calculates optimized motor force within 10% of FEA in less than 1/1000 the computational time. This makes it well suited to genetic optimization algorithms. The mechanical model agrees very well with the experimental piston pump position data when tuned for additional unmodeled mechanical friction. Optimized results suggest that an improvement of 400% of the state of the art power density is attainable with as high as 85% net efficiency. This demonstrates that a linear electromagnetic piston pump has potential to serve as a more compact and efficient supply of fluid power for the human scale.

  19. Spectral likelihood expansions for Bayesian inference

    NASA Astrophysics Data System (ADS)

    Nagel, Joseph B.; Sudret, Bruno

    2016-03-01

    A spectral approach to Bayesian inference is presented. It pursues the emulation of the posterior probability density. The starting point is a series expansion of the likelihood function in terms of orthogonal polynomials. From this spectral likelihood expansion all statistical quantities of interest can be calculated semi-analytically. The posterior is formally represented as the product of a reference density and a linear combination of polynomial basis functions. Both the model evidence and the posterior moments are related to the expansion coefficients. This formulation avoids Markov chain Monte Carlo simulation and allows one to make use of linear least squares instead. The pros and cons of spectral Bayesian inference are discussed and demonstrated on the basis of simple applications from classical statistics and inverse modeling.

  20. Encircling the dark: constraining dark energy via cosmic density in spheres

    NASA Astrophysics Data System (ADS)

    Codis, S.; Pichon, C.; Bernardeau, F.; Uhlemann, C.; Prunet, S.

    2016-08-01

    The recently published analytic probability density function for the mildly non-linear cosmic density field within spherical cells is used to build a simple but accurate maximum likelihood estimate for the redshift evolution of the variance of the density, which, as expected, is shown to have smaller relative error than the sample variance. This estimator provides a competitive probe for the equation of state of dark energy, reaching a few per cent accuracy on wp and wa for a Euclid-like survey. The corresponding likelihood function can take into account the configuration of the cells via their relative separations. A code to compute one-cell-density probability density functions for arbitrary initial power spectrum, top-hat smoothing and various spherical-collapse dynamics is made available online, so as to provide straightforward means of testing the effect of alternative dark energy models and initial power spectra on the low-redshift matter distribution.

  1. CMB and matter power spectra with non-linear dark-sector interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marttens, R.F. vom; Casarini, L.; Zimdahl, W.

    2017-01-01

    An interaction between dark matter and dark energy, proportional to the product of their energy densities, results in a scaling behavior of the ratio of these densities with respect to the scale factor of the Robertson-Walker metric. This gives rise to a class of cosmological models which deviate from the standard model in an analytically tractable way. In particular, it becomes possible to quantify the role of potential dark-energy perturbations. We investigate the impact of this interaction on the structure formation process. Using the (modified) CAMB code we obtain the CMB spectrum as well as the linear matter power spectrum.more » It is shown that the strong degeneracy in the parameter space present in the background analysis is considerably reduced by considering Planck data. Our analysis is compatible with the ΛCDM model at the 2σ confidence level with a slightly preferred direction of the energy flow from dark matter to dark energy.« less

  2. Use of nonlinear programming to optimize performance response to energy density in broiler feed formulation.

    PubMed

    Guevara, V R

    2004-02-01

    A nonlinear programming optimization model was developed to maximize margin over feed cost in broiler feed formulation and is described in this paper. The model identifies the optimal feed mix that maximizes profit margin. Optimum metabolizable energy level and performance were found by using Excel Solver nonlinear programming. Data from an energy density study with broilers were fitted to quadratic equations to express weight gain, feed consumption, and the objective function income over feed cost in terms of energy density. Nutrient:energy ratio constraints were transformed into equivalent linear constraints. National Research Council nutrient requirements and feeding program were used for examining changes in variables. The nonlinear programming feed formulation method was used to illustrate the effects of changes in different variables on the optimum energy density, performance, and profitability and was compared with conventional linear programming. To demonstrate the capabilities of the model, I determined the impact of variation in prices. Prices for broiler, corn, fish meal, and soybean meal were increased and decreased by 25%. Formulations were identical in all other respects. Energy density, margin, and diet cost changed compared with conventional linear programming formulation. This study suggests that nonlinear programming can be more useful than conventional linear programming to optimize performance response to energy density in broiler feed formulation because an energy level does not need to be set.

  3. Electronic specific heat and low-energy quasiparticle excitations in the superconducting state of La2-xSrxCuO4 single crystals

    NASA Astrophysics Data System (ADS)

    Wen, Hai-Hu; Liu, Zhi-Yong; Zhou, Fang; Xiong, Jiwu; Ti, Wenxing; Xiang, Tao; Komiya, Seiki; Sun, Xuefeng; Ando, Yoichi

    2004-12-01

    Low-temperature specific heat has been measured and extensively analyzed on a series of La2-xSrxCuO4 single crystals from underdoped to overdoped regime. From these data the quasiparticle density of state in the mixed state is derived and compared to the predicted scaling law Cvol/TH=f(T/H) of d -wave superconductivity. It is found that the scaling law can be nicely followed by the optimally doped sample (x=0.15) in quite a wide region of (T/H⩽8K/T) . However, the region for this scaling becomes smaller and smaller toward more underdoped region: a clear trend can be seen for samples from x=0.15to0.069 . Therefore, generally speaking, the scaling quality becomes worse on the underdoped samples in terms of scalable region of T/H . This feature in the underdoped region is explained as due to the low-energy excitations from a second order (for example, antiferromagnetic correlation, d -density wave, spin-density wave, or charge-density wave order) that may coexist or compete with superconductivity. Surprisingly, deviations from the d -wave scaling law have also been found for the overdoped sample (x=0.22) , while the scaling law is reconciled for the overdoped sample, when the core size effect is taken into account. An important discovery of present work is that the zero-temperature data follow the Volovik’s relation Δγ(T=0)=AH quite well for all samples investigated here; although the applicability of the d -wave scaling law to the data at finite temperatures varies with doped-hole concentration. We also present the doping dependence of some parameters, such as the residual linear term γ0 , the α value, etc. It is suggested that the residual linear term (γ0T) of the electronic specific heat observed in all cuprate superconductors is probably due to the inhomogeneity, either chemical or electronic in origin. The field-induced reduction of the specific heat in the mixed state is also reported. Finally, implications on the electronic phase diagram are suggested.

  4. The Kummer tensor density in electrodynamics and in gravity

    NASA Astrophysics Data System (ADS)

    Baekler, Peter; Favaro, Alberto; Itin, Yakov; Hehl, Friedrich W.

    2014-10-01

    Guided by results in the premetric electrodynamics of local and linear media, we introduce on 4-dimensional spacetime the new abstract notion of a Kummer tensor density of rank four, K. This tensor density is, by definition, a cubic algebraic functional of a tensor density of rank four T, which is antisymmetric in its first two and its last two indices: T=-T=-T. Thus, K∼T3, see Eq. (46). (i) If T is identified with the electromagnetic response tensor of local and linear media, the Kummer tensor density encompasses the generalized Fresnel wave surfaces for propagating light. In the reversible case, the wave surfaces turn out to be Kummer surfaces as defined in algebraic geometry (Bateman 1910). (ii) If T is identified with the curvature tensor R of a Riemann-Cartan spacetime, then K∼R3 and, in the special case of general relativity, K reduces to the Kummer tensor of Zund (1969). This K is related to the principal null directions of the curvature. We discuss the properties of the general Kummer tensor density. In particular, we decompose K irreducibly under the 4-dimensional linear group GL(4,R) and, subsequently, under the Lorentz group SO(1,3).

  5. Density-functional theory study of the initial oxygen incorporation in Pd(111)

    NASA Astrophysics Data System (ADS)

    Todorova, Mira; Reuter, Karsten; Scheffler, Matthias

    2005-05-01

    Pd(111) has recently been shown to exhibit a propensity to form a subnanometer thin surface oxide film already well before a full monolayer coverage of adsorbed O atoms is reached on the surface. Aiming at an atomic-scale understanding of this finding, we study the initial oxygen incorporation into the Pd(111) surface using density-functional theory. We find that oxygen incorporation into the sub-surface region starts at essentially the same coverage as formation of the surface oxide. This implies that the role of sub-surface oxygen should be considered as that of a metastable precursor in the oxidation process of the surface. The mechanisms found to play a role towards the ensuing stabilization of an ordered oxidic structure with a mixed on-surface/sub-surface site occupation follow a clear trend over the late 4d transition metal series, as seen by comparing our data to previously published studies concerned with oxide formation at the basal surface of Ru, Rh, and Ag. The formation of a linearly aligned O-TM-O trilayered structure (TM=Ru,Rh,Pd,Ag) , together with an efficient coupling to the underlying substrate seem to be key ingredients in this respect.

  6. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    NASA Astrophysics Data System (ADS)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M. N.; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-01

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  7. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory.

    PubMed

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; Niklasson, Anders M N; Head-Gordon, Teresa; Skylaris, Chris-Kriton

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities are treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes-in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.

  8. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE PAGES

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex; ...

    2017-03-28

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  9. Performance of extended Lagrangian schemes for molecular dynamics simulations with classical polarizable force fields and density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitale, Valerio; Dziedzic, Jacek; Albaugh, Alex

    Iterative energy minimization with the aim of achieving self-consistency is a common feature of Born-Oppenheimer molecular dynamics (BOMD) and classical molecular dynamics with polarizable force fields. In the former, the electronic degrees of freedom are optimized, while the latter often involves an iterative determination of induced point dipoles. The computational effort of the self-consistency procedure can be reduced by re-using converged solutions from previous time steps. However, this must be done carefully, as not to break time-reversal symmetry, which negatively impacts energy conservation. Self-consistent schemes based on the extended Lagrangian formalism, where the initial guesses for the optimized quantities aremore » treated as auxiliary degrees of freedom, constitute one elegant solution. We report on the performance of two integration schemes with the same underlying extended Lagrangian structure, which we both employ in two radically distinct regimes—in classical molecular dynamics simulations with the AMOEBA polarizable force field and in BOMD simulations with the Onetep linear-scaling density functional theory (LS-DFT) approach. Furthermore, both integration schemes are found to offer significant improvements over the standard (unpropagated) molecular dynamics formulation in both the classical and LS-DFT regimes.« less

  10. Mechanical Properties of Nylon Harp Strings

    PubMed Central

    Lynch-Aird, Nicolas; Woodhouse, Jim

    2017-01-01

    Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young’s modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young’s modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings. PMID:28772858

  11. Mechanical Properties of Nylon Harp Strings.

    PubMed

    Lynch-Aird, Nicolas; Woodhouse, Jim

    2017-05-04

    Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young's modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young's modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings.

  12. Accurate evaluation of exchange fields in finite element micromagnetic solvers

    NASA Astrophysics Data System (ADS)

    Chang, R.; Escobar, M. A.; Li, S.; Lubarda, M. V.; Lomakin, V.

    2012-04-01

    Quadratic basis functions (QBFs) are implemented for solving the Landau-Lifshitz-Gilbert equation via the finite element method. This involves the introduction of a set of special testing functions compatible with the QBFs for evaluating the Laplacian operator. The results by using QBFs are significantly more accurate than those via linear basis functions. QBF approach leads to significantly more accurate results than conventionally used approaches based on linear basis functions. Importantly QBFs allow reducing the error of computing the exchange field by increasing the mesh density for structured and unstructured meshes. Numerical examples demonstrate the feasibility of the method.

  13. Piezohydraulic Pump Development

    NASA Technical Reports Server (NTRS)

    Lynch, Christopher S.

    2005-01-01

    Reciprocating piston piezohydraulic pumps were developed originally under the Smart Wing Phase II program (Lynch) and later under the CHAP program (CSA, Kinetic Ceramics). These pumps focused on 10 cm scale stack actuators operating below resonance and, more recently, at resonance. A survey of commercially available linear actuators indicates that obtaining power density and specific power greater than electromagnetic linear actuators requires driving the stacks at frequencies greater than 1 KHz at high fields. In the case of 10 cm scale actuators the power supply signal conditioning becomes large and heavy and the soft PZT stack actuators generate a lot of heat due to internal losses. Reciprocation frequencies can be increased and material losses significantly decreased through use of millimeter scale single crystal stack actuators. We are presently targeting the design of pumps that utilize stacks at the 1-10 mm length scale and run at reciprocating frequencies of 20kHz or greater. This offers significant advantages over current approaches including eliminating audible noise and significantly increasing the power density and specific power of the system (including electronics). The pump currently under development will comprise an LC resonant drive of a resonant crystal and head mass operating against a resonant fluid column. Each of these resonant systems are high Q and together should produce a single high Q second order system.

  14. Lower Current Large Deviations for Zero-Range Processes on a Ring

    NASA Astrophysics Data System (ADS)

    Chleboun, Paul; Grosskinsky, Stefan; Pizzoferrato, Andrea

    2017-04-01

    We study lower large deviations for the current of totally asymmetric zero-range processes on a ring with concave current-density relation. We use an approach by Jensen and Varadhan which has previously been applied to exclusion processes, to realize current fluctuations by travelling wave density profiles corresponding to non-entropic weak solutions of the hyperbolic scaling limit of the process. We further establish a dynamic transition, where large deviations of the current below a certain value are no longer typically attained by non-entropic weak solutions, but by condensed profiles, where a non-zero fraction of all the particles accumulates on a single fixed lattice site. This leads to a general characterization of the rate function, which is illustrated by providing detailed results for four generic examples of jump rates, including constant rates, decreasing rates, unbounded sublinear rates and asymptotically linear rates. Our results on the dynamic transition are supported by numerical simulations using a cloning algorithm.

