Identification of the focal plane wavefront control system using E-M algorithm
NASA Astrophysics Data System (ADS)
Sun, He; Kasdin, N. Jeremy; Vanderbei, Robert
2017-09-01
In a typical focal plane wavefront control (FPWC) system, such as the adaptive optics system of NASA's WFIRST mission, the efficient controllers and estimators in use are usually model-based. As a result, the modeling accuracy of the system influences the ultimate performance of the control and estimation. Currently, a linear state space model is used and calculated based on lab measurements using Fourier optics. Although the physical model is clearly defined, it is usually biased due to incorrect distance measurements, imperfect diagnoses of the optical aberrations, and our lack of knowledge of the deformable mirrors (actuator gains and influence functions). In this paper, we present a new approach for measuring/estimating the linear state space model of a FPWC system using the expectation-maximization (E-M) algorithm. Simulation and lab results in the Princeton's High Contrast Imaging Lab (HCIL) show that the E-M algorithm can well handle both the amplitude and phase errors and accurately recover the system. Using the recovered state space model, the controller creates dark holes with faster speed. The final accuracy of the model depends on the amount of data used for learning.
Properties of colour reference solutions of the European Pharmacopoea in CIE L*a*b* colour space.
Subert, J; Farsa, O; Gajdosová, Z
2006-12-01
The coordinates of CIE L*a*b* uniform colour space have been acquired from the transmitance spectra of colour reference solutions of European Pharmacopoeia (Ph.Eur.). Calculation of colour differences of these solutions from purified water deltaE* gave their values in the range between 0.7 (B9 solution) to 36 (Y1 solution) CIE units. Excluding red colour reference soulutions, deltaE* values did not depend on concentrations of colour compounds linearly. Small deltaE* values founded by the brown and brownish-yellow colour reference solutions of the lowest concentrations can possibly cause some problems of visual examination of the degree of coloration of liquids according to Ph.Eur.
Linear-constraint wavefront control for exoplanet coronagraphic imaging systems
NASA Astrophysics Data System (ADS)
Sun, He; Eldorado Riggs, A. J.; Kasdin, N. Jeremy; Vanderbei, Robert J.; Groff, Tyler Dean
2017-01-01
A coronagraph is a leading technology for achieving high-contrast imaging of exoplanets in a space telescope. It uses a system of several masks to modify the diffraction and achieve extremely high contrast in the image plane around target stars. However, coronagraphic imaging systems are very sensitive to optical aberrations, so wavefront correction using deformable mirrors (DMs) is necessary to avoid contrast degradation in the image plane. Electric field conjugation (EFC) and Stroke minimization (SM) are two primary high-contrast wavefront controllers explored in the past decade. EFC minimizes the average contrast in the search areas while regularizing the strength of the control inputs. Stroke minimization calculates the minimum DM commands under the constraint that a target average contrast is achieved. Recently in the High Contrast Imaging Lab at Princeton University (HCIL), a new linear-constraint wavefront controller based on stroke minimization was developed and demonstrated using numerical simulation. Instead of only constraining the average contrast over the entire search area, the new controller constrains the electric field of each single pixel using linear programming, which could led to significant increases in speed of the wavefront correction and also create more uniform dark holes. As a follow-up of this work, another linear-constraint controller modified from EFC is demonstrated theoretically and numerically and the lab verification of the linear-constraint controllers is reported. Based on the simulation and lab results, the pros and cons of linear-constraint controllers are carefully compared with EFC and stroke minimization.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
Next Generation Robots for STEM Education andResearch at Huston Tillotson University
2017-11-10
dynamics through the following command: roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion : After...understood the system’s natural dynamics. roslaunch mtb_lab6_feedback_linearization gravity_compensation.launch Part B: Gravity Inversion ...is created using the following command: roslaunch mtb_lab6_feedback_linearization gravity_inversion.launch Gravity inversion is just one
2004-01-05
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install a Dionex DX-500 IC/HPLC system in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
2004-01-05
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASA’s ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASA’s Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASA’s Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the growth of radishes being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., places samples of onion tissue in the elemental analyzer, which analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., checks the roots of green onions being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Sharon Edney, with Dynamac Corp., measures photosynthesis on Bibb lettuce being grown hydroponically for study in the Space Life Sciences Lab. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
Jackman, Patrick; Sun, Da-Wen; Elmasry, Gamal
2012-08-01
A new algorithm for the conversion of device dependent RGB colour data into device independent L*a*b* colour data without introducing noticeable error has been developed. By combining a linear colour space transform and advanced multiple regression methodologies it was possible to predict L*a*b* colour data with less than 2.2 colour units of error (CIE 1976). By transforming the red, green and blue colour components into new variables that better reflect the structure of the L*a*b* colour space, a low colour calibration error was immediately achieved (ΔE(CAL) = 14.1). Application of a range of regression models on the data further reduced the colour calibration error substantially (multilinear regression ΔE(CAL) = 5.4; response surface ΔE(CAL) = 2.9; PLSR ΔE(CAL) = 2.6; LASSO regression ΔE(CAL) = 2.1). Only the PLSR models deteriorated substantially under cross validation. The algorithm is adaptable and can be easily recalibrated to any working computer vision system. The algorithm was tested on a typical working laboratory computer vision system and delivered only a very marginal loss of colour information ΔE(CAL) = 2.35. Colour features derived on this system were able to safely discriminate between three classes of ham with 100% correct classification whereas colour features measured on a conventional colourimeter were not. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences Lab, Lanfang Levine, with Dynamac Corp., transfers material into a sample bottle for analysis. She is standing in front of new equipment in the lab that will provide gas chromatography and mass spectrometry. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- In the Space Life Sciences (SLS) Lab, Jan Bauer, with Dynamac Corp., weighs samples of onion tissue for processing in the elemental analyzer behind it. The equipment analyzes for carbon, hydrogen, nitrogen and sulfur. The 100,000 square-foot SLS houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Lanfang Levine, with Dynamac Corp., helps install new equipment for gas chromatography and mass spectrometry in the Space Life Sciences Lab. The equipment will enable analysis of volatile compounds, such as from plants. The 100,000 square-foot facility houses labs for NASAs ongoing research efforts, microbiology/microbial ecology studies and analytical chemistry labs. Also calling the new lab home are facilities for space flight-experiment and flight-hardware development, new plant growth chambers, and an Orbiter Environment Simulator that will be used to conduct ground control experiments in simulated flight conditions for space flight experiments. The SLS Lab, formerly known as the Space Experiment Research and Processing Laboratory or SERPL, provides space for NASAs Life Sciences Services contractor Dynamac Corporation, Bionetics Corporation, and researchers from the University of Florida. NASAs Office of Biological and Physical Research will use the facility for processing life sciences experiments that will be conducted on the International Space Station. The SLS Lab is the magnet facility for the International Space Research Park at KSC being developed in partnership with Florida Space Authority.
Productive High Performance Parallel Programming with Auto-tuned Domain-Specific Embedded Languages
2013-01-02
Compilation JVM Java Virtual Machine KB Kilobyte KDT Knowledge Discovery Toolbox LAPACK Linear Algebra Package LLVM Low-Level Virtual Machine LOC Lines...different starting points. Leo Meyerovich also helped solidify some of the ideas here in discussions during Par Lab retreats. I would also like to thank...multi-timestep computations by blocking in both time and space. 88 Implementation Output Approx DSL Type Language Language Parallelism LoC Graphite
2003-11-19
KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media gather for a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
2003-11-19
KENNEDY SPACE CENTER, FLA. - Capt. Winston Scott, executive director of the Florida Space Authority, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
[Preliminary Study on Linear Alkylbenzenes as Indicator for Process of Urbanization].
Xu, Te; Zeng, Hui; Ni, Hong-Gang
2016-01-15
In this study, we selected Shenzhen City as a typical region of urbanization and took Linear alkylbenzenes ( LABs) as an environmental molecular marker to investigate the relationship between soil LABs levels and urbanization indexes on the basis of analysis of spatial distribution of LABs in surface soil. Our results indicated relations between the LABs levels in soil and the five urbanization indexes, such as the population, water supply, urban construction, income and expenditure, as well as industrial structure. These results suggested that LABs levels were correlated with urbanization and could be used as an environmental molecular indicator for the process of urbanization.
2003-11-19
KENNEDY SPACE CENTER, FLA. - The Honorable Toni Jennings (left), lieutenant governor of the state of Florida, and Frank T. Brogan, president of Florida Atlantic University, receive a briefing on the research that will be conducted in the Space Life Sciences Lab from Dr. Robert J. Ferl (right), director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida. Jennings and Brogan are speaking at a dedication and ribbon-cutting ceremony for the lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
2003-11-19
KENNEDY SPACE CENTER, FLA. - Frank T. Brogan, president of the Florida Atlantic University, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
2003-11-19
KENNEDY SPACE CENTER, FLA. - Dignitaries, invited guests, space center employees, and the media show their appreciation for the speakers at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
LabVIEW Interface for PCI-SpaceWire Interface Card
NASA Technical Reports Server (NTRS)
Lux, James; Loya, Frank; Bachmann, Alex
2005-01-01
This software provides a LabView interface to the NT drivers for the PCISpaceWire card, which is a peripheral component interface (PCI) bus interface that conforms to the IEEE-1355/ SpaceWire standard. As SpaceWire grows in popularity, the ability to use SpaceWire links within LabVIEW will be important to electronic ground support equipment vendors. In addition, there is a need for a high-level LabVIEW interface to the low-level device- driver software supplied with the card. The LabVIEW virtual instrument (VI) provides graphical interfaces to support all (1) SpaceWire link functions, including message handling and routing; (2) monitoring as a passive tap using specialized hardware; and (3) low-level access to satellite mission-control subsystem functions. The software is supplied in a zip file that contains LabVIEW VI files, which provide various functions of the PCI-SpaceWire card, as well as higher-link-level functions. The VIs are suitably named according to the matching function names in the driver manual. A number of test programs also are provided to exercise various functions.
2003-11-19
KENNEDY SPACE CENTER, FLA. - Officials of the NASA-Kennedy Space Center and the state of Florida pose for a group portrait at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab at the new lab. From left are Capt. Winston Scott, executive director of the Florida Space Authority; Dr. Robert J. Ferl, director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida; Charlie Quincy, chief of the Biological Sciences Office, Kennedy Space Center; Jose Perez-Morales, NASA Project Manager for the Space Life Sciences Lab; Jim Kennedy, director of the Kennedy Space Center; The Honorable Toni Jennings, lieutenant governor of the state of Florida; Frank T. Brogan, president of the Florida Atlantic University; and Dr. Samuel Durrance, executive director of the Florida Space Research Institute. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASA’s Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
Commerce Lab: Mission analysis and payload integration study
NASA Technical Reports Server (NTRS)
1984-01-01
The needs of an aggressive commercial microgravity program are identified, space missions are defined, and infrastructural issues are identified and analyzed. A commercial laboratory, commerce lab, is conceived to be one or more an array of carriers which would fly aboard the space shuttle and accommodate microgravity science experiment payloads. Commerce lab is seen as a logical transition between currently planned space shuttle missions and future microgravity missions centered around the space station.
NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies.
Beheshti, Afshin; Miller, Jack; Kidane, Yared; Berrios, Daniel; Gebre, Samrawit G; Costes, Sylvain V
2018-06-01
Accurate assessment of risks of long-term space missions is critical for human space exploration. It is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from galactic cosmic rays (GCR) is a major health risk factor for astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently, there are gaps in our knowledge of the health risks associated with chronic low-dose, low-dose-rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The NASA GeneLab project ( https://genelab.nasa.gov/ ) aims to provide a detailed library of omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information on radiation exposure for ground-based studies, GeneLab is adding detailed, curated dosimetry information for spaceflight experiments. GeneLab is the first comprehensive omics database for space-related research from which an investigator can generate hypotheses to direct future experiments, utilizing both ground and space biological radiation data. The GLDS is continually expanding as omics-related data are generated by the space life sciences community. Here we provide a brief summary of the space radiation-related data available at GeneLab.
NASA Astrophysics Data System (ADS)
Tseung, H. Wan Chan; Tolich, N.
2011-09-01
We report on ellipsometric measurements of the refractive indices of linear alkylbenzene-2,5-diphenyloxazole (LAB-PPO), Nd-doped LAB-PPO and EJ-301 scintillators to the nearest ± 0.005, in the wavelength range 210-1000 nm.
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is centered over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted above the three-story vacuum chamber into which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved toward the center over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lifted out of the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted above the three-story vacuum chamber into which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is centered over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lifted out of the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved toward the center over the three-story vacuum chamber in which the Lab will be placed. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Center Director Jim Kennedy presents a NASA Public Service Award to Douglas Britt of the Dynamac Corp. at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Britt received the award for his many years of exceptional service to NASA in managing the Life Sciences contracts at the Kennedy Space Center and his contributions to conceptualization and collaborations that helped make the Space Life Sciences Lab possible. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Center Director Jim Kennedy presents a NASA Public Service Award to Douglas Britt of the Dynamac Corp. at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Britt received the award for his many years of exceptional service to NASA in managing the Life Sciences contracts at the Kennedy Space Center and his contributions to conceptualization and collaborations that helped make the Space Life Sciences Lab possible. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
2004-02-04
KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.
2004-02-04
KENNEDY SPACE CENTER, FLA. - Reporters are eager to hear from Armando Oliu about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu, Final Inspection Team lead for the Shuttle program, oversees the lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.
2003-09-10
KENNEDY SPACE CENTER, FLA. - The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is nearing completion. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
High-reliable linear cryocoolers and miniaturization developments at Thales Cryogenics
NASA Astrophysics Data System (ADS)
van der Weijden, H.; Benschop, A.; v. D. Groep, W.; Willems, D.; Mullie, J.
2010-04-01
Thales Cryogenics (TCBV) has an extensive background in delivering long life cryogenic coolers for military, civil and space programs. This cooler range is based on two main compressor concepts: close tolerance contact seals (UP) and flexure bearing (LSF/LPT) coolers. Main difference between these products is the Mean Time To Failure (MTTF). In this paper an overview of lifetime parameters will be listed versus the impact in the different cooler types. Also test results from both the installed base and the Thales Cryogenics test lab will be presented. New developments at Thales Cryogenics regarding compact long lifetime coolers will be outlined. In addition new developments for miniature linear cooler drive electronics with high temperature stability and power density will be described.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Dignitaries, invited guests, space center employees, and the media gather for a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Dignitaries, invited guests, space center employees, and the media gather for a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Capt. Winston Scott, executive director of the Florida Space Authority, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
NASA Technical Reports Server (NTRS)
Jamison, J. W.
1994-01-01
CFORM was developed by the Kennedy Space Center Robotics Lab to assist in linear control system design and analysis using closed form and transient response mechanisms. The program computes the closed form solution and transient response of a linear (constant coefficient) differential equation. CFORM allows a choice of three input functions: the Unit Step (a unit change in displacement); the Ramp function (step velocity); and the Parabolic function (step acceleration). It is only accurate in cases where the differential equation has distinct roots, and does not handle the case for roots at the origin (s=0). Initial conditions must be zero. Differential equations may be input to CFORM in two forms - polynomial and product of factors. In some linear control analyses, it may be more appropriate to use a related program, Linear Control System Design and Analysis (KSC-11376), which uses root locus and frequency response methods. CFORM was written in VAX FORTRAN for a VAX 11/780 under VAX VMS 4.7. It has a central memory requirement of 30K. CFORM was developed in 1987.
UWB Tracking System Design with TDOA Algorithm
NASA Technical Reports Server (NTRS)
Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Gross, Julia; Dusl, John; Schwing, Alan
2006-01-01
This presentation discusses an ultra-wideband (UWB) tracking system design effort using a tracking algorithm TDOA (Time Difference of Arrival). UWB technology is exploited to implement the tracking system due to its properties, such as high data rate, fine time resolution, and low power spectral density. A system design using commercially available UWB products is proposed. A two-stage weighted least square method is chosen to solve the TDOA non-linear equations. Matlab simulations in both two-dimensional space and three-dimensional space show that the tracking algorithm can achieve fine tracking resolution with low noise TDOA data. The error analysis reveals various ways to improve the tracking resolution. Lab experiments demonstrate the UWBTDOA tracking capability with fine resolution. This research effort is motivated by a prototype development project Mini-AERCam (Autonomous Extra-vehicular Robotic Camera), a free-flying video camera system under development at NASA Johnson Space Center for aid in surveillance around the International Space Station (ISS).
Commerce Lab - An enabling facility and test bed for commercial flight opportunities
NASA Technical Reports Server (NTRS)
Robertson, Jack; Atkins, Harry L.; Williams, John R.
1986-01-01
Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab provides an enabling facility and test bed for commercial flight opportunities. Commerce Lab program activities to date have focused on mission planning for private sector involvement in the space program to facilitate the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Officials of the NASA-Kennedy Space Center and the state of Florida pose for a group portrait at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab at the new lab. From left are Capt. Winston Scott, executive director of the Florida Space Authority; Dr. Robert J. Ferl, director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida; Charlie Quincy, chief of the Biological Sciences Office, Kennedy Space Center; Jose Perez-Morales, NASA Project Manager for the Space Life Sciences Lab; Jim Kennedy, director of the Kennedy Space Center; The Honorable Toni Jennings, lieutenant governor of the state of Florida; Frank T. Brogan, president of the Florida Atlantic University; and Dr. Samuel Durrance, executive director of the Florida Space Research Institute. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
STS-98 U.S. Lab payload is moved to stand for weight determination
NASA Technical Reports Server (NTRS)
2000-01-01
KENNEDY SPACE CENTER, Fla. -- The U.S. Laboratory Destiny travels past the Multi-Purpose Logistics Module Leonardo in its overhead passage down the Space Station Processing Facility. The lab is being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Honorable Toni Jennings (left), lieutenant governor of the state of Florida, and Frank T. Brogan, president of Florida Atlantic University, receive a briefing on the research that will be conducted in the Space Life Sciences Lab from Dr. Robert J. Ferl (right), director of Space Agriculture Biotechnology Research and Education (SABRE), University of Florida. Jennings and Brogan are speaking at a dedication and ribbon-cutting ceremony for the lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
High Power LaB6 Plasma Source Performance for the Lockheed Martin Compact Fusion Reactor Experiment
NASA Astrophysics Data System (ADS)
Heinrich, Jonathon
2016-10-01
Lockheed Martin's Compact Fusion Reactor (CFR) concept is a linear encapsulated ring cusp. Due to the complex field geometry, plasma injection into the device requires careful consideration. A high power thermionic plasma source (>0.25MW; >10A/cm2) has been developed with consideration to phase space for optimal coupling. We present the performance of the plasma source, comparison with alternative plasma sources, and plasma coupling with the CFR field configuration. ©2016 Lockheed Martin Corporation. All Rights Reserved.
Commerce Lab - A program of commercial flight opportunities
NASA Technical Reports Server (NTRS)
Robertson, J.; Atkins, H. L.; Williams, J. R.
1985-01-01
Commerce Lab is conceived as an adjunct to the National Space Transportation System (NSTS) by providing a focal point for commercial missions which could utilize existing NSTS carrier and resource capabilities for on-orbit experimentation in the microgravity sciences. In this context, the Commerce Lab program provides mission planning for private sector involvement in the space program, in general, and the commercial exploitation of the microgravity environment for materials processing research and development. It is expected that Commerce Lab will provide a logical transition between currently planned NSTS missions and future microgravity science and commercial R&D missions centered around the Space Station. The present study identifies candidate Commerce Lab flight experiments and their development status and projects a mission traffic model that can be used in commercial mission planning.
2012-05-14
CAPE CANAVERAL, Fla. – Dr. Ray Wheeler explains a system for growing salad crops in space to students in the Life Support and Habitation Systems Lab at the Space Life Sciences Lab facility. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann
2012-05-14
CAPE CANAVERAL, Fla. – Dr. Ray Wheeler explains a system for growing salad crops in space to students in the Life Support and Habitation Systems Lab at the Space Life Sciences Lab facility. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Frank T. Brogan, president of the Florida Atlantic University, speaks at a dedication and ribbon- cutting ceremony for the Space Life Sciences Lab hosted by NASA- Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. The Honorable Toni Jennings, lieutenant governor of the state of Florida, speaks at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
2004-02-04
KENNEDY SPACE CENTER, FLA. - Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Behind him at right is Mike Rein, External Affairs division chief. Oliu oversees the image lab that is using an advanced SGI® TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASA’s Marshall Space Flight Center in Alabama in reviewing the tape.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Dignitaries, invited guests, space center employees, and the media show their appreciation for the speakers at a dedication and ribbon-cutting ceremony for the Space Life Sciences Lab hosted by NASA-Kennedy Space Center and the state of Florida at the new lab. Completed in August, the facility encompasses more than 100,000 square feet and was formerly known as the Space Experiment Research and Processing Laboratory or SERPL. The state, through the Florida Space Authority, built the research lab which is host to NASA, NASAs Life Sciences Services contractor Dynamac Corp., Bionetics Corp., and researchers from the University of Florida. Dynamac Corp. leases the facility. The Florida Space Research Institute is responsible for gaining additional tenants from outside the NASA community.
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be removed from the chamber. Workers check a crane being attached to the rotation and handling fixture that holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be removed from the chamber. Workers check a crane being attached to the rotation and handling fixture that holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
STS-98 U.S. Lab payload is moved to stand for weight determination
NASA Technical Reports Server (NTRS)
2000-01-01
KENNEDY SPACE CENTER, Fla. -- In its overhead passage down the Space Station Processing Facility, the U.S. Laboratory Destiny travels past the Multi-Purpose Logistics Module Leonardo. Both are elements in the construction of the International Space Station. The lab is being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.
2003-09-08
KENNEDY SPACE CENTER, FLA. - The Minus Eighty Lab Freezer for ISS (MELFI), provided as Laboratory Support Equipment by the European Space Agency for the International Space Station, is seen in the Space Station Processing Facility. The lab will provide cooling and storage for reagents, samples and perishable materials in four insulated containers called dewars with independently selectable temperatures of -80°C, -26°C, and +4°C. It also will be used to transport samples to and from the station. The MELFI is planned for launch on the ULF-1 mission.
2003-09-08
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, technicians remove the cover from the Minus Eighty Lab Freezer for ISS(MELFI) provided as Laboratory Support Equipment by the European Space Agency for the International Space Station. The lab will provide cooling and storage for reagents, samples and perishable materials in four insulated containers called dewars with independently selectable temperatures of -80°C, -26°C, and +4°C. It also will be used to transport samples to and from the station. The MELFI is planned for launch on the ULF-1 mission.
2000-07-01
KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the lid over the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- An overhead crane moves the lid over the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
Linear Regression between CIE-Lab Color Parameters and Organic Matter in Soils of Tea Plantations
NASA Astrophysics Data System (ADS)
Chen, Yonggen; Zhang, Min; Fan, Dongmei; Fan, Kai; Wang, Xiaochang
2018-02-01
To quantify the relationship between the soil organic matter and color parameters using the CIE-Lab system, 62 soil samples (0-10 cm, Ferralic Acrisols) from tea plantations were collected from southern China. After air-drying and sieving, numerical color information and reflectance spectra of soil samples were measured under laboratory conditions using an UltraScan VIS (HunterLab) spectrophotometer equipped with CIE-Lab color models. We found that soil total organic carbon (TOC) and nitrogen (TN) contents were negatively correlated with the L* value (lightness) ( r = -0.84 and -0.80, respectively), a* value (correlation coefficient r = -0.51 and -0.46, respectively) and b* value ( r = -0.76 and -0.70, respectively). There were also linear regressions between TOC and TN contents with the L* value and b* value. Results showed that color parameters from a spectrophotometer equipped with CIE-Lab color models can predict TOC contents well for soils in tea plantations. The linear regression model between color values and soil organic carbon contents showed it can be used as a rapid, cost-effective method to evaluate content of soil organic matter in Chinese tea plantations.
2000-07-07
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, after successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, is lifted up and away from the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, after successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, is lifted up and away from the chamber. A rotation and handling fixture holds the Lab. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-06-28
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building (O&C), an overhead crane hovers over the U.S. Lab, named Destiny, while workers attach cables for lifting the Lab. The Lab will undergo testing in the altitude chamber in the O&C. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-06-28
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building (O&C), an overhead crane hovers over the U.S. Lab, named Destiny, while workers attach cables for lifting the Lab. The Lab will undergo testing in the altitude chamber in the O&C. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
NASA Technical Reports Server (NTRS)
Beheshti, Afshin
2018-01-01
GeneLab as a general tool for the scientific community; Utilizing GeneLab datasets to generate hypothesis and determining potential biological targets against health risks due to long-term space missions; How can OpenTarget be used to discover novel drugs to test as countermeasures that can be utilized by astronauts.
Competencies for Information Professionals in Learning Labs and Makerspaces
ERIC Educational Resources Information Center
Koh, Kyungwon; Abbas, June
2015-01-01
An increasing number of libraries and museums provide transformative learning spaces, often called "Learning Labs" and "Makerspaces." These spaces invite users to explore traditional and digital media, interact with mentors and peers, and engage in creative projects. For these spaces and programs to be sustainable, it is…
2005-06-07
JSC2005-E-21191 (7 June 2005) --- Astronaut Steven G. MacLean, STS-115 mission specialist representing the Canadian Space Agency, uses the virtual reality lab at the Johnson Space Center to train for his duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
Facility for the evaluation of space communications and related systems
NASA Technical Reports Server (NTRS)
Kerczewski, Robert J.; Svoboda, James S.; Kachmar, Brian A.
1995-01-01
NASA Lewis Research Center's Communications Projects Branch has developed a facility for the evaluation of space communications systems and related types of systems, called the Advanced Space Communications (ASC) Laboratory. The ASC Lab includes instrumentation, testbed hardware, and experiment control and monitor software for the evaluation of components, subsystems, systems, and networks. The ASC lab has capabilities to perform radiofrequency (RF), microwave, and millimeter-wave characterizations as well as measurements using low, medium, or high data rate digital signals. In addition to laboratory measurements, the ASC Lab also includes integrated satellite ground terminals allowing experimentation and measurements accessing operational satellites through real space links.
geneLAB: Expanding the Impact of NASA's Biological Research in Space
NASA Technical Reports Server (NTRS)
Rayl, Nicole; Smith, Jeffrey D.
2014-01-01
The geneLAB project is designed to leverage the value of large 'omics' datasets from molecular biology projects conducted on the ISS by making these datasets available, citable, discoverable, interpretable, reusable, and reproducible. geneLAB will create a collaboration space with an integrated set of tools for depositing, accessing, analyzing, and modeling these diverse datasets from spaceflight and related terrestrial studies.
NASA Astrophysics Data System (ADS)
Moldwin, M.; Mexicotte, D.
2017-12-01
A new Arts/Lab Student Residence program was developed at the University of Michigan that brings artists into a research lab. Science and Engineering undergraduate and graduate students working in the lab describe their research and allow the artists to shadow them to learn more about the work. The Arts/Lab Student Residencies are designed to be unique and fun, while encouraging interdisciplinary learning and creative production by exposing students to life and work in an alternate discipline's maker space - i.e. the artist in the engineering lab, the engineer in the artist's studio or performance space. Each residency comes with a cash prize and the expectation that a work of some kind will be produced as a response to experience. The Moldwin Prize is designed for an undergraduate student currently enrolled in the Penny W. Stamps School of Art & Design, the Taubman School of Architecture and Urban Planning or the School of Music, Theatre and Dance who is interested in exchange and collaboration with students engaged in research practice in an engineering lab. No previous science or engineering experience is required, although curiosity and a willingness to explore are essential! Students receiving the residency spend 20 hours over 8 weeks (February-April) participating with the undergraduate research team in the lab of Professor Mark Moldwin, which is currently doing work in the areas of space weather (how the Sun influences the space environment of Earth and society) and magnetic sensor development. The resident student artist will gain a greater understanding of research methodologies in the space and climate fields, data visualization and communication techniques, and how the collision of disciplinary knowledge in the arts, engineering and sciences deepens the creative practice and production of each discipline. The student is expected to produce a final work of some kind within their discipline that reflects, builds on, explores, integrates or traces their experience in the residency. This talk will describe the program, the inaugural year's outcomes, and plans to expand the program to other research labs.
GeneLab: NASA's Open Access, Collaborative Platform for Systems Biology and Space Medicine
NASA Technical Reports Server (NTRS)
Berrios, Daniel C.; Thompson, Terri G.; Fogle, Homer W.; Rask, Jon C.; Coughlan, Joseph C.
2015-01-01
NASA is investing in GeneLab1 (http:genelab.nasa.gov), a multi-year effort to maximize utilization of the limited resources to conduct biological and medical research in space, principally aboard the International Space Station (ISS). High-throughput genomic, transcriptomic, proteomic or other omics analyses from experiments conducted on the ISS will be stored in the GeneLab Data Systems (GLDS), an open-science information system that will also include a biocomputation platform with collaborative science capabilities, to enable the discovery and validation of molecular networks.
NASA GeneLab Project: Bridging Space Radiation Omics with Ground Studies
NASA Technical Reports Server (NTRS)
Beheshti, Afshin; Miller, Jack; Kidane, Yared H.; Berrios, Daniel; Gebre, Samrawit G.; Costes, Sylvain V.
2018-01-01
Accurate assessment of risk factors for long-term space missions is critical for human space exploration: therefore it is essential to have a detailed understanding of the biological effects on humans living and working in deep space. Ionizing radiation from Galactic Cosmic Rays (GCR) is one of the major risk factors factor that will impact health of astronauts on extended missions outside the protective effects of the Earth's magnetic field. Currently there are gaps in our knowledge of the health risks associated with chronic low dose, low dose rate ionizing radiation, specifically ions associated with high (H) atomic number (Z) and energy (E). The GeneLab project (genelab.nasa.gov) aims to provide a detailed library of Omics datasets associated with biological samples exposed to HZE. The GeneLab Data System (GLDS) currently includes datasets from both spaceflight and ground-based studies, a majority of which involve exposure to ionizing radiation. In addition to detailed information for ground-based studies, we are in the process of adding detailed, curated dosimetry information for spaceflight missions. GeneLab is the first comprehensive Omics database for space related research from which an investigator can generate hypotheses to direct future experiments utilizing both ground and space biological radiation data. In addition to previously acquired data, the GLDS is continually expanding as Omics related data are generated by the space life sciences community. Here we provide a brief summary of space radiation related data available at GeneLab.
Mörschbächer, Ana Paula; Dullius, Anja; Dullius, Carlos Henrique; Bandt, Cassiano Ricardo; Kuhn, Daniel; Brietzke, Débora Tairini; Malmann Kuffel, Fernando José; Etgeton, Henrique Pretto; Altmayer, Taciélen; Gonçalves, Tamara Engelmann; Oreste, Eliézer Quadro; Ribeiro, Anderson Schwingel; de Souza, Claucia Fernanda Volken; Hoehne, Lucélia
2018-07-30
The present paper describes the validation of a spectrophotometry method involving molecular absorption in the visible ultraviolet-visible (UV-Vis) region for selenium (Se) determination in the bacterial biomass produced by lactic acid bacteria (LAB). The method was found to be suitable for the target application and presented a linearity range from 0.025 to 0.250 mg/L Se. The angular and linear coefficients of the linear equation were 1.0678 and 0.0197 mg/L Se, respectively, and the linear correlation coefficient (R 2 ) was 0.9991. Analyte recovery exceeded 96% with a relative standard deviation (RSD) below 3%. The Se contents in LAB ranged from 0.01 to 20 mg/g. The Se contents in the bacterial biomass determined by UV-Vis were not significantly different (p > 0.05) those determined by graphite furnace atomic absorption spectrometry. Thus, Se can be quantified in LAB biomass using this relatively simpler technique. Copyright © 2018 Elsevier Ltd. All rights reserved.
