Science.gov

Sample records for liner multi-megabar shock

  1. Composite liner, multi-megabar shock driver development

    SciTech Connect

    Bartsch, R.R.; Clark, D.A.; Morgan, D.V.

    1998-12-31

    A magnetically imploded, cylindrical, multi-layer liner is under development for use as an equation of state shock driver using energetic, pulsed-power sources. The stability and uniformity of the imploding liner has been investigated on the Pegasus pulsed-power facility at liner velocities of >7 mm/usec. Using a thick aluminum driver layer to carry the current and a platinum impactor layer to generate the shock on impact with a target, the expected platinum-on-platinum shock level is 6 to 8 Mbar for operation of the Pegasus capacitor bank at the maximum charge voltage of 90 kV. The initial liner design utilized 8 grams of aluminum with a 1 gram (12-micron thick) layer of platinum on the inside. The inner surface was observed with flash radiography oriented transversely to the axis of the collapsing liner, and with fiber-optic time-of-arrival detectors on the target. Short wavelength perturbations of the inner surface along the axial direction were observed with amplitudes between 200 to 400 microns. A second liner was evaluated with increased aluminum mass and thickness to avoid drive current penetration and the resulting melting and susceptibility to Rayleigh Taylor instabilities. With 10 grams of aluminum at an initial radius of 2.5 cm, the initial liner thickness was almost 50% greater than for the first liner. This liner was observed to be more uniform at impact than the initial design, with perturbed amplitudes less than 100 to 200 microns at wavelengths of a few millimeters. Based on these results a third experiment is being prepared with the 10 gram aluminum liner of the second design and with a 1 gram, 15 micron platinum impactor layer. Liner stability measurements will be presented, application of this liner system to EOS measurement will be discussed, and the evolution to higher energy experiments on ATLAS will be presented.

  2. Solid liner implosions on Z for producing multi-megabar, shockless compressions

    SciTech Connect

    Martin, M. R.; Lemke, R. W.; McBride, R. D.; Davis, J. P.; Dolan, D. H.; Knudson, M. D.; Sinars, D. B.; Smith, I. C.; Savage, M.; Stygar, W. A.; Flicker, D. G.; Herrmann, M. C.; Cochrane, K. R.; Killebrew, K.

    2012-05-15

    Current pulse shaping techniques, originally developed for planar dynamic material experiments on the Z-machine [M. K. Matzen et al., Phys. Plasmas 12, 055503 (2005)], are adapted to the design of controlled cylindrical liner implosions. By driving these targets with a current pulse shape that prevents shock formation inside the liner, shock heating is avoided along with the corresponding decrease in electrical conductivity ahead of the magnetic diffusion wave penetrating the liner. This results in an imploding liner with a significant amount of its mass in the solid phase and at multi-megabar pressures. Pressures in the solid region of a shaped pulse driven beryllium liner fielded on the Z-machine are inferred to 5.5 Mbar, while simulations suggest implosion velocities greater than 50kms{sup -1}. These solid liner experiments are diagnosed with multi-frame monochromatic x-ray backlighting which is used to infer the material density and pressure. This work has led to a new platform on the Z-machine that can be used to perform off-Hugoniot measurements at higher pressures than are accessible through magnetically driven planar geometries.

  3. Dynamic Shock Compression of Copper to Multi-Megabar Pressure

    NASA Astrophysics Data System (ADS)

    Haill, T. A.; Furnish, M. D.; Twyeffort, L. L.; Arrington, C. L.; Lemke, R. W.; Knudson, M. D.; Davis, J.-P.

    2015-11-01

    Copper is an important material for a variety of shock and high energy density applications and experiments. Copper is used as a standard reference material to determine the EOS properties of other materials. The high conductivity of copper makes it useful as an MHD driver layer in high current dynamic materials experiments on Sandia National Laboratories Z machine. Composite aluminum/copper flyer plates increase the dwell time in plate impact experiments by taking advantage of the slower wave speeds in copper. This presentation reports on recent efforts to reinstate a composite Al/Cu flyer capability on Z and to extend the range of equation-of-state shock compression data through the use of hyper-velocity composite flyers and symmetric planar impact with copper targets. We will present results from multi-dimensional ALEGRA MHD simulations, as well as experimental designs and methods of composite flyer fabrication. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. DOE's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  4. Shock wave absorber having a deformable liner

    DOEpatents

    Youngdahl, C.K.; Wiedermann, A.H.; Shin, Y.W.; Kot, C.A.; Ockert, C.E.

    1983-08-26

    This invention discloses a shock wave absorber for a piping system carrying liquid. The absorber has a plastically deformable liner defining the normal flow boundary for an axial segment of the piping system, and a nondeformable housing is spaced outwardly from the liner so as to define a gas-tight space therebetween. The flow capacity of the liner generally corresponds to the flow capacity of the piping system line, but the liner has a noncircular cross section and extends axially of the piping system line a distance between one and twenty times the diameter thereof. Gas pressurizes the gas-tight space equal to the normal liquid pressure in the piping system. The liner has sufficient structural capacity to withstand between one and one-half and two times this normal liquid pressures; but at greater pressures it begins to plastically deform initially with respect to shape to a more circular cross section, and then with respect to material extension by circumferentially stretching the wall of the liner. A high energy shock wave passing through the liner thus plastically deforms the liner radially into the gas space and progressively also as needed in the axial direction of the shock wave to minimize transmission of the shock wave beyond the absorber.

  5. Results from new multi-megabar shockless compression experiments at the Z machine

    NASA Astrophysics Data System (ADS)

    Davis, Jean-Paul; Knudson, Marcus D.; Brown, Justin L.

    2017-01-01

    Sandia's Z Machine has been used to magnetically drive shockless compression of materials in a planar configuration to multi-megabar pressure levels, allowing accurate measurements of quasi-isentropic mechanical response at relatively low temperatures in the solid phase. This paper details recent improvements to design and analysis of such experiments, including the use of new data on the mechanical and optical response of lithium fluoride windows. Comparison of windowed and free-surface data on copper to 350 GPa lends confidence to the window correction method. Preliminary results are presented on gold to 500 GPa and platinum to 450 GPa; both appear stiffer than existing models.

  6. Isotopic Studies of Hydrogen and Deuterium Phase IV at Multi-Megabar Pressures

    NASA Astrophysics Data System (ADS)

    Gregoryanz, Eugene; Guillaume, Christophe; Scheler, Thomas; Howie, Ross

    2013-06-01

    The recent discovery of the mixed atomic and molecular phase IV of hydrogen (deuterium) is exemplary of how the studies of hydrogen at multi-megabar pressures is constitutive to the understanding of simple systems at extreme compressions. Through a series of high pressure Raman spectroscopic experiments we have conducted an isotopic comparison between hydrogen and deuterium in phase I. Isotopic studies not only reveal differences in phase stability, imposing constraints on the P-T phase diagram, but also provide strong evidence for structural phenomena, such as proton (deuteron) tunnelling. New data will be presented over a wide temperature range.

  7. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum

    SciTech Connect

    Davis, Jean-Paul; Brown, Justin L.; Knudson, Marcus D.; Lemke, Raymond W.

    2014-11-28

    Magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions with the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330 GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.

  8. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum

    SciTech Connect

    Davis, Jean -Paul; Brown, Justin L.; Knudson, Marcus D.; Lemke, Raymond W.

    2014-11-26

    In this research, magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions with the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330 GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.

  9. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum

    DOE PAGES

    Davis, Jean -Paul; Brown, Justin L.; Knudson, Marcus D.; ...

    2014-11-26

    In this research, magnetically-driven, planar shockless-compression experiments to multi-megabar pressures were performed on tantalum samples using a stripline target geometry. Free-surface velocity waveforms were measured in 15 cases; nine of these in a dual-sample configuration with two samples of different thicknesses on opposing electrodes, and six in a single-sample configuration with a bare electrode opposite the sample. Details are given on the application of inverse Lagrangian analysis (ILA) to these data, including potential sources of error. The most significant source of systematic error, particularly for single-sample experiments, was found to arise from the pulse-shape dependent free-surface reflected wave interactions withmore » the deviatoric-stress response of tantalum. This could cause local, possibly temporary, unloading of material from a ramp compressed state, and thus multi-value response in wave speed that invalidates the free-surface to in-material velocity mapping step of ILA. By averaging all 15 data sets, a final result for the principal quasi-isentrope of tantalum in stress-strain was obtained to a peak longitudinal stress of 330 GPa with conservative uncertainty bounds of ±4.5% in stress. The result agrees well with a tabular equation of state developed at Los Alamos National Laboratory.« less

  10. Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures

    NASA Astrophysics Data System (ADS)

    Davis, Jean-Paul; Knudson, Marcus D.; Shulenburger, Luke; Crockett, Scott D.

    2016-10-01

    An understanding of the mechanical and optical properties of lithium fluoride (LiF) is essential to its use as a transparent tamper and window for dynamic materials experiments. In order to improve models for this material, we applied iterative Lagrangian analysis to ten independent sets of data from magnetically driven planar shockless compression experiments on single crystal [100] LiF to pressures as high as 350 GPa. We found that the compression response disagreed with a prevalent tabular equation of state for LiF that is commonly used to interpret shockless compression experiments. We also present complementary data from ab initio calculations performed using the diffusion quantum Monte Carlo method. The agreement between these two data sets lends confidence to our interpretation. In order to aid in future experimental analysis, we have modified the tabular equation of state to match the new data. We have also extended knowledge of the optical properties of LiF via shock-compression and shockless compression experiments, refining the transmissibility limit, measuring the refractive index to ˜300 GPa, and confirming the nonlinear dependence of the refractive index on density. We present a new model for the refractive index of LiF that includes temperature dependence and describe a procedure for correcting apparent velocity to true velocity for dynamic compression experiments.

  11. Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures

    SciTech Connect

    Davis, Jean -Paul; Knudson, Marcus D.; Shulenburger, Luke; Crockett, Scott D.

    2016-10-26

    An understanding of the mechanical and optical properties of lithium fluoride (LiF) is essential to its use as a transparent tamper and window for dynamic materials experiments. In order to improve models for this material, we applied iterative Lagrangian analysis to ten independent sets of data from magnetically driven planar shockless compression experiments on single crystal [100] LiF to pressures as high as 350 GPa. We found that the compression response disagreed with a prevalent tabular equation of state for LiF that is commonly used to interpret shockless compression experiments. We also present complementary data from ab initio calculations performed using the diffusion quantum Monte Carlo method. The agreement between these two data sets lends confidence to our interpretation. In order to aid in future experimental analysis, we have modified the tabular equation of state to match the new data. We have also extended knowledge of the optical properties of LiF via shock-compression and shockless compression experiments, refining the transmissibility limit, measuring the refractive index to ~300 GPa, and confirming the nonlinear dependence of the refractive index on density. Lastly, we present a new model for the refractive index of LiF that includes temperature dependence and describe a procedure for correcting apparent velocity to true velocity for dynamic compression experiments.

  12. Mechanical and optical response of [100] lithium fluoride to multi-megabar dynamic pressures

    DOE PAGES

    Davis, Jean -Paul; Knudson, Marcus D.; Shulenburger, Luke; ...

    2016-10-26

    An understanding of the mechanical and optical properties of lithium fluoride (LiF) is essential to its use as a transparent tamper and window for dynamic materials experiments. In order to improve models for this material, we applied iterative Lagrangian analysis to ten independent sets of data from magnetically driven planar shockless compression experiments on single crystal [100] LiF to pressures as high as 350 GPa. We found that the compression response disagreed with a prevalent tabular equation of state for LiF that is commonly used to interpret shockless compression experiments. We also present complementary data from ab initio calculations performedmore » using the diffusion quantum Monte Carlo method. The agreement between these two data sets lends confidence to our interpretation. In order to aid in future experimental analysis, we have modified the tabular equation of state to match the new data. We have also extended knowledge of the optical properties of LiF via shock-compression and shockless compression experiments, refining the transmissibility limit, measuring the refractive index to ~300 GPa, and confirming the nonlinear dependence of the refractive index on density. Lastly, we present a new model for the refractive index of LiF that includes temperature dependence and describe a procedure for correcting apparent velocity to true velocity for dynamic compression experiments.« less

  13. Experimental and theoretical thermal equations of state of MgSiO3 post-perovskite at multi-megabar pressures

    PubMed Central

    Sakai, Takeshi; Dekura, Haruhiko; Hirao, Naohisa

    2016-01-01

    The MgSiO3 post-perovskite phase is the most abundant silicate phase in a super-Earth’s mantle, although it only exists within the Earth’s lowermost mantle. In this study, we established the thermal equation of state (EoS) of the MgSiO3 post-perovskite phase, which were determined by using both laser-heated diamond anvil cell and density-functional theoretical techniques, within a multi-megabar pressure range, corresponding to the conditions of a super-Earth’s mantle. The Keane and AP2 EoS models were adopted for the first time to extract meaningful physical properties. The experimentally determined Grüneisen parameter, which is one of the thermal EoS parameters, and its volume dependence were found to be consistent with their theoretically obtained values. This reduced the previously reported discrepancy observed between experiment and theory. Both the experimental and theoretical EoS were also found to be in very good agreement for volumes at pressures and temperatures of up to 300 GPa and 5000 K, respectively. Our newly developed EoS should be applicable to a super-Earth’s mantle, as well as the Earth’s core-mantle boundary region. PMID:26948855

  14. Experimental and theoretical thermal equations of state of MgSiO3 post-perovskite at multi-megabar pressures.

    PubMed

    Sakai, Takeshi; Dekura, Haruhiko; Hirao, Naohisa

    2016-03-07

    The MgSiO3 post-perovskite phase is the most abundant silicate phase in a super-Earth's mantle, although it only exists within the Earth's lowermost mantle. In this study, we established the thermal equation of state (EoS) of the MgSiO3 post-perovskite phase, which were determined by using both laser-heated diamond anvil cell and density-functional theoretical techniques, within a multi-megabar pressure range, corresponding to the conditions of a super-Earth's mantle. The Keane and AP2 EoS models were adopted for the first time to extract meaningful physical properties. The experimentally determined Grüneisen parameter, which is one of the thermal EoS parameters, and its volume dependence were found to be consistent with their theoretically obtained values. This reduced the previously reported discrepancy observed between experiment and theory. Both the experimental and theoretical EoS were also found to be in very good agreement for volumes at pressures and temperatures of up to 300 GPa and 5000 K, respectively. Our newly developed EoS should be applicable to a super-Earth's mantle, as well as the Earth's core-mantle boundary region.

  15. Obtaining off-Hugoniot equation of state data on solid metals at extreme pressures via pulsed-power driven cylindrical liner implosions

    NASA Astrophysics Data System (ADS)

    Lemke, Raymond

    2015-06-01

    The focus of this talk is on magnetically driven, liner implosion experiments on the Z machine (Z) in which a solid, metal tube is shocklessly compressed to multi-megabar pressure. The goal of the experiments is to collect velocimetry data that can be used in conjunction with a new optimization based analysis technique to infer the principal isentrope of the tube material over a range of pressures. For the past decade, shock impact and ramp loading experiments on Z have used planar platforms exclusively. While producing state-of-the-art results for material science, it is difficult to produce drive pressures greater than 6 Mbar in the divergent planar geometry. In contrast, a cylindrical liner implosion is convergent; magnetic drive pressures approaching 50 Mbar are possible with the available current on Z (~ 20 MA). In our cylindrical experiments, the liner comprises an inner tube composed of the sample material (e.g., Ta) of unknown equation of state, and an outer tube composed of aluminum (Al) that serves as the current carrying cathode. Internal to the sample are fielded multiple PDV (Photonic Doppler Velocimetry) probes that measure velocity of the inner free surface of the imploding sample. External to the composite liner, at much larger radius, is an Al tube that is the return current anode. VISAR (velocity interferometry system for any reflector) probes measure free surface velocity of the exploding anode. Using the latter, MHD and optimization codes are employed to solve an inverse problem that yields the current driving the liner implosion. Then, the drive current, PDV velocity, MHD and optimization codes, are used to solve another inverse problem that yields pressure vs. density on approximately the principal isentrope of the sample material. Results for Ta, Re, and Cu compressed to ~ 10 Mbar are presented. Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

  16. On the effect of conductivity of a shock-compressed gas on interferometric recording of parameters of motion of a liner

    SciTech Connect

    Ogorodnikov, V. A. Mikhailov, A. L.; Peshkov, V. V.; Bogdanov, E. N.; Rodionov, A. V.; Sedov, A. A.; Fedorov, A. V.; Nazarov, D. V.; Finyushin, S. A.; Dudoladov, V. I.; Erunov, S. V.; Blikov, A. O.

    2012-01-15

    We report on the results of a study of the acceleration dynamics of an aluminum liner to a velocity of 5.5 km/s using continuous recording of velocity (velocity interferometer system for any reflector (VISAR) and Fabry-Perot interferometer) and motion trajectory (radiointerferometer and resistive transducer) in air and in a helium atmosphere. It is found that for liner velocities exceeding 4.0 and 5.0 km/s, the displacement of the shock wave front is recorded by the radiointerferometer in air and helium, respectively. At these velocities, the conductivities of air and helium behind the shock wave front are estimated.

  17. Megabar liner experiments on Pegasus II

    SciTech Connect

    Lee, H.; Bartsch, R.R.; Bowers, R.L.

    1997-09-01

    Using pulsed power to implode a liner onto a target can produce high shock pressures for many interesting application experiments. With a Pegasus II facility in Los Alamos, a detailed theoretical analysis has indicated that the highest attainable pressure is around 2 Mbar for a best designed aluminum liner. Recently, an interesting composite liner design has been proposed which can boost the shock pressure performance by a factor 4 over the aluminum liner. This liner design was adopted in the first megabar (Megabar-1) liner experiment carried out on Pegasus last year to verify the design concept and to compare the effect of Rayleigh-Taylor instabilities on liner integrity with the code simulations. We present briefly the physical considerations to explain why the composite liner provides the best shock pressure performance. The theoretical modeling and performance of Megabar-1 liner are discussed. Also presented are the first experimental results and the liner design modification for our next experiment.

  18. Probing the Physics of Narrow-line Regions in Active Galaxies. III. Accretion and Cocoon Shocks in the LINER NGC 1052

    NASA Astrophysics Data System (ADS)

    Dopita, Michael A.; Ho, I.-Ting; Dressel, Linda L.; Sutherland, Ralph; Kewley, Lisa; Davies, Rebecca; Hampton, Elise; Shastri, Prajval; Kharb, Preeti; Jose, Jessy; Bhatt, Harish; Ramya, S.; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2015-03-01

    We present Wide Field Spectrograph integral field spectroscopy and Hubble Space Telescope Faint Object Spectrograph spectroscopy for the low-ionization nuclear emission line region (LINER) galaxy NGC 1052. We infer the presence of a turbulent accretion flow forming a small-scale accretion disk. We find a large-scale outflow and ionization cone along the minor axis of the galaxy. Part of this outflow region is photoionized by the active galactic nucleus and shares properties with the extended narrow-line region of Seyfert galaxies, but the inner (R≲ 1.0″) accretion disk and the region around the radio jet appear shock excited. The emission-line properties can be modeled by a “double-shock” model in which the accretion flow first passes through an accretion shock in the presence of a hard X-ray radiation, and the accretion disk is then processed through a cocoon shock driven by the overpressure of the radio jets. This model explains the observation of two distinct densities (˜104 and ˜106 cm-3) and provides a good fit to the observed emission-line spectrum. We derive estimates for the velocities of the two shock components and their mixing fractions, the black hole mass, and the accretion rate needed to sustain the LINER emission and derive an estimate for the jet power. Our emission-line model is remarkably robust against variation of input parameters and hence offers a generic explanation for the excitation of LINER galaxies, including those of spiral type such as NGC 3031 (M81).

  19. Prospects for using X-ray free-electron lasers to investigate shock-compressed matter

    SciTech Connect

    Nagler, Bob; Higginbotham, Andrew; Kimminau, Giles; Murphy, William; Whitcher, Thomas; Wark, Justin; Hawreliak, James; Kalantar, Dan; Lee, Richard; Lorenzana, Hector; Remington, Bruce; Larsson, Jorgen; Park, Nigel; Sokolowski-Tinten, Klaus

    2007-12-12

    Within the next few years hard X-ray Free Electron Lasers will come on line. Such systems will have spectral brightnesses ten orders of magnitude greater than any extant synchrotron, with pulse lengths as short as a few femtoseconds. It is anticipated that large-scale optical lasers capable of shock-compressing matter to multi-megabar pressures will be sited alongside the X-ray source. We discuss how such systems can further our knowledge of shocked and isochorically heated matter, in particular investigating the potential to perform polycrystalline diffraction and the creation of warm dense matter.

  20. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, Jason; Eskridge, Richard; Kirkpatrick, Ronald C.; Knapp, Charles E.; Lee, Michael; Martin, Adam; Smith, James; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    For practical applications of magnetized target fusion, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Quasi-spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a quasi-spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). Theoretical analysis and computer modeling of the concept are presented. It is shown that, with the appropriate choice of the flow parameters in the liner and the target, the impact between the liner and the target plasma can be made to be shockless in the liner or to generate at most a very weak shock in the liner. Additional information is contained in the original extended abstract.

  1. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Eskridge, Richard; Smith, James; Lee, Michael; Richeson, Jeff; Schmidt, George; Knapp, Charles E.; Kirkpatrick, Ronald C.; Turchi, Peter J.; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC). For the successful implementation of the scheme, plasma jets of the requisite momentum flux density need to be produced. Their transport over sufficiently large distances (a few meters) needs to be assured. When they collide and merge into a liner, relative differences in velocity, density and temperature of the jets could give rise to instabilities in the development of the liner. Variation in the jet properties must be controlled to ensure that the growth rate of the instabilities are not significant over the time scale of the liner formation before engaging with the target plasma. On impact with the target plasma, some plasma interpenetration might occur between the liner and the target. The operating parameter space needs to be identified to ensure that a reasonably robust and conducting contact surface is formed between the liner and the target. A mismatch in the "impedance" between the liner and the target plasma could give rise to undesirable shock heating of the liner leading to increased entropy (thermal losses) in the liner. Any irregularities in the liner will accentuate the Rayleigh-Taylor instabilities during the compression of the target plasma by the liner.

  2. Liner target interaction experiments on Pegasus II

    SciTech Connect

    Hockaday, M.P.; Chrien, R.E.; Bartsch, R.

    1995-09-01

    The Los Alamos High Energy Density Physics program uses capacitively driven low voltage, inductive-storage pulse power to implode cylindrical targets for hydrodynamics experiments. Once a precision driver liner was characterized an experimental series characterizing the aluminum target dynamics was performed. The target was developed for shock-induced quasi-particle ejecta experiments including holography. The concept for the Liner shock experiment is that the driver liner is used to impact the target liner which then accelerates toward a collimator with a slit in it. A shock wave is set up in the target liner and as the shock emerges from the back side of the target liner, ejecta are generated. By taking a laser hologram the particle distribution of the ejecta are hoped to be determined. The goal for the second experimental series was to characterize the target dynamics and not to measure and generate the ejecta. Only the results from the third shot, Pegasus II-26 fired April 26th, 1994, from the series is discussed in detail. The second experimental series successfully characterized the target dynamics necessary to move forward towards the planned quasi-ejecta experiments.

  3. Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion

    SciTech Connect

    McBride, R. D.; Martin, M. R.; Lemke, R. W.; Jennings, C. A.; Rovang, D. C.; Sinars, D. B.; Cuneo, M. E.; Herrmann, M. C.; Slutz, S. A.; Nakhleh, C. W.; Davis, J.-P.; Flicker, D. G.; Rogers, T. J.; Robertson, G. K.; Kamm, R. J.; Smith, I. C.; Savage, M.; Stygar, W. A.; Rochau, G. A.; Jones, M.; and others

    2013-05-15

    Multiple experimental campaigns have been executed to study the implosions of initially solid beryllium (Be) liners (tubes) on the Z pulsed-power accelerator. The implosions were driven by current pulses that rose from 0 to 20 MA in either 100 or 200 ns (200 ns for pulse shaping experiments). These studies were conducted in support of the recently proposed Magnetized Liner Inertial Fusion concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)], as well as for exploring novel equation-of-state measurement techniques. The experiments used thick-walled liners that had an aspect ratio (initial outer radius divided by initial wall thickness) of either 3.2, 4, or 6. From these studies, we present three new primary results. First, we present radiographic images of imploding Be liners, where each liner contained a thin aluminum sleeve for enhancing the contrast and visibility of the liner's inner surface in the images. These images allow us to assess the stability of the liner's inner surface more accurately and more directly than was previously possible. Second, we present radiographic images taken early in the implosion (prior to any motion of the liner's inner surface) of a shockwave propagating radially inward through the liner wall. Radial mass density profiles from these shock compression experiments are contrasted with profiles from experiments where the Z accelerator's pulse shaping capabilities were used to achieve shockless (“quasi-isentropic”) liner compression. Third, we present “micro-B-dot ” measurements of azimuthal magnetic field penetration into the initially vacuum-filled interior of a shocked liner. Our measurements and simulations reveal that the penetration commences shortly after the shockwave breaks out from the liner's inner surface. The field then accelerates this low-density “precursor” plasma to the axis of symmetry.

  4. Shock

    MedlinePlus

    ... Many organs can be damaged as a result. Shock requires immediate treatment and can get worse very rapidly. As many 1 in 5 people who suffer shock will die from it. Considerations The main types ...

  5. The Nature of the Energy Source in LINER's

    NASA Technical Reports Server (NTRS)

    Colina, L.; Koratkar, Anuradha

    1996-01-01

    LINER's (low-ionization nuclear emission-line regions) are found in about 30% of all bright galaxies, including luminous infrared galaxies. They form a heterogeneous class powered by a variety of ionizing mechanisms such as low-luminosity AGNs (active galactic nuclei), starbursts, shocks, or any combination of these. In early-type spirals, LINER's are powered by a low-luminosity AGN, or by an AGN surrounded by circumnuclear star-forming regions. In luminous infrared galaxies, LINER's are powered by starbursts with associated wind-related extended shocks, and an AGN may play a minor role, if any. LINER's in some FR I radio galaxies show strong evidence for the presence of a massive central black hole, and there are indications for the existence of shocks in the nuclear disks of these galaxies. Yet, the dominant ionizing mechanism for LINER's in radio-quiet ellipticals and FR I host galaxies is still unclear. Multifrequency high spatial resolution imaging and spectroscopy are essential to discriminate among the different ionizing mechanisms present in LINER's.

  6. Conceptual design for high mass imploding liner experiments

    SciTech Connect

    Reinovsky, R.E.; Clark, D.A.; Ekdahl, C.A.

    1996-12-31

    We have summarized some of the motivation behind high energy liner experiments. We have identified the 100-cm-diameter Disk Explosive-Magnetic Gene promising candidate for powering such experiments and described a phenomenological modeling approach used to understand the limits of DEMG operation. We have explored the liner implosion parameter space that can be addressed by such systems and have selected a design point from which to develop a conceptual experiment. We have applied the phenomenological model to the point design parameters and used 1 D MHD tools to assess the behavior of the liner for parameters at the design point. We have not to optimized the choice of pulse power or liner parameters. We conclude that operating in the velocity range of 10-20 km/s, kinetic energies around 100 MJ are practical with currents approaching 200 MA in the liner. Higher velocities (up to almost 40 km/s) are achieved on the inner surface of a thick liner when the liner collapses to I -cm radius. At 6-cm radius the non- optimized liners explored here are attractive drivers for experiments exploring the compression of magnetized plasmas and at 1 cm they are equally attractive drivers for shock wave experiments in the pressure range of 30-100 Mbar. An experiment based on this design concept is scheduled to be conducted in VNIIEF in August 1996.

  7. Combustor liner cooling system

    DOEpatents

    Lacy, Benjamin Paul; Berkman, Mert Enis

    2013-08-06

    A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

  8. On the structure of plasma liners for plasma jet induced magnetoinertial fusion

    SciTech Connect

    Kim, Hyoungkeun; Zhang, Lina; Samulyak, Roman; Parks, Paul

    2013-02-15

    The internal structure and self-collapse properties of plasma liners, formed by the merger of argon plasma jets, have been studied via 3-dimensional numerical simulations using the FronTier code. We have shown that the jets merger process is accomplished through a cascade of oblique shock waves that heat the liner and reduce its Mach number. Oblique shock waves and the adiabatic compression heating have led to the 10 times reduction of the self-collapse pressure of a 3-dimensional argon liner compared to a spherically symmetric liner with the same pressure and density profiles at the merging radius. We have also observed a factor of 10 variations of pressure and density in the leading edge of the liner along spherical surfaces close to the interaction with potential plasma targets. Such a non-uniformity of imploding plasma liners presents problems for the stability of targets during compression.

  9. Combustor liner durability analysis

    NASA Technical Reports Server (NTRS)

    Moreno, V.

    1981-01-01

    An 18 month combustor liner durability analysis program was conducted to evaluate the use of advanced three dimensional transient heat transfer and nonlinear stress-strain analyses for modeling the cyclic thermomechanical response of a simulated combustor liner specimen. Cyclic life prediction technology for creep/fatigue interaction is evaluated for a variety of state-of-the-art tools for crack initiation and propagation. The sensitivity of the initiation models to a change in the operating conditions is also assessed.

  10. Combustor liner support assembly

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A support assembly for a gas turbine engine combustor includes an annular frame having a plurality of circumferentially spaced apart tenons, and an annular combustor liner disposed coaxially with the frame and including a plurality of circumferentially spaced apart tenons circumferentially adjoining respective ones of the frame tenons for radially and tangentially supporting the liner to the frame while allowing unrestrained differential thermal radial movement therebetween.

  11. Shock.

    PubMed

    Wacker, David A; Winters, Michael E

    2014-11-01

    Critically ill patients with undifferentiated shock are complex and challenging cases in the ED. A systematic approach to assessment and management is essential to prevent unnecessary morbidity and mortality. The simplified, systematic approach described in this article focuses on determining the presence of problems with cardiac function (the pump), intravascular volume (the tank), or systemic vascular resistance (the pipes). With this approach, the emergency physician can detect life-threatening conditions and implement time-sensitive therapy.

  12. High energy imploding liner experiment HEL-1: Experimental results

    SciTech Connect

    Clark, D.A.; Anderson, B.G.; Ekdahl, C.A.

    1997-09-01

    Magnetically driven imploding liner systems can be used as a source of shock energy for materials equation of state studies, implosion driven magnetized plasma fusion experiments, and other similar applications. The imploding liner is a cylinder of conducting material through which a current is passed in the longitudinal direction. Interaction of the current with its own magnetic field causes the liner to implode. Sources of electrical energy for imploding liner systems are capacitor banks or explosive pulse power systems seeded by capacitor banks. In August, 1996, a high energy liner experiment (HEL-1) was conducted at the All-Russia Scientific Research Institute (VNIIEF) in Sarov, Russia. A 5 tier 1 meter diameter explosive disk generator provided electrical energy to drive a 48 cm outside diameter, 4 mm thick, aluminum alloy liner having a mass of about 11kg onto an 11 cm diameter diagnostic package. The purpose of the experiment was to measure performance of the explosive pulse power generator and the heavy imploding liner. Electrical performance diagnostics included inductive (B-dot) probes, Faraday Rotation current measurement, Rogowski total current measurement, and voltage probes. Flux loss and conductor motion diagnostics included current-joint voltage measurements and motion sensing contact pins. Optical and electrical impact pins, inductive (B-dot) probes, manganin pressure probes, and continuously recording resistance probes in the Central Measuring Unit (CMU) and Piezo and manganin pressure probes, optical beam breakers, and inductive probes located in the glide planes were used as liner symmetry and velocity diagnostics. Preliminary analysis of the data indicate that a peak current of more than 100 MA was attained and the liner velocity was between 6.7 km/sec and 7.5 km/sec. Liner kinetic energy was between 22 MJ and 35 MJ. 4 refs., 6 figs., 1 tab.

  13. Precision solid liner experiments on Pegasus II

    SciTech Connect

    Bowers, R.L.; Brownell, J.H.; Lee, H.

    1995-09-01

    Pulsed power systems have been used in the past to drive solid liner implosions for a variety of applications. In combination with a variety of target configurations, solid liner drivers can be used to compress working fluids, produce shock waves, and study material properties in convergent geometry. The utility of such a driver depends in part on how well-characterized the drive conditions are. This, in part, requires a pulsed power system with a well-characterized current wave form and well understood electrical parameters. At Los Alamos, the authors have developed a capacitively driven, inductive store pulsed power machine, Pegasus, which meets these needs. They have also developed an extensive suite of diagnostics which are capable of characterizing the performance of the system and of the imploding liners. Pegasus consists of a 4.3 MJ capacitor bank, with a capacitance of 850 {micro}f fired with a typical initial bank voltage of 90 kV or less. The bank resistance is about 0.5 m{Omega}, and bank plus power flow channel has a total inductance of about 24 nH. In this paper the authors consider the theory and modeling of the first precision solid liner driver fielded on the LANL Pegasus pulsed power facility.

  14. Optimizing liner implosions for high energy density physics experiments

    SciTech Connect

    Ekdahl, C.; Humphries, S. Jr.

    1996-12-31

    Cylindrical metal shells imploded by magnetic fields - liners - are used as kinetic energy drivers for high energy density physics experiments in hydrodynamics and dynamic material property measurements. There are at least three ways in which liners have been, or are expected to be, used to produce high energy density, i.e., high pressure, in target materials. A common approach uses the liner as a convergent flyer plate, which impacts a material target cylinder after having been shocklessly accelerated across an intervening gap. The resultant shock and piston hydrodynamic flow in the target are used in exploration of a wide variety of phenomena and material properties. Another common method is to slowly compress a liner containing a material sample in a such fashion that little heating occurs. This technique is most useful for investigated physical properties at low temperature and extreme density. Finally, one can use a hybrid approach to shock heat with an impacting liner followed by slower adiabatic, if not isentropic, compression to explore material properties in extrema. The magnetic fields for driving these liners may be produced by either high explosive pulsed power generators or by capacitor banks. Here we will consider only capacitor banks.

  15. Acoustic Liners for Turbine Engines

    NASA Technical Reports Server (NTRS)

    Jones, Michael G (Inventor); Grady, Joseph E (Inventor); Kiser, James D. (Inventor); Miller, Christopher (Inventor); Heidmann, James D. (Inventor)

    2016-01-01

    An improved acoustic liner for turbine engines is disclosed. The acoustic liner may include a straight cell section including a plurality of cells with straight chambers. The acoustic liner may also include a bent cell section including one or more cells that are bent to extend chamber length without increasing the overall height of the acoustic liner by the entire chamber length. In some cases, holes are placed between cell chambers in addition to bending the cells, or instead of bending the cells.

  16. Ultraviolet spectrophotometry of three LINERs

    NASA Technical Reports Server (NTRS)

    Goodrich, R. W.; Keel, W. C.

    1986-01-01

    Three galaxies known to be LINERs were observed spectroscopically in the ultraviolet in an attempt to detect the presumed nonthermal continuum source thought to be the source of photoionization in the nuclei. NGC 4501 was found to be too faint for study with the IUE spectrographs, while NGC 5005 had an extended ultraviolet light profile. Comparison with the optical light profile of NGC 5005 indicates that the ultraviolet source is distributed spatially in the same manner as the optical starlight, probably indicating that the ultraviolet excess is due to a component of hot stars in the nucleus. These stars contribute detectable absorption features longward of 2500 A; together with optical data, the IUE spectra suggest a burst of star formation about 1 billion yr ago, with a lower rate continuing to produce a few OB stars. In NGC 4579, a point source contributing most of the ultraviolet excess is found that is much different than the optical light distribution. Furthermore, the ultraviolet to X-ray spectral index in NGC 4579 is 1.4, compatible with the UV to X-ray indices found for samples of Seyfert galaxies. This provides compelling evidence for the detection of the photoionizing continuum in NGC 4579 and draws the research fields of normal galaxies and active galactic nuclei closer together. The emission-line spectrum of NGC 4579 is compared with calculations from a photoionization code, CLOUDY, and several shock models. The photoionization code is found to give superior results, adding to the increasing weight of evidence that the LINER phenomenon is essentially a scaled-down version of the Seyfert phenomenon.

  17. One-Liners

    ERIC Educational Resources Information Center

    Hathaway, Nan

    2008-01-01

    This article describes an exercise appropriate for all grade levels. This exercise is based on a book of Picasso's contour drawings called "Picasso's One-Liners," which combines a delightful assortment of one-line drawings with accompanying one-line quotes. Students are given a stack of copy paper and a black fine-tip marker. Students then take…

  18. Unveiling the liner nature of NGC1052

    NASA Astrophysics Data System (ADS)

    Diniz, S. I. F.; Pastoriza, M. G.; Riffel, R.; Riffel, R. A.; Diniz, M. R.; Storchi-Bergmann, T.

    2014-10-01

    NGC 1052 is an E4 galaxy and classified as a typical LINER harboring a stellar rotating disk. However, the central region is spectroscopically unusual with broad optical emission lines, the nature of its emission line gas remains unclear. According to recent studies NGC 1052 exhibit Hα luminosities an order of magnitude above that estimated for an evolved population of extreme horizontal branch stars. Their Hα equivalent widths and optical-to-near infrared (NIR) spectral energy distributions are consistent with them being young stellar clusters aged < 7 Myr, and according to previous works, NGC 1052 may have experienced a merger event about 1 Gyr ago. There are mainly three possibilities to explain LINER's spectra: i) post asymptotic giant branch stars (post-AGB) that ionize their rapidly expanding shells, (ii) active galactic nuclei (AGNs) powered by the in fall of matter into an accretion disk, and (iii) shocks. The stellar population (SP) of AGNs shows an excess of intermediate age stars. Besides, NIR stellar population studies have revealed that the continuum of active galaxies is dominated by the contribution of intermediate age stellar populations. Hot dust emission unresolved is also commonly detected in NIR nuclear spectra of galaxies Seyfert and LINERs. Aimed to discriminate the dominant ionizing source of NGC 1052 we present preliminary results of high spatial resolution integral field spectroscopy, taken with gemini NIFS to map the dominant stellar population, as well as disentangling the featureless and hot dust components.

  19. Configuration Effects on Liner Performance

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Howerton, Brian M.

    2012-01-01

    The acoustic performance of a duct liner depends not only on the intrinsic properties of the liner but also on the configuration of the duct in which it is used. A series of experiments is performed in the NASA Langley Research Center Curved Duct Test Rig (at Mach 0.275) to evaluate the effect of duct configuration on the acoustic performance of single degree of freedom perforate-over-honeycomb liners. The liners form the sidewalls of the duct's test section. Variations of duct configuration include: asymmetric (liner on one side and hard wall opposite) and symmetric (liner on both sides) wall treatment; inlet and exhaust orientation, in which the sound propagates either against or with the flow; and straight and curved flow path. The effect that duct configuration has on the overall acoustic performance, particularly the shift in frequency and magnitude of peak attenuation, is quantified. The redistribution of incident mode content is shown. The liners constitute the side walls of the liner test section and the scatter of incident horizontal order 1 mode by the asymmetric treatment and order 2 mode by the symmetric treatment into order 0 mode is shown. Scatter of order 0 incident modes into higher order modes is also shown. This redistribution of mode content is significant because it indicates that the liner design can be manipulated such that energy is scattered into more highly attenuated modes, thus enhancing liner performance.

  20. Well liner running shoe

    SciTech Connect

    Bell, J.F.

    1994-01-11

    Wellbore liners are set with a running shoe comprising a cylindrical body, end cap, check valve and receiver member in assembly. The receiver member includes threads for receiving the coupling sleeve of a running tool, and retaining wickers for engagement with a cement plug or dart to retain the same permanently engaged with and blocking the flow of fluid through the running shoe. A running tool for use with the shoe includes a coupling sleeve which is retained on a support mandrel by a collar which is secured to the mandrel with a shear pin so that pressuring up the workstring, in the event of a stuck coupling sleeve, will permit retrieval of the main part of the running tool and the workstring. The interior parts of the running shoe are made of aluminum or plastic for easy drill-out to extend the wellbore beyond the end of the liner. 3 figs.

  1. LINER FOR EXTRUSION BILLET CONTAINERS

    DTIC Science & Technology

    Shrink-fit assembly device for buildup of ceramic-coated liner and sleeve assemblies was tested and modified to develop desired temperatures and...preliminary evaluation of suitability for extrusion liner use. Procedures were developed for welding short, hollow ceramic cylinders of high-strength metal...carbides and borides to form a ceramic extrusion liner of suitable length. Disassembly tooling for rapid separation of shrink-fitted sleeves from a worn

  2. Preparations to ship EPICOR liners

    SciTech Connect

    Queen, S P

    1983-06-01

    The sampling and analysis of the hydrogen rich atmosphere of the 49 EPICOR II ion-exchange prefilter liners generated in the decontamination of radioactive water at TMI-2 will provide data to ensure safe storage and shipment of highly loaded ion-exchange media. This report discusses the prototype gas sampling tool used to breech the containment of the liners, the tool support equipment for sampling and inerting the liners, and the characterization program used for determining the radiolytic hydrogen generation rates in the liners.

  3. LINER FOR EXTRUSION BILLET CONTAINERS

    DTIC Science & Technology

    Rokide-process alumina and zirconia coatings and a Udimet 700 superalloy liner were evaluated by extrusion of 3 1/2-in. billets of Inconel 713C...One coating did with stand extrusion at 3450 F without apparent wear. The Udimet 700 liner did not show wear at 2000 F, but did react with the TZM

  4. A flash x-ray system for diagnosing liner implosions

    SciTech Connect

    Anderson, B. G.; Oro, D. M.; Olson, R. T.; Studebaker, J. K.; Platts, D.

    2003-01-01

    This paper describes a low energy flash X-ray system that is ideal for radiographing a wide variety of experimental phenomenon on both capacitor-bank pulsed power facilities and explosively driven magnetic-flux compression experiments. The versatility of this system has allowed us to obtain both single X-radiographs of imploding liners and multiple, temporally resolved radiographic sequences of target evolution. The dynamic liner radiographs are acquired with radially oriented X-ray heads that are instrumental for observing and diagnosing liner shape and symmetry, Rayleigh-Taylor instability growth, and liner-glide plane interaction (see Fig. 1). Multiframe radiographs acquired along the axis of a cylindrical target are used to provide physical data on phenomena such as shock-driven target hydrodynamics, Richtmyer-Meshkov instability growth, spall, fiction, and equations of state. The flexibility of this X-ray system has also allowed it to be successfully fielded both at various gas and powder gun facilities and explosively driven shock physics experiments.

  5. Space sail liner

    NASA Astrophysics Data System (ADS)

    Lukyanov, A. V.

    1983-09-01

    Space vehicles, fit to ply between space objects and to transport hundreds of tons, will be necessary for research expeditions to planets and for asteroids materials supply to future space settlements, factories and satellite solar power stations. The means of creating such sail "liners" are discussed in the paper. The liner's solar sail area is dozens to hundreds of km 2. The sail is produced by combining in line small standard controlled units assembled or deployed in space. The equations of motion and sail control are considered. It is shown how superlight rotating reflectors, investigated by the author before, could be used to construct a sail. Another construction may be obtained by means of connecting stiff framework square reflectors and can be easily realized. Using deployable tubes made of composite straps will essentially lighten the square unit framework. Commercially available 4-μm thick aluminized mylar film and considerably thinner film may be used, and its mass will be most of the sail mass. Assembling of such a sail may be carried out on the orbiting assembling station.

  6. Exploring a Detonation Nature of Mesoscopic Perturbations and Ejecta Formation from the Mesoscale Probing of the PBX-driven Liners

    NASA Astrophysics Data System (ADS)

    Plaksin, Igor; Guiruis, Raafat; Rodrigues, Luis; Mendes, Ricardo; Plaksin, Svyatoslav; Fernandes, Eduardo; Ferreira, Claudia

    2015-06-01

    Ejecting debris from free surface of liner is of considerable interest at optimization of explosive devices, in which the PBX-driven liner effects shock compression of gaseous matter. Following factors were historically considered as main drivers of material ejection: granular microstructure of liner material, roughness and surface defects of liner, and shock pressure time history in PBX-driven liner. In contrast to existing models, we are considering the small scale fluctuations of detonation flow as probable dominating factor of surface jetting in the PBX-driven collapsing liners. Obtained experimental evidence is indicative that jetting from the liners is caused by meso-scale perturbations of PBX detonations, which are identified as (1) ejecta of overdriven detonation products through detonation front, (2) ejecta-driven detonation cells, and (3) galloping detonation front motion. Spatially resolved scenarios of each of phenomena (1-3) were obtained in experiments with copper-liners and HMX-based PBXs fabricated on maximum packing density of crystalline constituents. Both the DRZ-induced perturbations translated to a PBX-driven liner and the ejected debris were recorded and quantitatively measured in the mesoscale range with application of the 96-channel optical analyzer MCOA-UC. Work was supported by the ONR and ONR Global Grants N00014-12-1-0477 and N62909-12-1-7131 with Drs. Clifford Bedford and John Zimmerman Program Managers.

  7. Pulsed-Power Driven Liner-On-Target Hydrodynamics Experiments Diagnosed with Proton Radiography using PHELIX

    NASA Astrophysics Data System (ADS)

    Oro, D. M.; Rousculp, C. L.; Reass, W. A.; Griego, J. R.; Turchi, P. J.; Reinovsky, R. E.; Saunders, A.; Mariam, F. G.; Morris, C.

    2015-06-01

    The Precision High Energy-density Liner Implosion eXperiment, PHELIX, is a pulsed-power driver capable of delivering multi-mega-ampere currents to cylindrical loads. The pulsed-power system utilizes a high-efficiency transformer to couple a small capacitor bank (~400 kJ) to a ~5 cm diameter cylindrical Al liner. A peak current of ~4 MA causes the liner to implode in 20 - 30 μs and attain speeds of >1 km/s. The PHELIX system is designed to be compatible with the Los Alamos proton radiography facility. Initial experiments with PHELIX explore shocked-ejected particle transport into gas in converging geometries. For these experiments a liner-on-target configuration is employed. To control the initial conditions, micron-sized tungsten particles are used in place of shock-formed ejecta. The inner surface of the cylindrical target is coated with a 0.1 mm uniform layer of W powder. The liner impacts the target generating a shock that launches the W particles off the target surface. The time history of the trajectory of the shocked-ejected particulate is captured in 21 proton radiographs recorded during the experiment. Comparison of 3 experiments, one into vacuum, one into Ar at 8.3 bars and one into Xe at 8.3 bars are discussed. Results are compared to simulations. Work supported by United States-DOE under contract DE-AC52-06NA25396.

  8. Machine Gun Liner Bond Strength

    DTIC Science & Technology

    2007-08-01

    investigation does not constitute a complete analysis of liner failures in the M2 machine gun. The fact that two different liner-failure modes were...An order-of-magnitude estimate can be made of the bond strength in this case using a standard elastic analysis and some reasonable assumptions... analysis of the forces on the machine gun bullet, it was found that the measured bond strength was adequate to resist the reaction forces produced when

  9. FGD liner experiments with wetlands

    SciTech Connect

    Mitsch, W.J.; Ahn, C.; Wolfe, W.E.

    1999-07-01

    The construction of artificial wetlands for wastewater treatment often requires impermeable liners not only to protect groundwater resources but also to ensure that there is adequate water in the wetland to support appropriate aquatic life, particularly wetland vegetation. Liners or relatively impervious site soils are very important to the success of constructed treatment wetlands in areas where ground water levels are typically close to the ground surface. This study, carried out at the Olentangy River Wetland Research Park, investigated the use of FGD material from sulfur scrubbers as a possible liner material for constructed wetlands. While several studies have investigated the use of FGD material to line ponds, no studies have investigated the use of this material as a liner for constructed wetlands. They used experimental mesocosms to see the effect of FGD liner materials in constructed wetlands on water quality and on wetland plant growth. This paper presents the results of nutrient analyses and physicochemical investigation of leachate and surface outflow water samples collected from the mesocosms. Plant growth and biomass of wetland vegetation are also included in this paper. First two year results are reported by Ahn et al. (1998, 1999). The overall goal of this study is the identification of advantages and disadvantages of using FGD by-product as an artificial liner in constructed wetlands.

  10. Formation of imploding plasma liners for fundamental HEDP studies and MIF Standoff Driver Concept

    SciTech Connect

    Cassibry, Jason; Hatcher, Richard; Stanic, Milos

    2013-08-17

    The disciplines of High Energy Density Physics (HEDP) and Inertial Confinement Fusion (ICF) are characterized by hypervelocity implosions and strong shocks. The Plasma Liner Experiment (PLX) is focused on reaching HEDP and/or ICF relevant regimes in excess of 1 Mbar peak pressure by the merging and implosion of discrete plasma jets, as a potentially efficient path towards these extreme conditions in a laboratory. In this work we have presented the first 3D simulations of plasma liner, formation, and implosion by the merging of discrete plasma jets in which ionization, thermal conduction, and radiation are all included in the physics model. The study was conducted by utilizing a smoothed particle hydrodynamics code (SPHC) and was a part of the plasma liner experiment (PLX). The salient physics processes of liner formation and implosion are studied, namely vacuum propagation of plasma jets, merging of the jets (liner forming), implosion (liner collapsing), stagnation (peak pressure), and expansion (rarefaction wave disassembling the target). Radiative transport was found to significantly reduce the temperature of the liner during implosion, thus reducing the thermal leaving more pronounced gradients in the plasma liner during the implosion compared with ideal hydrodynamic simulations. These pronounced gradients lead to a greater sensitivity of initial jet geometry and symmetry on peak pressures obtained. Accounting for ionization and transport, many cases gave higher peak pressures than the ideal hydrodynamic simulations. Scaling laws were developed accordingly, creating a non-dimensional parameter space in which performance of an imploding plasma jet liner can be estimated. It is shown that HEDP regimes could be reached with ~ 5 MJ of liner energy, which would translate to roughly 10 to 20 MJ of stored (capacitor) energy. This is a potentially significant improvement over the currently available means via ICF of achieving HEDP and nuclear fusion relevant parameters.

  11. Beryllium liner implosion experiments on the Z accelerator in preparation for Magnetized Liner Inertial Fusion (MagLIF)*

    NASA Astrophysics Data System (ADS)

    McBride, Ryan D.