  15. Nonequilibrium Kondo effect in a magnetic field: auxiliary master equation approach

    NASA Astrophysics Data System (ADS)

    Fugger, Delia M.; Dorda, Antonius; Schwarz, Frauke; von Delft, Jan; Arrigoni, Enrico

    2018-01-01

    We study the single-impurity Anderson model out of equilibrium under the influence of a bias voltage ϕ and a magnetic field B. We investigate the interplay between the shift ({ω }B) of the Kondo peak in the spin-resolved density of states (DOS) and the one ({φ }B) of the conductance anomaly. In agreement with experiments and previous theoretical calculations we find that, while the latter displays a rather linear behavior with an almost constant slope as a function of B down to the Kondo scale, the DOS shift first features a slower increase reaching the same behavior as {φ }B only for | g| {μ }BB\\gg {k}B{T}K. Our auxiliary master equation approach yields highly accurate nonequilibrium results for the DOS and for the conductance all the way from within the Kondo up to the charge fluctuation regime, showing excellent agreement with a recently introduced scheme based on a combination of numerical renormalization group with time-dependent density matrix renormalization group.

  16. Simulation of Nonisothermal Consolidation of Saturated Soils Based on a Thermodynamic Model

    PubMed Central

    Cheng, Xiaohui

    2013-01-01

    Based on the nonequilibrium thermodynamics, a thermo-hydro-mechanical coupling model for saturated soils is established, including a constitutive model without such concepts as yield surface and flow rule. An elastic potential energy density function is defined to derive a hyperelastic relation among the effective stress, the elastic strain, and the dry density. The classical linear non-equilibrium thermodynamic theory is employed to quantitatively describe the unrecoverable energy processes like the nonelastic deformation development in materials by the concepts of dissipative force and dissipative flow. In particular the granular fluctuation, which represents the kinetic energy fluctuation and elastic potential energy fluctuation at particulate scale caused by the irregular mutual movement between particles, is introduced in the model and described by the concept of granular entropy. Using this model, the nonisothermal consolidation of saturated clays under cyclic thermal loadings is simulated in this paper to validate the model. The results show that the nonisothermal consolidation is heavily OCR dependent and unrecoverable. PMID:23983623

  17. Simulation of nonisothermal consolidation of saturated soils based on a thermodynamic model.

    PubMed

    Zhang, Zhichao; Cheng, Xiaohui

    2013-01-01

    Based on the nonequilibrium thermodynamics, a thermo-hydro-mechanical coupling model for saturated soils is established, including a constitutive model without such concepts as yield surface and flow rule. An elastic potential energy density function is defined to derive a hyperelastic relation among the effective stress, the elastic strain, and the dry density. The classical linear non-equilibrium thermodynamic theory is employed to quantitatively describe the unrecoverable energy processes like the nonelastic deformation development in materials by the concepts of dissipative force and dissipative flow. In particular the granular fluctuation, which represents the kinetic energy fluctuation and elastic potential energy fluctuation at particulate scale caused by the irregular mutual movement between particles, is introduced in the model and described by the concept of granular entropy. Using this model, the nonisothermal consolidation of saturated clays under cyclic thermal loadings is simulated in this paper to validate the model. The results show that the nonisothermal consolidation is heavily OCR dependent and unrecoverable.

  18. Slow quench dynamics of a one-dimensional Bose gas confined to an optical lattice.

    PubMed

    Bernier, Jean-Sébastien; Roux, Guillaume; Kollath, Corinna

    2011-05-20

    We analyze the effect of a linear time variation of the interaction strength on a trapped one-dimensional Bose gas confined to an optical lattice. The evolution of different observables such as the experimentally accessible on site particle distribution are studied as a function of the ramp time by using time-dependent numerical techniques. We find that the dynamics of a trapped system typically displays two regimes: For long ramp times, the dynamics is governed by density redistribution, while at short ramp times, local dynamics dominates as the evolution is identical to that of an homogeneous system. In the homogeneous limit, we also discuss the nontrivial scaling of the energy absorbed with the ramp time.

  19. Accurate coarse-grained models for mixtures of colloids and linear polymers under good-solvent conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D’Adamo, Giuseppe, E-mail: giuseppe.dadamo@sissa.it; Pelissetto, Andrea, E-mail: andrea.pelissetto@roma1.infn.it; Pierleoni, Carlo, E-mail: carlo.pierleoni@aquila.infn.it

    2014-12-28

    A coarse-graining strategy, previously developed for polymer solutions, is extended here to mixtures of linear polymers and hard-sphere colloids. In this approach, groups of monomers are mapped onto a single pseudoatom (a blob) and the effective blob-blob interactions are obtained by requiring the model to reproduce some large-scale structural properties in the zero-density limit. We show that an accurate parametrization of the polymer-colloid interactions is obtained by simply introducing pair potentials between blobs and colloids. For the coarse-grained (CG) model in which polymers are modelled as four-blob chains (tetramers), the pair potentials are determined by means of the iterative Boltzmannmore » inversion scheme, taking full-monomer (FM) pair correlation functions at zero-density as targets. For a larger number n of blobs, pair potentials are determined by using a simple transferability assumption based on the polymer self-similarity. We validate the model by comparing its predictions with full-monomer results for the interfacial properties of polymer solutions in the presence of a single colloid and for thermodynamic and structural properties in the homogeneous phase at finite polymer and colloid density. The tetramer model is quite accurate for q ≲ 1 (q=R{sup ^}{sub g}/R{sub c}, where R{sup ^}{sub g} is the zero-density polymer radius of gyration and R{sub c} is the colloid radius) and reasonably good also for q = 2. For q = 2, an accurate coarse-grained description is obtained by using the n = 10 blob model. We also compare our results with those obtained by using single-blob models with state-dependent potentials.« less

  20. INTERPRETATION OF THE STRUCTURE FUNCTION OF ROTATION MEASURE IN THE INTERSTELLAR MEDIUM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Siyao; Zhang, Bing, E-mail: syxu@pku.edu.cn, E-mail: zhang@physics.unlv.edu

    2016-06-20

    The observed structure function (SF) of rotation measure (RM) varies as a broken power-law function of angular scales. The systematic shallowness of its spectral slope is inconsistent with the standard Kolmogorov scaling. This motivates us to examine the statistical analysis on RM fluctuations. The correlations of RM constructed by Lazarian and Pogosyan are demonstrated to be adequate in explaining the observed features of RM SFs through a direct comparison between the theoretically obtained and observationally measured SF results. By segregating the density and magnetic field fluctuations and adopting arbitrary indices for their respective power spectra, we find that when themore » SFs of RM and emission measure have a similar form over the same range of angular scales, the statistics of the RM fluctuations reflect the properties of density fluctuations. RM SFs can be used to evaluate the mean magnetic field along the line of sight, but cannot serve as an informative source on the properties of turbulent magnetic field in the interstellar medium. We identify the spectral break of RM SFs as the inner scale of a shallow spectrum of electron density fluctuations, which characterizes the typical size of discrete electron density structures in the observed region.« less

  1. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale.

    PubMed

    Serafy, Joseph E; Shideler, Geoffrey S; Araújo, Rafael J; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as "mangrove-dependent". Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider Caribbean) that greater mangrove forest size generally functions to increase the densities on neighboring reefs of those fishes that use these shallow, vegetated habitats as nurseries.

  2. Mangroves Enhance Reef Fish Abundance at the Caribbean Regional Scale

    PubMed Central

    Serafy, Joseph E.; Shideler, Geoffrey S.; Araújo, Rafael J.; Nagelkerken, Ivan

    2015-01-01

    Several studies conducted at the scale of islands, or small sections of continental coastlines, have suggested that mangrove habitats serve to enhance fish abundances on coral reefs, mainly by providing nursery grounds for several ontogenetically-migrating species. However, evidence of such enhancement at a regional scale has not been reported, and recently, some researchers have questioned the mangrove-reef subsidy effect. In the present study, using two different regression approaches, we pursued two questions related to mangrove-reef connectivity at the Caribbean regional scale: (1) Are reef fish abundances limited by mangrove forest area?; and (2) Are mean reef fish abundances proportional to mangrove forest area after taking human population density and latitude into account? Specifically, we tested for Caribbean-wide mangrove forest area effects on the abundances of 12 reef fishes that have been previously characterized as “mangrove-dependent”. Analyzed were data from an ongoing, long-term (20-year) citizen-scientist fish monitoring program; coastal human population censuses; and several wetland forest information sources. Quantile regression results supported the notion that mangrove forest area limits the abundance of eight of the 12 fishes examined. Linear mixed-effects regression results, which considered potential human (fishing and habitat degradation) and latitudinal influences, suggested that average reef fish densities of at least six of the 12 focal fishes were directly proportional to mangrove forest area. Recent work questioning the mangrove-reef fish subsidy effect likely reflects a failure to: (1) focus analyses on species that use mangroves as nurseries, (2) consider more than the mean fish abundance response to mangrove forest extent; and/or (3) quantitatively account for potentially confounding human impacts, such as fishing pressure and habitat degradation. Our study is the first to demonstrate at a large regional scale (i.e., the Wider Caribbean) that greater mangrove forest size generally functions to increase the densities on neighboring reefs of those fishes that use these shallow, vegetated habitats as nurseries. PMID:26536478

  3. Scaling results for the magnetic field line trajectories in the stochastic layer near the separatrix in divertor tokamaks with high magnetic shear using the higher shear map

    NASA Astrophysics Data System (ADS)

    Punjabi, Alkesh; Ali, Halima; Farhat, Hamidullah

    2009-07-01

    Extra terms are added to the generating function of the simple map (Punjabi et al 1992 Phys. Rev. Lett. 69 3322) to adjust shear of magnetic field lines in divertor tokamaks. From this new generating function, a higher shear map is derived from a canonical transformation. A continuous analog of the higher shear map is also derived. The method of maps (Punjabi et al 1994 J. Plasma Phys. 52 91) is used to calculate the average shear, stochastic broadening of the ideal separatrix near the X-point in the principal plane of the tokamak, loss of poloidal magnetic flux from inside the ideal separatrix, magnetic footprint on the collector plate, and its area, and the radial diffusion coefficient of magnetic field lines near the X-point. It is found that the width of the stochastic layer near the X-point and the loss of poloidal flux from inside the ideal separatrix scale linearly with average shear. The area of magnetic footprints scales roughly linearly with average shear. Linear scaling of the area is quite good when the average shear is greater than or equal to 1.25. When the average shear is in the range 1.1-1.25, the area of the footprint fluctuates (as a function of average shear) and scales faster than linear scaling. Radial diffusion of field lines near the X-point increases very rapidly by about four orders of magnitude as average shear increases from about 1.15 to 1.5. For higher values of average shear, diffusion increases linearly, and comparatively very slowly. The very slow scaling of the radial diffusion of the field can flatten the plasma pressure gradient near the separatrix, and lead to the elimination of type-I edge localized modes.

  4. Elastic properties and optical absorption studies of mixed alkali borogermanate glasses

    NASA Astrophysics Data System (ADS)

    Taqiullah, S. M.; Ahmmad, Shaik Kareem; Samee, M. A.; Rahman, Syed

    2018-05-01

    First time the mixed alkali effect (MAE) has been investigated in the glass system xNa2O-(30-x)Li2O-40B2O3- 30GeO2 (0≤x≤30 mol%) through density and optical absorption studies. The present glasses were prepared by melt quench technique. The density of the present glasses varies non-linearly exhibiting mixed alkali effect. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter. From the absorption edge studies, the values of optical band gap energies for all transitions have been evaluated. It was established that the type of electronic transition in the present glass system is indirect allowed. The indirect optical band gap exhibit non-linear behavior with compositional parameter showing the mixed alkali effect.

  5. Density and mechanical properties of calcium aluminate cement

    NASA Astrophysics Data System (ADS)

    Ahmed, Syed Taqi Uddin; Ahmmad, Shaik Kareem

    2018-04-01

    Calcium aluminate cements are a special type of cements which have their composition mainly dominated by the presence of Monocalcium Aluminates. In the present paper for the first time we have shown theoretical density and elastic constants for various calcium aluminate cements. The density of the present CAS decrease with aluminates presents in the cement. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter.

  6. Mapping brucellosis increases relative to elk density using hierarchical Bayesian models

    USGS Publications Warehouse

    Cross, Paul C.; Heisey, Dennis M.; Scurlock, Brandon M.; Edwards, William H.; Brennan, Angela; Ebinger, Michael R.

    2010-01-01

    The relationship between host density and parasite transmission is central to the effectiveness of many disease management strategies. Few studies, however, have empirically estimated this relationship particularly in large mammals. We applied hierarchical Bayesian methods to a 19-year dataset of over 6400 brucellosis tests of adult female elk (Cervus elaphus) in northwestern Wyoming. Management captures that occurred from January to March were over two times more likely to be seropositive than hunted elk that were killed in September to December, while accounting for site and year effects. Areas with supplemental feeding grounds for elk had higher seroprevalence in 1991 than other regions, but by 2009 many areas distant from the feeding grounds were of comparable seroprevalence. The increases in brucellosis seroprevalence were correlated with elk densities at the elk management unit, or hunt area, scale (mean 2070 km2; range = [95–10237]). The data, however, could not differentiate among linear and non-linear effects of host density. Therefore, control efforts that focus on reducing elk densities at a broad spatial scale were only weakly supported. Additional research on how a few, large groups within a region may be driving disease dynamics is needed for more targeted and effective management interventions. Brucellosis appears to be expanding its range into new regions and elk populations, which is likely to further complicate the United States brucellosis eradication program. This study is an example of how the dynamics of host populations can affect their ability to serve as disease reservoirs.