2000-07-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Operations and Checkout Building check the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-06-30
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved to the vacuum chamber in the Operations and Checkout Building for testing. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
2000-07-01
KENNEDY SPACE CENTER, FLA. -- A worker checks the cable fittings on the U.S. Lab, a component of the International Space Station, before it is lifted and placed inside the vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be lifted and removed from the chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- With the lid of the three-story vacuum chamber in place, a worker on top checks release of the cables. Inside the chamber is the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted off the floor of the Operations and Checkout Building in order to be placed inside the vacuum chamber in the building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-06-30
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is moved to the vacuum chamber in the Operations and Checkout Building for testing. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
2000-07-01
KENNEDY SPACE CENTER, FLA. -- A worker in the Operations and Checkout Building checks the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lowered inside the three-story vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- A worker in the Operations and Checkout Building checks the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- A worker checks the cable fittings on the U.S. Lab, a component of the International Space Station, before it is lifted and placed inside the vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- Workers in the Operations and Checkout Building check the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lowered inside the three-story vacuum chamber in the Operations and Checkout Building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- After successfully completing a leak test inside a vacuum chamber in the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is ready to be lifted and removed from the chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- With the lid of the three-story vacuum chamber in place, a worker on top checks release of the cables. Inside the chamber is the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- The U.S. Lab, a component of the International Space Station, is lifted off the floor of the Operations and Checkout Building in order to be placed inside the vacuum chamber in the building. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-01
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
Applied Physics Lab Kennedy Space Center: Recent Contributions
NASA Technical Reports Server (NTRS)
Starr, Stan; Youngquist, Robert
2006-01-01
The mission of the Applied Physics Lab is: (1) Develop and deliver novel sensors and devices to support KSC mission operations. (2) Analyze operational issues and recommend or deliver practical solutions. (3) Apply physics to the resolution of long term space flight issues that affect space port operation on Earth or on other planets.
2003-09-08
KENNEDY SPACE CENTER, FLA. - After removing its cover, technicians look over the Minus Eighty Lab Freezer for ISS (MELFI), provided as Laboratory Support Equipment by the European Space Agency for the International Space Station. The lab will provide cooling and storage for reagents, samples and perishable materials in four insulated containers called dewars with independently selectable temperatures of -80°C, -26°C, and +4°C. It also will be used to transport samples to and from the station. The MELFI is planned for launch on the ULF-1 mission.
Evaluation of Portable Multi-Gas Analyzers for use by Safety Personnel
NASA Technical Reports Server (NTRS)
Lueck, D. E.; Meneghelli, B. J.; Bardel, D. N.
1998-01-01
During confined space entry operations as well as Shuttle-safing operations, United Space Alliance (USA)/National Aeronautics and Space Administration (NASA) safety personnel use a variety of portable instrumentation to monitor for hazardous levels of compounds such as nitrogen dioxide (N%), monomethylhydrazine (NMM), FREON 21, ammonia (NH3), oxygen (O2), and combustibles (as hydrogen (H2)). Except for O2 and H2, each compound is monitored using a single analyzer. In many cases these analyzers are 5 to 10 years old and require frequent maintenance. In addition, they are cumbersome to carry and tend to make the job of personnel monitoring physically taxing. As part of an effort to upgrade the sensor technology background information was requested from a total of 27 manufacturers of portable multi-gas instruments. A set of criteria was established to determine which vendors would be selected for laboratory evaluation. These criteria were based on requests made by USA/NASA Safety personnel in order to meet requirements within their respective areas for confined-space and Shuttle-safing operations. Each of the 27 manufacturers of multi-gas analyzers was sent a copy of the criteria and asked to fill in the appropriate information pertaining to their instrumentation. Based on the results of the sensor criteria worksheets, a total of 9 vendors out of 27 surveyed manufacturers were chosen for evaluation. Each vendor included in the final evaluation process was requested to configure each of two analyzers with NO2, NH3, O2, and combustible sensors. A set of lab tests was designed in order to determine which of the multi-gas instruments under evaluation was best suited for use in both shuttle and confined space operations. These tests included linearity/repeatability, zero/span drift response/recovery, humidity, interference, and maintenance. At the conclusion of lab testing three vendors were selected for additional field testing. Based on the results of both the lab and field evaluations a single vendor was recommended for use by NASA/IJSA Safety personnel. Vendor selection criteria, as well as the results from both laboratory and field testing of the multi-gas analyzers, are presented as part of this paper.
My Brother’s Keeper National Lab Week
2016-03-02
Harold (Russ) McAmis demonstrates machinery inside NASA Kennedy Space Center’s Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.
STS-126 crew during preflight VR LAB MSS EVA2 training
2008-04-14
JSC2008-E-033771 (14 April 2008) --- Astronaut Eric A. Boe, STS-126 pilot, uses the virtual reality lab in the Space Vehicle Mockup Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training
2010-08-27
JSC2010-E-121049 (27 Aug. 2010) --- NASA astronaut Andrew Feustel (foreground), STS-134 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew training in VR Lab with replacement crew member Steve Bowen
2011-01-24
JSC2011-E-006293 (24 Jan. 2011) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170878 (1 Oct. 2010) --- NASA astronaut Michael Barratt, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration
STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training
2010-08-27
JSC2010-E-121056 (27 Aug. 2010) --- NASA astronaut Gregory H. Johnson, STS-134 pilot, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170888 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170882 (1 Oct. 2010) --- NASA astronaut Nicole Stott, STS-133 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. Photo credit: NASA or National Aeronautics and Space Administration
2004-03-31
KENNEDY SPACE CENTER, FLA. - An aerial photo of the Space Life Sciences Lab at KSC. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA KSC and the State of Florida.
2004-03-31
KENNEDY SPACE CENTER, FLA. - An aerial photo of the Space Life Sciences Lab at KSC. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA KSC and the State of Florida.
2004-03-31
KENNEDY SPACE CENTER, FLA. - An aerial photo of the Space Life Sciences Lab at KSC. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA KSC and the State of Florida.
First results on GlioLab/GlioSat Precursors Missions
NASA Astrophysics Data System (ADS)
Cappelletti, Chantal; Notarangelo, Angelo; Demoss, Darrin; Carella, Massimo
2012-07-01
Since 2009 GAUSS group is involved in a joint collaboration with Morehead State University (MSU) Space Science Center and IRCCS Casa Sollievo della Sofferenza (CSS) research labs with the aim to design a biomedical project in order to investigate if the combined effects of microgravity conditions and ionizing radiation increase or decrease the survival rate of cancer cells. The biological sample consists of Glioblastoma cancer cell line ANGM-CSS. Glioblastoma is a kind of cancer that can be treated after surgery only by radiotherapy using ionizing radiation. This treatment, anyway, results in a very low survival rate. This project uses different university space platforms: a CubeLab, named GlioLab, on board the International Space Station and the university microsatellite UniSat-5 designed by GAUSS. In addition a GlioLab/GlioSat precursor experiment has already flown two times with the Space Shuttle during the missions STS-134 and STS-135. The phase 0 or the precursor of GlioLab uses a COTS system, named Liquid Mixing Apparatus (LMA), to board the biological samples inside the Space Shuttle for thirty day . The LMA allows to board liquids inside a vial but is not equipped with environment control system. After landing the samples were investigated by researchers at CSS in Italy and at MSU in Kentucky. This paper deals with the experimental set up and the results obtained during the STS-134 and STS-135 missions and with the new evidences on the behavior of this kind of cancer. In particular the results obtained on the DNA analysis give a confirmation of the original idea of GLioLab/Gliosat project justifying the development of the two systems.
2003-09-10
KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Michelle Crouch talk in a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
2003-09-10
KENNEDY SPACE CENTER, FLA. - Dynamac employees Debbie Wells, Michelle Crouch and Larry Burns are silhouetted as they talk inside a conference room of the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They have been transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
2003-09-10
KENNEDY SPACE CENTER, FLA. - Ivan Rodriguez, with Bionetics, and Michelle Crouch and Larry Burns, with Dynamac, carry boxes of equipment into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
2003-09-10
KENNEDY SPACE CENTER, FLA. - Dynamac employees (from left) Larry Burns, Debbie Wells and Neil Yorio carry boxes of hardware into the Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL). They are transferring equipment from Hangar L. The new lab is a state-of-the-art facility being built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor will be the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
Measurement of light yield dependence on electron energy for SNO+ scintillator
NASA Astrophysics Data System (ADS)
Wan Chan Tseung, Hok
2011-10-01
SNO+ is a multi-purpose neutrino experiment whose reach extends to the following areas of neutrino physics: neutrinoless double beta decay (with Nd-loaded scintillator), geo-neutrinos, reactor and low-energy solar neutrinos, as well as supernova neutrinos. It is a ~780-tonne liquid scintillator detector currently under construction at the SNOLAB facility in Sudbury, Ontario,Canada. The scintillator to be used in SNO+ is linear alkylbenzene (LAB) with ~2 g/L of PPO (2,5-diphenyloxazole). In this talk, we describe an experiment to test the linearity of the response of LAB-PPO with respect to electrons. We find that below ~0.4 MeV, the energy scale of LAB-PPO becomes non-linear. An explanation is given in terms of Cherenkov light absorption and re-emission by the scintillator. This research has been supported under DOE Grant No. DE-FG02-97ER41020.
My Brother’s Keeper National Lab Week
2016-03-02
Students in the My Brother’s Keeper program line the railings of an observation deck overlooking the Granular Mechanics and Regolith Operations Lab at NASA’s Kennedy Space Center in Florida. The spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.
My Brother’s Keeper National Lab Week
2016-03-02
Students in the My Brother’s Keeper program try out some of the machinery inside the Prototype Lab at NASA’s Kennedy Space Center. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.
My Brother’s Keeper National Lab Week
2016-03-02
Mike Lane demonstrates a 3D scanner inside the NASA Kennedy Space Center Prototype Lab for students in the My Brother’s Keeper program. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.
My Brother’s Keeper National Lab Week
2016-03-02
Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs talks to students in the My Brother’s Keeper program outside the Florida spaceport’s Swamp Works Lab. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.
2004-03-26
KENNEDY SPACE CENTER, FLA. -- An aerial photo of the recently completed Space Life Sciences Lab at KSC. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida.
2004-03-26
KENNEDY SPACE CENTER, FLA. -- An aerial photo of the recently completed Space Life Sciences Lab at KSC. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida.
2004-03-26
KENNEDY SPACE CENTER, FLA. -- An aerial photo of the recently completed Space Life Sciences Lab at KSC. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida.
2004-03-26
KENNEDY SPACE CENTER, FLA. -- An aerial photo of the recently completed Space Life Sciences Lab at KSC. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida.
NASA Technical Reports Server (NTRS)
1999-01-01
Shown viewing the Apollo telescope mockup are, from left to right, Charles Donlan, deputy associate administrator for manned space flight; Dr. Wernher Von Braun, Marshall Space Flight Center director; William Horton, astrionics lab; Dr. Thomas Paine, NASA deputy administrator; Warner Kuers, director of the ME lab.
GeneLab: A Systems Biology Platform for Spaceflight Omics Data
NASA Technical Reports Server (NTRS)
Reinsch, Sigrid S.; Lai, San-Huei; Chen, Rick; Thompson, Terri; Berrios, Daniel; Fogle, Homer; Marcu, Oana; Timucin, Linda; Chakravarty, Kaushik; Coughlan, Joseph
2015-01-01
NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. Resources to support large numbers of spaceflight investigations are limited. NASA's GeneLab project is maximizing the science output from these experiments by: (1) developing a unique public bioinformatics database that includes space bioscience relevant "omics" data (genomics, transcriptomics, proteomics, and metabolomics) and experimental metadata; (2) partnering with NASA-funded flight experiments through bio-sample sharing or sample augmentation to expedite omics data input to the GeneLab database; and (3) developing community-driven reference flight experiments. The first database, GeneLab Data System Version 1.0, went online in April 2015. V1.0 contains numerous flight datasets and has search and download capabilities. Version 2.0 will be released in 2016 and will link to analytic tools. In 2015 Genelab partnered with two Biological Research in Canisters experiments (BBRIC-19 and BRIC-20) which examine responses of Arabidopsis thaliana to spaceflight. GeneLab also partnered with Rodent Research-1 (RR1), the maiden flight to test the newly developed rodent habitat. GeneLab developed protocols for maxiumum yield of RNA, DNA and protein from precious RR-1 tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected. GeneLab is establishing partnerships with at least three planned flights for 2016. Organism-specific nationwide Science Definition Teams (SDTs) will define future GeneLab dedicated missions and ensure the broader scientific impact of the GeneLab missions. GeneLab ensures prompt release and open access to all high-throughput omics data from spaceflight and ground-based simulations of microgravity and radiation. Overall, GeneLab will facilitate the generation and query of parallel multi-omics data, and deep curation of metadata for integrative analysis, allowing researchers to uncover cellular networks as observed in systems biology platforms. Consequently, the scientific community will have access to a more complete picture of functional and regulatory networks responsive to the spaceflight environment.. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and enable emerging terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space. As a result, open access to the data will foster new hypothesis-driven research for future spaceflight studies spanning basic science to translational science.
RoboLab and virtual environments
NASA Technical Reports Server (NTRS)
Giarratano, Joseph C.
1994-01-01
A useful adjunct to the manned space station would be a self-contained free-flying laboratory (RoboLab). This laboratory would have a robot operated under telepresence from the space station or ground. Long duration experiments aboard RoboLab could be performed by astronauts or scientists using telepresence to operate equipment and perform experiments. Operating the lab by telepresence would eliminate the need for life support such as food, water and air. The robot would be capable of motion in three dimensions, have binocular vision TV cameras, and two arms with manipulators to simulate hands. The robot would move along a two-dimensional grid and have a rotating, telescoping periscope section for extension in the third dimension. The remote operator would wear a virtual reality type headset to allow the superposition of computer displays over the real-time video of the lab. The operators would wear exoskeleton type arms to facilitate the movement of objects and equipment operation. The combination of video displays, motion, and the exoskeleton arms would provide a high degree of telepresence, especially for novice users such as scientists doing short-term experiments. The RoboLab could be resupplied and samples removed on other space shuttle flights. A self-contained RoboLab module would be designed to fit within the cargo bay of the space shuttle. Different modules could be designed for specific applications, i.e., crystal-growing, medicine, life sciences, chemistry, etc. This paper describes a RoboLab simulation using virtual reality (VR). VR provides an ideal simulation of telepresence before the actual robot and laboratory modules are constructed. The easy simulation of different telepresence designs will produce a highly optimum design before construction rather than the more expensive and time consuming hardware changes afterwards.
The U.S. Lab placed in vacuum chamber for leak test
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, the U.S. Lab, a component of the International Space Station, is lowered into a three-story vacuum chamber. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training
2009-09-25
JSC2009-E-214346 (25 Sept. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training
2009-09-25
JSC2009-E-214328 (25 Sept. 2009) --- Japan Aerospace Exploration Agency (JAXA) astronaut Naoko Yamazaki, STS-131 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of her duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
STS-131 crew during VR Lab MSS/EVAB SUPT3 Team 91016 training
2009-09-25
JSC2009-E-214321 (25 Sept. 2009) --- NASA astronauts James P. Dutton Jr., STS-131 pilot; and Stephanie Wilson, mission specialist, use the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of their duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
2003-10-09
The Space Life Sciences Lab (SLSL), formerly known as the Space Experiment Research and Processing Laboratory (SERPL), is a state-of-the-art facility built for ISS biotechnology research. Developed as a partnership between NASA-KSC and the State of Florida, NASA’s life sciences contractor is the primary tenant of the facility, leasing space to conduct flight experiment processing and NASA-sponsored research. About 20 percent of the facility will be available for use by Florida’s university researchers through the Florida Space Research Institute.
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00751 (15 March 2001) --- Astronaut Scott J. Horowitz, STS-105 mission commander, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00758 (15 March 2001) --- Astronaut Frederick W. Sturckow, STS-105 pilot, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with International Space Station (ISS) elements.
2005-06-07
JSC2005-E-21192 (7 June 2005) --- Astronauts Christopher J. Ferguson (left), STS-115 pilot, and Daniel C. Burbank, mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements.
Commerce Lab: Mission analysis payload integration study. Appendix A: Data bases
NASA Technical Reports Server (NTRS)
1985-01-01
The development of Commerce Lab is detailed. Its objectives are to support the space program in these areas: (1) the expedition of space commercialization; (2) the advancement of microgravity science and applications; and (3) as a precursor to future missions in the space program. Ways and means of involving private industry and academia in this commercialization is outlined.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the Space Station Processing Facility, Gaschen Geissen and Elton Witt, with Lockheed Martin, monitor the Payload Test and Checkout System for the Human Research Facility (HRF) Rack -2 payload. The HRF-2 is scheduled to fly on Return to Flight Space Shuttle mission STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF Rack 1 contains an ultrasound unit and gas analyzer system and has been operational in the U.S. Lab since May 2001. HRF-2 will also be installed in the U. S. Lab and will provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U. S. Lab.
Integrating Human Factors into Space Vehicle Processing for Risk Management
NASA Technical Reports Server (NTRS)
Woodbury, Sarah; Richards, Kimberly J.
2008-01-01
This presentation will discuss the multiple projects performed in United Space Alliance's Human Engineering Modeling and Performance (HEMAP) Lab, improvements that resulted from analysis, and the future applications of the HEMAP Lab for risk assessment by evaluating human/machine interaction and ergonomic designs.
STS-134 crew in Virtual Reality Lab during their MSS/EVAA SUPT2 Team training
2010-08-27
JSC2010-E-121045 (27 Aug. 2010) --- NASA astronaut Andrew Feustel (right), STS-134 mission specialist, uses the virtual reality lab in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center to train for some of his duties aboard the space shuttle and space station. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare crew members for dealing with space station elements. David Homan assisted Feustel. Photo credit: NASA or National Aeronautics and Space Administration
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead toward the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead toward the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab moves overhead after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab reaches the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab is lowered toward the floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
2000-07-07
KENNEDY SPACE CENTER, FLA. -- In the Operations and Checkout Building, the U.S. Lab reaches the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research
Cherenkov and scintillation light separation in organic liquid scintillators
NASA Astrophysics Data System (ADS)
Caravaca, J.; Descamps, F. B.; Land, B. J.; Yeh, M.; Orebi Gann, G. D.
2017-12-01
The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3 % and 63± 8% for time- and charge-based separation, respectively, with scintillation contamination of 36± 5% and 38± 4%. LAB/PPO data is consistent with a rise time of τ _r=0.72± 0.33 ns.
2011-11-08
CAPE CANAVERAL, Fla. – In the Granular Mechanics and Regolith Operations (GMRO) Lab at NASA's Kennedy Space Center in Florida, pieces of the Surveyor 3 spacecraft returned from the lunar surface on the Apollo 12 mission are available for examination by the lab's staff. The GMRO Lab is one of several labs located in NASA's Space Life Sciences Laboratory (SLSL) facility. The lab is staffed by three physicists, six mechanical or aerospace engineers and several technicians who are studying how the rocket exhaust of landing vehicles affects lunar and Martian science missions, including the sandblasting of instruments with soil and dust ejecta and the disturbance or contamination of soil beneath the lander. For more information on the GMRO Lab, see p. 7 of the Spaceport News dated Nov. 11, 2011, at http://www.nasa.gov/centers/kennedy/pdf/603285main_nov11-2011.pdf. Photo credit: NASA/Jim Grossmann
2011-11-08
CAPE CANAVERAL, Fla. – In the Granular Mechanics and Regolith Operations (GMRO) Lab at NASA's Kennedy Space Center in Florida, a piece of the Surveyor 3 spacecraft returned from the lunar surface on the Apollo 12 mission is available for examination by the lab's staff. The GMRO Lab is one of several labs located in NASA's Space Life Sciences Laboratory (SLSL) facility. The lab is staffed by three physicists, six mechanical or aerospace engineers and several technicians who are studying how the rocket exhaust of landing vehicles affects lunar and Martian science missions, including the sandblasting of instruments with soil and dust ejecta and the disturbance or contamination of soil beneath the lander. For more information on the GMRO Lab, see p. 7 of the Spaceport News dated Nov. 11, 2011, at http://www.nasa.gov/centers/kennedy/pdf/603285main_nov11-2011.pdf. Photo credit: NASA/Jim Grossmann
The Development of MSFC Usability Lab
NASA Technical Reports Server (NTRS)
Cheng, Yiwei; Richardson, Sally
2010-01-01
This conference poster reviews the development of the usability lab at Marshall Space Flight Center. The purpose of the lab was to integrate a fully functioning usability laboratory to provide a resource for future human factor assessments. and to implement preliminary usability testing on a MSFC website to validate the functionality of the lab.
Commerce lab: Mission analysis and payload integration study
NASA Technical Reports Server (NTRS)
1984-01-01
Conceived as one or more arrays of carriers which would fly aboard space shuttle, Commerce Lab can provide a point of focus for implementing a series of shuttle flights, co-sponsored by NASA and U.S. domestic concerns, for performing materials processing in research and pre-commercial investigations. As an orbiting facility for testing, developing, and implementing hardware and procedures, Commerce Lab can enhance space station development and hasten space platform production capability. Tasks considered include: (1) synthesis of user requirements and identification of common element and voids; (2) definition of performance and infrastructure requirement and alternative approaches; and (3) carrier, mission model, and infrastructure development.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu oversees the image lab that is using an advanced SGI TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASAs Marshall Space Flight Center in Alabama in reviewing the tape.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Reporters are eager to hear from Armando Oliu about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu, Final Inspection Team lead for the Shuttle program, oversees the lab that is using an advanced SGI TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASAs Marshall Space Flight Center in Alabama in reviewing the tape.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aidced the Image Analysis Lab is giving the FBI in a kidnapping case. Oliu oversees the image lab that is using an advanced SGI TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASAs Marshall Space Flight Center in Alabama in reviewing the tape.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Joe Mounts, with Boeing, monitors the Payload Test and Checkout System for the Human Research Facility (HRF) Rack -2 payload. The HRF-2 is scheduled to fly on Return to Flight Space Shuttle mission STS-114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF Rack 1 contains an ultrasound unit and gas analyzer system and has been operational in the U.S. Lab since May 2001. HRF-2 will also be installed in the U. S. Lab and will provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U. S. Lab.
Live from the Moon ExoLab: EuroMoonMars Simulation at ESTEC 2017
NASA Astrophysics Data System (ADS)
Neklesa, A.; Foing, B. H.; Lillo, A.; Evellin, P.; Kołodziejczyk, A.; Jonglez, C.; Heinicke, C.; Harasymczuk, M.; Authier, L.; Blanc, A.; Chahla, C.; Tomic, A.; Mirino, M.; Schlacht, I.; Hettrich, S.; Pacher, T.
2017-10-01
Space enthusiasts simulated the landing on the Moon having pre-landed Habitat ExoHab, ExoLab 2.0, supported by the control centre on Earth. We give here the first-hand experience from a reporter (A.N.) who joined the space crew.
My Brother’s Keeper National Lab Week
2016-03-02
Students in the My Brother’s Keeper program watch as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs demonstrates some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.
My Brother’s Keeper National Lab Week
2016-03-02
Students in the My Brother’s Keeper program listen as Jose Nunez of NASA Kennedy Space Center’s Exploration Research and Technology Programs explains some of the hardware in the Electrostatic and Surface Physics Lab at the Florida spaceport. Kennedy is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.
2012-05-14
CAPE CANAVERAL, Fla. – Dr. Ray Wheeler explains a plant growth chamber to students in the Life Support and Habitation Systems Lab at the Space Life Sciences Lab facility. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann
2012-05-14
CAPE CANAVERAL, Fla. – Dr. Phil Metzger demonstrates an experiment to study the physics of granular materials to students in the Granular Physics and Regolith Operations Lab at the Space Life Sciences Lab facility. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann
NASA Astrophysics Data System (ADS)
O'Keeffe, H. M.; O'Sullivan, E.; Chen, M. C.
2011-06-01
The SNO+ liquid scintillator experiment is under construction in the SNOLAB facility in Canada. The success of this experiment relies upon accurate characterization of the liquid scintillator, linear alkylbenzene (LAB). In this paper, scintillation decay times for alpha and electron excitations in LAB with 2 g/L PPO are presented for both oxygenated and deoxygenated solutions. While deoxygenation is expected to improve pulse shape discrimination in liquid scintillators, it is not commonly demonstrated in the literature. This paper shows that for linear alkylbenzene, deoxygenation improves discrimination between electron and alpha excitations in the scintillator.
Lamoureux, E.M.; Brownawell, Bruce J.; Bothner, Michael H.
1996-01-01
Linear alkylbenzenes (LABs) are sensitive source-specific tracers of sewage inputs to the marine environment. Because they are highly particle reactive and nonspecifically sorbed to organic matter, LABs are potential tracers of the transport of both sludge-derived organic matter and other low solubility hydrophobic contaminants (e.g., PCBs and PAHs); sediment trap studies at the 106-Mile Site have shown LABs to be valuable in testing models of sludge deposition to the sea floor. In this study we report on the distributions of LABs, PCBs, PAHs, and Ag in surface sediments collected within a month of the complete cessation of dumping (July, 1992) in the vicinity of the dump site. Total LAB concentrations were lower than those measured by Takada and coworkers in samples from nearby sites collected in 1989. LABs from both studies appear to be significantly depleted (6 to 25-fold) in surface sediments relative to excess Ag (another sludge tracer) when compared to sewage sludge and sediment trap compositions. Comparison of LAB sediment inventories to model predictions of sludge particle fluxes supports the contention that LABs have been lost from the bed. The use of LABs to examine the short-or long-term fate of sludge derived materials in deep-sea sediments should be questioned. The causes of this LAB depletion are unclear at this point, and we discuss several hypotheses. The concentrations of total PCBs and PAHs are both correlated with sludge tracers, suggesting that there may be a measurable contribution of sludge-derived inputs on top of other nonpoint sources of these contaminant classes. This possibility is consistent with the composition of these contaminants determined in recent and historical analyses of sewage sludge.
1998-11-16
KENNEDY SPACE CENTER, FLA. -- In the last light before nightfall, workers watch as others check the fittings on the cranes lowering the container that encases U.S. laboratory module onto the bed of a trailer, waiting with its lights on for the move to the Space Station Processing Facility. Intended for the International Space Station, the lab is scheduled to undergo pre-launch preparations before its launch aboard the Shuttle Endeavour on mission STS-98. The laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in the areas of life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000
Cherenkov and scintillation light separation in organic liquid scintillators
Caravaca, J.; Descamps, F. B.; Land, B. J.; ...
2017-11-29
The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3 % and 63 ± 8 % for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5 % andmore » 38 ± 4 %. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns.« less
Cherenkov and scintillation light separation in organic liquid scintillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caravaca, J.; Descamps, F. B.; Land, B. J.
The CHErenkov/Scintillation Separation experiment (CHESS) has been used to demonstrate the separation of Cherenkov and scintillation light in both linear alkylbenzene (LAB) and LAB with 2 g/L of PPO as a fluor (LAB/PPO). This is the first successful demonstration of Cherenkov light detection from the more challenging LAB/PPO cocktail and improves on previous results for LAB. A time resolution of 338 ± 12 ps FWHM results in an efficiency for identifying Cherenkov photons in LAB/PPO of 70 ± 3 % and 63 ± 8 % for time- and charge-based separation, respectively, with scintillation contamination of 36 ± 5 % andmore » 38 ± 4 %. LAB/PPO data is consistent with a rise time of τ r = 0.72 ± 0.33 ns.« less
The U.S. Lab is moved toward the open floor in the O&C Building
NASA Technical Reports Server (NTRS)
2000-01-01
In the Operations and Checkout Building, the U.S. Lab moves overhead toward the open floor after being lifted out of the vacuum chamber where it was tested for leaks. The test was very successful. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
2004-06-17
KENNEDY SPACE CENTER, FLA. - In the KSC Space Life Sciences Lab’s Resource Recovery lab, bioengineer Tony Rector checks the ARMS reactor vessel. ARMS, or Aerobic Rotational Membrane System, is a wastewater processing project being tested for use on the International Space Station to collect, clean and reuse wastewater. It could be adapted for use on the Moon and Mars. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
2004-06-17
KENNEDY SPACE CENTER, FLA. - In the KSC Space Life Sciences Lab’s Resource Recovery lab, bioengineer Tony Rector checks the clear plexiglass ARMS reactor vessel. ARMS, or Aerobic Rotational Membrane System, is a wastewater processing project being tested for use on the International Space Station to collect, clean and reuse wastewater. It could be adapted for use on the Moon and Mars. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
ThinkSpace: Spatial Thinking in Middle School Astronomy Labs
NASA Astrophysics Data System (ADS)
Udomprasert, Patricia S.; Goodman, Alyssa A.; Plummer, Julia; Sadler, Philip M.; Johnson, Erin; Sunbury, Susan; Zhang, Helen; Dussault, Mary E.
2016-01-01
Critical breakthroughs in science (e.g., Einstein's Theory of General Relativity, and Watson & Crick's discovery of the structure of DNA), originated with those scientists' ability to think spatially, and research has shown that spatial ability correlates strongly with likelihood of entering a career in STEM. Mounting evidence also shows that spatial skills are malleable, i.e., they can be improved through training. We report early work from a new project that will build on this research to create a series of middle schools science labs called "Thinking Spatially about the Universe" (ThinkSpace), in which students will use a blend of physical and virtual models (in WorldWide Telescope) to explore complex 3-dimensional phenomena in space science. In the three-year ThinkSpace labs project, astronomers, technologists, and education researchers are collaborating to create and test a suite of three labs designed to improve learners' spatial abilities through studies of: 1) Moon phases and eclipses; 2) planetary systems around stars other than the Sun; and 3.) celestial motions within the broader universe. The research program will determine which elements in the labs will best promote improvement of spatial skills within activities that emphasize disciplinary core ideas; and how best to optimize interactive dynamic visualizations to maximize student understanding.