    2012-10-01

    Magnetized Liner Inertial Fusion (MagLIF) [1] is a concept that involves using a pulsed electrical current to implode an initially-solid, cylindrical metal tube (liner) filled with preheated and magnetized fusion fuel. One- and two-dimensional simulations predict that if sufficient liner integrity can be maintained throughout the implosion, then significant fusion yield (>100 kJ) is possible on the 25-MA, 100-ns Z accelerator. The greatest threat to the liner integrity is the Magneto-Rayleigh-Taylor (MRT) instability, which first develops on the outer liner surface, and then works its way inward toward the inner surface throughout the implosion. Two-dimensional simulations predict that a thick liner, with Router/δR=6, should be robust enough to keep the MRT instability from overly disrupting the fusion burn at stagnation. This talk will present the first experiments designed to study a thick, MagLIF-relevant liner implosion through to stagnation on Z [2]. The use of beryllium for the liner material enabled us to obtain penetrating monochromatic (6151±0.5 eV) radiographs that reveal information about the entire volume of the imploding liner. This talk will also discuss experiments that investigated Z's pulse-shaping capabilities to either shock- or shocklessly-compress the imploding liners [3], as well as our most recent experiments that used 2-micron-thick aluminum sleeves to provide high-contrast tracers for the positions and states of the inner surfaces of the imploding beryllium liners. The radiography data to be presented provide stringent constraints on the simulation tools used by the broader high energy density physics and inertial confinement fusion communities, where quantitative areal density measurements, particularly of convergent fusion targets, are relatively scarce. We will also present power-flow tests of the MagLIF load hardware as well as new micro-B-dot measurements of the azimuthal drive magnetic field that penetrates the initially vacuum

  12. Simulated, Theoretical and Experimental Shock Trajectories in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Kanzleiter, Randall; Atchison, Walter; Bowers, Richard; Guzik, Joyce

    2001-06-01

    The current work compares computations and similarity relations for convergent shocks with experimental data from cylindrical implosions on the Shiva Star capacitor bank at AFRL. These experiments consisted of a solid cylindrical aluminum liner that is magnetically imploded onto a central target. The central target consists of an inner Lucite cylinder surrounded by an outer Sn layer. Shock propagation within the Lucite is measured to provide comparisons between simulations and theory of convergent shocks. Target design utilized the adaptive mesh refinement (AMR) Eulerian hydrodynamics code RAGE in 2- and 3D. 1D models of the solid liner utilizing the RAVEN MHD code set initial liner/target interaction parameters, which are then used as initial conditions for the RAGE calculations. At liner/target impact, a convergent shock is generated that drives subsequent hydrodynamics experiments. In concentric targets, shocks will converge on axis, characterizing the symmetry of the liner driver. By shifting the Lucite target center away from the liner symmetry axis, variations in shock propagation velocity generate off-center shock convergence. Comparison of experimentally measured and simulated shock trajectories will be discussed as will convergence effects associated with cylindrical geometry. Efforts are currently underway to compare equation-of-state effects by utilizing a Gruneisen EOS instead of the original SESAME tables. Radial convergence is examined through comparisons with similarity solutions in cylindrical geometry.

  13. Surface treatment using metal foil liner

    NASA Technical Reports Server (NTRS)

    Garvey, Ray

    1989-01-01

    A metal foil liner can be used to seal large area surfaces. Characteristics of the two-layer foil liner are discussed. Micrographs for foil-to-foil, foil-to-composite, visible seams, and hidden seams are examined.

  14. Evaluation of Comfort Liners for Pilot Helmets.

    DTIC Science & Technology

    1994-09-01

    coated open-cell foam system called a Thermoformed Liner (TFL) by Kaiser Electronics. Coefficient of friction, compression and creep data are generated on each of the II helmet comfort liner materials.

  15. Advanced Turbofan Duct Liner Concepts

    NASA Technical Reports Server (NTRS)

    Bielak, Gerald W.; Premo, John W.; Hersh, Alan S.

    1999-01-01

    The Advanced Subsonic Technology Noise Reduction Program goal is to reduce aircraft noise by 10 EPNdB by the year 2000 relative, to 1992 technology. The improvement goal for nacelle attenuation is 25% relative to 1992 technology by 1997 and 50% by 2000. The Advanced Turbofan Duct Liner Concepts Task work by Boeing presented in this document was in support of these goals. The basis for the technical approach was a Boeing study conducted in 1993-94 under NASA/FAA contract NAS1-19349, Task 6, investigating broadband acoustic liner concepts. As a result of this work, it was recommended that linear double layer, linear and perforate triple layer, parallel element, and bulk absorber liners be further investigated to improve nacelle attenuations. NASA LaRC also suggested that "adaptive" liner concepts that would allow "in-situ" acoustic impedance control also be considered. As a result, bias flow and high-temperature liner concepts were also added to the investigation. The major conclusion from the above studies is that improvements in nacelle liner average acoustic impedance characteristics alone will not result in 25% increased nacelle noise reduction relative to 1992 technology. Nacelle design advancements currently being developed by Boeing are expected to add 20-40% more acoustic lining to hardwall regions in current inlets, which is predicted to result in and additional 40-80% attenuation improvement. Similar advancements are expected to allow 10-30% more acoustic lining in current fan ducts with 10-30% more attenuation expected. In addition, Boeing is currently developing a scarf inlet concept which is expected to give an additional 40-80% attenuation improvement for equivalent lining areas.

  16. High Temperature Acoustic Liner Technology

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Posey, Joe W.

    1999-01-01

    This paper describes work currently in progress at Langley on liner concepts that employ structures that may be suitable for broadband exhaust noise attenuation in high speed flow environments and at elevated temperatures characteristic of HSCT applications. Because such liners will need to provide about 10 dB suppression over a 2 to 3 octave frequency range, conventional single-degree-of-freedom resonant structures will not suffice. Bulk absorbers have the needed broadband absorption characteristic; however, at lower frequencies they tend to be inefficient.

  17. Acoustic Liner for Turbomachinery Applications

    NASA Technical Reports Server (NTRS)

    Huff, Dennis L.; Sutliff, Daniel L.; Jones, Michael G.; Hebsur, Mohan G.

    2010-01-01

    The purpose of this innovation is to reduce aircraft noise in the communities surrounding airports by significantly attenuating the noise generated by the turbomachinery, and enhancing safety by providing a containment barrier for a blade failure. Acoustic liners are used in today's turbofan engines to reduce noise. The amount of noise reduction from an acoustic liner is a function of the treatment area, the liner design, and the material properties, and limited by the constraints of the nacelle or casement design. It is desirable to increase the effective area of the acoustic treatment to increase noise suppression. Modern turbofan engines use wide-chord rotor blades, which means there is considerable treatment area available over the rotor tip. Turbofan engines require containment over the rotors for protection from blade failure. Traditional methods use a material wrap such as Kevlar integrated with rub strips and sometimes metal layers (sandwiches). It is possible to substitute the soft rub-strip material with an open-cell metallic foam that provides noise-reduction benefits and a sacrificial material in the first layer of the containment system. An open-cell foam was evaluated that behaves like a bulk acoustic liner, serves as a tip rub strip, and can be integrated with a rotor containment system. Foams can be integrated with the fan-containment system to provide sufficient safety margins and increased noise attenuation. The major innovation is the integration of the foam with the containment.

  18. Characterization of EPICOR II Prefilter Liner 16

    SciTech Connect

    Yesso, J D; Pasupathi, V; Lowry, L

    1982-08-01

    As part of the overall TMI-2 Information and Examination Program, EPICOR II Prefilter Liner 16 was examined to provide information to aid in the development of technology for safely processing highly loaded ion-exchange media. The characterization program included sampling and analyses of the liner contents, including ion-exchange media, liquids and gases, as well as examinations of the liner interior and exterior. This report details the handling of the liner, sampling and analysis of the contents, and the examinations of the liner.

  19. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, Andrew H.; Holcombe, Cressie E.

    1994-01-01

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace.

  20. Segmented ceramic liner for induction furnaces

    DOEpatents

    Gorin, A.H.; Holcombe, C.E.

    1994-07-26

    A non-fibrous ceramic liner for induction furnaces is provided by vertically stackable ring-shaped liner segments made of ceramic material in a light-weight cellular form. The liner segments can each be fabricated as a single unit or from a plurality of arcuate segments joined together by an interlocking mechanism. Also, the liner segments can be formed of a single ceramic material or can be constructed of multiple concentric layers with the layers being of different ceramic materials and/or cellular forms. Thermomechanically damaged liner segments are selectively replaceable in the furnace. 5 figs.

  1. A waterproof cast liner earns high marks.

    PubMed

    Selesnick, H; Griffiths, G

    1997-09-01

    Nondisplaced and stable fractures or severe sprains may be casted using fiberglass and a waterproof liner. Application of the liner is illustrated and described here. Allergic reactions, liner bulkiness, cast application and removal, and cost of materials have not proven to be problems. Among 337 patients fitted with this liner, odor, itching, and difficulties with drying were minimal, even though patients swam, bathed, or received hydrotherapy. Minor skin complications occurred in 5.9% of patients. Physician and patient satisfaction with the liner was high.

  2. Novel Materials for Prosthetic Liners

    NASA Technical Reports Server (NTRS)

    Ragolta, Carolina I.; Morford, Megan

    2011-01-01

    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury that reduce quality of life. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications. Three tests were performed on several types of aerogel to assess the properties of each material. Moisture vapor permeability was tested by incubating four aerogel varieties with an artificial sweat solution at 37.0 C and less than 20% relative humidity for 24 hours. Two aerogel varieties were eliminated from the study due to difficulties in handling the material, and further testing proceeded with Pyrogel in 2.0 and 6.0 mm thicknesses. Force distribution was tested by compressing samples under a load of 4448 N at a rate of 2.5 mm/min. Biofilm formation was tested in a high-shear CDC Biofilm Reactor. Results showed that 2.0 mm Pyrogel blanket allowed 55.7 plus or minus 28.7% of an artificial sweat solution to transpire, and 35.5 plus or minus 27.8% transpired through 6.0 mm Pyrogel blanket. Samples also outperformed the load-bearing capabilities of existing liner materials. No statistically significant difference was found between the two Pyrogel thicknesses for either moisture vapor permeability or force distribution. In addition, biofilm formation results showed no change between the two Pyrogel thicknesses. The breathability and load bearing properties of aerogel make it a suitable material for application to prosthetic liners.

  3. Simulations of Plasma-Liner Formation and Implosion for the PLX- α Project

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Cassibry, Jason; Schillo, Kevin; Shih, Wen; Yates, Kevin; Hsu, Scott; PLX-Alpha Collaboration

    2016-10-01

    Detailed numerical studies of the propagation and merger of high-Mach-number plasma jets and the formation and implosion of plasma liners have been performed using the FronTier and SPH codes enhanced with radiation, physical diffusion, and plasma-EOS models. These simulations support the Plasma Liner Experiment-ALPHA (PLX- α) project (see S. Hsu's talk in this session). Simulations predict properties of plasma liners, in particular 4 π-averaged liner density, ram pressure, and Mach number, the degree of non-uniformity, strength of primary and secondary shock waves, and scalings with the number of plasma jets, initial jet parameters, and other input data. In addition to direct analysis of liner states, simulations also provide synthetic data for direct comparison to experimental data from a multi-chord interferometer and survey and high-resolution spectrometers. Code verification and comparisons as well as predictions for the first series of PLX- α experiments with 6 and 7 jets will be presented. Verified against experimental data, both codes will be used for predictive simulations of plasma liners for PLX- α experiments and potential scaled-up future experiments. Supported by the ARPA-E ALPHA program.

  4. Liner/target/CMU cassette design and fabrication

    SciTech Connect

    Griego, Jeffrey Randall

    2011-01-07

    As part of an ongoing collaboration in pulsed power technology and condensed matter shock physics with RFNCNNIIEF, the initial design for the target and central measuring unit (CMU) for a high-pressure, high-precision ({approx}1 %), Hugoniot, equation of state (EOS) experiment is shown. VNIIEF would design and construct the disk explosive magnetic generator (DEMG) with peak currents {approx}100 MA, and cylindrical liner system with peak velocity {approx}10-20 km/s. LANL would design and construct the target and velocimetry diagnostic system. The initial mechanical design features a 2 cm diameter target system and a 1 cm diameter CMU with 32 lines of sight for PDV.

  5. Simulation studies of plasma target compression by argon liners

    NASA Astrophysics Data System (ADS)

    Zhang, Lina; Kim, Hyoungkeun; Samulyak, Roman; Roman Samulyak Team

    2013-10-01

    Simulation studies of plasma liners, formed by the merger of argon plasma jets, and the compression of plasma targets in the concept of the plasma jet driven magnetoinertial fusion have been performed using FronTier code. FromTier is a hybrid Lagrangian-Eulerian code that uses explicit tracking of material interfaces, thus enabling accurate resolution of hydro instabilities, and average ionization EOS models for high-Z materials. The jets merger process is accomplished through a cascade of oblique shock waves leading to the non-uniformity of imploding plasma liner and causing the Reyleigh-Taylor instability of target during compression. The stagnation pressure, deconfinement time, Rayleigh-Taylor instabilities of the target surface, and the production of fusion neutrons were analyzed for 2D simulations that included 8, 16, and 32 jets, 3D simulation with 90 jets, and compared with the corresponding cylindrically (2D) and spherically (3D) symmetric simulations. The liner non-uniformity induces instabilities in the plasma targets that result in the reduction of stagnation pressure and fusion energy. For example, 8 time reduction of the stagnation pressure and 31 time reduction of the fusion energy was observed when the 2D simulation involving 16 jets was compared to 1D simulation.

  6. Segmented Liner to Control Mode Scattering

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.

    2013-01-01

    The acoustic performance of duct liners can be improved by segmenting the treatment. In a segmented liner treatment, one stage of liner reduces the target sound and scatters energy into other acoustic modes, which are attenuated by a subsequent stage. The Curved Duct Test Rig is an experimental facility in which sound incident on the liner can be generated in a specific mode and the scatter of energy into other modes can be quantified. A series of experiments is performed in which the baseline configuration is asymmetric, that is, a liner is on one side wall of the test duct and the wall opposite is acoustically hard. Segmented liner treatment is achieved by progressively replacing sections of the hard wall opposite with liner in the axial direction, from 25% of the wall surface to 100%. It is found that the energy scatter from the (0,0) to the (0,1) mode reduces as the percentage of opposite wall treatment increases, and the frequency of peak attenuation shifts toward higher frequency. Similar results are found when the incident mode is of order (0,1) and scatter is into the (0,0) mode. The propagation code CDUCT-LaRC is used to predict the effect of liner segmenting on liner performance. The computational results show energy scatter and the effect of liner segmentation that agrees with the experimental results. The experiments and computations both show that segmenting the liner treatment is effective to control the scatter of incident mode energy into other modes. CDUCT-LaRC is shown to be a valuable tool to predict trends of liner performance with liner configuration.

  7. IRIDIUM LINER FOR NASA 5 LBF CLASS MATERIAL TEST CHAMBER IRIDIUM LINER FOR ATLANTIC RESEARCH CORPORA

    NASA Technical Reports Server (NTRS)

    1995-01-01

    IRIDIUM LINER FOR NASA 5 LBF CLASS MATERIAL TEST CHAMBER IRIDIUM LINER FOR ATLANTIC RESEARCH CORPORATION 5 LBF CLASS ROCKET CHAMBER 25 LBF CLASS 75 HFC 25 TAC CERAMIC COMPOSITE ROCKET CHAMBER FROM REFRACTURY COMPOSITES INC. PURCHASE ORDER C-551941-

  8. Wear materials; 2: Optimizing liner alloy choice

    SciTech Connect

    Stefanovic, T. )

    1993-12-01

    This paper describes a new liner designed for a copper ore crusher in Yugoslavia. The experience gained over the past ten years of operation at the Bor copper mines has shown that correct selection of wear material for crusher liners is critical to successful plant performance. With the new wear resistant liners, the crusher development program has increased the concentrator throughput from 8.0 to 9.6 million tons/year. The ultimate goal of the project is to identify the proper liner material that will extend liner life, reduce cyclic stress on major crusher components, and simplify crusher control and adjustment. This paper describes the various liners materials and the mechanisms of wear.

  9. Cost Estimate for Gun Liner Emplacement

    DTIC Science & Technology

    2011-08-01

    Investigations of Explosively-Bonded Gun Tube Liners; ARDEC Technical Report RDAR-WSB-TR-09016; September 2009. 3. Miller, Mark D.; Campo , Frank. Chromium...Watervliet, NY, July 2010. 4. Miller, Mark D.; Campo , Frank; de Rosset, William S. Explosive Bonding of Refractory Metal Liners. in Proceedings of... Campo , Frank; Todaro, Mark; Hydrew, Josh; de Rosset, William S. Ballistic Tests of Explosively-Bonded Gun Tube Liner; ARDEC/Benét Laboratories

  10. Graphical Acoustic Liner Design and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  11. Duct Liner Optimization for Turbomachinery Noise Sources

    DTIC Science & Technology

    1975-11-01

    AD-A279 441lIIIflhIh* NASA TECHNICAL NASA TMA X-72789 MEMORANDUM oo £ 00 r-:. DUCT LINER OPTIMIZATION FOR TURBOMACHINERY w NOISE SOURCES By Harold C...Recipient’s r.atalog No. NASA TM X-72789! 4 Title diid Subtitle 5. Rewrt Date Duct Liner Optimization for Turbomachinery Noise Sources November 1975...profiles is combined wit., a numerical minimization algorithm to predict optimal liner configurations having one, two, and three sections. Source models

  12. Effects of Liner Geometry on Acoustic Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Tracy, Maureen B.; Watson, Willie R.; Parrott, Tony L.

    2002-01-01

    Current aircraft engine nacelles typically contain acoustic liners consisting of perforated sheets bonded onto honeycomb cavities. Numerous models have been developed to predict the acoustic impedance of these liners in the presence of grazing flow, and to use that information with aeroacoustic propagation codes to assess nacelle liner noise suppression. Recent efforts have provided advances in impedance education methodologies that offer more accurate determinations of acoustic liner properties in the presence of grazing flow. The current report provides the results of a parametric study, in which a finite element method was used to assess the effects of variations of the following geometric parameters on liner impedance, with and without the presence of grazing flow: percent open area, sheet thickness, sheet thickness-to-hole diameter ratio and cavity depth. Normal incidence acoustic impedances were determined for eight acoustic liners, consisting of punched aluminum facesheets bonded to hexcell honeycomb cavities. Similar liners were tested in the NASA Langley Research Center grazing incidence tube to determine their response in the presence of grazing flow. The resultant data provide a quantitative assessment of the effects of these perforate, single-layer liner parameters on the acoustic impedance of the liner.

  13. Testing and Characterization of CMC Combustor Liners

    NASA Technical Reports Server (NTRS)

    Robinson, R. Craig; Verrilli, Michael J.

    2003-01-01

    Multiple combustor liner applications, both segmented and fully annular designs, have been configured for exposure in NASA's High Pressure Burner Rig (HPBR). The segmented liners were attached to the rig structure with SiC/SiC fasteners and exposed to simulated gas turbine conditions for nearly 200 hours. Test conditions included pressures of 6 atm., gas velocity of 42 m/s, and gas temperatures near 1450 C. The temperatures of both the cooled and combustion flow sides of the liners were measured using optical and contact measurement techniques. Minor weight loss was observed, but the liners remained structural sound, although damage was noted in some fasteners.

  14. Elastomer liners for geothermal tubulars Y267 EPDM Liner Program:

    SciTech Connect

    Hirasuna, A.R.; Davis, D.L.; Flickinger, J.E.; Stephens, C.A.

    1987-12-01

    The elastomer, Y267 EPDM, has been identified as a hydrothermally stable material which can operate at temperatures in excess of 320/sup 0/C. The goal of the Y267 Liner Program was to demonstrate the feasibility of using this material as a liner for mild steel tubulars to prevent or mitigate corrosion. If successful, the usage of EPDM lined pipe by the geothermal community may have a significant impact on operating costs and serve as a viable alternative to the use of alloyed tubulars. Tooling procedures were developed under this program to mold a 0.64 cm (0.25'') thick Y267 EPDM liner into a tubular test section 61 cm (2') in length and 19.1 cm (7.5'') in diameter (ID). A successful effort was made to identify a potential coupling agent to be used to bond the elastomer to the steel tubular wall. This agent was found to withstand the processing conditions associated with curing the elastomer at 288/sup 0/C and to retain a significant level of adhesive strength following hydrothermal testing in a synthetic brine at 260/sup 0/C for a period of 166 hours. Bonding tests were conducted on specimens of mild carbon steel and several alloys including Hastelloy C-276. An objective of the program was to field test the lined section of pipe mentioned above at a geothermal facility in the Imperial Valley. Though a test was conducted, problems encountered during the lining operation precluded an encouraging outcome. The results of the field demonstration were inconclusive. 6 refs., 13 figs., 13 tabs

  15. Refractory Metal Liner Processing for M242 Medium Caliber Barrels

    DTIC Science & Technology

    2013-01-01

    public release; distribution unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The process for attaching a refractory metal liner to a gun tube...known as Gun Liner Emplacement with an Elastomeric Material (GLEEM) has been developed for the 25 mm Bushmaster medium caliber cannon. Stellite 25 liners...liner stretching. 15. SUBJECT TERMS refractory metal, gun tube liner, M242 barrel, elastomer, liner processing 16. SECURITY CLASSIFICATION OF: 17

  16. HEL-1: A DEMG Based Demonstration of Solid Liner Implosions at 100 MA

    SciTech Connect

    Reinovsky, R.E.; Anderson, B.G.; Clark, D.A.

    1997-12-31

    In August 1997, the Los Alamos National Laboratory (LANL) and the All-Russian Scientific Research Institute of Experimental Physics (VNIIEF) conducted a joint experiment in Sarov, Russia to demonstrate the feasibility of applying explosive pulsed power technology to implode large scale, high velocity cylindrical liners. Kilogram mass metal liners imploding at velocities of 5-25 km/sec are useful scientific tools for producing high energy density environments, ultra high pressure shocks, and for the rapid compression of plasmas. To explore the issues associated with the design, operation and diagnosis of such implosions, VNIIEF and LANL designed and executed an practical demonstration in which a liner of approximately 1 kilogram mass was accelerated to 510 km/sec while undergoing a convergence of about 4:1. The scientific objectives of the experiment were threefold. First to explore the limits of very large, explosive, pulse power system delivering about 100 MA as drivers for accelerating solid density imploding liners to kinetic energies of 25 MJ or greater. Second to evaluate the behavior of single material (aluminum) liners imploding at 510 km/sec velocities by comparing experimental data with 1-D and 2-D numerical simulations. Third, to evaluate the condition of the selected liner at radial convergence of 4 and a final radius of 6 cm. A liner of such parameters could be used as a driver for equation of state measurements at megabar pressures or as a driver for a future experiment in which a magnetized fusion plasma would be compressed to approach ignition conditions.

  17. Study of Plasma Liner Driven Magnetized Target Fusion Via Advanced Simulations

    SciTech Connect

    Samulyak, Roman V.; Parks, Paul

    2013-08-31

    The feasibility of the plasma liner driven Magnetized Target Fusion (MTF) via terascale numerical simulations will be assessed. In the MTF concept, a plasma liner, formed by merging of a number (60 or more) of radial, highly supersonic plasma jets, implodes on the target in the form of two compact plasma toroids, and compresses it to conditions of the fusion ignition. By avoiding major difficulties associated with both the traditional laser driven inertial confinement fusion and solid liner driven MTF, the plasma liner driven MTF potentially provides a low-cost and fast R&D path towards the demonstration of practical fusion energy. High fidelity numerical simulations of full nonlinear models associated with the plasma liner MTF using state-of-art numerical algorithms and terascale computing are necessary in order to resolve uncertainties and provide guidance for future experiments. At Stony Brook University, we have developed unique computational capabilities that ideally suite the MTF problem. The FronTier code, developed in collaboration with BNL and LANL under DOE funding including SciDAC for the simulation of 3D multi-material hydro and MHD flows, has beenbenchmarked and used for fundamental and engineering problems in energy science applications. We have performed 3D simulations of converging supersonic plasma jets, their merger and the formation of the plasma liner, and a study of the corresponding oblique shock problem. We have studied the implosion of the plasma liner on the magnetized plasma target by resolving Rayleigh-Taylor instabilities in 2D and 3D and other relevant physics and estimate thermodynamic conditions of the target at the moment of maximum compression and the hydrodynamic efficiency of the method.

  18. One-dimensional radiation-hydrodynamic scaling studies of imploding spherical plasma liners

    SciTech Connect

    Awe, T. J.; Adams, C. S.; Davis, J. S.; Hanna, D. S.; Hsu, S. C.; Cassibry, J. T.

    2011-07-15

    One-dimensional radiation-hydrodynamic simulations are performed to develop insight into the scaling of stagnation pressure with initial conditions of an imploding spherical plasma shell or ''liner.'' Simulations reveal the evolution of high-Mach-number (M), annular, spherical plasma flows during convergence, stagnation, shock formation, and disassembly, and indicate that cm- and {mu}s-scale plasmas with peak pressures near 1 Mbar can be generated by liners with initial kinetic energy of several hundred kilo-joules. It is shown that radiation transport and thermal conduction must be included to avoid non-physical plasma temperatures at the origin which artificially limit liner convergence and, thus, the peak stagnation pressure. Scalings of the stagnated plasma lifetime ({tau}{sub stag}) and average stagnation pressure (P{sub stag}, the pressure at the origin, averaged over {tau}{sub stag}) are determined by evaluating a wide range of liner initial conditions. For high-M flows, {tau}{sub stag} {approx} {Delta}R/v{sub 0}, where {Delta}R and v{sub 0} are the initial liner thickness and velocity, respectively. Furthermore, for argon liners, P{sub stag} scales approximately as v{sub 0}{sup 15/4} over a wide range of initial densities (n{sub 0}) and as n{sub 0}{sup 1/2} over a wide range of v{sub 0}. The approximate scaling P{sub stag} {approx} M{sup 3/2} is also found for a wide range of liner-plasma initial conditions.

  19. Liquid-cooled liner for helmets

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Elkins, W.

    1974-01-01

    Liner acts as coolant tubing, manifold, and supporting structures. Fabric of waffle-design is made of several integrated channels (or capillaries) through which coolant liquid can flow. Thin and light-weight liner can be incorporated into any type of helmet or head gear.

  20. HYDRAULIC CONDUCTIVITY OF THREE GEOSYNTHETIC CLAY LINERS

    EPA Science Inventory

    The hydraulic conductivity of three 2.9 m2 (32 sq ft) geosynthetic clay liners (GCLs) was measured. Tests were performed on individual sheets of the GCLs, on overlapped pieces of GCLs, and on composite liners consisting of a punctured geomembrane overlying a GCL. Hyd...

  1. Fabrication of a Kevlar liner assembly

    SciTech Connect

    Schloman, A.H.

    1980-07-01

    Several liner assemblies were fabricated with Kevlar 49 and epoxy using various wet layup and prepreg processes. A production process, using prepreg material, was developed for fabricating the liner and a wet layup molding process was used to fabricate the Kevlar hat-shaped tunnels. Fabrication of the tunnels using Kevlar prepreg with an autoclave curving process was evaluated.

  2. High-resolution observations of tungsten liner collapse and early jet formation

    SciTech Connect

    Winer, K.A.; Breithaupt, R.D.; Muelder, S.A.; Baum, D.W.

    1996-07-01

    High-resolution photography of collapsing tungsten-lined shaped charges has revealed surface texturing both similar to and strikingly different from that previously observed during copper liner collapse. The behavior of three types of tungsten-lined shaped charges, with different liner designs and high explosives but with similar tungsten processing, were characterized by image-converter camera and fast- framing camera photography, and flash x-ray radiography. 120-mm- diameter, trumpet-shaped Octol charges produced surface blistering near the base of the tungsten liner, probably due to inhomogeneities near the liner-explosive interface resulting from cast loading. 148- mm-diameter, quasi-conical LX-14 charges produced smooth shocked- surface texture similar to that observed in conical, copper-lined LX- 14 (Viper) charges. 81-mm-diameter, conical LX-20 charges produced severe radial texturing throughout the collapsing tungsten liner, which transitioned to azimuthal banding on the jet surface. For each type of charge, obscuring debris from the tungsten jet tip prevented clear imaging of the jet surface at late time. 8 refs., 6 figs., 2 tabs.

  3. Water movement through an experimental soil liner

    USGS Publications Warehouse

    Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.R.; Herzog, B.L.

    1991-01-01

    A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (???1 x 10-7 cm s-1). The 8 x 15 x 0.9m liner was constructed in 15 cm compacted lifts using a 20,037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water break through at the base of the liner occurs. Estimated saturated hydraulic conductivities were 2.5 x 10-9, 4.0 x 10-8, and 5.0 x 10-8 cm s-1 based on measurements of water infiltration into the liner by large- and small-ring infiltrometers and a water balance analysis, respectively. Also investigated in this research was the variability of the liner's hydraulic properties and estimates of the transit times for water and tracers. Small variances exhibited by small-ring flux data suggested that the liner was homogeneous with respect to infiltration fluxes. The predictions of water and tracer breakthrough at the base of the liner ranged from 2.4-12.6 y, depending on the method of calculation and assumptions made. The liner appeared to be saturated to a depth between 18 and 33 cm at the end of the first year of monitoring. Transit time calculations cannot be verified yet, since breakthrough has not occurred. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirement established by the U.S. EPA.A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (??? 1 ?? 10-7 cm s-1). The 8 ?? 15 ?? 0.9 m liner was constructed in 15 cm compacted lifts using a 20.037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water

  4. Stabilized Liner Compressor: The Return of Linus

    NASA Astrophysics Data System (ADS)

    Turchi, Peter; Frese, Sherry; Frese, Michael; Mielke, Charles; Hinrichs, Mark; Nguyen, Doan

    2015-11-01

    To access the lower cost regime of magneto-inertial fusion at megagauss magnetic field-levels requires the use of dynamic conductors in the form of imploding cylindrical shells, aka, liners. Such liner implosions can compress magnetic flux and plasma to attain fusion conditions, but are subject to Rayleigh-Taylor instabilities, both in the launch and recovery of the liner material and in the final few diameters of implosion. These instabilities were overcome in the Linus program at the Naval Research Laboratory, c. 1979, providing the experimentally-demonstrated basis for repetitive operation and leading to an economical reactor concept at low fusion gain. The recent ARPA-E program for low-cost fusion technology has revived interest in this approach. We shall discuss progress in modeling and design of a Stabilized Liner Compressor (SLC) that extends the earlier work to higher pressures and liner speeds appropriate to potential plasma targets. Sponsored by ARPA-E ALPHA Program.

  5. NGC 5252 - a Liner undercover

    NASA Astrophysics Data System (ADS)

    Goncalves, A. C.; Veron, P.; Veron-Cetty, M.-P.

    1998-05-01

    Ground based long slit spectroscopic observations of the nuclear region of NGC 5252, and Hubble Space Telescope (HST) Faint Object Spectrograph (FOS) spectra of the nucleus and two bright knots located 0.36'' NE and 0.31'' SW from it, show that the nuclear region exhibits the characteristics of a Liner with exceptionally strong [O i] emission, all lines being broad (FWHM ~ 1100kms(-1) ), while the gas outside the nucleus has a typical Seyfert 2 spectrum with relatively narrow lines ( ~ 200-300kms(-1) ). We suggest that all the emitting gas is photoionized by the hidden non-thermal nuclear source detected through near-infrared (Kotilainen & Prieto 1995) and X-ray (Cappi et al. 1996) observations, the ionizing continuum, in the case of the central Liner, being ``filtered'' by a matter-bounded highly ionized cloud, hidden from our view by the same material obscuring the central continuum source. Based on observations collected at the Observatoire de Haute-Provence (CNRS, France) and Hubble Space Telescope data obtained from the Space Telescope European Coordinating Facility (ST-ECF) Archive.

  6. Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions

    SciTech Connect

    Narkis, J.; Rahman, H. U.; Ney, P.; Desjarlais, M. P.; Wessel, F. J.; Conti, F.; Valenzuela, J. C.; Beg, F. N.

    2016-12-29

    1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J×B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compression heating the target to high energy density. Shock compression of the target coincides with the development of a J×B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. As a result, delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe.

  7. Shock formation in Ne, Ar, Kr, and Xe on deuterium gas puff implosions

    DOE PAGES

    Narkis, J.; Rahman, H. U.; Ney, P.; ...

    2016-12-29

    1- and 2-D simulations of 1-cm radius, gas-puff liners of Ne, Ar, Kr, and Xe imploding onto a deuterium target are conducted using the discharge parameters for the Zebra (1 MA, 130 ns) driver using the resistive MHD code MACH2. This is an implementation of the Staged Z-pinch concept, in which the target is driven to high-energy-density first by shock compression launched by a diffused azimuthal magnetic field (J×B force), and then by the adiabatic compression as the liner converges on axis. During the run-in phase, the initial shock heating preheats the deuterium plasma, with a subsequent stable, adiabatic compressionmore » heating the target to high energy density. Shock compression of the target coincides with the development of a J×B force at the target/liner interface. Stronger B-field transport and earlier shock compression increases with higher-Z liners, which results in an earlier shock arrival on axis. As a result, delayed shock formation in lower-Z liners yields a relative increase in shock heating, however, the 2-D simulations show an increased target isolation from magneto-Rayleigh-Taylor instability penetration, suggesting that an optimal balance between these two effects is reached in an Ar or Kr liner, rather than with Xe.« less

  8. Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner

    NASA Technical Reports Server (NTRS)

    Martin, Adam; Eskridge, Richard; Fimognari, Peter J., III.

    2005-01-01

    Thermo-nuclear fusion may be the key to a high Isp, high specific power (low alpha) propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the ORION concept, is described. A passive tapered liner is launched behind a vehicle, through a hole in a pusher-plate, that is connected to the vehicle by a shock-absorbing mechanism. A dense FRC plasmoid is then accelerated to high velocity (in excess of 1,000 km/s) and shot through the hole into the liner, when it has reached a given point down-range. The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion bum in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by the pusher-plate, as in the classic ORION concept. However with this concept, the vehicle does not carry a magazine of pre-fabricated pulse-units. A magnetic nozzle may also be used, in place of the pusher-plate. Estimates of the conditions needed to achieve a sufficient gain will be presented, along with a description of the driver characteristics. The incorporation of this concept into the propulsion system of a spacecraft will also be discussed.

  9. How to prevent deep-well liner failure

    SciTech Connect

    Durham, K.S.

    1987-11-01

    This article discusses three liner design rules to prevent deep-well liner failure. They are: 1) Always select heavier weight casing, all other things being equal. 2) Always suspect that liner tops and casing shoes will leak. Design accordingly. 3) Liner tension designs should always include ballooning and temperature effects of stimulation. The article also gives some guidelines that will lead to better deep-well liner designs and reduce mechanical risk, according to the author.

  10. Correlating shaped charge performance with processing conditions and microstructure of an aluminum alloy 1100 liner enabled by a new method to arrest nascent jet formation

    NASA Astrophysics Data System (ADS)

    Scheid, James Eric

    custom explosive experiment that delivered meaningful, full-scale shock deformed samples for analysis. The experiment arrested the collapse of actual, as-fabricated liners in the first microseconds of development. This experiment, performed with only 2% of the explosive mass of the full charge, revealed new insights into material-dependent variations in liner collapse including a striking image of the formation of a shaped charge jet axial hole. The highly strain-hardened and elongated forged liner was the best performer of the three. Less energy from the explosive was dissipated by dislocation generation. This translated to more efficient flow whereas the softer materials behaved as shock absorbers delaying flow. A set of hypotheses was formulated and critiqued based on these observations. The key findings were the effects of grain size, and shear bands induced in the microstructure through cold work enabled efficient liner flow. These bands provide highly localized dislocation highways enabling the matrix adjacent to the bands to deform plastically at higher velocity. Where such bands are unavailable, the pressure must first develop bands of smaller grains, thus decreasing energy available for flow. Collapse velocities were then associated with the number of shear bands, the organization of mobile dislocations, material strain, and liner geometry. Microstructures with the ability to deform with the direction of liner collapse at lower stresses will form jets with a higher velocity and elongate earlier. The effect is higher performance at shorter standoffs. This relationship can be used to predict material behavior under explosive load, guiding engineering choices while designing with respect to anticipated shock loading. The explosive experiment designed here has obvious application in refining the performance of other warheads, and in the hydrodynamic modeling of material properties.

  11. Drapery assembly including insulated drapery liner

    DOEpatents

    Cukierski, Gwendolyn

    1983-01-01

    A drapery assembly is disclosed for covering a framed wall opening, the assembly including drapery panels hung on a horizontal traverse rod, the rod having a pair of master slides and means for displacing the master slides between open and closed positions. A pair of insulating liner panels are positioned behind the drapery, the remote side edges of the liner panels being connected with the side portions of the opening frame, and the adjacent side edges of the liner panels being connected with a pair of vertically arranged center support members adapted for sliding movement longitudinally of a horizontal track member secured to the upper horizontal portion of the opening frame. Pivotally arranged brackets connect the center support members with the master slides of the traverse rod whereby movement of the master slides to effect opening and closing of the drapery panels effects simultaneous opening and closing of the liner panels.

  12. Gun Liner Emplacement With an Elastomeric Material

    DTIC Science & Technology

    2010-04-01

    Include area code) 410 -306-0816 Standard Form 298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 iii Contents List of Figures iv  List of Tables v...12  Figure 9. Inner diameter measurements for Stellite liners no. 1 and 2...5  Table 2. Bond strength results for 4-in Stellite 25 liners ................................................................6  Table 3. Bond

  13. CANMET Gasifier Liner Coupon Material Test Report

    SciTech Connect

    Mark Fitzsimmons; Dave Grimmett; Bryan McEnerney

    2007-01-31

    This report provides detailed test results consisting of test data and post-test inspections from Task 1 ''Cooled Liner Coupon Development and Test'' of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources--Advanced Gasification Systems Development (AGSD)''. The primary objective of this development and test program is to verify that ceramic matrix composite (CMC) liner materials planned for use in an advanced gasifier pilot plant will successfully withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) designed and fabricated the cooled liner test assembly article that was tested in a slagging gasifier at CANMET Energy Technology Center (CETC-O) in Ottawa, Ontario, Canada. The test program conducted in 2006 met the objective of operating the cooled liner test article at slagging conditions in a small scale coal gasifier at CETC-O for over the planned 100 hours. The test hardware was exposed to at least 30 high temperature excursions (including start-up and shut-down cycles) during the test program. The results of the testing has provided valuable information on gasifier startup and required cooling controls in steady state operation of future advanced gasifiers using similar liners. The test program also provided a significant amount of information in the areas of CMC materials and processing for improved capability in a gasifier environment and insight into CMC liner fabrication that will be essential for near-term advanced gasifier projects.

  14. Performance of a Checkerboard Liner With Uncertain Impedances

    NASA Technical Reports Server (NTRS)

    Robinson, J. H.; Watson, W. R.

    2005-01-01

    The current fleet of large commercial aircraft has successfully achieved FAA noise certifications because of, in part, the successful application of uniform passive duct liner treatments to control engine system noise. One goal of NASA's engine system noise reduction program is to develop technologies to improve the sound absorbing properties of duct liner treatments so that they remain effective in modern turbo fan engines. One such technology being studied is checkerboard or periodic axially and circumferentially segmented liners. A preliminary assessment of the potential of this technology was conducted by applying uncertainties associated with manufacturing, installation, source structure, and tonal frequency to a liner developed using deterministic design methods and generating a measure of improvement with respect to a uniform liner subjected to the same uncertainties. Deterministic design and analysis of the candidate checkerboard liner showed that it obtains a 1.5 dB per duct aspect ratio improvement in liner attenuation over a similarly designed uniform liner. When uncertainties in liner impedances, source structure, and frequency are considered, the performance of the checkerboard liner drops off dramatically. The final results of this paper show that the candidate checkerboard liner has a less than 25 percent chance of outperforming the uniform liner when moderate levels of uncertainty are considered. It is important to note that this study did not include the effects of mean flow on liner performance and, more important to note, that as a gradient based optimization process was used to design the checkerboard liner, it is almost certain that a global optimal design was not found for the candidate checkerboard liner. Had it been possible to find a better deterministically performing checkerboard liner, the probability that this candidate liner would outperform the uniform liner would certainly have been higher.

  15. Origin of the B-dot jump observed in precision liner experiments

    SciTech Connect

    Lee, H.; Stokes, J.L.; Broste, W.B.

    1995-09-01

    In the liner-ejecta experiments carried out at the Los Alamos pulsed power facility Pegasus II, a solid liner was magnetically imploded to impact on a target cylinder to produce the shock-induced ejecta. As a result of improved time resolution for the B-dot (dB/dt) probes fielded last fall, the authors began to notice a sharp jump in the B-dot curve occurring at a time very close to the expected liner-target collision time. This jump was also found in the time derivative of the calculated current (dI/dt) obtained from code simulation. They have shown that the jump is indeed caused by the collision as a sudden change of the liner velocity would induce a sudden jump in the time derivative of the inductance. They have derived a general formula for calculating the jump in dI/dt and verified that the result computed from it is in good agreement with the code simulation. Useful diagnostic applications of the B-dot jump are discussed. This paper is relevant for magnetized target fusion.

  16. What produces the extended LINER-type emission in the NUGA galaxy NGC 5850?

    NASA Astrophysics Data System (ADS)

    Bremer, M.; Scharwächter, J.; Eckart, A.; Valencia-S., M.; Zuther, J.; Combes, F.; Garcia-Burillo, S.; Fischer, S.

    2013-10-01

    Context. The role of low ionization nuclear emission region (LINER) galaxies within the picture of active galactic nuclei (AGN) has been controversial. It is still not clear whether they host an AGN in a low accretion mode or whether they are not active at all but are instead dominated by alternative ionization mechanisms, namely shocks, winds/outflows, or photoionization by a post-asymptotic giant branch (p-AGB) stellar population. The detection of extended LINER-like emission was often taken as evidence of ionization by stellar components, but this has not been undisputed. Aims: Using optical spectroscopy, we examine the possible ionization mechanisms responsible for the extended LINER-like emission in the central ~4 kpc of NGC 5850. Methods: We performed integral field spectroscopic observations using VIMOS at the VLT, which provides spatially-resolved spectra for the gas emission and the stellar continuum. We subtract the underlying stellar continuum from the galaxy spectra and fit the emission lines. With these methods, we derive and analyze emission line and kinematic maps. Emission line ratio maps are examined by means of diagnostic diagrams. Results: The central few kpc of NGC 5850 are dominated by extended LINER-like emission. The emission-line ratios that are sensitive to the ionization parameter increase with radial distance to the nucleus. The LINER-like region is surrounded by emission that is classed as "composite" in terms of diagnostic diagrams. Two star-forming (SF) regions are present in the 21″ × 19″ field of view. One of them is located approximately in the ring, surrounding the kinematically decoupled core. The second one is close to the nucleus and is the origin of a region of decreased emission line ratios oriented radially outwards. We find the interstellar gas to have a complex kinematic morphology and to have areas of steep velocity gradients. Conclusions: The extended LINER-like emission in NGC 5850 is dominated by ionization from

  17. Isentropic compression of metals, at multi-megabar pressures, using high explosive pulsed power

    SciTech Connect

    Tasker, D. G.; Goforth, J. H.; King, J. C.; Martinez, E. C.; Oona, H.; Sena, F. C.; Reisman, D. B.; Cauble, R. C.

    2001-01-01

    Accurate, ultra-high pressure isentropic equation of state (EOS) data, are required for a variety of applications and materials. Asay reported a new method to obtain these data using pulsed magnetic loading on the Sandia Z-machine. Fast rising current pulses (risetimes from 100 to 30011s) at current densities exceeding many MNcm, create continuous magnetic loading up to a few Mbar. As part of a collaborative effort between the Los Alamos and Lawrence Livermore National Laboratories we are adapting our high explosive pulsed power (HEPP) methods to obtain isentropic EOS data with the Asay technique. This year we plan to obtain isentropic EOS data for copper and tantalum at pressures up to -2 Mbar; eventually we hope to reach several tens of Mbar. We will describe the design of the HEPP systems and show out attempts to obtain EOS data to date.

  18. Impact of Inner Surface Perturbations on the Stability of Cylindrical Liner Implosion

    NASA Astrophysics Data System (ADS)

    Weis, Matthew; Peterson, Kyle; Hess, Mark; Lau, Y. Y.; Zhang, Peng; Gilgenbach, Ronald

    2015-11-01

    This paper studies the effects of initial perturbations on the inner liner surface (ILS) of an imploding cylindrical liner. In MagLIF, nonuniform preheat of the fuel could provide an additional source of spatial nonuniformity on the ILS. A blast wave generated by the laser preheat might trigger the Richtmyer-Meshkov instability (RM) on the ILS which then serves as another seed to the Rayleigh-Taylor instability (RT) during the stagnation (deceleration) phase of the implosion. Another scenario is that the shock initiated from the outer liner surface, during current rise, propagates inward and is reflected at the ILS. This reflected shock would carry the initial ILS perturbations which then serve as an additional seed for the magneto-RT (MRT) during the acceleration phase of the implosion. These potentially dangerous interactions are analyzed using the 2D HYDRA code. The effects of axial magnetic fields, of the initial surface roughness spectrum, and of gas fill or water fill (to examine deceleration phase RT) are studied. M. R. Weis was supported by the Sandia National Laboratories. This work was also supported by DoE Grant DE-SC0012328.

  19. Use of FGD as an impervious liner

    SciTech Connect

    Wolfe, W.E.; Butalia, T.S.

    1998-04-01

    Increasing generation of coal combustion products (CCPs), particularly flue gas desulfurization (FGD) material, has led utilities to look for beneficial uses of these products. This paper presents one such utilization application of CCPs, i.e., the use of FGD material as an impervious liner for ponds and lagoons. The construction of a full scale lagoon using compacted FGD as a liner is presented. The project was undertaken primarily to address two critical questions, (1) what is the quality of water that permeates through an FGD liner and (2) what is the quantity of water permeating through a field compacted FGD fill of known thickness? The effects of construction processes on the behavior of compacted FGD are evaluated. The monitoring of the performance of the lagoon liner is discussed. Preliminary results indicate that the permeability of the field compacted FGD liner is reducing with time and is approaching the EPA recommended value of 1x10{sup -7} cm/sec for waste containment facilities.

  20. Use of FGD as an impervious liner

    SciTech Connect

    Wolfe, W.E.; Butalia, T.S.

    1998-07-01

    Increasing generation of coal combustion products (CCPs), particularly flue gas desulfurization (FGD) material, has led utilities to look for beneficial uses of these products. This paper presents one such utilization application of CCPs, i.e., the use of FGD material as an impervious liner for ponds and lagoons. The construction of a full scale lagoon using compacted FGD as a liner is presented. The project was undertaken primarily to address two critical questions, (1) what is the quality of water that permeates through an FGD liner and (2) what is the quantity of water permeating through a field compacted FGD fill of known thickness? The effects of construction processes on the behavior of compacted FGD are evaluated. The monitoring of the performance of the lagoon liner is discussed. Preliminary results indicate that the permeability of the field compacted FGD liner is reducing with time and is approaching the EPA recommended value of 1 x 10{sup {minus}7} cm/sec for waste containment facilities.

  1. Novel, high-pressure instability experiments using imploding cylindrical liners with liquid deuterium fill

    NASA Astrophysics Data System (ADS)

    Knapp, Patrick; Martin, Matthew; McBride, Ryan; Sinars, Daniel; Mattsson, Thomas

    2015-11-01

    We present preliminary results from experiments where a liquid deuterium filled cylindrical liner is imploded onto a perturbed beryllium rod. The liner implosion creates a shock in the deuterium that strikes the interface twice: once as it implodes, and once again after the shock reflects off of the axis. This causes the perturbation to grow due to the Richtmeyer-Meshkov instability and the Rayleigh-Taylor instability while also generating significant vorticity as the shocks cross the interface. In the initial experiments growth of the perturbation is observed after 1st shock, however, after reshock significant three-dimensional structure is observed at scale lengths much smaller than the initial perturbation. At this time, very little evidence of the seeded mode remains. Pressures exceeding 100 Mbar are predicted at stagnation with an Atwood number at the unstable interface of about 1/3. Analysis of the images will be presented. Additionally, future plans will be discussed. Emphasis in the near future will be on improving image contrast and data collection. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract D.

  2. Shock metamorphic effects in lunar microcraters

    NASA Technical Reports Server (NTRS)

    Schaal, R. B.; Hoerz, F.; Gibbons, R. V.

    1976-01-01

    Detailed petrographic descriptions and results of electron microprobe analyses are presented for impact glasses as well as shocked and unshocked minerals associated with individual lunar microcraters (diameters of 0.4 to 4.4 mm). Rocks of four typical lunar lithologies are studied: anorthosite, anorthositic norite, ophitic basalt, and polymict breccia. Textures, mineralogies, and chemical compositions are examined along a radial traverse through each microcrater; i.e., across the impact glasses lining the crater wall, the shock-metamorphosed zone immediately underlying the glass liner, and the unshocked host rock. The microcraters are discussed in a sequence of increasing mineralogical complexity of the host rock (from anorthosite to polymict breccia) in order to distinguish shock effects among mineral types. The shock metamorphic features observed are found to be comparable to those reported in shocked basalt from Lonar Crater, India, and are categorized into five shock-intensity classes with pressures experimentally calibrated.

  3. Drag Measurements of Porous Plate Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Wolter, John D.

    2005-01-01

    This paper presents the results of direct drag measurements on a variety of porous plate acoustic liners. The existing literature describes numerous studies of drag on porous walls with injection or suction, but relatively few of drag on porous plates with neither injection nor suction. Furthermore, the porosity of the porous plate in existing studies is much lower than typically used in acoustic liners. In the present work, the acoustic liners consisted of a perforated face sheet covering a bulk acoustic absorber material. Factors that were varied in the experiment were hole diameter, hole pattern, face sheet thickness, bulk material type, and size of the gap (if any) between the face sheet and the absorber material.

  4. SDU6 Interior Liner Testing & Evaluation

    SciTech Connect

    Skidmore, T. E.