  7. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staebler, G. M.; Candy, J.; Howard, N. T.

    2016-06-15

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. The zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ion-scale gyrokinetic simulations.« less

  8. Explicit crystal host effects on excited state properties of linear polyacenes: towards a room-temperature maser

    NASA Astrophysics Data System (ADS)

    Charlton, Robert; Bogatko, Stuart; Zuehlsdorff, Tim; Hine, Nicholas; Horsfield, Andrew; Haynes, Peter

    Maser technology has been held back for decades by the impracticality of the operating conditions of traditional masing devices, such as cryogenic freezing and strong magnetic fields. Recently it has been experimentally demonstrated that pentacene in p-terphenyl can act as a viable solid-state room-temperature maser by exploiting the alignment of the low-lying singlet and triplet excited states of pentacene. To understand the operation of this device from first principles, an ab initio study of the excitonic properties of pentacene in p-terphenyl has been carried out using time-dependent density functional theory (TDDFT), implemented in the linear-scaling ONETEP software (www.onetep.org). In particular, we focus on the impact that the wider crystal has on the localised pentacene excitations by performing an explicit DFT treatment of the p-terphenyl environment. We demonstrate the importance of explicit crystal host effects in calculating the excitation energies of pentacene in p-terphenyl, providing important information for the operation of the maser. We then use this same approach to test the viability of other linear polyacenes as maser candidates as a screening step before experimental testing.

  9. DOS cones along atomic chains

    NASA Astrophysics Data System (ADS)

    Kwapiński, Tomasz

    2017-03-01

    The electron transport properties of a linear atomic chain are studied theoretically within the tight-binding Hamiltonian and the Green’s function method. Variations of the local density of states (DOS) along the chain are investigated. They are crucial in scanning tunnelling experiments and give important insight into the electron transport mechanism and charge distribution inside chains. It is found that depending on the chain parity the local DOS at the Fermi level can form cone-like structures (DOS cones) along the chain. The general condition for the local DOS oscillations is obtained and the linear behaviour of the local density function is confirmed analytically. DOS cones are characterized by a linear decay towards the chain which is in contrast to the propagation properties of charge density waves, end states and Friedel oscillations in one-dimensional systems. We find that DOS cones can appear due to non-resonant electron transport, the spin-orbit scattering or for chains fabricated on a substrate with localized electrons. It is also shown that for imperfect chains (e.g. with a reduced coupling strength between two neighboring sites) a diamond-like structure of the local DOS along the chain appears.

  10. Control design based on a linear state function observer

    NASA Technical Reports Server (NTRS)

    Su, Tzu-Jeng; Craig, Roy R., Jr.

    1992-01-01

    An approach to the design of low-order controllers for large scale systems is proposed. The method is derived from the theory of linear state function observers. First, the realization of a state feedback control law is interpreted as the observation of a linear function of the state vector. The linear state function to be reconstructed is the given control law. Then, based on the derivation for linear state function observers, the observer design is formulated as a parameter optimization problem. The optimization objective is to generate a matrix that is close to the given feedback gain matrix. Based on that matrix, the form of the observer and a new control law can be determined. A four-disk system and a lightly damped beam are presented as examples to demonstrate the applicability and efficacy of the proposed method.

  11. Onset of density-driven instabilities in fractured aquifers

    NASA Astrophysics Data System (ADS)

    Jafari Raad, Seyed Mostafa; Hassanzadeh, Hassan

    2018-04-01

    Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of C O2 in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.

  12. Orbital evolution and accretion of protoplanets tidally interacting with a gas disk. II. Solid surface density evolution with type-I migration

    NASA Astrophysics Data System (ADS)

    Daisaka, Junko K.; Tanaka, Hidekazu; Ida, Shigeru

    2006-12-01

    This paper investigates the surface density evolution of a planetesimal disk due to the effect of type-I migration by carrying out N-body simulation and through analytical method, focusing on terrestrial planet formation. The coagulation and the growth of the planetesimals take place in the abundant gas disk except for a final stage. A protoplanet excites density waves in the gas disk, which causes the torque on the protoplanet. The torque imbalance makes the protoplanet suffer radial migration, which is known as type-I migration. Type-I migration time scale derived by the linear theory may be too short for the terrestrial planets to survive, which is one of the major problems in the planet formation scenario. Although the linear theory assumes a protoplanet being in a gas disk alone, Kominami et al. [Kominami, J., Tanaka, H., Ida, S., 2005. Icarus 167, 231-243] showed that the effect of the interaction with the planetesimal disk and the neighboring protoplanets on type-I migration is negligible. The migration becomes pronounced before the planet's mass reaches the isolation mass, and decreases the solid component in the disk. Runaway protoplanets form again in the planetesimal disk with decreased surface density. In this paper, we present the analytical formulas that describe the evolution of the solid surface density of the disk as a function of gas-to-dust ratio, gas depletion time scale and semimajor axis, which agree well with our results of N-body simulations. In general, significant depletion of solid material is likely to take place in inner regions of disks. This might be responsible for the fact that there is no planet inside Mercury's orbit in our Solar System. Our most important result is that the final surface density of solid components ( Σ) and mass of surviving planets depend on gas surface density ( Σ) and its depletion time scale ( τ) but not on initial Σ; they decrease with increase in Σ and τ. For a fixed gas-to-dust ratio and τ, larger initial Σ results in smaller final Σ and smaller surviving planets, because of larger Σ. To retain a specific amount of Σ, the efficient disk condition is not an initially large Σ but the initial Σ as small as the specified final one and a smaller gas-to-dust ratio. To retain Σ comparable to that of the minimum mass solar nebula (MMSN), a disk must have the same Σ and a gas-to-dust ratio that is smaller than that of MMSN by a factor of 1.3×(τ/1 Myr) at ˜1 AU. (Equivalently, type-I migration speed is slower than that predicted by the linear theory by the same factor.) The surviving planets are Mars-sized ones in this case; in order to form Earth-sized planets, their eccentricities must be pumped up to start orbit crossing and coagulation among them. At ˜5 AU, Σ of MMSN is retained under the same condition, but to form a core massive enough to start runaway gas accretion, a gas-to-dust ratio must be smaller than that of MMSN by a factor of 3×τ/1 Myr.

  13. Proportionality between Doppler noise and integrated signal path electron density validated by differenced S-X range

    NASA Technical Reports Server (NTRS)

    Berman, A. L.

    1977-01-01

    Observations of Viking differenced S-band/X-band (S-X) range are shown to correlate strongly with Viking Doppler noise. A ratio of proportionality between downlink S-band plasma-induced range error and two-way Doppler noise is calculated. A new parameter (similar to the parameter epsilon which defines the ratio of local electron density fluctuations to mean electron density) is defined as a function of observed data sample interval (Tau) where the time-scale of the observations is 15 Tau. This parameter is interpreted to yield the ratio of net observed phase (or electron density) fluctuations to integrated electron density (in RMS meters/meter). Using this parameter and the thin phase-changing screen approximation, a value for the scale size L is calculated. To be consistent with Doppler noise observations, it is seen necessary for L to be proportional to closest approach distance a, and a strong function of the observed data sample interval, and hence the time-scale of the observations.

  14. A Sequential Ensemble Prediction System at Convection Permitting Scales

    NASA Astrophysics Data System (ADS)

    Milan, M.; Simmer, C.

    2012-04-01

    A Sequential Assimilation Method (SAM) following some aspects of particle filtering with resampling, also called SIR (Sequential Importance Resampling), is introduced and applied in the framework of an Ensemble Prediction System (EPS) for weather forecasting on convection permitting scales, with focus to precipitation forecast. At this scale and beyond, the atmosphere increasingly exhibits chaotic behaviour and non linear state space evolution due to convectively driven processes. One way to take full account of non linear state developments are particle filter methods, their basic idea is the representation of the model probability density function by a number of ensemble members weighted by their likelihood with the observations. In particular particle filter with resampling abandons ensemble members (particles) with low weights restoring the original number of particles adding multiple copies of the members with high weights. In our SIR-like implementation we substitute the likelihood way to define weights and introduce a metric which quantifies the "distance" between the observed atmospheric state and the states simulated by the ensemble members. We also introduce a methodology to counteract filter degeneracy, i.e. the collapse of the simulated state space. To this goal we propose a combination of resampling taking account of simulated state space clustering and nudging. By keeping cluster representatives during resampling and filtering, the method maintains the potential for non linear system state development. We assume that a particle cluster with initially low likelihood may evolve in a state space with higher likelihood in a subsequent filter time thus mimicking non linear system state developments (e.g. sudden convection initiation) and remedies timing errors for convection due to model errors and/or imperfect initial condition. We apply a simplified version of the resampling, the particles with highest weights in each cluster are duplicated; for the model evolution for each particle pair one particle evolves using the forward model; the second particle, however, is nudged to the radar and satellite observation during its evolution based on the forward model.

  15. The maximal-density mass function for primordial black hole dark matter

    NASA Astrophysics Data System (ADS)

    Lehmann, Benjamin V.; Profumo, Stefano; Yant, Jackson

    2018-04-01

    The advent of gravitational wave astronomy has rekindled interest in primordial black holes (PBH) as a dark matter candidate. As there are many different observational probes of the PBH density across different masses, constraints on PBH models are dependent on the functional form of the PBH mass function. This complicates general statements about the mass functions allowed by current data, and, in particular, about the maximum total density of PBH. Numerical studies suggest that some forms of extended mass functions face tighter constraints than monochromatic mass functions, but they do not preclude the existence of a functional form for which constraints are relaxed. We use analytical arguments to show that the mass function which maximizes the fraction of the matter density in PBH subject to all constraints is a finite linear combination of monochromatic mass functions. We explicitly compute the maximum fraction of dark matter in PBH for different combinations of current constraints, allowing for total freedom of the mass function. Our framework elucidates the dependence of the maximum PBH density on the form of observational constraints, and we discuss the implications of current and future constraints for the viability of the PBH dark matter paradigm.

  16. Frequency domain system identification of helicopter rotor dynamics incorporating models with time periodic coefficients

    NASA Astrophysics Data System (ADS)

    Hwang, Sunghwan

    1997-08-01

    One of the most prominent features of helicopter rotor dynamics in forward flight is the periodic coefficients in the equations of motion introduced by the rotor rotation. The frequency response characteristics of such a linear time periodic system exhibits sideband behavior, which is not the case for linear time invariant systems. Therefore, a frequency domain identification methodology for linear systems with time periodic coefficients was developed, because the linear time invariant theory cannot account for sideband behavior. The modulated complex Fourier series was introduced to eliminate the smearing effect of Fourier series expansions of exponentially modulated periodic signals. A system identification theory was then developed using modulated complex Fourier series expansion. Correlation and spectral density functions were derived using the modulated complex Fourier series expansion for linear time periodic systems. Expressions of the identified harmonic transfer function were then formulated using the spectral density functions both with and without additive noise processes at input and/or output. A procedure was developed to identify parameters of a model to match the frequency response characteristics between measured and estimated harmonic transfer functions by minimizing an objective function defined in terms of the trace of the squared frequency response error matrix. Feasibility was demonstrated by the identification of the harmonic transfer function and parameters for helicopter rigid blade flapping dynamics in forward flight. This technique is envisioned to satisfy the needs of system identification in the rotating frame, especially in the context of individual blade control. The technique was applied to the coupled flap-lag-inflow dynamics of a rigid blade excited by an active pitch link. The linear time periodic technique results were compared with the linear time invariant technique results. Also, the effect of noise processes and initial parameter guess on the identification procedure were investigated. To study the effect of elastic modes, a rigid blade with a trailing edge flap excited by a smart actuator was selected and system parameters were successfully identified, but with some expense of computational storage and time. Conclusively, the linear time periodic technique substantially improved the identified parameter accuracy compared to the linear time invariant technique. Also, the linear time periodic technique was robust to noises and initial guess of parameters. However, an elastic mode of higher frequency relative to the system pumping frequency tends to increase the computer storage requirement and computing time.

  17. Non-linear clustering in the cold plus hot dark matter model

    NASA Astrophysics Data System (ADS)

    Bonometto, Silvio A.; Borgani, Stefano; Ghigna, Sebastiano; Klypin, Anatoly; Primack, Joel R.

    1995-03-01

    The main aim of this work is to find out if hierarchical scaling, observed in galaxy clustering, can be dynamically explained by studying N-body simulations. Previous analyses of dark matter (DM) particle distributions indicated heavy distortions with respect to the hierarchical pattern. Here, we shall describe how such distortions are to be interpreted and why they can be fully reconciled with the observed galaxy clustering. This aim is achieved by using high-resolution (512^3 grid-points) particle-mesh (PM) N-body simulations to follow the development of non-linear clustering in a Omega=1 universe, dominated either by cold dark matter (CDM) or by a mixture of cold+hot dark matter (CHDM) with Omega_cold=0.6, and Omega_hot=0.3 and Omega_baryon=0.1 a simulation box of side 100 Mpc (h=0.5) is used. We analyse two CHDM realizations with biasing factor b=1.5 (COBE normalization), starting from different initial random numbers, and compare them with CDM simulations with b=1 (COBE-compatible) and b=1.5. We evaluate high-order correlation functions and the void probability function (VPF). Correlation functions are obtained from both counts in cells and counts of neighbours. The analysis is carried out for DM particles and for galaxies identified as massive haloes of the evolved density field. We confirm that clustering of DM particles systematically exhibits deviations from hierarchical scaling, although the deviation increases somewhat in redshift space. Deviations from the hierarchical scaling of DM particles are found to be related to the spectrum shape, in a way that indicates that such distortions arise from finite sampling effects. We identify galaxy positions in the simulations and show that, quite differently from the DM particle background, galaxies follow hierarchical scaling (S_q=xi_q/& xgr^q-1_2=consta nt) far more closely, with reduced skewness and kurtosis coefficients S_3~2.5 and S_4~7.5, in general agreement with observational results. Unlike DM, the scaling of galaxy clustering is must marginally affected by redshift distortions and is obtained for both CDM and CHDM models. Hierarchical scaling in simulations is confirmed by VPF analysis. Also in this case, we find substantial agreement with observational findings.