The U.S. Lab is placed in vacuum chamber for leak test
NASA Technical Reports Server (NTRS)
2000-01-01
With the lid of the three-story vacuum chamber in place, a worker on top checks release of the cables. Inside the chamber is the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
The U.S. Lab is placed in vacuum chamber for leak test
NASA Technical Reports Server (NTRS)
2000-01-01
A worker in the Operations and Checkout Building checks the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
The U.S. Lab is placed in vacuum chamber for leak test
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Operations and Checkout Building check the placement of the lid on the vacuum chamber containing the U.S. Lab, a component of the International Space Station. The 32,000-pound scientific research lab, named Destiny, is the first Space Station element to spend seven days in the renovated vacuum chamber for a leak test. Destiny is scheduled to be launched on Shuttle mission STS-98, the 5A assembly mission, targeted for Jan. 18, 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
2004-06-17
KENNEDY SPACE CENTER, FLA. - In a plant growth chamber in the KSC Space Life Sciences Lab, plant physiologist Ray Wheeler checks radishes being grown using hydroponic techniques. Wheeler and other colleagues are researching plant growth under different types of light, different CO2 concentrations and temperatures. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
2004-06-17
KENNEDY SPACE CENTER, FLA. - In a plant growth chamber in the KSC Space Life Sciences Lab, plant physiologist Ray Wheeler checks radishes being grown using hydroponic techniques. Wheeler and other colleagues are researching plant growth under different types of light, different CO2 concentrations and temperatures. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In a plant growth chamber in the KSC Space Life Sciences Lab, plant physiologist Ray Wheeler checks radishes being grown using hydroponic techniques. Wheeler and other colleagues are researching plant growth under different types of light, different CO2 concentrations and temperatures. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In a plant growth chamber in the KSC Space Life Sciences Lab, plant physiologist Ray Wheeler checks radishes being grown using hydroponic techniques. Wheeler and other colleagues are researching plant growth under different types of light, different CO2 concentrations and temperatures. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Inside a darkened U.S. Lab module, in the Space Station Processing Facility (SSPF), astronaut James Voss (left) joins STS-98 crew members Commander Kenneth D. Cockrell (foreground), and Pilot Mark Polansky (right) to check out equipment in the Lab. They are taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. Also participating in the MEIT is STS-98 Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
2000-10-23
In the Space Station Processing Facility, a worker is surprised by the camera as she exits the U.S. Lab, Destiny. Inside the lab is the STS-98 crew, which is taking part in Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2000-10-23
In the Space Station Processing Facility, STS-98 Mission Specialist Marsha Ivins wields a tool on part of the U.S. Lab, Destiny. The crew is checking out equipment inside the lab as part of Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2000-10-23
In the Space Station Processing Facility, STS-98 Mission Specialist Marsha Ivins maneuvers a part of the U.S. Lab, Destiny. The crew is checking out equipment inside the lab as part of Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
STS-98 crew members take part in CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, a worker is surprised by the camera as she exits the U.S. Lab, Destiny. Inside the lab is the STS-98 crew, which is taking part in Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001.
STS-98 crew members take part in CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Marsha Ivins maneuvers a part of the U.S. Lab, Destiny. The crew is checking out equipment inside the lab as part of Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001.
2001-01-03
KENNEDY SPACE CENTER, Fla. -- Space Shuttle Atlantis reaches its destination, Launch Pad 39A, for liftoff no earlier than Jan. 19 on mission STS-98. To its immediate left is the Fixed Service Structure, with its 80-foot-tall white lighting mast on top. Further to the left is the Rotating Service Structure, where the white payload canister is being lifted to the Payload Changeout Room. The payload for the mission is the U.S. Lab Destiny, a key element in the construction of the International Space Station. The lab has five system racks for experiments already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Armando Oliu, Final Inspection Team lead for the Shuttle program, speaks to reporters about the aid the Image Analysis Lab is giving the FBI in a kidnapping case. Behind him at right is Mike Rein, External Affairs division chief. Oliu oversees the image lab that is using an advanced SGI TP9500 data management system to review the tape of the kidnapping in progress in Sarasota, Fla. KSC installed the new $3.2 million system in preparation for Return to Flight of the Space Shuttle fleet. The lab is studying the Sarasota kidnapping video to provide any new information possible to law enforcement officers. KSC is joining NASAs Marshall Space Flight Center in Alabama in reviewing the tape.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. Nancy Lowry (left) and Mikiko Ujihara, with Boeing, monitor the Payload Test and Checkout System for the Human Research Facility (HRF) Rack -2 payload. The HRF-2 is scheduled to fly on Return to Flight Space Shuttle mission STS- 114. The HRF-2 will deliver additional biomedical instrumentation and research capability to the International Space Station. HRF Rack 1 contains an ultrasound unit and gas analyzer system and has been operational in the U.S. Lab since May 2001. HRF-2 will also be installed in the U. S. Lab and will provide structural, power, thermal, command and data handling, and communication and tracking interfaces between the HRF biomedical instrumentation and the U. S. Lab.
Goddard's Astrophysics Science Divsion Annual Report 2014
NASA Technical Reports Server (NTRS)
Weaver, Kimberly (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)
2015-01-01
The Astrophysics Science Division (ASD, Code 660) is one of the world's largest and most diverse astronomical organizations. Space flight missions are conceived, built and launched to observe the entire range of the electromagnetic spectrum, from gamma rays to centimeter waves. In addition, experiments are flown to gather data on high-energy cosmic rays, and plans are being made to detect gravitational radiation from space-borne missions. To enable these missions, we have vigorous programs of instrument and detector development. Division scientists also carry out preparatory theoretical work and subsequent data analysis and modeling. In addition to space flight missions, we have a vibrant suborbital program with numerous sounding rocket and balloon payloads in development or operation. The ASD is organized into five labs: the Astroparticle Physics Lab, the X-ray Astrophysics Lab, the Gravitational Astrophysics Lab, the Observational Cosmology Lab, and the Exoplanets and Stellar Astrophysics Lab. The High Energy Astrophysics Science Archive Research Center (HEASARC) is an Office at the Division level. Approximately 400 scientists and engineers work in ASD. Of these, 80 are civil servant scientists, while the rest are resident university-based scientists, contractors, postdoctoral fellows, graduate students, and administrative staff. We currently operate the Swift Explorer mission and the Fermi Gamma-ray Space Telescope. In addition, we provide data archiving and operational support for the XMM mission (jointly with ESA) and the Suzaku mission (with JAXA). We are also a partner with Caltech on the NuSTAR mission. The Hubble Space Telescope Project is headquartered at Goddard, and ASD provides Project Scientists to oversee operations at the Space Telescope Science Institute. Projects in development include the Neutron Interior Composition Explorer (NICER) mission, an X-ray timing experiment for the International Space Station; the Transiting Exoplanet Sky Survey (TESS) Explorer mission, in collaboration with MIT (Ricker, PI); the Soft X-ray Spectrometer (SXS) for the Astro-H mission in collaboration with JAXA, and the James Webb Space Telescope (JWST). The Wide-Field Infrared Survey Telescope (WFIRST), the highest ranked mission in the 2010 decadal survey, is in a pre-phase A study, and we are supplying study scientists for that mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emmanuel, Glory Ruth; Silva, Austin Ray
Sandia Labs has corporate, lab-wide efforts to enhance the research environment as well as improve physical space. However, these two efforts are usually done in isolation. The integration of physical space design with the nurturing of what we call psychosocial space can foster more efficient and effective creativity, innovation, collaboration, and performance. This paper presents a brief literature review on how academia and industry are studying the integration of physical and psychosocial space and focuses on the efforts that we, the authors, have made to improve the research environment in the Cyber Engineering Research Lab (CERL), home to Group 1460.more » Interviews with subject matter experts from Silicon Valley and the University of New Mexico plus changes to actual spaces in CERL provided us with six lessons learned when integrating physical and psychosocial space. We describe these six key takeaways in hopes that Sandia will see this area as an evolving research capability that Sandia can both contribute to and benefit from.« less
Opportunities for research on Space Station Freedom
NASA Technical Reports Server (NTRS)
Phillips, Robert W.
1992-01-01
NASA has allocated research accommodations on Freedom (equipment, utilities, etc.) to the program offices that sponsor space-based research and development as follows: Space Science and Applications (OSSA)--52 percent, Commercial Programs (OCP)--28 percent, Aeronautics and Space Technology (OAST)--12 percent, and Space Flight (OSF)--8 percent. Most of OSSA's allocation will be used for microgravity and life science experiments; although OSSA's space physics, astrophysics, earth science and applications, and solar system exploration divisions also will use some of this allocation. Other Federal agencies have expressed an interest in using Space Station Freedom. They include the National Institutes of Health (NIH), U.S. Geological Survey, National Science Foundation, National Oceanic and Atmospheric Administration, and U.S. Departments of Agriculture and Energy. Payload interfaces with space station lab support equipment must be simple, and experiment packages must be highly contained. Freedom's research facilities will feature International Standard Payload Racks (ISPR's), experiment racks that are about twice the size of a Spacelab rack. ESA's Columbus lab will feature 20 racks, the U.S. lab will have 12 racks, and the Japanese lab will have 10. Thus, Freedom will have a total of 42 racks versus 8 for Space lab. NASA is considering outfitting some rack space to accommodate small, self-contained payloads similar to the Get-Away-Special canisters and middeck-locker experiment packages flown on Space Shuttle missions. Crew time allotted to experiments on Freedom at permanently occupied capability will average 25 minutes per rack per day, compared to six hours per rack per day on Spacelab missions. Hence, telescience--the remote operation of space-based experiments by researchers on the ground--will play a very important role in space station research. Plans for supporting life sciences research on Freedom focus on the two basic goals of NASA 's space life sciences program: to ensure the health, safety, and productivity of humans in space and to acquire fundamental knowledge of biological processes. Space-based research has already shown that people and plants respond the same way to the microgravity environment: they lose structure. However, the mechanisms by which they respond are different, and researchers do not yet know much about these mechanisms. Life science research accommodations on Freedom will include facilities for experiments designed to address this and other questions, in fields such as gravitational biology, space physiology, and biomedical monitoring and countermeasures research.
2000-12-08
KENNEDY SPACE CENTER, FLA. -- Astronaut John Herrington (left) shows a mockup of the U.S. Lab to Norm Abram, master carpenter of television’s "This Old House" and "The New Yankee Workshop." Abram is at KSC to film an episode of "This Old House." The mockup lab is in the International Space Station Center, a tour facility
2000-12-08
KENNEDY SPACE CENTER, FLA. -- Astronaut John Herrington (left) shows a mockup of the U.S. Lab to Norm Abram, master carpenter of television’s "This Old House" and "The New Yankee Workshop." Abram is at KSC to film an episode of "This Old House." The mockup lab is in the International Space Station Center, a tour facility
Work continues on Destiny, the U.S. Lab module, in the Space Station Processing Facility
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility (SSPF), work continues on the U.S. Lab module, Destiny, which is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Destiny shares space in the SSPF with the Shuttle Radar Topography Mission (SRTM) and Leonardo, the Multipurpose Logistics Module (MPLM) built by the Agenzia Spaziale Italiana (ASI). The SRTM is targeted for launch on mission STS-99 in September 1999. Leonardo is scheduled to launch on mission STS- 102 in June 2000.
2011-11-08
CAPE CANAVERAL, Fla. – In the Granular Mechanics and Regolith Operations (GMRO) Lab at NASA's Kennedy Space Center in Florida, Dr. Philip Metzger examines under a microscope a piece of the Surveyor 3 spacecraft returned from the lunar surface on the Apollo 12 mission. The GMRO Lab is one of several labs located in NASA's Space Life Sciences Laboratory (SLSL) facility. The lab is staffed by three physicists, six mechanical or aerospace engineers and several technicians who are studying how the rocket exhaust of landing vehicles affects lunar and Martian science missions, including the sandblasting of instruments with soil and dust ejecta and the disturbance or contamination of soil beneath the lander. For more information on the GMRO Lab, see p. 7 of the Spaceport News dated Nov. 11, 2011, at http://www.nasa.gov/centers/kennedy/pdf/603285main_nov11-2011.pdf. Photo credit: NASA/Jim Grossmann
A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study
Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott
2016-01-01
Objective The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Background Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential. Method A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Results Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. Conclusions A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent. PMID:27096134
A Novel Simulation Technician Laboratory Design: Results of a Survey-Based Study.
Ahmed, Rami; Hughes, Patrick G; Friedl, Ed; Ortiz Figueroa, Fabiana; Cepeda Brito, Jose R; Frey, Jennifer; Birmingham, Lauren E; Atkinson, Steven Scott
2016-03-16
OBJECTIVE : The purpose of this study was to elicit feedback from simulation technicians prior to developing the first simulation technician-specific simulation laboratory in Akron, OH. Simulation technicians serve a vital role in simulation centers within hospitals/health centers around the world. The first simulation technician degree program in the US has been approved in Akron, OH. To satisfy the requirements of this program and to meet the needs of this special audience of learners, a customized simulation lab is essential. A web-based survey was circulated to simulation technicians prior to completion of the lab for the new program. The survey consisted of questions aimed at identifying structural and functional design elements of a novel simulation center for the training of simulation technicians. Quantitative methods were utilized to analyze data. Over 90% of technicians (n=65) think that a lab designed explicitly for the training of technicians is novel and beneficial. Approximately 75% of respondents think that the space provided appropriate audiovisual (AV) infrastructure and space to evaluate the ability of technicians to be independent. The respondents think that the lab needed more storage space, visualization space for a large number of students, and more space in the technical/repair area. CONCLUSIONS : A space designed for the training of simulation technicians was considered to be beneficial. This laboratory requires distinct space for technical repair, adequate bench space for the maintenance and repair of simulators, an appropriate AV infrastructure, and space to evaluate the ability of technicians to be independent.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Former astronaut Winston Scott (left) presents a NASA flag flown at the KSC Space Life Sciences Lab to NASA Administrator Sean OKeefe. The flag was flown during construction through the dedication of the Lab. The presentation was during a tour of the Lab following the launching ceremony at the KSC Visitor Complex for the new Florida quarter issued by the U.S. Mint. The ceremony was emceed by Center Director Jim Kennedy and included remarks by OKeefe, Florida Gov. Jeb Bush, U.S. Mint Director Henrietta Holsman Fore and Deputy Secretary of the Treasury Samuel W. Bodman. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida.
2004-04-07
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy presents a Florida flag to Florida Gov. Jeb Bush. The flag was flown during construction of the Space Life Sciences Lab through dedication of the Lab. The presentation was during a tour of the Lab following the launching ceremony at the KSC Visitor Complex for the new Florida quarter issued by the U.S. Mint. The ceremony was emceed by Center Director Jim Kennedy and included remarks by NASA Administrator Sean O’Keefe, Bush, U.S. Mint Director Henrietta Holsman Fore and Deputy Secretary of the Treasury Samuel W. Bodman. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida.
My Brother’s Keeper National Lab Week
2016-03-02
Students in the My Brother’s Keeper program get an inside look at NASA Kennedy Space Center’s iconic Vehicle Assembly Building from the transfer aisle. The Florida spaceport is one of six NASA centers that participated in My Brother’s Keeper National Lab Week. The event is a nationwide effort to bring youth from underrepresented communities into federal labs and centers for hands-on activities, tours and inspirational speakers. Sixty students from the nearby cities of Orlando and Sanford visited Kennedy, where they toured the Vehicle Assembly Building, the Space Station Processing Facility and the center’s innovative Swamp Works Labs. The students also had a chance to meet and ask questions of a panel of subject matter experts from across Kennedy.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Former astronaut Winston Scott (left) presents a NASA flag flown at the KSC Space Life Sciences Lab to NASA Administrator Sean OKeefe. The flag was flown during construction through the dedication of the Lab. The presentation was during a tour of the Lab following the launching ceremony at the KSC Visitor Complex for the new Florida quarter issued by the U.S. Mint. The ceremony was emceed by Center Director Jim Kennedy and included remarks by OKeefe, Florida Gov. Jeb Bush, U.S. Mint Director Henrietta Holsman Fore and Deputy Secretary of the Treasury Samuel W. Bodman. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Center Director Jim Kennedy presents a Florida flag to Florida Gov. Jeb Bush. The flag was flown during construction of the Space Life Sciences Lab through dedication of the Lab. The presentation was during a tour of the Lab following the launching ceremony at the KSC Visitor Complex for the new Florida quarter issued by the U.S. Mint. The ceremony was emceed by Center Director Jim Kennedy and included remarks by NASA Administrator Sean OKeefe, Bush, U.S. Mint Director Henrietta Holsman Fore and Deputy Secretary of the Treasury Samuel W. Bodman. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida.
2000-12-08
KENNEDY SPACE CENTER, FLA. -- Astronaut John Herrington (left) and Norm Abram, master carpenter of television’s "This Old House" and "The New Yankee Workshop," talk in front of a mockup of the U.S. Lab. Abram is at KSC to film an episode of "This Old House." The mockup lab is in the International Space Station Center, a tour facility
2000-12-08
KENNEDY SPACE CENTER, FLA. -- Astronaut John Herrington (left) and Norm Abram, master carpenter of television’s "This Old House" and "The New Yankee Workshop," talk in front of a mockup of the U.S. Lab. Abram is at KSC to film an episode of "This Old House." The mockup lab is in the International Space Station Center, a tour facility
U.S. Rep. Dave Weldon outside the U.S. Lab Destiny in the SSPF.
NASA Technical Reports Server (NTRS)
1999-01-01
Standing in front of the U.S. Lab, named Destiny, U.S. Rep. Dave Weldon (left) thanks Thomas R. 'Randy' Galloway, with the Space Station Hardware Integration Office, for briefing him on the equipment inside the Lab. Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. Destiny is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS, with five equipment racks aboard to provide essential functions for station systems, including high data-rate communications, and to maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
Color digital halftoning taking colorimetric color reproduction into account
NASA Astrophysics Data System (ADS)
Haneishi, Hideaki; Suzuki, Toshiaki; Shimoyama, Nobukatsu; Miyake, Yoichi
1996-01-01
Taking colorimetric color reproduction into account, the conventional error diffusion method is modified for color digital half-toning. Assuming that the input to a bilevel color printer is given in CIE-XYZ tristimulus values or CIE-LAB values instead of the more conventional RGB or YMC values, two modified versions based on vector operation in (1) the XYZ color space and (2) the LAB color space were tested. Experimental results show that the modified methods, especially the method using the LAB color space, resulted in better color reproduction performance than the conventional methods. Spatial artifacts that appear in the modified methods are presented and analyzed. It is also shown that the modified method (2) with a thresholding technique achieves a good spatial image quality.
STS-116 and Expedition 12 Preflight Training, VR Lab Bldg. 9.
2005-05-06
JSC2005-E-18147 (6 May 2005) --- Astronauts Sunita L. Williams (left), Expedition 14 flight engineer, and Joan E. Higginbotham, STS-116 mission specialist, use the virtual reality lab at the Johnson Space Center to train for their duties aboard the space shuttle. This type of computer interface, paired with virtual reality training hardware and software, helps to prepare the entire team for dealing with space station elements. Williams will join Expedition 14 in progress and serve as a flight engineer after traveling to the station on space shuttle mission STS-116.
Experiences with Lab-on-a-chip Technology in Support of NASA Supported Research
NASA Technical Reports Server (NTRS)
Monaco, Lisa
2003-01-01
Under the auspices of the Microgravity Sciences and Application Department at Marshall Space Flight Center, we have custom designed and fabricated a lab-on-a-chip (LOC) device, along with Caliper Technologies, for macromolecular crystal growth. The chip has been designed to deliver specified proportions of up-to five various constituents to one of two growth wells (on-chip) for crystal growth. To date, we have grown crystals of thaumatin, glucose isomerase and appoferitin on the chip. The LOC approach offered many advantages that rendered it highly suitable for space based hardware to perform crystal growth on the International Space Station. The same hardware that was utilized for the crystal growth investigations, has also been used by researchers at Glenn Research Center to investigate aspects of microfluidic phenomenon associated with two-phase flow. Additionally, our LOCAD (Lab-on-a-chip Application Development) team has lent its support to Johnson Space Center s Modular Assay for Solar System Exploration project. At present, the LOCAD team is working on the design and build of a unique lab-on-a-chip breadboard control unit whose function is not commercially available. The breadboard can be used as a test bed for the development of chip size labs for environmental monitoring, crew health monitoring assays, extended flight pharmacological preparations, and many more areas. This unique control unit will be configured for local use and/or remote operation, via the Internet, by other NASA centers. The lab-on-a-chip control unit is being developed with the primary goal of meeting Agency level strategic goals.
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00754 (15 March 2001) --- Astronaut Patrick G. Forrester, STS-105 mission specialist, uses specialized gear in the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they will be working.
STS-109 Crew Training in VR Lab, Building 9
2001-08-08
JSC2001-E-24452 (8 August 2001) --- Astronauts John M. Grunsfeld (left), STS-109 payload commander, and Nancy J. Currie, mission specialist, use the virtual reality lab at the Johnson Space Center (JSC) to train for some of their duties aboard the Space Shuttle Columbia. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team to perform its duties during the fourth Hubble Space Telescope (HST) servicing mission.
GeoLab: A Geological Workstation for Future Missions
NASA Technical Reports Server (NTRS)
Evans, Cynthia; Calaway, Michael; Bell, Mary Sue; Li, Zheng; Tong, Shuo; Zhong, Ye; Dahiwala, Ravi
2014-01-01
The GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance theThe GeoLab glovebox was, until November 2012, fully integrated into NASA's Deep Space Habitat (DSH) Analog Testbed. The conceptual design for GeoLab came from several sources, including current research instruments (Microgravity Science Glovebox) used on the International Space Station, existing Astromaterials Curation Laboratory hardware and clean room procedures, and mission scenarios developed for earlier programs. GeoLab allowed NASA scientists to test science operations related to contained sample examination during simulated exploration missions. The team demonstrated science operations that enhance the early scientific returns from future missions and ensure that the best samples are selected for Earth return. The facility was also designed to foster the development of instrument technology. Since 2009, when GeoLab design and construction began, the GeoLab team [a group of scientists from the Astromaterials Acquisition and Curation Office within the Astromaterials Research and Exploration Science (ARES) Directorate at JSC] has progressively developed and reconfigured the GeoLab hardware and software interfaces and developed test objectives, which were to 1) determine requirements and strategies for sample handling and prioritization for geological operations on other planetary surfaces, 2) assess the scientific contribution of selective in-situ sample characterization for mission planning, operations, and sample prioritization, 3) evaluate analytical instruments and tools for providing efficient and meaningful data in advance of sample return and 4) identify science operations that leverage human presence with robotic tools. In the first year of tests (2010), GeoLab examined basic glovebox operations performed by one and two crewmembers and science operations performed by a remote science team. The 2010 tests also examined the efficacy of basic sample characterization [descriptions, microscopic imagery, X-ray fluorescence (XRF) analyses] and feedback to the science team. In year 2 (2011), the GeoLab team tested enhanced software and interfaces for the crew and science team (including Web-based and mobile device displays) and demonstrated laboratory configurability with a new diagnostic instrument (the Multispectral Microscopic Imager from the JPL and Arizona State University). In year 3 (2012), the GeoLab team installed and tested a robotic sample manipulator and evaluated robotic-human interfaces for science operations.
The U.S. Lab is moved to payload canister
NASA Technical Reports Server (NTRS)
2000-01-01
The U.S. Laboratory Destiny, a component of the International Space Station, glides above two Multi-Purpose Logistics Modules (MPLMs), Raffaello (far left) and Leonardo, in the Space Station Processing Facility. Destiny is being moved to a payload canister for transfer to the Operations and Checkout Building where it will be tested in the altitude chamber. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
The U.S. Lab is moved to payload canister
NASA Technical Reports Server (NTRS)
2000-01-01
- The U.S. Laboratory Destiny, a component of the International Space Station, is lifted off a weigh stand (below) in the Space Station Processing Facility. The module is being moved to a payload canister for transfer to the Operations and Checkout Building where it will be tested in the altitude chamber. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
STS-98 U.S. Lab Destiny rests in Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In this closeup, the U.S. Lab Destiny is seen installed in the payload bay of Space Shuttle Atlantis before closure of the doors. A key element in the construction of the International Space Station, Destiny is 28 feet long and weighs 16 tons. Destiny will be attached to the Unity node on the ISS using the Shuttle'''s robot arm, seen here on the left side, with the help of an elbow camera attached to the arm (near the upper end of the lab in the photo). This research and command-and-control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. Destiny will fly on STS-98, the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
STS-98 U.S. Lab Destiny rests in Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The U.S. Lab Destiny rests in the payload bay of Space Shuttle Atlantis before closure of the doors. A key element in the construction of the International Space Station, Destiny is 28 feet long and weighs 16 tons. Destiny will be attached to the Unity node on the ISS using the Shuttle'''s robot arm, seen here on the left side, with the help of an elbow camera attached to the arm (near the upper end of the lab in the photo). This research and command-and-control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. Destiny will fly on STS-98, the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
NASA Astrophysics Data System (ADS)
Dhingra, Shonali; Sandler, Roman; Rios, Rodrigo; Vuong, Cliff; Mehta, Mayank
All animals naturally perceive the abstract concept of space-time. A brain region called the Hippocampus is known to be important in creating these perceptions, but the underlying mechanisms are unknown. In our lab we employ several experimental and computational techniques from Physics to tackle this fundamental puzzle. Experimentally, we use ideas from Nanoscience and Materials Science to develop techniques to measure the activity of hippocampal neurons, in freely-behaving animals. Computationally, we develop models to study neuronal activity patterns, which are point processes that are highly stochastic and multidimensional. We then apply these techniques to collect and analyze neuronal signals from rodents while they're exploring space in Real World or Virtual Reality with various stimuli. Our findings show that under these conditions neuronal activity depends on various parameters, such as sensory cues including visual and auditory, and behavioral cues including, linear and angular, position and velocity. Further, neuronal networks create internally-generated rhythms, which influence perception of space and time. In totality, these results further our understanding of how the brain develops a cognitive map of our surrounding space, and keep track of time.
2000-10-23
STS-98 Mission Specialist Thomas Jones practices handling a piece of equipment on the U.S. Lab, Destiny, while wearing the gloves he will wear in space. Jones and other crew members are taking part in Crew Equipment Interface Test activities to become familiar with equipment they will be handling during the mission. With launch scheduled for Jan. 18, 2001, the STS-98 mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
Photographic coverage of STS-112 during EVA 3 in VR Lab.
2002-08-21
JSC2002-E-34622 (21 August 2002) --- Astronaut David A. Wolf, STS-112 mission specialist, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Atlantis. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with ISS elements.
2001-01-03
KENNEDY SPACE CENTER, Fla. -- Under wispy white morning clouds, Space Shuttle Atlantis nears the Rotating Service Structure on Launch Pad 39A. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
Telerobotics test bed for space structure assembly
NASA Technical Reports Server (NTRS)
Kitami, M.; Ogimoto, K.; Yasumoto, F.; Katsuragawa, T.; Itoko, T.; Kurosaki, Y.; Hirai, S.; Machida, K.
1994-01-01
A cooperative research on super long distance space telerobotics is now in progress both in Japan and USA. In this program. several key features will be tested, which can be applicable to the control of space robots as well as to terrestrial robots. Local (control) and remote (work) sites will be shared between Electrotechnical Lab (ETL) of MITI in Japan and Jet Propulsion Lab (JPL) in USA. The details of a test bed for this international program are discussed in this report.
STS-105 Crew Training in VR Lab
2001-03-15
JSC2001-00748 (15 March 2001) --- Astronaut Patrick G. Forrester, STS-105 mission specialist, prepares to use specialized gear in the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Discovery. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they will be working.
STS-111 Training in VR lab with Expedition IV and V Crewmembers
2001-10-18
JSC2001-E-39083 (18 October 2001) --- Astronaut Franklin R. Chang-Diaz, STS-111 mission specialist, uses specialized gear in the virtual reality lab at the Johnson Space Center (JSC) to train for his duties aboard the Space Shuttle Endeavour. This type of virtual reality training allows the astronauts to wear a helmet and special gloves while looking at computer displays simulating actual movements around the various locations on the International Space Station (ISS) hardware with which they will be working.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In a plant growth chamber in the KSC Space Life Sciences Lab, plant physiologist Ray Wheeler checks onions being grown using hydroponic techniques. The other plants are Bibb lettuce (left) and radishes (right). Wheeler and other colleagues are researching plant growth under different types of light, different CO2 concentrations and temperatures. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
2004-06-17
KENNEDY SPACE CENTER, FLA. - In a plant growth chamber in the KSC Space Life Sciences Lab, plant physiologist Ray Wheeler checks onions being grown using hydroponic techniques. The other plants are Bibb lettuce (left) and radishes (right). Wheeler and other colleagues are researching plant growth under different types of light, different CO2 concentrations and temperatures. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
2012-05-14
CAPE CANAVERAL, Fla. – Dr. LaNetra C. Tate, center, materials engineer at Kennedy Space Center, is surrounded by students as she welcomes them for their tour of the Space Life Sciences Lab facilities. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann
STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the payload bay of Atlantis, two workers (background and right) watch STS-98 Robert Curbeam practice work he will do on the U.S. Lab Destiny in space. The mission payload, Destiny is a key element in the construction of the International Space Station. The lab is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. The STS-98 crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.
Sustainable dual-use labs: neurovascular interventional capabilities within the cath lab.
Lang, Stacey
2012-01-01
The inclusion of neurovascular interventional capabilities within the cath lab setting can be key to optimal utilization of resources, increased staff efficiency, and streamlined operations. When considering an expansion, look beyond the patient population traditionally associated with cardiac cath labs and consider the integration of programs outside cardiac alone--to create a true dual-use lab space. With proper planning, quality dual purpose equipment, appropriately trained staff, capable physicians, and strong leadership, an organization willing to embrace the challenge can build a truly extraordinary service.
NASA GeneLab Concept of Operations
NASA Technical Reports Server (NTRS)
Thompson, Terri; Gibbs, Kristina; Rask, Jon; Coughlan, Joseph; Smith, Jeffrey
2014-01-01
NASA's GeneLab aims to greatly increase the number of scientists that are using data from space biology investigations on board ISS, emphasizing a systems biology approach to the science. When completed, GeneLab will provide the integrated software and hardware infrastructure, analytical tools and reference datasets for an assortment of model organisms. GeneLab will also provide an environment for scientists to collaborate thereby increasing the possibility for data to be reused for future experimentation. To maximize the value of data from life science experiments performed in space and to make the most advantageous use of the remaining ISS research window, GeneLab will apply an open access approach to conducting spaceflight experiments by generating, and sharing the datasets derived from these biological studies in space.Onboard the ISS, a wide variety of model organisms will be studied and returned to Earth for analysis. Laboratories on the ground will analyze these samples and provide genomic, transcriptomic, metabolomic and proteomic data. Upon receipt, NASA will conduct data quality control tasks and format raw data returned from the omics centers into standardized, annotated information sets that can be readily searched and linked to spaceflight metadata. Once prepared, the biological datasets, as well as any analysis completed, will be made public through the GeneLab Space Bioinformatics System webb as edportal. These efforts will support a collaborative research environment for spaceflight studies that will closely resemble environments created by the Department of Energy (DOE), National Center for Biotechnology Information (NCBI), and other institutions in additional areas of study, such as cancer and environmental biology. The results will allow for comparative analyses that will help scientists around the world take a major leap forward in understanding the effect of microgravity, radiation, and other aspects of the space environment on model organisms. These efforts will speed the process of scientific sharing, iteration, and discovery.
STS-98 U.S. Lab payload is moved to stand for weight determination
NASA Technical Reports Server (NTRS)
2000-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the 'key' to the U.S. Laboratory Destiny is officially handed over to NASA during a brief ceremony while workers look on. Suspended overhead is the laboratory, being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the International Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.