    2016-10-14

    Two liner materials (Marseal® M-3500 and REMA Chemoline® 4CN) proposed for use as a liner inside the Saltstone Disposal Unit 6 (SDU6) were subjected to specific ASTM tests (tensile and lap-shear) after immersion in 50% and 100% simulant solutions for 1000 hours at the Savannah River Ecology Laboratory. Both liner materials exhibited good resistance to the simulant chemistry, at least based on the tests performed and the test duration/conditions imposed. In lap-shear tests, both materials failed in the base material rather than peeling apart, confirming good adhesion. The REMA 4CN bromobutyl elastomer showed superior bonding characteristics and absence of warping or delamination at the conditions tested. The Marseal M-3500 material (PVC/EVA blend with polyester reinforcement) exhibited deformation and debonding in some locations. The cause of the deformation and delamination observed in the Marseal M-3500 material is not fully known, but possibly attributed to thermomechanical stress at immersion temperatures, and the thermoplastic nature of the material. The immersion temperature (68 °C) is slightly greater than the maximum use temperature limit quoted for the Marseal M- 3500 liner (65 °C), though the basis for the service limit is unknown. The testing performed was limited in scope and only for these two liner materials. These tests were primarily performed to screen for severe incompatibility or short-term degradation in Saltstone bleedwater simulants at bounding solution temperatures. Additional testing is recommended to assess long-term performance and the overall service life of the liner.

  5. Lifecycle Verification of Tank Liner Polymers

    SciTech Connect

    Anovitz, Lawrence {Larry} M; Smith, Barton

    2014-03-01

    This report describes a method that was developed for the purpose of assessing the durability of thermoplastic liners used in a Type IV hydrogen storage tank during the tank s expected service life. In the method, a thermoplastic liner specimen is cycled between the maximum and minimum expected working temperatures while it is differentially pressurized with high-pressure hydrogen gas. The number of thermal cycling intervals corresponds to those expected within the tank s design lifetime. At prescribed intervals, hydrogen permeation measurements are done in situ to assess the ability of the liner specimen to maintain its hydrogen barrier properties and to model its permeability over the tank lifetime. Finally, the model is used to assess whether the steady-state leakage rate in the tank could potentially exceed the leakage specification for hydrogen fuel cell passenger vehicles. A durability assessment was performed on a specimen of high-density polyethylene (HDPE) that is in current use as a tank liner. Hydrogen permeation measurements were performed on several additional tank liner polymers as well as novel polymers proposed for use as storage tank liners and hydrogen barrier materials. The following technical barriers from the Fuel Cell Technologies Program MYRDD were addressed by the project: D. Durability of on-board storage systems lifetime of at least 1500 cycles G. Materials of construction vessel containment that is resistant to hydrogen permeation M. Lack of Tank Performance Data and Understanding of Failure Mechanisms And the following technical targets1 for on-board hydrogen storage systems R&D were likewise addressed: Operational cycle life (1/4 tank to full) FY 2017: 1500 cycles; Ultimate: 1500 cycles Environmental health & safety Permeation and leakage: Meets or exceeds applicable standards Loss of useable H2: FY 2017: 0.05 g/h/kg H2; Ultimate: 0.05 g/h/kg H2

  6. Assessing liner performance using on-farm milk meters.

    PubMed

    Penry, J F; Leonardi, S; Upton, J; Thompson, P D; Reinemann, D J

    2016-08-01

    The primary objective of this study was to quantify and compare the interactive effects of liner compression, milking vacuum level, and pulsation settings on average milk flow rates for liners representing the range of liner compression of commercial liners. A secondary objective was to evaluate a methodology for assessing liner performance that can be applied on commercial dairy farms. Eight different liner types were assessed using 9 different combinations of milking system vacuum and pulsation settings applied to a herd of 80 cows with vacuum and pulsation conditions changed daily for 36d using a central composite experimental design. Liner response surfaces were created for explanatory variables milking system vacuum (Vsystem) and pulsator ratio (PR) and response variable average milk flow rate (AMF=total yield/total cups-on time) expressed as a fraction of the within-cow average flow rate for all treatments (average milk flow rate fraction, AMFf). Response surfaces were also created for between-liner comparisons for standardized conditions of claw vacuum and milk ratio (fraction of pulsation cycle during which milk is flowing). The highest AMFf was observed at the highest levels of Vsystem, PR, and overpressure. All liners showed an increase in AMF as milking conditions were changed from low to high standardized conditions of claw vacuum and milk ratio. Differences in AMF between liners were smallest at the most gentle milking conditions (low Vsystem and low milk ratio), and these between-liner differences in AMF increased as liner overpressure increased. Differences were noted with vacuum drop between Vsystem and claw vacuum depending on the liner venting system, with short milk tube vented liners having the greater vacuum drop than mouthpiece chamber vented liners. The accuracy of liner performance assessment in commercial parlors fitted with milk meters can be improved by using a central composite experimental design with a repeated center point treatment

  7. FOAM-IN-PLACE FORM FITTING HELMET LINERS

    DTIC Science & Technology

    A urethane foam formulation has been developed to produce foamed-in-place helmet liners for Air Force crash or flying helmets. High density urethane...foam helmet liners has been foamed-in-place directly on the flying crew member’s head, producing a perfectly fitting helmet liner with a minimum of...time, labor and inconvenience. These liners were produced at an extremely modest cost. Design and fabrication of a suitable mold in which the helmet

  8. Advanced liner-cooling techniques for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1985-01-01

    Component research for advanced small gas turbine engines is currently underway at the NASA Lewis Research Center. As part of this program, a basic reverse-flow combustor geometry was being maintained while different advanced liner wall cooling techniques were investigated. Performance and liner cooling effectiveness of the experimental combustor configuration featuring counter-flow film-cooled panels is presented and compared with two previously reported combustors featuring: splash film-cooled liner walls; and transpiration cooled liner walls (Lamilloy).

  9. Acoustic Panel Liner for an Engine Nacelle

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Nark, Douglas M. (Inventor); Ayle, Earl (Inventor); Ichihashi, Fumitaka (Inventor)

    2016-01-01

    An acoustic panel liner includes a face sheet, back plate, and liner core positioned there-between, which may be used in an engine nacelle. Elongated chambers contain variable amounts of septa at a calibrated depth or depths. The septa may have varying DC flow resistance. The chambers may have a hexagonal or other polygonal cross sections. The septa, such as mesh caps, may be bonded to an inner wall of a corresponding chamber. The insertion depths may be the same or different. If different, the pattern of distribution of the depths may be randomized.

  10. Diagnostics for the plasma liner experiment.

    PubMed

    Lynn, A G; Merritt, E; Gilmore, M; Hsu, S C; Witherspoon, F D; Cassibry, J T

    2010-10-01

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical "plasma liners" via merging high Mach number plasma jets to reach peak liner pressures of ∼0.1 Mbar using ∼1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n(i)∼10(16) cm(-3), T(e)≈T(i)∼1 eV at the plasma gun mouth to n(i)>10(19) cm(-3), T(e)≈T(i)∼0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  11. Diagnostics for the Plasma Liner Experiment

    SciTech Connect

    Lynn, A. G.; Merritt, E.; Gilmore, M.; Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.

    2010-10-15

    The goal of the Plasma Liner Experiment (PLX) is to explore and demonstrate the feasibility of forming imploding spherical ''plasma liners'' via merging high Mach number plasma jets to reach peak liner pressures of {approx}0.1 Mbar using {approx}1.5 MJ of initial stored energy. Such a system would provide HED plasmas for a variety of fundamental HEDLP, laboratory astrophysics, and materials science studies, as well as a platform for experimental validation of rad-hydro and rad-MHD simulations. It could also prove attractive as a potential standoff driver for magnetoinertial fusion. Predicted parameters from jet formation to liner stagnation cover a large range of plasma density and temperature, varying from n{sub i}{approx}10{sup 16} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}1 eV at the plasma gun mouth to n{sub i}>10{sup 19} cm{sup -3}, T{sub e}{approx_equal}T{sub i}{approx}0.5 keV at stagnation. This presents a challenging problem for the plasma diagnostics suite which will be discussed.

  12. Membrane behavior of clay liner materials

    NASA Astrophysics Data System (ADS)

    Kang, Jong Beom

    Membrane behavior represents the ability of porous media to restrict the migration of solutes, leading to the existence of chemico-osmosis, or the flow of liquid in response to a chemical concentration gradient. Membrane behavior is an important consideration with respect to clay soils with small pores and interactive electric diffuse double layers associated with individual particles, such as bentonite. The results of recent studies indicate the existence of membrane behavior in bentonite-based hydraulic barriers used in waste containment applications. Thus, measurement of the existence and magnitude of membrane behavior in such clay soils is becoming increasingly important. Accordingly, this research focused on evaluating the existence and magnitude of membrane behavior for three clay-based materials that typically are considered for use as liners for waste containment applications, such as landfills. The three clay-based liner materials included a commercially available geosynthetic clay liner (GCL) consisting of sodium bentonite sandwiched between two geotextiles, a compacted natural clay known locally as Nelson Farm Clay, and compacted NFC amended with 5% (dry wt.) of a sodium bentonite. The study also included the development and evaluation of a new flexible-wall cell for clay membrane testing that was used subsequently to measure the membrane behaviors of the three clay liner materials. The consolidation behavior of the GCL under isotropic states of stress also was evaluated as a preliminary step in the determination of the membrane behavior of the GCL under different effective consolidation stresses.

  13. A liner timeline at Grand Central Sanitation

    SciTech Connect

    Woods, R.

    1994-08-01

    Since the promulgation of the minimum landfill liner requirements under RCRA's Subtitle D in September 1991, nearly every operating landfill in the US that has expanded horizontally has been brought up to speed with basic environmental protection measures, i.e., liners, leachate collection groundwater monitoring, etc. For most landfills, however, these changes did not happen overnight. For more than a decade, most of the states and countless private landfills have been anticipating the advent of Subtitle D and have been upgrading outdated landfills long before the federal regulations were enforced. Grand Central Sanitation, Inc. (GCS, Pen Argyl, Pa.), for example, is a case in point. The family-run company's sanitary landfill began operation as a 52-acre, natural renovation, or earthen barrier, fill in the early 1950s and its first two fill areas, now closed, had only natural soils as a liner. Today, GCS's facility has more than doubled its permitted capacity. Its 10th disposal cell, now under construction, is triple-lined with the latest synthetic geomembranes, including high-density polyethylene (HDPE) liners, geotextiles, geonets, and leachate collection systems.

  14. Statistically Based Approach to Broadband Liner Design and Assessment

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    A broadband liner design optimization includes utilizing in-duct attenuation predictions with a statistical fan source model to obtain optimum impedance spectra over a number of flow conditions for one or more liner locations in a bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners having impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increasing weighting to specific frequencies and/or operating conditions. One or more broadband design approaches are utilized to produce a broadband liner that targets a full range of frequencies and operating conditions.

  15. Influence of atomic processes on the implosion of plasma liners

    SciTech Connect

    Kim, Hyoungkeun; Zhang Lina; Samulyak, Roman; Parks, Paul

    2012-08-15

    The influence of atomic physics processes on the implosion of plasma liners for magneto-inertial nuclear fusion has been investigated numerically by using the method of front tracking in spherically symmetric geometry and equation of state models accounting for dissociation and ionization. Simulation studies of the self-collapse of argon liners to be used in the Los Alamos Plasma Liner Experiment (PLX) program have been performed as well as studies of implosion of deuterium and argon liners on plasma targets. Results show that atomic processes in converging liners reduce the temperature of liners and increase the Mach number that results in the increase of the stagnation pressure and the fusion energy gain. For deuterium and argon liners imploding on plasma targets, dissociation and ionization increased the stagnation pressure and the fusion energy gain by the factor of 1.5 (deuterium) and 2 (argon) correspondingly. Similarly, ionization during the self-collapse of argon liners leads to approximately doubling of the Mach number and the stagnation pressure. The influence of the longitudinal density spread of the liner has also been investigated. The self-collapse stagnation pressure decreased by the factor of 8.7 when the initial position of the liner was shifted from the merging radius (33 cm) to the PLX chamber edge (137.2 cm). Simulations with and without the heat conduction demonstrated that the heat conduction has negligible effect on the self-collapse pressure of argon liners.

  16. Geosynthetic clay liners shrinkage under simulated daily thermal cycles.

    PubMed

    Sarabadani, Hamid; Rayhani, Mohammad T

    2014-06-01

    Geosynthetic clay liners are used as part of composite liner systems in municipal solid waste landfills and other applications to restrict the escape of contaminants into the surrounding environment. This is attainable provided that the geosynthetic clay liner panels continuously cover the subsoil. Previous case histories, however, have shown that some geosynthetic clay liner panels are prone to significant shrinkage and separation when an overlying geomembrane is exposed to solar radiation. Experimental models were initiated to evaluate the potential shrinkage of different geosynthetic clay liner products placed over sand and clay subsoils, subjected to simulated daily thermal cycles (60°C for 8 hours and 22°C for 16 hours) modelling field conditions in which the liner is exposed to solar radiation. The variation of geosynthetic clay liner shrinkage was evaluated at specified times by a photogrammetry technique. The manufacturing techniques, the initial moisture content, and the aspect ratio (ratio of length to width) of the geosynthetic clay liner were found to considerably affect the shrinkage of geosynthetic clay liners. The particle size distribution of the subsoil and the associated suction at the geosynthetic clay liner-subsoil interface was also found to have significant effects on the shrinkage of the geosynthetic clay liner.

  17. Shock formation in Ne, Ar, Kr, and Xe on DD gas puff implosions

    NASA Astrophysics Data System (ADS)

    Narkis, J.; Rahman, H. U.; Wessel, F. J.; Ney, P.; Beg, F.

    2016-10-01

    1- and 2-D simulations of a 1-cm radius, gas-puff implosion of Ne, Ar, Kr, and Xe liners onto a DD target are conducted using the discharge parameters for the Univ. Nevada, Reno, Zebra (1 MA, 125 ns) voltage driver and the resistive MHD code MACH2. During the run-in phase, initial†shock heating preheats the DD plasma, with subsequent stable, adiabatic compression heating the target to high energy density. The dynamics of the former in both the liner and target are investigated. It is shown that magnetic field transport to the liner/target interface does not occur prior to the run-in phase in Ne and Ar liners, yet does occur in Kr and Xe liners, and that magnetic field transport to the interface is a requirement for shock initiation, thus demonstrating the necessity for using a high-Z material in the Staged Z-pinch. Shock reflection off the axis and subsequent collision with the interface results in partial transmission into the liner, which manifests as current reversal, and consequently an enhanced Bθ gradient. 2-D simulations show that magneto-Rayleigh-Taylor instability growth decreases with increasing Z, with shock formation providing sufficient isolation to reproduce the current reversal and enhanced Bθ gradient observed in 1-D simulations. Advanced Research Projects Agency - Energy, DE-AR0000569.

  18. Liner Stability Experiments at Pegasus: Diagnostics and Experimental Results

    SciTech Connect

    Clark, D.A.; Morgan, D.V.; Rodriguez, G.

    1998-10-18

    A series of experiments to compare imploding liner performance with magneto-hydrodynamic (MHD) modeling has been performed at the Los Alamos National Laboratory Pegasus II pulse power machine. Liner instability growth originating from initial perturbations machined into the liner has been observed with high resolution. Three major diagnostics were used: radiography, Velocity Interferometer for a Surface of Any Reflector (VISAR), and fiber optic impact pins. For radiography, three flash x-ray units were mounted radially to observe liner shape at three different times during the implosion. Liner velocity was measured continuously with the VISAR for the entire distance traveled in two experiments. Optical impact pins provide a high-resolution measure of liner symmetry and shape near the end of travel. Liner performance has compared well with predictions.

  19. Direct measurement of the confinement time in a magnetically driven liner stagnation

    NASA Astrophysics Data System (ADS)

    Martin, Matthew

    2016-10-01

    We report on direct, radiographic measurement of the stagnation phase of a magnetically driven liner implosion. In experiments on the Z machine, a beryllium liner is filled with liquid deuterium and imploded to a minimum radius of 440 microns (radial convergence ratio of 7.7) over 300ns, achieving a density at stagnation of approximately 10 g/cc. The measured confinement time is 12.2 ns, compared to 14 ns from 1D simulations. Comparison of the evolution of the density profiles from the radiographs with the simulation shows a deviation in the reflected shock trajectory and the stagnation of the trailing mass. Additionally, the magneto-Raleigh-Taylor instability modifies the axial liner mass distribution, leading to enhanced compression with shorter confinement in the bubble region compared to the spikes, reducing the overall pressure-confinement time product by 29 percent as compared to the 1D simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. In collaboration with: Patrick Knapp & Daniel Dolan, Sandia National Labs.

  20. Development of 1D Liner Compression Code for IDL

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John; Pancotti, Anthony

    2015-11-01

    A 1D liner compression code is developed to model liner implosion dynamics in the Inductively Driven Liner Experiment (IDL) where FRC plasmoid is compressed via inductively-driven metal liners. The driver circuit, magnetic field, joule heating, and liner dynamics calculations are performed at each time step in sequence to couple these effects in the code. To obtain more realistic magnetic field results for a given drive coil geometry, 2D and 3D effects are incorporated into the 1D field calculation through use of correction factor table lookup approach. Commercial low-frequency electromagnetic fields solver, ANSYS Maxwell 3D, is used to solve the magnetic field profile for static liner condition at various liner radius in order to derive correction factors for the 1D field calculation in the code. The liner dynamics results from the code is verified to be in good agreement with the results from commercial explicit dynamics solver, ANSYS Explicit Dynamics, and previous liner experiment. The developed code is used to optimize the capacitor bank and driver coil design for better energy transfer and coupling. FRC gain calculations are also performed using the liner compression data from the code for the conceptual design of the reactor sized system for fusion energy gains.

  1. Broadband Liner Optimization for the Source Diagnostic Test Fan

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.

    2012-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more appealing. This paper describes a broadband acoustic liner optimization study for the scale model Source Diagnostic Test fan. Specifically, in-duct attenuation predictions with a statistical fan source model are used to obtain optimum impedance spectra over a number of flow conditions for three liner locations in the bypass duct. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Typical tonal liner designs targeting single frequencies at one operating condition are first produced to provide baseline performance information. These are followed by multiple broadband design approaches culminating in a broadband liner targeting the full range of frequencies and operating conditions. The broadband liner is found to satisfy the optimum impedance objectives much better than the tonal liner designs. In addition, the broadband liner is found to provide better attenuation than the tonal designs over the full range of frequencies and operating conditions considered. Thus, the current study successfully establishes a process for the initial design and evaluation of novel broadband liner concepts for complex engine configurations.

  2. The utilization of sepiolite in landfill liners.

    PubMed

    Güney, Y; Ozdemir, H V

    2005-05-01

    In this study, sepiolite and natural soil-added sepiolite mixtures were studied to find out whether they can be used as compacted landfill liner, as they are an economic alternative to the other compacted day liners or not. Geotechnical and physico-chemical properties of sepiolite and sepiolite mixtures, containing 25% and 50% natural soil by weight, and compacted at water contents ranging from 35% to 60%, were determined by hydraulic conductivity, leachate analysis, unconfined compression strength, consolidation, volumetric shrinkage and swelling tests. The test results showed that the compacted natural soil-added sepiolite mixtures exhibit lower permeability and swelling properties, and higher compressive strength than pure sepiolite. The overall evaluation of the results has revealed that the natural soil-added sepiolite showed good promise and it can be used as a landfill barrier due to its high capacity of contaminant adsorption.

  3. Explosively Bonded Gun Tube Liner Development

    DTIC Science & Technology

    2015-04-01

    William S de Rosset prepared by Oak Ridge Institute for Science and Education Oak Ridge, TN 37830-0177 under contract ORISE 1120-1120-99...William S de Rosset Weapons and Materials Research Directorate, ARL prepared by Oak Ridge Institute for Science and Education Oak Ridge, TN...COVERED (From - To) 12 January 2014–1 January 2015 4. TITLE AND SUBTITLE Explosively Bonded Gun Tube Liner Development 5a. CONTRACT NUMBER ORISE 1120

  4. Cavitation modeling and diesel engine cylinder liners

    NASA Astrophysics Data System (ADS)

    Chandekar, Gautam; Pardue, Sally

    2003-10-01

    A common occurrence of cavitation damage is the waterside pitting of a wet sleeve liner in a diesel engine. The automotive industry utilizes an ultrasonic test of 20 kHz according to ASTM standards to quantify the effectiveness of engine coolant additives to prevent damage. However, recent tests indicate a mismatch between the ultrasonic test results and actual engine test runs. The focus of this study is to generate numerical models of bubble dynamics using already published literature. In most of the published papers higher-range frequencies (ultrasonic >15 kHz) are used. It is useful to explore the results of lower excitation frequencies as the vibrating frequencies of a diesel engine liner are between 500-9000 Hz. A Rayleigh-Plesset equation, nonlinear in nature, is used to plot the relation between bubble radius and time. Plots of the numerical solution from MATLAB are compared with plots published in the literature. Results from when the frequency of excitation is changed to the liner wall frequency and the fluid properties are changed to approximate engine conditions will be presented. Future work will examine the energy released by the bubble collapse and its correlation with erosion measured as mass change in a standard test button.

  5. Magnetic Compression of Low Adiabat Liquid Deuterium Filled Cylindrical Liners to Gbar Pressures

    NASA Astrophysics Data System (ADS)

    Martin, Matthew; Knapp, Patrick; Dolan, Daniel

    2015-11-01

    We report on experiments where cylindrical beryllium liners filled with liquid deuterium were compressed to extreme pressure and density with current pulse shaping. ALEGRA MHD simulation, in conjunction with the BERTHA transmission line model of Z accelerator, was utilized to design a shaped current pulse that minimized both the stagnation adiabat of the liquid deuterium and the confining beryllium shell. In one set of experiments the pressure at stagnation is inferred to be ~ 100 Mbar using penetrating radiography. A peak liner convergence ratio (initial radius over final radius) of 7.6 was measured resulting in an average deuterium density of 10 g/cm3 and areal density of 0.45 g/cm2. The stagnation shock propagating radially outward through the liner wall was directly measured with a strength of ~ 120 Mbar. In a second set of experiments the liner was imploded to a peak convergence of 19 resulting in a density of 55 g/cm3 and areal density of 0.5 g/cm2. The pressure at stagnation in this experiment is estimated to be ~ 2 Gbar. This platform enables the study of high-pressure, high-density, implosion deceleration, and stagnation dynamics at spatial scales that are readily diagnosable (radius ~ 0.1mm - 0.4mm). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Method for selectively controlling flow across slotted liners

    SciTech Connect

    Peavy, M.A.; Dees, J.M.

    1993-08-31

    A process is described for decreasing flow rate across the radial boundary of a selected interval in a well bore containing a slotted liner comprising: placing an explosive and an internally catalyzed resin solution inside an elongated container; locating the elongated container opposite the selected interval in the well bore where flow rate through the slotted liner is to be decreased; firing the explosive; and allowing the resin to cure on the slotted liner before initiating flow through the well. A method is described for decreasing production of unwanted fluids from a horizontal well containing a slotted liner comprising: placing an explosive and an internally catalyzed resin inside an elongated container; placing the elongated container opposite an interval in the horizontal well where unwanted fluid is entering the well bore through the slotted liner; firing the explosive; and permitting the resin to cure on the slotted liner before initiating flow in the well.

  7. Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications

    DTIC Science & Technology

    1991-02-01

    SUBTITLE 5. FUNDING NUMBERS Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications 2 6. AUTHOC Steven M. Buc 7...summaries of the mineral availability, Cq prmarymetal refinement processeb, material costs in raw form and as finished shaped charge liners , relevant... liner materials. 94-11479 gI 14, SUBJECT TERMS iSt NUMBER OF PAGIS 13chrg wrhad :xplosively formed penetrators material R. PRCE COEV" processing

  8. LIQUID BUTANE FILLED LOAD FOR A LINER DRIVEN PEGASUS EXPERIMENT

    SciTech Connect

    M.A. SALAZAR; W. ANDERSON; ET AL

    2001-06-01

    A hydrogen rich, low density liquid, contained within the internal volume of a cylindrical liner, was requested of the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division for one of the last liner driven experiments conducted on the Los Alamos Pegasus facility. The experiment was a continuation of the Raleigh-Taylor hydrodynamics series of experiments and associated liners that have been described previously [1,2].

  9. Liquid butane filled load for a liner driven Pegasus experiment.

    SciTech Connect

    Salazar, M. A.; Armijo, E. V.; Anderson, W. E.; Atchison, W. L.; Bartos, J. J.; Garcia, F.; Randolph, B.; Sheppard, M. G.; Stokes, J. L.

    2001-01-01

    A hydrogen rich, low density liquid, contained within the internal volume of a cylindrical liner, was requested of the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division for one of the last liner driven experiments conducted on the Los Alamos Pegasus facility. The experiment (Fig.1) was a continuation of the Raleigh-Taylor hydrodynamics series of experiments and associated liners that have been described previously.

  10. Optimization and Control of Acoustic Liner Impedance with Bias Flow

    NASA Technical Reports Server (NTRS)

    Wood, Houston; Follet, Jesse

    2000-01-01

    Because communities are impacted by steady increases in aircraft traffic, aircraft noise continues to be a growing problem for the growth of commercial aviation. Research has focused on improving the design of specific high noise source areas of aircraft and on noise control measures to alleviate noise radiated from aircraft to the surrounding environment. Engine duct liners have long been a principal means of attenuating engine noise. The ability to control in-situ the acoustic impedance of a liner would provide a valuable tool to improve the performance of liners. The acoustic impedance of a liner is directly related to the sound absorption qualities of that liner. Increased attenuation rates, the ability to change liner acoustic impedance to match various operating conditions, or the ability to tune a liner to more precisely match design impedance represent some ways that in-situ impedance control could be useful. With this in mind, the research to be investigated will focus on improvements in the ability to control liner impedance using a mean flow through the liner which is referred to as bias flow.

  11. Use of natural zeolites as a landfill liner.

    PubMed

    Tuncan, Ahmet; Tuncan, Mustafa; Koyuncu, Hakan; Guney, Yucel

    2003-02-01

    The purpose of this study is to investigate certain features of a novel material proposed to serve as an impervious liner in landfills. Various ratios of bentonites and zeolites (B/Z) compacted at optimum water content were tested to determine the strength parameters, permeability, pH, heavy metals and other properties. A B/Z ratio of 0.10 was found to be an ideal landfill liner material regarding its low hydraulic conductivity and high cation exchange capacity. The use of B/Z mixtures as an alternative to clay liners would provide potential to significantly reduce the thickness of base liner for landfills.

  12. Durability of organobentonite-amended liner for decelerating chloroform transport.

    PubMed

    He, Shichong; Zhu, Lizhong

    2016-04-01

    Chloroform is added to landfill for suppressing methane generation, which however may transport through landfill liners and lead to contamination of groundwater. To decelerate chloroform transport, the enhanced sorption ability of clay liners following organobentonite addition was tested. In this study, we used batch sorption to evaluate sorption capacity of chloroform to organobentonite, followed by column tests and model simulations for assessing durability of different liners. Results show that adding 10% CTMAB-bentonite (organobentonite synthesized using cetyltrimethylammonium bromide) increased the duration of a bentonite liner by 88.5%. CTMAB-bentonite consistently showed the highest sorption capacity (Qm) among six typical organobentonites under various environmental conditions. The removal rate of chloroform by CTMAB-bentonite was 3.6-23 times higher than that by natural soils. According to the results derived by model simulation, a 70-cm 10% CTMAB-bentonite liner exhibited much better durability than a 100-cm compact clay liner (CCL) and natural bentonite liner evidenced by the delayed and lower peak of eluent concentration. A minimum thickness of 65.8 cm of the 10% CTMAB-bentonite liner could completely sorb the chloroform in a 100-m-high landfill. The 10% CTMAB-bentonite liner exhibiting much better durability has the promise for reducing environmental risk of chloroform in landfill.

  13. Evaluation of Skin Friction Drag for Liner Applications in Aircraft

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jasinski, Christopher M.

    2016-01-01

    A parameter that is gaining significance in the evaluation of acoustic liner performance is the skin friction drag induced by air flow over the liner surface. Estimates vary widely regarding the amount of drag the liner induces relative to a smooth wall, from less than a 20% increase to nearly 100%, and parameters such as face sheet perforate hole diameter, percent open area, and sheet thickness are expected to figure prominently in the skin friction drag. Even a small increase in liner drag can impose an economic penalty, and current research is focused on developing 'low drag' liner concepts, with the goal being to approach the skin friction drag of a smooth wall. The issue of skin friction drag takes on greater significance as airframe designers investigate the feasibility of putting sound absorbing liners on the non-lifting surfaces of the wings and fuselage, for the purpose of reducing engine noise reflected and scattered toward observers on the ground. Researchers at the NASA Langley Research Center have embarked on investigations of liner skin friction drag with the aims of: developing a systematic drag measurement capability, establishing the drag of current liners, and developing liners that produce reduced drag without compromising acoustic performance. This paper discusses the experimental procedures that have been developed to calculate the drag coefficient based on the change in momentum thickness and the companion research program being carried out to measure the drag directly using a force balance. Liner samples that are evaluated include a solid wall with known roughness and conventional liners with perforated facesheets of varying hole diameter and percent open area.

  14. ONERA-NASA Cooperative Effort on Liner Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Primus, Julien; Piot, Estelle; Simon, Frank; Jones, Michael G.; Watson, Willie R

    2013-01-01

    As part of a cooperation between ONERA and NASA, the liner impedance eduction methods developed by the two research centers are compared. The NASA technique relies on an objective function built on acoustic pressure measurements located on the wall opposite the test liner, and the propagation code solves the convected Helmholtz equation in uniform ow using a finite element method that implements a continuous Galerkin discretization. The ONERA method uses an objective function based either on wall acoustic pressure or on acoustic velocity acquired above the liner by Laser Doppler Anemometry, and the propagation code solves the linearized Euler equations by a discontinuous Galerkin discretization. Two acoustic liners are tested in both ONERA and NASA ow ducts and the measured data are treated with the corresponding impedance eduction method. The first liner is a wire mesh facesheet mounted onto a honeycomb core, designed to be linear with respect to incident sound pressure level and to grazing ow velocity. The second one is a conventional, nonlinear, perforate-over-honeycomb single layer liner. Configurations without and with ow are considered. For the nonlinear liner, the comparison of liner impedance educed by NASA and ONERA shows a sensitivity to the experimental conditions, namely to the nature of the source and to the sample width.

  15. Cotton liners to mediate glove comfort for greenhouse applicators.

    PubMed

    Stone, J; Coffman, C; Imerman, P M; Song, K; Shelley, M

    2005-10-01

    Greenhouse applicators' acceptance of cotton knit gloves worn as liners under nitrile chemical-resistant gloves (CRG) for pesticide application was investigated through a wear study in Iowa and New York. Comfort was assessed by questionnaires and interviews with 10 applicators. Contamination levels of four pesticides on CRG and liners at thumb, forefinger, palm, and cuff locations were determined by chemical analysis using high-performance liquid chromatography or gas chromatography. Applicators reported feeling more comfortable with cotton liners under their CRG than without and that cotton liners were easy to manage. Contamination was significantly greater on nitrile CRG than on cotton liners underneath, but a few liner specimens had measurable contamination. No significant contamination differences were found between right- and left-hand gloves. Contamination varied significantly by hand location, with cuffs least, and by pesticide, with chlorpyrifos most. These results support the Environmental Protection Agency's recommendation that liners should be disposable, but further work on liners and their laundering feasibility seems indicated.

  16. Optimal Spray Application Rates for Ornamental Nursery Liner Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spray deposition and coverage at different application rates for nursery liners of different sizes were investigated to determine the optimal spray application rates. Experiments were conducted on two and three-year old red maple liners. A traditional hydraulic sprayer with vertical booms was used t...

  17. Development of Standardized Material Testing Protocols for Prosthetic Liners.

    PubMed

    Cagle, John C; Reinhall, Per G; Hafner, Brian J; Sanders, Joan E

    2017-04-01

    A set of protocols was created to characterize prosthetic liners across six clinically relevant material properties. Properties included compressive elasticity, shear elasticity, tensile elasticity, volumetric elasticity, coefficient of friction (CoF), and thermal conductivity. Eighteen prosthetic liners representing the diverse range of commercial products were evaluated to create test procedures that maximized repeatability, minimized error, and provided clinically meaningful results. Shear and tensile elasticity test designs were augmented with finite element analysis (FEA) to optimize specimen geometries. Results showed that because of the wide range of available liner products, the compressive elasticity and tensile elasticity tests required two test maxima; samples were tested until they met either a strain-based or a stress-based maximum, whichever was reached first. The shear and tensile elasticity tests required that no cyclic conditioning be conducted because of limited endurance of the mounting adhesive with some liner materials. The coefficient of friction test was based on dynamic coefficient of friction, as it proved to be a more reliable measurement than static coefficient of friction. The volumetric elasticity test required that air be released beneath samples in the test chamber before testing. The thermal conductivity test best reflected the clinical environment when thermal grease was omitted and when liner samples were placed under pressure consistent with load bearing conditions. The developed procedures provide a standardized approach for evaluating liner products in the prosthetics industry. Test results can be used to improve clinical selection of liners for individual patients and guide development of new liner products.

  18. CONSTRUCTION, MONITORING, AND PERFORMANCE OF TWO SOIL LINERS

    EPA Science Inventory

    A prototype soil liner and a field-scale soil liner were constructed to test whether compacted soil barrier systems could be built to meet the standard set by the U.S. Environmental Protection Agency (EPA) for saturated hydraulic conductivity (< 1 x 10'7 cm/s). In situ ponded inf...

  19. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Prosthetic Devices § 872.3250 Calcium hydroxide cavity liner. (a) Identification. A calcium hydroxide cavity liner is a device material intended to be applied to the interior of a prepared cavity before insertion of restorative material, such as amalgam, to protect the pulp of a...

  20. Verification of a variable rate sprayer for nursery liner applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experimental variable-rate sprayer designed for liner applications was tested by comparing its spray deposit and coverage, and droplet density inside canopies of six nursery liner varieties with constant-rate applications. Spray samplers, including water sensitive papers (WSP) and nylon screens, ...

  1. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Lng Storage Tanks § 193.2187 Nonmetallic membrane liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank....

  2. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Lng Storage Tanks § 193.2187 Nonmetallic membrane liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage...

  3. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Lng Storage Tanks § 193.2187 Nonmetallic membrane liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank....

  4. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Lng Storage Tanks § 193.2187 Nonmetallic membrane liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank....

  5. 49 CFR 193.2187 - Nonmetallic membrane liner.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES: FEDERAL SAFETY STANDARDS Design Lng Storage Tanks § 193.2187 Nonmetallic membrane liner. A flammable nonmetallic membrane liner may not be used as an inner container in a storage tank....

  6. Evaluating the accuracy of wear formulae for acetabular cup liners.

    PubMed

    Wu, James Shih-Shyn; Hsu, Shu-Ling; Chen, Jian-Horng

    2010-02-01

    This study proposes two methods for exploring the wear volume of a worn liner. The first method is a numerical method, in which SolidWorks software is used to create models of the worn out regions of liners at various wear directions and depths. The second method is an experimental one, in which a machining center is used to mill polyoxymethylene to manufacture worn and unworn liner models, then the volumes of the models are measured. The results show that the SolidWorks software is a good tool for presenting the wear pattern and volume of a worn liner. The formula provided by Ilchmann is the most suitable for computing liner volume loss, but is not accurate enough. This study suggests that a more accurate wear formula is required. This is crucial for accurate evaluation of the performance of hip components implanted in patients, as well as for designing new hip components.

  7. Nondestructive evaluation of environmental barrier coatings in CFCC combustor liners.

    SciTech Connect

    Sun, J. G.; Benz, J.; Ellingson, W. A.; Kimmel, J. B.; Price, J. R.; Energy Technology; Solar Turbines, Inc

    2007-01-01

    Advanced combustor liners fabricated of SiC/SiC continuous fiber-reinforced ceramic composite (CFCC) and covered with environmental barrier coatings (EBCs) have been successfully tested in Solar Turbines Inc. field engines. The primary goal for the CFCC/EBC liners is to reach a 30,000-h lifetime. Because the EBCs, when applied on the hot surfaces of liners, protect the underlying CFCC from oxidation damage, their performance is critical in achieving the lifetime goal. To determine CFCC/EBC liner condition and assess operating damage, the liners were subjected to nondestructive evaluation (NDE) during various processing stages, as well as before and after the engine test. The NDE techniques included pulsed infrared thermal imaging, air-coupled ultrasonic scanning, and X-ray computerized tomography. It was found that EBC damage and spallation depend on the condition of the CFCC material. The NDE results and correlations with destructive examination are discussed.

  8. Modular liquid-cooled helmet liner for thermal comfort

    NASA Technical Reports Server (NTRS)

    Williams, B. A.; Shitzer, A.

    1974-01-01

    A modular liquid-cooled helmet liner made of eight form-fitting neoprene patches was constructed. The liner was integrated into the sweatband of an Army SPH-4 helicopter aircrew helmet. This assembly was tested on four subjects seated in a hot (47 C), humid (40%) environment. Results indicate a marked reduction in the rate of increase of physiological body functions. Rectal temperature, weight loss, heart rate, and strain indices are all reduced to approximately 50% of uncooled levels. The cooling liner removed from 10% to 30% of total metabolic heat produced. This study also demonstrated the technical feasilibity of using a cooling liner in conjunction with a standard hard helmet. Potential applications of the cooling liner in thermally stressful environments are numerous, notably for helicopter and other aircrews.

  9. Excitation Mechanisms of Near-Infrared Emission Lines in LINER Galaxies

    NASA Astrophysics Data System (ADS)

    Boehle, Anna

    2017-01-01

    I will present high spatial resolution, integral field spectroscopic observations of the nearby LINER (low ionization nuclear emission line region) galaxy NGC 404. LINERs are found at the centers of ~1/3 of galaxies within 40 Mpc, but their physical nature is not well understood. Although NGC 404 is thought to host a intermediate mass black hole at its center, it is unclear whether accretion onto the black hole or another mechanism such as shock excitation drives its LINER emission. We use the OSIRIS near-infrared integral field spectrograph at Keck Observatory behind laser guide star adaptive optics to map the strength and kinematics of [FeII], H2, and hydrogen recombination lines in the nucleus of NGC 404. These observations have a spatial pixel sampling of 0.5 pc and span the central 30 pc of the galaxy. We find that the ionized and molecular gas show differences in their morphology and kinematics on parsec scales. In particular, there are regions with line ratios of [FeII]/Pa-β that are much higher than previously seen in spatially integrated spectra, significantly restricting the possible excitation mechanisms of the near-infrared emission lines in this source. We are also applying these analysis techniques to 10 additional nearby LINERs, a part of a larger sample of 14 sources, to understand what drives the emission lines in these active galaxies. As a part of this program, I worked on the upgrade of the detector in the OSIRIS spectrograph, which has allowed observations for this survey obtained since January 2016 to be taken with increased instrument sensitivity of a factor of ~2 at J-band wavelengths (1.2 - 1.4 microns) and ~1.6 at H- and K-band wavelengths (1.5 - 2.4 microns). I will present results from the LINER survey, the OSIRIS detector upgrade, and also touch on related work using stellar orbits around the Milky Way supermassive black hole Sgr A* to constrain the mass and distance to our own Galactic Center.

  10. Cementation of a polyethylene liner into a metal acetabular shell: a biomechanical study.

    PubMed

    Hofmann, Aaron A; Prince, Edward J; Drake, F Thurston; Hunt, Kenneth J

    2009-08-01

    Cementation of a liner into a well-fixed acetabular shell is common in revision hip arthroplasty. We compare the biomechanical strengths of cemented liners with standard locked liners. Fifty polyethylene liners were inserted into acetabular shells using the standard locking mechanism or 1 of 2 cement types then loaded to failure by torsion or lever-out testing. Lever-out testing showed that all cemented liners failed at similar loads to standard locked liners. With torsion testing, cemented liners failed at significantly higher loads than standard locked liners; roughening the liner increased load to failure. Cementation of an acetabular liner into a metal shell is safe and strong and a good alternative to metal shell replacement. Saw roughening of the polyethylene liner strengthens the poly-cement interface.

  11. Further Development and Assessment of a Broadband Liner Optimization Process

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2016-01-01

    The utilization of advanced fan designs (including higher bypass ratios) and shorter engine nacelles has highlighted a need for increased fan noise reduction over a broader frequency range. Thus, improved broadband liner designs must account for these constraints and, where applicable, take advantage of advanced manufacturing techniques that have opened new possibilities for novel configurations. This work focuses on the use of an established broadband acoustic liner optimization process to design a variable-depth, multi-degree of freedom liner for a high speed fan. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design a liner aimed at producing impedance spectra that most closely match the predicted optimum values. The multi-degree of freedom design is carried through design, fabrication, and testing. In-duct attenuation predictions compare well with measured data and the multi-degree of freedom liner is shown to outperform a more conventional liner over a range of flow conditions. These promising results provide further confidence in the design tool, as well as the enhancements made to the overall design process.

  12. Two-dimensional modeling of magnetically imploded liners

    SciTech Connect

    Atchison, W.L.; Bowers, R.L.; Brownell, J.H.; Lee, H.

    1996-11-01

    Magnetically imploded massive cylindrical liner drivers have been studied in two-dimensions for low, intermediate and high energy pulsed power systems. The simulations have been carried out using a resistive Eulerian magnetohydrodynamics computational model which includes material strength, and models the interactions between the imploding liner and the electrode walls. The computations simulate the generation of perturbations and their subsequent growth during the implosion. At low energies a solid liner remains in the plastic regime, reaching an inner cylindrical target with velocities of a few mm per {mu}s. At higher energies (where one-dimensional models predict implosion velocities of order 1 cm/{mu}s or more) resistive heating of the liner results in melting, and the effects of magnetically driven instabilities become important. We discuss the two-dimensional issues which arise in these systems. These include: the onset of perturbations associated with the motion of the liner along the electrodes; the growth of instabilities in liquid layers; and the suppression of instability growth during the implosion by maintaining a solid inner layer. Studies have been made of liners designed for the Pegasus capacitor bank facility (currents in the 5 - 12 MA regime), and for the Procyon high explosive system (currents in the 20 MA regime). This work focus on the design and performance of the first Pegasus composite megabar liner experiment.

  13. Thermographic inspection of pipes, tanks, and containment liners

    NASA Astrophysics Data System (ADS)

    Renshaw, Jeremy B.; Lhota, James R.; Muthu, Nathan; Shepard, Steven M.

    2015-03-01

    Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concrete for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.

  14. Thermographic inspection of pipes, tanks, and containment liners

    SciTech Connect

    Renshaw, Jeremy B. Muthu, Nathan; Lhota, James R.; Shepard, Steven M.

    2015-03-31

    Nuclear power plants are required to operate at a high level of safety. Recent industry and license renewal commitments aim to further increase safety by requiring the inspection of components that have not traditionally undergone detailed inspected in the past, such as tanks and liners. NEI 09-14 requires the inspection of buried pipes and tanks while containment liner inspections are required as a part of license renewal commitments. Containment liner inspections must inspect the carbon steel liner for defects - such as corrosion - that could threaten the pressure boundary and ideally, should be able to inspect the surrounding concrete for foreign material that could be in contact with the steel liner and potentially initiate corrosion. Such an inspection requires a simultaneous evaluation of two materials with very different material properties. Rapid, yet detailed, inspection results are required due to the massive size of the tanks and containment liners to be inspected. For this reason, thermal NDE methods were evaluated to inspect tank and containment liner mockups with simulated defects. Thermographic Signal Reconstruction (TSR) was utilized to enhance the images and provide detailed information on the sizes and shapes of the observed defects. The results show that thermographic inspection is highly sensitive to the defects of interest and is capable of rapidly inspecting large areas.

  15. Wear of a sequentially annealed polyethylene acetabular liner

    PubMed Central

    Gascoyne, Trevor C; Petrak, Martin J; Turgeon, Thomas R; Bohm, Eric R

    2014-01-01

    Background and purpose We previously reported on a randomized controlled trial (RCT) that examined the effect of adding tobramycin to bone cement after femoral stem migration. The present study examined femoral head penetration into both conventional and highly crosslinked polyethylene acetabular liners in the same group of RCT patients, with a minimum of 5 years of postoperative follow-up. Patients and methods Linear penetration of the femoral head into an X3 (Stryker) crosslinked polyethylene (XLPE) liner was measured in 18 patients (19 hips) using radiostereometric analysis (RSA). Femoral head penetration was also measured in 6 patients (6 hips) with a conventional polyethylene liner (CPE), which served as a control group. Results The median proximal femoral head penetration in the XLPE group after 5.5 years was 0.025 mm with a steady-state penetration rate of 0.001 mm/year between year 1 and year 5. The CPE liner showed a median proximal head penetration of 0.274 mm after 7.2 years, at a rate of 0.037 mm/year. Interpretation The Trident X3 sequentially annealed XLPE liner shows excellent in vivo wear resistance compared to non-crosslinked CPE liners at medium-term implantation. The rate of linear head penetration in the XLPE liners after > 5 years of follow-up was 0.001 mm/year, which is in close agreement with the results of previous studies. PMID:25140986

  16. Nondestructive test to track pollutant transport into landfill liners

    NASA Astrophysics Data System (ADS)

    Bezzar, A.; Ghomari, F.

    2009-03-01

    Over the last decade, waste disposal has become a particularly sensitive issue in Algeria. New legislation concerning landfill liner design has been adopted. Traditional methods of landfill liner characterization involve soil sampling and chemical analysis, which are costly, destructive and time-consuming. New techniques are currently being investigated that aim to provide nondestructive liner characterisation. This paper details technical aspects associated with electrical conductivity measurements within landfill liners and presents experimental work to show the direct application of electrical techniques to track ionic movement through a sand bentonite liner under chemically induced flow. Samples of sand bentonite were mixed and compacted with NaCl electrolytes at different concentrations. The electrical conductivities of compacted specimens were measured with a two-electrode cell. The effects of frequency and electrolyte concentration on the conductivity measurement were explored. The relationship between the soil electrical conductivity and the NaCl electrolyte concentration in interstitial pore fluid was determined. The conductivity measurements were used to quantify the pore fluid concentration and effective diffusion coefficient of sand bentonite liners. It is concluded here that the electrical conductivity of compacted specimens depends mainly on the salt concentration in the pore fluid, and that this approach could therefore be used to track ionic movement through liners during diffusion.

  17. Formed platelet combustor liner construction feasibility, phase A

    NASA Technical Reports Server (NTRS)

    Hayes, W. A.; Janke, D. E.

    1992-01-01

    Environments generated in high pressure liquid rocket engines impose severe requirements on regeneratively cooled combustor liners. Liners fabricated for use in high chamber pressures using conventional processes suffer from limitations that can impair operational cycle life and can adversely affect wall compatibility. Chamber liners fabricated using formed platelet technology provide an alternative to conventional regeneratively cooled liners (an alternative that has many attractive benefits). A formed platelet liner is made from a stacked assembly of platelets with channel features. The assembly is diffusion bonded into a flat panel and then three-dimensionally formed into a section of a chamber. Platelet technology permits the liner to have very precisely controlled and thin hot gas walls and therefore increased heat transfer efficiency. Further cooling efficiencies can be obtained through enhanced design flexibility. These advantages translate into increased cycle life and enhanced wall compatibility. The increased heat transfer efficiency can alternately be used to increase engine performance or turbopump life as a result of pressure drop reductions within the regeneratively cooled liner. Other benefits can be obtained by varying the materials of construction within the platelet liner to enhance material compatibility with operating environment or with adjoining components. Manufacturing cost savings are an additional benefit of a formed platelet liner. This is because of reduced touch labor and reduced schedule when compared to conventional methods of manufacture. The formed platelet technology is not only compatible with current state-of-the art combustion chamber structural support and manifolding schemes, it is also an enabling technology that allows the use of other high performance and potentially low cost methods of construction for the entire combustion chamber assembly. The contract under which this report is submitted contains three phases: (1) phase

  18. Liners for ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  19. A sensate liner for personnel monitoring applications

    NASA Astrophysics Data System (ADS)

    Lind, Eric J.; Jayaraman, Sundaresan; Park, Ms. Sungmee; Rajamanickam, Rangaswamy; Eisler, Robert, , Dr.; Burghart, Mr. George; McKee, Mr. Tony

    This program develops and demonstrates technologies useful for implementing a manageable cost effective systems approach to monitoring the medical condition of personnel by way of an instrumented uniform hereafter referred to as a Sensate Liner (SL). The SL consists of a form fitting garment which contains and interconnects sensing elements and devices to an electronics pack containing a processor and transmitter. The SL prototype requires fiber, textile, garment and sensor development. The SL textile consists of a mesh of electrically and optically conductive fibers integrated into the normal structure (woven or knitted) of fibers and yarns selected for comfort and durability. A suite of SL garment compatible embedded biological and physical sensors are then integrated into the SL. The initial SL sensor suite is selected to improve triage for combat casualties. Additional SL sensor concepts for medical monitoring will be discussed.

  20. A Sensate Liner for personnel monitoring applications.

    PubMed

    Lind, E J; Jayaraman, S; Park, S; Rajamanickam, R; Eisler, R; Burghart, G; McKee, T

    1998-01-01

    This program develops and demonstrates technologies useful for implementing a manageable cost effective systems approach to monitoring the medical condition of personnel by way of an instrumented uniform hereafter referred to as a Sensate Liner (SL). The SL consists of a form fitting garment which contains and interconnects sensing elements and devices to an electronics pack containing a processor and transmitter. The SL prototype requires fiber, textile, garment and sensor development. The SL textile consists of a mesh of electrically and optically conductive fibers integrated into the normal structure (woven or knitted) of fibers and yarns selected for comfort and durability. A suite of SL garment compatible embedded biological and physical sensors are then integrated into the SL. The initial SL sensor suite is selected to improve triage for combat casualties. Additional SL sensor concepts for medical monitoring will be discussed.

  1. A sensate liner for biomedical monitoring applications.

    PubMed

    Lind, E J; Jayaraman, S; Park, S; Rajamanickam, R; Eisler, R; Burghart, G; McKee, T

    1998-01-01

    This program develops and demonstrates technologies useful for implementing a manageable cost effective systems approach to monitoring the medical condition of personnel by way of an instrumented uniform hereafter referred to as a Sensate Liner (SL). The SL consists of a form fitting garment which contains and interconnects sensing elements and devices to an electronics pack containing a processor and transmitter. The SL prototype requires fiber, textile, garment and sensor development. The SL textile consists of a mesh of electrically and optically conductive fibers integrated into the normal structure (woven or knitted) of fibers and yarns selected for comfort and durability. A suite of SL garment compatible embedded biological and physical sensors are then integrated into the SL. The initial SL sensor suite is selected to improve triage for combat casualties. Additional SL sensor concepts for medical monitoring will be discussed.

  2. CANMET Gasifier Liner Coupon Material Test Plan

    SciTech Connect

    Mark Fitzsimmons; Alan Darby; Fred Widman

    2005-10-30

    The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

  3. Pegasus liner stability experiments: Diagnostics and experimental results

    SciTech Connect

    Clark, D.A.; Morgan, D.V.; Rodriguez, G.