  18. Recursive Factorization of the Inverse Overlap Matrix in Linear-Scaling Quantum Molecular Dynamics Simulations.

    PubMed

    Negre, Christian F A; Mniszewski, Susan M; Cawkwell, Marc J; Bock, Nicolas; Wall, Michael E; Niklasson, Anders M N

    2016-07-12

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive, iterative refinement of an initial guess of Z (inverse square root of the overlap matrix S). The initial guess of Z is obtained beforehand by using either an approximate divide-and-conquer technique or dynamical methods, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under the incomplete, approximate, iterative refinement of Z. Linear-scaling performance is obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables efficient shared-memory parallelization. As we show in this article using self-consistent density-functional-based tight-binding MD, our approach is faster than conventional methods based on the diagonalization of overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4158-atom water-solvated polyalanine system, we find an average speedup factor of 122 for the computation of Z in each MD step.

  19. Between- and within-lake responses of macrophyte richness metrics to shoreline developmen

    USGS Publications Warehouse

    Beck, Marcus W.; Vondracek, Bruce C.; Hatch, Lorin K.

    2013-01-01

    Aquatic habitat in littoral environments can be affected by residential development of shoreline areas. We evaluated the relationship between macrophyte richness metrics and shoreline development to quantify indicator response at 2 spatial scales for Minnesota lakes. First, the response of total, submersed, and sensitive species to shoreline development was evaluated within lakes to quantify macrophyte response as a function of distance to the nearest dock. Within-lake analyses using generalized linear mixed models focused on 3 lakes of comparable size with a minimal influence of watershed land use. Survey points farther from docks had higher total species richness and presence of species sensitive to disturbance. Second, between-lake effects of shoreline development on total, submersed, emergent-floating, and sensitive species were evaluated for 1444 lakes. Generalized linear models were developed for all lakes and stratified subsets to control for lake depth and watershed land use. Between-lake analyses indicated a clear response of macrophyte richness metrics to increasing shoreline development, such that fewer emergent-floating and sensitive species were correlated with increasing density of docks. These trends were particularly evident for deeper lakes with lower watershed development. Our results provide further evidence that shoreline development is associated with degraded aquatic habitat, particularly by illustrating the response of macrophyte richness metrics across multiple lake types and different spatial scales.

  20. Recursive Factorization of the Inverse Overlap Matrix in Linear Scaling Quantum Molecular Dynamics Simulations

    DOE PAGES

    Negre, Christian F. A; Mniszewski, Susan M.; Cawkwell, Marc Jon; ...

    2016-06-06

    We present a reduced complexity algorithm to compute the inverse overlap factors required to solve the generalized eigenvalue problem in a quantum-based molecular dynamics (MD) simulation. Our method is based on the recursive iterative re nement of an initial guess Z of the inverse overlap matrix S. The initial guess of Z is obtained beforehand either by using an approximate divide and conquer technique or dynamically, propagated within an extended Lagrangian dynamics from previous MD time steps. With this formulation, we achieve long-term stability and energy conservation even under incomplete approximate iterative re nement of Z. Linear scaling performance ismore » obtained using numerically thresholded sparse matrix algebra based on the ELLPACK-R sparse matrix data format, which also enables e cient shared memory parallelization. As we show in this article using selfconsistent density functional based tight-binding MD, our approach is faster than conventional methods based on the direct diagonalization of the overlap matrix S for systems as small as a few hundred atoms, substantially accelerating quantum-based simulations even for molecular structures of intermediate size. For a 4,158 atom water-solvated polyalanine system we nd an average speedup factor of 122 for the computation of Z in each MD step.« less

  1. Using Stocking or Harvesting to Reverse Period-Doubling Bifurcations in Discrete Population Models

    Treesearch

    James F. Selgrade

    1998-01-01

    This study considers a general class of 2-dimensional, discrete population models where each per capita transition function (fitness) depends on a linear combination of the densities of the interacting populations. The fitness functions are either monotone decreasing functions (pioneer fitnesses) or one-humped functions (climax fitnesses). Four sets of necessary...

  2. Reversing Period-Doubling Bifurcations in Models of Population Interactions Using Constant Stocking or Harvesting

    Treesearch

    James F. Selgrade; James H. Roberds

    1998-01-01

    This study considers a general class of two-dimensional, discrete population models where each per capita transition function (fitness) depends on a linear combination of the densities of the interacting populations. The fitness functions are either monotone decreasing functions (pioneer fitnesses) or one-humped functions (climax fitnesses). Conditions are derived...

  3. Experimental Investigation of Ultrafast Hydration Structure and Dynamics at Sub-Angstrom Lengthscales

    ERIC Educational Resources Information Center

    Coridan, Robert Henry

    2009-01-01

    This thesis outlines how meV-resolution inelastic x-ray scattering and causality-enforcing mathematics can be used to measure the dynamical density-density linear response function for liquid water with Angstrom spatial resolution and 50fs temporal resolution. The results are compared to high-resolution spectroscopic and scattering experiments and…

  4. Influence of the local-spin-density correlation functional on the stability of bcc ferromagnetic iron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, D.; Clougherty, D.P.; MacLaren, J.M.

    1991-10-01

    The influence of local-spin-dependent correlation effects on the predicted stable ground-state phase of iron is reexamined with use of general-potential linearized augmented-plane-wave calculations. Differences in the form of the Vosko-Wilk-Nusair (VWN) local-spin-density functional used in previous studies are noted, since in previous studies significant additional approximations were made with respect to those of Vosko, Wilk, and Nusan (Can. J. Phys. 58, 1200 (1980)) and of MacLaren, Clougherty, and Albers (Phys. Rev. B 42, 3205 (1990)). While the results of previous linear muffin-tin orbital calculations using the VWN functional predict a bcc ferromagnetic ground state, the present calculations show that themore » VWN spin-correlation effects fail to stabilize a bcc ground state. Considerable sensitivity to the form of the spin interpolation is found.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlah, Zvonimir; Seljak, Uroš; Okumura, Teppei

    Numerical simulations show that redshift space distortions (RSD) introduce strong scale dependence in the power spectra of halos, with ten percent deviations relative to linear theory predictions even on relatively large scales (k < 0.1h/Mpc) and even in the absence of satellites (which induce Fingers-of-God, FoG, effects). If unmodeled these effects prevent one from extracting cosmological information from RSD surveys. In this paper we use Eulerian perturbation theory (PT) and Eulerian halo biasing model and apply it to the distribution function approach to RSD, in which RSD is decomposed into several correlators of density weighted velocity moments. We model eachmore » of these correlators using PT and compare the results to simulations over a wide range of halo masses and redshifts. We find that with an introduction of a physically motivated halo biasing, and using dark matter power spectra from simulations, we can reproduce the simulation results at a percent level on scales up to k ∼ 0.15h/Mpc at z = 0, without the need to have free FoG parameters in the model.« less

  6. Polymer density functional theory approach based on scaling second-order direct correlation function.

    PubMed

    Zhou, Shiqi

    2006-06-01

    A second-order direct correlation function (DCF) from solving the polymer-RISM integral equation is scaled up or down by an equation of state for bulk polymer, the resultant scaling second-order DCF is in better agreement with corresponding simulation results than the un-scaling second-order DCF. When the scaling second-order DCF is imported into a recently proposed LTDFA-based polymer DFT approach, an originally associated adjustable but mathematically meaningless parameter now becomes mathematically meaningful, i.e., the numerical value lies now between 0 and 1. When the adjustable parameter-free version of the LTDFA is used instead of the LTDFA, i.e., the adjustable parameter is fixed at 0.5, the resultant parameter-free version of the scaling LTDFA-based polymer DFT is also in good agreement with the corresponding simulation data for density profiles. The parameter-free version of the scaling LTDFA-based polymer DFT is employed to investigate the density profiles of a freely jointed tangent hard sphere chain near a variable sized central hard sphere, again the predictions reproduce accurately the simulational results. Importance of the present adjustable parameter-free version lies in its combination with a recently proposed universal theoretical way, in the resultant formalism, the contact theorem is still met by the adjustable parameter associated with the theoretical way.

  7. Electromagnetic scaling functions within the Green's function Monte Carlo approach

    DOE PAGES

    Rocco, N.; Alvarez-Ruso, L.; Lovato, A.; ...

    2017-07-24

    We have studied the scaling properties of the electromagnetic response functions of 4He and 12C nuclei computed by the Green's function Monte Carlo approach, retaining only the one-body current contribution. Longitudinal and transverse scaling functions have been obtained in the relativistic and nonrelativistic cases and compared to experiment for various kinematics. The characteristic asymmetric shape of the scaling function exhibited by data emerges in the calculations in spite of the nonrelativistic nature of the model. The results are mostly consistent with scaling of zeroth, first, and second kinds. Our analysis reveals a direct correspondence between the scaling and the nucleon-densitymore » response functions. In conclusion, the scaling function obtained from the proton-density response displays scaling of the first kind, even more evidently than the longitudinal and transverse scaling functions« less

  8. Electromagnetic scaling functions within the Green's function Monte Carlo approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocco, N.; Alvarez-Ruso, L.; Lovato, A.

    We have studied the scaling properties of the electromagnetic response functions of 4He and 12C nuclei computed by the Green's function Monte Carlo approach, retaining only the one-body current contribution. Longitudinal and transverse scaling functions have been obtained in the relativistic and nonrelativistic cases and compared to experiment for various kinematics. The characteristic asymmetric shape of the scaling function exhibited by data emerges in the calculations in spite of the nonrelativistic nature of the model. The results are mostly consistent with scaling of zeroth, first, and second kinds. Our analysis reveals a direct correspondence between the scaling and the nucleon-densitymore » response functions. In conclusion, the scaling function obtained from the proton-density response displays scaling of the first kind, even more evidently than the longitudinal and transverse scaling functions« less

  9. Changes in particle transport as a result of resonant magnetic perturbations in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mordijck, S.; Doyle, E. J.; Rhodes, T. L.

    2012-05-15

    In this paper, we introduce the first direct perturbed particle transport measurements in resonant magnetic perturbation (RMP) H-mode plasmas. The perturbed particle transport increases as a result of application of RMP deep into the core. In the core, a large reduction in E Multiplication-Sign B shear to a value below the linear growth rate, in conjunction with increasing density fluctuations, is consistent with an increase in turbulent particle transport. In the edge, the changes in turbulent particle transport are less obvious. There is a clear correlation between the linear growth rates and the density fluctuations measured at different scales, butmore » it is uncertain which is the cause and which is the consequence.« less

  10. Changes in particle transport as a result of resonant magnetic perturbations in DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mordijck, S.; Doyle, E. J.; McKee, G. R.

    2012-01-01

    In this paper, we introduce the first direct perturbed particle transport measurements in resonant magnetic perturbation (RMP) H-mode plasmas. The perturbed particle transport increases as a result of application of RMP deep into the core. In the core, a large reduction in E x B shear to a value below the linear growth rate, in conjunction with increasing density fluctuations, is consistent with an increase in turbulent particle transport. In the edge, the changes in turbulent particle transport are less obvious. There is a clear correlation between the linear growth rates and the density fluctuations measured at different scales, butmore » it is uncertain which is the cause and which is the consequence.« less

  11. Radiation-damage-induced transitions in zircon: Percolation theory applied to hardness and elastic moduli as a function of density

    NASA Astrophysics Data System (ADS)

    Beirau, Tobias; Nix, William D.; Ewing, Rodney C.; Pöllmann, Herbert; Salje, Ekhard K. H.

    2018-05-01

    Two in literature predicted percolation transitions in radiation-damaged zircon (ZrSiO4) were observed experimentally by measurement of the indentation hardness as a function of density and their correlation with the elastic moduli. Percolations occur near 30% and 70% amorphous fractions, where hardness deviates from its linear correlation with the elastic modulus (E), the shear modulus (G) and the bulk modulus (K). The first percolation point pc1 generates a cusp in the hardness versus density evolution, while the second percolation point is seen as a change of slope.

  12. Goldstone models of modified gravity

    NASA Astrophysics Data System (ADS)

    Brax, Philippe; Valageas, Patrick

    2017-02-01

    We investigate scalar-tensor theories where matter couples to the scalar field via a kinetically dependent conformal coupling. These models can be seen as the low-energy description of invariant field theories under a global Abelian symmetry. The scalar field is then identified with the Goldstone mode of the broken symmetry. It turns out that the properties of these models are very similar to the ones of ultralocal theories where the scalar-field value is directly determined by the local matter density. This leads to a complete screening of the fifth force in the Solar System and between compact objects, through the ultralocal screening mechanism. On the other hand, the fifth force can have large effects in extended structures with large-scale density gradients, such as galactic halos. Interestingly, it can either amplify or damp Newtonian gravity, depending on the model parameters. We also study the background cosmology and the linear cosmological perturbations. The background cosmology is hardly different from its Λ -CDM counterpart while cosmological perturbations crucially depend on whether the coupling function is convex or concave. For concave functions, growth is hindered by the repulsiveness of the fifth force while it is enhanced in the convex case. In both cases, the departures from the Λ -CDM cosmology increase on smaller scales and peak for galactic structures. For concave functions, the formation of structure is largely altered below some characteristic mass, as smaller structures are delayed and would form later through fragmentation, as in some warm dark matter scenarios. For convex models, small structures form more easily than in the Λ -CDM scenario. This could lead to an over-abundance of small clumps. We use a thermodynamic analysis and show that although convex models have a phase transition between homogeneous and inhomogeneous phases, on cosmological scales the system does not enter the inhomogeneous phase. On the other hand, for galactic halos, the coexistence of small and large substructures in their outer regions could lead to observational signatures of these models.