STS-98 U.S. Lab Destiny rests in Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The U.S. Lab Destiny rests in the payload bay of Space Shuttle Atlantis. A key element in the construction of the International Space Station, Destiny is 28 feet long and weighs 16 tons. This research and command-and-control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. Destiny will fly on STS-98, the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
Folding Inquiry into Cookbook Lab Activities
ERIC Educational Resources Information Center
Gooding, Julia; Metz, Bill
2012-01-01
Cookbook labs have been a part of science programs for years, even though they serve little purpose other than to verify phenomena that have been previously presented by means other than through investigations. Cookbook science activities follow a linear path to a known outcome, telling students what procedures to follow, which materials to use,…
Exploring Space Physics Concepts Using Simulation Results
NASA Astrophysics Data System (ADS)
Gross, N. A.
2008-05-01
The Center for Integrated Space Weather Modeling (CISM), a Science and Technology Center (STC) funded by the National Science Foundation, has the goal of developing a suite of integrated physics based computer models of the space environment that can follow the evolution of a space weather event from the Sun to the Earth. In addition to the research goals, CISM is also committed to training the next generation of space weather professionals who are imbued with a system view of space weather. This view should include an understanding of both helio-spheric and geo-space phenomena. To this end, CISM offers a yearly Space Weather Summer School targeted to first year graduate students, although advanced undergraduates and space weather professionals have also attended. This summer school uses a number of innovative pedagogical techniques including devoting each afternoon to a computer lab exercise that use results from research quality simulations and visualization techniques, along with ground based and satellite data to explore concepts introduced during the morning lectures. These labs are suitable for use in wide variety educational settings from formal classroom instruction to outreach programs. The goal of this poster is to outline the goals and content of the lab materials so that instructors may evaluate their potential use in the classroom or other settings.
Cha, Kyoung Je; Kim, Dong Sung
2011-10-01
In this paper, we propose a novel portable and disposable pressure pump using a porous polydimethylsiloxane (PDMS) sponge and demonstrate its application to a microfluidic lab-on-a-chip. The porous PDMS sponge was simply fabricated by a sugar leaching technique based on capillary suction of pre-cured PDMS into lumps of sugar, thereby enabling us to achieve the porous PDMS sponge composed of interconnected micropores. To indicate the characteristics of the porous PDMS sponge and pump, we measured the average porosities of them whose values were 0.64 and 0.34, respectively. A stress-strain relationship of the fabricated portable pressure pump represented a linear behavior in the compressive strain range of 0 to 20%. Within this range, a pumping volume of the pressure pump could be linearly controlled by the compressed strain. Finally, the fabricated porous PDMS pump was successfully demonstrated as a portable pressure pump for a disposable microfluidic lab-on-a-chip for efficient detection of agglutination. The proposed portable pressure pump can be potentially applicable to various disposable microfluidic lab-on-a-chip systems.
STS-111 Training in VR lab with Expedition IV and V Crewmembers
2001-10-18
JSC2001-E-39090 (18 October 2001) --- Cosmonaut Valeri G. Korzun, Expedition Five mission commander representing Rosaviakosmos, uses the virtual reality lab at the Johnson Space Center (JSC) to train for his duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements.
Lab-on-a-Chip Application Development-Portable Test System (LOCAD) Phase 2
2009-03-21
ISS018-E-041370 (21 March 2009) --- Astronaut Sandra Magnus, STS-119 mission specialist, prepares to work with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory while Space Shuttle Discovery remains docked with the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
NASA Astrophysics Data System (ADS)
Mote, A. S.; Ellins, K. K.; Haddad, N.
2011-12-01
Humans are modifying planet Earth at an alarming rate without fully understanding how our actions will affect the atmosphere, hydrosphere, or biosphere. Recognizing the value of educating people to become citizens who can make informed decisions about Earth's resources and challenges, Texas currently offers Earth and Space Science as a rigorous high school capstone course. The new course has created a need for high quality instructional resources and professional development to equip teachers with the most up to date content knowledge, pedagogical approaches, and technological skills to be able to teach a rigorous Earth and Space Science course. As a participant in the NSF-sponsored Texas Earth and Space Science (TXESS) Revolution teacher professional development program, I was selected to participate in a curriculum development project led by TERC to create Earth System Science and climate change resources for the EarthLabs collection. To this end, I am involved in multiple phases of the EarthLabs project, including reviewing the lab-based units during the development phase, pilot teaching the units with my students, participating in research, and ultimately delivering professional development to other teachers to turn them on to the new modules. My partnership with the EarthLabs project has strengthened my teaching practice by increasing my involvement with curriculum development and collaboration and interaction with other Earth science educators. Critically evaluating the lab modules prior to delivering the lessons to my students has prepared me to more effectively teach the EarthLabs modules in my classroom and present the material to other teachers during professional development workshops. The workshop was also strengthened by planning meetings held with EarthLabs partner teachers in which we engaged in lively discussions regarding misconceptions in Earth science, held by both students and adults, and pedagogical approaches to uncover these misconceptions. Collaboration and discussion among members of the EarthLabs team and partner teachers was instrumental to improving the quality of the EarthLabs modules and the professional development workshop. Furthermore, leading the workshop alongside other partner teachers gave me the confidence and experience to deliver professional development to my colleagues and introduce the newly developed EarthLabs modules to other teachers. In this session I will share my experiences and report on the successes, challenges, and lessons learned from being a part of the EarthLabs curriculum and professional development process.
accelerated through the Linac (Linear Accelerator) to an energy of 400 MeV. The Linac consists of two main of linear accelerators at NML ! Meet at the South entrance to NML (New Muon Lab) Building. 1:00 PM 1
Bethune-Cookman University STEM Research Lab. DOE Renovation Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Herbert W.
DOE funding was used to renovate 4,500 square feet of aging laboratories and classrooms that support science, engineering, and mathematics disciplines (specifically environmental science, and computer engineering). The expansion of the labs was needed to support robotics and environmental science research, and to better accommodate a wide variety of teaching situations. The renovated space includes a robotics laboratory, two multi-use labs, safe spaces for the storage of instrumentation, modern ventilation equipment, and other “smart” learning venues. The renovated areas feature technologies that are environmentally friendly with reduced energy costs. A campus showcase, the laboratories are a reflection of the University’smore » commitment to the environment and research as a tool for teaching. As anticipated, the labs facilitate the exploration of emerging technologies that are compatible with local and regional economic plans.« less
Cryocoolers developments at Thales Cryogenics enabling compact remote sensing
NASA Astrophysics Data System (ADS)
Benschop, A.; van de Groep, W.; Mullié, J.; Willems, D.; Clesca, O.; Griot, R.; Martin, J.-Y.
2010-10-01
Thales Cryogenics (TCBV) has an extensive background in developing and delivering long-life cryogenic coolers for military, civil and space programs. This cooler range is based on three main compressor concepts: rotary compressors (RM), linear close tolerance contact seals (UP), and linear flexure bearing (LSF/LPT) compressors. The main differences - next to the different conceptual designs - between these products are their masses and Mean Time To Failure (MTTF) and the availability prediction of a single unit. New developments at Thales Cryogenics enabling compact long lifetime coolers - with an MTTF up to 50.000 hrs - will be outlined. In addition new developments for miniature cooler drive electronics with high temperature stability and power density will be described. These new cooler developments could be of particular interest for space missions where lower costs and mass are identified as important selection criteria. The developed compressors are originally connected to Stirling cold fingers that can directly be interfaced to different sizes of available dewars. Next to linear coolers, Thales Cryogenics has compact rotary coolers in its product portfolio. Though having a higher exported vibration level and a more limited MTTF of around 8.000 to 10.000 hours, their compactness and high efficiency could provide a good alternative for compact cooling of sensors in specific space missions. In this paper an overview of lifetime parameters will be listed versus the impact in the different cooler types. Tests results from both the installed base and the Thales Cryogenics test lab will be presented as well. Next to this differences in operational use for the different types of coolers as well as the outlook for further developments will be discussed.
1998-11-13
KENNEDY SPACE CENTER, FLA. -- NASA's "Super Guppy" aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre-launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS-98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000
Workers in SSPF monitor Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility control room check documentation during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
Workers in SSPF monitor Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Workers in the Space Station Processing Facility control room monitor computers during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
2000-02-03
Workers in the Space Station Processing Facility control room monitor computers during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny. Members of the STS-98 crew are taking part in the MEIT checking out some of the equipment in the Lab. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The crew comprises five members: Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000
NASA Technical Reports Server (NTRS)
Wieland, Paul; Miller, Lee; Ibarra, Tom
2003-01-01
As part of the Sustaining Engineering program for the International Space Station (ISS), a ground simulator of the Internal Thermal Control System (ITCS) in the Lab Module was designed and built at the Marshall Space Flight Center (MSFC). To support prediction and troubleshooting, this facility is operationally and functionally similar to the flight system and flight-like components were used when available. Flight software algorithms, implemented using the LabVIEW(Registered Trademark) programming language, were used for monitoring performance and controlling operation. Validation testing of the low temperature loop was completed prior to activation of the Lab module in 2001. Assembly of the moderate temperature loop was completed in 2002 and validated in 2003. The facility has been used to address flight issues with the ITCS, successfully demonstrating the ability to add silver biocide and to adjust the pH of the coolant. Upon validation of the entire facility, it will be capable not only of checking procedures, but also of evaluating payload timelining, operational modifications, physical modifications, and other aspects affecting the thermal control system.
REU Solar and Space Physics Summer School
NASA Astrophysics Data System (ADS)
Snow, M. A.; Wood, E. L.
2011-12-01
The Research Experience for Undergrads (REU) program in Solar and Space Physics at the University of Colorado begins with a week of lectures and labs on Solar and Space Physics. The students in our program come from a variety of majors (physics, engineering, meteorology, etc.) and from a wide range of schools (small liberal arts colleges up through large research universities). The majority of the students have never been exposed to solar and space physics before arriving in Boulder to begin their research projects. We have developed a week-long crash course in the field using the expertise of scientists in Boulder and the labs designed by the Center for Integrated Space Weather Modeling (CISM).
2001-01-03
KENNEDY SPACE CENTER, Fla. -- At the top of the incline to Launch Pad 39A, Space Shuttle Atlantis nears the Rotating Service Structure (left). Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
NASA Goddard Space Flight Center Robotic Processing System Program Automation Systems, volume 2
NASA Technical Reports Server (NTRS)
Dobbs, M. E.
1991-01-01
Topics related to robot operated materials processing in space (RoMPS) are presented in view graph form. Some of the areas covered include: (1) mission requirements; (2) automation management system; (3) Space Transportation System (STS) Hitchhicker Payload; (4) Spacecraft Command Language (SCL) scripts; (5) SCL software components; (6) RoMPS EasyLab Command & Variable summary for rack stations and annealer module; (7) support electronics assembly; (8) SCL uplink packet definition; (9) SC-4 EasyLab System Memory Map; (10) Servo Axis Control Logic Suppliers; and (11) annealing oven control subsystem.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) gets a closeup view of the cover on the window of the U.S. Lab Destiny. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
The Mission Planning Lab: A Visualization and Analysis Tool
NASA Technical Reports Server (NTRS)
Daugherty, Sarah C.; Cervantes, Benjamin W.
2009-01-01
Simulation and visualization are powerful decision making tools that are time-saving and cost-effective. Space missions pose testing and e valuation challenges that can be overcome through modeling, simulatio n, and visualization of mission parameters. The National Aeronautics and Space Administration?s (NASA) Wallops Flight Facility (WFF) capi talizes on the benefits of modeling, simulation, and visualization to ols through a project initiative called The Mission Planning Lab (MPL ).
NASA Technical Reports Server (NTRS)
Norbury, John W.; Blattnig, Steve R.
2008-01-01
Space radiation transport codes require accurate models for hadron production in intermediate energy nucleus-nucleus collisions. Codes require cross sections to be written in terms of lab frame variables and it is important to be able to verify models against experimental data in the lab frame. Several models are compared to lab frame data. It is found that models based on algebraic parameterizations are unable to describe intermediate energy differential cross section data. However, simple thermal model parameterizations, when appropriately transformed from the center of momentum to the lab frame, are able to account for the data.
21. NBS SUIT LAB. THREE GLOVES, HELMET, AND SCREW DRIVER ...
21. NBS SUIT LAB. THREE GLOVES, HELMET, AND SCREW DRIVER TORQUE WRENCH FOR ASSEMBLY AND REPAIR OF BOTH. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
STS-98 U.S. Lab payload is moved to stand for weight determination
NASA Technical Reports Server (NTRS)
2000-01-01
KENNEDY SPACE CENTER, Fla. -- In the Space Station Processing Facility, the 'key' to the U.S. Laboratory Destiny is officially handed over to NASA during a brief ceremony while workers look on. Suspended overhead is the laboratory, being moved to the Launch Package Integration Stand (LPIS) for a weight and center of gravity determination. Behind the workers at left is the Joint Airlock Module. Destiny is the payload aboard Space Shuttle Atlantis on mission STS-98 to the International Space Station. The lab is fitted with five system racks and will already have experiments installed inside for the flight. The launch is scheduled for January 2001.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the KSC Space Life Sciences Lab, Dr. Richard Strayer, a microbial research scientist with Dynamac at KSC, looks into the Research Space Bioconverter. The apparatus is a rotating drum composter that contains waste for decomposition. Strayer is experimenting with a process called denitrification, in which organisms use nitrate instead of oxygen to break down the waste and produce nitrogen as a byproduct. This process, anaerobic respiration using nitrate, has never been tried in composting and is achieving promising results. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. In the KSC Space Life Sciences Lab, Dr. Richard Strayer, a microbial research scientist with Dynamac at KSC, works on the Research Space Bioconverter. The apparatus is a rotating drum composter that contains waste for decomposition. Strayer is experimenting with a process called denitrification, in which organisms use nitrate instead of oxygen to break down the waste and produce nitrogen as a byproduct. This process, anaerobic respiration using nitrate, has never been tried in composting and is achieving promising results. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
2004-06-17
KENNEDY SPACE CENTER, FLA. - In the KSC Space Life Sciences Lab, Dr. Richard Strayer, a microbial research scientist with Dynamac at KSC, works on the Research Space Bioconverter. The apparatus is a rotating drum composter that contains waste for decomposition. Strayer is experimenting with a process called denitrification, in which organisms use nitrate instead of oxygen to break down the waste and produce nitrogen as a byproduct. This process, anaerobic respiration using nitrate, has never been tried in composting and is achieving promising results. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
2004-06-17
KENNEDY SPACE CENTER, FLA. - In the KSC Space Life Sciences Lab, Dr. Richard Strayer, a microbial research scientist with Dynamac at KSC, looks into the Research Space Bioconverter. The apparatus is a rotating drum composter that contains waste for decomposition. Strayer is experimenting with a process called denitrification, in which organisms use nitrate instead of oxygen to break down the waste and produce nitrogen as a byproduct. This process, anaerobic respiration using nitrate, has never been tried in composting and is achieving promising results. The Lab is exploring various aspects of a bioregenerative life support system. Such research and technology development will be crucial to long-term habitation of space by humans.
GeoLab 2011: New Instruments and Operations Tested at Desert RATS
NASA Technical Reports Server (NTRS)
Evans, Cindy A.; Calaway, M. J.; Bell, M. S.
2012-01-01
GeoLab is a geological laboratory and testbed designed for supporting geoscience activities during NASA's analog demonstrations. Scientists at NASA's Johnson Space Center built GeoLab as part of a technology project to aid the development of science operational concepts for future planetary surface missions [1, 2, 3]. It is integrated into NASA's Habitat Demonstration Unit, a first generation exploration habitat test article. As a prototype workstation, GeoLab provides a high fidelity working space for analog mission crewmembers to perform in-situ characterization of geologic samples and communicate their findings with supporting scientists. GeoLab analog operations can provide valuable data for assessing the operational and scientific considerations of surface-based geologic analyses such as preliminary examination of samples collected by astronaut crews [4, 5]. Our analog tests also feed into sample handling and advanced curation operational concepts and procedures that will, ultimately, help ensure that the most critical samples are collected during future exploration on a planetary surface, and aid decisions about sample prioritization, sample handling and return. Data from GeoLab operations also supports science planning during a mission by providing additional detailed geologic information to supporting scientists, helping them make informed decisions about strategies for subsequent sample collection opportunities.
Bakhtiari, Alireza Riyahi; Javedankherad, Islam; Mohammadi, Jahangard; Taghizadeh, Roholla
2018-05-15
Due to directly receiving high volume of untreated urban and industrial sewage and in turn transferring the pollutants to fish and back to humans, the International Anzali Wetland has been considered to be urgently registered in the Montreux Record. Hence, the present study was aimed to determine the spatial distribution of the linear alkylbenzenes (LABs) in surface sediments of the wetland and its sewage contamination situation. The surface sediments (sampling stations = 167) were collected from the western, eastern, southwest, and central regions of the wetland. The samples were extracted, fractioned, and then analyzed using gas chromatography-mass spectrometry (GC-MS). The concentration of LABs in the sediment samples revealed a range from 394.12 to 109,305.26 ng g -1 dw. The concentrations of ΣLABs in the eastern region were significantly higher than that in the other regions. The occurrence of low ratio of internal to external isomers (I/E ratio) of LABs (from 0.65 to 1.30) and D% (from - 0.07 to 24.13) implied effluent row or poorly untreated sewage into the wetland. No correlation was observed between the detected LAB concentrations with total organic carbon (TOC) and grain size. Taken together, regional anthropogenic inputs are the controlling factors for the observed spatial distributions of ∑LABs in the International Anzali Wetland. The findings suggested that LABs are powerful indicators to trace anthropogenic sewage contamination and also highlighted the necessity of sewage treatment plants to be founded around the International Anzali Wetland, especially in the vicinity of the eastern and central regions.
Orion Optical Navigation Progress Toward Exploration Mission 1
NASA Technical Reports Server (NTRS)
Holt, Greg N.; D'Souza, Christopher N.; Saley, David
2018-01-01
Optical navigation of human spacecraft was proposed on Gemini and implemented successfully on Apollo as a means of autonomously operating the vehicle in the event of lost communication with controllers on Earth. The Orion emergency return system utilizing optical navigation has matured in design over the last several years, and is currently undergoing the final implementation and test phase in preparation for Exploration Mission 1 (EM-1) in 2019. The software development is past its Critical Design Review, and is progressing through test and certification for human rating. The filter architecture uses a square-root-free UDU covariance factorization. Linear Covariance Analysis (LinCov) was used to analyze the measurement models and the measurement error models on a representative EM-1 trajectory. The Orion EM-1 flight camera was calibrated at the Johnson Space Center (JSC) electro-optics lab. To permanently stake the focal length of the camera a 500 mm focal length refractive collimator was used. Two Engineering Design Unit (EDU) cameras and an EDU star tracker were used for a live-sky test in Denver. In-space imagery with high-fidelity truth metadata is rare so these live-sky tests provide one of the closest real-world analogs to operational use. A hardware-in-the-loop test rig was developed in the Johnson Space Center Electro-Optics Lab to exercise the OpNav system prior to integrated testing on the Orion vehicle. The software is verified with synthetic images. Several hundred off-nominal images are also used to analyze robustness and fault detection in the software. These include effects such as stray light, excess radiation damage, and specular reflections, and are used to help verify the tuning parameters chosen for the algorithms such as earth atmosphere bias, minimum pixel intensity, and star detection thresholds.
Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors.
Zhou, Xiang; Liu, Qian; Wurm, Michael; Zhang, Qingmin; Ding, Yayun; Zhang, Zhenyu; Zheng, Yangheng; Zhou, Li; Cao, Jun; Wang, Yifang
2015-07-01
Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and thereby the energy resolution of the detector.
Peterman, Paul H.; Delfino, Joseph J.
1990-01-01
Five polychlorinated biphenyl replacement dye solvents and a diluent present in carbonless copy paper were identified by gas chromatography/mass spectrometry in the following matrices: effluents from a de-inking–recycling paper mill and a municipal wastewater treatment plant receiving wastewaters from a carbonless copy paper manufacturing plant; sediments; and fish collected near both discharges in the Fox River System, Wisconsin. An isopropylbiphenyl dye solvent mixture included mono-, di- and triisopropylbiphenyls. Also identified were two dye solvent mixtures marketed under the trade name Santosol. Santosol 100 comprised ethyl-diphenylmethanes (DPMs), benzyl-ethyl-DPMs, and dibenzyl-ethyl-DPMs. Similarly, Santosol 150 comprised dimethyl-DPMs, benzyl-dimethyl-DPMs, and dibenzyl-dimethyl-DPMs. Diisopropylnaphthalenes, widely used as a dye solvent in Japan, were identified for the first time in the US environment. sec-Butylbiphenyls and di-sec-butylbiphenyls, likely constituents of a sec-butylbiphenyl dye solvent mixture, were tentatively identified. Linear alkyl benzenes (C10 to C13-LABs) constituted the Alkylate 215 diluent mixture. Although known to occur as minor constituents in linear alkyl sulfonate detergents, LAB residues have not been previously attributed to commercial use of LABs.
Lattice Design for a High-Power Infrared FEL
NASA Astrophysics Data System (ADS)
Douglas, D. R.
1997-05-01
A 1 kW infrared FEL, funded by the U.S. Navy, is under construction at Jefferson Lab. This device will be driven by a compact, 42 MeV, 5 mA, energy-recovering, CW SRF-based linear accelerator to produce light in the 3-6.6 μm range. The machine concept comprises a 10 MeV injector, a linac based on a single high-gradient Jefferson Lab accelerator cryomodule, a wiggler and optical cavity, and an energy-recovery recirculation arc. Energy recovery limits cost and technical risk by reducing the RF power requirements in the driver accelerator. Following deceleration to 10 MeV, the beam is dumped. Stringent phase space requirements at the wiggler, low beam energy, and high beam current subject the accelerator lattice to numerous constraints. Principal considerations include: transport and delivery to the FEL of a high-quality, high-current beam; the impact of coherent synchrotron radiation (CSR) during beam recirculation transport; beam optics aberration control, to provide low-loss energy-recovery transport of a 5% relative momentum spread, high-current beam; attention to possible beam breakup (BBU) instabilities in the recirculating accelerator; and longitudinal phase space management during beam transport, to optimize RF drive system control during energy recovery and FEL operation. The presentation will address the design process and design solution for an accelerator transport lattice that meets the requirements imposed by these physical phenomena and operational necessities.
2014-04-18
ISS039-E-013158 (18 April 2014) --- In the U.S. lab Destiny on the Earth-orbiting International Space Station, Expedition 39 Flight Engineer Steve Swanson of NASA works on WRS condensate pumping, using the high flow water transfer pump.
4. VIEW SOUTHWEST COMPONENTS TEST LAB TEST BAY DETAIL SHOWING ...
4. VIEW SOUTHWEST COMPONENTS TEST LAB TEST BAY DETAIL SHOWING EMERGENCY SHOWER, AND EYEWASH, AND OBSERVATION WINDOW. STORAGE TANKS ON ROOF. - Marshall Space Flight Center, East Test Area, Components Test Laboratory, Huntsville, Madison County, AL
Novel schemes for the optimization of the SPARC narrow band THz source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchetti, B., E-mail: barbara.marchetti@desy.de; Zagorodnov, I.; Bacci, A.
2015-07-15
A pulsed, tunable, narrow band radiation source with frequency in the THz region can be obtained collecting the coherent transition radiation produced by a train of ultra-short electron bunches having picosecond scale inter-distance. In this paper, we review the techniques feasible at the SPARC-LAB test facility to produce and manipulate the requested train of electron bunches and we examine the dynamics of their acceleration and compression. In addition, we show how the performances of the train compression and the radiation intensity and bandwidth can be significantly improved through the insertion of a fourth order harmonic cavity, working in the X-bandmore » and acting as a longitudinal phase space linearizer.« less
2000-10-23
In the Space Station Processing Facility, workers in the foreground watch and wait while members of the STS-98 crew check out the U.S. Lab, Destiny in the background. The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. They are taking part in Crew Equipment Interface Test activities, becoming familiar with equipment they will be handling during the mission. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2000-10-23
In the Space Station Processing Facility, members of the STS-98 crew check out components inside the U.S. Lab, Destiny, under the watchful eye of trainers. The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. They are taking part in Crew Equipment Interface Test activities, becoming familiar with equipment they will be handling during the mission. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2000-10-23
In the Space Station Processing Facility, members of the STS-98 crew, sitting in front of the U.S. Lab, Destiny, listen to a trainer during Crew Equipment Interface Test (CEIT) activities. Seen, left to right, are Mission Specialist Thomas Jones, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Marsha Ivins (with camera). The CEIT allows a crew to become familiar with equipment they will be handling during the mission. With launch scheduled for Jan. 18, 2001, the STS-98 mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-10-23
In the Space Station Processing Facility, workers at left watch while members of the STS-98 crew check out equipment inside the U.S. Lab, Destiny (at right). The crew comprises Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam, Thomas Jones and Marsha Ivins. They are taking part in Crew Equipment Interface Test activities, becoming familiar with equipment they will be handling during the mission. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2004-04-07
KENNEDY SPACE CENTER, FLA. -- An aerial photo of the recently completed Space Life Sciences Lab at KSC. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida. The Lab was the site of a tour by Florida Gov. Jeb Bush, NASA Administrator Sean O’Keefe, Center Director Jim Kennedy, U.S. Mint Director Henrietta Holsman Fore and Deputy Secretary of the Treasury Samuel W. Bodman. The tour followed the launching ceremony at the KSC Visitor Complex for the new Florida quarter issued by the U.S. Mint. The ceremony was emceed by Kennedy and included remarks by O’Keefe, Bush, Fore and Bodman.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- An aerial photo of the recently completed Space Life Sciences Lab at KSC. The new lab is a state- of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida. The Lab was the site of a tour by Florida Gov. Jeb Bush, NASA Administrator Sean OKeefe, Center Director Jim Kennedy, U.S. Mint Director Henrietta Holsman Fore and Deputy Secretary of the Treasury Samuel W. Bodman. The tour followed the launching ceremony at the KSC Visitor Complex for the new Florida quarter issued by the U.S. Mint. The ceremony was emceed by Kennedy and included remarks by OKeefe, Bush, Fore and Bodman.
NASA Technical Reports Server (NTRS)
Tobey, G. L.
1978-01-01
Tests were performed to evaluate the operating characteristics of the interface between the Space Lab Bus Interface Unit (SL/BIU) and the Orbiter Multiplexer-Demultiplexer (MDM) serial data input-output (SIO) module. This volume contains the test equipment preparation procedures and a detailed description of the Nova/Input Output Processor Simulator (IOPS) software used during the data transfer tests to determine word error rates (WER).
2017-09-06
WASHINGTON, D.C.---S&T Partnership Forum In-Space Assembly Technical Interchange Meeting-On September 6th 2017, many of the United States government experts on In-Space Assembly met at the U.S. Naval Research Lab to discuss both technology development and in-space applications that would advance national capabilities in this area. Expertise from NASA, USAF, NRO, DARPA and NRL met in this meeting which was coordinated by the NASA Headquarters, Office of the Chief Technologist. This technical interchange meeting was the second meeting of the members of this Science and Technology Partnership Forum. Glen Henshaw of Code 8231 talks to the group in the Space Robotics Lab.
2017-09-06
WASHINGTON, D.C.---S&T Partnership Forum In-Space Assembly Technical Interchange Meeting-On September 6th 2017, many of the United States government experts on In-Space Assembly met at the U.S. Naval Research Lab to discuss both technology development and in-space applications that would advance national capabilities in this area. Expertise from NASA, USAF, NRO, DARPA and NRL met in this meeting which was coordinated by the NASA Headquarters, Office of the Chief Technologist. This technical interchange meeting was the second meeting of the members of this Science and Technology Partnership Forum. Glen Henshaw of Code 8231 talks to the group in the Space Robotics Lab.
The U.S. Laboratory module arrives at KSC
NASA Technical Reports Server (NTRS)
1998-01-01
NASA's 'Super Guppy' aircraft arrives in KSC air space escorted by two T-38 aircraft after leaving Marshall Space Flight Center in Huntsville, Ala. The whale-like airplane carries the U.S. Laboratory module, considered the centerpiece of the International Space Station. The module will undergo final pre- launch preparations at KSC's Space Station Processing Facility. Scheduled for launch aboard the Shuttle Endeavour on mission STS- 98, the laboratory comprises three cylindrical sections with two end cones. Each end-cone contains a hatch opening for entering and exiting the lab. The lab will provide a shirtsleeve environment for research in such areas as life science, microgravity science, Earth science and space science. Designated Flight 5A, this mission is targeted for launch in early 2000.
A Guided-Inquiry Lab for the Analysis of the Balmer Series of the Hydrogen Atomic Spectrum
ERIC Educational Resources Information Center
Bopegedera, A. M. R. P.
2011-01-01
A guided-inquiry lab was developed to analyze the Balmer series of the hydrogen atomic spectrum. The emission spectrum of hydrogen was recorded with a homemade benchtop spectrophotometer. By drawing graphs and a trial-and-error approach, students discover the linear relationship presented in the Rydberg formula and connect it with the Bohr model…
NASA Technical Reports Server (NTRS)
2003-01-01
Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)
Swanson exercises on the CEVIS in the US Lab
2014-04-22
ISS039-E-014696 (22 April 2014) --- Expedition 39 Flight Engineer Steve Swanson of NASA, works out on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the U.S. lab Destiny of the International Space Station.
2001-01-03
KENNEDY SPACE CENTER, Fla. -- Under wispy white clouds, Space Shuttle Atlantis slowly moves toward the Rotating and Fixed Service Structures on Launch Pad 39A. The 80-foot-tall white lighting mast is seen atop the FSS. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
Kennedy's Biomedical Laboratory Makes Multi-Tasking Look Easy
NASA Technical Reports Server (NTRS)
Dunn, Carol Anne
2009-01-01
If it is one thing that Florida has in abundance, it is sunshine and with that sunshine heat and humidity. For workers at the Kennedy Space Center that have to work outside in the heat and humidity, heat exhaustion/stroke is a real possibility. It might help people to know that Kennedy's Biomedical Laboratory has been testing some new Koolvests(Trademark) that can be worn underneath SCAPE suits. They have also been working on how to block out high noise levels; in fact, Don Doerr, chief of the Biomedical Lab, says, "The most enjoyable aspect is knowing that the Biomedical Lab and the skills of its employees have been used to support safe space flight, not only for the astronaut flight crew, but just as important for the ground processing personnel as well." The NASA Biomedical Laboratory has existed in the John F. Kennedy's Operations and Checkout Building since the Apollo Program. The primary mission of this laboratory has been the biomedical support to major, manned space programs that have included Apollo, Apollo-Soyuz, Skylab, and Shuttle. In this mission, the laboratory has been responsible in accomplishing much of the technical design, planning, provision, fabrication, and maintenance of flight and ground biomedical monitoring instrumentation. This includes the electronics in the launch flight suit and similar instrumentation systems in the spacecraft. (Note: The Lab checked out the system for STS-128 at Pad A using Firing room 4 and ground support equipment in the lab.) During Apollo, there were six engineers and ten technicians in the facility. This has evolved today to two NASA engineers and two NASA technicians, a Life Science Support contract physiologist and part-time support from an LSSC nurse and physician. Over the years, the lab has enjoyed collaboration with outside agencies and investigators. These have included on-site support to the Ames Research Center bed rest studies (seven years) and the European Space Agency studies in Toulouse, France (two years). The lab has also actively collaborated with the US Army Institute for Surgical Research, the USAF School of Aerospace Medicine, and the USN Naval Experimental Diving Unit. Because the lab often evaluates various forms of commercial-off-the-shelf life support equipment, the laboratory works closely with private companies, both domestic and foreign. The European companies seem to be more proactive and participatory with the advancement of personal protective equipment. Because these companies have viewed the space program's unique need for advanced forms of personal protective equipment, some have responded with new designs based on the prediction that these advances will soon find markets in the commercial sector. Using much of the same skills and equipment, the laboratory also addresses physiological testing of humans by supporting flight experiments and personnel involved with ground processing. While Johnson Space Center is primarily responsible for flight experiments, the Kennedy's Biomedical Lab provides the local support. However, as stated above, there are many challenges facing KSC workers that gain the attention of this lab in the measurement of the problem and the selection and testing of countermeasures. These include respiratory protection, whole body suits, hearing protection and heat stress, among many others.