    1998-12-31

    A series of experiments to compare imploding cylindrical liner performance with Magneto-HydroDynamic (MHD) modeling has been performed at the Los Alamos National Laboratory Pegasus capacitor bank. Several configurations of aluminum liners have been used; some with initial perturbations and some smooth. Instability growth resulting from the perturbations has been observed with high resolution. Load diagnostics included radial x-rays, fiber optic impact pins, and VISAR (Velocity Interferometer for a Surface of Any Reflector). Diagnostic results and comparisons for several liner stability (LS) experiments are presented.

  4. Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Kirkpatrick, Ronald C.; Knapp, Charles E.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Magnetized target fusion is an emerging, relatively unexplored approach to fusion for electrical power and propulsion application. The physical principles of the concept are founded upon both inertial confinement fusion (ICF) and magnetic confinement fusion (MCF). It attempts to combine the favorable attributes of both these orthogonal approaches to fusion, but at the same time, avoiding the extreme technical challenges of both by exploiting a fusion regime intermediate between them. It uses a material liner to compress, heat and contain the fusion reacting plasma (the target plasma) mentally. By doing so, the fusion burn could be made to occur at plasma densities as high as six orders of magnitude higher than conventional MCF such as tokamak, thus leading to an approximately three orders of magnitude reduction in the plasma energy required for ignition. It also uses a transient magnetic field, compressed to extremely high intensity (100's T to 1000T) in the target plasma, to slow down the heat transport to the liner and to increase the energy deposition of charged-particle fusion products. This has several compounding beneficial effects. It leads to longer energy confinement time compared with conventional ICF without magnetized target, and thus permits the use of much lower plasma density to produce reasonable burn-up fraction. The compounding effects of lower plasma density and the magneto-insulation of the target lead to greatly reduced compressional heating power on the target. The increased energy deposition rate of charged-particle fusion products also helps to lower the energy threshold required for ignition and increasing the burn-up fraction. The reduction in ignition energy and the compressional power compound to lead to reduced system size, mass and R&D cost. It is a fusion approach that has an affordable R&D pathway, and appears attractive for propulsion application in the nearer term.

  5. Progress Report on Rotating Liquid Liner Implosion Experiment, 1 June to 31 December 1975.

    DTIC Science & Technology

    A critical question in the use of imploding liner flux compression for controlled fusion has been the stability of the inner surface of the liner ...To study the problem experimentally, the existing NRL Imploding Liner Facility was modified to allow the implosion of rotating liquid metal liners ...Rotational stabilization of lthe inner surface of a decelerating liquid sodium-potassium liner has been demonstrated, with excellent circularity of the

  6. Simulation of Plasma Jet Merger and Liner Formation within the PLX- α Project

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Chen, Hsin-Chiang; Shih, Wen; Hsu, Scott

    2015-11-01

    Detailed numerical studies of the propagation and merger of high Mach number argon plasma jets and the formation of plasma liners have been performed using the newly developed method of Lagrangian particles (LP). The LP method significantly improves accuracy and mathematical rigor of common particle-based numerical methods such as smooth particle hydrodynamics while preserving their main advantages compared to grid-based methods. A brief overview of the LP method will be presented. The Lagrangian particle code implements main relevant physics models such as an equation of state for argon undergoing atomic physics transformation, radiation losses in thin optical limit, and heat conduction. Simulations of the merger of two plasma jets are compared with experimental data from past PLX experiments. Simulations quantify the effect of oblique shock waves, ionization, and radiation processes on the jet merger process. Results of preliminary simulations of future PLX- alpha experiments involving the ~ π / 2 -solid-angle plasma-liner configuration with 9 guns will also be presented. Partially supported by ARPA-E's ALPHA program.

  7. Experimental Impedance of Single Liner Elements with Bias Flow

    NASA Technical Reports Server (NTRS)

    Follet, J. I.; Betts, J. F.; Kelly, Jeffrey J.; Thomas, Russell H.

    2000-01-01

    An experimental investigation was conducted to generate a high quality database, from which the effects of a mean bias flow on the acoustic impedance of lumped-element single-degree-of-freedom liners was determined. Acoustic impedance measurements were made using the standard two-microphone method in the NASA Langley Normal Incidence Tube. Each liner consisted of a perforated sheet with a constant-area cavity. Liner resistance was shown to increase and to become less frequency and sound pressure level dependent as the bias flow was increased. The resistance was also consistently lower for a negative bias flow (suction) than for a positive bias flow (blowing) of equal magnitude. The slope of the liner reactance decreased with increased flow.

  8. Method of repairing a wellbore liner for sand control

    SciTech Connect

    Dees, J.M.

    1992-10-13

    This patent describes a method of repairing a damaged wellbore liner for controlling sand and other fine materials. It comprises: positioning a quantity of fluid resin material in alignment with the portion of the wellbore liner to be repaired; positioning a gas generator in proximity with the fluid resin material; actuating the gas generator to increase wellbore pressure in a substantially instantaneous manner to a pressure substantially in excess of well pressure to force the fluid resin material from the wellbore into the damaged area of the wellbore liner; and subsequently polymerizing the resin material to form a consolidated, porous permeable matrix that allows the flow of production fluid into the well while preventing the flow of sand, or other fine materials into the well through the previously damaged area of the wellbore liner.

  9. Development of composite pressure vessels with nonmetallic liners

    NASA Astrophysics Data System (ADS)

    Murray, Con F.; Newhouse, Norman L.; Schimenti, John D.; Tiller, Dale B.

    1992-07-01

    Brunswick composites has developed metallic liners and composite cylinders for use in military and civilian aircraft, missiles, inflation systems and space applications. At present an all-composite pressurant tank is being developed for use in the natural gas vehicle (NGV). This tank uses a plastic liner of high density polyethylene (HDPE) as a leak-tight permeation barrier. Tank characteristics and testing are described. HDPE reduces cost, meets all space and missile pressurant tank requirements, and is readily availble. Test results indicate that an all-composite pressurant tank with an HDPE liner provides a tough, high cycle life, lightweight, environmentally stable pressurant tank with very low permeability. HDPE offers a viable, low cost alternative to conventional metal liners as well as many design advantages.

  10. Survey of Technologies for Monitoring Containment Liners and Covers

    EPA Pesticide Factsheets

    The report provides information on innovative long-term monitoring technologies to detect contaminant releases beneath a liner containment system and identify potential problems with the integrity of final containment covers.

  11. Liner protected carbon-carbon heat pipe concept

    NASA Astrophysics Data System (ADS)

    Rovang, Richard D.; Hunt, Maribeth E.

    1992-01-01

    A lightweight, high performance radiator concept using carbon-carbon heat pipes is being developed to support space nuclear power applications, specifically the SP-100 system. Carbon-carbon has been selected as an outer structural tube member because of its high temperature and strength characteristics; however, this material must be protected from the potassium heat pipe working fluid. A metallic liner approach is being taken to provide this fluid barrier. Feasibility issues associated with this approach include materials compatibility, fabricastion of the thin-walled liner, bonding the liner to the carbon-carbon tube, mismatch of coefficient of thermal expansion (CTE), carbon diffusion, and end cap closures. To resolve these issues, a series of test coupons have been fabricated and tested, assessing various liner materials, braze alloys, and substrate precursors. These tests will lead to a final heat pipe architecture, material selection, and component assembly.

  12. X-ray emission from LINERs observed with ASCA

    NASA Astrophysics Data System (ADS)

    Terashima, Y.

    We searched for evidence of the presence of AGN in LINERs using X-ray images and spectra up to 10 keV obtained with ASCA. We detected hard point-like nuclear sources with X-ray luminosities of 1040 - 1041 ergs s-1 from LINER 1s. Their Hα luminosities are positively correlated with the X-ray luminosities. These facts strongly support that these LINER 1s are ionized by low luminosity AGN. LINER 2s in the present sample have systematically lower X-ray to Hα luminosity ratio (LXLHα) suggesting that there exist other ionizing source or that the AGN is heavily obscured even at energies above 2 keV. X-ray properties of low luminosity AGNs are also discussed.

  13. High-speed velocimetry inside imploding cylindrical liners

    NASA Astrophysics Data System (ADS)

    Dolan, Daniel; Lemke, Ray; Dalton, Devon; Harding, Eric; McBride, Ryan; Martin, Matthew; Blue, Brent; Walker, Scott

    2014-03-01

    Dynamic planar compression is conceptually simple but difficult to maintain at extreme pressure (>5 Mbar). Higher pressures are attainable with imploding cylindrical liners, using Photonic Doppler velocimetry (PDV) to track the liner interior. PDV measures Doppler shift directly--1 GHz of beat frequency for every 1 km/s of velocity--requiring a special ``leapfrog'' approach for liners traveling in excess of 20 km/s. Single-point and multi-point PDV measurements have been performed in aluminum, beryllium, and tantalum liners under ramp compression, and the technique can readily applied to other implosion experiments. Combined with electrical current diagnostics, these measurements test thermodynamic equations of state at pressures up to 10 MBar and beyond. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85.

  14. Acoustic Liner Drag: A Parametric Study of Conventional Configurations

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2015-01-01

    Interest in the characterization of the aerodynamic drag performance of acoustic liners has increased in the past several years. This paper details experiments in NASA Langley's Grazing Flow Impedance Tube to quantify the relative drag of several conventional perforate-over-honeycomb liner configurations. For a fixed porosity, facesheet hole diameter and cavity depth are varied to study the effect of each. These configurations are selected to span the range of conventional liner geometries used in commercial aircraft engines. Detailed static pressure and acoustic measurements are made for grazing flows up to M=0.5 at 140 dB SPL for tones between 400 and 2800 Hz. These measurements are used to calculate a resistance factor (?) for each configuration. Analysis shows a correlation between perforate hole size and the resistance factor but cavity depth seems to have little influence. Acoustic effects on liner drag are observed to be limited to the lower Mach numbers included in this investigation.

  15. Configuration Effects on Acoustic Performance of a Duct Liner

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Jones, Michael G.; Nark, Douglas; Howerton, Brian M.

    2008-01-01

    Continued success in aircraft engine noise reduction necessitates ever more complete understanding of the effect that flow path geometry has on sound propagation in the engine. The Curved Duct Test Rig (CDTR) has been developed at NASA Langley Research Center to investigate sound propagation through a duct of comparable size (approximately the gap of GE90) and physical characteristics to the aft bypass duct of typical aircraft engines. The liner test section is designed to mimic the outer/inner walls of an engine exhaust bypass duct that has been unrolled circumferentially. Experiments to investigate the effect of curvature along the flow path on the acoustic performance of a test liner are performed in the CDTR and reported in this paper. Flow paths investigated include both straight and curved with offsets from the inlet to the discharge plane of and 1 duct width, respectively. The test liners are installed on the side walls of the liner test section. The liner samples are perforate over honeycomb core, which design is typical of liners installed in aircraft nacelles. In addition to fully treated side walls, combinations of treated and acoustically rigid walls are investigated. While curvature in the hard wall duct is found not to reduce the incident sound significantly, it does cause mode scattering. It is found that asymmetry of liner treatment causes scattering of the incident mode into less attenuated modes, which degrades the overall liner attenuation. It is also found that symmetry of liner treatment enhances liner performance by eliminating scattering into less attenuated modes. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation (CDUCT-LaRC) have also been made and are reported in this paper. The effect of curvature in the rigid wall configuration estimated by CDUCT-LaRC is similar to the observed results, and the mode scattering seen in the measurements also occurs in the

  16. Flap Side Edge Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Khorrami, Mehdi R. (Inventor); Choudhari, Meelan M. (Inventor); Howerton, Brian M. (Inventor)

    2014-01-01

    One or more acoustic liners comprising internal chambers or passageways that absorb energy from a noise source on the aircraft are disclosed. The acoustic liners may be positioned at the ends of flaps of an aircraft wing to provide broadband noise absorption and/or dampen the noise producing unsteady flow features, and to reduce the amount of noise generated due to unsteady flow at the inboard and/or outboard end edges of a flap.

  17. Landing Gear Door Liners for Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Howerton, Brian M. (Inventor); Van De Ven, Thomas (Inventor)

    2014-01-01

    A landing gear door for retractable landing gear of aircraft includes an acoustic liner. The acoustic liner includes one or more internal cavities or chambers having one or more openings that inhibit the generation of sound at the surface and/or absorb sound generated during operation of the aircraft. The landing gear door may include a plurality of internal chambers having different geometries to thereby absorb broadband noise.

  18. Effects of Flow Profile on Educed Acoustic Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie r.; Nark, Douglas M.

    2010-01-01

    This paper presents results of an investigation of the effects of shear flow profile on impedance eduction processes employed at NASA Langley. Uniform and 1-D shear-flow propagation models are used to educe the acoustic impedance of three test liners based on aeroacoustic data acquired in the Langley Grazing Flow Impedance Tube, at source levels of 130, 140 and 150 dB, and at centerline Mach numbers of 0.0, 0.3 and 0.5. A ceramic tubular, calibration liner is used to evaluate the propagation models, as this liner is expected to be insensitive to SPL, grazing flow Mach number, and flow profile effects. The propagation models are then used to investigate the effects of shear flow profile on acoustic impedances educed for two conventional perforate-over-honeycomb liners. Results achieved with the uniform-flow models follow expected trends, but those educed with the 1-D shear-flow model do not, even for the calibration liner. However, when the flow profile used with the shear-flow model is varied to increase the Mach number gradient near the wall, results computed with the shear-flow model are well matched to those achieved with the uniform-flow model. This indicates the effects of flow profile on educed acoustic liner impedance are small, but more detailed investigations of the flow field throughout the duct are needed to better understand these effects.

  19. Computer method for design of acoustic liners for turbofan engines

    NASA Technical Reports Server (NTRS)

    Minner, G. L.; Rice, E. J.

    1976-01-01

    A design package is presented for the specification of acoustic liners for turbofans. An estimate of the noise generation was made based on modifications of existing noise correlations, for which the inputs are basic fan aerodynamic design variables. The method does not predict multiple pure tones. A target attenuation spectrum was calculated which was the difference between the estimated generation spectrum and a flat annoyance-weighted goal attenuated spectrum. The target spectrum was combined with a knowledge of acoustic liner performance as a function of the liner design variables to specify the acoustic design. The liner design method at present is limited to annular duct configurations. The detailed structure of the liner was specified by combining the required impedance (which is a result of the previous step) with a mathematical model relating impedance to the detailed structure. The design procedure was developed for a liner constructed of perforated sheet placed over honeycomb backing cavities. A sample calculation was carried through in order to demonstrate the design procedure, and experimental results presented show good agreement with the calculated results of the method.

  20. Suppression of Helmholtz resonance using inside acoustic liner

    NASA Astrophysics Data System (ADS)

    Hong, Zhiliang; Dai, Xiwen; Zhou, Nianfa; Sun, Xiaofeng; Jing, Xiaodong

    2014-08-01

    When a Helmholtz resonator is exposed to grazing flow, an unstable shear layer at the opening can cause the occurrence of acoustic resonance under appropriate conditions. In this paper, in order to suppress the flow-induced resonance, the effects of inside acoustic liners placed on the side wall or the bottom of a Helmholtz resonator are investigated. Based on the one-dimensional sound propagation theory, the time domain impedance model of a Helmholtz resonator with inside acoustic liner is derived, and then combined with a discrete vortex model the resonant behavior of the resonator under grazing flow is simulated. Besides, an experiment is conducted to validate the present model, showing significant reduction of the peak sound pressure level achieved by the use of the side-wall liners. And the simulation results match reasonably well with the experimental data. The present results reveal that the inside acoustic liner can not only absorb the resonant sound pressure, but also suppress the fluctuation motion of the shear layer over the opening of the resonator. In all, the impact of the acoustic liners is to dampen the instability of the flow-acoustic coupled system. This demonstrates that it is a convenient and effective method for suppressing Helmholtz resonance by using inside acoustic liner.

  1. How to select an effective waste pit liner

    SciTech Connect

    Hinds, A.A.; Legget, L.H.; Liao, A.

    1987-01-01

    This article reports that the use of earthen pits is widespread in the oil and gas industry. These pits are used to contain produced water as well as waste fluids and solids from drilling activities. The pits contain a myriad of metals, salts, minerals and organic compounds. Sometimes, a pit liner may be needed to ensure the integrity of the earthen pit. The pit liner should act as an impervious barrier between the contained fluids and soil or ground water outside the pit. It is imperative to construct the pit and liner to prevent leakage of pit contents and consequent potential contamination of the surrounding environment. In the United States, the construction of oilfield pits and the need for pit liners is typically governed by state oil and gas regulatory requirements. Standards for the construction and composition of pit liners vary considerably from state to state. Thus, when choosing a pit liner or constructing an oilfield waste pit, it is important to determine the legal requirements applicable in the state where the pit is located.

  2. Spherically symmetric simulation of plasma liner driven magnetoinertial fusion

    SciTech Connect

    Samulyak, Roman; Parks, Paul; Wu Lingling

    2010-09-15

    Spherically symmetric simulations of the implosion of plasma liners and compression of plasma targets in the concept of the plasma jet driven magnetoinertial fusion have been performed using the method of front tracking. The cases of single deuterium and xenon liners and double layer deuterium-xenon liners compressing various deuterium-tritium targets have been investigated, optimized for maximum fusion energy gains, and compared with theoretical predictions and scaling laws of [P. Parks, Phys. Plasmas 15, 062506 (2008)]. In agreement with the theory, the fusion gain was significantly below unity for deuterium-tritium targets compressed by Mach 60 deuterium liners. The most optimal setup for a given chamber size contained a target with the initial radius of 20 cm compressed by a 10 cm thick, Mach 60 xenon liner, achieving a fusion energy gain of 10 with 10 GJ fusion yield. Simulations also showed that composite deuterium-xenon liners reduce the energy gain due to lower target compression rates. The effect of heating of targets by alpha particles on the fusion energy gain has also been investigated.

  3. Simulated, Theoretical and Experimental Shock Trajectories in Cylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Kanzleiter, R.; Atchison, W.; Bowers, R.; Guzik, J.

    2002-07-01

    The current work compares computations and similarity relations for convergent shocks with experimental data from cylindrical implosions on the Shiva Star capacitor bank at AFRL (Air Force Research Laboratory). The experiment consisted of a 1 mm thick cylindrical aluminum liner that is magnetically imploded onto a central target. The central target contains an inner Lucite cylinder surrounded by an outer Sn layer. The target was designed using the Eulerian hydrodynamics code RAGE in 2- and 3D. One-dimensional models of the liner driver utilizing the RAVEN MHD code set the initial liner/target interaction parameters for the RAGE simulations. Shock breakout from the Sn/Lucite interface and subsequent propagation within the Lucite are measured to provide experimental data for code validation. Radial convergence is examined through comparisons with similarity solutions. Comparison of experimentally measured timing data and simulated shock trajectories will be discussed. Further efforts compare equation-of-state effects by utilizing an analytic Grueneisen EOS instead of the original SESAME tables.

  4. Geosynthetic clay liners - slope stability field study

    SciTech Connect

    Carson, D.A.; Daniel, D.E.; Koerner, R.M.; Bonaparte, R.

    1997-12-31

    A field research project was developed to examine the internal shear performance of geosynthetic clay liners (GCLs). Several combinations of cross sections were assembled using GCL materials that were available at the time of project initiation. The cross sections utilized were intended to simulate landfill cover applications. Thirteen (13) resulting test plots were constructed on two different slope angles, and each plot is instrumented for physical displacement and soil moisture characteristics. Test plots were constructed in a manner that dictated the shear plane in the clay portion of the GCL product. The project purpose is to assess field performance and to verify design parameters associated with the application of GCLs in waste containment applications. Interim research data shows that test slopes on 2H:1V show global deformation, but little internal shear evidence, and the 3H:1V slopes show little deformation at approximately 650 days. The research is ongoing, and this paper presents the most recent information available from the project.

  5. Expandable Metal Liner For Downhole Components

    DOEpatents

    Hall, David R.; Fox, Joe R.

    2004-10-05

    A liner for an annular downhole component is comprised of an expandable metal tube having indentations along its surface. The indentations are formed in the wall of the tube either by drawing the tube through a die, by hydroforming, by stamping, or roll forming and may extend axially, radially, or spirally along its wall. The indentations accommodate radial and axial expansion of the tube within the downhole component. The tube is inserted into the annular component and deformed to match an inside surface of the component. The tube may be expanded using a hydroforming process or by drawing a mandrel through the tube. The tube may be expanded in such a manner so as to place it in compression against the inside wall of the component. The tube is useful for improving component hydraulics, shielding components from contamination, inhibiting corrosion, and preventing wear to the downhole component during use. It may also be useful for positioning conduit and insulated conductors within the component. An insulating material may be disposed between the tube and the component in order to prevent galvanic corrosion of the downhole component.

  6. GuideLiner Balloon Assisted Tracking (GBAT): A New Addition to the Interventional Toolbox

    PubMed Central

    Elbarouni, Basem; Moussa, Motaz; Kass, Malek; Toleva, Olga; Vo, Minh

    2016-01-01

    The use of guide extension catheters, such as GuideLiner, allows for increased guide support and facilitates device delivery in tortuous vessels. In cases which the GuideLiner catheter cannot be advanced even with balloon anchoring technique, we inflate a noncompliant balloon protruding from the GuideLiner catheter at nominal pressure and both the GuideLiner and the balloon are advanced over the coronary guidewire through the tortuous segments. This technique can be applied to 5.5 Fr., 6 Fr., and 7 Fr. GuideLiner catheters. This technique is termed GuideLiner Balloon Assisted Tracking (GBAT). PMID:28116176

  7. Studies of shock induced flows in strengthless materials on Pegasus

    SciTech Connect

    Oro, D.M.; Fulton, R.D.; Stokes, J.; Guzik, J.A.; Adams, P.J.; Morgan, D.; Platts, D.; Obst, A.W.; Fell, M.

    1998-12-31

    Experiments on the Pegasus II pulsed power facility at Los Alamos are being conducted to study the evolution and flow of strengthless materials as a result of being shocked. Of particular interest is vorticity and mixing that is induced in the materials by a shock-wave passing through a non-uniform boundary. The experiments provide an important benchmark for hydrodynamic codes, and are a precursor to experiments planned on Atlas in which the materials will be pre-ionized before being shocked. For these experiments, flash radiography is used to image the position of the target boundaries at specific times. In these experiments 3 radiographs along target radii and 2 radiographs along the target axis are taken at independent times. The central cavity of the target is imaged with visible framing cameras. The Xe in this cavity radiates when shocked, and therefore the shape and timing of the shock front in the Xe can be determined from the images. Other diagnostics employed for this work include electric and magnetic field probes that are used to determine the current through the liner and when the liner impacts the target. Both the 1-d magnetohydrodynamics code RAVEN, and the 2-d/3-d adaptive grid eulerian code RAGE are used for pre-shot calculations. In this talk the authors will discuss the motivation for these experiments, compare calculations with radiographs and visible images and discuss future experiments on Pegasus and Atlas.

  8. Advanced Computational and Experimental Techniques for Nacelle Liner Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Brown, Martha C.; Nark, Douglas

    2009-01-01

    The Curved Duct Test Rig (CDTR) has been developed to investigate sound propagation through a duct of size comparable to the aft bypass duct of typical aircraft engines. The axial dimension of the bypass duct is often curved and this geometric characteristic is captured in the CDTR. The semiannular bypass duct is simulated by a rectangular test section in which the height corresponds to the circumferential dimension and the width corresponds to the radial dimension. The liner samples are perforate over honeycomb core and are installed on the side walls of the test section. The top and bottom surfaces of the test section are acoustically rigid to simulate a hard wall bifurcation or pylon. A unique feature of the CDTR is the control system that generates sound incident on the liner test section in specific modes. Uniform air flow, at ambient temperature and flow speed Mach 0.275, is introduced through the duct. Experiments to investigate configuration effects such as curvature along the flow path on the acoustic performance of a sample liner are performed in the CDTR and reported in this paper. Combinations of treated and acoustically rigid side walls are investigated. The scattering of modes of the incident wave, both by the curvature and by the asymmetry of wall treatment, is demonstrated in the experimental results. The effect that mode scattering has on total acoustic effectiveness of the liner treatment is also shown. Comparisons of measured liner attenuation with numerical results predicted by an analytic model based on the parabolic approximation to the convected Helmholtz equation are reported. The spectra of attenuation produced by the analytic model are similar to experimental results for both walls treated, straight and curved flow path, with plane wave and higher order modes incident. The numerical model is used to define the optimized resistance and reactance of a liner that significantly improves liner attenuation in the frequency range 1900-2400 Hz. A

  9. Boundary layer effects on liners for aircraft engines

    NASA Astrophysics Data System (ADS)

    Gabard, Gwénaël

    2016-10-01

    The performance of acoustic treatments installed on aircraft engines is strongly influenced by the boundary layer of the grazing flow on the surface of the liner. The parametric study presented in this paper illustrates the extent of this effect and identifies when it is significant. The acoustic modes of a circular duct with flow are calculated using a finite difference method. The parameters are representative of the flow conditions, liners and sound fields found in current turbofan engines. Both the intake and bypass ducts are considered. Results show that there is a complex interplay between the boundary layer thickness, the direction of propagation and the liner impedance and that the boundary layer can have a strong impact on liner performance for typical configurations (including changes of the order of 30 dB on the attenuation of modes associated with tonal fan noise). A modified impedance condition including the effect of a small but finite boundary layer thickness is considered and compared to the standard Myers condition based on an infinitely thin boundary layer. We show how this impedance condition can be implemented in a mode calculation method by introducing auxiliary variables. This condition is able to capture the trends associated with the boundary layer effects and in most cases provides improved predictions of liner performance.

  10. Demonstration of a wireless, self-powered, electroacoustic liner system.

    PubMed

    Phipps, Alex; Liu, Fei; Cattafesta, Louis; Sheplak, Mark; Nishida, Toshikazu

    2009-02-01

    This paper demonstrates the system operation of a self-powered active liner for the suppression of aircraft engine noise. The fundamental element of the active liner system is an electromechanical Helmholtz resonator (EMHR), which consists of a Helmholtz resonator with one of its rigid walls replaced with a circular piezoceramic composite plate. For this system demonstration, two EMHR elements are used, one for acoustic impedance tuning and one for energy harvesting. The EMHR used for acoustic impedance tuning is shunted with a variable resistive load, while the EMHR used for energy harvesting is shunted to a flyback power converter and storage element. The desired acoustic impedance conditions are determined externally, and wirelessly transmitted to the liner system. The power for the receiver and the impedance tuning circuitry in the liner are supplied by the harvested energy. Tuning of the active liner is demonstrated at three different sound pressure levels (148, 151, and 153 dB) in order to show the robustness of the energy harvesting and storage system. An acoustic tuning range of approximately 200 Hz is demonstrated for each of the three available power levels.

  11. Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage

    SciTech Connect

    Cherry, J.L.; Smith, J.A.

    1998-11-19

    Incidents of liner corrosion in nuclear power containment structures have been recorded. These incidents and concerns of other possible liner corrosion in containment have prompted an interest in determining g the capacity of a degraded containment. Finite element analyses of a typical pressurized water reactor (PWR) reinforced concrete containment with liner corrosion were conducted using the A13AQUS finite element code with the ANACAP-U nonlinear concrete constitutive model. The effect of liner corrosion on containment capacity was investigated. A loss of coolant accident was simulated by applying pressure and temperature changes to the structure without corrosion to determine baseline failure limits, followed by multiple analyses of the containment with corrosion at different locations and varying degrees of liner degradation. The corrosion locations were chosen at the base of the containment wall, near the equipment hatch, and at the midheight of the containment wall. Using a strain-based failure criterion the different scenarios were evaluated to prioritize their effect on containment capacity

  12. Scattering of acoustic duct modes by axial liner splices

    NASA Astrophysics Data System (ADS)

    Tam, Christopher K. W.; Ju, Hongbin; Chien, Eugene W.

    2008-03-01

    Recent engine test data and results of computational analysis show that the engine inlet acoustic liner splices have a significant impact on aircraft flight noise certification and cabin noise levels. The phenomenon of scattering of acoustic duct modes by axial liner splices is investigated. Previous studies, invariably, follow the frequency-domain approach. The present study, however, uses the time-domain approach. It is demonstrated that time-domain computation yields results that are in close agreement with frequency-domain results. The scattering phenomenon under consideration is very complex. This study concentrates on the effects of four parameters. They are the width of the splices, the frequency of the incident duct mode, the number of splices and the length of splices. Based on the computed results, the conditions under which scattered wave modes would significantly increase the intensity of transmitted waves are identified. It is also found that surface scattering by liner splices has the tendency to distribute energy equally to all the cut-on scattered azimuthal modes. On the other hand, for each scattered azimuthal mode, the high-order cut-on radial mode, generally, has the highest intensity. Moreover, scattering by liner splices is a local phenomenon. It is confined primarily to an area of the duct adjacent to the junction between the hard wall near the fan face and the spliced liner.

  13. In-situ studies on the performance of landfill caps (compacted soil liners, geomembranes, geosynthetic clay liners, capillary barriers)

    SciTech Connect

    Melchior, S.

    1997-12-31

    Since 1986 different types of landfill covers have been studied in-situ on the Georgswerder landfill in Hamburg, Germany. Water balance data are available for eight years. The performance of different carriers has been measured by collecting the leakage on areas ranging from 100 m{sup 2} to 500 m{sup 2}. Composite liners with geomembranes performed best, showing no leakage. An extended capillary barrier also performed well. The performance of compacted soil liners, however, decreased severely within five years due to desiccation, shrinkage and plant root penetration (liner leakage now ranging from 150 mm/a to 200 mm/a). About 50 % of the water that reaches the surface of the liner is leaking through it. The maximum leakage rates have increased from 2 x 10{sup -10} m{sup 3} m{sup -2} s{sup -1} to 4 x 10{sup -8} m{sup 3} m{sup -2} s{sup -1}. Two types of geosynthetic clay liners (GCL) have been tested for two years now with disappointing results. The GCL desiccated during the first dry summer of the study. High percolation rates through the GCL were measured during the following winter (45 mm resp. 63 mm in four months). Wetting of the GCL did not significantly reduce the percolation rates.

  14. Progress In Magnetized Target Fusion Driven by Plasma Liners

    NASA Technical Reports Server (NTRS)

    Thio, Francis Y. C.; Kirkpatrick, Ronald C.; Knapp, Charles E.; Cassibry, Jason; Eskridge, Richard; Lee, Michael; Smith, James; Martin, Adam; Wu, S. T.; Schmidt, George; Rodgers, Stephen L. (Technical Monitor)

    2001-01-01

    Magnetized target fusion (MTF) attempts to combine the favorable attributes of magnetic confinement fusion (MCF) for energy confinement with the attributes of inertial confinement fusion (ICF) for efficient compression heating and wall-free containment of the fusing plasma. It uses a material liner to compress and contain a magnetized plasma. For practical applications, standoff drivers to deliver the imploding momentum flux to the target plasma remotely are required. Spherically converging plasma jets have been proposed as standoff drivers for this purpose. The concept involves the dynamic formation of a spherical plasma liner by the merging of plasma jets, and the use of the liner so formed to compress a spheromak or a field reversed configuration (FRC).

  15. Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.

    2016-01-01

    Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.

  16. Metal liner-driven quasi-isentropic compression of deuterium

    SciTech Connect

    Weinwurm, Marcus; Bland, Simon N.; Chittenden, Jeremy P.

    2013-09-15

    Properties of degenerate hydrogen and deuterium (D) at pressures of the order of terapascals are of key interest to Planetary Science and Inertial Confinement Fusion. In order to recreate these conditions in the laboratory, we present a scheme, where a metal liner drives a cylindrically convergent quasi-isentropic compression in a D fill. We first determined an external pressure history for driving a self-similar implosion of a D shell from a fictitious flow simulation [D. S. Clark and M. Tabak, Nucl. Fusion 47, 1147 (2007)]. Then, it is shown that this D implosion can be recreated inside a beryllium liner by shaping the current pulse. For a peak current of 10.8 MA cold and nearly isochoric D is assembled at around 12 500 kg/m{sup 3}. Finally, our two-dimensional Gorgon simulations show the robustness of the implosion method to the magneto-Rayleigh-Taylor instability when using a sufficiently thick liner.

  17. Transmissivity evolution through interface of composite liners under applied constraint.

    PubMed

    Diagne, M

    2011-08-01

    In landfill liners, geomembranes have defects that constitute preferential passages of leachate from rainwater percolation. Non-woven geotextiles are widely used in wastelandfills as materials having the functions of protection, separation, filtration and drainage. This study seeks to select geotextiles through an investigation conducted among landfill operators who commonly arise a geotextile in the geomembrane-clay interface to facilitate geomembrane welding and to prevent its puncture by angular materials. It also attempts to find out the influence of geotextile in a decimetric transmissivity cell size under 50 kPa stress and smooth ground surface. The results show that the transmissivity in composite liner interface is almost the same as the one calculated with the European standard EN ISO 12958. Transmissivity depends on the mechanical stress applied to the bottom liner, on the geotextile type in the interface and on the ground surface.

  18. Fracture control method for composite tanks with load sharing liners

    NASA Technical Reports Server (NTRS)

    Bixler, W. D.

    1975-01-01

    The experimental program was based on the premise that the plastic sizing cycle, which each pressure vessel is subjected to prior to operation, acts as an effective proof test of the liner, screening out all flaws or cracks larger than a critical size. In doing so, flaw growth potential is available for cyclic operation at pressures less than the sizing pressure. Static fracture and cyclic life tests, involving laboratory type specimens and filament overwrapped tanks, were conducted on three liner materials: (1) 2219-T62 aluminum, (2) Inconel X750 STA, and (3) cryoformed 301 stainless steel. Variables included material condition, thickness, flaw size, flaw shape, temperature, sizing stress level, operating stress level and minimum-to-maximum operating stress ratio. From the empirical data base obtained, a procedure was established by which the service life of composite tanks with load sharing liners could be guaranteed with a high degree of confidence.

  19. Optimization of Microphone Locations for Acoustic Liner Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; June, J. C.

    2015-01-01

    Two impedance eduction methods are explored for use with data acquired in the NASA Langley Grazing Flow Impedance Tube. The first is an indirect method based on the convected Helmholtz equation, and the second is a direct method based on the Kumaresan and Tufts algorithm. Synthesized no-flow data, with random jitter to represent measurement error, are used to evaluate a number of possible microphone locations. Statistical approaches are used to evaluate the suitability of each set of microphone locations. Given the computational resources required, small sample statistics are employed for the indirect method. Since the direct method is much less computationally intensive, a Monte Carlo approach is employed to gather its statistics. A comparison of results achieved with full and reduced sets of microphone locations is used to determine which sets of microphone locations are acceptable. For the indirect method, each array that includes microphones in all three regions (upstream and downstream hard wall sections, and liner test section) provides acceptable results, even when as few as eight microphones are employed. The best arrays employ microphones well away from the leading and trailing edges of the liner. The direct method is constrained to use microphones opposite the liner. Although a number of arrays are acceptable, the optimum set employs 14 microphones positioned well away from the leading and trailing edges of the liner. The selected sets of microphone locations are also evaluated with data measured for ceramic tubular and perforate-over-honeycomb liners at three flow conditions (Mach 0.0, 0.3, and 0.5). They compare favorably with results attained using all 53 microphone locations. Although different optimum microphone locations are selected for the two impedance eduction methods, there is significant overlap. Thus, the union of these two microphone arrays is preferred, as it supports usage of both methods. This array contains 3 microphones in the upstream

  20. Constraining the Accretion Mode in LINER 1.9s

    NASA Astrophysics Data System (ADS)

    Sabra, Bassem; Der Sahaguian, Elias; Badr, Elie

    2016-01-01

    The accretion mode and the dominant power source in low-ionization nuclear emission-line regions (LINERs), a class of active galactic nuclei (AGN), are still elusive. We focus on a sample of 22 LINER 1.9s (Ho et al. 1997), a subclass of LINERs that show broad Halpha lines, a signature of blackhole-powered accretion, to test the hypothesis that the ionizing continuum emitted by a radiatively inefficient accretion flow (RIAF) could lead to the LINER ultraviolet (UV) emission-line ratios. Optical line-ratio diagrams are a weak diagnostic tool in distinguishing between possible power sources (Sabra et al. 2003). We search the Mikulski Archive for Space Telescopes (MAST) for UV spectra of the objects in the above sample and also perform photoionization simulations using CLOUDY (Ferland et al. 2013). Unfortunately, only one object (NGC 1052; Gabel et al. 2000) of the 22 LINER 1.9s has UV spectra that cover many emission lines; the rest of the objects either do not have any UV spectra, the spectral coverage is in-adequate, or the spectra have very low signal-to-noise ratios. Our photoionization simulations set up two identical grids of clouds with a range of densities and ionization parameters. We illuminate one grid with radiation emitted by a thin accretion disk (AD) and we illuminate the other grid with radiation from a RIAF. We overplot the UV emission-line ratio predictions for AD and RIAF illumination, together with the available line ratios for NGC 1052. Initial results show that UV lines could be used as diagnostics for the accretion mode in AGN. More UV spectral coverage of LINER 1.9s is needed in order to more fully utilize the diagnostic powers of UV emission line ratios.

  1. Five synthetic rubber pond liners protect against leakage and weather

    SciTech Connect

    Weinreich, G.; Hofsess, R.; Toy, D.A.

    1987-03-01

    More than 137 million cu ft of pipeline quality gas is produced daily at the Great Plains Coal Gasification Project in Beulah, ND. The facility is the only commercial plant in the US which produces gaseous and liquid fuels from low-grade coal. The plant needs to recycle and reuse 100% of the organic process wastewater, requiring a complicated treatment system of cooling towers, evaporators, a liquid waste incinerator and other units, each of which has its own surge pond. In total, the plant has five surge ponds which hold near 80 million gallons. To prevent the seepage of wastewater from the surge ponds into the ground water, a liner material was needed that would fulfill several design criteria. The liner had to be resistant to degradation caused by a very wide range of temperatures and it had to have a low coefficient of expansion. Resistance to both organic and inorganic chemical substances was another key requirement. Finally, the liner material needed to be easy to seam during field installation. An elastomeric membrane liner using the synthetic rubber and reinforcing polyester scrim best met the plant's requirements. One of the primary reasons for selecting synthetic rubber was its low coefficient of expansion. Extreme seasonal weather conditions, with temperatures ranging from below zero in the winter to over 100/sup 0/F in the summer, are common in North Dakota. And because the level of wastewater in the ponds constantly varies, a liner is frequently exposed to the elements. Overall, the synthetic rubber pond liners have performed through extreme weather conditions and have proven to be a cost-effective solution to wastewater storage at the gasification project.

  2. A Prospective Randomized Crossover Study on the Comparison of Cotton Versus Waterproof Cast Liners

    PubMed Central

    Guillen, Philip T.; Fuller, Corey B.; Riedel, Barth B.; Wongworawat, Montri D.

    2016-01-01

    Background: Many fractures are treated with casting which can cause complications likely from inability to wash the extremity. Gore-Tex-based waterproof cast liner has been compared with cotton liner and shown to be superior in physician and patient scoring but also has high cost and difficult application. The purpose of this study is to compare newer generation waterproof liners with traditional cotton liner. It is the first study to compare this new waterproof liner and cotton liner in a crossover model, allowing patients to swim in the pool with the cast. Methods: Twenty patients (ages 3-30) with upper extremity injuries were randomized to waterproof-liner or cotton-liner casts made of fiberglass. Patients would switch cast liners halfway between their treatments to fulfill crossover criteria. All fractures were within a 2-week period from original incident. At each clinic visit, patients evaluated comfort parameters through questionnaires, and physicians rated skin condition. Patients were also asked which cast liner they preferred at the end of the study. Results: There were no unscheduled cast changes. The waterproof-liner group had better scores for odor (P = .041), sweat (P = .016), and overall physician-rated score (P = .038). There was no significant difference in other patient-rated parameters. Seventy-five percent of patients preferred waterproof casting to the cotton liner. Conclusions: This new waterproof cast liner, compared with cotton cast liner, had better odor, sweat, and overall physician scores. The waterproof liners allow patients to rinse casts daily, and the majority of patients prefer waterproof to cotton liner. PMID:27418889

  3. Novel Processing of 81-mm Cu Shaped Charge Liners

    SciTech Connect

    Schwartz, A; Korzekwa, D

    2002-01-16

    A seven-step procedure was developed for producing shaped charge liner blanks by back extrusion at liquid nitrogen temperatures. Starting with a 38.1-mm diameter, 101.6-mm long cylinder at 77K, three forging steps with a flat-top die are required to produce the solid cone while maintaining low temperature. The solid cone is forged in four individual back extrusions at 77K to produce the rough liner blank. This procedure is capable of being run in batch processes to improve the time efficiency.

  4. Stresses in polyethylene liners in a semiconstrained ankle prosthesis.

    PubMed

    Miller, M C; Smolinski, P; Conti, S; Galik, K

    2004-10-01

    A finite element model of a semiconstrained ankle implant with the tibia and fibula was constructed so that the stresses in the polyethylene liner could be computed. Two different widths of talar components were studied and proximal boundary conditions were computed from an inverse process providing a load of five times body weight appropriately distributed across the osseous structures. von Mises stresses indicated small regions of localized yielding and contact stresses that were similar to those in acetabular cup liners. A wider talar component with 36% more surface area reduced contact stress and von Mises stresses at the center of the polyethylene component by 17%.

  5. Fracture Test Methods for Plastically Responding COPV Liners

    NASA Technical Reports Server (NTRS)

    Dawicke, David S.; Lewis, Joseph C.

    2009-01-01

    An experimental procedure for evaluating the validity of using uniaxial tests to provide a conservative bound on the fatigue crack growth rate behavior small cracks in bi-axially loaded Composite Overwrapped Pressure Vessel (COPV) liners is described. The experimental procedure included the use of a laser notch to quickly generate small surface fatigue cracks with the desired size and aspect ratios. An out-of-plane constraint system was designed to allow fully reversed, fully plastic testing of thin sheet uniaxial coupons. Finally, a method was developed to determine to initiate small cracks in the liner of COPVs.

  6. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, S. B. Gomez, M. R.; Sefkow, A. B.; Slutz, S. A.; Sinars, D. B.; Hahn, K. D.; Harding, E. C.; Knapp, P. F.; Schmit, P. F.; Awe, T. J.; McBride, R. D.; Jennings, C. A.; Geissel, M.; Harvey-Thompson, A. J.; Peterson, K. J.; Rovang, D. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Hess, M. H.; and others

    2015-05-15

    Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (∼10{sup 12} DD neutrons) from multi-keV deuterium plasmas inertially confined by slow (∼10 cm/μs), stable, cylindrical implosions. Effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 10{sup 10}. Analysis of extensive power, imaging, and spectroscopic x-ray measurements provides a detailed picture of ∼3 keV temperatures, 0.3 g/cm{sup 3} densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  7. Diagnosing magnetized liner inertial fusion experiments on Z

    SciTech Connect

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; Slutz, Stephen A.; Sinars, Daniel Brian; Hahn, Kelly; Harding, Eric; Knapp, Patrick; Schmit, Paul; Awe, Thomas James; McBride, Ryan D.; Jennings, Christopher; Geissel, Matthias; Harvey-Thompson, Adam James; Peterson, K. J.; Rovang, Dean C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Herrmann, Mark C.; Mark Harry Hess; Johns, Owen; Lamppa, Derek C.; Martin, Matthew; Porter, J. L.; Robertson, G. K.; Rochau, G. A.; Ruiz, C. L.; Savage, M. E.; Smith, I. C.; Stygar, W. A.; Vesey, R. A.; Blue, B. E.; Ryutov, D.; Schroen, Diana; Tomlinson, K.

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  8. Diagnosing magnetized liner inertial fusion experiments on Z

    DOE PAGES

    Hansen, Stephanie B.; Gomez, Matthew R.; Sefkow, Adam B.; ...

    2015-05-14

    The Magnetized Liner Inertial Fusion experiments performed at Sandia's Z facility have demonstrated significant thermonuclear fusion neutron yields (~1012 DD neutrons) from multi-keV deuterium plasmasinertially confined by slow (~10 cm/μs), stable, cylindrical implosions. Moreover, effective magnetic confinement of charged fusion reactants and products is signaled by high secondary DT neutron yields above 1010. Further analysis of extensive power, imaging, and spectroscopicx-ray measurements provides a detailed picture of ~3 keV temperatures, 0.3 g/cm3 densities, gradients, and mix in the fuel and liner over the 1–2 ns stagnation duration.

  9. Molding Helmet Liners from Nylon Cloth Made from 1050 Denier Type 700 Nylon Yarns

    DTIC Science & Technology

    Helmet liners were satisfactorily molded from 14 ounce, 2 x 2 basket- weave nylon fabric made of 1050 denier, 168 filaments, 3 to 4 Z turns per inch...type 700 nylon yarn. These helmets liners satisfied the autoclave and the ballistics resistant requirements of Military Specification MIL-L-41800, Liner , Soldier’s Steel Helmet, 1 May 1961.

  10. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.425 What are the requirements for pressure testing liners? (a) You must test each drilling liner (and liner-lap) to a pressure at least...

  11. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.425 What are the requirements for pressure testing liners? (a) You must test each drilling liner (and liner-lap) to a pressure at least...

  12. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Casing and Cementing Requirements § 250.425 What are the requirements for pressure testing liners? (a) You must test each drilling liner (and liner-lap) to a pressure at least...

  13. 75 FR 1596 - Grant of Authority for Subzone Status, Reynolds Packaging LLC (Aluminum Foil Liner Stock...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... (Aluminum Foil Liner Stock), Louisville, Kentucky Pursuant to its authority under the Foreign-Trade Zones... to the Board for authority to establish a special-purpose subzone at the aluminum foil liner stock... status for activity related to the manufacturing and distribution of aluminum foil liner stock...

  14. Liner Optimization Studies Using the Ducted Fan Noise Prediction Code TBIEM3D

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.; Farassat, F.

    1998-01-01

    In this paper we demonstrate the usefulness of the ducted fan noise prediction code TBIEM3D as a liner optimization design tool. Boundary conditions on the interior duct wall allow for hard walls or a locally reacting liner with axially segmented, circumferentially uniform impedance. Two liner optimization studies are considered in which farfield noise attenuation due to the presence of a liner is maximized by adjusting the liner impedance. In the first example, the dependence of optimal liner impedance on frequency and liner length is examined. Results show that both the optimal impedance and attenuation levels are significantly influenced by liner length and frequency. In the second example, TBIEM3D is used to compare radiated sound pressure levels between optimal and non-optimal liner cases at conditions designed to simulate take-off. It is shown that significant noise reduction is achieved for most of the sound field by selecting the optimal or near optimal liner impedance. Our results also indicate that there is relatively large region of the impedance plane over which optimal or near optimal liner behavior is attainable. This is an important conclusion for the designer since there are variations in liner characteristics due to manufacturing imprecisions.

  15. Septic Shock

    PubMed Central

    Lansing, Allan M.

    1963-01-01

    Septic shock may be defined as hypotension caused by bacteremia and accompanied by decreased peripheral blood flow, evidenced by oliguria. Clinically, a shaking chill is the warning signal. The immediate cause of hypotension is pooling of blood in the periphery, leading to decreased venous return: later, peripheral resistance falls and cardiac failure may occur. Irreversible shock is comparable to massive reactive hyperemia. Reticuloendothelial failure, histamine release, and toxic hypersensitivity may be factors in the pathogenesis of septic shock. Adrenal failure does not usually occur, but large doses of corticosteroid are employed therapeutically to counteract the effect of histamine release or hypersensitivity to endotoxin. The keys to successful therapy are time, antibiotics, vasopressors, cortisone and correction of acidosis. PMID:14063936

  16. A Pegasus Dynamic Liner Friction Experiment

    SciTech Connect

    Hammerberg, J.E.; Kyrala, G.A.; Oro, D.M.; Fulton, R.D.; Anderson, W.E.; Obst, A.W.; Oona, H.; Stokes, J.; Wilke, M.D.

    1999-06-28

    The authors report on a pulsed power experiment performed at the Los Alamos National Laboratory Pegasus facility which was designed to measure material flow at metal interfaces driven to high relative velocities. Material motion at and near four flat Ta/Al(6061) interfaces was measured using flash radiographic techniques. A series of fine Pb wires (407 micron diameter) was implanted in the Al normal to the interfaces. The motion of these markers under shock loading provided a picture of material motion in the Al interfacial region. The surface roughness of the interfaces was varied between 32 and 125 micro-inches. The authors discuss the implications of these measurements for constitutive models of high speed friction and interfacial morphological change.

  17. Auto-magnetizing liners for magnetized inertial fusion

    NASA Astrophysics Data System (ADS)

    Slutz, S. A.; Jennings, C. A.; Awe, T. J.; Shipley, G. A.; Hutsel, B. T.; Lamppa, D. C.

    2017-01-01

    The MagLIF (Magnetized Liner Inertial Fusion) concept [Slutz et al., Phys. Plasmas 17, 056303 (2010)] has demonstrated fusion-relevant plasma conditions [Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] on the Z accelerator using external field coils to magnetize the fuel before compression. We present a novel concept (AutoMag), which uses a composite liner with helical conduction paths separated by insulating material to provide fuel magnetization from the early part of the drive current, which by design rises slowly enough to avoid electrical breakdown of the insulators. Once the magnetization field is established, the drive current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path and implode the liner in the conventional z-pinch manner. There are two important advantages to AutoMag over external field coils for the operation of MagLIF. Low inductance magnetically insulated power feeds can be used to increase the drive current, and AutoMag does not interfere with diagnostic access. Also, AutoMag enables a pathway to energy applications for MagLIF, since expensive field coils will not be damaged each shot. Finally, it should be possible to generate Field Reversed Configurations (FRC) by using both external field coils and AutoMag in opposite polarities. This would provide a means to studying FRC liner implosions on the 100 ns time scale.

  18. Demonstration test of burner liner strain measurement systems: Interim results

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.; Grant, H. P.

    1983-01-01

    Work is in progress to demonstrate two techniques for static strain measurements on a jet engine burner liner. Measurements are being made with a set of resistance strain gages made from Kanthal A-1 wire and via heterodyne speckle photogrammetry. The background of the program is presented along with current results.

  19. Evaluation of a stack: A concrete chimney with brick liner

    SciTech Connect

    Joshi, J.R.; Amin, J.A.; Porthouse, R.A.