  13. The role of zonal flows in the saturation of multi-scale gyrokinetic turbulence

    DOE PAGES

    Staebler, Gary M.; Candy, John; Howard, Nathan T.; ...

    2016-06-29

    The 2D spectrum of the saturated electric potential from gyrokinetic turbulence simulations that include both ion and electron scales (multi-scale) in axisymmetric tokamak geometry is analyzed. The paradigm that the turbulence is saturated when the zonal (axisymmetic) ExB flow shearing rate competes with linear growth is shown to not apply to the electron scale turbulence. Instead, it is the mixing rate by the zonal ExB velocity spectrum with the turbulent distribution function that competes with linear growth. A model of this mechanism is shown to be able to capture the suppression of electron-scale turbulence by ion-scale turbulence and the thresholdmore » for the increase in electron scale turbulence when the ion-scale turbulence is reduced. The model computes the strength of the zonal flow velocity and the saturated potential spectrum from the linear growth rate spectrum. The model for the saturated electric potential spectrum is applied to a quasilinear transport model and shown to accurately reproduce the electron and ion energy fluxes of the non-linear gyrokinetic multi-scale simulations. Finally, the zonal flow mixing saturation model is also shown to reproduce the non-linear upshift in the critical temperature gradient caused by zonal flows in ionscale gyrokinetic simulations.« less

  14. On the subsystem formulation of linear-response time-dependent DFT.

    PubMed

    Pavanello, Michele

    2013-05-28

    A new and thorough derivation of linear-response subsystem time-dependent density functional theory (TD-DFT) is presented and analyzed in detail. Two equivalent derivations are presented and naturally yield self-consistent subsystem TD-DFT equations. One reduces to the subsystem TD-DFT formalism of Neugebauer [J. Chem. Phys. 126, 134116 (2007)]. The other yields Dyson type equations involving three types of subsystem response functions: coupled, uncoupled, and Kohn-Sham. The Dyson type equations for subsystem TD-DFT are derived here for the first time. The response function formalism reveals previously hidden qualities and complications of subsystem TD-DFT compared with the regular TD-DFT of the supersystem. For example, analysis of the pole structure of the subsystem response functions shows that each function contains information about the electronic spectrum of the entire supersystem. In addition, comparison of the subsystem and supersystem response functions shows that, while the correlated response is subsystem additive, the Kohn-Sham response is not. Comparison with the non-subjective partition DFT theory shows that this non-additivity is largely an artifact introduced by the subjective nature of the density partitioning in subsystem DFT.

  15. Scaling and characterisation of a 2-DoF velocity amplified electromagnetic vibration energy harvester

    NASA Astrophysics Data System (ADS)

    O’Donoghue, D.; Frizzell, R.; Punch, J.

    2018-07-01

    Vibration energy harvesters (VEHs) offer an alternative to batteries for the autonomous operation of low-power electronics. Understanding the influence of scaling on VEHs is of great importance in the design of reduced scale harvesters. The nonlinear harvesters investigated here employ velocity amplification, a technique used to increase velocity through impacts, to improve the power output of multiple-degree-of-freedom VEHs, compared to linear resonators. Such harvesters, employing electromagnetic induction, are referred to as velocity amplified electromagnetic generators (VAEGs), with gains in power achieved by increasing the relative velocity between the magnet and coil in the transducer. The influence of scaling on a nonlinear 2-DoF VAEG is presented. Due to the increased complexity of VAEGs, compared to linear systems, linear scaling theory cannot be directly applied to VAEGs. Therefore, a detailed nonlinear scaling method is utilised. Experimental and numerical methods are employed. This nonlinear scaling method can be used for analysing the scaling behaviour of all nonlinear electromagnetic VEHs. It is demonstrated that the electromagnetic coupling coefficient degrades more rapidly with scale for systems with larger displacement amplitudes, meaning that systems operating at low frequencies will scale poorly compared to those operating at higher frequencies. The load power of the 2-DoF VAEG is predicted to scale as {P}L\\propto {s}5.51 (s = volume1/3), suggesting that achieving high power densities in a VAEG with low device volume is extremely challenging.

  16. The Durham/UKST Galaxy Redshift Survey - VII. Redshift-space distortions in the power spectrum

    NASA Astrophysics Data System (ADS)

    Outram, P. J.; Hoyle, Fiona; Shanks, T.

    2001-03-01

    We investigate the effect of redshift-space distortions in the power spectrum parallel and perpendicular to the line of sight of the observer, PS(k∥,k⊥), using the optically selected Durham/UKST Galaxy Redshift Survey. On small, non-linear scales anisotropy in the power spectrum is dominated by the galaxy velocity dispersion; the `Finger of God' effect. On larger, linear scales coherent peculiar velocities caused by the infall of galaxies into overdense regions are the main cause of anisotropy. According to gravitational instability theory these distortions depend only on the density and bias parameters via β~Ωm0.6b. Geometrical distortions also occur if the wrong cosmology is assumed, although these would be relatively small given the low redshift of the survey. To quantify these effects, we assume the real-space power spectrum of the APM Galaxy Survey, and fit a simple model for the redshift-space and geometrical distortions. Assuming a flat Ωm=1 universe, we find values for the one-dimensional pairwise velocity dispersion of σp=410+/-170kms-1, and β=0.38+/-0.17. An open Ωm=0.3, and a flat Ωm=0.3, ΩΛ=0.7 universe yield σp=420kms-1, β=0.40, and σp=440kms-1, β=0.45, respectively, with comparable errors. These results are consistent with estimates using the two-point galaxy correlation function, ξ(σ,π), and favour either a low-density universe with Ωm~0.3 if galaxies trace the underlying mass distribution, or a bias factor of b~2.5 if Ωm=1.

  17. A density spike on astrophysical scales from an N-field waterfall transition

    NASA Astrophysics Data System (ADS)

    Halpern, Illan F.; Hertzberg, Mark P.; Joss, Matthew A.; Sfakianakis, Evangelos I.

    2015-09-01

    Hybrid inflation models are especially interesting as they lead to a spike in the density power spectrum on small scales, compared to the CMB, while also satisfying current bounds on tensor modes. Here we study hybrid inflation with N waterfall fields sharing a global SO (N) symmetry. The inclusion of many waterfall fields has the obvious advantage of avoiding topologically stable defects for N > 3. We find that it also has another advantage: it is easier to engineer models that can simultaneously (i) be compatible with constraints on the primordial spectral index, which tends to otherwise disfavor hybrid models, and (ii) produce a spike on astrophysically large length scales. The latter may have significant consequences, possibly seeding the formation of astrophysically large black holes. We calculate correlation functions of the time-delay, a measure of density perturbations, produced by the waterfall fields, as a convergent power series in both 1 / N and the field's correlation function Δ (x). We show that for large N, the two-point function is < δt (x) δt (0) > ∝Δ2 (| x |) / N and the three-point function is < δt (x) δt (y) δt (0) > ∝ Δ (| x - y |) Δ (| x |) Δ (| y |) /N2. In accordance with the central limit theorem, the density perturbations on the scale of the spike are Gaussian for large N and non-Gaussian for small N.

  18. Energy Decomposition Analysis Based on Absolutely Localized Molecular Orbitals for Large-Scale Density Functional Theory Calculations in Drug Design.

    PubMed

    Phipps, M J S; Fox, T; Tautermann, C S; Skylaris, C-K

    2016-07-12

    We report the development and implementation of an energy decomposition analysis (EDA) scheme in the ONETEP linear-scaling electronic structure package. Our approach is hybrid as it combines the localized molecular orbital EDA (Su, P.; Li, H. J. Chem. Phys., 2009, 131, 014102) and the absolutely localized molecular orbital EDA (Khaliullin, R. Z.; et al. J. Phys. Chem. A, 2007, 111, 8753-8765) to partition the intermolecular interaction energy into chemically distinct components (electrostatic, exchange, correlation, Pauli repulsion, polarization, and charge transfer). Limitations shared in EDA approaches such as the issue of basis set dependence in polarization and charge transfer are discussed, and a remedy to this problem is proposed that exploits the strictly localized property of the ONETEP orbitals. Our method is validated on a range of complexes with interactions relevant to drug design. We demonstrate the capabilities for large-scale calculations with our approach on complexes of thrombin with an inhibitor comprised of up to 4975 atoms. Given the capability of ONETEP for large-scale calculations, such as on entire proteins, we expect that our EDA scheme can be applied in a large range of biomolecular problems, especially in the context of drug design.

  19. Formation of large-scale structure from cosmic strings and massive neutrinos

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Melott, Adrian L.; Bertschinger, Edmund

    1989-01-01

    Numerical simulations of large-scale structure formation from cosmic strings and massive neutrinos are described. The linear power spectrum in this model resembles the cold-dark-matter power spectrum. Galaxy formation begins early, and the final distribution consists of isolated density peaks embedded in a smooth background, leading to a natural bias in the distribution of luminous matter. The distribution of clustered matter has a filamentary appearance with large voids.

  20. Homogeneous purely buoyancy driven turbulent flow

    NASA Astrophysics Data System (ADS)

    Arakeri, Jaywant; Cholemari, Murali; Pawar, Shashikant

    2010-11-01

    An unstable density difference across a long vertical tube open at both ends leads to convection that is axially homogeneous with a linear density gradient. We report results from such tube convection experiments, with driving density caused by salt concentration difference or temperature difference. At high enough Rayleigh numbers (Ra) the convection is turbulent with zero mean flow and zero mean Reynolds shear stresses; thus turbulent production is purely by buoyancy. We observe different regimes of turbulent convection. At very high Ra the Nusselt number scales as the square root of the Rayleigh number, giving the so-called "ultimate regime" of convection predicted for Rayleigh-Benard convection in limit of infinite Ra. Turbulent convection at intermediate Ra, the Nusselt number scales as Ra^0.3. In both regimes, the flux and the Taylor scale Reynolds number are more than order of magnitude larger than those obtained in Rayleigh-Benard convection. Absence of a mean flow makes this an ideal flow to study shear free turbulence near a wall.

  1. An optimally weighted estimator of the linear power spectrum disentangling the growth of density perturbations across galaxy surveys

    NASA Astrophysics Data System (ADS)

    Sorini, D.

    2017-04-01

    Measuring the clustering of galaxies from surveys allows us to estimate the power spectrum of matter density fluctuations, thus constraining cosmological models. This requires careful modelling of observational effects to avoid misinterpretation of data. In particular, signals coming from different distances encode information from different epochs. This is known as ``light-cone effect'' and is going to have a higher impact as upcoming galaxy surveys probe larger redshift ranges. Generalising the method by Feldman, Kaiser and Peacock (1994) [1], I define a minimum-variance estimator of the linear power spectrum at a fixed time, properly taking into account the light-cone effect. An analytic expression for the estimator is provided, and that is consistent with the findings of previous works in the literature. I test the method within the context of the Halofit model, assuming Planck 2014 cosmological parameters [2]. I show that the estimator presented recovers the fiducial linear power spectrum at present time within 5% accuracy up to k ~ 0.80 h Mpc-1 and within 10% up to k ~ 0.94 h Mpc-1, well into the non-linear regime of the growth of density perturbations. As such, the method could be useful in the analysis of the data from future large-scale surveys, like Euclid.

  2. 61 FR 41385 - Notice of Government-Owned Inventions; Availability for Licensing

    Federal Register 2010, 2011, 2012, 2013, 2014

    1996-08-08

    ... PRESSURE VESSEL; filed 24 February 1995; patented 21 November 1995.// Patent 5,468,356: LARGE SCALE...,477,482: ULTRA HIGH DENSITY, NON- VOLATILE FERROMAGNETIC RANDOM ACCESS MEMORY; filed 1 October 1993....// Patent 5,483,017: HIGH TEMPERATURE THERMOSETS AND CERAMICS DERIVED FROM LINEAR CARBORANE-(SILOXANE OR...

  3. Characterizing the turbulent porosity of stellar wind structure generated by the line-deshadowing instability

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley P.; Sundqvist, Jon O.

    2018-03-01

    We analyse recent 2D simulations of the non-linear evolution of the line-deshadowing instability (LDI) in hot-star winds, to quantify how the associated highly clumped density structure can lead to a `turbulent porosity' reduction in continuum absorption and/or scattering. The basic method is to examine the statistical variations of mass column as a function of path length, and fit these to analytic forms that lead to simple statistical scalings for the associated mean extinction. A key result is that one can characterize porosity effects on continuum transport in terms of a single `turbulent porosity length', found here to scale as H ≈ (fcl - 1)a, where fcl ≡ 〈ρ2〉/〈ρ〉2 is the clumping factor in density ρ, and a is the density autocorrelation length. For continuum absorption or scattering in an optically thick layer, we find the associated effective reduction in opacity scales as ˜ 1/√{1+τ_H}, where τH ≡ κρH is the local optical thickness of this porosity length. For these LDI simulations, the inferred porosity lengths are small, only about a couple per cent of the stellar radius, H ≈ 0.02R*. For continuum processes like bound-free absorption of X-rays that are only marginally optically thick throughout the full stellar wind, this implies τH ≪ 1, and thus that LDI-generated porosity should have little effect on X-ray transport in such winds. The formalism developed here could however be important for understanding the porous regulation of continuum-driven, super-Eddington outflows from luminous blue variables.