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Mission Specialists Tom Jones and Robert Curbeam test tools that will be used during extravehicular activities (EVA) on their mission. Scheduled for launch Jan. 18, 2001, STS-98 will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Mission Specialists Tom Jones and Robert Curbeam test tools that will be used during extravehicular activities (EVA) on their mission. Scheduled for launch Jan. 18, 2001, STS-98 will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
STS-111 Training in VR lab with Expedition IV and V Crewmembers
2001-10-18
JSC2001-E-39082 (18 October 2001) --- Cosmonaut Valeri G. Korzun (left), Expedition Five mission commander, and astronaut Carl E. Walz, Expedition Four flight engineer, use the virtual reality lab at the Johnson Space Center (JSC) to train for their duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements. Korzun represents Rosaviakosmos.
2017-12-08
Inside the Prototype Development Laboratory at NASA's Kennedy Space Center in Florida, workers in the lab hold a banner marking the successful delivery of a liquid oxygen test tank called Tardis. Engineers and technicians worked together to develop the tank to build it at the lab to support cryogenic testing at Johnson Space Center's White Sands Test Facility in Las Cruces, New Mexico. The 12-foot-tall, 3,810-pound aluminum tank will be shipped to White Sands for testing.
18. NBS SUIT LAB. OVERALL VIEW. ALL WORK TABLES WITH ...
18. NBS SUIT LAB. OVERALL VIEW. ALL WORK TABLES WITH MISCELLANEOUS SUIT COMPONENTS AND SUPPLIES. TERRY WEST TO LEFT, AND PAUL DUMBACHER TO RIGHT. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
NASA Technical Reports Server (NTRS)
1971-01-01
In 1973 three Americans will embark on the first of a series of Earth orbiting missions using Skylab, the first United States vehicle created specifically to enable man to live and work in space for extended periods. Sky lab is a program dedicated to the use of space and its unique environment and vantage point to increase our knowledge and understanding of the Earth's importance to man's well-being and man's influence on Earth's ecology. Sky lab will also be a major step in manned space flight. Habitation by the first crew will double our previous man-in-space duration (Gemini VII) and the second visit will redouble that duration. It will, in effect, create a bridge between the development flights of the 60s and the long duration operational space flights of the future. To accomplish its mission, Sky lab will be placed in Earth orbit and will be visited and inhabited by three different crews during an eight-month period. While successfully inhabiting and operating the vehicle for one- and two-month continuous periods, these crews will obtain data in areas pertinent to the man/Earth relationship and to long duration space flight. Data will be acquired by Skylab primarily through the conduct of "experiments." Four categories of investigation are planned. These are summarized in the following paragraphs.
The U.S. Lab is moved to payload canister
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, the U.S. Laboratory Destiny, a component of the International Space Station, glides overhead other hardware while visitors watch from a window (right). On the floor, left to right, are two Multi-Purpose Logistics Modules (MPLMs), Raffaello (far left) and Leonardo, and a Pressurized Mating Adapter-3 (right). Destiny is being moved to a payload canister for transfer to the Operations and Checkout Building where it will be tested in the altitude chamber. Destiny is scheduled to fly on mission STS-98 in early 2001. During the mission, the crew will install the Lab in the Space Station during a series of three space walks. The STS-98 mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Lab module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks over documents as part of a Multi-Equipment Interface Test (MEIT) on the U.S. Lab Destiny. Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are and Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth.. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks at electrical connections on the U.S. Lab Destiny as part of a Multi-Equipment Interface Test (MEIT). Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
During a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny, which is in the Space Station Processing Facility, astronaut James Voss (left) joins STS-98 Pilot Mark Polansky (center) and Commander Kenneth D. Cockrell (right) in checking wiring against documentation on the floor. Also participating in the MEIT is Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
NASA Technical Reports Server (NTRS)
Moses, Haifa R.
2017-01-01
As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.
NASA Technical Reports Server (NTRS)
Moses, Haifa R.
2017-01-01
As NASA moves beyond exploring low earth orbit and into deep space exploration, increased communication delays between astronauts and earth drive a need for crew to become more autonomous (earth-independent). Currently crew on board the International Space Station (ISS) have limited insight into specific vehicle system performance because of the dependency on monitoring and real-time communication with Mission Control. Wearable technology provides a method to bridge the gap between the human (astronaut) and the system (spacecraft) by providing mutual monitoring between the two. For example, vehicle or environmental information can be delivered to astronauts through on-body devices and in return wearables provide data to the spacecraft regarding crew health, location, etc. The Wearable Electronics and Applications Research (WEAR) Lab at the NASA Johnson Space Center utilizes a collaborative approach between engineering and human factors to investigate the use of wearables for spaceflight. Zero and partial gravity environments present unique challenges to wearables that require collaborative, user-centered, and iterative approaches to the problems. Examples of the WEAR Lab's recent wearable projects for spaceflight will be discussed.
The HVAC Challenges of Upgrading an Old Lab for High-end Light Microscopes
Richard, R.; Martone, P.; Callahan, L.M.
2014-01-01
The University of Rochester Medical Center forms the centerpiece of the University of Rochester's health research, teaching, patient care, and community outreach missions. Within this large facility of over 5 million square feet, demolition and remodeling of existing spaces is a constant activity. With more than $145 million in federal research funding, lab space is frequently repurposed and renovated to support this work. The URMC Medical Center Facilities Organization supporting small to medium space renovations is constantly challenged and constrained by the existing mechanical infrastructure and budgets to deliver a renovated space that functions within the equipment environmental parameters. One recent project, sponsored by the URMC Shared Resources Laboratory, demonstrates these points. The URMC Light Microscopy Shared Resource Laboratory requested renovation of a 121 sq. ft. room in a 40 year old building which would enable placement of a laser capture microdissection microscope and a Pascal 5 laser scanning confocal microscope with the instruments separated by a blackout curtain. This poster discusses the engineering approach implemented to bring an older lab into the environmental specifications needed for the proper operation of the high-end light microscopes.
2000-02-03
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the Station during a series of three spacewalks. The mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion and life sciences reseach. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than August 19, 2000.
2000-02-03
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks up at the U.S. Lab Destiny with its debris shield blanket made of a material similar to that used in bullet-proof vests on Earth. Along with Commander Kenneth D. Cockrell and Pilot Mark Polansky, Jones is taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. During the STS-98 mission, the crew will install the Lab on the Station during a series of three spacewalks. The mission will provide the Station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion and life sciences reseach. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than August 19, 2000.
2000-02-03
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) looks at electrical connections on the U.S. Lab Destiny as part of a Multi-Equipment Interface Test (MEIT). Other crew members taking part in the MEIT are Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000
2000-10-23
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas Jones works on a part of the U.S. Lab, Destiny. Watching at right is Pilot Mark Polansky. Jones and Polansky, along with other crew members, are taking part in Crew Equipment Interface Test activities to become familiar with equipment they will be handling during the mission. Others in the crew are Commander Ken Cockrell and Mission Specialists Robert Curbeam and Marsha Ivins. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
2000-10-23
In the Space Station Processing Facility, members of the STS-98 crew check out equipment in the U.S. Lab, Destiny, with the help of workers. In the background, looking over her shoulder, is Mission Specialist Marsha Ivins. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Thomas Jones. The crew is taking part in Crew Equipment Interface Test activities, becoming familiar with equipment it will be handling during the mission. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001
STS-98 crew members take part in CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, members of the STS-98 crew, sitting in front of the U.S. Lab, Destiny, listen to a trainer during Crew Equipment Interface Test (CEIT) activities. Seen, left to right, are Mission Specialist Thomas Jones, Pilot Mark Polansky and Mission Specialists Robert Curbeam and Marsha Ivins (with camera). The CEIT allows a crew to become familiar with equipment they will be handling during the mission. With launch scheduled for Jan. 18, 2001, the STS-98 mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- Neil Yorio, a Dynamac scientist (left) in the KSC Space Life Sciences (SLS) Lab, explains the function of the facility to Florida Gov. Jeb Bush and his wife, Columba. Bush and others were touring the Lab following the launching ceremony at the KSC Visitor Complex for the new Florida quarter issued by the U.S. Mint. . The new lab is a state-of-the- art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida. The launching ceremony was emceed by Center Director Jim Kennedy and included remarks by NASA Administrator Sean OKeefe, Bush, U.S. Mint Director Henrietta Holsman Fore and Deputy Secretary of the Treasury Samuel W. Bodman.
Rayleigh scattering of linear alkylbenzene in large liquid scintillator detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiang, E-mail: xiangzhou@whu.edu.cn; Zhang, Zhenyu; Liu, Qian
2015-07-15
Rayleigh scattering poses an intrinsic limit for the transparency of organic liquid scintillators. This work focuses on the Rayleigh scattering length of linear alkylbenzene (LAB), which will be used as the solvent of the liquid scintillator in the central detector of the Jiangmen Underground Neutrino Observatory. We investigate the anisotropy of the Rayleigh scattering in LAB, showing that the resulting Rayleigh scattering length will be significantly shorter than reported before. Given the same overall light attenuation, this will result in a more efficient transmission of photons through the scintillator, increasing the amount of light collected by the photosensors and therebymore » the energy resolution of the detector.« less
Parmitano and Cassidy in U.S. Lab
2013-05-31
ISS036-E-005515 (31 May 2013) --- European Space Agency astronaut Luca Parmitano (left) and NASA astronaut Chris Cassidy talk with fellow human beings on Earth using videoconferencing software and one of their on-board laptop computers in the U.S. lab Destiny.
ERIC Educational Resources Information Center
Cronin-Jones, Linda L.
1990-01-01
Described is a demonstration science laboratory at the University of Florida. Discussed is laboratory design, including instructional space, lab stations, sink areas, safety areas, and a storage and distribution area. The impact of this type of design is cited. Diagrams and photographs are included. (CW)
Modulation Transfer Function (MTF) measurement techniques for lenses and linear detector arrays
NASA Technical Reports Server (NTRS)
Schnabel, J. J., Jr.; Kaishoven, J. E., Jr.; Tom, D.
1984-01-01
Application is the determination of the Modulation Transfer Function (MTF) for linear detector arrays. A system set up requires knowledge of the MTF of the imaging lens. Procedure for this measurement is described for standard optical lab equipment. Given this information, various possible approaches to MTF measurement for linear arrays is described. The knife edge method is then described in detail.
2012-07-30
CAPE CANAVERAl, Fla. - Dr. Mason Peck, NASA's chief Technologist, speaks during a visit to the Space Life Sciences Laboratory at Kennedy Space Center. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Mission Specialists Tom Jones (second from left) and Robert Curbeam (right) test tools that will be used during extravehicular activities (EVA) on their mission. Scheduled for launch Jan. 18, 2001, STS-98 will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Mission Specialists Tom Jones (second from left) and Robert Curbeam (right) test tools that will be used during extravehicular activities (EVA) on their mission. Scheduled for launch Jan. 18, 2001, STS-98 will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
STS-111 Training in VR lab with Expedition IV and V Crewmembers
2001-10-18
JSC2001-E-39085 (18 October 2001) --- Cosmonaut Valeri G. Korzun (left), Expedition Five mission commander, astronaut Peggy A. Whitson, Expedition Five flight engineer, and astronaut Carl E. Walz, Expedition Four flight engineer, use the virtual reality lab at the Johnson Space Center (JSC) to train for their duties on the International Space Station (ISS). This type of computer interface paired with virtual reality training hardware and software helps the entire team for dealing with ISS elements. Korzun represents Rosaviakosmos.
Photographic coverage of STS-112 during EVA 3 in VR Lab.
2002-08-21
JSC2002-E-34625 (21 Aug. 2002) --- Astronaut Sandra H. Magnus (left), STS-112 mission specialist, uses the virtual reality lab at NASA?s Johnson Space Center (JSC) to train for her duties aboard the space shuttle Atlantis. This type of computer interface paired with virtual reality training hardware and software helps to prepare the entire team for dealing with ISS elements. Lead SSRMS instructor Elizabeth C. Bloomer assisted Magnus. Astronaut Ellen Ochoa (standing) looks on. Photo credit: NASA
Space Radiation and Cataracts (LBNL Summer Lecture Series)
Blakely, Eleanor [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Life Sciences Division
2018-01-23
Summer Lecture Series 2009: Eleanor Blakely, radiation biologist of the Life Sciences Division at Lawrence Berkeley National Laboratory, has been a scientist at Berkeley Lab since 1975. She is studying the effect of radiation on cataracts which concerns not only cancer patients, but also astronauts. As astronauts spend increasingly longer time in space, the effects of cosmic radiation exposure will become an increasingly important health issue- yet there is little human data on these effects. Blakely reviews this emerging field and the contributions made at Berkeley Lab
20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND ...
20. NBS SUIT LAB. TABLE WITH MISCELLANEOUS SUIT PARTS AND TERRY WEST, A SPACE SUIT ASSEMBLY TECHNICIAN LOGGING SUIT PART DATA. PARTS ON THE TABLE ARE A HARD UPPER TORSO (HUT) (REAR LEFT), FULL HELMET (FRONT LEFT), TWO HELMETS WITHOUT PROTECTIVE VISORS, A PAIR OF GLOVES, AND A BACKPACK WITHOUT VOLUMETRIC COVER (REAR RIGHT). THE BACKPACK ATTACHES TO THE HUT TO MAKE-UP THE UPPER TORSO COMPONENTS OF THE SUIT. - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
The Search for Missing Baryons with Linearly Polarized Photons at Jefferson Lab
NASA Astrophysics Data System (ADS)
Cole, Philip
2006-05-01
The set of experiments forming the g8 run took place in Hall B of Jefferson Lab during the summers of 2001 and 2005 These experiments made use of a beam of linearly-polarized photons produced through coherent bremsstrahlung and represent the first time such a probe has been employed at Jefferson Lab. The scientific purpose of g8 is to improve the understanding of the underlying symmetry of the quark degrees of freedom in the nucleon, the nature of the parity exchange between the incident photon and the target nucleon, and the mechanism of associated strangeness production in electromagnetic reactions. With the high-quality beam of the tagged and collimated linearly-polarized photons and the nearly complete angular coverage of the Hall-B spectrometer, we seek to extract the differential cross sections and attendant polarization observables for the photoproduction of vector mesons and kaons at photon energies ranging between 1.3 and 2.2 GeV. We achieved polarizations exceeding 90% and collected over six billion events, which, after our data cuts and analysis, should give us well over 100 times the world's data set. I shall report on the experimental details of establishing the Coherent Bremsstrahlung Facility and present some preliminary results from our first run.
Flores-Nunes, Fabrício; Mattos, Jacó J; Zacchi, Flávia L; Serrano, Miguel A S; Piazza, Clei E; Sasaki, Silvio T; Taniguchi, Satie; Bicego, Márcia C; Melo, Cláudio M R; Bainy, Afonso C D
2015-11-01
Urban effluents are rich in nutrients, organic matter, pharmaceuticals and personal care products (PPCPs), pesticides, hydrocarbons, surfactants, and others. Previous studies have shown that oysters Crassostrea gigas accumulate significant levels of linear alkylbenzenes (LABs) in sanitary sewage contaminated sites, but there is little information about its toxicological effects in marine bivalves. The aim of this study was to analyze the transcription of genes in two tissues of C. gigas exposed for 12, 24, and 36 h to LABs or sanitary sewage. Likewise, the activity of antioxidant and biotransformation enzymes was measured in oysters exposed for 36 h in all groups. Oysters exposed to LABs and oysters exposed to sanitary sewage showed different patterns of transcriptional responses. LAB-exposed oysters showed lower level of biological responses than the oysters exposed to sanitary sewage. Despite the ability of the oyster C. gigas to accumulate LABs (28-fold), the data indicate that these contaminants are not the cause for the transcriptional responses observed in oysters exposed to sanitary sewage. Possibly, the biological changes observed in the sanitary sewage-exposed oysters are associated with the presence of other contaminants, which might have caused synergistic, additive, or antagonistic effects. The results show that FABP-like and GST-ω-like messenger RNAs (mRNAs) have a rapid response in tissues of oyster C. gigas exposed to sanitary sewage, suggesting a possible protective response and a role in maintaining homeostasis of these organisms.
Berkeley Lab - Materials Sciences Division
; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Facilities & Space Planning
2017-07-17
In an effort to expand the research opportunities of this unparalleled platform, the International Space Station was designated as a U.S. National Laboratory in 2005 by Congress, enabling space research and development access to a broad range of commercial, academic, and government users. Now, this unique microgravity research platform is available to U.S. researchers from small companies, research institutions, Fortune 500 companies, government agencies, and others, all interested in leveraging microgravity to solve complex problems on Earth. Get more research news and updates on Twitter at: https://twitter.com/ISS_Research HD download link: https://archive.org/details/jsc2017m000681_ISS As A National Lab _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- The U.S. Lab Destiny is ready to move into the orbiter'''s payload bay from the Payload Changeout Room. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station is designed for space science experiments and already has five system racks installed inside. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Technicians in the Payload Changeout Room oversee the transfer of the U.S. Lab Destiny to the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station is designed for space science experiments and already has five system racks installed inside. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers check out the U.S. Lab Destiny after it has been installed in Atlantis''' payload bay at the pad. Destiny, a key element in the construction of the International Space Station, is 28 feet long and weighs 16 tons. This research and command-and- control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, the STS-98 crew talks with United Space Alliance worker Larry Oshein (right). Standing left to right are Mission Specialist Robert Curbeam, Commander Ken Cockrell, Mission Specialist Tom Jones, and Mission Specialists Mark Polansky and Marsha Ivins. The crew is at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2001-01-03
KENNEDY SPACE CENTER, Fla. -- At the top of Launch Pad 39A, Space Shuttle Atlantis closes in on the Rotating Service Structure (left). On the RSS, the payload canister can be seen half way up the structure as it is lifted to the Payload Changeout Room. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, the STS-98 crew talks with United Space Alliance worker Larry Oshein (right). Standing left to right are Mission Specialist Robert Curbeam, Commander Ken Cockrell, Mission Specialist Tom Jones, and Mission Specialists Mark Polansky and Marsha Ivins. The crew is at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
STS-98 Atlantis rolls out to Pad 39A for the second time
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Under wispy white clouds, Space Shuttle Atlantis slowly moves toward the Rotating and Fixed Service Structures on Launch Pad 39A. The 80-foot-tall white lighting mast is seen atop the FSS. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab will have five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five.
2003-12-01
Helen Cole, the project manager for the Lab-on-a-Chip Applications Development program, and Lisa Monaco, the project scientist for the program, insert a lab on a chip into the Caliper 42 which is specialized equipment that controls processes on commercial chips to support development of lab-on-a-chip applications. The system has special microscopes and imaging systems, so scientists can process and study different types of fluid, chemical, and medical tests conducted on chips. For example, researchers have examined fluorescent bacteria as it flows through the chips' fluid channels or microfluidic capillaries. Researchers at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, have been studying how the lab-on-a-chip technology can be used for microbial detection, water quality monitoring, and detecting biosignatures of past or present life on Mars. The Marshall Center team is also collaborating with scientists at other NASA centers and at universities to develop custom chip designs for not only space applications, but for many Earth applications, such as for detecting deadly microbes in heating and air systems. (NASA/MSFC/D.Stoffer)
Spectral gamuts and spectral gamut mapping
NASA Astrophysics Data System (ADS)
Rosen, Mitchell R.; Derhak, Maxim W.
2006-01-01
All imaging devices have two gamuts: the stimulus gamut and the response gamut. The response gamut of a print engine is typically described in CIE colorimetry units, a system derived to quantify human color response. More fundamental than colorimetric gamuts are spectral gamuts, based on radiance, reflectance or transmittance units. Spectral gamuts depend on the physics of light or on how materials interact with light and do not involve the human's photoreceptor integration or brain processing. Methods for visualizing a spectral gamut raise challenges as do considerations of how to utilize such a data-set for producing superior color reproductions. Recent work has described a transformation of spectra reduced to 6-dimensions called LabPQR. LabPQR was designed as a hybrid space with three explicit colorimetric axes and three additional spectral reconstruction axes. In this paper spectral gamuts are discussed making use of LabPQR. Also, spectral gamut mapping is considered in light of the colorimetric-spectral duality of the LabPQR space.
KSC Electrostatic Discharge (ESD) Issues
NASA Technical Reports Server (NTRS)
Buhler, Charles
2008-01-01
Discussion of key electrostatic issues that have arisen during the past few years at KSC that the Electrostatics Laboratory has studied. The lab has studied in depth the Space Shuttle's Thermal Control System Blankets, the International Space Station Thermal Blanket, the Pan/Tilt Camera Blankets, the Kapton Purge Barrier Curtain, the Aclar Purge Barrier Curtain, the Thrust Vector Controller Blankets, the Tyvek Reaction Control System covers, the AID-PAK and FLU-9 pyro inflatable devices, the Velostat Solid Rocket Booster mats, and the SCAPE suits. In many cases these materials are insulating meaning that they might be a source of unsafe levels of electrostatic discharge (ESD). For each, the lab provided in-depth testing of each material within its current configuration to ensure that it does not cause an ESD concern that may violate the safety of the astronauts, the workers and equipment for NASA. For example the lab provides unique solutions and testing such as Spark Incendivity Testing that checks whether a material is capable of generating a spark strong enough to ignite a flammable gas. The lab makes recommendations to changes in specifications, procedures, and material if necessary. The lab also consults with a variety of non-safety related ESD issues for the agency.
Aerospace applications of virtual environment technology.
Loftin, R B
1996-11-01
The uses of virtual environment technology in the space program are examined with emphasis on training for the Hubble Space Telescope Repair and Maintenance Mission in 1993. Project ScienceSpace at the Virtual Environment Technology Lab is discussed.
STS-98 U.S. Lab Destiny rests in Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- This closeup reveals the tight clearance between an elbow camera on the robotic arm (left) and the U.S. Lab Destiny when the payload bay doors are closed. Measurements of the elbow camera revealed only a one-inch clearance from the U.S. Lab payload, which is under review. A key element in the construction of the International Space Station, Destiny is 28 feet long and weighs 16 tons. Destiny will be attached to the Unity node on the ISS using the Shuttle'''s robot arm, with the help of the camera. This research and command-and-control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. Destiny will fly on STS-98, the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Members of the STS-98 crew check out equipment in the U.S. Lab Destiny during a Multi-Equipment Interface Test. During the mission, the crew will install the Lab in the International Space Station during a series of three space walks. The STS-98 mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Making up the five-member crew on STS-98 are Commander Kenneth D. Cockrell, Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
STS-98 Commander Kenneth D. Cockrell (left) and Mission Specialist Thomas D. Jones (Ph.D.) check out equipment in the U.S. Lab Destiny during a Multi-Equipment Interface Test. During the mission, Jones will help install the Lab on the International Space Station in a series of three space walks. The STS-98 mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Others in the five-member crew on STS-98 are Pilot Mark L. Polansky, and Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
NASA Technical Reports Server (NTRS)
Konkel, Carl R.; Powers, Allen K.; Dewitt, J. Russell
1991-01-01
The first interactive Space Station Freedom (SSF) lab robot exhibit was installed at the Space and Rocket Center in Huntsville, AL, and has been running daily since. IntraVehicular Activity (IVA) the robot is mounted in a full scale U.S. Lab (USL) mockup to educate the public on possible automation and robotic applications aboard the SSF. Responding to audio and video instructions at the Command Console, exhibit patrons may prompt IVA to perform a housekeeping task or give a speaking tour of the module. Other exemplary space station tasks are simulated and the public can even challenge IVA to a game of tic tac toe. In anticipation of such a system being built for the Space Station, a discussion is provided of the approach taken, along with suggestions for applicability to the Space Station Environment.
2003-07-18
KENNEDY SPACE CENTER, FLA. - STS-120 Mission Specialists Piers Sellers and Michael Foreman are in the Space Station Processing Facility for hardware familiarization. The mission will deliver the second of three Station connecting modules, Node 2, which attaches to the end of U.S. Lab. It will provide attach locations for the Japanese laboratory, European laboratory, the Centrifuge Accommodation Module and later Multi-Purpose Logistics Modules. The addition of Node 2 will complete the U.S. core of the International Space Station.
1998-12-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, STS-98 crew members Pilot Mark Polansky, Mission Specialist Marsha Ivins and Commander Ken Cockrell pose underneath the banner revealing the name Destiny given to the U.S. Lab module. They are part of the five-member crew scheduled to carry the lab into space aboard Space Shuttle Endeavour early in the year 2000 where it will become the centerpiece of scientific research on the International Space Station. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
Sperber, Carlos Frankl; Albeny-Simões, Daniel; Breaux, Jennifer Ann; Fianco, Marcos; Szinwelski, Neucir
2017-01-01
For insects, choosing a favorable oviposition site is a type of parental care, as far as it increases the fitness of its offspring. Niche theory predicts that crickets should show a bell-shaped oviposition response to substrate moisture. However, lab experiments with mole crickets showed a linear oviposition response to substrate moisture. Studies with the house cricket Acheta domesticus also showed a linear juvenile body growth response to water availability, thus adult ovipositing females should respond positively to substrate moisture. We used a field experiment to evaluate the relationship between oviposition preference and substrate moisture in forest litter-dwelling cricket species. We also evaluated oviposition responses to substrate moisture level in Ubiquepuella telytokous, the most abundant litter cricket species in our study area, using a laboratory study. We offered cotton substrate for oviposition which varied in substrate moisture level from zero (i.e., dry) to maximum water absorption capacity. We used two complementary metrics to evaluate oviposition preference: (i) presence or absence of eggs in each sampling unit as binary response variable, and (ii) number of eggs oviposited per sampling unit as count response variable. To test for non-linear responses, we adjusted generalized additive models (GAMM) with mixed effects. We found that both cricket oviposition probability and effort (i.e., number of eggs laid) increased linearly with substrate moisture in the field experiment, and for U. telytokous in the lab experiment. We discarded any non-linear responses. Our results demonstrate the importance of substrate moisture as an ecological niche dimension for litter crickets. This work bolsters knowledge of litter cricket life history association with moisture, and suggests that litter crickets may be particularly threatened by changes in climate that favor habitat drying. PMID:28977023
de Farias-Martins, Fernando; Sperber, Carlos Frankl; Albeny-Simões, Daniel; Breaux, Jennifer Ann; Fianco, Marcos; Szinwelski, Neucir
2017-01-01
For insects, choosing a favorable oviposition site is a type of parental care, as far as it increases the fitness of its offspring. Niche theory predicts that crickets should show a bell-shaped oviposition response to substrate moisture. However, lab experiments with mole crickets showed a linear oviposition response to substrate moisture. Studies with the house cricket Acheta domesticus also showed a linear juvenile body growth response to water availability, thus adult ovipositing females should respond positively to substrate moisture. We used a field experiment to evaluate the relationship between oviposition preference and substrate moisture in forest litter-dwelling cricket species. We also evaluated oviposition responses to substrate moisture level in Ubiquepuella telytokous, the most abundant litter cricket species in our study area, using a laboratory study. We offered cotton substrate for oviposition which varied in substrate moisture level from zero (i.e., dry) to maximum water absorption capacity. We used two complementary metrics to evaluate oviposition preference: (i) presence or absence of eggs in each sampling unit as binary response variable, and (ii) number of eggs oviposited per sampling unit as count response variable. To test for non-linear responses, we adjusted generalized additive models (GAMM) with mixed effects. We found that both cricket oviposition probability and effort (i.e., number of eggs laid) increased linearly with substrate moisture in the field experiment, and for U. telytokous in the lab experiment. We discarded any non-linear responses. Our results demonstrate the importance of substrate moisture as an ecological niche dimension for litter crickets. This work bolsters knowledge of litter cricket life history association with moisture, and suggests that litter crickets may be particularly threatened by changes in climate that favor habitat drying.
2012-07-30
CAPE CANAVERAl, Fla. - Karen L. Thompson, chief technologist for Kennedy Space Center, speaks during a visit by Dr. Mason Peck, NASA's chief Technologist, to to Kennedy Space Center's Space Life Sciences Laboratory. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin
STS-98 U.S. Lab Destiny rests in Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In this view from Level 5, wing platform, of Atlantis''' payload bay, the U.S. Lab Destiny can be seen near the bottom. A key element in the construction of the International Space Station, Destiny is 28 feet long and weighs 16 tons. Destiny will be attached to the Unity node of the ISS using the Shuttle'''s robot arm, seen here on the left with the help of an elbow camera, facing left. Measurements of the elbow camera revealed only a one-inch clearance from the U.S. Lab payload, which is under review. Destiny will fly on STS-98, the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
2004-04-07
KENNEDY SPACE CENTER, FLA. -- On a tour of the KSC Space Life Sciences Lab, Florida Gov. Jeb Bush and NASA Administrator Sean O’Keefe (at left) listen to Rob Ferl (right), assistant director of the Bio Technology Program, University of Florida (one of the five partners in the SLS Lab). Second from right is U.S. Mint Director Henrietta Holsman Fore. The new lab is a state-of-the-art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida. The tour followed the launching ceremony at the KSC Visitor Complex for the new Florida quarter issued by the U.S. Mint. The ceremony was emceed by Center Director Jim Kennedy and included remarks by O’Keefe, Bush, Fore and Deputy Secretary of the Treasury Samuel W. Bodman.
NASA's GeneLab Phase II: Federated Search and Data Discovery
NASA Technical Reports Server (NTRS)
Berrios, Daniel C.; Costes, Sylvain V.; Tran, Peter B.
2017-01-01
GeneLab is currently being developed by NASA to accelerate 'open science' biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics ('omics') data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.