    1995-12-31

    A 200 ft. tall stack, consisting of a concrete chimney with an independent acid proof brick liner built in the 1950`s, serving the Separations facility at the Savannah River Site (SRS), was evaluated for the performance category 3 (PC3) level of Natural Phenomena Hazards (NPH) effects. The inelastic energy absorption capacity of the concrete chimney was considered in the evaluation of the earthquake resistance, in particular, to compute the F{sub {mu}} factor. The calculated value of F{sub {mu}} exceeded 3.0, while the seismic demand for the PC3 level, using an F{sub {mu}} value of 1.5, was found to be less than the capacity of the concrete chimney. The capacity formulation of ACI 307 was modified to incorporate the effect of an after design opening on the tension side. There are considerable uncertainties in determining the earthquake resistance of the independent brick liner. The critical liner section, located at the bottom of the breeching opening, does not meet the current recommendations. A discussion is provided for the possible acceptable values for the ``Moment Reduction Factor``, R{sub w} or F{sub {mu}} for the liner. Comments are provided on the comparison of stack demands using response spectra (RS) versus time history (TH) analysis, with and without soil structure interaction (SSI) effects.

  20. Hydrodynamic Liner Experiments Using the Ranchero Flux Compression Generator System

    SciTech Connect

    Goforth, J.H.; Atchison, W.L.; Fowler, C.M.; Lopez, E.A.; Oona, H.; Tasker, D.G.; King, J.C.; Herrera, D.H.; Torres, D.T.; Sena, F.C.; McGuire, J.A.; Reinovsky, R.E.; Stokes, J.L.; Tabaka, L.J.; Garcia, O.F.; Faehl, R.J.; Lindemuth, I.R.; Keinigs, R.K.; Broste, B.

    1998-10-18

    The authors have developed a system for driving hydrodynamic liners at currents approaching 30 MA. Their 43 cm module will deliver currents of interest, and when fully developed, the 1.4 m module will allow similar currents with more total system inductance. With these systems they can perform interesting physics experiments and support the Atlas development effort.

  1. Conductivity and transit time estimates of a soil liner

    USGS Publications Warehouse

    Krapac, I.G.; Cartwright, K.; Panno, S.V.; Hensel, B.R.; Rehfeldt, K.H.; Herzog, B.L.

    1990-01-01

    A field-scale soil linear was built to assess the feasibilty of constructing a liner to meet the saturated hydraulic conductivity requirement of the U.S. EPA (i.e., less than 1 ?? 10-7 cm/s), and to determine the breakthrough and transit times of water and tracers through the liner. The liner, 8 ?? 15 ?? 0.9 m, was constructed in 15-cm compacted lifts using a 20,037-kg pad-foot compactor and standard engineering practices. Estimated saturated hydraulic conductivities were 2.4 ?? 10-9 cm/s, based on data from large-ring infiltrometers; 4.0 ?? 10-8 cm/s from small-ring infiltrometers; and 5.0 ?? 10-8 cm/s from a water-balance analysis. These estimates were derived from 1 year of monitoring water infiltration into the linear. Breakthrough of tracers at the base of the liner was estimated to be between 2 and 13 years, depending on the method of calculation and the assumptions used in the calculation.

  2. Fracture Mechanics Analysis of LH2 Feed Line Flow Liners

    NASA Technical Reports Server (NTRS)

    James, Mark A.; Dawicke, David S.; Brzowski, Matthew B.; Raju, Ivatury S.; Elliott, Kenny B.; Harris, Charles E.

    2006-01-01

    Inspections of the Space Shuttle Main Engine revealed fatigue cracks growing from slots in the flow liner of the liquid hydrogen (LH2) feed lines. During flight, the flow liners experience complex loading induced by flow of LH2 and the resonance characteristics of the structure. The flow liners are made of Inconel 718 and had previously not been considered a fracture critical component. However, fatigue failure of a flow liner could have catastrophic effect on the Shuttle engines. A fracture mechanics study was performed to determine if a damage tolerance approach to life management was possible and to determine the sensitivity to the load spectra, material properties, and crack size. The load spectra were derived separately from ground tests and material properties were obtained from coupon tests. The stress-intensity factors for the fatigue cracks were determined from a shell-dynamics approach that simulated the dominant resonant frequencies. Life predictions were obtained using the NASGRO life prediction code. The results indicated that adequate life could not be demonstrated for initial crack lengths of the size that could be detected by traditional NDE techniques.

  3. Auto-magnetizing liners for magnetized inertial fusion

    DOE PAGES

    Slutz, S. A.; Jennings, C. A.; Awe, T. J.; ...

    2017-01-20

    Here, the MagLIF (Magnetized Liner Inertial Fusion) concept has demonstrated fusion-relevant plasma conditions on the Z accelerator using external field coils to magnetize the fuel before compression. We present a novel concept (AutoMag), which uses a composite liner with helical conduction paths separated by insulating material to provide fuel magnetization from the early part of the drive current, which by design rises slowly enough to avoid electrical breakdown of the insulators. Once the magnetization field is established, the drive current rises more quickly, which causes the insulators to break down allowing the drive current to follow an axial path andmore » implode the liner in the conventional z-pinch manner. There are two important advantages to AutoMag over external field coils for the operation of MagLIF. Low inductance magnetically insulated power feeds can be used to increase the drive current, and AutoMag does not interfere with diagnostic access. Also, AutoMag enables a pathway to energy applications for MagLIF, since expensive field coils will not be damaged each shot. Finally, it should be possible to generate Field Reversed Configurations (FRC) by using both external field coils and AutoMag in opposite polarities. This would provide a means to studying FRC liner implosions on the 100 ns time scale.« less

  4. Examination of resistivity issues in solid liner z-pinches

    SciTech Connect

    Atchison, W.L.; Faehl, R.J.; Reinovsky, R.E.

    1999-07-01

    Experiments being conducted at the Los Alamos National lab Pegasus facility are examining driving an aluminum liner with a pulsed magnetic field. The Pegasus facility provides a current of 5 to 8 Mega-amps to compress a cylindrical liner. Liners of various size and thickness are used, depending on the specific experimental objectives. In several of these experiments, a B-dot probe has been used to measure the field diffused through the liners. This data has been compared to predictions of field penetrations using numerical simulations. These predictions were made with a 2D Eulerian and a 1D Lagrangian MHD code. The simulations were made with a wide variety of resistivity models including both SESAME tabular values and analytic models. the results of these comparisons show that the behavior of aluminum in the region from a few tenths of a eV to 1eV and densities from about .2 to 3.0 g/cc is not reproduced well. While this is understandable based on the back of conclusive data in the region, these experiments confirm the in-applicability of extrapolating existing models into this region where phase changes are drastically changing the behavior.

  5. Development of variable-rate sprayer for nursery liner applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sensor-guided application technologies are needed to achieve constant spray deposition for the rapid growth of nursery liner trees during a growing season. An experimental real-time variable-rate sprayer that implemented 20 Hz ultrasonic sensors and pulse width modulation (PWM) solenoid valve-contro...

  6. Contoured-gap coaxial guns for imploding plasma liner experiments

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Case, A.; Brockington, S.; Cassibry, J. T.; Hsu, S. C.

    2014-10-01

    Arrays of supersonic, high momentum flux plasma jets can be used as standoff compression drivers for generating spherically imploding plasma liners for driving magneto-inertial fusion, hence the name plasma-jet-driven MIF (PJMIF). HyperV developed linear plasma jets for the Plasma Liner Experiment (PLX) at LANL where two guns were successfully tested. Further development at HyperV resulted in achieving the PLX goal of 8000 μg at 50 km/s. Prior work on contoured-gap coaxial guns demonstrated an approach to control the blowby instability and achieved substantial performance improvements. For future plasma liner experiments we propose to use contoured-gap coaxial guns with small Minirailgun injectors. We will describe such a gun for a 60-gun plasma liner experiment. Discussion topics will include impurity control, plasma jet symmetry and topology (esp. related to uniformity and compactness), velocity capability, and techniques planned for achieving gun efficiency of >50% using tailored impedance matched pulse forming networks. Mach2 and UAH SPH code simulations will be included. Work supported by US DOE DE-FG02-05ER54810.

  7. Slope Stability of Geosynthetic Clay Liner Test Plots

    EPA Science Inventory

    Fourteen full-scale field test plots containing five types of geosynthetic clay liners (GCLs) were constructed on 2H:IV and 3H:IV slopes for the purpose of assessing slope stability. The test plots were designed to simulate typical final cover systems for landfill. Slides occurr...

  8. FORENSIC INVESTIGATION OF A GENERATION OLD CIPP LINER

    EPA Science Inventory

    There is limited information regarding the in-situ performance of rehabilitation methods used for prolonging the service life of buried municipal pipeline systems. With some CIPP liners nearly 30 years in service, municipalities are expressing a strong interest in the collection ...

  9. Retrospective Study of In-Service CIPP Liners

    EPA Science Inventory

    Cured-in-place pipe (CIPP) has been used for rehabilitation of deteriorating wastewater pipes for nearly 30 years in the US with much success. However, little quantitative data is available regarding the performance of these liners, to verify their estimated design life of 50 yea...

  10. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calcium hydroxide cavity liner. 872.3250 Section 872.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... prepared cavity before insertion of restorative material, such as amalgam, to protect the pulp of a...

  11. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calcium hydroxide cavity liner. 872.3250 Section 872.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... prepared cavity before insertion of restorative material, such as amalgam, to protect the pulp of a...

  12. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calcium hydroxide cavity liner. 872.3250 Section 872.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... prepared cavity before insertion of restorative material, such as amalgam, to protect the pulp of a...

  13. 21 CFR 872.3250 - Calcium hydroxide cavity liner.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calcium hydroxide cavity liner. 872.3250 Section 872.3250 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... prepared cavity before insertion of restorative material, such as amalgam, to protect the pulp of a...

  14. Small gas turbine combustor experimental study: Compliant metal/ceramic liner and performance evaluation

    NASA Technical Reports Server (NTRS)

    Acosta, W. A.; Norgren, C. T.

    1986-01-01

    Combustor research relating to the development of fuel efficient small gas turbine engines capable of meeting future commercial and military aviation needs is currently underway at NASA Lewis. As part of this combustor research, a basic reverse-flow combustor has been used to investigate advanced liner wall cooling techniques. Liner temperature, performance, and exhaust emissions of the experimental combustor utilizing compliant metal/ceramic liners were determined and compared with three previously reported combustors that featured: (1) splash film-cooled liner walls; (2) transpiration cooled liner walls; and (3) counter-flow film cooled panels.

  15. High-temperature combustor liner tests in structural component response test facility

    NASA Technical Reports Server (NTRS)

    Moorhead, Paul E.

    1988-01-01

    Jet engine combustor liners were tested in the structural component response facility at NASA Lewis. In this facility combustor liners were thermally cycled to simulate a flight envelope of takeoff, cruise, and return to idle. Temperatures were measured with both thermocouples and an infrared thermal imaging system. A conventional stacked-ring louvered combustor liner developed a crack at 1603 cycles. This test was discontinued after 1728 cycles because of distortion of the liner. A segmented or float wall combustor liner tested at the same heat flux showed no significant change after 1600 cycles. Changes are being made in the facility to allow higher temperatures.

  16. Performance of semi-transportation-cooled liner in high-temperature-rise combustors

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Trout, A. M.; Smith, J. M.

    1981-01-01

    Results from tests with the Lamilloy combustor liner are compared with results obtained from a conventionally designed, film cooled, step-louver liner. Operation of the Lamilloy liner with counterrotating swirl combustor fuel modules with mixing venturis was possible to a fuel-air ratio of 0.065 without obtaining excessive liner metal temperatures. At the 0.065 fuel-air condition the average liner metal temperature was 140 K and the maximum local temperature 280 K above the inlet air temperature. Combustion efficiency, pattern factor, and smoke data are discussed.

  17. RQL Sector Rig Testing of SiC/SiC Combustor Liners

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Martin, Lisa C.; Brewer, David N.

    2002-01-01

    Combustor liners, manufactured from silicon carbide fiber-reinforced silicon carbide (SiC/SiC) were tested for 260 hr using a simulated gas turbine engine cycle. This report documents the results of the last 56 hr of testing. Damage occurred in one of the six different components that make up the combustor liner set, the rich zone liner. Cracks in the rich zone liner initiated at the leading edge due to stresses resulting from the component attachment configuration. Thin film thermocouples and fiber optic pyrometers were used to measure the rich zone liner's temperature and these results are reported.

  18. Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.

    2001-01-01

    Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.

  19. A Comparative Study of Four Impedance Eduction Methodologies Using Several Test Liners

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.

    2013-01-01

    A comparative study of four commonly used impedance eduction methods is presented for a range of liner structures and test conditions. Two of the methods are restricted to uniform flow while the other two accommodate both uniform and boundary layer flows. Measurements on five liner structures (a rigid-wall insert, a ceramic tubular liner, a wire mesh liner, a low porosity conventional liner, and a high porosity conventional liner) are obtained using the NASA Langley Grazing Flow Impedance Tube. The educed impedance of each liner is presented for forty-two test conditions (three Mach numbers and fourteen frequencies). In addition, the effects of moving the acoustic source from upstream to downstream and the refractive effects of the mean boundary layer on the wire mesh liner are investigated. The primary conclusions of the study are that: (1) more accurate results are obtained for the upstream source, (2) the uniform flow methods produce nearly identical impedance spectra at and below Mach 0.3 but significant scatter in the educed impedance occurs at the higher Mach number, (3) there is better agreement in educed impedance among the methods for the conventional liners than for the rigid-wall insert, ceramic, or wire mesh liner, and (4) the refractive effects of the mean boundary layer on the educed impedance of the wire mesh liner are generally small except at Mach 0.5.

  20. Prosthetic liners for lower limb amputees: a review of the literature.

    PubMed

    Klute, Glenn K; Glaister, Brian C; Berge, Jocelyn S

    2010-06-01

    Prosthetic liners exist to improve amputee safety and comfort by adding a cushioning layer between the residual limb and the prosthetic socket. Many choices in liner technology are available, and clinicians often rely on personal intuition and experience to choose which liners are appropriate for which patients. The purpose of this study was to examine the literature to find what scientific evidence exists to inform prescription practices. 'Prosthetic liner' was used as a search term in the Web of Science and PubMed research databases. Fourteen scientific articles met the eligibility criteria and are discussed in this review. The results of this review suggest that there is little scientific evidence to inform prosthetic liner prescription practices. Liner material properties have been well-studied, but their influence on in vivo performance is not well understood. Understanding liner effect on function would be an area of great usefulness.

  1. Consideration of liners and covers in performance assessments

    SciTech Connect

    Phifer, Mark A.; Seitz, Robert R.; Suttora, Linda C.

    2014-09-18

    On-site disposal cells are in use and being considered at several United States Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These disposal cells are typically regulated by States and/or the U.S. Environmental Protection Agency under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) in addition to having to comply with requirements in DOE Order 435.1, Radioactive Waste Management due to the radioactive waste. The USDOE-Environmental Management Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these CERCLA disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to CERCLA risk assessments and DOE Order 435.1 performance assessments in support of a Record of Decision and Disposal Authorization Statement, respectively. One of the issues considered by the working group, which is addressed in this report, was how to appropriately consider the performance of covers and liners/leachate collections systems in the context of a DOE Order 435.1 performance assessment (PA). This same information may be appropriate for consideration within CERCLA risk assessments for these facilities. These OSDCs are generally developed to meet hazardous waste (HW) disposal design standards under the Resource Conservation and Recovery Act (RCRA) as well as the DOE Order 435.1 performance based standards for disposal of radioactive waste. To meet the standards for HW, the facilities typically include engineered covers and liner/leachate collection systems. Thus, when considering such facilities in the context of a DOE Order 435.1 PA, there is a need to address the evolution of performance of covers and liner/leachate collection systems in the context of meeting a performance standard considering time

  2. The First Pulsed-Power Z-Pinch Liner-On-Target Hydrodynamics Experiment Diagnosed with Proton Radiography

    NASA Astrophysics Data System (ADS)

    Rousculp, C. L.; Reass, W. A.; Oro, D. M.; Griego, J. R.; Turchi, P. J.; Reinovsky, R. E.; Saunders, A.; Mariam, F. G.; Morris, C.

    2014-10-01

    The first pulse-power driven, dynamic, liner-on-target experiment was successfully conducted at the Los Alamos proton radiography (pRad) facility. 100% data return was achieved on this experiment including a 21-image pRad movie. The experiment was driven with the PHELIX pulsed-power machine that utilizes a high-efficiency (k ~ 0.93) transformer to couple a small capacitor bank (U ~ 300 kJ) to a low inductance condensed-matter experimental load in a Z-pinch configuration. The current pulse (Ipeak = 3.7 MA, δt ~10 μs) was measured via a fiber optic Faraday rotation diagnostic. The experimental load consisted of a cylindrical Al liner (6 cm diam, 3 cm tall, 0.8 mm thick) and a cylindrical Al target (3 cm diam, 3 cm tall, 0.1 mm thick) that was coated with a thin (0.1 mm) uniform layer of tungsten powder (1 micron diam). It is observed that the shock-launched powder layer fully detaches from the target into a spatially correlated, radially converging (vr ~ 800 m/s) ring. The powder distribution is highly modulated in azimuth indicating particle interactions are significant. Results are compared to MHD simulations. Work supported by United States-DOE under Contract DE-AC52-06NA25396.

  3. Porosity of temporary denture soft liners containing antifungal agents

    PubMed Central

    Lima, Jozely Francisca Mello; Maciel, Janaína Gomes; Hotta, Juliana; Vizoto, Ana Carolina Pero; Honório, Heitor Marques; Urban, Vanessa Migliorini; Neppelenbroek, Karin Hermana

    2016-01-01

    ABSTRACT Incorporation of antifungals in temporary denture soft liners has been recommended for denture stomatitis treatment; however, it may affect their properties. Objective: To evaluate the porosity of a tissue conditioner (Softone) and a temporary resilient liner (Trusoft) modified by minimum inhibitory concentrations (MICs) of antifungal agents for Candida albicans biofilm. Material and Methods: The porosity was measured by water absorption, based on exclusion of the plasticizer effect. Initially, it was determined by sorption isotherms that the adequate storage solution for specimens (65×10×3.3 mm) of both materials was 50% anhydrous calcium chloride (S50). Then, the porosity factor (PF) was calculated for the study groups (n=10) formed by specimens without (control) or with drug incorporation at MICs (nystatin: Ny-0.032 g, chlorhexidine diacetate: Chx-0.064 g, or ketoconazole: Ke-0.128 g each per gram of soft liner powder) after storage in distilled water or S50 for 24 h, seven and 14 d. Data were statistically analyzed by 4-way repeated measures ANOVA and Tukey's test (α=.05). Results: Ke resulted in no significant changes in PF for both liners in water over 14 days (p>0.05). Compared with the controls, Softone and Trusoft PFs were increased at 14-day water immersion only after addition of Ny and Chx, and Chx, respectively (p<0.05). Both materials showed no significant changes in PF in up to 14 days of S50 immersion, compared with the controls (p>0.05). In all experimental conditions, Softone and Trusoft PFs were significantly lower when immersed in S50 compared with distilled water (p<0.05). Conclusions: The addition of antifungals at MICs resulted in no harmful effects for the porosity of both temporary soft liners in different periods of water immersion, except for Chx and Ny in Softone and Chx in Trusoft at 14 days. No deleterious effect was observed for the porosity of both soft liners modified by the drugs at MICs over 14 days of S50 immersion

  4. Evaluation of Novel Liner Concepts for Fan and Airframe Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Howerton, B. M.

    2016-01-01

    This paper presents a review of four novel liner concepts: soft vanes, over-the-rotor liners, external liners, and flap side-edge liners. A number of similarities in the design and evaluation of these concepts emerged during these investigations. Since these were the first attempts to study these particular liner concepts, there was limited information to guide the design process. In all cases, the target frequencies (or frequency range) were known, but the optimum acoustic impedance and optimum liner placement were typically not known. For these cases, the maximum available surface was used and a c-impedance was targeted based on the assumption the sound field impinges on the surface at normal incidence. This choice proved fruitful for every application. An impedance prediction model was used to design variable-depth liner configurations, and a graphical design code (ILIAD) was developed to aid in this process. The ability to build increasingly complex liner configurations via additive manufacturing was key, such that multiple designs could quickly be tested in a normal incidence impedance tube. The Two-Thickness Method was used to evaluate available bulk materials, such that bulk liners could also be considered for each application. These novel liner concepts provide sufficient noise reduction to warrant further investigations.

  5. Impedance Eduction in Sound Fields With Peripherally Varying Liners and Flow

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2015-01-01

    A two-dimensional impedance eduction theory is extended to three-dimensional sound fields and peripherally varying duct liners. The approach is to first measure the acoustic pressure field at a series of flush-mounted wall microphones located around the periphery of the flow duct. The numerical solution for the acoustic pressure field at these microphones is also obtained by solving the three-dimensional convected Helmholtz equation using the finite element method. A quadratic objective function based on the difference between the measured and finite element solution is constructed and the unknown impedance function is obtained by minimizing this objective function. Impedance spectra educed for two uniform-structure liners (a wire-mesh and a conventional liner) and a hard-soft-hard peripherally varying liner (for which the soft segment is that of the conventional liner) are presented. Results are presented at three mean flow Mach numbers and fourteen sound source frequencies. The impedance spectra of the uniform-structure liners are also computed using a two-dimensional impedance eduction theory. The primary conclusions of the study are: 1) when measured data is used with the uniform-structure liners, the three-dimensional theory reproduces the same impedance spectra as the two-dimensional theory except for frequencies corresponding to very low or very high liner attenuation; and 2) good agreement between the educed impedance spectra of the uniform structure conventional liner and the soft segment of the peripherally varying liner is obtained.

  6. Production and grout liner for methane drainage in subterranean boreholes and method

    SciTech Connect

    Richards, W.L.; Henderson, R.L.; Aul, G.N.; Pauley, B.W.

    1987-08-18

    A process is described for recovering methane gas from subterranean coal seams using degas holes and sealing the degas holes after recovery of the methane gas in anticipation of mining of coal from the subterranean coal seam, the process comprising the steps of: drilling a generally horizontal degas hole into a subterranean coal seam using a drill bit and drill pipe; withdrawing the drill bit and drill pipe and thereafter replacing of the drill bit with a casing shoe; inserting the casing shoe and drill pipe into the degas hole; inserting the perforated liner into the borehole through the drill pipe; and, removing the drill pipe and casing shoe while holding the perforated liner within the degas hole, the casing shoe passing on the outside of the perforated liner as it is removed; collecting methane gas from the perforated liner, the methane gas entering the perforated liner through the perforations therein; thereafter pumping grout down the center of the perforated liner to the end of the degas hole; filling the end of the degas hole with grout until the end of the liner is filled with grout; increasing the pressure of the grout within the liner to force grout through the perforations in the liner to fill the degas hole along the length thereof; continuing to pump grout down the center of the perforated liner until the entire degas hole is filled with grout; and allowing the grout to set, thereby sealing the degas hole.

  7. Proposed ATLAS liner design fabricated for hydrodynamics experiments on Shiva Star

    SciTech Connect

    Anderson, W. E.; Adams, C. D.; Armijo, E. V.; Bartos, J. J.; Cameron, B. J.; Garcia, F.; Henneke, B.; Randolph, B.; Salazar, M. A.; Steckle, W. P. , Jr.; Turchi, Peter J.; Gale, D.

    2001-01-01

    An entirely new cylindrical liner system has been designed and fabricated for use on the Shiva Star capacitor bank. The design incorporates features expected to be applicable to a future power flow channel of the Atlas capacitor bank with the intention of keeping any required liner design modifications to a minimum when the power flow channel at Atlas is available. Four shots were successfully conducted at Shiva Star that continued a series of hydrodynamics physics experiments started on the Los Alamos Pegasus capacitor bank. Departures from the diagnostic suite that had previously been used at Pegasus required new techniques in the fabrication of the experiment insert package. We describe new fabrication procedures that were developed by the Polymers and Coatings Group (MST-7) of the Los Alamos Materials Science Division to fabricate the Shiva Star experiment loads. Continuing MST-7 development of interference fit processes for liner experiment applications, current joints at the glide planes were assembled by thermal shrink fit using liquid nitrogen as a coolant. The liner material was low strength, high conductance 1100 series aluminum. The liner glide plane electrodes were machined from full hard copper rod with a 10 ramp to maintain liner to glide plane contact as the liner was imploded. The parts were fabricated with 0.015 mm radial interference fit between the liner inside diameter (ID) and the glide plane outside diameter (OD). to form the static liner current joints. The liner was assembled with some axial clearance at each end to allow slippage if any axial force was generated as the liner assembly cassette was bolted into Shiva Star, a precaution to guard against buckling the liner during installation of the load cassette. Other unique or unusual processes were developed and are described. Minor adaptations of the liner design are now being fabricated for first Atlas experiments.

  8. Attenuation of landfill leachate by clay liner materials in laboratory columns: 2. Behaviour of inorganic contaminants.

    PubMed

    Thornton, S F; Lerner, D N; Tellam, J H

    2001-02-01

    The chemical attenuation of inorganic contaminants in methanogenic landfill leachate, spiked with heavy metals (Cd, Cd, Ni and Zn), by two UK clay liner materials was compared in laboratory columns over 15 months. Ammonium was attenuated by ion-exchange but this attenuation was finite and when exhausted, NH4 passed through the liners at concentrations found in the leachate. The breakthrough behaviour of NH4 could be described by a simple distribution coefficient. Heavy metals were attenuated by sorption and precipitation of metal sulphide and carbonate compounds near the top of the liner. Adequate SO4 and CaCO3 in the liner is necessary to ensure the long term retention of heavy metals, and pH buffering agents added to stabilise reactive metal fractions should be admixed with the liner. Some metals may not be chemically attenuated by clay liners due to the formation of stable complexes with organic and/or colloidal fractions in leachate. Flushing of the liners with oxygenated water after leachate caused mobilisation of attenuated contaminants. Sorbed NH4 was released by the liners but groundwater loadings were manageable. Re-oxidation of metal sulphides under these conditions resulted in the release of heavy metals from the liners when the pH buffering capacity was poor. Contaminant attenuation by the clay liners was similar and the attenuation of NH4 and heavy metals could be predicted from the geochemical properties of the liner using simple tests. A conceptual model of clay liner performance is presented. Chemical attenuation of inorganic pollutants can be included in containment liner design to produce a dual reactive-passive barrier for landfills.

  9. Innovative Liner Concepts: Experiments and Impedance Modeling of Liners Including the Effect of Bias Flow

    NASA Technical Reports Server (NTRS)

    Kelly, Jeff; Betts, Juan Fernando; Fuller, Chris

    2000-01-01

    The study of normal impedance of perforated plate acoustic liners including the effect of bias flow was studied. Two impedance models were developed by modeling the internal flows of perforate orifices as infinite tubes with the inclusion of end corrections to handle finite length effects. These models assumed incompressible and compressible flows, respectively, between the far field and the perforate orifice. The incompressible model was used to predict impedance results for perforated plates with percent open areas ranging from 5% to 15%. The predicted resistance results showed better agreement with experiments for the higher percent open area samples. The agreement also tended to deteriorate as bias flow was increased. For perforated plates with percent open areas ranging from 1% to 5%, the compressible model was used to predict impedance results. The model predictions were closer to the experimental resistance results for the 2% to 3% open area samples. The predictions tended to deteriorate as bias flow was increased. The reactance results were well predicted by the models for the higher percent open area, but deteriorated as the percent open area was lowered (5%) and bias flow was increased. A fit was done on the incompressible model to the experimental database. The fit was performed using an optimization routine that found the optimal set of multiplication coefficients to the non-dimensional groups that minimized the least squares slope error between predictions and experiments. The result of the fit indicated that terms not associated with bias flow required a greater degree of correction than the terms associated with the bias flow. This model improved agreement with experiments by nearly 15% for the low percent open area (5%) samples when compared to the unfitted model. The fitted model and the unfitted model performed equally well for the higher percent open area (10% and 15%).

  10. Active Control of Liner Impedance by Varying Perforate Orifice Geometry

    NASA Technical Reports Server (NTRS)

    Ahuji, K. K.; Gaeta, R. J., Jr.

    2000-01-01

    The present work explored the feasibility of controlling the acoustic impedance of a resonant type acoustic liner. This was accomplished by translating one perforate over another of the same porosity creating a totally new perforate that had an intermediate porosity. This type of adjustable perforate created a variable orifice perforate whose orifices were non-circular. The key objective of the present study was to quantify, the degree of attenuation control that can be achieved by applying such a concept to the buried septum in a two-degree-of-freedom (2DOF) acoustic liner. An additional objective was to examine the adequacy of the existing impedance models to explain the behavior of the unique orifice shapes that result from the proposed silding perforate concept. Different orifice shapes with equivalent area were also examined to determine if highly non-circular orifices had a significant impact on the impedance.

  11. Precision high energy liner implosion experiments PHELIX [1

    SciTech Connect

    Reass, William A; Baca, David M; Griego, Jeffrey R; Reinovsky, Robert E; Rousculp, Christopher L; Turchi, Peter J

    2009-01-01

    This paper describes the hardware design of a small megajoule sized transformer coupled pulse power system utilized to drive hydrodynamic liner experiments with a nominal current capability of 10 megAmperes. The resulting liner velocities and characteristics provide properties of physics interest. The capacitor banks utilize the ''Atlas'' plastic cased 60 kV, 60 kJ capacitors [2] and railgaps [3]. The air insulated marx'S are configured to dive a multi-filar toroidal transformer. The 4:1 multi-filar toroidal transformer is mechanically part of a circular disc line and this feature results in an attractive inductance budget. Because of the compact size, re-usable transformer, and resulting low maintenance cost, shot rates can be high compared to other ''large'' machines or explosively driven hydrodynamic methods. The PHELIX modeling, construction status, and test results will also be provided.

  12. Micro-beam friction liner and method of transferring energy

    DOEpatents

    Mentesana, Charles

    2007-07-17

    A micro-beam friction liner adapted to increase performance and efficiency and reduce wear in a piezoelectric motor or actuator or other device using a traveling or standing wave to transfer energy in the form of torque and momentum. The micro-beam friction liner comprises a dense array of micro-beam projections having first ends fixed relative to a rotor and second ends projecting substantially toward a plurality of teeth of a stator, wherein the micro-beam projections are compressed and bent during piezoelectric movement of the stator teeth, thereby storing the energy, and then react against the stator teeth to convert the stored energy stored to rotational energy in the rotor.

  13. Composite-Material Tanks with Chemically Resistant Liners

    NASA Technical Reports Server (NTRS)

    DeLay, Thomas K.

    2004-01-01

    Lightweight composite-material tanks with chemically resistant liners have been developed for storage of chemically reactive and/or unstable fluids . especially hydrogen peroxide. These tanks are similar, in some respects, to the ones described in gLightweight Composite-Material Tanks for Cryogenic Liquids h (MFS-31379), NASA Tech Briefs, Vol. 25, No. 1 (January, 2001), page 58; however, the present tanks are fabricated by a different procedure and they do not incorporate insulation that would be needed to prevent boil-off of cryogenic fluids. The manufacture of a tank of this type begins with the fabrication of a reusable multisegmented aluminum mandrel in the shape and size of the desired interior volume. One or more segments of the mandrel can be aluminum bosses that will be incorporated into the tank as end fittings. The mandrel is coated with a mold-release material. The mandrel is then heated to a temperature of about 400 F (approximately equal to 200 C) and coated with a thermoplastic liner material to the desired thickness [typically approxiamtely equal to 15 mils (approximately equal to 0.38 mm)] by thermal spraying. In the thermal-spraying process, the liner material in powder form is sprayed and heated to the melting temperature by a propane torch and the molten particles land on the mandrel. The sprayed liner and mandrel are allowed to cool, then the outer surface of the liner is chemically and/or mechanically etched to enhance bonding of a composite overwrap. The etched liner is wrapped with multiple layers of an epoxy resin reinforced with graphite fibers; the wrapping can be done either by manual application of epoxy-impregnated graphite cloth or by winding of epoxy-impregnated filaments. The entire assembly is heated in an autoclave to cure the epoxy. After the curing process, the multisegmented mandrel is disassembled and removed from inside, leaving the finished tank. If the tank is to be used for storing hydrogen peroxide, then the liner material

  14. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  15. Demonstration of laser speckle system on burner liner cyclic rig

    NASA Technical Reports Server (NTRS)

    Stetson, K. A.

    1986-01-01

    A demonstration test was conducted to apply speckle photogrammetry to the measurement of strains on a sample of combustor liner material in a cyclic fatigue rig. A system for recording specklegrams was assembled and shipped to the NASA Lewis Research Center, where it was set up and operated during rig tests. Data in the form of recorded specklegrams were sent back to United Technologies Research Center for processing to extract strains. Difficulties were found in the form of warping and bowing of the sample during the tests which degraded the data. Steps were taken by NASA personnel to correct this problem and further tests were run. Final data processing indicated erratic patterns of strain on the burner liner sample.

  16. Sound attenuation by liners in a blown flap environment

    NASA Technical Reports Server (NTRS)

    Parthasarathy, S. P.; Vijayaraghavan, A.

    1980-01-01

    Sound propagation through a hot wall-jet flow over an absorbing wall is studied. The radiated sound field subject to the influence of flow convection and refraction is evaluated, and the nature of acoustic attenuation attributable to a sound absorbing liner is determined. Using a two-dimensional model, the noise field under the aircraft is also determined, and a slug-flow model is used to describe the influence of flow, density, and temperature on acoustic sources in jets. Results show significant changes in the radiated source due to the interference phenomenon, and a good absorber has the potential of changing the sound pressure range of variation to unity. A liner is also found to increase or decrease sound pressure, depending on the frequency.

  17. Skin friction on a flat perforated acoustic liner

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Brinich, P. F.

    1976-01-01

    The report concerns the measurement of friction coefficients of a typical perforated acoustic liner installed in the side of a wind tunnel. The results are compared with measured friction coefficients of a smooth hard wall for the same mean flow velocities in a wind tunnel. At a velocity of 61 m/sec, an increase in the local skin coefficient of only a few percent was observed, but at the highest velocity of 213 m/sec an increase of about 20% was obtained. This velocity is a realistic velocity for turbo-machinery components utilizing such liners, so a loss in performance is to be expected. Some tests were also performed to see if changes in the mean boundary layer induced by imposed noise would result in friction increase, but only at low velocity levels was such an increase in friction noted.

  18. FRACTURE PROPAGATION PROPENSITY OF CERAMIC LINERS DURING IMPINGEMENT-SUBLUXATION

    PubMed Central

    Elkins, Jacob M.; Pedersen, Douglas R.; Callaghan, John J.; Brown, Thomas D.

    2011-01-01

    Although improvements in materials engineering have greatly reduced fracture rates in ceramic femoral heads, concerns still exist for liners. Ceramics are vulnerable fracture due to impact, and from stress concentrations (point and line loading) such as those associated with impingement-subluxation. Thus, ceramic cup fracture propensity is presumably very sensitive to surgical cup positioning. A novel fracture mechanics finite element formulation was developed to identify cup orientations most susceptible to liner fracture propagation, for several impingement-prone patient maneuvers. Other factors being equal, increased cup inclination and increased anteversion were found to elevate fracture risk. Squatting, stooping and leaning shoe-tie maneuvers were associated with highest fracture risk. These results suggest that fracture risk can be reduced by surgeons’ decreasing cup abduction and by patients’ avoiding of specific activities. PMID:21855277

  19. Zonal isolation and evaluation for cemented horizontal liners

    SciTech Connect

    Gai, H; Summers, T.D.; Cocking, D.A.; Greaves, C.

    1996-12-01

    This paper discusses the novel application of technology in the cementing and bond evaluation from the world-record breaking extended-reach drilling (ERD) wells in Wytch Farm, where horizontal liners of the order of 800 to 1,300 m at TVD of approximately 1,600 m have been successfully cemented and perforated. Detailed analysis of the conditions by a multidisciplinary team provided some practical procedures that enabled the authors to achieve their objectives of zonal isolation and cement bond evaluation successfully. Important aspects of zonal isolation, such as the use of spiral-blade centralizers, rotating the liner, and trials of the external casing packer (ECP), are discussed in detail. Cement bond evaluation is also detailed, involving coiled tubing (CT) deployment and various bond-logging tools, including ultrasonic tools. The cement bond log (CBL) was found to be surprisingly reliable if used correctly.

  20. New Powder Technologies for Molybdenum Alloy Gun Barrel Liners

    DTIC Science & Technology

    1985-06-01

    bored from swaged rods (refs 1,2). Such liners failed after only a few rounds; transverse and longitudinal cracks were observed. A helical twisted 0.50...used by Nuclear Metals, Inc., Concord, MA (refs 7,8). For the REP, a water-cooled tungsten -tipped cathode is used to strike an electric arc to the... tungsten -tipped cathode, which has been found to introduce tungsten contamination. Both versions of the process have essentially the same constraint on

  1. NEW APPROACHES: A hot air balloon from dustbin liners

    NASA Astrophysics Data System (ADS)

    Weaver, Nicholas

    1998-07-01

    This article describes how a simple hot air balloon, inflated by a hair dryer, can be made out of household bin liners and Sellotape. It can be used at sixth-form level as an application of the ideal gas equation, = constant, and is rather more exciting than heated pistons. It gives a taste of a simple engineering design process, although the students do have to be reasonably adept at geometry and algebra.

  2. Reliability-based condition assessment of steel containment and liners

    SciTech Connect

    Ellingwood, B.; Bhattacharya, B.; Zheng, R.

    1996-11-01

    Steel containments and liners in nuclear power plants may be exposed to aggressive environments that may cause their strength and stiffness to decrease during the plant service life. Among the factors recognized as having the potential to cause structural deterioration are uniform, pitting or crevice corrosion; fatigue, including crack initiation and propagation to fracture; elevated temperature; and irradiation. The evaluation of steel containments and liners for continued service must provide assurance that they are able to withstand future extreme loads during the service period with a level of reliability that is sufficient for public safety. Rational methodologies to provide such assurances can be developed using modern structural reliability analysis principles that take uncertainties in loading, strength, and degradation resulting from environmental factors into account. The research described in this report is in support of the Steel Containments and Liners Program being conducted for the US Nuclear Regulatory Commission by the Oak Ridge National Laboratory. The research demonstrates the feasibility of using reliability analysis as a tool for performing condition assessments and service life predictions of steel containments and liners. Mathematical models that describe time-dependent changes in steel due to aggressive environmental factors are identified, and statistical data supporting the use of these models in time-dependent reliability analysis are summarized. The analysis of steel containment fragility is described, and simple illustrations of the impact on reliability of structural degradation are provided. The role of nondestructive evaluation in time-dependent reliability analysis, both in terms of defect detection and sizing, is examined. A Markov model provides a tool for accounting for time-dependent changes in damage condition of a structural component or system. 151 refs.

  3. Friction and wear behaviour of self lubricating bearing liners

    NASA Astrophysics Data System (ADS)

    Gay, Russell

    The thesis describes a numerical model for evaluating the variation of friction and wear of a self lubricating bearing liner over its useful wear life. Self-lubricating bearings have been in widespread use since the mid-1950s, particularly in the aerospace industry where they have the advantage of being low maintenance components. They are commonly used in relatively low speed, reciprocating applications such as control surface actuators, and usually consist of a spherical bearing with the inner and outer elements separated by a composite textile resin-bonded liner. A finite element model has been developed to predict the local stiffness of a particular liner at different states of wear. Results obtained using the model were used to predict the overall friction coefficient as it evolves due to wear, which is a novel approach. Experimental testing was performed on a bespoke flat-on-flat wear test rig with a reciprocating motion to validate the results of the friction model.. These tests were carried out on a commercially-available bearing liner, predominantly at a high contact pressure and an average sliding speed of 0.2 ms-1. Good agreement between predicted and experimentally measured wear was obtained when appropriate coefficients of friction were used in the friction model, and when the reciprocating sliding distance was above a critical value. A numerical wear model was also developed to predict the trend of backlash development in real bearing geometries using a novel approach. Results from the wear model were validated against full-scale bearing tests carried out elsewhere by the sponsoring company. Good agreement was obtained between the model predictions and the experimental results for the first 80% of the bearing wear life, and explanations for the discrepancy during the last 20% of the wear life have been proposed..

  4. THE COMPATIBILITY OF DENTURE CLEANSERS AND RESILIENT LINERS

    PubMed Central

    Oliveira, Luciana Valadares; Mesquita, Marcelo Ferraz; Henriques, Guilherme Elias Pessanha; Consani, Rafael Leonardo Xediek; Fragoso, Wagner Sotero

    2006-01-01

    Purpose: Difficulty in cleaning resilient denture liners remains a material disadvantage. The purpose of the present study was to evaluate the effect of denture cleansers on hardness of resilient liner materials. Materials and Methods: Three resilient liners, Luci Sof® (Dentsply), Molloplast-B® (Dentax), and Sofreliner® (Tokuyama), and two denture cleansers, Efferdent® (Warner-Lamber), and 0.5% alkaline hypochlorite preparation were used. Twenty specimens of each material were prepared, measuring 25X15X3mm. Two denture cleansing approaches were used: 1) alkaline hypochlorite, for 20 minutes; 2) alkaline peroxide, for 30 minutes. This procedure was repeated 8 times a day, during 90 days. The specimens were evaluated before and after 360 and 720 cycles, to simulate 1 and 2 years of clinical cleaning procedures, respectively. The Shore A hardness was evaluated in a durometer (Teclock GS-709A), with a penetrating load of 10N for 1 second. Any macroscopic changes, such as loss of color or alteration in surface texture were recorded by one observer. All numeric data were subject to ANOVA with repeated measures followed by Tukey's test (α= 0.05). Results: All materials were significantly different, independently to time and treatment. Initially, Luci Sof® and Sofreliner® immersed in either hypochlorite or peroxide increased the hardness mean values significantly. These hardness mean values decreased significantly after 720 cycles. Molloplast-B® showed no significant difference after the treatments, in any time. Conclusions: Denture cleansers had no effect on hardness of the resilient denture liners evaluated after 2 years of in vivo simulated conditions of hygiene. Sofreliner® was the smoothest material before and after all treatments. PMID:19089278

  5. Liner Compression of a MAGO / Inverse-Pinch Configuration

    SciTech Connect

    Siemon, R E; Atchison, W L; Awe, T; Bauer, B S; Buyko, A M; Chernyshev, V K; Cowan, T E; Degnan, J H; Faehl, R J; Fuelling, S; Garanin, S F; Goodrich, T; Ivanovsky, A V; Lindemuth, I R; Makhin, V; Mokhov, V N; Reinovsky, R E; Ryutov, D D; Scudder, D W; Taylor, T; Yakubov, V B

    2005-05-18

    In the ''metal liner'' approach to Magnetized Target Fusion (MTF), a preheated magnetized plasma target is compressed to thermonuclear temperature and high density by externally driving the implosion of a flux conserving metal enclosure, or liner, which contains the plasma target. As in inertial confinement fusion, the principle fusion fuel heating mechanism is pdV work by the imploding enclosure, called a pusher in ICF. One possible MTF target, the hard-core diffuse z pinch, has been studied in MAGO experiments at VNIIEF, and is one possible target being considered for experiments on the Atlas pulsed power facility. Numerical MHD simulations show two intriguing and helpful features of the diffuse z pinch with respect to compressional heating. First, in two-dimensional simulations the m=0 interchange modes, arising from an unstable pressure profile, result in turbulent motions and self-organization into a stable pressure profile. The turbulence also gives rise to convective thermal transport, but the level of turbulence saturates at a finite level, and simulations show substantial heating during liner compression despite the turbulence. The second helpful feature is that pressure profile evolution during compression tends towards improved stability rather than instability when analyzed according to the Kadomtsev criteria. A liner experiment is planned for Atlas to study compression of magnetic flux without plasma as a first step. The Atlas geometry is compatible with a diffuse z pinch, and simulations of possible future experiments show that keV temperatures and useful neutron production for diagnostic purposes should be possible if a suitable plasma injector is added to the Atlas facility.

  6. Explosive Magnetic Liner Devices to Produce Shock Pressures Up to 3 Tpa

    DTIC Science & Technology

    2009-06-01

    using VNIIEF DEMGs”, Modification 6 (2009). Abstract The paper discusses devices with a Disk Explosive Magnetic flux compression Generator (DEMG...Hugoniots of materials at such pressures, see e.g. [1-7]. Pulsed power systems based on Disc Explosive Magnetic flux compression Generators (DEMG...June 2013. 14. ABSTRACT The paper discusses devices with a Disk Explosive Magnetic flux compression Generator (DEMG), which are similar to the ALT-1,2

  7. A Computational Study of the Flow Physics of Acoustic Liners

    NASA Technical Reports Server (NTRS)

    Tam, Christopher

    2006-01-01

    The present investigation is a continuation of a previous joint project between the Florida State University and the NASA Langley Research Center Liner Physics Team. In the previous project, a study of acoustic liners, in two dimensions, inside a normal incidence impedance tube was carried out. The study consisted of two parts. The NASA team was responsible for the experimental part of the project. This involved performing measurements in an impedance tube with a large aspect ratio slit resonator. The FSU team was responsible for the computation part of the project. This involved performing direct numerical simulation (DNS) of the NASA experiment in two dimensions using CAA methodology. It was agreed that upon completion of numerical simulation, the computed values of the liner impedance were to be sent to NASA for validation with experimental results. On following this procedure good agreements were found between numerical results and experimental measurements over a wide range of frequencies and sound-pressure-level. Broadband incident sound waves were also simulated numerically and measured experimentally. Overall, good agreements were also found.

  8. A Physics Exploratory Experiment on Plasma Liner Formation

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Knapp, Charles E.; Kirkpatrick, Ronald C.; Siemon, Richard E.; Turchi, Peter

    2002-01-01

    Momentum flux for imploding a target plasma in magnetized target fusion (MTF) may be delivered by an array of plasma guns launching plasma jets that would merge to form an imploding plasma shell (liner). In this paper, we examine what would be a worthwhile experiment to do in order to explore the dynamics of merging plasma jets to form a plasma liner as a first step in establishing an experimental database for plasma-jets driven magnetized target fusion (PJETS-MTF). Using past experience in fusion energy research as a model, we envisage a four-phase program to advance the art of PJETS-MTF to fusion breakeven Q is approximately 1). The experiment (PLX (Plasma Liner Physics Exploratory Experiment)) described in this paper serves as Phase I of this four-phase program. The logic underlying the selection of the experimental parameters is presented. The experiment consists of using twelve plasma guns arranged in a circle, launching plasma jets towards the center of a vacuum chamber. The velocity of the plasma jets chosen is 200 km/s, and each jet is to carry a mass of 0.2 mg - 0.4 mg. A candidate plasma accelerator for launching these jets consists of a coaxial plasma gun of the Marshall type.

  9. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    NASA Technical Reports Server (NTRS)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  10. A semi-analytic model of magnetized liner inertial fusion

    SciTech Connect

    McBride, Ryan D.; Slutz, Stephen A.

    2015-05-15

    Presented is a semi-analytic model of magnetized liner inertial fusion (MagLIF). This model accounts for several key aspects of MagLIF, including: (1) preheat of the fuel (optionally via laser absorption); (2) pulsed-power-driven liner implosion; (3) liner compressibility with an analytic equation of state, artificial viscosity, internal magnetic pressure, and ohmic heating; (4) adiabatic compression and heating of the fuel; (5) radiative losses and fuel opacity; (6) magnetic flux compression with Nernst thermoelectric losses; (7) magnetized electron and ion thermal conduction losses; (8) end losses; (9) enhanced losses due to prescribed dopant concentrations and contaminant mix; (10) deuterium-deuterium and deuterium-tritium primary fusion reactions for arbitrary deuterium to tritium fuel ratios; and (11) magnetized α-particle fuel heating. We show that this simplified model, with its transparent and accessible physics, can be used to reproduce the general 1D behavior presented throughout the original MagLIF paper [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)]. We also discuss some important physics insights gained as a result of developing this model, such as the dependence of radiative loss rates on the radial fraction of the fuel that is preheated.

  11. Ceramic composite liner material for gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Ercegovic, D. B.; Walker, C. L.; Norgren, C. T.

    1984-01-01

    Advanced commercial and military gas turbine engines may operate at combustor outlet temperatures in excess of 1920 K (3000 F). At these temperatures combustors liners experience extreme convective and radiative heat fluxes. The ability of a plasma sprayed ceramic coating to reduce liner metal temperature has been recognized. However, the brittleness of the ceramic layer and the difference in thermal expansion with the metal substrate has caused cracking, spalling and some separation of the ceramic coating. Research directed at turbine tip seals (or shrouds) has shown the advantage of applying the ceramic to a compliant metal pad. This paper discusses recent studies of applying ceramics to combustor liners in which yttria stabilized zirconia plasma sprayed on compliant metal substrates which were exposed to near stoichiometric combustion, presents performance and durability results, and describes a conceptual design for an advanced, small gas turbine combustor. Test specimens were convectively cooled or convective-transpiration cooled and were evaluated in a 10 cm square flame tube combustor at inlet air temperatures of 533 K (500 F) and at a pressure of 0.5 MPa (75 psia). The ceramics were exposed to flame temperatures in excess of 2000 K (3320 F). Results appear very promising with all 30 specimens surviving a screening test and one of two specimens surviving a cyclic durability test.

  12. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    SciTech Connect

    Rousculp, Christopher L.; Oro, David Michael; Griego, Jeffrey Randall; Turchi, Peter John; Reinovsky, Robert Emil; Bradley, Joseph Thomas; Cheng, Baolian; Freeman, Matthew Stouten; Patten, Austin Randall

    2016-03-21

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer- Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release. A conceptual cylindrical liner and target is shown in Figure 1.

  13. Multiple shocks

    NASA Astrophysics Data System (ADS)

    Shenker, Stephen H.; Stanford, Douglas

    2014-12-01

    Using gauge/gravity duality, we explore a class of states of two CFTs with a large degree of entanglement, but with very weak local two-sided correlation. These states are constructed by perturbing the thermofield double state with thermal-scale operators that are local at different times. Acting on the dual black hole geometry, these perturbations create an intersecting network of shock waves, supporting a very long wormhole. Chaotic CFT dynamics and the associated fast scrambling time play an essential role in determining the qualitative features of the resulting geometries.

  14. Comparison of Calculated and Experimental Total-Pressure Loss and Airflow Distribution in Tubular Turbojet Combustors with Tapered Liners

    NASA Technical Reports Server (NTRS)

    Grobman, Jack S.