  4. Solving the Vlasov equation in two spatial dimensions with the Schrödinger method

    NASA Astrophysics Data System (ADS)

    Kopp, Michael; Vattis, Kyriakos; Skordis, Constantinos

    2017-12-01

    We demonstrate that the Vlasov equation describing collisionless self-gravitating matter may be solved with the so-called Schrödinger method (ScM). With the ScM, one solves the Schrödinger-Poisson system of equations for a complex wave function in d dimensions, rather than the Vlasov equation for a 2 d -dimensional phase space density. The ScM also allows calculating the d -dimensional cumulants directly through quasilocal manipulations of the wave function, avoiding the complexity of 2 d -dimensional phase space. We perform for the first time a quantitative comparison of the ScM and a conventional Vlasov solver in d =2 dimensions. Our numerical tests were carried out using two types of cold cosmological initial conditions: the classic collapse of a sine wave and those of a Gaussian random field as commonly used in cosmological cold dark matter N-body simulations. We compare the first three cumulants, that is, the density, velocity and velocity dispersion, to those obtained by solving the Vlasov equation using the publicly available code ColDICE. We find excellent qualitative and quantitative agreement between these codes, demonstrating the feasibility and advantages of the ScM as an alternative to N-body simulations. We discuss, the emergence of effective vorticity in the ScM through the winding number around the points where the wave function vanishes. As an application we evaluate the background pressure induced by the non-linearity of large scale structure formation, thereby estimating the magnitude of cosmological backreaction. We find that it is negligibly small and has time dependence and magnitude compatible with expectations from the effective field theory of large scale structure.

  5. Linear free-energy relationships and the density functional theory: an analog of the hammett equation.

    PubMed

    Simón-Manso, Yamil

    2005-03-10

    Density functional theory has been applied to describe electronic substituent effects, especially in the pursuit of linear relationships similar to those observed from physical organic chemistry experiments. In particular, analogues for the Hammett equation parameters (sigma, rho) have been developed. Theoretical calculations were performed on several series of organic molecules in order to validate our model and for comparison with experimental results. The trends obtained by Hammett-like relations predicted by the model were found to be in qualitative agreement with the experimental data. The results obtained in this study suggest the applicability of similar correlation analysis based on theoretical methodologies that do not make use of empirical fits to experimental data can be useful in the study of substituent effects in organic chemistry.

  6. A Weakly Nonlinear Model for the Damping of Resonantly Forced Density Waves in Dense Planetary Rings

    NASA Astrophysics Data System (ADS)

    Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki

    2016-10-01

    In this paper, we address the stability of resonantly forced density waves in dense planetary rings. Goldreich & Tremaine have already argued that density waves might be unstable, depending on the relationship between the ring’s viscosity and the surface mass density. In the recent paper Schmidt et al., we have pointed out that when—within a fluid description of the ring dynamics—the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping, but nonlinearity of the underlying equations guarantees a finite amplitude and eventually a damping of the wave. We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model. This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts density waves to be (linearly) unstable in a ring region where the conditions for viscous overstability are met. Sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. The wave’s damping lengths of the model depend on certain input parameters, such as the distance to the threshold for viscous overstability in parameter space and the ground state surface mass density.

  7. Electronic structure and electron momentum densities of Ag2CrO4

    NASA Astrophysics Data System (ADS)

    Meena, Seema Kumari; Ahuja, B. L.

    2018-05-01

    We present the first-ever experimental electron momentum density of Ag2CrO4 using 661.65 keV γ-rays from 20 Ci 137Cs source. To validate our experimental data, we have also deduced theoretical Compton profiles, energy bands and density of states using linear combination of atomic orbitals (LCAO) method in the framework of density functional theory. It is seen that the DFT-LDA gives a better agreement with experimental data than free atom model. The energy bands and density of states are also discussed.

  8. A simple model to predict the biodiesel blend density as simultaneous function of blend percent and temperature.

    PubMed

    Gaonkar, Narayan; Vaidya, R G

    2016-05-01

    A simple method to estimate the density of biodiesel blend as simultaneous function of temperature and volume percent of biodiesel is proposed. Employing the Kay's mixing rule, we developed a model and investigated theoretically the density of different vegetable oil biodiesel blends as a simultaneous function of temperature and volume percent of biodiesel. Key advantage of the proposed model is that it requires only a single set of density values of components of biodiesel blends at any two different temperatures. We notice that the density of blend linearly decreases with increase in temperature and increases with increase in volume percent of the biodiesel. The lower values of standard estimate of error (SEE = 0.0003-0.0022) and absolute average deviation (AAD = 0.03-0.15 %) obtained using the proposed model indicate the predictive capability. The predicted values found good agreement with the recent available experimental data.

  9. Low-noise phase of a two-dimensional active nematic system

    NASA Astrophysics Data System (ADS)

    Shankar, Suraj; Ramaswamy, Sriram; Marchetti, M. Cristina

    2018-01-01

    We consider a collection of self-driven apolar particles on a substrate that organize into an active nematic phase at sufficiently high density or low noise. Using the dynamical renormalization group, we systematically study the two-dimensional fluctuating ordered phase in a coarse-grained hydrodynamic description involving both the nematic director and the conserved density field. In the presence of noise, we show that the system always displays only quasi-long-ranged orientational order beyond a crossover scale. A careful analysis of the nonlinearities permitted by symmetry reveals that activity is dangerously irrelevant over the linearized description, allowing giant number fluctuations to persist although now with strong finite-size effects and a nonuniversal scaling exponent. Nonlinear effects from the active currents lead to power-law correlations in the density field, thereby preventing macroscopic phase separation in the thermodynamic limit.

  10. The morphing of geographical features by Fourier transformation.

    PubMed

    Li, Jingzhong; Liu, Pengcheng; Yu, Wenhao; Cheng, Xiaoqiang

    2018-01-01

    This paper presents a morphing model of vector geographical data based on Fourier transformation. This model involves three main steps. They are conversion from vector data to Fourier series, generation of intermediate function by combination of the two Fourier series concerning a large scale and a small scale, and reverse conversion from combination function to vector data. By mirror processing, the model can also be used for morphing of linear features. Experimental results show that this method is sensitive to scale variations and it can be used for vector map features' continuous scale transformation. The efficiency of this model is linearly related to the point number of shape boundary and the interceptive value n of Fourier expansion. The effect of morphing by Fourier transformation is plausible and the efficiency of the algorithm is acceptable.

  11. Density-transition scale at quasiperpendicular collisionless shocks.

    PubMed

    Bale, S D; Mozer, F S; Horbury, T S

    2003-12-31

    Measurements of a spacecraft floating potential, on the four Cluster spacecraft, are used as a proxy for electron plasma density to study, for the first time, the macroscopic density transition scale at 98 crossings of the quasiperpendicular terrestrial bow shock. A timing analysis gives shock speeds and normals; the shock speed is used to convert the temporal measurement to a spatial one. A hyperbolic tangent function is fitted to each density transition, which captures the main shock transition, but not overshoot or undershoot nor foot features. We find that, at a low Mach number M, the density transition is consistent with both ion inertial scales c/omega(pi) and convected gyroradii v(sh,n)/Omega(ci,2), while at M>/=4-5 only the convected gyroradius is the preferred scale for the shock density transition and takes the value L approximately 0.4v(sh,n)/Omega(ci,2).

  12. Spatial scaling of core and dominant forest cover in the Upper Mississippi and Illinois River floodplains, USA

    USGS Publications Warehouse

    De Jager, Nathan R.; Rohweder, Jason J.

    2011-01-01

    Different organisms respond to spatial structure in different terms and across different spatial scales. As a consequence, efforts to reverse habitat loss and fragmentation through strategic habitat restoration ought to account for the different habitat density and scale requirements of various taxonomic groups. Here, we estimated the local density of floodplain forest surrounding each of ~20 million 10-m forested pixels of the Upper Mississippi and Illinois River floodplains by using moving windows of multiple sizes (1–100 ha). We further identified forest pixels that met two local density thresholds: 'core' forest pixels were nested in a 100% (unfragmented) forested window and 'dominant' forest pixels were those nested in a >60% forested window. Finally, we fit two scaling functions to declines in the proportion of forest cover meeting these criteria with increasing window length for 107 management-relevant focal areas: a power function (i.e. self-similar, fractal-like scaling) and an exponential decay function (fractal dimension depends on scale). The exponential decay function consistently explained more variation in changes to the proportion of forest meeting both the 'core' and 'dominant' criteria with increasing window length than did the power function, suggesting that elevation, soil type, hydrology, and human land use constrain these forest types to a limited range of scales. To examine these scales, we transformed the decay constants to measures of the distance at which the probability of forest meeting the 'core' and 'dominant' criteria was cut in half (S 1/2, m). S 1/2 for core forest was typically between ~55 and ~95 m depending on location along the river, indicating that core forest cover is restricted to extremely fine scales. In contrast, half of all dominant forest cover was lost at scales that were typically between ~525 and 750 m, but S 1/2 was as long as 1,800 m. S 1/2 is a simple measure that (1) condenses information derived from multi-scale analyses, (2) allows for comparisons of the amount of forest habitat available to species with different habitat density and scale requirements, and (3) can be used as an index of the spatial continuity of habitat types that do not scale fractally.

  13. Invertibility of retarded response functions for Laplace transformable potentials: Application to one-body reduced density matrix functional theory.

    PubMed

    Giesbertz, K J H

    2015-08-07

    A theorem for the invertibility of arbitrary response functions is presented under the following conditions: the time dependence of the potentials should be Laplace transformable and the initial state should be a ground state, though it might be degenerate. This theorem provides a rigorous foundation for all density-functional-like theories in the time-dependent linear response regime. Especially for time-dependent one-body reduced density matrix (1RDM) functional theory, this is an important step forward, since a solid foundation has currently been lacking. The theorem is equally valid for static response functions in the non-degenerate case, so can be used to characterize the uniqueness of the potential in the ground state version of the corresponding density-functional-like theory. Such a classification of the uniqueness of the non-local potential in ground state 1RDM functional theory has been lacking for decades. With the aid of presented invertibility theorem presented here, a complete classification of the non-uniqueness of the non-local potential in 1RDM functional theory can be given for the first time.

  14. Extending the range of real time density matrix renormalization group simulations

    NASA Astrophysics Data System (ADS)

    Kennes, D. M.; Karrasch, C.

    2016-03-01

    We discuss a few simple modifications to time-dependent density matrix renormalization group (DMRG) algorithms which allow to access larger time scales. We specifically aim at beginners and present practical aspects of how to implement these modifications within any standard matrix product state (MPS) based formulation of the method. Most importantly, we show how to 'combine' the Schrödinger and Heisenberg time evolutions of arbitrary pure states | ψ 〉 and operators A in the evaluation of 〈A〉ψ(t) = 〈 ψ | A(t) | ψ 〉 . This includes quantum quenches. The generalization to (non-)thermal mixed state dynamics 〈A〉ρ(t) =Tr [ ρA(t) ] induced by an initial density matrix ρ is straightforward. In the context of linear response (ground state or finite temperature T > 0) correlation functions, one can extend the simulation time by a factor of two by 'exploiting time translation invariance', which is efficiently implementable within MPS DMRG. We present a simple analytic argument for why a recently-introduced disentangler succeeds in reducing the effort of time-dependent simulations at T > 0. Finally, we advocate the python programming language as an elegant option for beginners to set up a DMRG code.

  15. Reference Correlation for the Viscosity of Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Laesecke, Arno; Muzny, Chris D.

    2017-03-01

    A comprehensive database of experimental and computed data for the viscosity of carbon dioxide (CO2) was compiled and a new reference correlation was developed. Literature results based on an ab initio potential energy surface were the foundation of the correlation of the viscosity in the limit of zero density in the temperature range from 100 to 2000 K. Guided symbolic regression was employed to obtain a new functional form that extrapolates correctly to 0 and to 10 000 K. Coordinated measurements at low density made it possible to implement the temperature dependence of the Rainwater-Friend theory in the linear-in-density viscosity term. The residual viscosity could be formulated with a scaling term ργ/T, the significance of which was confirmed by symbolic regression. The final viscosity correlation covers temperatures from 100 to 2000 K for gaseous CO2 and from 220 to 700 K with pressures along the melting line up to 8000 MPa for compressed and supercritical liquid states. The data representation is more accurate than with the previous correlations, and the covered pressure and temperature range is significantly extended. The critical enhancement of the viscosity of CO2 is included in the new correlation.

  16. Multipolar Ewald methods, 1: theory, accuracy, and performance.

    PubMed

    Giese, Timothy J; Panteva, Maria T; Chen, Haoyuan; York, Darrin M

    2015-02-10

    The Ewald, Particle Mesh Ewald (PME), and Fast Fourier–Poisson (FFP) methods are developed for systems composed of spherical multipole moment expansions. A unified set of equations is derived that takes advantage of a spherical tensor gradient operator formalism in both real space and reciprocal space to allow extension to arbitrary multipole order. The implementation of these methods into a novel linear-scaling modified “divide-and-conquer” (mDC) quantum mechanical force field is discussed. The evaluation times and relative force errors are compared between the three methods, as a function of multipole expansion order. Timings and errors are also compared within the context of the quantum mechanical force field, which encounters primary errors related to the quality of reproducing electrostatic forces for a given density matrix and secondary errors resulting from the propagation of the approximate electrostatics into the self-consistent field procedure, which yields a converged, variational, but nonetheless approximate density matrix. Condensed-phase simulations of an mDC water model are performed with the multipolar PME method and compared to an electrostatic cutoff method, which is shown to artificially increase the density of water and heat of vaporization relative to full electrostatic treatment.