NASAs GeneLab Phase II: Federated Search and Data Discovery
NASA Technical Reports Server (NTRS)
Berrios, Daniel C.; Costes, Sylvain; Tran, Peter
2017-01-01
GeneLab is currently being developed by NASA to accelerate open science biomedical research in support of the human exploration of space and the improvement of life on earth. Phase I of the four-phase GeneLab Data Systems (GLDS) project emphasized capabilities for submission, curation, search, and retrieval of genomics, transcriptomics and proteomics (omics) data from biomedical research of space environments. The focus of development of the GLDS for Phase II has been federated data search for and retrieval of these kinds of data across other open-access systems, so that users are able to conduct biological meta-investigations using data from a variety of sources. Such meta-investigations are key to corroborating findings from many kinds of assays and translating them into systems biology knowledge and, eventually, therapeutics.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. -- On a tour of the KSC Space Life Sciences Lab, Florida Gov. Jeb Bush and NASA Administrator Sean OKeefe (at left) listen to Rob Ferl (right), assistant director of the Bio Technology Program, University of Florida (one of the five partners in the SLS Lab). Second from right is U.S. Mint Director Henrietta Holsman Fore. The new lab is a state-of-the- art facility built for ISS biotechnology research. It was developed as a partnership between NASA-KSC and the State of Florida. The tour followed the launching ceremony at the KSC Visitor Complex for the new Florida quarter issued by the U.S. Mint. The ceremony was emceed by Center Director Jim Kennedy and included remarks by OKeefe, Bush, Fore and Deputy Secretary of the Treasury Samuel W. Bodman.
International Space Station Laboratory "Destiny" Hardware Move From MSFC to KSC
NASA Technical Reports Server (NTRS)
Welch, Andrew C.
2003-01-01
The transportation and handling of space flight hardware always demands the utmost care and planning. This was especially true when it came time to move the International Space Station lab module "Destiny" from its manufacturing facility at the Marshall Space Flight Center (MSFC) to the launch facility at the Kennedy Space Center in Florida. Good logistics management was the key to the coordination of the large team required to move the lab from the MSFC manufacturing facility 12 miles to the Huntsville International Airport. Overhead signs, power lines, and traffic lights had to be removed, law enforcement had to be coordinated and a major highway had to be completely shut down during the transportation phase of the move. The team responded well, and the move was accomplished on time with no major difficulties.
NASA Technical Reports Server (NTRS)
Prater, T.; Werkheiser, N.; Bean, Q.; Ledbetter, F.; Soohoo, H.; Wilkerson, M.; Hipp, B.
2017-01-01
NASA's long term goal is to send humans to Mars. Over the next two decades, NASA will work with private industry to develop and demonstrate the technologies and capabilities needed to support exploration of the red planet by humans and ensure their safe return to earth. To accomplish this goal, NASA is employing a capability driven approach to its human spaceflight strategy. This approach will develop a suite of evolving capabilities which provide specific functions to solve exploration challenges. One challenge that is critical to sustainable and safer exploration is the ability to manufacture and recycle materials in space. This paper provides an overview of NASA's in-space manufacturing project, its past and current activities, and how technologies under development will ultimately culminate in a multimaterial, multiprocess fabrication laboratory ('FabLab') to be deployed on the International Space Station in the early 2020s. ISM is a critical capability for the long endurance missions NASA seeks to undertake in the coming decades. An unanticipated failure that can be adapted for in low earth orbit may result in a loss of mission in transit to Mars. In order to have a suite of functional ISM capabilities that are compatible with NASA's exploration timeline, ISM must be equipped with the resources necessary to develop these technologies and deploy them for testing prior to the scheduled de-orbit of ISS in 2024. The paper will discuss the phased approach to FabLab development, desired capabilities, and requirements for the hardware. The FabLab will move NASA and private industry significantly closer to changing historical paradigms for human spaceflight where all materials used in space are launched from earth. While the FabLab will be tested on ISS, the system is ultimately intended for use in a deep space habitat or transit vehicle.
Technology transfer program of Microlabsat
NASA Astrophysics Data System (ADS)
Nakamura, Y.; Hashimoto, H.
2004-11-01
A 50kg-class small satellite developed by JAXA called "MicroLabSat" was launched piggyback by H-IIA rocket No. 4 on 14 December 2002. This satellite will demonstrate small satellite bus technology and conduct experiments on a new separator feasibility and remote inspection technology. All missions were completed successfully on 25 May 2003. Furthermore, the hand-construction by young JAXA engineers motivated these engineers to higher performance in learning design, assembly and testing technology. Small and medium-sized Japanese companies have recently joined together and initiated a project to develop a small satellite. The goal of the project is to commercialise small satellites, which will require low- cost development. Therefore, they have started with a satellite incorporating the components and bus technologies of MicroLabSat and have been technically supported by universities and JAXA since 2004. This satellite project, in which industry, universities and a space agency are collaborating, seeks to meet the technical challenge of launching a low-cost satellite. This paper reports JAX's strategies for developing a small satellite for demonstrating space technology as well as the development and operation results of MicroLabSat. It also describes the project status of an industry-based satellite, developed through collaboration among industries, universities and the space agency, and how the technologies of MicroLabSat are applied.
Dr. Monaco Examines Lab-on a-Chip
NASA Technical Reports Server (NTRS)
2003-01-01
Dr. Lisa Monaco, Marshall Space Flight Center's (MSFC's) project scientist for the Lab-on-a-Chip Applications Development (LOCAD) program, examines a lab on a chip. The small dots are actually ports where fluids and chemicals can be mixed or samples can be collected for testing. Tiny channels, only clearly visible under a microscope, form pathways between the ports. Many chemical and biological processes, previously conducted on large pieces of laboratory equipment, can now be performed on these small glass or plastic plates. Monaco and other researchers at MSFC in Huntsville, Alabama, are customizing the chips to be used for many space applications, such as monitoring microbes inside spacecraft and detecting life on other planets. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the International Space Station (ISS), the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)
Interfacing LabVIEW With Instrumentation for Electronic Failure Analysis and Beyond
NASA Technical Reports Server (NTRS)
Buchanan, Randy K.; Bryan, Coleman; Ludwig, Larry
1996-01-01
The Laboratory Virtual Instrumentation Engineering Workstation (LabVIEW) software is designed such that equipment and processes related to control systems can be operationally lined and controlled by the use of a computer. Various processes within the failure analysis laboratories of NASA's Kennedy Space Center (KSC) demonstrate the need for modernization and, in some cases, automation, using LabVIEW. An examination of procedures and practices with the Failure Analaysis Laboratory resulted in the conclusion that some device was necessary to elevate the potential users of LabVIEW to an operational level in minimum time. This paper outlines the process involved in creating a tutorial application to enable personnel to apply LabVIEW to their specific projects. Suggestions for furthering the extent to which LabVIEW is used are provided in the areas of data acquisition and process control.
NASA Technical Reports Server (NTRS)
Kent, J. J.; Berger, E. L.; Fries, M. D.; Bastien, R.; McCubbin, F. M.; Pace, L.; Righter, K.; Sutter, B.; Zeigler, R. A.; Zolensky, M.
2017-01-01
On the early morning of September 15th, 2016, on the first floor of Building 31 at NASA-Johnson Space Center, the hose from a water chiller ruptured and began spraying water onto the floor. The water had been circulating though old metal pipes, and the leaked water contained rust-colored particulates. The water flooded much of the western wing of the building's ground floor before the leak was stopped, and it left behind a residue of rust across the floor, most notably in the Apollo and Meteorite Thin Section Labs and Sample Preparation Lab. No samples were damaged in the event, and the affected facilities are in the process of remediation. At the beginning of 2016, a separate leak occurred in the Cosmic Dust Lab, located in the same building. In that lab, a water leak occurred at the bottom of the sink used to clean the lab's tools and containers with ultra-pure water. Over years of use, the ultra-pure water eroded the metal sink piping and leaked water onto the inside of the lab's flow bench. This water also left behind a film of rusty material. The material was cleaned up and the metal piping was replaced with PVC pipe and sealed with Teflon plumber's tape. Samples of the rust detritus were collected from both incidents. These samples were imaged and analyzed to determine their chemical and mineralogical compositions. The purpose of these analyses is to document the nature of the detritus for future reference in the unlikely event that these materials occur as contaminants in the Cosmic Dust samples or Apollo or Meteorite thin sections.
NASA Technical Reports Server (NTRS)
Reinsch, S. S.; Galazka, J..; Berrios, D. C; Chakravarty, K.; Fogle, H.; Lai, S.; Bokyo, V.; Timucin, L. R.; Tran, P.; Skidmore, M.
2016-01-01
NASA's mission includes expanding our understanding of biological systems to improve life on Earth and to enable long-duration human exploration of space. The GeneLab Data System (GLDS) is NASA's premier open-access omics data platform for biological experiments. GLDS houses standards-compliant, high-throughput sequencing and other omics data from spaceflight-relevant experiments. The GeneLab project at NASA-Ames Research Center is developing the database, and also partnering with spaceflight projects through sharing or augmentation of experiment samples to expand omics analyses on precious spaceflight samples. The partnerships ensure that the maximum amount of data is garnered from spaceflight experiments and made publically available as rapidly as possible via the GLDS. GLDS Version 1.0, went online in April 2015. Software updates and new data releases occur at least quarterly. As of October 2016, the GLDS contains 80 datasets and has search and download capabilities. Version 2.0 is slated for release in September of 2017 and will have expanded, integrated search capabilities leveraging other public omics databases (NCBI GEO, PRIDE, MG-RAST). Future versions in this multi-phase project will provide a collaborative platform for omics data analysis. Data from experiments that explore the biological effects of the spaceflight environment on a wide variety of model organisms are housed in the GLDS including data from rodents, invertebrates, plants and microbes. Human datasets are currently limited to those with anonymized data (e.g., from cultured cell lines). GeneLab ensures prompt release and open access to high-throughput genomics, transcriptomics, proteomics, and metabolomics data from spaceflight and ground-based simulations of microgravity, radiation or other space environment factors. The data are meticulously curated to assure that accurate experimental and sample processing metadata are included with each data set. GLDS download volumes indicate strong interest of the scientific community in these data. To date GeneLab has partnered with multiple experiments including two plant (Arabidopsis thaliana) experiments, two mice experiments, and several microbe experiments. GeneLab optimized protocols in the rodent partnerships for maximum yield of RNA, DNA and protein from tissues harvested and preserved during the SpaceX-4 mission, as well as from tissues from mice that were frozen intact during spaceflight and later dissected on the ground. Analysis of GeneLab data will contribute fundamental knowledge of how the space environment affects biological systems, and as well as yield terrestrial benefits resulting from mitigation strategies to prevent effects observed during exposure to space environments.
Oxygen quenching in a LAB based liquid scintillator and the nitrogen bubbling model
NASA Astrophysics Data System (ADS)
Xiao, Hua-Lin; Deng, Jing-Shan; Wang, Nai-Yan
2010-05-01
The oxygen quenching effect in a Linear Alkl Benzene (LAB) based liquid scintillator (LAB as the solvent, 3 g/L 2, 5 diphe-nyloxazole (PPO) as the fluor and 15 mg/L p-bis-(o-methylstyryl)-benzene (bis-MSB) as the λ-shifter) is studied by measuring the light yield as a function of the nitrogen bubbling time. It is shown that the light yield of the fully purged liquid scintillator is increased by 11% at room temperature and the room atmospheric pressure. A simple nitrogen bubbling model is proposed to describe the relationship between the relative light yield (oxygen quenching factor) and the bubbling time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morris, G.D.L.
1993-01-20
Vista Chemical (Houston) and Petroleos Mexicanos (Pemex; Mexico City) have firmed up their long-negotiated plans for Pemex to supply feedstock for a linear alkylbenzene (LAB) plant that Vista will build in Mexico (CW, Sept. 16, 1992 p. 8). Specifically, the two companies have signed an agreement of understanding to pursue negotiations and finalize agreements. The plant would cost $250 million, produce 260 million-330 million lbs/year of LAB, and create about 200 permanent jobs. Final agreements, including a site selection, are expected to be completed by midyear. Vista expects startup in 1996, and is considering forming aj oint venture with amore » Mexican partner.« less
The status of the Callio Lab Underground Laboratory in the Pyhäsalmi mine
NASA Astrophysics Data System (ADS)
Joutsenvaara, Jari; Enqvist, Timo; Isoherranen, Ville; Jalas, Panu; Kutuniva, Johanna; Kuusiniemi, Pasi
2017-04-01
We present the structure and the latest technical characteristics of the Callio Lab, the new underground laboratory managing the scientific and other non-mining related operations in the Pyhäsalmi mine in Pyhäjärvi, Finland. The very deep laboratory hall space, called Lab 2 of Callio Lab, was finished in spring 2016 at the depth of 1 430 metres (4 100 m.w.e.). Callio Lab has also other easily accessible (by car or truck) halls for laboratory use, for example at the depths of 440 m, 600 m and 990 m. We also review the current and planned activities related to particle physics, applied sciences, industrial R&D and production.
19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION ...
19. NBS SUIT LAB. STORAGE SHELF WITH LIQUID COOLING VENTILATION GARMENT (LCVG), SUIT GLOVES, WAIST INSERTS, UPPER AND LOWER ARMS (LEFT, FROM TOP TO BOTTOM), LOWER TORSO ASSEMBLIES (LTA) (MIDDLE RIGHT TO LOWER RIGHT). - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
2012-07-30
CAPE CANAVERAL, Fla. – Dr. Mason Peck, right, NASA's chief Technologist, greets Frank DiBello, president and CEO of Space Florida as Karen L. Thompson, chief technologist for Kennedy Space Center, looks on. Space Florida manages the Space Life Sciences Laboratory at Kennedy. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
While checking out equipment during a Multi-Equipment Interface Test (MEIT) in the U.S. Lab Destiny, astronaut James Voss (center) and STS-98 crew members Commander Kenneth D. Cockrell (foreground) and Pilot Mark Polansky (right) pause for the camera. They are taking part in a Multi-Equipment Interface Test (MEIT) on this significant element of the International Space Station. Also participating in the MEIT is STS-98 Mission Specialist Thomas D. Jones (Ph.D.). Voss is assigned to mission STS-102 as part of the second crew to occupy the International Space Station. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
In the Space Station Processing Facility, STS-98 Mission Specialist Thomas D. Jones (Ph.D.) examines a power data grapple fixture outside the U.S. Lab Destiny. Jones is taking part in a Multi-Equipment Interface Test (MEIT), along with other crew members Commander Kenneth D. Cockrell and Pilot Mark Polansky. The remaining members of the crew (not present for the MEIT) are Mission Specialists Robert L. Curbeam Jr. and Marsha S. Ivins. During the STS-98 mission, the crew will install the Lab on the International Space Station during a series of three space walks. The grapple fixture will be the base of operations for the robotic arm on later flights The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
Torres-Rodríguez, Ingrid; Rodríguez-Alegría, María Elena; Miranda-Molina, Alfonso; Giles-Gómez, Martha; Conca Morales, Rodrigo; López-Munguía, Agustín; Bolívar, Francisco; Escalante, Adelfo
2014-01-01
We report the screening and characterization of EPS produced by LAB identified as Leuconostoc kimchii isolated from pulque, a traditional Mexican fermented, non-distilled alcoholic beverage produced by the fermentation of the sap extracted from several (Agave) maguey species. EPS-producing LAB constitutes an abundant bacterial group relative to total LAB present in sap and during fermentation, however, only two EPS-producing colony phenotypes (EPSA and EPSB, respectively) were detected and isolated concluding that despite the high number of polymer-producing LAB their phenotypic diversity is low. Scanning electron microcopy analysis during EPS-producing conditions revealed that both types of EPS form a uniform porous structure surrounding the bacterial cells. The structural characterization of the soluble and cell-associated EPS fractions of each polymer by enzymatic and acid hydrolysis, as by 1D- and 2D-NMR, showed that polymers produced by the soluble and cell-associated fractions of EPSA strain are dextrans consisting of a linear backbone of linked α-(1→6) Glcp in the main chain with α-(1→2) and α-(1→3)-linked branches. The polymer produced by the soluble fraction of EPSB strain was identified as a class 1 dextran with a linear backbone containing consecutive α-(1→6)-linked D-glucopyranosyl units with few α-(1→3)-linked branches, whereas the cell-associated EPS is a polymer mixture consisting of a levan composed of linear chains of (2→6)-linked β-D-fructofuranosyl residues with β-(2→6) connections, and a class 1 dextran. According to our knowledge this is the first report of dextrans and a levan including their structural characterization produced by L. kimchii isolated from a traditional fermented source.
STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the payload bay of the orbiter Atlantis, STS-98 Mission Specialist Robert Curbeam works with equipment he will use in space to attach the U.S. Lab Destiny to the International Space Station. The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.
U.S. Rep. Dave Weldon looks at the U.S. Lab Destiny in the SSPF.
NASA Technical Reports Server (NTRS)
1999-01-01
Inside the U.S. Lab, called 'Destiny,' which is in the Space Station Processing Facility, U.S. Rep. Dave Weldon (right) looks over equipment. In the background (center) is Thomas R. 'Randy' Galloway, with the Space Station Hardware Integration Office. Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. Destiny is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS, with five equipment racks aboard to provide essential functions for station systems, including high data-rate communications, and to maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A shipping container transporting part of the new Orbiter Boom Sensor System (OBSS) is delivered by truck to the Remote Manipulator System lab in the Vehicle Assembly Building (VAB). Once the entire structure has arrived, the OBSS will be assembled and undergo final checkout and testing in the lab prior to being transferred to the Orbiter Processing Facility (OPF) for installation on Space Shuttle Discovery. The 50-foot-long OBSS will be attached to the Remote Manipulator System, or Shuttle arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttle's Thermal Protection System while in space. Discovery is slated to fly mission STS-114 once Space Shuttle launches resume. The launch planning window is May 12 to June 3, 2005.
U.S. Rep. Dave Weldon outside the U.S. Lab Destiny in the SSPF.
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility, U.S. Rep Dave Weldon (at left) looks at the U.S. Lab, called Destiny. With him are Thomas R. 'Randy' Galloway, with the Space Station Hardware Integration Office, Dana Gartzke, the congressman's chief of staffm and Boeing workers. Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. Destiny is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS, with five equipment racks aboard to provide essential functions for station systems, including high data-rate communications, and to maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Commander Ken Cockrell conducts window inspection, checking for leaks, in the cockpit of Atlantis. He and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- The STS-98 crew looks over components of the equipment already installed in the payload bay of orbiter Atlantis, which is in the Orbiter Processing Facility bay 3. The crew is at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Pilot Mark Polansky inspects the window in the cockpit of Atlantis. He and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- The STS-98 crew looks over components of the equipment already installed in the payload bay of orbiter Atlantis, which is in the Orbiter Processing Facility bay 3. The crew is at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Commander Ken Cockrell conducts window inspection, checking for leaks, in the cockpit of Atlantis. He and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- Working on the Orbiter Docking System of orbiter Atlantis are Mission Specialists Tom Jones (leaning over) and Robert Curbeam. They and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In Orbiter Processing Facility bay 3, STS-98 Pilot Mark Polansky inspects the window in the cockpit of Atlantis. He and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- Working on the Orbiter Docking System of orbiter Atlantis are Mission Specialists Tom Jones (leaning over) and Robert Curbeam. They and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2011-05-12
Cape Canaveral, Fla. -- Students listen intently as a laboratory technician describes the experiment being conducted in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin
2011-05-12
Cape Canaveral, Fla. -- A research laboratory is prepared for students to perform hands-on activities in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin
GlioLab-a space system for Glioblastoma multiforme cells on orbit behavior study
NASA Astrophysics Data System (ADS)
Cappelletti, Chantal; Twiggs, Robert J.
Microgravity conditions and ionizing radiation pose significant health risks for human life in space. This is a concern for future missions and also for future space tourism flights. Nev-ertheless, at the same time it is very interesting to study the effects of these conditions in unhealthy organism like biological samples affected by cancer. It is possible that space envi-ronment increases, decreases or doesn't have any effect on cancer cells. In any case the test results give important informations about cancer treatment or space tourism flight for people affected by cancer. GlioLab is a joint project between GAUSS-Group of Astrodynamics at the "Sapienza" University of Roma and the Morehead State University (MSU) Space Science Center in Kentucky. The main goal of this project is the design and manufacturing of an autonomous space system to investigate potential effects of the space environment exposure on a human glioblastoma multiforme cell line derived from a 65-year-old male and on Normal Human Astrocytes (NHA). In particular the samples are Glioblastoma multiforme cancer cells because the radiotherapy using ionizing radiation is the only treatment after surgery that can give on ground an improvement on the survival rate for this very malignant cancer. During a mission on the ISS, GlioLab mission has to test the in orbit behavior of glioblastoma cancer cells and healthy neuronal cells, which are extremely fragile and require complex experimentation and testing. In this paper engineering solutions to design and manufacturing of an autonomous space system that can allow to keep alive these kind of cells are described. This autonomous system is characterized also by an optical device dedicated to cells behavior analysis and by microdosimeters for monitoring space radiation environment.
SpaceX CRS-11 What's On Board Briefing
2017-05-31
NASA Television held a “What’s on Board” science mission briefing from Kennedy Space Center's Press Site to discuss some of the science headed to the International Space Station on SpaceX’s eleventh commercial resupply services mission, CRS-11. SpaceX’s Dragon spacecraft will carry almost 6,000 pounds of supplies and payloads including crucial materials to support dozens of the more than 250 science and research investigations that will occur during Expeditions 52 and 53. CRS-11 will lift off atop a Falcon 9 rocket from Space Launch Complex 39A at NASA’s Kennedy Space Center in Cape Canaveral, Florida. Briefing participants were: -Kathryn Hambleton, NASA Communications -Camille Alleyne, Associate Program Scientist, ISS -Ken Shields, Director of Operations, CASIS/ISS National Lab -Keith Gendreau, Principle Investigator, NICER -Jason W. Mitchell, Project Manager, SEXTANT -Jeremy Banik, Principle Investigator, ROSA -Karen Ocorr, Co-investigator, Fruit Fly Lab-02 -Miriam Sargusingh, Project Lead, CSELS -Dr. Chia Soo, Principle Investigator, Systemic Therapy of NELL-1 for Osteoporosis -Paul Galloway, Program Manager, MUSES
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers in the Payload Changeout Room check the movement of the U.S. Lab Destiny, which is being transferred to the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station is designed for space science experiments and already has five system racks installed inside. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
Reduction of spermatogonia and testosterone in rat testes flown on Space Lab-3
NASA Technical Reports Server (NTRS)
Philpott, Delbert E.; Stevenson, J.; Black, S.; Sapp, W.; Williams, C.
1986-01-01
The effects of space flight on rat testes were investigated. The weight, spermatogonial cell count, and testosterone levels in six rats flown on Space Lab-3 were measured. It is observed that compared to ground control rats the average weight loss was 7.1 percent and the spermatogonial cell count decreased by 7.5 percent. The data reveal that the testosterone level for large control rats was 9.13 ng/ml and 0.31 ng/ml for flight rats; and 2.54 ng/ml and 0.233 ng/ml for smaller control and flight rats, respectively. It is noted that spermatogenesis and testosterone production are reduced during spaceflight.
Final Report on A. R. A. P.’s Model for the Atmospheric Marine Environment
1982-01-01
Around Airports," NASA CR-2752, prepared by A.R.A.P. for Marshall Space Center. 25. Brost , R.A. and Wyngaard, N.C., 1978: "A Model Study of the...FRANCE DR. R. A. BROST NCAR P.O. BOX 3000 BOULDER, CO 80307 JOHNS HOPKINS UNIV. APPLIED PHYSICS LAB R.E. GIBSON LIBRARY JOHNS HOPKINS ROAD...RESEARCH LABS BOULDER, CO 80303 DR. GEORGE L. HELLOR GEOPHYSICAL FLUID DYNAMICS LAE PRINCETON, NJ 08540 DR. TETSUJI YAMADA LOS ALAMOS NATIONAL LAB
1996-12-16
A NASA scientist displays Space Shuttle Main Engine (SSME) turbine component which underwent air flow tests at Marshall's Structures and Dynamics Lab. Such studies could improve efficiency of aircraft engines, and lower operational costs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiebe, J; Department of Physics and Astronomy, University of Calgary, Calgary, AB; Ploquin, N
2014-08-15
Monte Carlo (MC) simulation is accepted as the most accurate method to predict dose deposition when compared to other methods in radiation treatment planning. Current dose calculation algorithms used for treatment planning can become inaccurate when small radiation fields and tissue inhomogeneities are present. At our centre the Novalis Classic linear accelerator (linac) is used for Stereotactic Radiosurgery (SRS). The first MC model to date of the Novalis Classic linac was developed at our centre using the Geant4 Application for Tomographic Emission (GATE) simulation platform. GATE is relatively new, open source MC software built from CERN's Geometry and Tracking 4more » (Geant4) toolkit. The linac geometry was modeled using manufacturer specifications, as well as in-house measurements of the micro MLC's. Among multiple model parameters, the initial electron beam was adjusted so that calculated depth dose curves agreed with measured values. Simulations were run on the European Grid Infrastructure through GateLab. Simulation time is approximately 8 hours on GateLab for a complete head model simulation to acquire a phase space file. Current results have a majority of points within 3% of the measured dose values for square field sizes ranging from 6×6 mm{sup 2} to 98×98 mm{sup 2} (maximum field size on the Novalis Classic linac) at 100 cm SSD. The x-ray spectrum was determined from the MC data as well. The model provides an investigation into GATE'S capabilities and has the potential to be used as a research tool and an independent dose calculation engine for clinical treatment plans.« less
Orion FSW V and V and Kedalion Engineering Lab Insight
NASA Technical Reports Server (NTRS)
Mangieri, Mark L.
2010-01-01
NASA, along with its prime Orion contractor and its subcontractor s are adapting an avionics system paradigm borrowed from the manned commercial aircraft industry for use in manned space flight systems. Integrated Modular Avionics (IMA) techniques have been proven as a robust avionics solution for manned commercial aircraft (B737/777/787, MD 10/90). This presentation will outline current approaches to adapt IMA, along with its heritage FSW V&V paradigms, into NASA's manned space flight program for Orion. NASA's Kedalion engineering analysis lab is on the forefront of validating many of these contemporary IMA based techniques. Kedalion has already validated many of the proposed Orion FSW V&V paradigms using Orion's precursory Flight Test Article (FTA) Pad Abort 1 (PA-1) program. The Kedalion lab will evolve its architectures, tools, and techniques in parallel with the evolving Orion program.
The experiment editor: supporting inquiry-based learning with virtual labs
NASA Astrophysics Data System (ADS)
Galan, D.; Heradio, R.; de la Torre, L.; Dormido, S.; Esquembre, F.
2017-05-01
Inquiry-based learning is a pedagogical approach where students are motivated to pose their own questions when facing problems or scenarios. In physics learning, students are turned into scientists who carry out experiments, collect and analyze data, formulate and evaluate hypotheses, and so on. Lab experimentation is essential for inquiry-based learning, yet there is a drawback with traditional hands-on labs in the high costs associated with equipment, space, and maintenance staff. Virtual laboratories are helpful to reduce these costs. This paper enriches the virtual lab ecosystem by providing an integrated environment to automate experimentation tasks. In particular, our environment supports: (i) scripting and running experiments on virtual labs, and (ii) collecting and analyzing data from the experiments. The current implementation of our environment supports virtual labs created with the authoring tool Easy Java/Javascript Simulations. Since there are public repositories with hundreds of freely available labs created with this tool, the potential applicability to our environment is considerable.
2012-07-30
CAPE CANAVERAl, Fla. - James Stanley, chief technologist for Qinetiq North America, speaks during a visit by Dr. Mason Peck, NASA's chief Technologist, to Kennedy Space Center's Space Life Sciences Laboratory. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin
2012-07-30
CAPE CANAVERAl, Fla. - Martin Belson, president and CEO of Diversified Industries CEIS, speaks during a visit by Dr. Mason Peck, NASA's chief Technologist, to Kennedy Space Center's Space Life Sciences Laboratory. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin
Computer Labs Report to the Holodeck
ERIC Educational Resources Information Center
Raths, David
2011-01-01
In many ways, specialized computer labs are the black holes of IT organizations. Budgets, equipment, employees--even space itself--are sucked in. Given a choice, many IT shops would engage warp drive and escape their gravitational pull forever. While Captain Kirk might have looked to Scotty for a fix to the problem, colleges and universities are…
Computer systems and software engineering
NASA Technical Reports Server (NTRS)
Mckay, Charles W.
1988-01-01
The High Technologies Laboratory (HTL) was established in the fall of 1982 at the University of Houston Clear Lake. Research conducted at the High Tech Lab is focused upon computer systems and software engineering. There is a strong emphasis on the interrelationship of these areas of technology and the United States' space program. In Jan. of 1987, NASA Headquarters announced the formation of its first research center dedicated to software engineering. Operated by the High Tech Lab, the Software Engineering Research Center (SERC) was formed at the University of Houston Clear Lake. The High Tech Lab/Software Engineering Research Center promotes cooperative research among government, industry, and academia to advance the edge-of-knowledge and the state-of-the-practice in key topics of computer systems and software engineering which are critical to NASA. The center also recommends appropriate actions, guidelines, standards, and policies to NASA in matters pertinent to the center's research. Results of the research conducted at the High Tech Lab/Software Engineering Research Center have given direction to many decisions made by NASA concerning the Space Station Program.
An evaluation of two hands-on lab styles for plant biodiversity in undergraduate biology.
Basey, John M; Maines, Anastasia P; Francis, Clinton D; Melbourne, Brett
2014-01-01
We compared learning cycle and expository formats for teaching about plant biodiversity in an inquiry-oriented university biology lab class (n = 465). Both formats had preparatory lab activities, a hands-on lab, and a postlab with reflection and argumentation. Learning was assessed with a lab report, a practical quiz in lab, and a multiple-choice exam in the concurrent lecture. Attitudes toward biology and treatments were also assessed. We used linear mixed-effect models to determine impacts of lab style on lower-order cognition (LO) and higher-order cognition (HO) based on Bloom's taxonomy. Relative to the expository treatment, the learning cycle treatment had a positive effect on HO and a negative effect on LO included in lab reports; a positive effect on transfer of LO from the lab report to the quiz; negative impacts on LO quiz performance and on attitudes toward the lab; and a higher degree of perceived difficulty. The learning cycle treatment had no influence on transfer of HO from lab report to quiz or exam; quiz performance on HO questions; exam performance on LO and HO questions; and attitudes toward biology as a science. The importance of LO as a foundation for HO relative to these lab styles is addressed. © 2014 J. M. Basey et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
NASA Astrophysics Data System (ADS)
Mancinelli, N. J.; Fischer, K. M.
2018-03-01
We characterize the spatial sensitivity of Sp converted waves to improve constraints on lateral variations in uppermost-mantle velocity gradients, such as the lithosphere-asthenosphere boundary (LAB) and the mid-lithospheric discontinuities. We use SPECFEM2D to generate 2-D scattering kernels that relate perturbations from an elastic half-space to Sp waveforms. We then show that these kernels can be well approximated using ray theory, and develop an approach to calculating kernels for layered background models. As proof of concept, we show that lateral variations in uppermost-mantle discontinuity structure are retrieved by implementing these scattering kernels in the first iteration of a conjugate-directions inversion algorithm. We evaluate the performance of this technique on synthetic seismograms computed for 2-D models with undulations on the LAB of varying amplitude, wavelength and depth. The technique reliably images the position of discontinuities with dips <35° and horizontal wavelengths >100-200 km. In cases of mild topography on a shallow LAB, the relative brightness of the LAB and Moho converters approximately agrees with the ratio of velocity contrasts across the discontinuities. Amplitude retrieval degrades at deeper depths. For dominant periods of 4 s, the minimum station spacing required to produce unaliased results is 5 km, but the application of a Gaussian filter can improve discontinuity imaging where station spacing is greater.