    1959-01-01

    Incompressible-flow calculations were performed to determine the effects of combustor geometric and operating variables on pressure loss and airflow distribution in a tubular combustor with a tapered liner. The calculations include the effects of momentum transfer between annulus and liner gas streams, annulus wall friction, heat release, and discharge coefficients of liner air-entry holes. Generalized curves are presented which show the effects of liner-wall inclination, liner open hole area, and temperature rise across the combustor on pressure loss and airflow distribution for a representative parabolic liner hole distribution. A comparison of the experimental data from 12 tapered liners with the theoretical calculations indicates that reasonable design estimates can be made from the generalized curves. The calculated pressure losses of the tapered liners are compared with those previously reported for tubular liners.

  15. Energy efficient engine pin fin and ceramic composite segmented liner combustor sector rig test report

    NASA Technical Reports Server (NTRS)

    Dubiel, D. J.; Lohmann, R. P.; Tanrikut, S.; Morris, P. M.

    1986-01-01

    Under the NASA-sponsored Energy Efficient Engine program, Pratt and Whitney has successfully completed a comprehensive test program using a 90-degree sector combustor rig that featured an advanced two-stage combustor with a succession of advanced segmented liners. Building on the successful characteristics of the first generation counter-parallel Finwall cooled segmented liner, design features of an improved performance metallic segmented liner were substantiated through representative high pressure and temperature testing in a combustor atmosphere. This second generation liner was substantially lighter and lower in cost than the predecessor configuration. The final test in this series provided an evaluation of ceramic composite liner segments in a representative combustor environment. It was demonstrated that the unique properties of ceramic composites, low density, high fracture toughness, and thermal fatigue resistance can be advantageously exploited in high temperature components. Overall, this Combustor Section Rig Test program has provided a firm basis for the design of advanced combustor liners.

  16. Foam-Metal Liner Attenuation of Low-Speed Fan Noise

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Jones, Michael G.

    2008-01-01

    A foam-metal liner for attenuation of fan noise was developed for and tested on a low speed fan. This type of liner represents a significant advance over traditional liners due to the possibility for placement in close proximity to the rotor. An advantage of placing treatment in this region is the modification of the acoustic near field, thereby inhibiting noise generation mechanisms. This can result in higher attenuation levels than can be achieved by liners located in the nacelle inlet. In addition, foam-metal liners could potentially replace the fan rub-strip and containment components, ultimately reducing engine components and thus weight, which can result in a systematic increase in noise reduction and engine performance. Foam-metal liners have the potential to reduce fan noise by 4 dB based on this study.

  17. Fusion Reactor and Break-Even Experiment Based on Stabilized Liner Compression of Plasma

    NASA Astrophysics Data System (ADS)

    Turchi, Peter; Frese, Sherry; Frese, Michael

    2016-10-01

    An optimum regime, known as magnetized-target or magneto-inertial fusion (MTF/MIF), requires magnetic fields at megagauss levels, which are attainable by use of dynamic conductors called liners. The stabilized liner compressor (SLC) provides the basis for controlled implosion and re-capture of the liner for reversible energy exchange between liner kinetic energy and the internal energy of a magnetized-plasma target. This exchange requires rotational stabilization of Rayleigh-Taylor modes on the inner surface of the liner and pneumatically driven free-pistons that eliminate such modes at the outer surface. We discuss the implications of the SLC approach for the power reactor, a breakeven experiment, and intermediate experiments to develop the plasma target. Features include the importance of pneumatic drive and the liner-blanket for economic feasibility of MTF/MIF. Supported by ARPA-E ALPHA Program.

  18. Low-Speed Fan Noise Attenuation from a Foam-Metal Liner

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Jones, Michael G.

    2011-01-01

    A foam-metal liner for attenuation of fan noise was developed for and tested on a low-speed fan. This type of liner represents a significant advance over traditional liners, due to the possibility of placement in close proximity to the rotor. An advantage of placing treatment in this region is that the acoustic near field is modified, thereby inhibiting the noise-generation mechanism. This can result in higher attenuation levels than could be achieved by liners located in the nacelle inlet. In addition, foam-metal liners could potentially replace the fan rub strip and containment components, ultimately reducing engine components and thus weight, which can result in a systematic increase in noise reduction and engine performance. Foam-metal liners have the potential to reduce fan noise by 4 dB based on this study.

  19. Comparative Study between Dermo, Pelite, and Seal-In X5 Liners: Effect on Patient's Satisfaction and Perceived Problems

    PubMed Central

    Ali, Sadeeq; Abu Osman, Noor Azuan; Arifin, Nooranida; Gholizadeh, Hossein; Abd Razak, Nasrul Anwar; Wan Abas, Wan Abu Bakar

    2014-01-01

    Purpose. This study aimed to compare the effect of satisfaction and perceived problems between Pelite, Dermo with shuttle lock, and Seal-In X5 liners on the transtibial amputees. Material and Methods. A total of thirty transtibial amputees (17 male, 13 female) volunteered to take part in this research. Two prostheses were fabricated for each participant. Prosthetic Evaluation Questionnaire (PEQ) was filled in by the participants with the three liners. Results. The statistics highlight that Dermo liner showed significantly higher score (P = 0.05) in walking, walking on uneven surfaces, stairs walking, fitting, donning/doffing, sitting, suspension, and overall satisfaction with Dermo liner compared with Seal-In X5 and Pelite liners. Overall satisfaction was 34% higher with Dermo liner than Seal-In X5 liner and 28% higher than Pelite liner. Participants reported less problems with Dermo liner and significant differences (P < 0.05) were recorded between the three liners in sweating, skin irritation, frustration, and pain compared with Seal-In X5 and Pelite liners. Conclusion. Participants experienced high level of satisfaction and practiced fewer problems with Dermo liner. These results showed that there is good indication to believe that Dermo liner might be a good choice for transtibial users and might help the clinicians and prosthetic practitioners in selection criteria of prosthetic liners. PMID:25184154

  20. Effects of tacky mat contamination on bond degradation for Chemlok/liner and NBR/liner bonds

    NASA Technical Reports Server (NTRS)

    Padilla, A. M.

    1989-01-01

    Tacky mats are placed by the rubber lay-up areas for the solid rocket motor segments. These mats dust off the shoes prior to entering the platform where the lay-up work is performed. The possibility exists that a tacky mat could be touched with gloved hands prior to handling the uncured nitride butadiene rubber (NBR). Tests were run to determine if NBR were accidentally touched would there be any degradation of the liner/NBR bond. The tacky mats were judged solely on the basis of bond degradation caused by either direct or indirect contamination. Test results all indicate that there was no notable NBR/Chemlok or liner/NBR bond degradation on samples that came into contact with the tacky mat material. Testing procedures are described. The tacky mat adhesive composition does not contain fluorocarbons or release agents that would affect bonding.

  1. Shock Prevention

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  2. Liner surface improvements for low friction piston ring packs

    NASA Astrophysics Data System (ADS)

    Anderberg, C.; Dimkovski, Z.; Rosén, B.-G.

    2014-01-01

    The development of engine components in the automotive industry is governed by several constraints such as environmental legislation and customer expectations. About a half of the frictional losses in an internal combustion engine come from the interactions between the piston assembly and cylinder liner surface. The tribological considerations in the contact between the piston ring and cylinder liner have attracted much attention over the past few decades. Many non-conventional cylinder liner finishes have been, and are being, developed with the aim to reduce friction losses and oil consumption, but the effects of the surface finish on piston ring pack performance is not well understood. One way of reducing friction in the cylinder system is to reduce the tangential load from the piston ring pack, focusing on the oil control ring. However, the side-effect of this is a disappointingly increased oil consumption. In this study a number of different cylinder liner surface specifications were developed and implemented in test engines with the aim of maintaining the level for oil consumption when decreasing the tangential load for the piston ring pack. To improve our understanding of the result, the same surfaces were evaluated in elastic and elasto-plastic rough contact and hydrodynamic flow simulation models. It is shown that oil consumption is strongly related to surface texture on the cylinder liners and at lower speeds (900-1200 rpm), a ‘rougher surface’ with a high core (e.g. Sk) and valley roughness (e.g. Svk) results in higher oil consumption. At the medium speed range (1200-3600 rpm), oil consumption continues to dominate for the ‘rough’ surfaces but with a visible influence of a lower oil consumption for a decreased roughness within the ‘rough’ surface group. ‘Smooth’ surfaces with a ‘smooth’ core (Sk), irrespective of the valley component (Svk), show similar oil consumption. For engine speeds above 3600 rpms, an increase in plateau

  3. Effect of liner and porcelain application on zirconia surface structure and composition

    PubMed Central

    Alghazzawi, Tariq F; Janowski, Gregg M

    2016-01-01

    The purpose of this study was to determine if there is an effect of liner and porcelain application (layering and pressing techniques) on the surface of yttria-stabilized tetragonal zirconia polycrystals (Y-TZP), which were exposed to permutations of liner, layered porcelain, and pressed porcelain. Scanning electron microscope (SEM)/energy dispersive spectroscope (EDS) was used to identify changes in composition and microstructure after removing liner and porcelain with hydrofluoric acid. Simulated aging was also conducted to determine the effect of liner and porcelain on low-temperature degradation. The control group had a typical equiaxed grain structure, referred to as unaffected. When covered with liner or porcelain, some areas changed in structure and composition and were termed affected. The frequency of affected structure decreased when liner was covered with either layered porcelain or pressed porcelain. There were statistical differences (P<0.05) in the composition between affected and unaffected for zirconium (layered porcelain with liner: affected=60% (0.8%) (m/m), unaffected=69% (4%), layered porcelain without liner: affected=59% (3%), unaffected=65% (3%)) and oxygen (layered porcelain with liner: affected=35% (2%), unaffected=26% (4%), layered porcelain without liner: affected=35% (3%), unaffected=30% (2%)). However, there were statistical differences (P<0.05) in the composition for zirconium and oxygen of the aged layered porcelain without liner only. The liner should not be used before porcelain application, especially when using the layering technique for zirconia restorations. Furthermore, pressing should be considered the technique of choice over layering. PMID:27445089

  4. Study of Liner Collapse, Jet Formation and Characteristics from Implosive Shaped Charge Systems

    DTIC Science & Technology

    1977-11-01

    later. Figure 14 shows a plot of the velocity versus time for ten different tracer particles placed on the inside surface of the hemispherical liner...while figures 15 through 17 show plots of velocities versus time of four particles placed across the liner thickness at three different locations, one on...experimental data. Figure 18 shows a plot of the average velocity components of the metallic liner as a function of time, while Figure 19 shows the different

  5. Investigation of Liner Characteristics in the NASA Langley Curved Duct Test Rig

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Brown, Martha C.; Watson, Willie R.; Jones, Michael G.

    2007-01-01

    The Curved Duct Test Rig (CDTR), which is designed to investigate propagation of sound in a duct with flow, has been developed at NASA Langley Research Center. The duct incorporates an adaptive control system to generate a tone in the duct at a specific frequency with a target Sound Pressure Level and a target mode shape. The size of the duct, the ability to isolate higher order modes, and the ability to modify the duct configuration make this rig unique among experimental duct acoustics facilities. An experiment is described in which the facility performance is evaluated by measuring the sound attenuation by a sample duct liner. The liner sample comprises one wall of the liner test section. Sound in tones from 500 to 2400 Hz, with modes that are parallel to the liner surface of order 0 to 5, and that are normal to the liner surface of order 0 to 2, can be generated incident on the liner test section. Tests are performed in which sound is generated without axial flow in the duct and with flow at a Mach number of 0.275. The attenuation of the liner is determined by comparing the sound power in a hard wall section downstream of the liner test section to the sound power in a hard wall section upstream of the liner test section. These experimentally determined attenuations are compared to numerically determined attenuations calculated by means of a finite element analysis code. The code incorporates liner impedance values educed from measured data from the NASA Langley Grazing Incidence Tube, a test rig that is used for investigating liner performance with flow and with (0,0) mode incident grazing. The analytical and experimental results compare favorably, indicating the validity of the finite element method and demonstrating that finite element prediction tools can be used together with experiment to characterize the liner attenuation.

  6. A Method for Optimizing Non-Axisymmetric Liners for Multimodal Sound Sources

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.; Parrott, T. L.; Sobieski, J.

    2002-01-01

    Central processor unit times and memory requirements for a commonly used solver are compared to that of a state-of-the-art, parallel, sparse solver. The sparse solver is then used in conjunction with three constrained optimization methodologies to assess the relative merits of non-axisymmetric versus axisymmetric liner concepts for improving liner acoustic suppression. This assessment is performed with a multimodal noise source (with equal mode amplitudes and phases) in a finite-length rectangular duct without flow. The sparse solver is found to reduce memory requirements by a factor of five and central processing time by a factor of eleven when compared with the commonly used solver. Results show that the optimum impedance of the uniform liner is dominated by the least attenuated mode, whose attenuation is maximized by the Cremer optimum impedance. An optimized, four-segmented liner with impedance segments in a checkerboard arrangement is found to be inferior to an optimized spanwise segmented liner. This optimized spanwise segmented liner is shown to attenuate substantially more sound than the optimized uniform liner and tends to be more effective at the higher frequencies. The most important result of this study is the discovery that when optimized, a spanwise segmented liner with two segments gives attenuations equal to or substantially greater than an optimized axially segmented liner with the same number of segments.

  7. Aerogel Use as a Skin Protective Liner In Space Suits and Prosthetic Limbs Project

    NASA Technical Reports Server (NTRS)

    Roberson, Luke Bennett

    2014-01-01

    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications for use in space suits and orthopedics. Three tests were performed on several types of aerogel to assess the properties of each material, and our initial findings demonstrated that these materrials would be excellent candidates for liner applications for prosthetics and space suits. The project is currently on hold until additional funding is obtained for application testing at the VH Hospitals in Tampa

  8. Development of reduced drag concepts for acoustic liners using experimental methods

    NASA Astrophysics Data System (ADS)

    Jasinski, Christopher

    2016-11-01

    Commercial aircraft have used acoustic liners to reduce engine noise for many years, although their drag production has been largely unstudied. The next generation of aircraft may benefit from additional surface area covered by acoustic liner, thus understanding their drag production mechanism is crucial for future designs. An accurate direct aerodynamic drag measurement technique has been developed using a force balance with linear air bearings. Using 3D-printed and conventional liners, low-drag designs are being developed. This paper will investigate the underlying fluid mechanics governing the drag production in acoustic liners and describe new attempts to reduce aerodynamic drag.

  9. Efficiency of pulse high-current generator energy transfer into plasma liner energy

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.

    2013-08-01

    The efficiency of capacitor-bank energy transfer from a high-current pulse generator into kinetic energy of a plasma liner has been analyzed. The analysis was performed using a model including the circuit equations and equations of the cylindrical shell motion. High efficiency of the energy transfer into kinetic energy of the liner is shown to be achieved only by a low-inductance generator. We considered an "ideal" liner load in which the load current is close to zero in the final of the shell compression. This load provides a high (up to 80%) efficiency of energy transfer and higher stability when compressing the liner.

  10. Analysis of diffusion-adsorption equivalency of landfill liner systems for organic contaminants.

    PubMed

    Xie, Haijian; Chen, Yunmin; Ke, Han; Tang, Xiaowu; Chen, Renpeng

    2009-01-01

    The equivalence between multilayered barriers regarding diffusion and adsorption was studied. The bottom boundary of the liner system is defined by assuming concentration continuous and flux continuous conditions of the contaminant between the bottom liner layer and the underlying soil. Five different liner systems were compared in terms of solute breakthrough time. The results of the analysis showed that breakthrough time of the hydrophobic organic compounds for a 2-meter-thick compacted clay liner (CCL) could be 3-4 orders of magnitude is greater than the breakthrough time for a geosynthetic clay liner (GCL) composite liner. The GM/GCL and GM/CCL composite liner systems provide a better diffusion barrier for the hydrophilic organic compounds than that for the hydrophobic compounds due to their different Henry's coefficient. The calculated breakthrough times of the organic contaminants for the Chinese standard liner systems were found to be generally greater than those for the GCL alternatives, for the specific conditions examined. If the distribution coefficient increases to 2.8 for the hydrophobic compounds or 1.0 for the hydrophilic compounds, the thickness of the attenuation layer needed to achieve the same breakthrough time as the standard liner systems can be reduced by a factor of about 1.9-2.4. As far as diffusive and adsorption contaminant transport are concerned, GM or GCL is less effective than CCL.

  11. Gas-puff liner implosion in the configuration with helical current return rods

    SciTech Connect

    Sorokin, S. A.

    2013-02-15

    Results of experiments with double-shell gas-puff liners carried out on a high-current MIG generator (2 MA, 80 ns) are presented. To stabilize the process of liner implosion and increase the efficiency of energy transfer from the generator to the liner plasma, a current return in the form of a multifilar helix was used. The effect of the configuration of the current return on the parameters of the generated pulses of argon and neon K-shell radiation (with photon energies of 3-5 and 0.9-1.5 keV, respectively) and the neutron yield from a deuterium liner were studied.

  12. Ceramic coating effect on liner metal temperatures of film-cooled annular combustor

    NASA Technical Reports Server (NTRS)

    Claus, R. W.; Wear, J. D.; Liebert, C. H.

    1979-01-01

    An experimental and analytical investigation was conducted to determine the effect of a ceramic coating on the average metal temperatures of full annular, film cooled combustion chamber liner. The investigation was conducted at pressures from 0.50 to 0.062. At all test conditions, experimental results indicate that application of a ceramic coating will result in significantly lower wall temperatures. In a simplified heat transfer analysis, agreement between experimental and calculated liner temperatures was achieved. Simulated spalling of a small portion of the ceramic coating resulted in only small increases in liner temperature because of the thermal conduction of heat from the hotter, uncoated liner metal.

  13. Comparison of shaped charge liner cone and recovered jet fragment microstructures to elucidate dynamic recrystallization phenomena

    NASA Astrophysics Data System (ADS)

    Murr, L. E.; Niou, C.-S.; Sanchez, J. C.; Zernow, L.

    1995-01-01

    In order to prove the occurrence of dynamic recrystallization (DRX) following detonation of copper and tantalum shape charge liner cones, reductions in the starting grain size of the liner cones and recovered slug and jet fragments were compared. Forged copper cone liner having a grain size of 15 micrometer was also produced and the end point microstructures were compared with previous results and observations for a starting cone grain size of 35 micrometer. Microstructures in shaped charge starting liner cones and recovered jet fragments were observed by both optical metallography and transmission electron microscopy.

  14. Development of reactive artificial liner using recycled materials. 2. Chemical transport properties.

    PubMed

    Chin, Johnnie Y; Asavanich, Pitch; Moon, Kyong-Whan; Park, Jae K

    2013-07-01

    Volatile organic compounds (VOCs) have so far been found to permeate through geomembranes within days and potentially pollute the surrounding groundwater if no sufficient depth of underlain soil barrier existed In order to cope with the fast breakthrough of VOCs through high-density polyethylene (HDPE) geomembrane in the composite liner system, a composite material made of recycled materials was proposed and its mechanical properties were analyzed in a previous study. This artificial liner was composed of crumb rubber, organo-clay, silica fume and epoxy binder together with an environmentally-friendly solvent recycled from paper pulping, and dimethyl sulfoxide as a plasticizer. In this study, the new artificial liner and a typical HDPE geomembrane were tested to compare their abilities to mitigate the movement of VOCs, specifically partition coefficient, diffusion coefficient and mass fluxes. It was found that this new artificial liner had 2-3 orders of magnitude less VOC mass flux than the HDPE geomembrane. The new artificial liner is thought to have a great potential for containing VOCs, even with a thickness of 2.5 cm, and as a substitute for the clay liner. The cost of installing the artificial liner was estimated to be $13.78/m(2). This is lower than the current geomembrane-related price of $19.70-26.91/m(2). The new liner might give a new perspective in future liner design and alleviate the concerning issue of groundwater pollution caused by landfill leachate, which might contain highly mobile VOCs.

  15. Geometrical shock dynamics of fast magnetohydrodynamic shocks

    NASA Astrophysics Data System (ADS)

    Mostert, Wouter; Pullin, Dale I.; Samtaney, Ravi; Wheatley, Vincent

    2016-11-01

    We extend the theory of geometrical shock dynamics (GSD, Whitham 1958), to two-dimensional fast magnetohydrodynamic (MHD) shocks moving in the presence of nonuniform magnetic fields of general orientation and strength. The resulting generalized area-Mach number rule is adapted to MHD shocks moving in two spatial dimensions. A partially-spectral numerical scheme developed from that of Schwendeman (1993) is described. This is applied to the stability of plane MHD fast shocks moving into a quiescent medium containing a uniform magnetic field whose field lines are inclined to the plane-shock normal. In particular, we consider the time taken for an initially planar shock subject to an initial perturbed magnetosonic Mach number distribution, to first form shock-shocks. Supported by KAUST OCRF Award No. URF/1/2162-01.

  16. An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner.

    PubMed

    Xie, Haijian; Jiang, Yuansheng; Zhang, Chunhua; Feng, Shijin

    2015-02-01

    An analytical model for volatile organic compounds (VOCs) transport through a composite liner consisting of a geomembrane (GM), a geosynthetic clay liner (GCL), and a soil liner (SL) was developed for the assessment of the performance of this triple liner system. Both advection through the defects of GM and diffusion in the intact GM were considered in the model, and dimensionless analytical solution was obtained. The soil concentration profiles obtained by the proposed analytical solution have a good agreement with those obtained by the finite-layer-based software POLLUTE v7. The effects of leachate head, length of the connected wrinkles, and the interface transmissivity of GM/GCL on the breakthrough curves of the liner system were then investigated. Results show that the 30-year base flux of the liner system for the case with leachate head = 10 m and length of the connected wrinkles = 1,000 m can be over 60 times greater than that of the pure diffusion case. The length of the connected wrinkles of the GM has greater influence on the base flux of the liner system than on the base concentration. The interface transmissivity has negligible effect on the solute breakthrough curves of the liner system for relatively low values of the length of the connected wrinkles (e.g., <100 m). The groundwater protection level achieved by GM/CCL is more effective than that by GM/GCL/SL in the earlier times. However, the steady state base flux for GM/GCL/SL can be seven to eight times lower than that for GM/CCL. The analytical solution can also be used for experimental data fitting, verification of complicated numerical models, and preliminary design of composite liners.

  17. Dispersion, dissipation and refraction of shock waves in acoustically treated turbofan inlets

    NASA Astrophysics Data System (ADS)

    Prasad, Dilip; Li, Ding; A. Topol, David

    2015-09-01

    This paper describes a numerical investigation of the effects of the inlet duct liner on the acoustics of a high-bypass ratio turbofan rotor operating at supersonic tip relative flow conditions. The near field of the blade row is then composed of periodic shocks that evolve spatially both because of the varying mean flow and because of the presence of acoustic treatment. The evolution of this shock system is studied using a Computational Fluid Dynamics-based method incorporating a wall impedance boundary condition. The configuration examined is representative of a fan operating near the takeoff condition. The behavior of the acoustic power and the associated waveforms reveal that significant dispersion occurs to the extent that there are no shocks in the perturbation field leaving the entrance plane of the duct. The effect of wave refraction due to the high degree of shear in the mean flow near the entrance plane of the inlet is examined, and numerical experiments are conducted to show that the incorporation of liners in this region can be highly beneficial. The implications of these results for the design of aircraft engine acoustic liners are discussed.

  18. The Role of Magnetosonic Shocks in the Dynamics and Stability of the Staged Z-pinch

    NASA Astrophysics Data System (ADS)

    Rahman, Hafiz U.; Wessel, F. J.; Ruskov, E.; Ney, P.; Narkis, J.; Valenzuela, J.; Conti, F.; Beg, F.

    2016-10-01

    A Staged Z-pinch is comprised of a magnetized, high-Z liner compressing a low-Z target and is predicted to achieve high, final-energy-density through enhanced stability, shock heating, and flux compression. Magnetosonic waves propagate radially in the system producing a stable, current carrying shock front that heats the target plasma during run-in, prior to inertial-adiabatic compression by the liner. The propagation of nonlinear-magnetosonic waves is described analytically by the KdV-Burger's Equation, providing stable-stationary solutions. We include a finite resistivity in the energy equation and generalized Ohm's law. A radiation-hydrodynamic code is used to evaluate the dynamic shock behavior, energy coupling, and the stability of the pinch. During implosion the axial-magnetic field provides enhanced stability and thermal insulation between the liner and the target plasmas. At peak compression the large amplitude Bz traps the fusion products leading to ignition in a deuterium-tritium target mixture. Advanced Research Projects Agency - Energy, DE-AR0000569.

  19. Flow Duct Data for Validation of Acoustic Liner Codes for Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Munro, Scott; Gaeta, R. J., Jr.

    2000-01-01

    The objective of the study reported here was to acquire acoustic and flow data with hard and lined duct wall duct sections for validation of a liner prediction code being developed at NASA LaRC. Both the mean flowfield and acoustic flowfields were determined in a cross-plane of the rectangular duct. A flow duct facility with acoustic drivers connected to a rectangular (4.7 x 2.0 inch) source section and a linear acoustic liner mounted downstream of the source section was used in this study. The liner section was designed to allow liner materials to be placed on all 4 walls of the duct. The test liner was of the locally-reacting type and was made from a ceramic material. The material, consisting of a tubular structure, was provided by NASA LaRC. The liner was approximately 8.89 cm (3.5 inches) thick. For the current study, only the two "short" sides of the duct were lined with liner material. The other two sides were hard walls. Two especially built instrumentation sections were attached on either sides of the liner section to allow acoustic and flow measurements to be made upstream and downstream of the liner. The two instrumentation duct sections were built to allow measurement of acoustic and flow properties at planes perpendicular to flow upstream and downstream of the liner section. The instrumentation section was also designed to provide a streamwise gradient in acoustic (complex) pressure from which the acoustic particle velocity, needed for the model validation, can be computed. Flow measurements included pressure, temperature, and velocity profiles upstream of the liner section. The in-flow sound pressure levels and phases were obtained with a microphone probe equipped with a nose cone in two cross planes upstream of the liner and two cross plane downstream of the liner. In addition to the acoustic measurements at the cross planes. axial centerline acoustic data was acquired using an axially traversing microphone probe which was traversed from a location

  20. A review of aqueous-phase VOC transport in modern landfill liners.

    PubMed

    Edil, Tuncer B

    2003-01-01

    Leachates from municipal solid waste (MSW) and hazardous waste landfills contain a wide range of volatile organic compounds (VOCs) in addition to inorganic compounds. VOCs have been shown to migrate and contaminate the surrounding environment and impair the use of groundwater. Therefore, the effectiveness of modern landfill liner systems to minimize migration of VOCs is of concern. Most modern landfills employ a composite liner consisting of a geomembrane overlying a compacted clay liner or a geosynthetic clay liner. The geomembrane is often believed to be the primary barrier to contaminant transport. However, for VOCs, the clay component usually controls the rate of transport since VOCs are shown to diffuse through geomembrane at appreciable rates. Additionally, analyses have shown that transport of volatile organic compounds (VOCs) generally is more critical than transport of inorganic compounds (e.g., toxic heavy metals), even though VOCs are often found at lower concentrations in leachates. Therefore, the effectiveness of modern landfill liner systems to minimize migration of VOCs and transport of VOCs through clay liners and modeling of transport through composite liners merit scrutiny. This paper presents a review of recent research by the author and others on these topics. A systematic and comprehensive approach to determine mass transport parameters for transport of VOCs in liquid phase through compacted clay liners, geosynthetic clay liners (GCLs), and geomembranes has enabled to develop realistic models to predict mass flux of VOCs through modern composite liners and provide a quantitative basis to evaluate potential for transport of dissolved VOCs and the equivalency of different composite liners.

  1. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces.

  2. Development of a Tunable Electromechanical Acoustic Liner for Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Liu, Fei; Sheplak, Mark; Cattafesta, Louis N., III

    2007-01-01

    This report describes the development of a tunable electromechanical Helmholtz resonator (EMHR) for engine nacelles using smart materials technology. This effort addresses both near-term and long-term goals for tunable electromechanical acoustic liner technology for the Quiet Aircraft Technology (QAT) Program. Analytical models, i.e. lumped element model (LEM) and transfer matrix (TM) representation of the EMHR, have been developed to predict the acoustic behavior of the EMHR. The models have been implemented in a MATLAB program and used to compare with measurement results. Moreover, the prediction performance of models is further improved with the aid of parameter extraction of the piezoelectric backplate. The EMHR has been experimentally investigated using standard two-microphone method (TMM). The measurement results validated both the LEM and TM models of the EMHR. Good agreement between predicted and measured impedance is obtained. Short- and open circuit loads define the limits of the tuning range using resistive and capacitive loads. There is approximately a 9% tuning limit under these conditions for the non-optimized resonator configuration studied. Inductive shunt loads result in a 3 degree-of-freedom DOF) system and an enhanced tuning range of over 20% that is not restricted by the short- and open-circuit limits. Damping coefficient ' measurements for piezoelectric backplates in a vacuum chamber are also performed and indicate that the damping is dominated by the structural damping losses, such as compliant boundaries, and other intrinsic loss mechanisms. Based on models of the EMHR, a Pareto optimization design of the EMHR has been performed for the EMHR with non-inductive loads. The EMHR with non-inductive loads is a 2DOF system with two resonant fiequencies. The tuning ranges of the two resonant frequencies of the EMHR with non-inductive loads cannot be optimized simultaneously; a trade-off (i.e., a Pareto solution) must be reached. The Pareto solution

  3. The polyhedral nature of LINERs: an XMM-Newton view of LINERs in radio galaxies

    NASA Astrophysics Data System (ADS)

    Gliozzi, M.; Foschini, L.; Sambruna, R. M.; Tavecchio, F.

    2008-02-01

    Aims:We investigate the origin of X-rays and the nature of accretion flow in 4 low-ionization nuclear emission-line regions (LINERs) hosted by radio galaxies, namely NGC 1692, PKS 0625-35, 3C 88, 3C 444, recently observed with XMM-Newton. Methods: We combine the results from the time-averaged spectral analysis with model-independent information from X-ray temporal and spectral variability analyses, and with additional broadband information (specifically from the UV band, covered by the Optical Monitor aboard XMM-Newton, and from archival radio data). Results: The values of the Eddington ratios L_bol/L_Edd of our sample span 2 orders of magnitude ranging between ~1×10-5 and 1×10-3. The 4 AGN are adequately fitted by the same continuum model that comprises at least one thermal component (kT ~ 0.65-1.45 keV) and a partially absorbed power law, whose relative contribution and photon index vary substantially from source to source. NGC 1692 and PKS 0625-35 have fairly steep power-law components (Γ ~ 2.5-2.9), perhaps indicative of synchrotron emission from the base of a jet. Conversely, the flat photon index derived for 3C 88 (Γ ~ 1.1) may be indicative of a heavily absorbed object. Finally, the time-averaged spectral properties of 3C 444 (Γ ~ 1.9 and an apparent line-like excess around 6.7 keV) are more in line with Seyfert-like objects. The temporal analysis reveals that PKS 0625-35 and 3C 88 are significantly variable in the soft (0.2-1 keV) energy band. PKS 0625-35 also shows suggestive evidence of spectral variability on timescales of months, with a spectral softening associated with the source brightening. NGC 1692 is only marginally variable in the soft band, whereas 3C 444 does not show significant variability on short timescales. The main findings from the broadband analysis can be summarized as follows: 1) 3C 444, PKS 0625-35, and NGC 1692 have αOX values consistent with the αOX - lUV correlation found by Steffen et al. (2006, AJ, 131, 2826) for Seyfert

  4. Toxic Shock Syndrome

    MedlinePlus

    ... burn to avoid getting a staph infection. Toxic shock syndrome treatment Because toxic shock syndrome gets worse quickly, you may be seriously ... toxic shock syndrome in a wound? Resources Toxic Shock Syndrome ... treatment, women's health Family Health, Women January 2017 Copyright © ...

  5. Development testing of grouting and liner technology for humid sites

    SciTech Connect

    Vaughan, N.D.

    1981-01-01

    Shallow land burial, although practiced for many years, has not always secured radionuclides from the biosphere in humid environments. To develop and demonstrate improved burial technology the Engineered Test Facility was implemented. An integral part of this experiment was site characterization, with geologic and hydrologic factors as major the components. Improved techniques for burial of low-level waste were developed and tested in the laboratory before being applied in the field. The two techniques studied were membrane trench liner and grouting void spaces.

  6. Metallosis after Exchange of the Femoral Head and Liner following Ceramic Acetabular Liner Dissociation in Total Hip Arthroplasty with a Modular Layered Acetabular Component

    PubMed Central

    Hamada, Daisuke; Iwame, Toshiyuki; Sairyo, Koichi

    2016-01-01

    The type of bearing material that should be used in revision surgery after the failure of ceramic-on-ceramic total hip arthroplasty (THA) remains controversial. In the case of ceramic fracture, the residual ceramic particles can cause consequent metallosis when metal implants are used for revision THA. On the other hand, in the case of THA failure without ceramic fracture, revision THA with a metal femoral head provides satisfactory results. We report an unusual case of progressive osteolysis due to metallosis that developed after revision THA for ceramic liner dissociation without a liner fracture performed using a metal femoral head and polyethylene liner. The residual metal debris and abnormal pumping motion of the polyethylene liner due to the breakage of the locking system or the aspherical metal shell being abraded by the ceramic head seemed to be the cause of the progressive osteolysis. PMID:27648325

  7. Leakage Performance of the GM + CCL Liner System for the MSW Landfill

    PubMed Central

    Jingjing, Fan

    2014-01-01

    The contaminants in the landfill leachate press pose a grave threat to environment of the soil and the groundwater beneath the landfill. Despite there being strict requirements in relevant provisions of both domestic and foreign countries for the design of the bottom liner system. Pollution of the soil and the groundwater still took place in a number of landfills because of the leakage. To investigate the leakage rate of the liner systems, the minimum design requirements of the liner systems are summarized according to the provisions of four countries, including China, USA, Germany, and Japan. Comparative analyses using one-dimensional transport model are conducted to study the leakage performance of these liner systems composed of geomembrance (GM) and compacted clay layer (CCL) meeting the relevant minimum design requirements. Then parametric analyses are conducted to study the effects of the hydraulic head, the thickness of GM, the hydraulic conductivity of CCL, and so forth on the leakage performance of the liner system. It is concluded that the liner system designed according to the minimum design requirements of Germany provide the best antileakage performance, while that of Japan performs the lowest. The key parameters affecting the failure time of the liner system are summarized. Finally, some suggestions for the design of the liner systems are made according to the analyses. PMID:24719569

  8. Evaluation of a Variable-Impedance Ceramic Matrix Composite Acoustic Liner

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2014-01-01

    As a result of significant progress in the reduction of fan and jet noise, there is growing concern regarding core noise. One method for achieving core noise reduction is via the use of acoustic liners. However, these liners must be constructed with materials suitable for high temperature environments and should be designed for optimum absorption of the broadband core noise spectrum. This paper presents results of tests conducted in the NASA Langley Liner Technology Facility to evaluate a variable-impedance ceramic matrix composite acoustic liner that offers the potential to achieve each of these goals. One concern is the porosity of the ceramic matrix composite material, and whether this might affect the predictability of liners constructed with this material. Comparisons between two variable-depth liners, one constructed with ceramic matrix composite material and the other constructed via stereolithography, are used to demonstrate this material porosity is not a concern. Also, some interesting observations are noted regarding the orientation of variable-depth liners. Finally, two propagation codes are validated via comparisons of predicted and measured acoustic pressure profiles for a variable-depth liner.

  9. Evaluation of Parallel-Element, Variable-Impedance, Broadband Acoustic Liner Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Howerton, Brian M.; Ayle, Earl

    2012-01-01

    Recent trends in aircraft engine design have highlighted the need for acoustic liners that provide broadband sound absorption with reduced liner thickness. Three such liner concepts are evaluated using the NASA normal incidence tube. Two concepts employ additive manufacturing techniques to fabricate liners with variable chamber depths. The first relies on scrubbing losses within narrow chambers to provide acoustic resistance necessary for sound absorption. The second employs wide chambers that provide minimal resistance, and relies on a perforated sheet to provide acoustic resistance. The variable-depth chambers used in both concepts result in reactance spectra near zero. The third liner concept employs mesh-caps (resistive sheets) embedded at variable depths within adjacent honeycomb chambers to achieve a desired impedance spectrum. Each of these liner concepts is suitable for use as a broadband sound absorber design, and a transmission line model is presented that provides good comparison with their respective acoustic impedance spectra. This model can therefore be used to design acoustic liners to accurately achieve selected impedance spectra. Finally, the effects of increasing the perforated facesheet thickness are demonstrated, and the validity of prediction models based on lumped element and wave propagation approaches is investigated. The lumped element model compares favorably with measured results for liners with thin facesheets, but the wave propagation model provides good comparisons for a wide range of facesheet thicknesses.

  10. Experimental Validation of Numerical Simulations for an Acoustic Liner in Grazing Flow

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Pastouchenko, Nikolai N.; Jones, Michael G.; Watson, Willie R.

    2013-01-01

    A coordinated experimental and numerical simulation effort is carried out to improve our understanding of the physics of acoustic liners in a grazing flow as well our computational aeroacoustics (CAA) method prediction capability. A numerical simulation code based on advanced CAA methods is developed. In a parallel effort, experiments are performed using the Grazing Flow Impedance Tube at the NASA Langley Research Center. In the experiment, a liner is installed in the upper wall of a rectangular flow duct with a 2 inch by 2.5 inch cross section. Spatial distribution of sound pressure levels and relative phases are measured on the wall opposite the liner in the presence of a Mach 0.3 grazing flow. The computer code is validated by comparing computed results with experimental measurements. Good agreements are found. The numerical simulation code is then used to investigate the physical properties of the acoustic liner. It is shown that an acoustic liner can produce self-noise in the presence of a grazing flow and that a feedback acoustic resonance mechanism is responsible for the generation of this liner self-noise. In addition, the same mechanism also creates additional liner drag. An estimate, based on numerical simulation data, indicates that for a resonant liner with a 10% open area ratio, the drag increase would be about 4% of the turbulent boundary layer drag over a flat wall.

  11. Testing of elastomeric liners used in limb prosthetics: classification of 15 products by mechanical performance.

    PubMed

    Sanders, Joan E; Nicholson, Brian S; Zachariah, Santosh G; Cassisi, Damon V; Karchin, Ari; Fergason, John R

    2004-03-01

    The mechanical properties of 15 elastomeric liner products used in limb prosthetics were evaluated under compressive, frictional, shear, and tensile loading conditions. All testing was conducted at load levels comparable to interface stress measurements reported on transtibial amputee subjects. For each test configuration, materials were classified into four groups based on the shapes of their response curves. For the 15 liners tested, there were 10 unique classification sets, indicating a wide range of unique materials. In general, silicone gel liners classified within the same groups thus were quite similar to each other. They were of lower compressive, shear, and tensile stiffness than the silicone elastomer products, consistent with their lightly cross-linked, high-fluid content structures. Silicone elastomer products better spanned the response groups than the gel liners, demonstrating a wide range of compressive, shear, and tensile stiffness values. Against a skin-like material, a urethane liner had the highest coefficient of friction of any liner tested, although coefficients of friction values for most of the materials were higher than interface shear:pressure ratios measured on amputee subjects using Pelite liners. The elastomeric liner material property data and response groupings provided here can potentially be useful to prosthetic fitting by providing quantitative information on similarities and differences among products.

  12. USER'S GUIDE TO FLEXIBLE MEMBRANE LINER ADVISORY EXPERT SYSTEM: FLEX VERSION 3.0

    EPA Science Inventory

    The guide is a user manual for the Flexible Membrane Liner Advisory Expert System (FLEX). The system assists in determining if a proposed synthetic liner material will be chemically resistant to a proposed or anticipated leachate from a hazardous waste land disposal site. More sp...

  13. Optimization of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Schiller, N. H.; Born, J. C.

    2016-01-01

    This paper employs three acoustic propagation codes to explore variable-depth liner configurations for the NASA Langley Grazing Flow Impedance Tube (GFIT). The initial study demonstrates that a variable impedance can acceptably be treated as a uniform impedance if the spatial extent over which this variable impedance occurs is less than one-third of a wavelength of the incident sound. A constrained optimization study is used to design a variable-depth liner and to select an optimization metric. It also provides insight regarding how much attenuation can be achieved with variable-depth liners. Another optimization study is used to design a liner with much finer chamber depth resolution for the Mach 0.0 and 0.3 test conditions. Two liners are designed based on spatial rearrangement of chambers from this liner to determine whether the order is critical. Propagation code predictions suggest this is not the case. Both liners are fabricated via additive manufacturing and tested in the GFIT for the Mach 0.0 condition. Predicted and measured attenuations compare favorably across the full frequency range. These results clearly suggest that the chambers can be arranged in any order, thus offering the potential for innovative liner designs to minimize depth and weight.

  14. Field-scale investigation of infiltration into a compacted soil liner

    USGS Publications Warehouse

    Panno, Samuel V.; Herzog, Beverly L.; Cartwright, Keros; Rehfeldt, Kenneth R.; Krapac, Ivan G.; Hensel, Bruce R.

    1991-01-01

    The Illinois State Geological Survey constructed and instrumented an experimental compacted soil liner. Infiltration of water into the liner has been monitored for two years. The objectives of this investigation were to determine whether a soil liner could be constructed to meet the U.S. EPA's requirement for a saturated hydraulic conductivity of less than or equal to 1.0 ?? 10-7 cm/s, to quantify the areal variability of the hydraulic properties of the liner, and to determine the transit time for water and tracers through the liner. The liner measures 8m ?? 15m ?? 0.9m and was designed and constructed to simulate compacted soil liners built at waste disposal facilities. The surface of the liner was flooded to form a pond on April 12, 1988. Since flooding, infiltration has been monitored with four large-ring (LR) and 32 small-ring (SR) infiltrometers, and a water-balance (WB) method that accounted for total infiltration and evaporation. Ring-infiltrometer and WB data were analyzed using cumulative-infiltration curves to determine infiltration fluxes. The SR data are lognormally distributed, and the SR and LR data form two statistically distinct populations. Small-ring data are nearly identical with WB data; because there is evidence of leakage in the LRs, the SR and WB data are considered more reliable.

  15. Leakage performance of the GM + CCL liner system for the MSW landfill.

    PubMed

    Jingjing, Fan

    2014-01-01

    The contaminants in the landfill leachate press pose a grave threat to environment of the soil and the groundwater beneath the landfill. Despite there being strict requirements in relevant provisions of both domestic and foreign countries for the design of the bottom liner system. Pollution of the soil and the groundwater still took place in a number of landfills because of the leakage. To investigate the leakage rate of the liner systems, the minimum design requirements of the liner systems are summarized according to the provisions of four countries, including China, USA, Germany, and Japan. Comparative analyses using one-dimensional transport model are conducted to study the leakage performance of these liner systems composed of geomembrance (GM) and compacted clay layer (CCL) meeting the relevant minimum design requirements. Then parametric analyses are conducted to study the effects of the hydraulic head, the thickness of GM, the hydraulic conductivity of CCL, and so forth on the leakage performance of the liner system. It is concluded that the liner system designed according to the minimum design requirements of Germany provide the best antileakage performance, while that of Japan performs the lowest. The key parameters affecting the failure time of the liner system are summarized. Finally, some suggestions for the design of the liner systems are made according to the analyses.

  16. 30 CFR 250.425 - What are the requirements for pressure testing liners?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...) You must test each drilling liner (and liner-lap) to a pressure at least equal to the anticipated... drilling or other down-hole operations until you obtain a satisfactory pressure test. If the...

  17. Evaluation of Variable-Depth Liner Configurations for Increased Broadband Noise Reduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; Nark, D. M.; Howerton, B. M.

    2015-01-01

    This paper explores the effects of variable-depth geometry on the amount of noise reduction that can be achieved with acoustic liners. Results for two variable-depth liners tested in the NASA Langley Grazing Flow Impedance Tube demonstrate significant broadband noise reduction. An impedance prediction model is combined with two propagation codes to predict corresponding sound pressure level profiles over the length of the Grazing Flow Impedance Tube. The comparison of measured and predicted sound pressure level profiles is sufficiently favorable to support use of these tools for investigation of a number of proposed variable-depth liner configurations. Predicted sound pressure level profiles for these proposed configurations reveal a number of interesting features. Liner orientation clearly affects the sound pressure level profile over the length of the liner, but the effect on the total attenuation is less pronounced. The axial extent of attenuation at an individual frequency continues well beyond the location where the liner depth is optimally tuned to the quarter-wavelength of that frequency. The sound pressure level profile is significantly affected by the way in which variable-depth segments are distributed over the length of the liner. Given the broadband noise reduction capability for these liner configurations, further development of impedance prediction models and propagation codes specifically tuned for this application is warranted.

  18. Modeling of Broadband Liners Applied to the Advanced Noise Control Fan

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.

    2015-01-01

    The broadband component of fan noise has grown in relevance with an increase in bypass ratio and incorporation of advanced fan designs. Therefore, while the attenuation of fan tones remains a major factor in engine nacelle acoustic liner design, the simultaneous reduction of broadband fan noise levels has received increased interest. As such, a previous investigation focused on improvements to an established broadband acoustic liner optimization process using the Advanced Noise Control Fan (ANCF) rig as a demonstrator. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom liner designs were carried through design, fabrication, and testing. This paper addresses a number of areas for further research identified in the initial assessment of the ANCF study. Specifically, incident source specification and uncertainty in some aspects of the predicted liner impedances are addressed. This information is incorporated in updated predictions of the liner performance and comparisons with measurement are greatly improved. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of various liner designs. This study also provides further confidence in the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  19. Tendency of spherically imploding plasma liners formed by merging plasma jets to evolve toward spherical symmetry

    SciTech Connect

    Cassibry, J. T.; Stanic, M.; Hsu, S. C.; Witherspoon, F. D.; Abarzhi, S. I.

    2012-05-15

    We have performed three-dimensional (3D) simulations using smoothed particle hydrodynamics (SPH) in order to study the effects of discrete plasma jets on the processes of plasma liner formation, implosion on vacuum, and expansion. It was found that the pressure histories of the inner portion of the liner from 3D SPH simulations with a uniform liner and with 30 discrete plasma jets were qualitatively and quantitatively similar from peak compression through the complete stagnation of the liner. The 3D simulations with a uniform liner were first benchmarked against results from one-dimensional radiation-hydrodynamic simulations [T. J. Awe et al., Phys. Plasmas 18, 072705 (2011)]. Two-dimensional plots of the pressure field show that the discrete jet SPH case evolves towards a profile that is almost indistinguishable from the SPH case with a uniform liner, thus indicating that non-uniformities due to discrete jets are smeared out by late stages of the implosion. The processes of plasma liner formation and implosion on vacuum were shown to be robust against Rayleigh-Taylor instability growth. Finally, interparticle mixing for a liner imploding on vacuum was investigated. The mixing rate was found to be very small until after the peak compression for the 30 jet simulations.

  20. MEASUREMENT OF THE CURRENT AND SYMMETRY OF THE IMPACT LINER ON THE NTLX EXPERIMENTS

    SciTech Connect

    J. STOKES; J. PARKER; ET AL

    2001-06-01

    A series of four liner implosion experiments, denoted the Near Term Liner Experiments (NTLX) was recently conducted on the Shiva Star capacitor bank at the Air Force Research Laboratory (AFRL). Measurement of the driving currents in these experiments is required for post-shot analysis of the liner implosion and experiments conducted in the target cylinder. A Faraday rotation measurement was fielded on Shiva Star to measure the current and compare with the current measured by a Rogowski coil technique. The Faraday rotation technique measured the 16 MA currents in these experiments with better than 1% precision. In addition, six B-dot probes were fielded at equal angles around a circle in the powerflow channel outside the liner to measure the symmetry of the liner impact on the target cylinder. The B-dot probes measure the local I-dot, which has a jump when the liner impacts the target cylinder. A high-pass filter allows one to measure this jump more accurately. From the relative timing of the jump signals, the offset of the liner axis and the circularity of liner are inferred.

  1. Effects of Liner Length and Attenuation on NASA Langley Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.

    2016-01-01

    This study explores the effects of liner length and attenuation on the CHE (convected Helmholtz equation) impedance eduction method, in which the surface impedance of an acoustic liner is inferred through an iterative process based on repeated solutions to the convected Helmholtz equation. Wire mesh-over-honeycomb and perforate-over-honeycomb acoustic liners are tested in the NASA Langley Grazing Flow Impedance Tube, and the resultant data are processed using two impedance eduction methods. The first is the CHE method, and the second is a direct method (labeled the KT method) that uses the Kumaresan and Tufts algorithm to compute the impedance directly. The CHE method has been extensively used for acoustic liner evaluation, but experiences anomalous behavior under some test conditions. It is postulated that the anomalies are related to the liner length and/or attenuation. Since the KT method only employs data measured over the length of the liner, it is expected to be unaffected by liner length. A comparison of results achieved with the two impedance eduction methods is used to explore the interactive effects of liner length and attenuation on the CHE impedance eduction method.

  2. A comparison between the X-ray properties of LINERs/LLAGNs and normal galaxies

    NASA Astrophysics Data System (ADS)

    Awaki, H.

    I reviewed recent X-ray observations of LINERs and low luminosity AGNs (LLAGNs) with the Japanese X-ray satellite ASCA. The main purpose of the ASCA observations was to reveal the X-ray properties of these galaxies, especially nuclear activity. ASCA observed 15 LLAGNs and found nuclear X-ray emission for 13 LLAGNs except NGC 1672 and NGC 4501. On the other hand, compact hard X-ray emission probably associated with nuclear activity was found in seven LINERs, and six LINERs among seven have a broad Hα line. This result suggests that the excitation mechanism of these LINERs is photoionization. Soft X-ray emission from LINERs was found, and the emission can be associated with the starbust phenomenon in LINERs. I characterized the variability time scale using the Fourier timing analysis and deduced the lower limit of central black hole mass. The black hole masses are greater than 107 solar mass, which are consistent with those of high luminosity AGNs. However, the X-ray luminosity of LLAGNs and LINERs are only 11000 of that of high-luminosity AGNs. This indicates that LLAGNs and LINERs may turn into AGNs if fuel is supplied to the central black hole.

  3. Status of Duct Liner Technology for Application to Aircraft Engine Nacelles

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Jones, Michael G.; Watson, Willie R.