  17. A simple scaling law for the equation of state and the radial distribution functions calculated by density-functional theory molecular dynamics

    NASA Astrophysics Data System (ADS)

    Danel, J.-F.; Kazandjian, L.

    2018-06-01

    It is shown that the equation of state (EOS) and the radial distribution functions obtained by density-functional theory molecular dynamics (DFT-MD) obey a simple scaling law. At given temperature, the thermodynamic properties and the radial distribution functions given by a DFT-MD simulation remain unchanged if the mole fractions of nuclei of given charge and the average volume per atom remain unchanged. A practical interest of this scaling law is to obtain an EOS table for a fluid from that already obtained for another fluid if it has the right characteristics. Another practical interest of this result is that an asymmetric mixture made up of light and heavy atoms requiring very different time steps can be replaced by a mixture of atoms of equal mass, which facilitates the exploration of the configuration space in a DFT-MD simulation. The scaling law is illustrated by numerical results.

  18. Electrostatic solvation free energies of charged hard spheres using molecular dynamics with density functional theory interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duignan, Timothy T.; Baer, Marcel D.; Schenter, Gregory K.

    Determining the solvation free energies of single ions in water is one of the most fundamental problems in physical chemistry and yet many unresolved questions remain. In particular, the ability to decompose the solvation free energy into simple and intuitive contributions will have important implications for coarse grained models of electrolyte solution. Here, we provide rigorous definitions of the various types of single ion solvation free energies based on different simulation protocols. We calculate solvation free energies of charged hard spheres using density functional theory interaction potentials with molecular dynamics simulation (DFT-MD) and isolate the effects of charge and cavitation,more » comparing to the Born (linear response) model. We show that using uncorrected Ewald summation leads to highly unphysical values for the solvation free energy and that charging free energies for cations are approximately linear as a function of charge but that there is a small non-linearity for small anions. The charge hydration asymmetry (CHA) for hard spheres, determined with quantum mechanics, is much larger than for the analogous real ions. This suggests that real ions, particularly anions, are significantly more complex than simple charged hard spheres, a commonly employed representation. We would like to thank Thomas Beck, Shawn Kathmann, Richard Remsing and John Weeks for helpful discussions. Computing resources were generously allocated by PNNL's Institutional Computing program. This research also used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. TTD, GKS, and CJM were supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. MDB was supported by MS3 (Materials Synthesis and Simulation Across Scales) Initiative, a Laboratory Directed Research and Development Program at Pacific Northwest National Laboratory (PNNL). PNNL is a multi-program national laboratory operated by Battelle for the U.S. Department of Energy.« less

  19. Galaxy clusters and cold dark matter - A low-density unbiased universe?

    NASA Technical Reports Server (NTRS)

    Bahcall, Neta A.; Cen, Renyue

    1992-01-01

    Large-scale simulations of a universe dominated by cold dark matter (CDM) are tested against two fundamental properties of clusters of galaxies: the cluster mass function and the cluster correlation function. We find that standard biased CDM models are inconsistent with these observations for any bias parameter b. A low-density, low-bias CDM-type model, with or without a cosmological constant, appears to be consistent with both the cluster mass function and the cluster correlations. The low-density model agrees well with the observed correlation function of the Abell, Automatic Plate Measuring Facility (APM), and Edinburgh-Durham cluster catalogs. The model is in excellent agreement with the observed dependence of the correlation strength on cluster mean separation, reproducing the measured universal dimensionless cluster correlation. The low-density model is also consistent with other large-scale structure observations, including the APM angular galaxy-correlations, and for lambda = 1-Omega with the COBE results of the microwave background radiation fluctuations.

  20. Water availability determines the richness and density of fig trees within Brazilian semideciduous forest landscapes

    NASA Astrophysics Data System (ADS)

    Coelho, Luís Francisco Mello; Ribeiro, Milton Cezar; Pereira, Rodrigo Augusto Santinelo

    2014-05-01

    The success of fig trees in tropical ecosystems is evidenced by the great diversity (+750 species) and wide geographic distribution of the genus. We assessed the contribution of environmental variables on the species richness and density of fig trees in fragments of seasonal semideciduous forest (SSF) in Brazil. We assessed 20 forest fragments in three regions in Sao Paulo State, Brazil. Fig tree richness and density was estimated in rectangular plots, comprising 31.4 ha sampled. Both richness and fig tree density were linearly modeled as function of variables representing (1) fragment metrics, (2) forest structure, and (3) landscape metrics expressing water drainage in the fragments. Model selection was performed by comparing the AIC values (Akaike Information Criterion) and the relative weight of each model (wAIC). Both species richness and fig tree density were better explained by the water availability in the fragment (meter of streams/ha): wAICrichness = 0.45, wAICdensity = 0.96. The remaining variables related to anthropic perturbation and forest structure were of little weight in the models. The rainfall seasonality in SSF seems to select for both establishment strategies and morphological adaptations in the hemiepiphytic fig tree species. In the studied SSF, hemiepiphytes established at lower heights in their host trees than reported for fig trees in evergreen rainforests. Some hemiepiphytic fig species evolved superficial roots extending up to 100 m from their trunks, resulting in hectare-scale root zones that allow them to efficiently forage water and soil nutrients. The community of fig trees was robust to variation in forest structure and conservation level of SSF fragments, making this group of plants an important element for the functioning of seasonal tropical forests.

  1. Linear Calibration of Radiographic Mineral Density Using Video-Digitizing Methods

    NASA Technical Reports Server (NTRS)

    Martin, R. Bruce; Papamichos, Thomas; Dannucci, Greg A.

    1990-01-01

    Radiographic images can provide quantitative as well as qualitative information if they are subjected to densitometric analysis. Using modem video-digitizing techniques, such densitometry can be readily accomplished using relatively inexpensive computer systems. However, such analyses are made more difficult by the fact that the density values read from the radiograph have a complex, nonlinear relationship to bone mineral content. This article derives the relationship between these variables from the nature of the intermediate physical processes, and presents a simple mathematical method for obtaining a linear calibration function using a step wedge or other standard.

  2. Linear Calibration of Radiographic Mineral Density Using Video-Digitizing Methods

    NASA Technical Reports Server (NTRS)

    Martin, R. Bruce; Papamichos, Thomas; Dannucci, Greg A.

    1990-01-01

    Radiographic images can provide quantitative as well as qualitative information if they are subjected to densitometric analysis. Using modern video-digitizing techniques, such densitometry can be readily accomplished using relatively inexpensive computer systems. However, such analyses are made more difficult by the fact that the density values read from the radiograph have a complex, nonlinear relationship to bone mineral content. This article derives the relationship between these variables from the nature of the intermediate physical processes, and presents a simple mathematical method for obtaining a linear calibration function using a step wedge or other standard.

  3. Implementation of an approximate self-energy correction scheme in the orthogonalized linear combination of atomic orbitals method of band-structure calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, Z.; Ching, W.Y.

    Based on the Sterne-Inkson model for the self-energy correction to the single-particle energy in the local-density approximation (LDA), we have implemented an approximate energy-dependent and [bold k]-dependent [ital GW] correction scheme to the orthogonalized linear combination of atomic orbital-based local-density calculation for insulators. In contrast to the approach of Jenkins, Srivastava, and Inkson, we evaluate the on-site exchange integrals using the LDA Bloch functions throughout the Brillouin zone. By using a [bold k]-weighted band gap [ital E][sub [ital g

  4. Allan deviation computations of a linear frequency synthesizer system using frequency domain techniques

    NASA Technical Reports Server (NTRS)

    Wu, Andy

    1995-01-01

    Allan Deviation computations of linear frequency synthesizer systems have been reported previously using real-time simulations. Even though it takes less time compared with the actual measurement, it is still very time consuming to compute the Allan Deviation for long sample times with the desired confidence level. Also noises, such as flicker phase noise and flicker frequency noise, can not be simulated precisely. The use of frequency domain techniques can overcome these drawbacks. In this paper the system error model of a fictitious linear frequency synthesizer is developed and its performance using a Cesium (Cs) atomic frequency standard (AFS) as a reference is evaluated using frequency domain techniques. For a linear timing system, the power spectral density at the system output can be computed with known system transfer functions and known power spectral densities from the input noise sources. The resulting power spectral density can then be used to compute the Allan Variance at the system output. Sensitivities of the Allan Variance at the system output to each of its independent input noises are obtained, and they are valuable for design trade-off and trouble-shooting.

  5. Multipoint propagators in cosmological gravitational instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernardeau, Francis; Crocce, Martin; Scoccimarro, Roman

    2008-11-15

    We introduce the concept of multipoint propagators between linear cosmic fields and their nonlinear counterparts in the context of cosmological perturbation theory. Such functions express how a nonlinearly evolved Fourier mode depends on the full ensemble of modes in the initial density field. We identify and resum the dominant diagrams in the large-k limit, showing explicitly that multipoint propagators decay into the nonlinear regime at the same rate as the two-point propagator. These analytic results generalize the large-k limit behavior of the two-point propagator to arbitrary order. We measure the three-point propagator as a function of triangle shape in numericalmore » simulations and confirm the results of our high-k resummation. We show that any n-point spectrum can be reconstructed from multipoint propagators, which leads to a physical connection between nonlinear corrections to the power spectrum at small scales and higher-order correlations at large scales. As a first application of these results, we calculate the reduced bispectrum at one loop in renormalized perturbation theory and show that we can predict the decrease in its dependence on triangle shape at redshift zero, when standard perturbation theory is least successful.« less

  6. Linear and curvilinear correlations of brain gray matter volume and density with age using voxel-based morphometry with the Akaike information criterion in 291 healthy children.

    PubMed

    Taki, Yasuyuki; Hashizume, Hiroshi; Thyreau, Benjamin; Sassa, Yuko; Takeuchi, Hikaru; Wu, Kai; Kotozaki, Yuka; Nouchi, Rui; Asano, Michiko; Asano, Kohei; Fukuda, Hiroshi; Kawashima, Ryuta

    2013-08-01

    We examined linear and curvilinear correlations of gray matter volume and density in cortical and subcortical gray matter with age using magnetic resonance images (MRI) in a large number of healthy children. We applied voxel-based morphometry (VBM) and region-of-interest (ROI) analyses with the Akaike information criterion (AIC), which was used to determine the best-fit model by selecting which predictor terms should be included. We collected data on brain structural MRI in 291 healthy children aged 5-18 years. Structural MRI data were segmented and normalized using a custom template by applying the diffeomorphic anatomical registration using exponentiated lie algebra (DARTEL) procedure. Next, we analyzed the correlations of gray matter volume and density with age in VBM with AIC by estimating linear, quadratic, and cubic polynomial functions. Several regions such as the prefrontal cortex, the precentral gyrus, and cerebellum showed significant linear or curvilinear correlations between gray matter volume and age on an increasing trajectory, and between gray matter density and age on a decreasing trajectory in VBM and ROI analyses with AIC. Because the trajectory of gray matter volume and density with age suggests the progress of brain maturation, our results may contribute to clarifying brain maturation in healthy children from the viewpoint of brain structure. Copyright © 2012 Wiley Periodicals, Inc.

  7. Statistics of cosmic density profiles from perturbation theory

    NASA Astrophysics Data System (ADS)

    Bernardeau, Francis; Pichon, Christophe; Codis, Sandrine

    2014-11-01

    The joint probability distribution function (PDF) of the density within multiple concentric spherical cells is considered. It is shown how its cumulant generating function can be obtained at tree order in perturbation theory as the Legendre transform of a function directly built in terms of the initial moments. In the context of the upcoming generation of large-scale structure surveys, it is conjectured that this result correctly models such a function for finite values of the variance. Detailed consequences of this assumption are explored. In particular the corresponding one-cell density probability distribution at finite variance is computed for realistic power spectra, taking into account its scale variation. It is found to be in agreement with Λ -cold dark matter simulations at the few percent level for a wide range of density values and parameters. Related explicit analytic expansions at the low and high density tails are given. The conditional (at fixed density) and marginal probability of the slope—the density difference between adjacent cells—and its fluctuations is also computed from the two-cell joint PDF; it also compares very well to simulations. It is emphasized that this could prove useful when studying the statistical properties of voids as it can serve as a statistical indicator to test gravity models and/or probe key cosmological parameters.

  8. Filter design for the detection of compact sources based on the Neyman-Pearson detector

    NASA Astrophysics Data System (ADS)

    López-Caniego, M.; Herranz, D.; Barreiro, R. B.; Sanz, J. L.