STS-98 U.S. Lab Destiny rests in Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Viewed from the floor of the Payload Changeout Room, Destiny is inside Atlantis''' payload bay, waiting for closure of the payload bay doors. A key element in the construction of the International Space Station, Destiny is 28 feet long and weighs 16 tons. Destiny will be attached to the Unity node on the ISS using the Shuttle'''s robot arm, seen here on the left side, with the help of an elbow camera attached to the arm (near the upper end of the lab in the photo). Measurements of the elbow camera revealed only a one-inch clearance from the U.S. Lab payload, which is under review. This research and command-and-control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. Destiny will fly on STS-98, the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
Nespoli services the FCF in the US Lab
2011-04-21
ISS027-E-014888 (21 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.
Nespoli services the FCF in the US Lab
2011-04-21
ISS027-E-014895 (21 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.
Nespoli services the FCF in the US Lab
2011-04-21
ISS027-E-014894 (21 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with the Light Microscopy Module (LMM) in the Destiny laboratory of the International Space Station.
Expedition 15 Crew Members training in the Virtual Reality (VR) Laboratory
2006-09-25
JSC2006-E-41640 (25 Sept. 2006) --- Cosmonaut Fyodor N. Yurchikhin, Expedition 15 commander representing Russia's Federal Space Agency, participates in a camera review training session in the virtual reality lab in the Space Vehicle Mockup Facility at Johnson Space Center.
Expedition 15 Crew Members training in the Virtual Reality (VR) Laboratory
2006-09-25
JSC2006-E-41641 (25 Sept. 2006) --- Cosmonaut Oleg V. Kotov, Expedition 15 flight engineer representing Russia's Federal Space Agency, participates in a camera review training session in the virtual reality lab in the Space Vehicle Mockup Facility at Johnson Space Center.
NASA Technical Reports Server (NTRS)
2004-01-01
KENNEDY SPACE CENTER, FLA. A shipping container housing part of the new Orbiter Boom Sensor System (OBSS) is lifted from a truck into the Remote Manipulator System lab in the Vehicle Assembly Building (VAB). Once the entire structure has arrived, the OBSS will be assembled and undergo final checkout and testing in the lab prior to being transferred to the Orbiter Processing Facility (OPF) for installation on Space Shuttle Discovery. The 50-foot- long OBSS will be attached to the Remote Manipulator System, or Shuttle arm, and is one of the new safety measures for Return to Flight, equipping the orbiter with cameras and laser systems to inspect the Shuttle's Thermal Protection System while in space. Discovery is slated to fly mission STS-114 once Space Shuttle launches resume. The launch planning window is May 12 to June 3, 2005.
U.S. Rep. Dave Weldon looks at the U.S. Lab Destiny in the SSPF.
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility, Thomas R. 'Randy' Galloway, with the Space Station Hardware Integration Office, points out a feature to U.S. Rep. Dave Weldon (right) in the U.S. Lab, called 'Destiny.' In the far background is Dana Gartzke, the congressman's chief of staff. Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. Destiny is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS, with five equipment racks aboard to provide essential functions for station systems, including high data-rate communications, and to maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
In-Space Manufacturing: Pioneering a Sustainable Path to Mars
NASA Technical Reports Server (NTRS)
Werkheiser, Niki
2015-01-01
In order to provide meaningful impacts to exploration technology needs, the In-Space Manufacturing (ISM) Initiative must influence exploration systems design now. In-space manufacturing offers: dramatic paradigm shift in the development and creation of space architectures; efficiency gain and risk reduction for low Earth orbit and deep space exploration; and "pioneering" approach to maintenance, repair, and logistics leading to sustainable, affordable supply chain model. In order to develop application-based capabilities in time to support NASA budget and schedule, ISM must be able to leverage the significant commercial developments, which requires innovative, agile collaborative mechanisms (contracts, challenges, SBIR's, etc.); and NASA-unique investments to focus primarily on adapting the technologies and processes to the microgravity environment. We must do the foundational work - it is the critical path for taking these technologies from lab curiosities to institutionalized capabilities: characterize, certify, institutionalize, design for Additive Manufacturing (AM). Ideally, International Space Station (ISS) U.S. lab rack or partial rack space should be identified for in-space manufacturing utilization in order to continue technology development of a suite of capabilities required for exploration missions, as well as commercialization on ISS.
2010-01-12
CAPE CANAVERAL, Fla. - In the Remote Manipulator System Lab, or RMS Lab, inside the Vehicle Assembly Building at NASA's Kennedy Space Center in Florida, Rafael Rodriguez, lead RMS advanced systems technician with United Space Alliance, installs the mid-transition thermal blanket onto the inspection boom assembly, or IBA, on space shuttle Atlantis' orbiter boom sensor system, or OBSS. The IBA is removed from the shuttle every other processing flow for a detailed inspection. After five consecutive flights, all IBA internal components are submitted to a thorough electrical checkout in the lab. The 50-foot-long OBSS attaches to the end of the shuttle’s robotic arm and supports the cameras and laser systems used to inspect the shuttle’s thermal protection system while in space. Atlantis is next slated to deliver an Integrated Cargo Carrier and Russian-built Mini Research Module to the International Space Station on the STS-132 mission. The second in a series of new pressurized components for Russia, the module will be permanently attached to the Zarya module. Three spacewalks are planned to store spare components outside the station, including six spare batteries, a boom assembly for the Ku-band antenna and spares for the Canadian Dextre robotic arm extension. A radiator, airlock and European robotic arm for the Russian Multi-purpose Laboratory Module also are payloads on the flight. Launch is targeted for May 14, 2010. Photo credit: NASA/Jack Pfaller
Okamura, Tomonori; Sekikawa, Akira; Sawamura, Tatsuya; Kadowaki, Takashi; Barinas-Mitchell, Emma; Mackey, Rachel H.; Kadota, Aya; Evans, Rhobert W.; Edmundowicz, Daniel; Higashiyama, Aya; Nakamura, Yasuyuki; Abbott, Robert D.; Miura, Katsuyuki; Fujiyoshi, Akira; Fujita, Yoshiko; Murakami, Yoshitaka; Miyamatsu, Naomi; Kakino, Akemi; Maegawa, Hiroshi; Murata, Kiyoshi; Horie, Minoru; Mitsunami, Kenichi; Kashiwagi, Atsunori; Kuller, Lewis H.; Ueshima, Hirotsugu
2013-01-01
Objective The serum level of LOX-1 ligand containing ApoB (LAB) may reflect atherogenicity better than LDL cholesterol (LDLC), total LDL particles and usual measurement of oxidized LDL. The association between LAB and intima-media thickness (IMT) of carotid artery was investigated by ultrasound in US and Japan men. Methods Participants were 297 US Caucasian and 310 Japanese men, aged 40 to 49 years without past history of cardiovascular disease. Serum LAB levels were measured by ELISAs with recombinant LOX-1 and monoclonal anti–apolipoprotein B antibody. Results Serum LAB levels [median (interquartile range), μg/L] were 1,321 (936, 1730) in US Caucasians and 940 (688, 1259) in Japanese. For Caucasian men, average IMT was higher in higher LAB quartile, which was 0.653, 0.667, 0.688, and 0.702 mm, respectively (p for trend= 0.02). Linear regression analysis showed serum LAB was significantly associated with IMT after adjustment for LDLC or total LDL particles in addition to other traditional or novel risk factors for atherosclerosis such as C-reactive protein. However, there was no significant relationship between LAB and IMT in Japanese men. Conclusion Serum LAB, a new candidate biomarker for residual risk, was associated with an increased carotid IMT in US Caucasian men independently of various risk factors; however, ethnic difference should be clarified in the future. PMID:23683938
STS-102 (Expedition II) crew members in SSPF
NASA Technical Reports Server (NTRS)
1999-01-01
STS-102 Mission Specialists James Voss, Susan Helms and Yuri Usachev, with the Russian Space Agency (RSA), pose in front of the U.S. Lab module, named Destiny, in the Space Station Processing Facility (SSPF). STS-102 is a resupply mission to the International Space Station, transporting the Leonardo Multi- Purpose Logistics Module (MPLM) with equipment to assist in outfitting the U.S. Lab, which will already be in place. The mission is also transporting Helms, Voss and Usachev as the second resident crew (designated Expedition crew 2) to the station. In exchange, the mission will return to Earth the first expedition crew on ISS: William Shepherd, Sergei Krikalev (RSA) and Yuri Gidzenko (RSA). STS-102 is scheduled to launch no earlier than Oct. 19, 2000.
2001-01-03
KENNEDY SPACE CENTER, Fla. -- Bright morning sun shines on Space Shuttle Atlantis as it sits on Launch Pad 39A. In front of the wings, on either side of the orbiter are tail service masts, which support the fluid, gas and electrical requirements of the orbiter’s liquid oxygen and liquid hydrogen aft T-0 umbilicals. Atlantis will fly on mission STS-98, the seventh construction flight to the International Space Station, carrying the U.S. Laboratory, named Destiny. The lab has five system racks already installed inside the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. Atlantis is scheduled for launch no earlier than Jan. 19, 2001, with a crew of five
Conjunction Assessment for Commercial Satellite Constellations Using Commercial Radar Data Sources
NASA Astrophysics Data System (ADS)
Nicolls, M.; Vittaldev, V.; Ceperley, D.; Creus-Costa, J.; Foster, C.; Griffith, N.; Lu, E.; Mason, J.; Park, I.; Rosner, C.; Stepan, L.
For companies with multiple orbital assets, managing the risk of collision with other low-Earth orbit (LEO) Resident Space Objects (RSOs) can amount to a significant operational burden. LeoLabs and Planet investigate the impact of a workflow that integrates commercial Space Situational Awareness (SSA) data into conjunction assessments for large satellite constellations. Radar measurements from LeoLabs are validated against truth orbits provided by the International Laser Ranging Service (ILRS) and to measurements from Planet’s on-board GPS instrumentation. The radar data is then used as input for orbit fits in order to form the basis of a conjunction assessment. To confirm the reliability of the orbit determination (OD), the generated ephemerides are validated against ILRS and GPS-derived orbits. In addition, a covariance realism assessment is performed in order to check for self-consistency by comparing the propagated orbit and the associated covariance against later measurements. Several cases are investigated to assess the benefits of integrating radar-derived products with Conjunction Data Messages (CDMs) received on Planet spacecraft. Conjunction assessment is refined using onboard GPS measurements from Planet satellites along with tracking measurements of the secondary RSO by LeoLabs. This study demonstrates that commercial data provided by LeoLabs is reliable, accurate, and timely, and that ephemeris generated from LeoLabs data provides solutions and insights which are consistent with those provided in CDMs. For the cases analyzed, the addition of commercial SSA data from LeoLabs has a positive impact on operations due to the additional information on the state of the secondary RSO which can lead to increased confidence in any maneuver-related decisions. Measurements from LeoLabs can also be used to improve conjunction assessment for commercial satellites that do not have any operator OD.
NASA Technical Reports Server (NTRS)
Jenkins, Phillip; Scheiman, Chris; Goodbody, Chris; Baur, Carsten; Sharps, Paul; Imaizumi, Mitsuru; Yoo, Henry; Sahlstrom, Ted; Walters, Robert; Lorentzen, Justin;
2006-01-01
This paper reports the results of an international measurement round robin of monolithic, triple-junction, GaInP/GaAs/Ge space solar cells. Eight laboratories representing national labs, solar cell vendors and space solar cell consumers, measured cells using in-house reference cells and compared those results to measurements made where each lab used the same set of reference cells. The results show that most of the discrepancy between laboratories is likely due to the quality of the standard cells rather than the measurement system or solar simulator used.
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-98 Mission Specialists Robert Curbeam (center left) and Tom Jones (center right) practice with tools that will be used on extravehicular activities on their mission. The STS-98 crew is at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- STS-98 Mission Specialist Marsha Ivins takes a topsy-turvy look at the EVA hatch in the Orbiter Docking System, which is already installed in the payload bay of orbiter Atlantis. She and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- STS-98 Mission Specialist Marsha Ivins takes a topsy-turvy look at the EVA hatch in the Orbiter Docking System, which is already installed in the payload bay of orbiter Atlantis. She and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- In the Orbiter Processing Facility, STS-98 Mission Specialists Robert Curbeam (center left) and Tom Jones (center right) practice with tools that will be used on extravehicular activities on their mission. The STS-98 crew is at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
Technological Progress: A Function of User Necessity
NASA Technical Reports Server (NTRS)
Shkolyar, Svetlana
2007-01-01
Conducting the myriad of space launch preparations more effectively with specialized tools that improve existing processes or address new issues requires innovative technologies. Although the mission of the Applied Physics Lab at NASA's Kennedy Space Center is to deliver gadgets to support these launch missions and operations, it is the verdict of the end users of these technologies that dictates which ones succeed and are used. There have been over total 40 pieces of hardware developed at the APL to assist the safety, efficiency, and cost of shuttle program operations in the 19 years of the lab's operation.
2011-05-12
Cape Canaveral, Fla. -- Students listen intently as a laboratory technician describes a project that's being researched in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin
2011-05-12
Cape Canaveral, Fla. -- Students participate in a high-altitude balloon experiment that's being conducted on the grounds of Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin
2011-05-12
Cape Canaveral, Fla. -- Students participate in a high-altitude balloon experiment that's being conducted on the grounds of Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin
2011-05-12
Cape Canaveral, Fla. -- Kennedy Center Director Bob Cabana speaks to the students after they participated in hands-on projects in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin
2011-05-12
Cape Canaveral, Fla. -- A student participates in a hands-on activity as a laboratory technician assists in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin
2011-05-12
Cape Canaveral, Fla. -- Students listen intently as a laboratory technician describes a project that's being researched in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin
2011-05-12
Cape Canaveral, Fla. -- Students listen intently as a laboratory technician describes the high-altitude balloon experiment that's being conducted on the grounds of Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin
2011-05-12
Cape Canaveral, Fla. -- Students participate in a hands-on activity as a laboratory technician looks on in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin
2011-05-12
Cape Canaveral, Fla. -- Students listen intently as a laboratory technician describes a project that's being researched in Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin
2011-05-12
Cape Canaveral, Fla. -- Students participate in a high-altitude balloon experiment that's being conducted on the grounds of Kennedy’s Space Life Sciences Laboratory (SLSL). High-school students from two Orlando, Fla., schools travelled to NASA’s Kennedy Space Center in Florida to participate in National Lab Day activities. During the event, about 80 students, toured various facilities and engaged in educational hands-on activities. National Lab Day is a partnership between federal agencies, foundations, professional societies and organizations devoted to promoting science, technology, engineering and math, or STEM, hands-on discovery-based laboratory experiences for students. Photo Credit: NASA/Frankie Martin
Geolab Results from Three Years of Analog Mission Tests
NASA Technical Reports Server (NTRS)
Evans, Cindy A.; Bell, M. S.; Calaway, M. J.
2013-01-01
GeoLab is a prototype glovebox for geological sample examination that was, until November 2012, fully integrated into NASA's Deep Space Habitat Analog Testbed [1,2]. GeoLab allowed us to test science operations related to contained sample examination during simulated exploration missions. The facility, shown in Figure 1 and described elsewhere [1-4], was designed for fostering the development of both instrument technology and operational concepts for sample handling and examination during future missions [3-5]. Even though we recently deintegrated the glovebox from the Deep Space Habitat (Fig. 2), it continues to provide a high-fidelity workspace for testing instruments that could be used for sample characterization. As a testbed, GeoLab supports the development of future science operations that will enhance the early scientific returns from exploration missions, and will help ensure selection of the best samples for Earth return.
Kedalion: NASA's Adaptable and Agile Hardware/Software Integration and Test Lab
NASA Technical Reports Server (NTRS)
Mangieri, Mark L.; Vice, Jason
2011-01-01
NASA fs Kedalion engineering analysis lab at Johnson Space Center is on the forefront of validating and using many contemporary avionics hardware/software development and integration techniques, which represent new paradigms to heritage NASA culture. Kedalion has validated many of the Orion hardware/software engineering techniques borrowed from the adjacent commercial aircraft avionics solution space, with the intention to build upon such techniques to better align with today fs aerospace market. Using agile techniques, commercial products, early rapid prototyping, in-house expertise and tools, and customer collaboration, Kedalion has demonstrated that cost effective contemporary paradigms hold the promise to serve future NASA endeavors within a diverse range of system domains. Kedalion provides a readily adaptable solution for medium/large scale integration projects. The Kedalion lab is currently serving as an in-line resource for the project and the Multipurpose Crew Vehicle (MPCV) program.
2012-07-30
CAPE CANAVERAL, Fla. – David Reed, left, explains an innovation developed at NASA's Kennedy Space Center to Mason Peck, center, NASA's chief Technologist, during Pecks' tour of the Space Life Sciences Laboratory at Kennedy. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin
Williams works with LOCAD-PTS Experiment Hardware in the US Lab during Expedition 15
2007-05-05
ISS015-E-06773 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, sets up a video camera inside a flame resistant covering to film a chip during Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) Swab Operations in the Destiny laboratory of the International Space Station.
Phillips Lab Project Manager’s Handbook
1994-04-15
Phillips Lab continues to be the Air Force Phillips Laboratory (PL) center of excellence for space research and Kirtland AFB, New...POINTS OF CONTACT pages of world history. In 1949, the Cambridge Field Station was renamed the Kirtland AFB: Air Force Cambridge Research Laboratories ...by the Air Force’s facilities are geographically located. Phillips Laboratory at Kirtland Air Force
Williams works with LOCAD-PTS in Destiny lab
2007-04-01
ISS014-E-18822 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Williams works with LOCAD-PTS in Destiny lab
2007-04-01
ISS014-E-18818 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
ISS Expedition 18 Lab-On-a-Chip Applications Development (LOCAD) OPS
2009-01-10
ISS018-E-018995 (10 Jan. 2009) --- Astronaut Sandra Magnus, Expedition 18 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Williams works with LOCAD-PTS in Destiny lab
2007-04-01
ISS014-E-18811 (31 March 2007) --- Astronaut Sunita L. Williams, Expedition 14 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
2000-10-27
In the Space Station Processing Facility, the Italian-built Multi-Purpose Logistics Module “Raffaello” rests on a workstand where its weight and balance will be evaluated. Rafaello is the payload on mission STS-100, a Lab outfitting flight. Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Sherrit, Stewart; Bao, Xiaoqi; Chang, Zensheu; Lih, Shyh-Shiuh
2004-01-01
Increasingly, electroactive materials are used to produce acutators, sensors, displays and other elements of mechanisms and devices. In recognition of the potential of these materials, research at the JPL's NDEAA Lab have led to many novel space and terrestrial applications. This effort involves mostly the use of piezoelectric and electroactive polymers (EAP).
Norm Abram of 'This Old House'visits KSC to film for show
NASA Technical Reports Server (NTRS)
2000-01-01
Astronaut John Herrington (left) and Norm Abram, master carpenter of television's This Old House and The New Yankee Workshop, talk in front of a mockup of the U.S. Lab. Abram is at KSC to film an episode of This Old House. The mockup lab is in the International Space Station Center, a tour facility.
Norm Abram of 'This Old House' visits KSC to film for show
NASA Technical Reports Server (NTRS)
2000-01-01
Astronaut John Herrington (left) shows a mockup of the U.S. Lab to Norm Abram, master carpenter of television's This Old House and The New Yankee Workshop. Abram is at KSC to film an episode of This Old House. The mockup lab is in the International Space Station Center, a tour facility.
Flexible Work Strategies | Climate Neutral Research Campuses | NREL
physical resources through shared offices and hotelling. Employees take turns using physical office and lab , telecommuting, and similar strategies make the most of limited physical space and, in some cases, avoid new construction. Hotelling is a popular option under which employees take turns using physical office and lab
ERIC Educational Resources Information Center
Gercek, Gokhan; Saleem, Naveed
2006-01-01
Providing adequate computing lab support for Management Information Systems (MIS) and Computer Science (CS) programs is a perennial challenge for most academic institutions in the US and abroad. Factors, such as lack of physical space, budgetary constraints, conflicting needs of different courses, and rapid obsolescence of computing technology,…
Supporting the Knowledge Continuum through Technology: From Consumption to Fabrication
ERIC Educational Resources Information Center
Blowers, Helene
2012-01-01
Spaces such as the Chicago and Miami YOUmedia centers are great examples of digital media labs. Focused on providing technology and services that allow teens to explore their passions in an unstructured creative process, these labs provide technology that encourages the self-expression and creation of ideas in almost any digital format, such as…
Definition of avionics concepts for a heavy lift cargo vehicle. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
1989-01-01
A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is examined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility, although the lab is not limited in use to support of HLCVs. Volume 1 provides a summary of the vehicle avionics trade studies, the avionics lab objectives, a summary of the lab's functional requirements and design, physical facility considerations, and cost estimates.
Evaluation and recommendations for work group integration within the Materials and Processes Lab
NASA Technical Reports Server (NTRS)
Farrington, Phillip A.
1992-01-01
The goal of this study was to evaluate and make recommendations for improving the level of integration of several work groups within the Materials and Processes Lab at the Marshall Space Flight Center. This evaluation has uncovered a variety of projects that could improve the efficiency and operation of the work groups as well as the overall integration of the system. In addition, this study provides the foundation for specification of a computer integrated manufacturing test bed environment in the Materials and Processes Lab.
Nespoli works with BXF Hardware in the US Lab MSG
2011-04-28
ISS027-E-017809 (28 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
Nespoli works with BXF Hardware in the US Lab MSG
2011-04-28
ISS027-E-017810 (28 April 2011) --- European Space Agency astronaut Paolo Nespoli, Expedition 27 flight engineer, works with the Microgravity Science Glovebox (MSG) in the Destiny laboratory of the International Space Station.
2003-12-01
Dr. Lisa Monaco, Marshall Space Flight Center’s (MSFC’s) project scientist for the Lab-on-a-Chip Applications Development (LOCAD) program, examines a lab on a chip. The small dots are actually ports where fluids and chemicals can be mixed or samples can be collected for testing. Tiny channels, only clearly visible under a microscope, form pathways between the ports. Many chemical and biological processes, previously conducted on large pieces of laboratory equipment, can now be performed on these small glass or plastic plates. Monaco and other researchers at MSFC in Huntsville, Alabama, are customizing the chips to be used for many space applications, such as monitoring microbes inside spacecraft and detecting life on other planets. The portable, handheld Lab-on-a Chip Application Development Portable Test System (LOCAD-PTS) made its debut flight aboard Discovery during the STS-116 mission launched December 9, 2006. The system allowed crew members to monitor their environment for problematic contaminants such as yeast, mold, and even E.coli, and salmonella. Once LOCAD-PTS reached the International Space Station (ISS), the Marshall team continued to manage the experiment, monitoring the study from a console in the Payload Operations Center at MSFC. The results of these studies will help NASA researchers refine the technology for future Moon and Mars missions. (NASA/MSFC/D.Stoffer)
Magam, Sami M; Zakaria, Mohamad Pauzi; Halimoon, Normala; Aris, Ahmad Zaharin; Kannan, Narayanan; Masood, Najat; Mustafa, Shuhaimi; Alkhadher, Sadeq; Keshavarzifard, Mehrzad; Vaezzadeh, Vahab; Sani, Muhamad S A; Latif, Mohd Talib
2016-03-01
This is the first extensive report on linear alkylbenzenes (LABs) as sewage molecular markers in surface sediments collected from the Perlis, Kedah, Merbok, Prai, and Perak Rivers and Estuaries in the west of Peninsular Malaysia. Sediment samples were extracted, fractionated, and analyzed using gas chromatography mass spectrometry (GC-MS). The concentrations of total LABs ranged from 68 to 154 (Perlis River), 103 to 314 (Kedah River), 242 to 1062 (Merbok River), 1985 to 2910 (Prai River), and 217 to 329 ng g(-1) (Perak River) dry weight (dw). The highest levels of LABs were found at PI3 (Prai Estuary) due to the rapid industrialization and population growth in this region, while the lowest concentrations of LABs were found at PS1 (upstream of Perlis River). The LABs ratio of internal to external isomers (I/E) in this study ranged from 0.56 at KH1 (upstream of Kedah River) to 1.35 at MK3 (Merbok Estuary) indicating that the rivers receive raw sewage and primary treatment effluents in the study area. In general, the results of this paper highlighted the necessity of continuation of water treatment system improvement in Malaysia.
Eyharts Exercises on the CEVIS in the US Lab
2008-03-16
ISS016-E-032805 (16 March 2008) --- European Space Agency (ESA) astronaut Leopold Eyharts, Expedition 16 flight engineer, exercises on the Cycle Ergometer with Vibration Isolation System (CEVIS) in the Destiny laboratory of the International Space Station while Space Shuttle Endeavour (STS-123) remains docked with the station.
GeneLab Phase 2: Integrated Search Data Federation of Space Biology Experimental Data
NASA Technical Reports Server (NTRS)
Tran, P. B.; Berrios, D. C.; Gurram, M. M.; Hashim, J. C. M.; Raghunandan, S.; Lin, S. Y.; Le, T. Q.; Heher, D. M.; Thai, H. T.; Welch, J. D.;
2016-01-01
The GeneLab project is a science initiative to maximize the scientific return of omics data collected from spaceflight and from ground simulations of microgravity and radiation experiments, supported by a data system for a public bioinformatics repository and collaborative analysis tools for these data. The mission of GeneLab is to maximize the utilization of the valuable biological research resources aboard the ISS by collecting genomic, transcriptomic, proteomic and metabolomic (so-called omics) data to enable the exploration of the molecular network responses of terrestrial biology to space environments using a systems biology approach. All GeneLab data are made available to a worldwide network of researchers through its open-access data system. GeneLab is currently being developed by NASA to support Open Science biomedical research in order to enable the human exploration of space and improve life on earth. Open access to Phase 1 of the GeneLab Data Systems (GLDS) was implemented in April 2015. Download volumes have grown steadily, mirroring the growth in curated space biology research data sets (61 as of June 2016), now exceeding 10 TB/month, with over 10,000 file downloads since the start of Phase 1. For the period April 2015 to May 2016, most frequently downloaded were data from studies of Mus musculus (39) followed closely by Arabidopsis thaliana (30), with the remaining downloads roughly equally split across 12 other organisms (each 10 of total downloads). GLDS Phase 2 is focusing on interoperability, supporting data federation, including integrated search capabilities, of GLDS-housed data sets with external data sources, such as gene expression data from NIHNCBIs Gene Expression Omnibus (GEO), proteomic data from EBIs PRIDE system, and metagenomic data from Argonne National Laboratory's MG-RAST. GEO and MG-RAST employ specifications for investigation metadata that are different from those used by the GLDS and PRIDE (e.g., ISA-Tab). The GLDS Phase 2 system will implement a Google-like, full-text search engine using a Service-Oriented Architecture by utilizing publicly available RESTful web services Application Programming Interfaces (e.g., GEO Entrez Programming Utilities) and a Common Metadata Model (CMM) in order to accommodate the different metadata formats between the heterogeneous bioinformatics databases. GLDS Phase 2 completion with fully implemented capabilities will be made available to the general public in September 2017.
NASA Astrophysics Data System (ADS)
Da Fonseca, Ijar M.; Goes, Luiz C. S.; Seito, Narumi; da Silva Duarte, Mayara K.; de Oliveira, Élcio Jeronimo
2017-08-01
In space the manipulators working space is characterized by the microgravity environment. In this environment the spacecraft floats and its rotational/translational motion may be excited by any internal and external disturbances. The complete system, i.e., the spacecraft and the associated robotic manipulator, floats and is sensitive to any reaction force and torque related to the manipulator's operation. In this sense the effort done by the robot may result in torque about the system center of mass and also in forces changing its translational motion. This paper analyzes the impact of the robot manipulator dynamics on the attitude motion and the associated control effort to keep the attitude stable during the manipulator's operation. The dynamics analysis is performed in the close proximity phase of rendezvous docking/berthing operation. In such scenario the linear system equations for the translation and attitude relative motions are appropriate. The computer simulations are implemented for the relative translational and rotational motion. The equations of motion have been simulated through computer by using the MatLab software. The LQR and the PID control laws are used for linear and nonlinear control, respectively, aiming to keep the attitude stable while the robot is in and out of service. The gravity-gradient and the residual magnetic torque are considered as external disturbances. The control efforts are analyzed for the manipulator in and out of service. The control laws allow the system stabilization and good performance when the manipulator is in service.
1996-03-15
Portrait of Marshall's eighth Center Director Dr. Jerroll W. Littles (1996-1998). During the two short years as Center Director, Dr. Littles' administration was responsible for the space lab mission, the space science projects, alternative light-weight launch vehicles and their engine development.
Deep Space Gateway Science Opportunities
NASA Astrophysics Data System (ADS)
Quincy, C. D.; Charles, J. B.; Hamill, D. L.; Sun, S. C.
2018-02-01
Life sciences see the Deep Space Gateway as an opportunity to investigate biological organisms in a unique environment that cannot be replicated in Earth-based labs or on LEO platforms. The needed capabilities must be built into the Gateway facility.
Padalka waves hello from the U.S. Lab during EXP 8 / EXP 9
2004-04-24
ISS008-E-22135 (24 April 2004) --- Cosmonaut Gennady I. Padalka, Expedition 9 commander representing Russias Federal Space Agency, floats in the Destiny laboratory of the International Space Station (ISS).
2012-07-30
CAPE CANAVERAl, Fla. - Dr. Mason Peck, NASA's chief Technologist, saw some plant experiments during a tour of the Space Life Sciences Laboratory at Kennedy. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin
2008-07-02
CAPE CANAVERAL, Fla. – Professor Peter Voci, NYIT MOCAP (Motion Capture) team director, (left) hands a component of the Orion Crew Module mockup to one of three technicians inside the mockup. The technicians wear motion capture suits. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup. The work is being performed in United Space Alliance's Human Engineering Modeling and Performance Lab in the RLV Hangar at NASA's Kennedy Space Center. The motion tracking aims to improve efficiency of assembly processes and identify potential ergonomic risks for technicians assembling the mockup. The work is being performed in United Space Alliance's Human Engineering Modeling and Performance Lab in the RLV Hangar at NASA's Kennedy Space Center. Part of NASA's Constellation Program, the Orion spacecraft will return humans to the moon and prepare for future voyages to Mars and other destinations in our solar system.
U.S. Rep. Dave Weldon looks at the U.S. Lab Destiny in the SSPF.
NASA Technical Reports Server (NTRS)
1999-01-01
In the Space Station Processing Facility, U.S. Rep. Dave Weldon (center) and his chief of staff Dana Gartzke (second from left) get a close-up look at the interior of the U.S. Lab, called 'Destiny.' Thomas R. 'Randy' Galloway (second from right), with the Space Station Hardware Integration Office, helps with their familiarization of the equipment. They are joined (far left and right) by workers from Boeing. Weldon is on the House Science Committee and vice chairman of the Space and Aeronautics Subcommittee. Destiny is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS, with five equipment racks aboard to provide essential functions for station systems, including high data-rate communications, and to maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.
A Lab-on-Chip Design for Miniature Autonomous Bio-Chemoprospecting Planetary Rovers
NASA Astrophysics Data System (ADS)
Santoli, S.