    2005-01-01

    Grazing flows and high acoustic intensities impose unusual design requirements on acoustic liner treatments used in aircraft engine nacelles. Increased sound absorption efficiency (requiring increased accuracy of liner impedance specification) is particularly critical in the face of ever decreasing nacelle wall area available for liner treatments in modern, high-bypass ratio engines. This paper reviews the strategy developed at Langley Research Center for achieving a robust measurement technology that is crucial for validating impedance models for aircraft liners. Specifically, the paper describes the current status of computational and data acquisition technologies for reducing impedance in a flow duct. Comparisons of reduced impedances for a "validation liner" using 1980's and 2000's measurement technology are consistent, but show significant deviations (up to 0.5 c exclusive of liner anti-resonance region) from a first principles impedance prediction model as grazing flow centerline Mach numbers increase up to 0.5. The deviations, in part, are believed related to uncertainty in the choice of grazing flow parameters (e.g. cross-section averaged, core-flow averaged, or centerline Mach number?). Also, there may be an issue with incorporating the impedance discontinuities corresponding to the hard wall to liner interface (i.e. leading and trailing edge of test liner) within the discretized finite element model.

  4. Development of reactive artificial liner using recycled materials. 1. Mechanical properties and chemical compatibility.

    PubMed

    Chin, Johnnie Y; Moon, Kyong-Whan; Park, Jae K; Park, Daniel J

    2013-07-01

    There have been several studies showing that volatile organic compounds (VOCs) can diffuse a geomembrane within days and migrate to groundwater and the surrounding environment. To ease the concern of potential pollution of the surrounding environment, an alternative artificial liner consisting of recycled materials is proposed. This composite liner consisted of recycled crumb rubber, organo-clay, silica fume, and epoxy binder. Dimethyl sulfoxide, an environmentally-friendly solvent recycled from paper pulp, was used as a plasticizer. The objective of this study was to determine the best combination of ingredients used at the initial stage and to develop artificial liners suitable for containing VOCs in leachate by comparing various physical properties. A series of screening tests including bending, tearing and elongating was performed to determine the most suitable mixture ratios. Then, more intensive tests were performed with the specimens that had the best physical properties. The new artificial liner demonstrated satisfactory mechanical properties with the minimum elongation and maximum strength after 40 years. Both artificial liners and high-density polyethylene (HDPE) specimens had ~136 kg cm(-2) after 4 months of thermal stress while the artificial liner had 40% less elongation at break than HDPE. The artificial liner's fully developed strength was about ten times stronger than HDPE. This new type of composite material that can be applied on site may provide a new perspective in liner design and alleviate the issue of potential groundwater pollution caused by landfill leachate and highly mobile VOCs which is a matter of much concern.

  5. Performance evaluation of a newly developed variable rate sprayer for nursery liner applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experimental variable-rate sprayer designed for liner applications was tested by comparing its spray deposit, coverage, and droplet density inside canopies of six nursery liner varieties with constant-rate applications. Spray samplers, including water sensitive papers (WSP) and nylon screens, wer...

  6. Long-term behavior of water content and density in an earthen liner

    USGS Publications Warehouse

    Frank, T.E.; Krapac, I.G.; Stark, T.D.; Strack, G.D.

    2005-01-01

    An extensively instrumented compacted earthen liner was constructed at the Illinois State Geological Survey facility in Champaign, III. in 1987. A pond of water 0.31 m deep was maintained on top of the 7.3 m ?? 14.6 m ?? 0.9 m thick liner for 14 years. One of the goals of the project was to evaluate the long-term performance of a compacted earthen liner by monitoring the long-term changes in water content and density. The water content of the earthen liner showed no trend with depth or time. The liner density remained essentially constant from construction through excavation in 2002. The liner did not become fully saturated. Upon excavation of the liner, the degree of saturation was 80.0??6.3% after 14 years of ponding under a hydraulic head of 0.31 m. The results imply that properly designed and constructed earthen liners may reduce the possibility of pollutants leaching from municipal solid waste containment facilities by remaining partially saturated for years and maintaining the placement density. Journal of Geotechnical and Geoenvironmental Engineering ?? ASCE.

  7. [Comparative study of the antimicrobial effect of various cavity liners used in conservative dentistry].

    PubMed

    Pumarola Suñé, J; Espias Gómez, A; Canalda Sahli, C

    1989-01-01

    We have compared the microbiological activity of the following cavity liners: Life, Dycal II, Calcipulpe, Pure calcium hydroxide and Cavitec; against five different bacterial strains: Veillonella parvula, Bacteroides fragilis, Peptococcus s.p., Staphylococcus aureus, and Streptococcus beta hemolytic: The results demonstrate the higher antimicrobial activity of the manufactured cavity liners with calcium hydroxide base in comparison with the pure calcium hydroxide.

  8. Crack propagation in functionally graded strip under thermal shock

    NASA Astrophysics Data System (ADS)

    Ivanov, I. V.; Sadowski, T.; Pietras, D.

    2013-09-01

    The thermal shock problem in a strip made of functionally graded composite with an interpenetrating network micro-structure of Al2O3 and Al is analysed numerically. The material considered here could be used in brake disks or cylinder liners. In both applications it is subjected to thermal shock. The description of the position-dependent properties of the considered functionally graded material are based on experimental data. Continuous functions were constructed for the Young's modulus, thermal expansion coefficient, thermal conductivity and thermal diffusivity and implemented as user-defined material properties in user-defined subroutines of the commercial finite element software ABAQUS™. The thermal stress and the residual stress of the manufacturing process distributions inside the strip are considered. The solution of the transient heat conduction problem for thermal shock is used for crack propagation simulation using the XFEM method. The crack length developed during the thermal shock is the criterion for crack resistance of the different graduation profiles as a step towards optimization of the composition gradient with respect to thermal shock sensitivity.

  9. A finite element simulation of sound attenuation in a finite duct with a peripherally variable liner

    NASA Technical Reports Server (NTRS)

    Watson, W. R.

    1977-01-01

    Using multimodal analysis, a variational finite element method is presented for analyzing sound attenuation in a three-dimensional finite duct with a peripherally variable liner in the absence of flow. A rectangular element, with cubic shaped functions, is employed. Once a small portion of a peripheral liner is removed, the attenuation rate near the frequency where maximum attenuation occurs drops significantly. The positioning of the liner segments affects the attenuation characteristics of the liner. Effects of the duct termination are important in the low frequency ranges. The main effect of peripheral variation of the liner is a broadening of the attenuation characteristics in the midfrequency range. Because of matrix size limitations of the presently available computer program, the eigenvalue equations should be solved out of core in order to handle realistic sources.

  10. Effect of microseparation and third-body particles on dual-mobility crosslinked hip liner wear.

    PubMed

    Netter, Jonathan D; Hermida, Juan C; Chen, Peter C; Nevelos, James E; D'Lima, Darryl D

    2014-09-01

    Large heads have been recommended to reduce the risk of dislocation after total hip arthroplasty. One of the issues with larger heads is the risk of increased wear and damage in thin polyethylene liners. Dual-mobility liners have been proposed as an alternative to large heads. We tested the wear performance of highly crosslinked dual-mobility liners under adverse conditions simulating microseparation and third-body wear. No measurable increase in polyethylene wear rate was found in the presence of third-body particles. Microseparation induced a small increase in wear rate (2.9mm(3)/million cycles). A finite element model simulating microseparation in dual-mobility liners was validated using these experimental results. The results of our study indicate that highly crosslinked dual-mobility liners have high tolerance for third-body particles and microseparation.

  11. Field performance assessment of synthetic liners for uranium tailings ponds: a status report

    SciTech Connect

    Mitchell, D.H.; Spanner, G.E.

    1984-03-01

    The objective of this study is to provide a database to support US Nuclear Regulatory Commission (NRC) licensing of uranium tailings leachate isolation impoundments. This objective is being accomplished by determining the effectiveness of design, installation, and quality assurance practices associated with uranium mill tailings impoundments with flexible membrane liners. The program includes testing of chemical resistance and physical performance of liners, leak detection systems, and seam inspection techniques. This report presents the status of the program through September 1983. The report addresses impoundment design, installation, and inspection techniques used by the uranium milling industry. To determine the relative successes of these techniques, information has been collected from consultants, mill operators, and the synthetic liner industry. Progress in experimental tasks on chemical resistance of liners, physical properties of liners, and nondestructive examination of seams is reported. 25 references, 9 figures, 13 tables.

  12. The origins of liner material in a shaped charge jet particle

    SciTech Connect

    Zernow, L.; Chapyak, E.J.; Meyer, K.A.; Zernow, R.H.

    1992-02-01

    An improved high resolution LaGrangean tracer particle technique (using 198 identified tracer particles arranged as 99 particle pairs) has been used with an Eulerian Code (MESA 2D) to determine the locations in the jet to which liner material flows from various tagged locations in the liner, during the collapse, jet formation and jet stretching process. Time dependent strain and strain rate data has been computed, using the identified particle pairs of LaGrangean tracer particles as linear strain gauges. Sharp radial gradients of strain and strain rate have been found in the jet, with the liner material flowing nearest the jet axis being subjected to the highest strains and strain rates. Liner material from many extended initial locations along the liner can be traced by this method to jet locations corresponding to individual jet particles. The new quantitative data derived is illustrated with selected examples whose interpretation is discussed.

  13. The origins of liner material in a shaped charge jet particle

    SciTech Connect

    Zernow, L. ); Chapyak, E.J.; Meyer, K.A. ); Zernow, R.H. )

    1992-01-01

    An improved high resolution LaGrangean tracer particle technique (using 198 identified tracer particles arranged as 99 particle pairs) has been used with an Eulerian Code (MESA 2D) to determine the locations in the jet to which liner material flows from various tagged locations in the liner, during the collapse, jet formation and jet stretching process. Time dependent strain and strain rate data has been computed, using the identified particle pairs of LaGrangean tracer particles as linear strain gauges. Sharp radial gradients of strain and strain rate have been found in the jet, with the liner material flowing nearest the jet axis being subjected to the highest strains and strain rates. Liner material from many extended initial locations along the liner can be traced by this method to jet locations corresponding to individual jet particles. The new quantitative data derived is illustrated with selected examples whose interpretation is discussed.

  14. Reaching High-Yield Fusion with a Slow Plasma Liner Compressing a Magnetized Target

    SciTech Connect

    Ryutov, D D; Parks, P B

    2008-03-18

    Dynamics of the compression of a magnetized plasma target by a heavy liner made of partially ionized high high-Z material is discussed. A 'soft-landing' (shockless) mode of the liner deceleration is analyzed. Conclusion is drawn that such mode is possible for the liners whose thickness at the time of the first contact with the target is smaller than, roughly, 10% of the initial (un-compressed) target radius. A combination of the plasma liner with one or two glide cones allows for a direct access to the area near the center of the reactor chamber. One can then generate plasma target inside the plasma liner at the optimum time. The other advantage of the glide cones is that they can be used to deliver additional fuel to the center of the target near the point of a maximum compression and thereby increase the fusion yield.

  15. Using nonlinear optimization methods to reverse engineer liner material properties from EFP tests

    SciTech Connect

    Murphy, M.J.; Baker, E.L.

    1995-02-27

    The utility of variable metric nonlinear optimization methods for reverse engineering liner material constitutive modeling parameters is described. We use an effective new code created by coupling the nonlinear optimization code NLQPEB with the DYNA2D finite element hydrocode. The optimization code determines the ``best`` set of liner material properties by running DYNA2D in a loop, varying the liner model constitutive parameters, and minimizing the difference between the EFP profiles of the calculation and experiment. The results of four different EFP warhead tests with the same copper liner material are used to determine material parameters for the Steinberg-Guinan, Johnson-Cook, & Armstrong-Zerilli models. In a companion paper we describe the successful application of this methodology to the forward engineering of liner contours to achieve desired EFP shapes. The methodology of utilizing a coupled optimization/finite element code provides a significant improvement in warhead designs and the warhead design process.

  16. Clinical performance of Class I nanohybrid composite restorations with resin-modified glass-ionomer liner and flowable composite liner: A randomized clinical trial

    PubMed Central

    Suhasini, Krishtipati; Madhusudhana, Koppolu; Suneelkumar, Chinni; Lavanya, Anumula; Chandrababu, K. S.; Kumar, Perisetty Dinesh

    2016-01-01

    Background: Liners play a vital role in minimizing polymerization shrinkage stress by elastic bonding concept and increase the longevity and favorable outcome for composite restorations. Aims: The aim of this study was to evaluate the clinical performance of nanohybrid composite restorations using resin-modified glass-ionomer and flowable composite liners. Settings and Design: A single-centered, double-blinded randomized clinical trial, with split-mouth design and equal allocation ratio that was conducted in the Department of Conservative Dentistry and Endodontics. Materials and Methods: In forty patients, a total of eighty Class I restorations were placed with resin-modified glass-ionomer cement (RMGIC) liner (FUJI II LC, GC America) in one group and flowable composite liner (smart dentin replacement/SDR, Dentsply Caulk, Milford, DE, USA) in another group. All restorations were clinically evaluated by two examiners, immediately (baseline), 3, 6, and 12 months using US Public Health Service modified criteria. Statistical Analysis Used: Statistical analysis was performed using McNemar's test (P < 0.05). Results: There was no significant difference in the color match, marginal discoloration, surface roughness, and marginal adaptation. Restorations with RMGIC liner group show 20% Bravo scores on anatomic form at 12 months but are still clinically acceptable. Conclusion: Nanohybrid composite restorations with RMGIC (Fuji II LC) and flowable composite liner (SDR) demonstrated clinically acceptable performance after 12 months. PMID:27994310

  17. Development of improved performance refractory liner materials for slagging gasifiers

    SciTech Connect

    Kwong, Kyei-Sing; Bennett, James P.; Powell, Cynthia; Thomas, Hugh; Krabbe, Rick

    2005-01-01

    Refractory liners for slagging gasifiers used in power generation, chemical production, or as a possible future source of hydrogen for a hydrogen based economy, suffer from a short service life. These liner materials are made of high Cr2O3 and lower levels of Al2O3 and/or ZrO2. As a working face lining in the gasifier, refractories are exposed to molten slags at elevated temperature that originate from ash in the carbon feedstock, including coal and/or petroleum coke. The molten slag causes refractory failure by corrosion dissolution and by spalling. The Albany Research Center is working to improve the performance of Cr2O3 refractories and to develop refractories without Cr2O3 or with Cr2O3 content under 30 wt pct. Research on high Cr2O3 materials has resulted in an improved refractory with phosphate additions that is undergoing field testing. Results to date of field trials, along with research direction on refractories with no or low Cr2O3, will be discussed.

  18. A duty cycle hypothesis for the central engines of LINERs

    NASA Technical Reports Server (NTRS)

    Eracleous, Michael; Livio, Mario; Binete, Luc

    1995-01-01

    A recent ultraviolet snaphsot imaging survey of the nuclei of nearby galaxies detected a compact nuclear ultraviolet source in only five of the 26 LINERs (low-ionization nuclear emission-line regions) included in the observed sample. Motivated by this observational result, we examine the possibility that all LINERs are powered by photoionization from a nuclear source, which is, however, active only for 20% of the time. We show that decay times of low-ionization species can be of the order of one to a few centuries, and we demonstrate through time-dependent photoionization calculations that if the nuclear ionizing source is active for only a fraction of the time, this would not be readily noticeable in the emission-line spectrum. We suggest that the activity cycle is related to episodic accretion events which are associated with the tidal disruption of stars by a central black hole. The time interval between tidal disruptions is of the same order as the emission-line decay time, with the accretion episode following each disruption lasting a few decades. These estimates appear to support the duty cycle hypothesis. Some observational consequences of the proposed scenario are also discussed.

  19. Tank 241-AY-102 Secondary Liner Corrosion Evaluation - 14191

    SciTech Connect

    Boomer, Kayle D.; Washenfelder, Dennis J.; Johnson, Jeremy M.

    2014-01-07

    In October 2012, Washington River Protection Solutions, LLC (WRPS) determined that the primary tank of 241-AY-102 (AY-102) was leaking. A number of evaluations were performed after discovery of the leak which identified corrosion from storage of waste at the high waste temperatures as one of the major contributing factors in the failure of the tank. The propensity for corrosion of the waste on the annulus floor will be investigated to determine if it is corrosive and must be promptly removed or if it is benign and may remain in the annulus. The chemical composition of waste, the temperature and the character of the steel are important factors in assessing the propensity for corrosion. Unfortunately, the temperatures of the wastes in contact with the secondary steel liner are not known; they are estimated to range from 45 deg C to 60 deg C. It is also notable that most corrosion tests have been carried out with un-welded, stress-relieved steels, but the secondary liner in tank AY-102 was not stress-relieved. In addition, the cold weather fabrication and welding led to many problems, which required repeated softening of the metal to flatten secondary bottom during its construction. This flame treatment may have altered the microstructure of the steel.

  20. Plasma Guns for the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Witherspoon, F. D.; Bomgardner, R.; Case, A.; Messer, S. J.; Brockington, S.; Wu, L.; Elton, R.; Hsu, S. C.; Cassibry, J. T.; Gilmore, M. A.

    2009-11-01

    A spherical array of minirailgun plasma accelerators is planned for the Plasma Liner Experiment (PLX) to be located at LANL. The plasma liner would be formed via merging of 30 dense, high Mach number plasma jets (n˜10^16-17 cm-3, M˜10--35, v˜50--70 km/s, rjet˜5 cm) in a spherically convergent geometry. Small parallel-plate railguns are being developed for this purpose due to their reduced system complexity and cost, with each gun planned to operate at ˜300 kA peak current, and launching up to ˜8000 μg of high-Z plasma using a ˜50 kJ pfn. We describe experimental development of the minirailguns and their current and projected performance. Fast operating repetitive gas valves have recently been added to allow injection of high density gases including helium, argon, and (eventually) xenon. We will present the latest test results with the high-Z gases, and discuss future plans for augmenting the rails, optimizing the nozzle configuration, preionizing the injected gas, and configuring the pulse forming networks with the capacitors available to the program.

  1. Liner evaluation for uranium mill tailings. Final report

    SciTech Connect

    Buelt, J.L.

    1983-09-01

    The Liner Evaluation for Uranium Mill Tailings Program was conducted to evaluate the need for and performance of prospective lining materials for the long-term management of inactive uranium mill tailings piles. On the basis of program results, two materials have been identified: natural foundation soil amended with 10% sodium bentonite; catalytic airblown asphalt membrane. The study showed that, for most situations, calcareous soils typical of Western US sites adequately buffer tailings leachates and prevent groundwater contamination without additional liner materials or amendments. Although mathematical modeling of disposal sites is recommended on a site-specific basis, there appears to be no reason to expect significant infiltration through the cover for most Western sites. The major water source through the tailings would be groundwater movement at sites with shallow groundwater tables. Even so column leaching studies showed that contaminant source terms were reduced to near maximum contaminant levels (MCL's) for drinking water within one or two pore volumes; thus, a limited source term for groundwater contamination exists. At sites where significant groundwater movement or infiltration is expected and the tailings leachates are alkaline, however, the sodium bentonite or asphalt membrane may be necessary.

  2. FIREBALL: Fusion Ignition Rocket Engine with Ballistic Ablative Lithium Liner

    SciTech Connect

    Martin, Adam K.; Eskridge, Richard H.; Lee, Michael H.; Fimognari, Peter J.

    2006-01-20

    Thermo-nuclear fusion may be the key to a high Isp, high specific power propulsion system. In a fusion system energy is liberated within, and imparted directly to, the propellant. In principle, this can overcome the performance limitations inherent in systems that require thermal power transfer across a material boundary, and/or multiple power conversion stages (NTR, NEP). A thermo-nuclear propulsion system, which attempts to overcome some of the problems inherent in the Orion concept, is described. A dense FRC plasmoid is accelerated to high velocity (in excess of 500 km/s) and is compressed into a detached liner (pulse unit). The kinetic energy of the FRC is converted into thermal and magnetic-field energy, igniting a fusion burn in the magnetically confined plasma. The fusion reaction serves as an ignition source for the liner, which is made out of detonable materials. The energy liberated in this process is converted to thrust by a pusher-plate, as in the classic Orion concept. However with this concept, the vehicle does not carry a magazine of autonomous pulse-units. By accelerating a second, heavier FRC, which acts as a piston, right behind the first one, the velocity required to initiate the fusion burn is greatly reduced.

  3. Polyethylene liner cementation technique in asymptomatic versus symptomatic osteolysis.

    PubMed

    Kandel, Leonid; Rivkin, Gurion; Friedman, Adi; Segal, David; Liebergall, Meir; Mattan, Yoav

    2009-08-01

    Osteolysis around a cementless acetabular component can lead to severe bone loss. This study examined whether osteolysis should be treated while still asymptomatic. Thirty-seven liner cementation revisions were performed in 34 patients. Mean patient age was 61 years, and mean time elapsed after index surgery was 85 months (range, 36-168 months). Patients were evaluated by Harris Hip Score (HHS), and mean follow-up was 5 years (range, 43-82 months). Average HHS was 87 with a pain component of 39. In asymptomatic patients, both the HHS and the pain score were significantly higher: 95 and 43, respectively (P<.01). One patient with extensive bone loss had a fracture of the acetabulum and underwent revision at another institution. Revision of the polyethylene liner and cementation of a new one is a useful technique in patients with a stable acetabular shell. This is especially true for asymptomatic patients with osteolysis and thus should be performed early; however, high dislocation rate is still a concern.

  4. Radiative Shock Waves In Emerging Shocks

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul; Doss, F.; Visco, A.

    2011-05-01

    In laboratory experiments we produce radiative shock waves having dense, thin shells. These shocks are similar to shocks emerging from optically thick environments in astrophysics in that they are strongly radiative with optically thick shocked layers and optically thin or intermediate downstream layers through which radiation readily escapes. Examples include shocks breaking out of a Type II supernova (SN) and the radiative reverse shock during the early phases of the SN remnant produced by a red supergiant star. We produce these shocks by driving a low-Z plasma piston (Be) at > 100 km/s into Xe gas at 1.1 atm. pressure. The shocked Xe collapses to > 20 times its initial density. Measurements of structure by radiography and temperature by several methods confirm that the shock wave is strongly radiative. We observe small-scale perturbations in the post-shock layer, modulating the shock and material interfaces. We describe a variation of the Vishniac instability theory of decelerating shocks and an analysis of associated scaling relations to account for the growth of these perturbations, identify how they scale to astrophysical systems such as SN 1993J, and consider possible future experiments. Collaborators in this work have included H.F. Robey, J.P. Hughes, C.C. Kuranz, C.M. Huntington, S.H. Glenzer, T. Doeppner, D.H. Froula, M.J. Grosskopf, and D.C. Marion ________________________________ * Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03-00SF22021.

  5. Quantification of prosthetic outcomes: elastomeric gel liner with locking pin suspension versus polyethylene foam liner with neoprene sleeve suspension.

    PubMed

    Coleman, Kim L; Boone, David A; Laing, Linda S; Mathews, David E; Smith, Douglas G

    2004-07-01

    For this randomized crossover trial, we compared two common transtibial socket suspension systems: the Alpha liner with distal locking pin and the Pe-Lite liner with neoprene suspension sleeve. Our original hypotheses asserted that increased ambulatory activity, wear time, comfort, and satisfaction would be found with the elastomeric suspension system. Thirteen subjects completed the study. Following 2.5-month accommodation to each condition, ambulatory activity was recorded (steps/minute for 2 weeks), and subjects completed three questionnaires specific to prosthesis use and pain: the Prosthesis Evaluation Questionnaire (PEQ), a Brief Pain Inventory (BPI) excerpt, and the Socket Comfort Score (SCS). Upon completion, subjects selected their favored system for continued use. Ten subjects preferred the Pe-Lite and three the Alpha. Subjects spent 82% more time wearing the Pe-Lite and took 83% more steps per day. Ambulatory intensity distribution did not differ between systems. No statistically significant differences were found in questionnaire results. Subject feedback for each system was both positive and negative.

  6. Steady-state analytical models for performance assessment of landfill composite liners.

    PubMed

    Xie, Haijian; Jiang, Yuansheng; Zhang, Chunhua; Feng, Shijin; Qiu, Zhanhong

    2015-08-01

    One-dimensional mathematical models were developed for organic contaminant transport through landfill composite liners consisting of a geomembrane (GM) and a geosynthetic clay liner (GCL) or a GM and a compacted clay liner (CCL). The combined effect of leakage through GM defects, diffusion in GM and the underlying soil liners, and degradation in soil liners were considered. Steady state analytical solutions were provided for the proposed mathematical models, which consider the different combinations of advection, diffusion, and degradation. The analytical solutions of the time lag for contaminant transport in the composite liners were also derived. The performance of GM/GCL and GM/CCL was analyzed. For GM/GCL, the bottom flux can be reduced by a factor of 4 when the leachate head decreases from 10 to 0.3 m. The influence of degradation can be ignored for GM/GCL. For GM/CCL, when the leachate head decreases from 10 to 0.3 m, the bottom flux decreases by a factor of 2-4. Leachate head has greater influence on bottom flux in case of larger degradation rate (e.g., half-life = 1 year) compared to the case with lower degradation rate (e.g., half-life = 10 years). As contaminant half-life in soil liner decreases from 10 to 1 year, bottom flux decreases by approximately 2.7 magnitudes of orders. It is indicated that degradation may have greater influence on time lag of composite liner than leachate head. As leachate head increases from zero to 10 m, time lag for GM/CCL can be reduced by 5-6 years. Time lag for the same composite liner can be reduced by 10-11 years as contaminant half-life decreases from 10 to 1 year. Reducing leachate head acting on composite liners and increasing the degradation capacity of the soil liner would be the effective methods to improve the performance of the composite liners. The proposed analytical solutions are relatively simple and can be used for preliminary design and performance assessment of composite liners.

  7. Energy transfer through a multi-layer liner for shaped charges

    DOEpatents

    Skolnick, Saul; Goodman, Albert

    1985-01-01

    This invention relates to the determination of parameters for selecting materials for use as liners in shaped charges to transfer the greatest amount of energy to the explosive jet. Multi-layer liners constructed of metal in shaped charges for oil well perforators or other applications are selected in accordance with the invention to maximize the penetrating effect of the explosive jet by reference to four parameters: (1) Adjusting the explosive charge to liner mass ratio to achieve a balance between the amount of explosive used in a shaped charge and the areal density of the liner material; (2) Adjusting the ductility of each layer of a multi-layer liner to enhance the formation of a longer energy jet; (3) Buffering the intermediate layers of a multi-layer liner by varying the properties of each layer, e.g., composition, thickness, ductility, acoustic impedance and areal density, to protect the final inside layer of high density material from shattering upon impact of the explosive force and, instead, flow smoothly into a jet; and (4) Adjusting the impedance of the layers in a liner to enhance the transmission and reduce the reflection of explosive energy across the interface between layers.

  8. Beryllium liner z-pinches for Magneto-Rayleigh--Taylor studies on Z.

    SciTech Connect

    McBride, Ryan D.; Martin, Matthew Ryan; Vesey, Roger Alan; Lemke, Raymond William; Sinars, Daniel Brian; Herrmann, Mark C.; Jennings, Christopher A.; Cuneo, Michael Edward; Slutz, Stephen A.

    2010-12-01

    Magnetic Liner Inertial Fusion (MagLIF) [S. A. Slutz, et al., Phys. Plasmas 17 056303 (2010)] is a promising new concept for achieving >100 kJ of fusion yield on Z. The greatest threat to this concept is the Magneto-Rayleigh-Taylor (MRT) instability. Thus an experimental campaign has been initiated to study MRT growth in fast-imploding (<100 ns) cylindrical liners. The first sets of experiments studied aluminum liner implosions with prescribed sinusoidal perturbations (see talk by D. Sinars). By contrast, this poster presents results from the latest sets of experiments that used unperturbed beryllium (Be) liners. The purpose for using Be is that we are able to radiograph 'through' the liner using the 6-keV photons produced by the Z-Beamlet backlighting system. This has enabled us to obtain time-resolved measurements of the imploding liner's density as a function of both axial and radial location throughout the field of view. This data is allowing us to evaluate the integrity of the inside (fuel-confining) surface of the imploding liner as it approaches stagnation.

  9. Construction and performance of a long-term earthen liner experiment

    USGS Publications Warehouse

    Cartwright, Keros; Krapac, Ivan G.; Bonaparte, Rudolph

    1990-01-01

    In land burial schemes, compacted soil barriers with low hydraulic conductivity are commonly used in cover and liner systems to control the movement of liquids and prevent groundwater contamination. An experimental liner measuring 8 x 15 x 0.9 m was constructed with design criteria and equipment to simulate construction of soil liners built at waste disposal facilities. The surface of the liner was flooded with a 29.5 cm deep pond on April 12, 1988. Infiltration of water into the liner has been monitored for two years using 4 large-ring (1.5 m OD) and 32 small-ring (0.28 m OD) infiltrometers, and a water-balance that accounts for total infiltration and evaporation. Average long-term infiltration fluxes based on two years of monitoring are 5.8 x 10-9 cm/s, 6.0 x 10-8 cm/s and 5.6 x 10-8 for the large-ring, small-ring, and water-balance data, respectively. The saturated hydraulic conductivity of the liner based on small-ring data, estimated using Darcy's Law and the Green-Ampt Approximation, is 3 x 10-8 and 4 x 10-8 cm/s, respectively. All sets of data indicate that the liner's performance exceed that which is required by the U.S. EPA.

  10. Imploding Liner Material Strength Measurements at High-Strain and High Strain Rate

    SciTech Connect

    Bartsch, R.R.; Lee, H.; Holtkamp, D.; Wright, B.; Stokes, J.; Morgan, D.; Anderson, W.; Broste, W.

    1998-10-18

    Imploding, cylindrical liners provide a unique, shockless means of simultaneously accessing high strain and high-strain-rate for measurement of strength of materials in plastic flow. The radial convergence in the liner geometry results in the liner thickening as the circumference becomes smaller. Strains of up to {approximately}1.25 and strain rates of up to {approximately}10{sup 6} sec{sup -1} can be readily achieved in a material sample placed inside of an aluminum driver liner, using the Pegasus II capacitor bank. This provides yield strength data at conditions where none presently exists. The heating from work done against the yield strength is measured with multichannel pyrometry from infrared radiation emitted by the material sample. The temperature data as a function of liner position are unfolded to give the yield strength along the strain, strain-rate trajectory. Proper design of the liner and sample configuration ensures that the current diffused into the sample adds negligible heating. An important issue, in this type of temperature measurement, is shielding of the pickup optics from other sources of radiation. At strains greater than those achievable on Pegasus, e.g. the LANL Atlas facility, some materials may be heated all the way to melt by this process. Recent data on 6061-T6 Aluminum will be compared with an existing model for strain and strain-rate heating. The liner configuration and pyrometry diagnostic will also be discussed.

  11. The Fusion Gain Analysis of the Inductively Driven Liner Compression Based Fusion

    NASA Astrophysics Data System (ADS)

    Shimazu, Akihisa; Slough, John

    2016-10-01

    An analytical analysis of the fusion gain expected in the inductively driven liner compression (IDLC) based fusion is conducted to identify the fusion gain scaling at various operating conditions. The fusion based on the IDLC is a magneto-inertial fusion concept, where a Field-Reversed Configuration (FRC) plasmoid is compressed via the inductively-driven metal liner to drive the FRC to fusion conditions. In the past, an approximate scaling law for the expected fusion gain for the IDLC based fusion was obtained under the key assumptions of (1) D-T fuel at 5-40 keV, (2) adiabatic scaling laws for the FRC dynamics, (3) FRC energy dominated by the pressure balance with the edge magnetic field at the peak compression, and (4) the liner dwell time being liner final diameter divided by the peak liner velocity. In this study, various assumptions made in the previous derivation is relaxed to study the change in the fusion gain scaling from the previous result of G ml1 / 2 El11 / 8 , where ml is the liner mass and El is the peak liner kinetic energy. The implication from the modified fusion gain scaling on the performance of the IDLC fusion reactor system is also explored.

  12. A Finite Element Theory for Predicting the Attenuation of Extended-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2009-01-01

    A non-modal finite element theory for predicting the attenuation of an extended-reacting liner containing a porous facesheet and located in a no-flow duct is presented. The mathematical approach is to solve separate wave equations in the liner and duct airway and to couple these two solutions by invoking kinematic constraints at the facesheet that are consistent with a continuum theory of fluid motion. Given the liner intrinsic properties, a weak Galerkin finite element formulation with cubic polynomial basis functions is used as the basis for generating a discrete system of acoustic equations that are solved to obtain the coupled acoustic field. A state-of-the-art, asymmetric, parallel, sparse equation solver is implemented that allows tens of thousands of grid points to be analyzed. A grid refinement study is presented to show that the predicted attenuation converges. Excellent comparison of the numerically predicted attenuation to that of a mode theory (using a Haynes 25 metal foam liner) is used to validate the computational approach. Simulations are also presented for fifteen porous plate, extended-reacting liners. The construction of some of the porous plate liners suggest that they should behave as resonant liners while the construction of others suggest that they should behave as broadband attenuators. In each case the finite element theory is observed to predict the proper attenuation trend.

  13. Early time studies of cylindrical liner implosions at 1 MA on COBRA

    NASA Astrophysics Data System (ADS)

    Atoyan, L.; Byvank, T.; Cahill, A. D.; Hoyt, C. L.; de Grouchy, P. W. L.; Potter, W. M.; Kusse, B. R.; Hammer, D. A.

    2014-12-01

    Tests of the magnetized liner inertial fusion (MagLIF) concept will make use of the 27 MA Z machine at Sandia National Laboratories, Albuquerque, to implode a cylindrical metal liner to compress and heat preheated, magnetized plasma contained within it. While most pulsed power machines produce much lower currents than the Z-machine, there are issues that can still be addressed on smaller scale facilities. Recent work on the Cornell Beam Research Accelerator (COBRA) has made use of 10 mm long and 4 mm diameter metal liners having different wall thicknesses to study the initiation of plasma on the liner's surface as well as axial magnetic field compression [P.-A. Gourdain et al., Nucl. Fusion 53, 083006 (2013)]. This report presents experimental results with non-imploding liners, investigating the impact the liner's surface structure has on initiation and ablation. Extreme ultraviolet (XUV) imaging and optical 12 frame camera imaging were used to observe and assess emission non-uniformities as they developed. Axial and side-on interferometry was used to determine the distribution of plasma near the liner surface, including the impact of non-uniformities during the plasma initiation and ablation phases of the experiments.

  14. Acoustic scattering by an axially-segmented turbofan inlet duct liner at supersonic fan speeds

    NASA Astrophysics Data System (ADS)

    McAlpine, A.; Astley, R. J.; Hii, V. J. T.; Baker, N. J.; Kempton, A. J.

    2006-07-01

    Fan noise is one of the principal noise sources in turbofan aero-engines. At supersonic fan speeds, fan tones are generated by the "rotor-alone" pressure field. In general, these tones can be well absorbed by an inlet duct acoustic liner, except at high supersonic fan speeds when the rotor-alone pressure field is well cut-on. In this article an axially segmented liner is proposed, which is predicted to improve the attenuation of tones at high supersonic fan speeds. The analysis is based on locally reacting cavity liners. The axially segmented liner is axisymmetric and consists of two circular sections of different linings joined together. The optimum design consists of two linings with the same face-sheet resistance, but with different cavity depths. The depth of the liner adjacent to the fan is very thin. This means that where the two liners are joined there is a wall impedance discontinuity that can cause acoustic scattering. Fan tones can be modelled in terms of spinning modes in a uniform circular-section duct. The liner is axisymmetric, so modal scattering will be only between different radial modes. The optimum design minimizes the acoustic energy scattered into the first radial mode. This improves the attenuation of fan tones at high supersonic fan speeds, because acoustic energy is scattered into high radial mode orders, which are better absorbed by the lining.

  15. Optimization of deformations and hoop stresses in TSV liners to boost interconnect reliability in electronic appliances

    NASA Astrophysics Data System (ADS)

    Juma, Mary Atieno; Zhang, Xuliang; He, Song Bai; Abusabah, Ahmed I. A.

    2015-12-01

    Recently, there has been a lot of research with electronic products because more and different functions are integrated into devices and the final product sizes have to be small to meet the market demand. A lot of research has been done on the (TSVs) Through Silicon Vias. In this paper, through silicon via liners are investigated. The liners: silicon dioxide, polystyrene and polypropylene carbonate are exposed to pressure on their inner surfaces and this yielded hoop stresses within their thickness. Deflections too occurred and this is a proof that deformation really took place. In one of our papers, hoop stresses for the same materials were investigated. The values were a little higher but different for each material used. In this paper, we use global cylindrical, partial cylinder model with different theta in Analysis system 14 to model the through silicon via liners. The values are lower meaning the reliability of the liners have been optimized and boosted. However, silicon dioxide liner had the lowest hoop stress around its circumference and lowest deflection value meaning that it's still one of the most reliable materials in the manufacture of through silicon via liners in the industry; but overdependence can be avoided if the other liners are used too.

  16. Hard X-Ray Emission and the Ionizing Source in LINERs

    NASA Technical Reports Server (NTRS)

    Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.

    2000-01-01

    We report X-ray fluxes in the 2-10 keV band from LINERs (low-ionization nuclear emission-line regions) and low-luminosity Seyfert galaxies obtained with the ASCA satellite. Observed X-ray luminosities are in the range between 4 x 10(exp 39) and 5 x 10(exp 41) ergs/s, which are significantly smaller than that of the "classical" low-luminosity Seyfert 1 galaxy NGC 4051. We found that X-ray luminosities in 2-10 keV of LINERs with broad H.alpha emission in their optical spectra (LINER 1s) are proportional to their Ha luminosities. This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. On the other hand, the X-ray luminosities of most LINERs without broad H.alpha emission (LINER 2s) in our sample are lower than LINER 1s at a given H.alpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their H.alpha luminosities, suggesting that their primary ionizing source is other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV.

  17. Highly cross-linked polyethylene acetabular liners retrieved four to five years after revision surgery: a report of two cases.

    PubMed

    Teeter, Matthew G; Naudie, Douglas D R; Charron, Kory D; Holdsworth, David W

    2010-08-01

    There is currently considerable interest in the use of highly cross-linked polyethylene (XLPE) acetabular liners for total hip arthroplasty (THA). In literature, only a single retrieval analysis of one type of XLPE liner implanted for greater than four years exists. The purpose of the present report is to quantify surface deviations in two XLPE liners implanted during revision THA and retrieved between four to five years after implantation. The two XLPE acetabular liners (Reflection, Smith and Nephew Inc., Memphis, TN) were retrieved from patients undergoing their second revision surgery, at 4.90 and 4.07 years. The retrieved liners and a new, non-implanted, unworn liner of the same size were scanned using micro-computed tomography (micro-CT). Articular surface deviation maps were created by comparing the retrievals to the unworn liner, based on the liner geometry obtained from micro-CT. The linear penetration rates were found to be 0.018 and 0.008 mm/year. Localized scratches and pits with deviations greater than 0.205 mm were also found on the articular surfaces of both liners. The XLPE liners retrieved from the two cases demonstrated low linear penetration rates. Regions with greater focal deviations were also apparent, likely due to third-body wear. The results are consistent with previously published clinical follow-ups of other XLPE liners.

  18. How Is Cardiogenic Shock Diagnosed?

    MedlinePlus

    ... from the NHLBI on Twitter. How Is Cardiogenic Shock Diagnosed? The first step in diagnosing cardiogenic shock ... is cardiogenic shock. Tests and Procedures To Diagnose Shock and Its Underlying Causes Blood Pressure Test Medical ...

  19. Toxic Shock Syndrome

    MedlinePlus

    ... toxic shock syndrome results from toxins produced by Staphylococcus aureus (staph) bacteria, but the condition may also ... a skin or wound infection. Bacteria, most commonly Staphylococcus aureus (staph), causes toxic shock syndrome. It can ...

  20. Neptune inbound bow shock

    NASA Technical Reports Server (NTRS)

    Szabo, Adam; Lepping, Ronald P.

    1995-01-01

    Voyager 2 crossed the inbound or upstream Neptunian bow shock at 1430 spacecraft event time on August 24 in 1989 (Belcher et al., 1989). The plasma and magnetic field measurements allow us to study the solar wind interaction with the outermost gas giant. To fully utilize all of the spacecraft observations, an improved nonlinear least squares, 'Rankine-Hugoniot' magnetohydrodynamic shock-fitting technique has been developed (Szabo, 1994). This technique is applied to the Neptunian data set. We find that the upstream bow shock normal points nearly exactly toward the Sun consistent with any reasonable large-scale model of the bow shock for a near subsolar crossing. The shock was moving outward with a speed of 14 +/- 12 km/s. The shock can be characterized as a low beta, high Mach number, strong quasi-perpendicular shock. Finally, the shock microstructure features are resolved and found to scale well with theoretical expectations.

  1. Shock & Anaphylactic Shock. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This learning activity package on shock and anaphylactic shock is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…

  2. Target compressions by working fluids driven with solid liner implosions

    NASA Technical Reports Server (NTRS)

    Chiang, P.-R.; Lewis, R. A.; Smith, G. A.; Dailey, J. M.; Chakrabarti, S.; Higman, K. I.; Bell, D.; Degnan, J. H.; Hussey, T. W.; Mullins, B. W.

    1994-01-01

    Compression by a spherical solid liner of a gold target surrounded by a hydrogen plasma is simulated. Two-dimensional simulations that treat only a subset of the physics included in the one-dimensional code were performed in an attempt to assess multidimensional effects. A one-dimensional numerical code has been developed to study the effects of thermal radiation and conduction. Results of pressure, density, and energy deposited for different initial plasma conditions are presented and discussed. Results from both one- and two-dimensional codes show that the average target density at peak compression is 39-43 g/cu cm, using the SHIVA Star facility at 90 kV discharge.

  3. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    SciTech Connect

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; Campbell, Edward Michael; Gomez, Matthew R.; Harding, Eric; Harvey-Thompson, Adam James; Hansen, Stephanie B.; Jennings, Christopher Ashley; Kimmel, Mark W.; Knapp, Patrick; Lewis, Sean M.; McBride, Ryan D.; Peterson, Kyle; Schollmeier, Marius; Scoglietti, Daniel; Sefkow, Adam B.; Shores, Jonathon; Sinars, Daniel; Slutz, Stephen A.; Smith, Ian C.; Speas, Christopher; Vesey, Roger A.; Porter, John L.

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. We determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.

  4. Validation of a Numerical Method for Determining Liner Impedance

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1996-01-01

    This paper reports the initial results of a test series to evaluate a method for determining the normal incidence impedance of a locally reacting acoustically absorbing liner, located on the lower wall of a duct in a grazing incidence, multi-modal, non-progressive acoustic wave environment without flow. This initial evaluation is accomplished by testing the methods' ability to converge to the known normal incidence impedance of a solid steel plate, and to the normal incidence impedance of an absorbing test specimen whose impedance was measured in a conventional normal incidence tube. The method is shown to converge to the normal incident impedance values and thus to be an adequate tool for determining the impedance of specimens in a grazing incidence, multi-modal, nonprogressive acoustic wave environment for a broad range of source frequencies.

  5. Radium migration through clay liners at waste disposal sites.

    PubMed

    Bosco, M E; Cunha, I I; Saito, R T

    2001-02-05

    The migration of 226Ra through the bottom compacted clay liner of the wastewater disposal reservoirs of an industrial plant that processes uranium ore was evaluated. An instrumental method for 226Ra analysis in soils, consisting of detector calibration, the determination of detector counting efficiency, cumulative counting of both background and soil samples in regular counting intervals, and photo-peak smoothing was developed. The 226Ra was analyzed by means of its granddaughter 214Bi, at a photo-peak of 609 keV. The results showed that most of the 226Ra which diffused from the solution into the soil was retained in the upper layer of the sample, and that just a small percentage migrated to the subjacent layers. This methodology is adequate for the assessment of the migration of radionuclides through soil layers and for environmental impact studies related to contamination of soils by radionuclides.

  6. Hydraulic conductivity of landfill liners containing benzyltriethylammonium-bentonite

    USGS Publications Warehouse

    Smith, James A.; Franklin, Pamela M.; Jaffe, Peter R.

    1992-01-01

    Varying weight percentages of an Ottawa sand, benzyltriethylammonium-bentonite (BTEA-clay), Wyoming bentonite (Na-clay), and water were mixed uniformly and compacted to simulate sand-and-clay liners for waste-disposal facilities. The hydraulic conductivities of the compacted soil cores were measured in triplicate. The hydraulic conductivities of cores containing 92 percent sand and 8 percent BTEA-clay were about of 10-4 cm/s. The hydraulic conductivities of cores containing 92 percent sand and 8 percent Na-clay and of cores containing 88 percent sand, 8 percent Na-clay, and 4 percent BTEA-clay were about 10-8 cm/s.

  7. Aging of steel containments and liners in nuclear power plants

    SciTech Connect

    Naus, D.J.; Oland, C.B.; Ellingwood, B.; Norris, W.E.

    1998-01-01

    Aging of the containment pressure boundary in light water reactor plants is being addressed to understand the significant factors relating occurrence of corrosion efficacy of inspection and structural capacity reduction of steel containments and liners of concrete containments. and to make recommendations on use of risk models in regulatory decisions. Current regulatory in-service inspection requirements are reviewed and a summary of containment related degradation experience is presented. Current and emerging nondestructive examination techniques and a degradation assessment methodology for characterizing and quantifying the amount of damage present are described. Quantitative tools for condition assessment of aging structures using time dependent structural reliability analysis methods are summarized. Such methods provide a framework for addressing the uncertainties attendant to aging in the decision process. Results of this research provide a means for establishing current and estimating future structural capacity margins of containments, and to address the significance of incidences of reported containment degradation.

  8. Nonlinear Laser-Plasma Interaction in Magnetized Liner Inertial Fusion

    DOE PAGES

    Geissel, Matthias; Awe, Thomas James; Bliss, David E.; ...

    2016-03-04

    Sandia National Laboratories is pursuing a variation of Magneto-Inertial Fusion called Magnetized Liner Inertial Fusion, or MagLIF. The MagLIF approach requires magnetization of the deuterium fuel, which is accomplished by an initial external B-Field and laser-driven pre-heat. Although magnetization is crucial to the concept, it is challenging to couple sufficient energy to the fuel, since laser-plasma instabilities exist, and a compromise between laser spot size, laser entrance window thickness, and fuel density must be found. Ultimately, nonlinear processes in laser plasma interaction, or laser-plasma instabilities (LPI), complicate the deposition of laser energy by enhanced absorption, backscatter, filamentation and beam-spray. Wemore » determine and discuss key LPI processes and mitigation methods. Results with and without improvement measures are presented.« less

  9. Liner shape and power consumption in rotary mills

    SciTech Connect

    Valderrama, W.; Grandela, P.; Magne, L.

    1995-12-31

    The effect of liner shape on power consumption was studied in a small laboratory mill under various operating conditions. It was found that the angle subtended between the lifter front face and the face in contact with the mill case has the most significant influence. The increasing height of lifter reduced power consumption, whereas the lifter spacing did not show any influence. The effect of height is less relevant at lower front angles. Highest power consumption is achieved with a 450 front angle. A comparison of cylinders and balls under identical conditions gives higher power consumption for ball charges. The data does suggest that, for maximum power draw, slip in the outer layers of the charge and the early recirculation of energy to the mill case should be avoided. Both factors prevent an efficient energy transfer to the mill charge.

  10. Electrical leak detection system for landfill liners: A case history

    SciTech Connect

    White, C.C.; Barker, R.D.

    1997-12-01

    As landfill specifications become more stringent in the United Kingdom, the development of increasingly sophisticated monitoring methods is necessary to meet environmental protection goals. The case history describes the development of a 2-million-cubic-meter-capacity landfill, located in a sandstone quarry and 1 km from a public water supply borehole, where the sensitivity of the site to ground water contamination and the proximity to a public water supply borehole are particular issues. The landfill design incorporated a more sensitive environmental monitoring system, using a geophysical technique. The monitoring system comprises a permanent grid of electrodes installed beneath the landfill, connected by multicore cable to a computer-controlled earth resistance meter and switching unit in the site weighbridge. It was designed to detect holes in the landfill liner prior to and after covering with waste and to monitor the migration of contaminants beneath the landfill before they reach the perimeter observation boreholes, should leakage occur.

  11. Biomass shock pretreatment

    SciTech Connect

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  12. Physiopathology of shock

    PubMed Central

    Bonanno, Fabrizio Giuseppe

    2011-01-01

    Shock syndromes are of three types: cardiogenic, hemorrhagic and inflammatory. Hemorrhagic shock has its initial deranged macro-hemodynamic variables in the blood volume and venous return. In cardiogenic shock there is a primary pump failure that has cardiac output/mean arterial pressure as initial deranged variables. In Inflammatory Shock it is the microcirculation that is mainly affected, while the initial deranged macrocirculation variable is the total peripheral resistance hit by systemic inflammatory response. PMID:21769210

  13. Comparison of Acoustic Impedance Eduction Techniques for Locally-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Parrott, T. L.; Watson, W. R.

    2003-01-01

    Typical acoustic liners used in current aircraft inlets and aft-fan ducts consist of some type of perforated facesheet bonded to a honeycomb core. A number of techniques for determining the acoustic impedance of these locallyreacting liners have been developed over the last five decades. In addition, a number of models have been developed to predict the acoustic impedance of locallyreacting liners in the presence of grazing flow, and to use that information together with aeroacoustic propagation codes to assess the noise absorption provided by these liners. These prediction models have incorporated the results from databases acquired with specific impedance eduction techniques. Thus, while these prediction models are acceptable for liners that are similar to those tested in these databases, their application to new liner configurations must be viewed with caution. The primary purpose of this paper is to provide a comparison of impedance eduction techniques that have been implemented at various aerospace research laboratories in the United States (NASA Langley Research Center, General Electric Aircraft Engines, B. F. Goodrich and Boeing). A secondary purpose is to provide data for liner configurations that extend the porosity range beyond that which has been previously used in common aircraft engine nacelles. Two sets of liners were designed to study the effects of three parameters: perforate hole diameter, facesheet thickness and porosity. These two sets of liners were constructed for testing in each of the laboratories listed above. The first set of liners was designed to fit into the NASA Langley and Boeing test facilities. The second set was designed to fit into the General Electric Aircraft Engines and B. F. Goodrich test facilities. By using the same parent material, both sets of liners were identical to within the limits of material and fabrication variability. Baseline data were obtained in the normal incidence impedance tubes at NASA Langley and B. F

  14. Method and apparatus for monitoring the integrity of a geomembrane liner using time domain reflectometry

    DOEpatents

    Morrison, John L.

    2001-04-24

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.

  15. Filament wound pressure vessels with load sharing liners for Space Shuttle Orbiter applications

    NASA Technical Reports Server (NTRS)

    Ecord, G. M.