    2005-05-01

    This paper considers the problem of compact source detection on a Gaussian background. We present a one-dimensional treatment (though a generalization to two or more dimensions is possible). Two relevant aspects of this problem are considered: the design of the detector and the filtering of the data. Our detection scheme is based on local maxima and it takes into account not only the amplitude but also the curvature of the maxima. A Neyman-Pearson test is used to define the region of acceptance, which is given by a sufficient linear detector that is independent of the amplitude distribution of the sources. We study how detection can be enhanced by means of linear filters with a scaling parameter, and compare some filters that have been proposed in the literature [the Mexican hat wavelet, the matched filter (MF) and the scale-adaptive filter (SAF)]. We also introduce a new filter, which depends on two free parameters (the biparametric scale-adaptive filter, BSAF). The value of these two parameters can be determined, given the a priori probability density function of the amplitudes of the sources, such that the filter optimizes the performance of the detector in the sense that it gives the maximum number of real detections once it has fixed the number density of spurious sources. The new filter includes as particular cases the standard MF and the SAF. As a result of its design, the BSAF outperforms these filters. The combination of a detection scheme that includes information on the curvature and a flexible filter that incorporates two free parameters (one of them a scaling parameter) improves significantly the number of detections in some interesting cases. In particular, for the case of weak sources embedded in white noise, the improvement with respect to the standard MF is of the order of 40 per cent. Finally, an estimation of the amplitude of the source (most probable value) is introduced and it is proven that such an estimator is unbiased and has maximum efficiency. We perform numerical simulations to test these theoretical ideas in a practical example and conclude that the results of the simulations agree with the analytical results.

  9. FT-IR and FT-Raman spectra of 5-chlorocytosine: Solid state simulation and tautomerism. Effect of the chlorine substitution in the Watson-Crick base pair 5-chlorodeoxycytidine-deoxyguanosine

    NASA Astrophysics Data System (ADS)

    Alcolea Palafox, M.; Rastogi, V. K.; Singh, S. P.

    2018-01-01

    The laser Raman and IR spectra of 5-chlorocytosine have been recorded and accurately assigned in the solid state using Density functional calculations (DFT) together with the linear scaling equation procedure (LSE) and the solid state simulation of the crystal unit cell through a tetramer form. These results remarkably improve those reported previously by other authors. Several new scaling equations were proposed to be used in related molecules. The six main tautomers of the biomolecule 5-chlorocytosine were determined and optimized at the MP2 and CCSD levels, using different basis sets. The relative stabilities were compared with those obtained in cytosine and their 5-halo derivatives. Several relationships between energies, geometric parameters and NBO atomic charges were established. The effect of the chlorine substitution in the fifth position was evaluated through the stability of the Watson-Crick (WC) base pair of 5-chlorodeoxycytidine with deoxyguanosine, and through their vibrational spectra.

  10. Inventory of forest and rangeland and detection of forest stress

    NASA Technical Reports Server (NTRS)

    Heller, R. C.; Aldrich, R. C.; Weber, F. P.; Driscoll, R. S. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. At the Atlanta site (226B) it was found that bulk color composites for October 15, 1972, and April 13, 1973, can be interpreted together to disclose the location of the perennial Kudzu vine (Pyeraria lobata). Land managers concerned with Kudzu eradication could use ERTS-1 to inventory locations over 200 meters (660 feet) square. Microdensitometer data collected on ERTS-1 Bulk photographic products for the Manitou test site (226C) have shown that the 15-step gray-scale tablets are not of systematic equal values corresponding to 1/14 the maximum radiant energy incident on the MSS sensor. The gray-scale values present a third-order polynomial function rather than a direct linear relationship. Although data collected on step tablets for precision photographic products appear more discrete, the density variation within blocks in almost as great as variations between blocks. These system errors will cause problems when attempting to analyze radiometric variances among vegetation and land use classes.

  11. Density scaling of phantom materials for a 3D dose verification system.

    PubMed

    Tani, Kensuke; Fujita, Yukio; Wakita, Akihisa; Miyasaka, Ryohei; Uehara, Ryuzo; Kodama, Takumi; Suzuki, Yuya; Aikawa, Ako; Mizuno, Norifumi; Kawamori, Jiro; Saitoh, Hidetoshi

    2018-05-21

    In this study, the optimum density scaling factors of phantom materials for a commercially available three-dimensional (3D) dose verification system (Delta4) were investigated in order to improve the accuracy of the calculated dose distributions in the phantom materials. At field sizes of 10 × 10 and 5 × 5 cm 2 with the same geometry, tissue-phantom ratios (TPRs) in water, polymethyl methacrylate (PMMA), and Plastic Water Diagnostic Therapy (PWDT) were measured, and TPRs in various density scaling factors of water were calculated by Monte Carlo simulation, Adaptive Convolve (AdC, Pinnacle 3 ), Collapsed Cone Convolution (CCC, RayStation), and AcurosXB (AXB, Eclipse). Effective linear attenuation coefficients (μ eff ) were obtained from the TPRs. The ratios of μ eff in phantom and water ((μ eff ) pl,water ) were compared between the measurements and calculations. For each phantom material, the density scaling factor proposed in this study (DSF) was set to be the value providing a match between the calculated and measured (μ eff ) pl,water . The optimum density scaling factor was verified through the comparison of the dose distributions measured by Delta4 and calculated with three different density scaling factors: the nominal physical density (PD), nominal relative electron density (ED), and DSF. Three plans were used for the verifications: a static field of 10 × 10 cm 2 and two intensity modulated radiation therapy (IMRT) treatment plans. DSF were determined to be 1.13 for PMMA and 0.98 for PWDT. DSF for PMMA showed good agreement for AdC and CCC with 6 MV x ray, and AdC for 10 MV x ray. DSF for PWDT showed good agreement regardless of the dose calculation algorithms and x-ray energy. DSF can be considered one of the references for the density scaling factor of Delta4 phantom materials and may help improve the accuracy of the IMRT dose verification using Delta4. © 2018 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.

  12. Ab-initio study of electronic structure and elastic properties of ZrC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mund, H. S., E-mail: hmoond@gmail.com; Ahuja, B. L.

    2016-05-23

    The electronic and elastic properties of ZrC have been investigated using the linear combination of atomic orbitals method within the framework of density functional theory. Different exchange-correlation functionals are taken into account within generalized gradient approximation. We have computed energy bands, density of states, elastic constants, bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, lattice parameters and pressure derivative of the bulk modulus by calculating ground state energy of the rock salt structure type ZrC.

  13. Dynamical density functional theory analysis of the laning instability in sheared soft matter.

    PubMed

    Scacchi, A; Archer, A J; Brader, J M

    2017-12-01

    Using dynamical density functional theory (DDFT) methods we investigate the laning instability of a sheared colloidal suspension. The nonequilibrium ordering at the laning transition is driven by nonaffine particle motion arising from interparticle interactions. Starting from a DDFT which incorporates the nonaffine motion, we perform a linear stability analysis that enables identification of the regions of parameter space where lanes form. We illustrate our general approach by applying it to a simple one-component fluid of soft penetrable particles.

  14. Linear infrastructure impacts on landscape hydrology.

    PubMed

    Raiter, Keren G; Prober, Suzanne M; Possingham, Hugh P; Westcott, Fiona; Hobbs, Richard J

    2018-01-15

    The extent of roads and other forms of linear infrastructure is burgeoning worldwide, but their impacts are inadequately understood and thus poorly mitigated. Previous studies have identified many potential impacts, including alterations to the hydrological functions and soil processes upon which ecosystems depend. However, these impacts have seldom been quantified at a regional level, particularly in arid and semi-arid systems where the gap in knowledge is the greatest, and impacts potentially the most severe. To explore the effects of extensive track, road, and rail networks on surface hydrology at a regional level we assessed over 1000 km of linear infrastructure, including approx. 300 locations where ephemeral streams crossed linear infrastructure, in the largely intact landscapes of Australia's Great Western Woodlands. We found a high level of association between linear infrastructure and altered surface hydrology, with erosion and pooling 5 and 6 times as likely to occur on-road than off-road on average (1.06 erosional and 0.69 pooling features km -1 on vehicle tracks, compared with 0.22 and 0.12 km -1 , off-road, respectively). Erosion severity was greater in the presence of tracks, and 98% of crossings of ephemeral streamlines showed some evidence of impact on water movement (flow impedance (62%); diversion of flows (73%); flow concentration (76%); and/or channel initiation (31%)). Infrastructure type, pastoral land use, culvert presence, soil clay content and erodibility, mean annual rainfall, rainfall erosivity, topography and bare soil cover influenced the frequency and severity of these impacts. We conclude that linear infrastructure frequently affects ephemeral stream flows and intercepts natural overland and near-surface flows, artificially changing site-scale moisture regimes, with some parts of the landscape becoming abnormally wet and other parts becoming water-starved. In addition, linear infrastructure frequently triggers or exacerbates erosion, leading to soil loss and degradation. Where linear infrastructure densities are high, their impacts on ecological processes are likely to be considerable. Linear infrastructure is widespread across much of this relatively intact region, but there remain areas with very low infrastructure densities that need to be protected from further impacts. There is substantial scope for mitigating the impacts of existing and planned infrastructure developments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Level Density in the Complex Scaling Method

    NASA Astrophysics Data System (ADS)

    Suzuki, R.; Myo, T.; Katō, K.

    2005-06-01

    It is shown that the continuum level density (CLD) at unbound energies can be calculated with the complex scaling method (CSM), in which the energy spectra of bound states, resonances and continuum states are obtained in terms of L(2) basis functions. In this method, the extended completeness relation is applied to the calculation of the Green functions, and the continuum-state part is approximately expressed in terms of discretized complex scaled continuum solutions. The obtained result is compared with the CLD calculated exactly from the scattering phase shift. The discretization in the CSM is shown to give a very good description of continuum states. We discuss how the scattering phase shifts can inversely be calculated from the discretized CLD using a basis function technique in the CSM.

  16. Role of exact exchange in thermally-assisted-occupation density functional theory: A proposal of new hybrid schemes.

    PubMed

    Chai, Jeng-Da

    2017-01-28

    We propose hybrid schemes incorporating exact exchange into thermally assisted-occupation-density functional theory (TAO-DFT) [J.-D. Chai, J. Chem. Phys. 136, 154104 (2012)] for an improved description of nonlocal exchange effects. With a few simple modifications, global and range-separated hybrid functionals in Kohn-Sham density functional theory (KS-DFT) can be combined seamlessly with TAO-DFT. In comparison with global hybrid functionals in KS-DFT, the resulting global hybrid functionals in TAO-DFT yield promising performance for systems with strong static correlation effects (e.g., the dissociation of H 2 and N 2 , twisted ethylene, and electronic properties of linear acenes), while maintaining similar performance for systems without strong static correlation effects. Besides, a reasonably accurate description of noncovalent interactions can be efficiently achieved through the inclusion of dispersion corrections in hybrid TAO-DFT. Relative to semilocal density functionals in TAO-DFT, global hybrid functionals in TAO-DFT are generally superior in performance for a wide range of applications, such as thermochemistry, kinetics, reaction energies, and optimized geometries.

  17. Quantitative evaluation of phonetograms in the case of functional dysphonia.

    PubMed

    Airainer, R; Klingholz, F

    1993-06-01

    According to the laryngeal clinical findings, figures making up a scale were assigned to vocally trained and vocally untrained persons suffering from different types of functional dysphonia. The different types of dysphonia--from the manifested hypofunctional to the extreme hyperfunctional dysphonia--were classified by means of this scale. Besides, the subjects' phonetograms were measured and approximated by three ellipses, what rendered possible the definition of phonetogram parameters. The combining of selected phonetogram parameters to linear combinations served the purpose of a phonetographic evaluation. The linear combinations were to bring phonetographic and clinical evaluations into correspondence as accurately as possible. It was necessary to use different kinds of linear combinations for male and female singers and nonsingers. As a result of the reclassification of 71 and the new classification of 89 patients, it was possible to graduate the types of functional dysphonia by means of computer-aided phonetogram evaluation with a clinically acceptable error rate. This method proved to be an important supplement to the conventional diagnostics of functional dysphonia.

  18. Dynamic Density: An Air Traffic Management Metric

    NASA Technical Reports Server (NTRS)

    Laudeman, I. V.; Shelden, S. G.; Branstrom, R.; Brasil, C. L.

    1998-01-01

    The definition of a metric of air traffic controller workload based on air traffic characteristics is essential to the development of both air traffic management automation and air traffic procedures. Dynamic density is a proposed concept for a metric that includes both traffic density (a count of aircraft in a volume of airspace) and traffic complexity (a measure of the complexity of the air traffic in a volume of airspace). It was hypothesized that a metric that includes terms that capture air traffic complexity will be a better measure of air traffic controller workload than current measures based only on traffic density. A weighted linear dynamic density function was developed and validated operationally. The proposed dynamic density function includes a traffic density term and eight traffic complexity terms. A unit-weighted dynamic density function was able to account for an average of 22% of the variance in observed controller activity not accounted for by traffic density alone. A comparative analysis of unit weights, subjective weights, and regression weights for the terms in the dynamic density equation was conducted. The best predictor of controller activity was the dynamic density equation with regression-weighted complexity terms.

  19. Development and validation of a subject-specific finite element model of the functional spinal unit to predict vertebral strength.

    PubMed

    Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang

    2017-09-01

    Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2  = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2  = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2  = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.

  20. Spatial-size scaling of pedestrian groups under growing density conditions

    NASA Astrophysics Data System (ADS)

    Zanlungo, Francesco; Brščić, Dražen; Kanda, Takayuki

    2015-06-01

    We study the dependence on crowd density of the spatial size, configuration, and velocity of pedestrian social groups. We find that, in the investigated density range, the extension of pedestrian groups in the direction orthogonal to that of motion decreases linearly with the pedestrian density around them, both for two- and three-person groups. Furthermore, we observe that at all densities, three-person groups walk slower than two-person groups, and the latter are slower than individual pedestrians, the differences in velocities being weakly affected by density. Finally, we observe that three-person groups walk in a V-shaped formation regardless of density, with a distance between the pedestrians in the front and back again almost independent of density, although the configuration appears to be less stable at higher densities. These findings may facilitate the development of more realistic crowd dynamics models and simulators.

Top