The performance of the so-called ` Lab-on-Chip ' devices, featuring micrometre size components and employed at present for carrying out in a very fast and economic way the extremely high number of sequence determinations required in genomic analyses, can be largely improved as to further size reduction, decrease of power consumption and reaction efficiency through development of nanofluidics and of nano-to-micro inte- grated systems. As is shown, such new technologies would lead to robotic, fully autonomous, microwatt consumption and complete ` laboratory on a chip ' units for accurate, fast and cost-effective astrobiological and planetary exploration missions. The theory and the manufacturing technologies for the ` active chip ' of a miniature bio/chemoprospecting planetary rover working on micro- and nanofluidics are investigated. The chip would include micro- and nanoreactors, integrated MEMS (MicroElectroMechanical System) components, nanoelectronics and an intracavity nanolaser for highly accurate and fast chemical analysis as an application of such recently introduced solid state devices. Nano-reactors would be able to strongly speed up reaction kinetics as a result of increased frequency of reactive collisions. The reaction dynamics may also be altered with respect to standard macroscopic reactors. A built-in miniature telemetering unit would connect a network of other similar rovers and a central, ground-based or orbiting control unit for data collection and transmission to an Earth-based unit through a powerful antenna. The development of the ` Lab-on-Chip ' concept for space applications would affect the economy of space exploration missions, as the rover's ` Lab-on-Chip ' development would link space missions with the ever growing terrestrial market and business concerning such devices, largely employed in modern genomics and bioinformatics, so that it would allow the recoupment of space mission costs.
UAF Space Systems Engineering Program: Engaging Students through an Apprenticeship Model
NASA Astrophysics Data System (ADS)
Thorsen, D.
2017-12-01
Learning by doing has been the mantra of engineering education for decades, however, the constraints of semester length courses limits the types and size of experiences that can be offered to students. The Space Systems Engineering Program (SSEP) at the University of Alaska Fairbanks provides interdisciplinary engineering and science students with hands-on experience in all aspects of space systems engineering through a design, build, launch paradigm applied to balloon and rocket payloads and small satellites. The program is structured using an apprenticeship model such that students, freshmen through graduate, can participate in multi-year projects thereby gaining experiences appropriate to their level in college. Students enter the lab in a trainee position and receive training on lab processes and design software. Depending on the student's interests they learn how to use specific lab equipment and software design tools. Trainees provide support engineering under guidance of an upper classman. As the students' progress in their degree program and gain more expertise, they typically become part of a specific subsystem team, where they receive additional training in developing design documents and in writing requirements and test documents, and direct their efforts to meeting specific objectives. By the time the student reaches their senior year, they have acquired the leadership role for a specific subsystem and/or a general leadership role in the lab. If students stay to pursue graduate degrees, they assume the responsibility of training and mentoring other undergraduates in their areas of expertise. Throughout the program upper class students mentor the newer students. The Space Systems Engineering Program strives to reinforce a student's degree program through these large scale projects that place engineering in context.
Air Circulation and Heat Exchange under Reduced Pressures
NASA Astrophysics Data System (ADS)
Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip
Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.
Comparative decision models for anticipating shortage of food grain production in India
NASA Astrophysics Data System (ADS)
Chattopadhyay, Manojit; Mitra, Subrata Kumar
2018-01-01
This paper attempts to predict food shortages in advance from the analysis of rainfall during the monsoon months along with other inputs used for crop production, such as land used for cereal production, percentage of area covered under irrigation and fertiliser use. We used six binary classification data mining models viz., logistic regression, Multilayer Perceptron, kernel lab-Support Vector Machines, linear discriminant analysis, quadratic discriminant analysis and k-Nearest Neighbors Network, and found that linear discriminant analysis and kernel lab-Support Vector Machines are equally suitable for predicting per capita food shortage with 89.69 % accuracy in overall prediction and 92.06 % accuracy in predicting food shortage ( true negative rate). Advance information of food shortage can help policy makers to take remedial measures in order to prevent devastating consequences arising out of food non-availability.
Separation of scintillation and Cherenkov lights in linear alkyl benzene
Li, Mohan; Guo, Ziyi; Yeh, Minfang; ...
2016-09-11
To separate scintillation and Cherenkov lights in water-based liquid scintillator detectors is a desired feature for future neutrino and proton decay experiments. Linear alkyl benzene (LAB) is one important ingredient of a water-based liquid scintillator currently under development. In this paper we report on the separation of scintillation and Cherenkov lights observed in an LAB sample. The rise and decay times of the scintillation light are measured to be (7.7±3.0)ns and (36.6±2.4)ns, respectively, while the full width [–3σ, 3σ] of the Cherenkov light is 12 ns and is dominated by the time resolution of the photomultiplier tubes. Here, the scintillationmore » light yield was measured to be (1.01±0.12)×103photons/MeV.« less
Near Space Lab-Rat Experimentation using Stratospheric Balloon
NASA Astrophysics Data System (ADS)
Buduru, Suneel Kumar; Reddy Vizapur, Anmi; Rao Tanneeru, Venkateswara; Trivedi, Dharmesh; Devarajan, Anand; Pandit Manikrao Kulkarni, MR..; Ojha, Devendra; Korra, Sakram; Neerudu, Nagendra; Seng, Lim; Godi, Stalin Peter
2016-07-01
First ever balloon borne lab-rat experiment up to near space stratospheric altitude levels carried out at TIFR Balloon Facility, Hydeabad using zero pressure balloons for the purpose of validating the life support system. A series of two balloon experiments conducted under joint collaboration with IN.Genius, Singapore in the year 2015. In these experiments, three lab-rats sent to stratosphere in a pressurized capsule designed to reach an altitude of 30 km by keeping constant pressure, temperature and maintained at a precise rate of oxygen supply inside the capsule. The first experiment conducted on 1 ^{st} February, 2015 with a total suspended weight of 225 kg. During the balloon ascent stage at 18 km altitude, sensors inside the capsule reported drastic drop in internal pressure while oxygen and temperatures maintained at correct levels resulted in premature fligt termination at 20.1 km. All the three lab-rats recovered without life due to the collapse of their lungs caused by the depressurization inside the capsule. The second experiment conducted on 14th March, 2015 using a newly developed capsule with rectification of depressurization fault by using improved sealing gaskets and hermitically sealed connectors for sending lab-rats again to stratosphere comprising a total suspended load of 122.3 kg. The balloon flight was terminated after reaching 29.5 km in 110 minutes and succesfully recovered all the three lab-rats alive. This paper focuses on lessons learnt of the development of the life support system as an integral pressurized vessel, flight control instrumentation, flight simulation tests using thermo-vaccum chamber with pre-flight operations.
Chip in a lab: Microfluidics for next generation life science research
Streets, Aaron M.; Huang, Yanyi
2013-01-01
Microfluidic circuits are characterized by fluidic channels and chambers with a linear dimension on the order of tens to hundreds of micrometers. Components of this size enable lab-on-a-chip technology that has much promise, for example, in the development of point-of-care diagnostics. Micro-scale fluidic circuits also yield practical, physical, and technological advantages for studying biological systems, enhancing the ability of researchers to make more precise quantitative measurements. Microfluidic technology has thus become a powerful tool in the life science research laboratory over the past decade. Here we focus on chip-in-a-lab applications of microfluidics and survey some examples of how small fluidic components have provided researchers with new tools for life science research. PMID:23460772
Calibrating AIS images using the surface as a reference
NASA Technical Reports Server (NTRS)
Smith, M. O.; Roberts, D. A.; Shipman, H. M.; Adams, J. B.; Willis, S. C.; Gillespie, A. R.
1987-01-01
A method of evaluating the initial assumptions and uncertainties of the physical connection between Airborne Imaging Spectrometer (AIS) image data and laboratory/field spectrometer data was tested. The Tuscon AIS-2 image connects to lab reference spectra by an alignment to the image spectral endmembers through a system gain and offset for each band. Images were calibrated to reflectance so as to transform the image into a measure that is independent of the solar radiant flux. This transformation also makes the image spectra directly comparable to data from lab and field spectrometers. A method was tested for calibrating AIS images using the surface as a reference. The surface heterogeneity is defined by lab/field spectral measurements. It was found that the Tuscon AIS-2 image is consistent with each of the initial hypotheses: (1) that the AIS-2 instrument calibration is nearly linear; (2) the spectral variance is caused by sub-pixel mixtures of spectrally distinct materials and shade, and (3) that sub-pixel mixtures can be treated as linear mixtures of pure endmembers. It was also found that the image can be characterized by relatively few endmembers using the AIS-2 spectra.
1998-12-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges, Program Manager of the International Space Station (ISS) Randy Brinkley, and STS-98 crew members Pilot Mark Polansky, Commander Ken Cockrell and Mission Specialist Marsha Ivins wait for the unveiling of the name "Destiny" for the U.S. Lab module, which is behind them on a workstand. The lab, scheduled to be launched on Space Shuttle Endeavour in early 2000, will become the centerpiece of scientific research on the ISS. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
1998-12-02
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and (right) STS-98 Commander Ken Cockrell applaud the unveiling of the name Destiny given the U.S. Lab module. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. Cockrell is part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
2012-05-14
CAPE CANAVERAL, Fla. – Students view a demonstration by Dr. James Fesmire inside the cryogenics lab in the Operations and Checkout Building. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann
2012-05-14
CAPE CANAVERAL, Fla. – Outside the Operations and Checkout Building, Rudy Werlink gives students a first-hand look at the workings of the cryogenics lab. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann
2012-05-14
CAPE CANAVERAL, Fla. – Students and their teachers get some hands-on experience inside the applied physics lab in the Operations and Checkout Building. The 26 honor students in chemistry and biology and their teachers got a chance to visit a number of high-tech labs at Kennedy Space Center as part of an effort to encourage students in the areas of science, technology, engineering and math. The tenth and eleventh grade students from Terry Parker High School in Jacksonville, Fla., visited a number of vastly different labs during their one-day tour. The group's visit to Kennedy was hosted by the Education Office as part of a nationwide effort by the National Lab Network to help introduce the nation's students to science careers. Photo credit: NASA/Jim Grossmann
Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15
2007-04-30
ISS015-E-05649 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Williams works on the LOCAD-PTS Experiment in the US Lab during Expedition 15
2007-05-05
ISS015-E-06777 (5 May 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
Williams working on the LOCAD-PTS Experiment in the US Lab during Expedition 15
2007-04-30
ISS015-E-05640 (30 April 2007) --- Astronaut Sunita L. Williams, Expedition 15 flight engineer, works with the Lab-on-a-Chip Application Development-Portable Test System (LOCAD-PTS) experiment in the Destiny laboratory of the International Space Station. LOCAD-PTS is a handheld device for rapid detection of biological and chemical substances onboard the station.
White Paper for Virtual Control Room
NASA Technical Reports Server (NTRS)
Little, William; Tully-Hanson, Benjamin
2015-01-01
The Virtual Control Room (VCR) Proof of Concept (PoC) project is the result of an award given by the Fourth Annual NASA T&I Labs Challenge Project Call. This paper will outline the work done over the award period to build and enhance the capabilities of the Augmented/Virtual Reality (AVR) Lab at NASA's Kennedy Space Center (KSC) to create the VCR.
2000-10-27
In the Space Station Processing Facility, the Italian-built Multi-Purpose Logistics Module “Raffaello” is suspended over a workstand where its weight and balance will be evaluated. Rafaello is the payload on mission STS-100, a Lab outfitting flight. Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001
2000-10-27
In the Space Station Processing Facility, the Italian-built Multi-Purpose Logistics Module “Raffaello” is lowered onto a workstand where its weight and balance will be evaluated. Rafaello is the payload on mission STS-100, a Lab outfitting flight. Raffaello carries six system racks and two storage racks for the U.S. Lab. Launch of STS-100 is scheduled for April 19, 2001
The Laboratory of Museum Studies: Museality in the Making
ERIC Educational Resources Information Center
Latham, Kiersten F.
2017-01-01
As makerspaces and hackerspaces pop up in libraries and museums, one little lab sits in the middle of an Information School, but it is not a maker-space, a gallery, or a museum. The MuseLab, at the Kent State School of Information, is something else, something new--or perhaps something familiar, but situated in a different context, making it less…
Technologies for autonomous integrated lab-on-chip systems for space missions
NASA Astrophysics Data System (ADS)
Nascetti, A.; Caputo, D.; Scipinotti, R.; de Cesare, G.
2016-11-01
Lab-on-chip devices are ideal candidates for use in space missions where experiment automation, system compactness, limited weight and low sample and reagent consumption are required. Currently, however, most microfluidic systems require external desktop instrumentation to operate and interrogate the chip, thus strongly limiting their use as stand-alone systems. In order to overcome the above-mentioned limitations our research group is currently working on the design and fabrication of "true" lab-on-chip systems that integrate in a single device all the analytical steps from the sample preparation to the detection without the need for bulky external components such as pumps, syringes, radiation sources or optical detection systems. Three critical points can be identified to achieve 'true' lab-on-chip devices: sample handling, analytical detection and signal transduction. For each critical point, feasible solutions are presented and evaluated. Proposed microfluidic actuation and control is based on electrowetting on dielectrics, autonomous capillary networks and active valves. Analytical detection based on highly specific chemiluminescent reactions is used to avoid external radiation sources. Finally, the integration on the same chip of thin film sensors based on hydrogenated amorphous silicon is discussed showing practical results achieved in different sensing tasks.
STS-98 payload U.S. Lab Destiny is moved into Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- Workers in the Payload Changeout Room begin moving the U.S. Lab Destiny to the orbiter'''s payload bay. The PCR is the enclosed, environmentally controlled portion of the rotating service structure that supports payload delivery at the launch pad and vertical installation in the orbiter payload bay. Destiny, a key element in the construction of the International Space Station, is 28 feet long and weighs 16 tons. This research and command-and- control center is the most sophisticated and versatile space laboratory ever built. It will ultimately house a total of 23 experiment racks for crew support and scientific research. STS-98 is the seventh construction flight to the ISS. Launch of STS-98 is scheduled for Jan. 19 at 2:11 a.m. EST.
STS-98 crew checks out the U.S. Lab Destiny in Atlantis' payload bay
NASA Technical Reports Server (NTRS)
2001-01-01
KENNEDY SPACE CENTER, Fla. -- In the payload bay of the orbiter Atlantis, STS-98 Mission Specialists Thomas Jones (left) and Robert Curbeam (right) talk about their mission, attaching the U.S. Lab Destiny (in the background) to the International Space Station. The crew is at KSC for Terminal Countdown Demonstration Test activities, which also include a simulated launch countdown. A key element in the construction of the International Space Station, Destiny is a pressurized module designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 13 locations especially designed to support experiments. The module already has five system racks installed inside. Launch of STS-98 on its 11-day mission is scheduled for Jan. 19 at 2:11 a.m. EST.
Berkeley Lab - Materials Sciences Division
MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Operations For information regarding Human Resources, procedures for acknowledging MSD support, division
Berkeley Lab - Materials Sciences Division
MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & ; Finance Templates Travel One-Stop Acknowledging MSD Support Human Resources Facilities & Space Planning Procurement and Property Proposals & Finance Templates Travel Human Resources General
2012-07-30
CAPE CANAVERAl, Fla. - Dr. Mason Peck, left, NASA's chief Technologist, examines an innovative conductive material during a tour of the Space Life Sciences Laboratory at Kennedy. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin
Kimbrough works with NLP-Vaccine-2 on MDDK
2008-11-16
S126-E-007561 (16 Nov. 2008) --- Astronaut Shane Kimbrough, STS-126 mission specialist, works with the National Lab Pathfinder-Vaccine Group Activation Pack on the middeck of Space Shuttle Endeavour while docked with the International Space Station.
Okamura, Tomonori; Sekikawa, Akira; Sawamura, Tatsuya; Kadowaki, Takashi; Barinas-Mitchell, Emma; Mackey, Rachel H; Kadota, Aya; Evans, Rhobert W; Edmundowicz, Daniel; Higashiyama, Aya; Nakamura, Yasuyuki; Abbott, Robert D; Miura, Katsuyuki; Fujiyoshi, Akira; Fujita, Yoshiko; Murakami, Yoshitaka; Miyamatsu, Naomi; Kakino, Akemi; Maegawa, Hiroshi; Murata, Kiyoshi; Horie, Minoru; Mitsunami, Kenichi; Kashiwagi, Atsunori; Kuller, Lewis H; Ueshima, Hirotsugu
2013-07-01
The serum level of LOX-1 ligand containing ApoB (LAB) may reflect atherogenicity better than LDL cholesterol (LDLC), total LDL particles and usual measurement of oxidized LDL. The association between LAB and intima-media thickness (IMT) of carotid artery was investigated by ultrasound in US and Japan men. Participants were 297 US Caucasian and 310 Japanese men, aged 40-49 years without past history of cardiovascular disease. Serum LAB levels were measured by ELISAs with recombinant LOX-1 and monoclonal anti-apolipoprotein B antibody. Serum LAB levels [median (interquartile range), μg/L] were 1321 (936, 1730) in US Caucasians and 940 (688, 1259) in Japanese. For Caucasian men, average IMT was higher in higher LAB quartile, which was 0.653, 0.667, 0.688, and 0.702 mm, respectively (p for trend = 0.02). Linear regression analysis showed serum LAB was significantly associated with IMT after adjustment for LDLC or total LDL particles in addition to other traditional or novel risk factors for atherosclerosis such as C-reactive protein. However, there was no significant relationship between LAB and IMT in Japanese men. Serum LAB, a new candidate biomarker for residual risk, was associated with an increased carotid IMT in US Caucasian men independently of various risk factors; however, ethnic difference should be clarified in the future. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dorfman, S.; Carter, T.; Pribyl, P.; Tripathi, S. K. P.; van Compernolle, B.; Vincena, S.; Sydora, R.
2013-10-01
Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behavior of these waves has been extensively studied, non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may play an important role in coronal heating and/or in establishing the spectrum of solar wind turbulence. Recent counter-propagating Alfvén wave experiments have recorded the first laboratory observation of the Alfvén-acoustic mode coupling at the heart of this parametric decay instability. The resonance in the observed beat process has several features consistent with ponderomotive coupling to an ion acoustic mode, including the measured dispersion relation and spatial profile. Strong damping observed after the pump Alfvén waves are turned off is under investigation. New experiments and simulations also aim to identify decay instabilities from a single large-amplitude Alfvén wave. Supported by DOE and NSF.
Connecting the Force from Space: The IRIS Joint Capability Technology Demonstration
2010-01-01
the Joint in Joint Capability Technology Demonstration, we have two sponsors, both U.S. Strategic Command and the Defense Information Systems...Capability Technology Demonstration will provide an excellent source of data on space-based Internet Protocol net- working. Operational... Internet Routing in Space Joint Capability Technology Demonstration Operational Manager, Space and Missile Defense Battle Lab, Colorado Springs
2000-11-18
KENNEDY SPACE CENTER, FLA. -- Lowered into the payload bay of the orbiter Atlantis, some of the STS-98 crew (center of the photo) look over part of the payload. From left are Mission Specialists Robert Curbeam, Tom Jones and Marsha Ivins. They and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- Lowered into the payload bay of the orbiter Atlantis, some of the STS-98 crew (center of the photo) look over part of the payload. From left are Mission Specialists Robert Curbeam, Tom Jones and Marsha Ivins. They and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- Lowered into the payload bay of the orbiter Atlantis, some of the STS-98 crew look over part of the payload. At center is Mission Specialist Robert Curbeam; at right are Mission Specialists Marsha Ivins (standing) and Tom Jones (kneeling). They and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
2000-11-18
KENNEDY SPACE CENTER, FLA. -- Lowered into the payload bay of the orbiter Atlantis, some of the STS-98 crew look over part of the payload. At center is Mission Specialist Robert Curbeam; at right are Mission Specialists Marsha Ivins (standing) and Tom Jones (kneeling). They and the rest of the crew are at KSC for Crew Equipment Interface Test activities. Launch on mission STS-98 is scheduled for Jan. 18, 2001. It will be transporting the U.S. Lab, Destiny, to the International Space Station with five system racks already installed inside of the module. After delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated
Hardware and Software Integration to Support Real-Time Space Link Emulation
NASA Technical Reports Server (NTRS)
Murawski, Robert; Bhasin, Kul; Bittner, David; Sweet, Aaron; Coulter, Rachel; Schwab, Devin
2012-01-01
Prior to operational use, communications hardware and software must be thoroughly tested and verified. In space-link communications, field testing equipment can be prohibitively expensive and cannot test to non-ideal situations. In this paper, we show how software and hardware emulation tools can be used to accurately model the characteristics of a satellite communication channel in a lab environment. We describe some of the challenges associated with developing an emulation lab and present results to demonstrate the channel modeling. We then show how network emulation software can be used to extend a hardware emulation model without requiring additional network and channel simulation hardware.
LBNL
2017-12-09
This 1993 documentary chronicles the Bevatron at Berkeley Lab. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and during the 1950s and ... This 1993 documentary chronicles the Bevatron at Berkeley Lab. During its operation from 1954 until 1993, the Bevatron was among the world's leading particle accelerators, and during the 1950s and 1960s, four Nobel Prizes were awarded for work conducted in whole or in part there. The accelerator made major contributions in four distinct areas of research: high-energy particle physics, nuclear heavy-ion physics, medical research and therapy, and space-related studies of radiation damage and heavy particles in space.
Hardware and Software Integration to Support Real-Time Space-Link Emulation
NASA Technical Reports Server (NTRS)
Murawski, Robert; Bhasin, Kul; Bittner, David
2012-01-01
Prior to operational use, communications hardware and software must be thoroughly tested and verified. In space-link communications, field testing equipment can be prohibitively expensive and cannot test to non-ideal situations. In this paper, we show how software and hardware emulation tools can be used to accurately model the characteristics of a satellite communication channel in a lab environment. We describe some of the challenges associated with developing an emulation lab and present results to demonstrate the channel modeling. We then show how network emulation software can be used to extend a hardware emulation model without requiring additional network and channel simulation hardware.
Reduction of the spermatogonial population in rat testes flown on Space Lab-3
NASA Technical Reports Server (NTRS)
Philpott, D. E.; Stevenson, J.; Corbett, R.; Sapp, W.; Williams, C.
1985-01-01
Quantization of the testicular spermatogonial population reduction in six rats is performed 12 hours after their return from seven days aboard Space Lab-3. The observed 7.1 percent organ weight loss, and 7.5 percent stage six spermatogonial cell population reduction in comparison with control rats correlate very well. Accurate dosimetry was not conducted on board, but radiation can not be considered the primary cause of the observed change. The decrease in protein kinase in the heart of these rats indicates that stress from adapting to weightlessness, the final jet flight, or other sources, is an important factor.
STS-98 crew takes part in Multi-Equipment Interface Test.
NASA Technical Reports Server (NTRS)
2000-01-01
Looking over equipment inside the U.S. Lab Destiny as part of a Multi-Equipment Interface Test are STS-98 Pilot Mark Polansky (left) and Commander Kenneth D. Cockrell (center). They are joined by astronaut James Voss (right), who will be among the first crew to inhabit the International Space Station on a flight in late 2000. During the STS-98 mission, the crew will install the Lab on the station during a series of three space walks. The mission will provide the station with science research facilities and expand its power, life support and control capabilities. The U.S. Laboratory Module continues a long tradition of microgravity materials research, first conducted by Skylab and later Shuttle and Spacelab missions. Destiny is expected to be a major feature in future research, providing facilities for biotechnology, fluid physics, combustion, and life sciences research. Others in the five-member crew on STS-98 are Mission Specialists Robert L. Curbeam Jr., Thomas D. Jones (Ph.D.) and Marsha S. Ivins. The Lab is planned for launch aboard Space Shuttle Atlantis on the sixth ISS flight, currently targeted no earlier than Aug. 19, 2000.
Return to Flight: Crew Activities Resource Reel 1 of 2
NASA Technical Reports Server (NTRS)
2005-01-01
The crew of the STS-114 Discovery Mission is seen in various aspects of training for space flight. The crew activities include: 1) STS-114 Return to Flight Crew Photo Session; 2) Tile Repair Training on Precision Air Bearing Floor; 3) SAFER Tile Inspection Training in Virtual Reality Laboratory; 4) Guidance and Navigation Simulator Tile Survey Training; 5) Crew Inspects Orbital Boom and Sensor System (OBSS); 6) Bailout Training-Crew Compartment; 7) Emergency Egress Training-Crew Compartment Trainer (CCT); 8) Water Survival Training-Neutral Buoyancy Lab (NBL); 9) Ascent Training-Shuttle Motion Simulator; 10) External Tank Photo Training-Full Fuselage Trainer; 11) Rendezvous and Docking Training-Shuttle Engineering Simulator (SES) Dome; 12) Shuttle Robot Arm Training-SES Dome; 13) EVA Training Virtual Reality Lab; 14) EVA Training Neutral Buoyancy Lab; 15) EVA-2 Training-NBL; 16) EVA Tool Training-Partial Gravity Simulator; 17) Cure in Place Ablator Applicator (CIPAA) Training Glove Vacuum Chamber; 16) Crew Visit to Merritt Island Launch Area (MILA); 17) Crew Inspection-Space Shuttle Discovery; and 18) Crew Inspection-External Tank and Orbital Boom and Sensor System (OBSS). The crew are then seen answering questions from the media at the Space Shuttle Landing Facility.
STS-133 crew during MSS/EVAA TEAM training in Virtual Reality Lab
2010-10-01
JSC2010-E-170877 (1 Oct. 2010) --- A large monitor is featured in this image during STS-133 crew members? training activities in the virtual reality laboratory in the Space Vehicle Mock-up Facility at NASA's Johnson Space Center. Photo credit: NASA or National Aeronautics and Space Administration
Space: The Final Frontier in the Learning of Science?
ERIC Educational Resources Information Center
Milne, Catherine
2014-01-01
In "Space", relations, and the learning of science", Wolff-Michael Roth and Pei-Ling Hsu use ethnomethodology to explore high school interns learning shopwork and shoptalk in a research lab that is located in a world class facility for water quality analysis. Using interaction analysis they identify how spaces, like a research…
Joint NASA and DoD deployable optics space experiment
NASA Astrophysics Data System (ADS)
Schulthess, Marcus R.; Levine, Marie B.; Bell, Kevin D.; Leonard, Steve; Vanik, Michael W.
2000-07-01
The Air Force Research Lab is proposing a DoD partnership with NASA on NEXUS; a deployable optics flight demonstrator scheduled to launch in 2004. NEXUS is designed to demonstrate technologies for the Next Generation Space Telescope, primarily the deployment and wave front control of a 2.8 meter optical telescope in space.
2012-07-30
CAPE CANAVERAL, Fla. – Dr. Mason Peck, center, NASA's chief Technologist, listens as David Reed, right, explains an innovation during Pecks' tour of the Space Life Sciences Laboratory at Kennedy. Karen L. Thompson, chief technologist for Kennedy Space Center, looks on. Peck toured the lab facility during a visit to the space center. Photo credit: NASA/Frankie Martin
1998-12-01
KENNEDY SPACE CENTER, FLA. -- In the Space Station Processing Facility, Program Manager of the International Space Station (ISS) Randy Brinkley addresses the media before unveiling the name of "Destiny" given the U.S. Lab module, the centerpiece of scientific research on the ISS. With Brinkley on the stand are Center Director Roy Bridges (behind him), and (left to right) STS-98 Commander Ken Cockrell, Pilot Mark Polansky, and Mission Specialist Marsha Ivins. The lab, which is behind them on a workstand, is scheduled to be launched on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the International Space Station. Polansky, Cockrell and Ivins are part of the five-member crew expected to be aboard. The Shuttle will spend six days docked to the station while the laboratory is attached and three space walks are conducted to complete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for station systems, including high data-rate communications, and maintain the station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights
Microbiology studies in the Space Shuttle
NASA Technical Reports Server (NTRS)
Taylor, G. R.
1976-01-01
Past space microbiology studies have evaluated three general areas: microbe detection in extraterrestrial materials; monitoring of autoflora and medically important species on crewmembers, equipment, and cabin air; and in vitro evaluations of isolated terrestrial species carried on manned and unmanned spaceflights. These areas are briefly reviewed to establish a basis for presenting probable experiment subjects applicable to the Space Shuttle era. Most extraterrestrial life detection studies involve visitations to other heavenly bodies. Although this is not applicable to the first series of Shuttle flights, attempts to capture meteors and spores in space could be important. Human pathogen and autoflora monitoring will become more important with increased variety among crewmembers. Inclusion of contaminated animal and plant specimens in the space lab will necessitate inflight evaluation of cross-contamination and infection potentials. The majority of Shuttle microbiology studies will doubtless fall into the third study area. Presence of a space lab will permit a whole range of experimentation under conditions similar to these experienced in earth-based laboratories. The recommendations of various study groups are analyzed, and probable inflight microbiological experiment areas are identified for the Life Sciences Shuttle Laboratory.
Definition of avionics concepts for a heavy lift cargo vehicle, volume 2
NASA Technical Reports Server (NTRS)
1989-01-01
A cost effective, multiuser simulation, test, and demonstration facility to support the development of avionics systems for future space vehicles is defined. The technology needs and requirements of future Heavy Lift Cargo Vehicles (HLCVs) are analyzed and serve as the basis for sizing of the avionics facility although the lab is not limited in use to support of HLCVs. Volume 2 is the technical volume and provides the results of the vehicle avionics trade studies, the avionics lab objectives, the lab's functional requirements and design, physical facility considerations, and a summary cost estimate.
Customer Avionics Interface Development and Analysis (CAIDA) Lab DEWESoft Display Creation
NASA Technical Reports Server (NTRS)
Coffey, Connor
2015-01-01
The Customer Avionics Interface Development and Analysis (CAIDA) Lab supports the testing of the Launch Control System (LCS), NASA's command and control system for the Space Launch System (SLS), Orion Multi-Purpose Crew Vehicle (MPCV), and ground support equipment. The objectives of the year-long internship were to support day-to-day operations of the CAIDA Lab, create prelaunch and tracking displays for Orion's Exploration Flight Test 1 (EFT-1), and create a program to automate the creation of displays for SLS and MPCV to be used by CAIDA and the Record and Playback Subsystem (RPS).
Chiou, C.T.; Kile, D.E.; Rutherford, D.W.
1991-01-01
Apparent water solubilities of 1,1-bis(p-chlorophenyl)-2,2,2-trichloroethane (DDT), 2,4,5,2???,5???-penta-chlorobiphenyl (PCB), and 1,2,3-trichlorobenzene (TCB) were determined at room temperature in aqueous solutions of commercial linear alkylbenzenesulfonate (LAS), oil-free (solvent-extracted) LAS, and single-molecular 4-dodecyl-benzenesulfonate. The extent of solute solubility enhancement by commercial LAS is markedly greater than that by other ionic surfactants below the measured critical micelle concentration (CMC); above the CMC, the enhancement data with LAS are comparable with other surfactants as micelles. The small amount of neutral oils in commercial LAS (1.7%), comprising linear alkylbenzenes (LABs) and bis(alkylphenyl) sulfones, contributes significantly to the enhanced solubility of DDT and PCB below the CMC; the effect is ascribed to formation of oil-surfactant emulsions. The oil-surfactant emulsion formed corresponds to ???9-10% of the commercial LAS below the CMC. The data suggest that discharge of wastewater containing a significant level of oils and surface-active agents could lead to potential mobilization of organic pollutants and LABs in aquatic environments.