    1976-01-01

    It is recognized that the use of overwrapped pressure vessels with load sharing liners may provide significant weight savings for high pressure gas containment in Space Shuttle Orbiter systems. The technology readiness to produce Kevlar wound vessels with load sharing liners of titanium 6Al-4V, Inconel 718 or cryoformed 301 steel has been demonstrated. It has been estimated that about 400 lbs can be saved in the Orbiter by using overwrapped vessels with load sharing liners instead of monolithic metal designs. Total weight of the composite vessels would be about 1350 lbs as opposed to about 1750 lbs for all-metal vessels.

  16. Method and Apparatus for Monitoring the Integrity of a Geomembrane Liner using time Domain Reflectometry

    SciTech Connect

    Morris, John L.

    1998-11-09

    Leaks are detected in a multi-layered geomembrane liner by a two-dimensional time domain reflectometry (TDR) technique. The TDR geomembrane liner is constructed with an electrically conductive detection layer positioned between two electrically non-conductive dielectric layers, which are each positioned between the detection layer and an electrically conductive reference layer. The integrity of the TDR geomembrane liner is determined by generating electrical pulses within the detection layer and measuring the time delay for any reflected electrical energy caused by absorption of moisture by a dielectric layer.

  17. Kiloparsec-scale radio emission in Seyfert and LINER galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh; Ishwara-Chandra, C. H.; Wadadekar, Yogesh; Beelen, Alexandre; Kharb, Preeti

    2015-01-01

    Seyfert and LINER galaxies are known to exhibit compact radio emission on ˜10-100 pc scales, but larger Kiloparsec-Scale Radio structures (KSRs) often remain undetected in sub-arcsec high-resolution observations. We investigate the prevalence and nature of KSRs in Seyfert and LINER galaxies using the 1.4 GHz VLA FIRST and NVSS observations. Our sample consists of 2651 sources detected in FIRST and of these 1737 sources also have NVSS counterparts. Considering the ratio of total to peak flux density (θ = (Sint/Speak)1/2) as a parameter to infer the presence of extended radio emission we show that ≥30 per cent of FIRST-detected sources possess extended radio structures on scales larger than 1.0 kpc. The use of low-resolution NVSS observations help us to recover faint extended KSRs that are resolved out in FIRST observations and results in ≥42.5 per cent KSR sources in FIRST-NVSS sub-sample. This fraction is only a lower limit owing to the combination of projection, resolution and sensitivity effects. Our study demonstrates that KSRs may be more common than previously thought and are found across all redshifts, luminosities and radio loudness. The extranuclear radio luminosity of KSR sources is found to be positively correlated with the core radio luminosity as well as the [O III] λ5007 Å line luminosity and this can be interpreted as KSRs being powered by AGN rather than star formation. The distributions of the FIR-to-radio ratios and mid-IR colours of KSR sources are also consistent with their AGN origin. However, contribution from star formation cannot be ruled out particularly in sources with low radio luminosities.

  18. Modeling normal shock velocity curvature relations for heterogeneous explosives

    NASA Astrophysics Data System (ADS)

    Yoo, Sunhee; Crochet, Michael; Pemberton, Steven

    2017-01-01

    The theory of Detonation Shock Dynamics (DSD) is, in part, an asymptotic method to model a functional form of the relation between the shock normal, its time rate and shock curvature κ. In addition, the shock polar analysis provides a relation between shock angle θ and the detonation velocity Dn that is dependent on the equations of state (EOS) of two adjacent materials. For the axial detonation of an explosive material confined by a cylinder, the shock angle is defined as the angle between the shock normal and the normal to the cylinder liner, located at the intersection of the shock front and cylinder inner wall. Therefore, given an ideal explosive such as PBX-9501 with two functional models determined, a unique, smooth detonation front shape ψ can be determined that approximates the steady state detonation shock front of the explosive. However, experimental measurements of the Dn(κ) relation for heterogeneous explosives such as PBXN-111 [D. K. Kennedy, 2000] are challenging due to the non-smoothness and asymmetry usually observed in the experimental streak records of explosion fronts. Out of many possibilities the asymmetric character may be attributed to the heterogeneity of the explosives; here, material heterogeneity refers to compositions with multiple components and having a grain morphology that can be modeled statistically. Therefore in extending the formulation of DSD to modern novel explosives, we pose two questions: (1) is there any simple hydrodynamic model that can simulate such an asymmetric shock evolution, and (2) what statistics can be derived for the asymmetry using simulations with defined structural heterogeneity in the unreacted explosive? Saenz, Taylor and Stewart [1] studied constitutive models for derivation of the Dn(κ) relation for porous homogeneous explosives and carried out simulations in a spherical coordinate frame. In this paper we extend their model to account for heterogeneity and present shock evolutions in heterogeneous

  19. The design and flight test of an engine inlet bulk acoustic liner

    NASA Technical Reports Server (NTRS)

    Lester, H. C.; Preisser, J. S.; Parrott, T. L.

    1983-01-01

    This paper summarizes the design, fabrication and flight evaluation of a Kevlar acoustic liner configuration for a JT15D turbofan engine. The liner was designed to suppress, by a measurable amount, a dominant (13,0) BPF tone. This tone or spinning mode was produced for research purposes by installing 41 circumferentially distributed small diameter rods upstream of the 28 fan blades. Duct liner attenuations calculated by a finite element procedure were compared to far field power (insertion) losses deduced from flight data. The finite element program modeled the variable geometry of the JT15D inlet and used a uniform flow with a boundary layer roll-off to model the inlet flow field. Calculated liner losses were generally conservative. That is, measured far field power losses were generally greater than attenuations calculated by the finite element computer program.

  20. Formation of metal and dielectric liners using a solution process for deep trench capacitors.

    PubMed

    Ham, Yong-Hyun; Kim, Dong-Pyo; Baek, Kyu-Ha; Park, Kun-Sik; Kim, Moonkeun; Kwon, Kwang-Ho; Shin, Hong-Sik; Lee, Kijun; Do, Lee-Mi

    2012-07-01

    We demonstrated the feasibility of metal and dielectric liners using a solution process for deep trench capacitor application. The deep Si trench via with size of 10.3 microm and depth of 71 microm were fabricated by Bosch process in deep reactive ion etch (DRIE) system. The aspect ratio was about 7. Then, nano-Ag ink and poly(4-vinylphenol) (PVPh) were used to form metal and dielectric liners, respectively. The thicknesses of the Ag and PVPh liners were about 144 and 830 nm, respectively. When the curing temperature of Ag film increased from 120 to 150 degrees C, the sheet resistance decreased rapidly from 2.47 to 0.72 Omega/sq and then slightly decreased to 0.6 Omega/sq with further increasing the curing temperature beyond 150 degrees C. The proposed liner formation method using solution process is a simple and cost effective process for the high capacity of deep trench capacitor.

  1. Experimental Demonstration of the Stabilizing Effect of Dielectric Coatings on Magnetically Accelerated Imploding Metallic Liners.

    PubMed

    Awe, T J; Peterson, K J; Yu, E P; McBride, R D; Sinars, D B; Gomez, M R; Jennings, C A; Martin, M R; Rosenthal, S E; Schroen, D G; Sefkow, A B; Slutz, S A; Tomlinson, K; Vesey, R A

    2016-02-12

    Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70  μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. The inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130  μm over the 4.0 mm axial height captured by the radiograph.

  2. Experimental Demonstration of the Stabilizing Effect of Dielectric Coatings on Magnetically Accelerated Imploding Metallic Liners

    NASA Astrophysics Data System (ADS)

    Awe, T. J.; Peterson, K. J.; Yu, E. P.; McBride, R. D.; Sinars, D. B.; Gomez, M. R.; Jennings, C. A.; Martin, M. R.; Rosenthal, S. E.; Schroen, D. G.; Sefkow, A. B.; Slutz, S. A.; Tomlinson, K.; Vesey, R. A.

    2016-02-01

    Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μ m of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR =Rin,0/Rin(z ,t ) ] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. The inner-wall radius Rin(z ,t ) displayed unprecedented uniformity, varying from 95 to 130 μ m over the 4.0 mm axial height captured by the radiograph.

  3. Duct liner optimization for turbomachinery noise sources. [aircraft noise/engine noise - numerical analysis

    NASA Technical Reports Server (NTRS)

    Lester, H. C.; Posey, J. W.

    1975-01-01

    An acoustical field theory for axisymmetric, multisectioned lined ducts with uniform flow profiles was combined with a numerical minimization algorithm to predict optimal liner configurations having one, two, and three sections. Source models studied include a point source located on the axis of the duct and rotor/outlet-stator viscous wake interaction effects for a typical research compressor operating at an axial flow Mach number of about 0.4. For this latter source, optimal liners for equipartition-of energy, zero-phase, and least-attenuated-mode source variations were also calculated and compared with exact results. It is found that the potential benefits of liner segmentation for the attenuation of turbomachinery noise is greater than would be predicted from point source results. Furthermore, effective liner design requires precise knowledge of the circumferential and radial modal distributions.

  4. Evaluation of two polyimides and of an improved liner retention design for self-lubricating bushings

    NASA Technical Reports Server (NTRS)

    Sliney, H. E.

    1984-01-01

    Two different polyimide polymers were studied and the effectiveness of a design feature to improve retention of the self lubricating composite liners under high load was evaluated. The basic bearing design consisted of a molded layer of chopped graphite-fiber-reinforced-polyimide (GFRP) composite bonded to the bore of a steel bushing. The friction, wear, and load carrying ability of the bushings were determined in oscillating tests at 25, 260 and 315 C at radial unit loads up to 260 MPa. Friction coefficients were typically 0.15 to 0.25. Bushings with liners containing a new partially fluorinated polymer were functional, but had a lower load capacity and higher wear rate than those containing a more conventional, high temperature polyimide. The liner retention design feature reduced the tendency of the liners to crack and work out of the contact zone under high oscillating loads.

  5. ETV Program Report: Coatings for Wastewater Collection Systems - Protective Liner Systems, Inc., Epoxy Mastic, PLS-614

    EPA Science Inventory

    The Protective Liner Systems International, Inc. Epoxy Mastic PLS-614 coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and T...

  6. Experimental demonstration of the stabilizing effect of dielectric coatings on magnetically accelerated imploding metallic liners

    DOE PAGES

    Awe, Thomas James; Peterson, Kyle J.; Yu, Edmund P.; ...

    2016-02-10

    Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. Lastly, the inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130 μm over the 4.0 mm axial height captured by the radiograph.

  7. Adaptive Back Sheet Material for Acoustic Liner Applications-ARMD Seedling Fund Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Jones, Michael G.; Farrar, Dawnielle

    2014-01-01

    A recently developed piezo-electric composite film is evaluated for its usefulness in application in acoustic liners. Researchers at the NASA Langley Research Center Liner Technology Facility developed experiments to measure the electrical response of the material to acoustic excitation and the vibrational response of the material to electrical excitation. The robustness of the piezo-electric film was also assessed. The material's electrical response to acoustic excitation is found to be comparable to a commercial microphone in the range of frequencies from 500 to 3000 Hz. However, the vibrational response to electrical excitation in the frequency range of interest is an order of magnitude less than may be necessary for application to acoustic liners. Nevertheless, experimental results indicate that the potential exists for the material to produce a measurable change in the impedance spectrum of a liner. Work continues to improve the authority of the piezo-electric film.

  8. On the attenuation of sound by three-dimensionally segmented acoustic liners in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Koch, W.

    1979-01-01

    Axial segmentation of acoustically absorbing liners in rectangular, circular or annual duct configurations is a very useful concept for obtaining higher noise attenuation with respect to the bandwidth of absorption as well as the maximum attenuation. As a consequence, advanced liner concepts are proposed which induce a modal energy transfer in both cross-sectional directions to further reduce the noise radiated from turbofan engines. However, these advanced liner concepts require three-dimensional geometries which are difficult to treat theoretically. A very simple three-dimensional problem is investigated analytically. The results show a strong dependence on the positioning of the liner for some incident source modes while the effect of three-dimensional segmentation appears to be negligible over the frequency range considered.

  9. Experimental demonstration of the stabilizing effect of dielectric coatings on magnetically accelerated imploding metallic liners

    SciTech Connect

    Awe, Thomas James; Peterson, Kyle J.; Yu, Edmund P.; McBride, Ryan D.; Sinars, Daniel B.; Gomez, Matthew R.; Jennings, Christopher Ashley; Martin, Matthew R.; Rosenthal, Stephen E.; Sefkow, Adam B.; Slutz, Stephen A.; Vesey, Roger A.; Schroen, D. G.; Tomlinson, Kurt

    2016-02-10

    Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. Lastly, the inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130 μm over the 4.0 mm axial height captured by the radiograph.

  10. Long Term Results of Liner Polyethylene Cementation Technique in Revision for Peri-acetabular Osteolysis.

    PubMed

    Rivkin, Gurion; Kandel, Leonid; Qutteineh, Bilal; Liebergall, Meir; Mattan, Yoav

    2015-06-01

    Patients with peri-acetabular osteolysis around a well fixed cementless acetabular component may be treated with liner exchange. When the locking mechanism is unreliable or unavailable, cementing the liner into the fixed acetabular component is a feasible option. The purpose of this study was to evaluate the clinical and radiographic long term results of this technique. Forty hip revisions with liner cementation in 37 patients were performed. The minimum follow up was 10 years. Modified Harris Hip Score and recent x rays were reviewed. Four hips were re-revised. Two patients were diagnosed with exacerbation of osteolysis but refused revision. Dislocation rate was relatively high (16%). Liner cementation technique in revision hip surgery is useful in patients with a well fixed metal backed acetabular component.

  11. On the efficacy of imploding plasma liners for magnetized fusion target compression

    NASA Astrophysics Data System (ADS)

    Parks, P. B.

    2008-06-01

    A new theoretical model is formulated to study the idea of merging a spherical array of converging plasma jets to form a "plasma liner" that further converges to compress a magnetized plasma target to fusion conditions [Y. C. F. Thio et al., "Magnetized target fusion in a spheroidal geometry with standoff drivers," Current Trends in International Fusion Research II, edited by E. Panarella (National Research Council Canada, Ottawa, Canada, 1999)]. For a spherically imploding plasma liner shell with high initial Mach number (M =liner speed/sound speed) the rise in liner density with decreasing radius r goes as ρ ˜1/r2, for any constant adiabatic index γ =dlnp/dlnρ. Accordingly, spherical convergence amplifies the ram pressure of the liner on target by the factor A ˜C2, indicating strong coupling to its radial convergence C =rm/R, where rm(R)=jet merging radius (compressed target radius), and A =compressed target pressure/initial liner ram pressure. Deuterium-tritium (DT) plasma liners with initial velocity ˜100km/s and γ =5/3, need to be hypersonic M ˜60 and thus cold in order to realize values of A ˜104 necessary for target ignition. For optically thick DT liners, T <2eV, n >1019-1020cm-3, blackbody radiative cooling is appreciable and may counteract compressional heating during the later stages of the implosion. The fluid then behaves as if the adiabatic index were depressed below 5/3, which in turn means that the same amplification A =1.6×104 can be accomplished with a reduced initial Mach number M ≈12.7(γ-0.3)4.86, valid in the range (10liners assembled by current and anticipated plasma jets is <4%. A new similarity model for fusion α-particle heating of the collapsed liner indicates that "spark" ignition of the DT liner fuel does not appear to be possible for magnetized fusion targets with typical threshold values of areal density ρR <0.02gcm-2.

  12. On the efficacy of imploding plasma liners for magnetized fusion target compression

    SciTech Connect

    Parks, P. B.

    2008-06-15

    A new theoretical model is formulated to study the idea of merging a spherical array of converging plasma jets to form a 'plasma liner' that further converges to compress a magnetized plasma target to fusion conditions [Y. C. F. Thio et al., 'Magnetized target fusion in a spheroidal geometry with standoff drivers', Current Trends in International Fusion Research II, edited by E. Panarella (National Research Council Canada, Ottawa, Canada, 1999)]. For a spherically imploding plasma liner shell with high initial Mach number (M=liner speed/sound speed) the rise in liner density with decreasing radius r goes as {rho}{approx}1/r{sup 2}, for any constant adiabatic index {gamma}=d ln p/d ln {rho}. Accordingly, spherical convergence amplifies the ram pressure of the liner on target by the factor A{approx}C{sup 2}, indicating strong coupling to its radial convergence C=r{sub m}/R, where r{sub m}(R)=jet merging radius (compressed target radius), and A=compressed target pressure/initial liner ram pressure. Deuterium-tritium (DT) plasma liners with initial velocity {approx}100 km/s and {gamma}=5/3, need to be hypersonic M{approx}60 and thus cold in order to realize values of A{approx}10{sup 4} necessary for target ignition. For optically thick DT liners, T<2 eV, n>10{sup 19}-10{sup 20} cm{sup -3}, blackbody radiative cooling is appreciable and may counteract compressional heating during the later stages of the implosion. The fluid then behaves as if the adiabatic index were depressed below 5/3, which in turn means that the same amplification A=1.6x10{sup 4} can be accomplished with a reduced initial Mach number M{approx_equal}12.7({gamma}-0.3){sup 4.86}, valid in the range (10liners assembled by current and anticipated plasma jets is <4%. A new similarity model for fusion {alpha}-particle heating of the collapsed liner indicates that 'spark' ignition of the DT liner fuel does not appear to be

  13. Assessment of Bulk Absorber Properties for Multi-Layer Perforates in Porous Honeycomb Liners

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Parrott, Tony L.

    2006-01-01

    CONTINUING progress in materials technology provides potential for improved acoustic liners for attenuating broadband fan noise emissions from aircraft engine nacelles. Conventional liners (local-reacting perforate-over-honeycomb structures) provide significant narrow-band attenuation, but limited attenuation over wide bandwidths. Two approaches for increasing attenuation bandwidth are to (1) replace the honeycomb structure with bulk material, or (2) cascade multiple layers of perforate/honeycomb structures. Usage of the first approach is limited because of mechanical and maintenance reasons, while multi-layer liners are limited to about three layers because of their additional mechanical complexity, depth and weight. The current research concerns a novel approach reported by the University of Cincinnati, in which a single-layer conventional liner is converted into an extended-reaction, broadband absorber by making the honeycomb core structure porous. This modified single-layer liner requires no increase in depth and weight, and minimal increase in mechanical complexity. Langley has initiated research to identify potential benefits of liner structures with porous cell walls. This research has two complementary goals: (1) develop and validate experimental techniques for treating multi-layer perforates (representative of the internal cells of a liner with porous cell walls) as 1-D bulk materials, and (2) develop analytical approaches to validate this bulk material assumption. If successful, the resultant model can then be used to design optimized porous honeycomb liners. The feasibility of treating an N-layer perforate system (N porous plates separated by uniform air gaps) as a one-dimensional bulk absorber is assessed using the Two-Thickness Method (TTM), which is commonly used to educe bulk material intrinsic acoustic parameters. Tests are conducted with discrete tone and random noise sources, over an SPL range sufficient to determine the nonlinearity of the test

  14. Formation of Imploding Plasma Liners for HEDP and MIF Application

    SciTech Connect

    Witherspoon, F. Douglas; Case, Andrew; Brockington, Samuel; Messer, Sarah; Bomgardner, Richard; Phillips, Mike; Wu, Linchun; Elton, Ray

    2014-11-11

    Plasma jets with high density and velocity have a number of important applications in fusion energy and elsewhere, including plasma refueling, disruption mitigation in tokamaks, magnetized target fusion, injection of momentum into centrifugally confined mirrors, plasma thrusters, and high energy density plasmas (HEDP). In Magneto-Inertial Fusion (MIF), for example, an imploding material liner is used to compress a magnetized plasma to fusion conditions and to confine the resulting burning plasma inertially to obtain the necessary energy gain. The imploding shell may be solid, liquid, gaseous, or a combination of these states. The presence of the magnetic field in the target plasma suppresses thermal transport to the plasma shell, thus lowering the imploding power needed to compress the target to fusion conditions. This allows the required imploding momentum flux to be generated electromagnetically using off-the-shelf pulsed power technology. Practical schemes for standoff delivery of the imploding momentum flux are required and are open topics for research. One approach for accomplishing this, called plasma jet driven magneto-inertial fusion (PJMIF), uses a spherical array of pulsed plasma guns to create a spherically imploding shell of very high velocity, high momentum flux plasma. This approach requires development of plasma jet accelerators capable of achieving velocities of 50-200 km/s with very precise timing and density profiles, and with high total mass and density. Low-Z plasma jets would require the higher velocities, whereas very dense high-Z plasma shells could achieve the goal at velocities of only 50-100 km/s. In this report, we describe our work to develop the pulsed plasma gun technology needed for an experimental scientific exploration of the PJMIF concept, and also for the other applications mentioned earlier. The initial goal of a few hundred of hydrogen at 200 km/s was eventually replaced with accelerating 8000 μg of argon or xenon to 50 km

  15. Dimensional accuracy of small gold alloy castings. Part 4. The casting ring and ring liners.

    PubMed

    Morey, E F

    1992-04-01

    The role of the casting ring and its asbestos liner is discussed. Asbestos as a liner has now largely been replaced by two alternative materials, one based on cellulose and the other on ceramic fibres. The limited literature on the effect of these newer materials on casting accuracy is also reviewed as their introduction may require significant changes in the traditional technology of dental casting.

  16. The effect of selected parameters of the honing process on cylinder liner surface topography

    NASA Astrophysics Data System (ADS)

    Pawlus, P.; Dzierwa, A.; Michalski, J.; Reizer, R.; Wieczorowski, M.; Majchrowski, R.

    2014-04-01

    Many truck cylinder liners made from gray cast iron were machined. Ceramic and diamond honing stones were used in the last stages of operation: coarse honing and plateau honing. The effect of honing parameters on the cylinder liner surface topography was studied. Selected surface topography parameters were response variables. It was found that parameters from the Sq group were sensitive to honing parameter change. When plateau honing time varied, the Smq parameter increased, while the other parameters, Spq and Svq, were stable.

  17. Degradation of geocomposite clay liners due to geochemical reactions in sodium bentonite

    SciTech Connect

    Sivalingam, S. )

    1993-03-01

    Geocomposite clay liners are commonly used as permeability barriers in landfills, hazardous waste facilities, overlying caps, secondary containments for tank farms, industrial and decorative lagoons and as slurry walls. Most recent geocomposite liners are manufactured using sodium bentonite sandwiched between two polypropylene geotextile. Na-bentonite is widely used because of its high swelling capacity, its low permeability when hydrated, high cation exchange capacity and low cost. Na-bentonite used in geo-composite liners showed degradation due to numerous geochemical reactions within the clays and cover materials at the site. The clays within the liner has undergone changes in pH from pH9 to pH5, dehydration and replacement of interlayer Na by Ca and Mg ions. Cation exchange capacity (CEC) reduced from 110 meq/100 gm to 72.5 meq/100 gm. The reduction in CEC maybe attributed to transformation of clay minerals. Analytical electron microscopy data show a decrease in Na and an increase in Ca and Mg. This observation is confirmed by the results obtained from cation exchange capacity measurements and XRD. These changes in Na-bentonite increased the permeability of the liner by 2 to 4 orders of magnitude and caused the liners to leak.

  18. "Severe" wear challenge to 36 mm mechanically enhanced highly crosslinked polyethylene hip liners.

    PubMed

    Bowsher, J G; Williams, P A; Clarke, I C; Green, D D; Donaldson, T K

    2008-07-01

    Our purpose was to compare the wear performance of mechanically enhanced 5Mrad highly crosslinked polyethylene (MEP, ArComXL) hip liners to (control) 3Mrad UHMWPE liners (ArCom) in 36 mm head size. As a more severe synergy of clinically relevant test models, we contrasted wear with custom roughened Co-Cr surfaces (Ra 500 nm) to the standard pristine Co-Cr heads (Ra < 20 nm) using a severe microseparation test mode in our hip simulator. We adopted a previously published model to estimate potential biological activity. On new Co-Cr heads, the MEP liners showed a 47% reduction in volumetric wear a 13% reduction in wear particle size and a 27% reduction in Functional Biological Activity (FBA) compared to our control. On rough Co-Cr heads, the MEP liners showed little advantage in terms of volumetric wear compared with the control. However, the MEP liners overall showed a 38% reduction in FBA compared to the control owing to a larger volume fraction of larger particles. Thus overall the MEP liners appeared to offer advantages in terms of reduced FBA indices.

  19. Acoustic properties and durability of liner materials at non-standard atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

    1994-01-01

    This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

  20. Late failure of annealed highly cross-linked polyethylene acetabular liner.

    PubMed

    Hara, Daisuke; Nakashima, Yasuharu; Yamamoto, Takuaki; Higashihara, Shinshichiro; Todo, Mitsugu; Hirata, Masanobu; Akiyama, Mio; Iwamoto, Yukihide

    2013-12-01

    Highly cross-linked polyethylene (HXPE) in total hip arthroplasty (THA) has been shown to significantly decrease wear rates compared with conventional polyethylene (CPE). However, crosslinking, thermal treatment and oxidation can decrease the mechanical properties of PE, and several cases of fracture of remelted HXPE liners were reported. We present, for the first time, unexpected failures of THA with the use of annealed HXPE liners in two patients occurring at 7 and 8 years after operation. Operative findings revealed dislocated liners from the metal shell and a fracture of the superior rim at the rim-dome junction in both liners. Scanning electron microscopy showed that the cracks initiated at the rim and propagated toward the articular surface. Both liners showed generally a low amount of oxidation (less than 1.00) at the articular surface and low wear rates; however, oxidation at the rim was relatively higher (mean 1.55). These findings suggested that decreased mechanical properties at the rim-dome junction due to cross-linking, annealing and oxidation might have been caused breakage of the HXPE liners after a long implantation time, although the annealed HXPE achieved low degree of wear.

  1. Star formation and AGN activity in the most luminous LINERs in the local universe

    NASA Astrophysics Data System (ADS)

    Márquez, I.; Povic, M.; Netzer, H.; Masegosa, J.; Nordon, R.; Pérez, E.; Schoenell, W.

    2017-03-01

    This work presents the properties of 42 objects in the group of the most luminous, highest star formation rate (SFR) low-ionization nuclear emission-line regions (LINERs) at z = 0.04 - 0.11. We obtained long-slit spectroscopy of the nuclear regions for all sources, and FIR data (Herschel and IRAS) for 13 of them.We measured emission-line intensities, extinction, stellar populations, stellar masses, ages, active galactic nuclei (AGN) luminosities, and SFRs. We find considerable differences from other low-redshift LINERs, and general similarity to star-forming galaxies. We confirm the existence of such luminous LINERs in the local universe, after being previously detected at z˜0.3 by Tommasin et al. The median stellar mass of these LINERs corresponds to 6 - 7× 10^{10} M_⊙ which was found in previous works to correspond to the peak of relative growth rate of stellar populations and therefore for the highest SFRs. Other LINERs although showing similar AGN luminosities have lower SFR. We find that most of these sources have LAGN ˜ LSF suggesting co-evolution of black hole and stellarmass. In general, the fraction of local LINERs on the main sequence of star-forming galaxies is related to their AGN luminosity.

  2. Utilization of sepiolite materials as a bottom liner material in solid waste landfills.

    PubMed

    Guney, Yucel; Cetin, Bora; Aydilek, Ahmet H; Tanyu, Burak F; Koparal, Savas

    2014-01-01

    Landfill bottom liners are generally constructed with natural clay soils due to their high strength and low hydraulic conductivity characteristics. However, in recent years it is increasingly difficult to find locally available clay soils that satisfy the required engineering properties. Fine grained soils such as sepiolite and zeolite may be used as alternative materials in the constructions of landfill bottom liners. A study was conducted to investigate the feasibility of using natural clay rich in kaolinite, sepiolite, zeolite, and their mixtures as a bottom liner material. Unconfined compression tests, swell tests, hydraulic conductivity tests, batch and column adsorption tests were performed on each type of soil and sepiolite-zeolite mixtures. The results of the current study indicate that sepiolite is the dominant material that affects both the geomechanical and geoenvironmental properties of these alternative liners. An increase in sepiolite content in the sepiolite-zeolite mixtures increased the strength, swelling potential and metal adsorption capacities of the soil mixtures. Moreover, hydraulic conductivity of the mixtures decreased significantly with the addition of sepiolite. The utilization of sepiolite-zeolite materials as a bottom liner material allowed for thinner liners with some reduction in construction costs compared to use of a kaolinite-rich clay.

  3. Modeling of the merging, liner formation, implosion of hypervelocity plasma jets for the PLX- α project

    NASA Astrophysics Data System (ADS)

    Cassibry, Jason; Hsu, Scott; Schillo, Kevin; Samulyak, Roman; Stoltz, Peter; Beckwith, Kris

    2015-11-01

    A suite of numerical tools will support the conical and 4 π plasma-liner-formation experiments for the PLX- α project. A new Lagrangian particles (LP) method will provide detailed studies of the merging of plasma jets and plasma-liner formation/convergence. A 3d smooth particle hydrodynamic (SPH) code will simulate conical (up to 9 jets) and 4 π spherical (up to 60 jets) liner formation and implosion. Both LP and SPH will use the same tabular EOS generated by Propaceos, thermal conductivity, optically thin radiation and physical viscosity models. With LP and SPH,the major objectives are to study Mach-number degradation during jet merging, provide RMS amplitude and wave number of the liner nonuniformity at the leading edge, and develop scaling laws for ram pressure and liner uniformity as a function of jet parameters. USIM, a 3D multi-fluid plasma code, will be used to perform 1D and 2D simulations of plasma-jet-driven magneto-inertial fusion (PJMIF) to identify initial conditions in which the ``liner gain'' exceeds unity. A brief overview of the modeling program will be provided. Results from SPH modeling to support the PLX- α experimental design will also be presented, including preliminary ram-pressure scaling and non-uniformity characterization.

  4. Ion-viscosity effects on plasma-liner formation and implosion via merging supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Schillo, Kevin; Cassibry, Jason; Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team

    2016-10-01

    The PLX- α project endeavors to study plasma-liner formation and implosion by merging a spherical array of plasma jets as a candidate standoff driver for MIF. Smoothed particle hydrodynamics is used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. Ion viscosity is anticipated to be an important mechanism for momentum transport during liner formation, implosion, and stagnation. To study this, ion viscosity was incorporated into the code. To provide confidence in the numerical output and to help identify the difference between numerical and physical diffusion, a series of test cases were performed, consisting of Couette flow, Gresho vortex, and a Taylor-Green vortex. An L2-norm analysis was performed to measure the error and convergence. Simulations of conical (6 jets) and 4 π (60 jets) liners with and without ion viscosity reveal potential effects of viscosity on ram pressure, Mach-number degradation, and evolution of liner perturbations during jet merging and liner implosion.

  5. Improved Broadband Liner Optimization Applied to the Advanced Noise Control Fan

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Jones, Michael G.; Sutliff, Daniel L.; Ayle, Earl; Ichihashi, Fumitaka

    2014-01-01

    The broadband component of fan noise has grown in relevance with the utilization of increased bypass ratio and advanced fan designs. Thus, while the attenuation of fan tones remains paramount, the ability to simultaneously reduce broadband fan noise levels has become more desirable. This paper describes improvements to a previously established broadband acoustic liner optimization process using the Advanced Noise Control Fan rig as a demonstrator. Specifically, in-duct attenuation predictions with a statistical source model are used to obtain optimum impedance spectra over the conditions of interest. The predicted optimum impedance information is then used with acoustic liner modeling tools to design liners aimed at producing impedance spectra that most closely match the predicted optimum values. Design selection is based on an acceptance criterion that provides the ability to apply increased weighting to specific frequencies and/or operating conditions. Constant-depth, double-degree of freedom and variable-depth, multi-degree of freedom designs are carried through design, fabrication, and testing to validate the efficacy of the design process. Results illustrate the value of the design process in concurrently evaluating the relative costs/benefits of these liner designs. This study also provides an application for demonstrating the integrated use of duct acoustic propagation/radiation and liner modeling tools in the design and evaluation of novel broadband liner concepts for complex engine configurations.

  6. Acoustic Characteristics of Various Treatment Panel Designs for HSCT Ejector Liner Acoustic Technology Development Program

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Kraft, R. E.; Syed, A. a.; Vu, D. D.; Mungur, P.; Langenbrunner, L. E.; Majjigi, R. K.

    2006-01-01

    The objectives of the initial effort (Phase I) of HSR Liner Technology Program, the selection of promising liner concepts, design and fabrication of these concepts for laboratory tests, testing these liners in the laboratory by using impedance tube and flow ducts, and developing empirical impedance/suppression correlation, are successfully completed. Acoustic and aerodynamic criteria for the liner design are established. Based on these criteria several liners are designed. The liner concepts designed and fabricated include Single-Degree-of-Freedom (SDOF), Two-Degree-of-Freedom (2DOF), and Bulk Absorber. Two types of SDOF treatment are fabricated, one with a perforated type face plate and the other with a wiremesh (woven) type faceplate. In addition, special configurations of these concepts are also included in the design. Several treatment panels are designed for parametric study. In these panels the facesheets of different porosity, hole diameter, and sheet thickness are utilized. Several deep panels (i.e., 1 in. deep) are designed and instrumented to measure DC flow resistance and insitu impedance in the presence of grazing flow. Basic components of these panels (i.e., facesheets, bulk materials, etc.) are also procured and tested. The results include DC flow resistance, normal impedance, and insertion loss.

  7. Star formation and AGN activity in the most luminous LINERs in the local universe

    NASA Astrophysics Data System (ADS)

    Pović, Mirjana; Márquez, Isabel; Netzer, Hagai; Masegosa, Josefa; Nordon, Raanan; Pérez, Enrique; Schoenell, William

    2016-11-01

    This work presents the properties of 42 objects in the group of the most luminous, highest star formation rate (SFR) low-ionization nuclear emission-line regions (LINERs) at z = 0.04-0.11. We obtained long-slit spectroscopy of the nuclear regions for all sources, and FIR data (Herschel and IRAS) for 13 of them. We measured emission-line intensities, extinction, stellar populations, stellar masses, ages, active galactic nuclei (AGN) luminosities, and SFRs. We find considerable differences from other low-redshift LINERs, in terms of extinction, and general similarity to star-forming galaxies. We confirm the existence of such luminous LINERs in the local universe, after being previously detected at z ˜ 0.3 by Tommasin et al. The median stellar mass of these LINERs corresponds to 6-7 × 1010 M⊙ which was found in previous work to correspond to the peak of relative growth rate of stellar populations and therefore for the highest SFRs. Other LINERs although showing similar AGN luminosities have lower SFR. We find that most of these sources have LAGN ˜ LSF suggesting co-evolution of black hole and stellar mass. In general, the fraction of local LINERs on the main sequence of star-forming galaxies is related to their AGN luminosity.

  8. Nuclear containment steel liner corrosion workshop : final summary and recommendation report.

    SciTech Connect

    Erler, Bryan A.; Weyers, Richard E.; Sagues, Alberto; Petti, Jason P.; Berke, Neal Steven; Naus, Dan J.

    2011-07-01

    This report documents the proceedings of an expert panel workshop conducted to evaluate the mechanisms of corrosion for the steel liner in nuclear containment buildings. The U.S. Nuclear Regulatory Commission (NRC) sponsored this work which was conducted by Sandia National Laboratories. A workshop was conducted at the NRC Headquarters in Rockville, Maryland on September 2 and 3, 2010. Due to the safety function performed by the liner, the expert panel was assembled in order to address the full range of issues that may contribute to liner corrosion. This report is focused on corrosion that initiates from the outer surface of the liner, the surface that is in contact with the concrete containment building wall. Liner corrosion initiating on the outer diameter (OD) surface has been identified at several nuclear power plants, always associated with foreign material left embedded in the concrete. The potential contributing factors to liner corrosion were broken into five areas for discussion during the workshop. Those include nuclear power plant design and operation, corrosion of steel in contact with concrete, concrete aging and degradation, concrete/steel non-destructive examination (NDE), and concrete repair and corrosion mitigation. This report also includes the expert panel member's recommendations for future research.

  9. Formation of Imploding Plasma Liners for HEDP and MIF Applications - Diagnostics

    SciTech Connect

    Gilmore, Mark; Hsu, Scott; Witherspoon, F. Douglas; Cassibry, Jason; Bauer, Bruno S.

    2015-04-27

    The goal of the plasma liner experiment (PLX) was to explore and demonstrate the feasibility of forming imploding spherical plasma liners that can reach High Energy Density (HED)-relevant (~ 0.1 Mbar) pressures upon stagnation. The plasma liners were to be formed by a spherical array of 30 – 36 railgun-driven hypervelocity plasma jets (Mach 10 – 50). Due to funding and project scope reductions in year two of the project, this initial goal was revised to focus on studies of individual jet propagation, and on two jet merging physics. PLX was a collaboration between a number of partners including Los Alamos National Laboratory, HyperV Technologies, University of New Mexico (UNM), University of Alabama, Huntsville, and University of Nevada, Reno. UNM’s part in the collaboration was primary responsibility for plasma diagnostics. Though full plasma liner experiments could not be performed, the results of single and two jet experiments nevertheless laid important groundwork for future plasma liner investigations. Though challenges were encountered, the results obtained with one and two jets were overwhelmingly positive from a liner formation point of view, and were largely in agreement with predictions of hydrodynamic models.

  10. Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.

    PubMed

    Rowe, R Kerry; Islam, M Z

    2009-10-01

    The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.

  11. Shock front nonstationarity of supercritical perpendicular shocks

    NASA Astrophysics Data System (ADS)

    Hada, Tohru; Oonishi, Makiko; LembèGe, Bertrand; Savoini, Philippe

    2003-06-01

    The shock front nonstationarity of perpendicular shocks in super-critical regime is analyzed by examining the coupling between "incoming" and "reflected" ion populations. For a given set of parameters including the upstream Mach number (MA) and the fraction α of reflected to incoming ions, a self-consistent, time-stationary solution of the coupling between ion streams and the electromagnetic field is sought for. If such a solution is found, the shock is stationary; otherwise, the shock is nonstationary, leading to a self-reforming shock front often observed in full particle simulations of quasi-perpendicular shocks. A parametric study of this numerical model allows us to define a critical αcrit between stationary and nonstationary regimes. The shock can be nonstationary even for relatively low MA(2-5). For a moderate MA(5-10), the critical value αcrit is about 15 to 20%. For very high MA (>10), αcrit saturates around 20%. Moreover, present full simulations show that self-reformation of the shock front occurs for relatively low βi and disappears for high βi, where βi is the ratio of upstream ion plasma to magnetic field pressures. Results issued from the present theoretical model are found to be in good agreement with full particle simulations for low βi case; this agreement holds as long as the motion of reflected ions is coherent enough (narrow ion ring) to be described by a single population in the model. The present model reveals to be "at variance" with full particle simulations results for the high βi case. Present results are also compared with previous hybrid simulations.

  12. Structure in Radiating Shocks

    NASA Astrophysics Data System (ADS)

    Doss, Forrest

    2010-11-01

    The basic radiative shock experiment is a shock launched into a gas of high-atomic-number material at high velocities, which fulfills the conditions for radiative losses to collapse the post-shock material to over 20 times the initial gas density. This has been accomplished using the OMEGA Laser Facility by illuminating a Be ablator for 1 ns with a total of 4 kJ, launching the requisite shock, faster than 100 km/sec, into a polyimide shock tube filled with Xe. The experiments have lateral dimensions of 600 μm and axial dimensions of 2-3 mm, and are diagnosed by x-ray backlighting. Repeatable structure beyond the one-dimensional picture of a shock as a planar discontinuity was discovered in the experimental data. One form this took was that of radial boundary effects near the tube walls, extended approximately seventy microns into the system. The cause of this effect - low density wall material which is heated by radiation transport ahead of the shock, launching a new converging shock ahead of the main shock - is apparently unique to high-energy-density experiments. Another form of structure is the appearance of small-scale perturbations in the post-shock layer, modulating the shock and material interfaces and creating regions of enhanced and diminished aerial density within the layer. The authors have applied an instability theory, a variation of the Vishniac instability of decelerating shocks, to describe the growth of these perturbations. We have also applied Bayesian statistical methods to better understand the uncertainties associated with measuring shocked layer thickness in the presence of tilt. Collaborators: R. P. Drake, H. F. Robey, C. C. Kuranz, C. M. Huntington, M. J. Grosskopf, D. C. Marion.

  13. In-Duct and Far-Field Experimental Measrements from the ANCF for the Purpose of Improved Broadband Liner Optimization

    NASA Technical Reports Server (NTRS)

    Sutliff, Daniel L.; Jones, Michael G.; Nark, Douglas M.

    2014-01-01

    A process for the design and evaluation of novel broadband acoustic liner concepts with limited fan source information is being evaluated. A pair of advanced broad-bandwidth liners were designed and manufactured for the NASA Glenn Research Center's Advanced Noise Control Fan (ANCF): (i) a constant impedance liner and (ii) a variable impedance liner. The insertion loss of both liners was measured in-duct utilizing the ANCF's Configurable Fan Artificial Noise System in a clean configuration with no-flow. Additionally, the acoustic characteristics of the Variable Impedance Liner were measured in the standard ANCF configuration with and without flow. The experimental setup, in-duct mode power levels, and far-field directivity are presented herein.

  14. Current state of knowledge on the behavior of steel liners in concrete containments subjected to overpressurization loads

    SciTech Connect

    von Riesemann, W.A.; Parks, M.B.

    1993-11-01

    In the United States, concrete containment buildings for commercial nuclear power plants have steel liners that act as the intemal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented. This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions).

  15. Fabrication Process for Machined and Shrink-Fitted Impactor-Type Liners for the LOS Alamos Hedp Program

    NASA Astrophysics Data System (ADS)

    Randolph, B.

    2004-11-01

    Composite liners have been fabricated for the Los Alamos liner-driven High Energy Density Physics (HEDP) experiments using impactors formed by physical vapor deposition, and by machining and shrink fitting. Chemical vapor deposition has been proposed for some ATLAS liner applications. This paper describes the processes used to fabricate machined and shrink-fitted impactors; these processes have been used for copper impactors in 1100 aluminum liners and for 6061 T-6 aluminum impactors in 1100 aluminum liners. The most successful processes have been largely empirically developed and rely upon a combination of shrink-fitting and light press fitting. The processes used to date will be described along with some considerations for future composite liners for the HEDP Program.

  16. Evaluation of tungsten shaped-charge liners spray-formed using the low-pressure plasma spray process

    SciTech Connect

    Buchanan, E.R.; Sickinger, A.

    1994-12-31

    This paper documents the results of a DARPA Phase 1 SBIR program which was awarded following a solicitation to develop new technologies for the forming of refractory metal shaped-charge liners. Holtgren had proposed to manufacture liners by spraying refractory metal powder onto a rapidly-rotating mandrel inside the chamber of a low-pressure plasma spray system. A total of nine tungsten shaped-charge liners were sprayed during the course of the program. Metallographic evaluation of the liners revealed that the as-sprayed microstructure was dense, averaging 98.5% density. The grain structure is equiaxed and fine, averaging five microns in diameter. The sprayed shapes were then processed to the final liner configuration by cylindrical grinding. The liners were ductile enough to withstand the strains of grinding and normal handling.

  17. Scratching vulnerability of conventional vs highly cross-linked polyethylene liners because of large embedded third-body particles.

    PubMed

    Heiner, Anneliese D; Galvin, Alison L; Fisher, John; Callaghan, John J; Brown, Thomas D

    2012-05-01

    The hypothesis of this study was that acetabular liner vulnerability to scratching from femoral heads, roughened by third bodies embedded in the liner, is not significantly lower for highly cross-linked polyethylene (HXPE) than for conventional polyethylene (CPE). Six CPE and 6 HXPE acetabular liners were each reproducibly embedded with 5 cobalt-chromium-molybdenum (CoCrMo) beads then run for 10,000 cycles in a joint simulator. By visual rank ordering, there was low association between liner scratch severity and polyethylene type. The CPE and HXPE liner scratches were not significantly different in scratch peak-valley height or width or in liner roughness in the vicinity of the embedded beads. This model indicated that high cross-linking of polyethylene does not offer appreciable protection against severe scratching induced by large embedded third-body particles.

  18. Shock absorber control system

    SciTech Connect

    Nakano, Y.; Ohira, M.; Ushida, M.; Miyagawa, T.; Shimodaira, T.

    1987-01-13

    A shock absorber control system is described for controlling a dampening force of a shock absorber of a vehicle comprising: setting means for setting a desired dampening force changeable within a predetermined range; drive means for driving the shock absorber to change the dampening force of the shock absorber linearly; control means for controlling the drive means in accordance with the desired dampening force when the setting of the desired dampening force has been changed; detecting means for detecting an actual dampening force of the shock absorber; and correcting means for correcting the dampening force of the shock absorber by controlling the drive means in accordance with a difference between the desired dampening force and the detected actual dampening force.

  19. IUE and Einstein observations of the LINER galaxy NGC 4579

    NASA Technical Reports Server (NTRS)

    Reichert, G. A.; Puchnarewicz, E. M.; Mason, K. O.

    1990-01-01

    Results of International Ultraviolet Explorer (IUE) and Einstein observations of the LINER galaxy NGC 4579 are reported. Spatial profiles of the long wavelength IUE emission show a two component structure, with an unresolved core superimposed on broader underlying emission. The core spectrum shows strong C II lambda 2326 and broad Mg II lambda 2800 emission, and perhaps emission due to blends of Fe II multiplets (2300 to 23600 angstrom). The short wavelength emission is spatially unresolved, and shows C II lambda 1335, C III lambda 1909 broad C IV lambda 1550 emission, and a broad feature at approximately 1360 angstrom which may be due to 0.1 lambda 1356. Contrary to previous reports no evidence for He II lambda 1640 is found in the spectrum. An unresolved x ray source is detected at the location of the nucleus; its spectrum is well fitted by a power law of energy slope alpha approximately -0.5. These results further support the idea that NGC 4579 may contain a dwarf Seyfert nucleus.

  20. A systematic uncertainty analysis for liner impedance eduction technology

    NASA Astrophysics Data System (ADS)

    Zhou, Lin; Bodén, Hans

    2015-11-01

    The so-called impedance eduction technology is widely used for obtaining acoustic properties of liners used in aircraft engines. The measurement uncertainties for this technology are still not well understood though it is essential for data quality assessment and model validation. A systematic framework based on multivariate analysis is presented in this paper to provide 95 percent confidence interval uncertainty estimates in the process of impedance eduction. The analysis is made using a single mode straightforward method based on transmission coefficients involving the classic Ingard-Myers boundary condition. The multivariate technique makes it possible to obtain an uncertainty analysis for the possibly correlated real and imaginary parts of the complex quantities. The results show that the errors in impedance results at low frequency mainly depend on the variability of transmission coefficients, while the mean Mach number accuracy is the most important source of error at high frequencies. The effect of Mach numbers used in the wave dispersion equation and in the Ingard-Myers boundary condition has been separated for comparison of the outcome of impedance eduction. A local Mach number based on friction velocity is suggested as a way to reduce the inconsistencies found when estimating impedance using upstream and downstream acoustic excitation.

  1. Life assessment of combustor liner using unified constitutive models

    NASA Technical Reports Server (NTRS)

    Tong, M. T.; Thompson, R. L.

    1988-01-01

    Hot section components of gas turbine engines are subject to severe thermomechanical loads during each mission cycle. Inelastic deformation can be induced in localized regions leading to eventual fatigue cracking. Assessment of durability requires reasonably accurate calculation of the structural response at the critical location for crack initiation. In recent years nonlinear finite element computer codes have become available for calculating inelastic structural response under cyclic loading. NASA-Lewis sponsored the development of unified constitutive material models and their implementation in nonlinear finite element computer codes for the structural analysis of hot section components. These unified models were evaluated with regard to their effect on the life prediction of a hot section component. The component considered was a gas turbine engine combustor liner. A typical engine mission cycle was used for the thermal and structural analyses. The analyses were performed on a CRAY computer using the MARC finite element code. The results were compared with laboratory test results, in terms of crack initiation lives.

  2. Experimental observation of discrete helical modes in imploding cylindrical liners

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Zhang, P.; Steiner, A. M.; Jordan, N. M.; Campbell, P. C.; Lau, Y. Y.; Gilgenbach, R. M.

    2016-10-01

    The 1-MA Linear Transformer Driver at the University of Michigan was used to implode ultrathin (400 nm thick) cylindrical aluminum liners1 that were pre-embedded with externally applied, axial magnetic fields of Bz = 0.2 - 2.0 T. Using 12-frame laser shadowgraphy and visible self-emission, helical striations were found that increased in pitch angle during the implosion and decreased in angle during the later time explosion, despite the relatively large, peak azimuthal magnetic field exceeding 40 T. The results are interpreted as a discrete, non-axisymmetric eigenmode of a helical instability that persists from implosion to explosion. The helical pitch angle φ was found to obey the simple relation φ = m / kR , where m, k, and R are the azimuthal mode number, axial wavenumber, and radius of the helical instability. Analytic growth rates2 for experimental parameters are presented, and show that early in the current pulse, axisymmetric modes (m = 0) are completely stabilized while non-axisymmetric modes (m > 1) are found to be unstable. This research was supported by DOE Award DE-SC0012328, Sandia National Laboratories, and the NSF. The fast framing camera was supported by AFOSR Grant #FA9550-15-1-0419.

  3. Effect of gravel on hydraulic conductivity of compacted soil liners

    SciTech Connect

    Shelley, T.L. ); Daniel, D.E. )

    1993-01-01

    How much gravel should be allowed in low-hydraulic-conductivity, compacted soil liners To address this question, two clayey soils are uniformly mixed with varying percentages of gravel that, by itself, has a hydraulic conductivity of 170 cm/s. Soil/gravel mixtures are compacted and then permeated. Hydraulic conductivity of the compacted gravel/soil mixtures is less than 1 [times] 10[sup [minus]7] cm/s for gravel contents as high as 50-60%. For gravel contents [le] 60%, gravel content is not important: all test specimens have a low hydraulic conductivity. For gravel contents > 50-60%, the clayey soils does not fill voids between gravel particles, and high hydraulic conductivity results. The water content of the nongravel fraction is found to be a useful indicator of proper moisture conditions during compaction. From these experiments in which molding water content and compactive energy are carefully controlled, and gravel is uniformly mixed with the soil, it is concluded that the maximum allowable gravel content is approximately 50%.

  4. Effect of Layering Methods, Composite Type, and Flowable Liner on the Polymerization Shrinkage Stress of Light Cured Dental Composites

    DTIC Science & Technology

    2011-08-01

    syringe. Composites used for filling the cavities were a methacrylate-based universal hybrid composite (Z250: 3M ESPE, St. Paul, MN, USA), a flowable ...Group 3 (Incremental filling with flowable liner): First layer was filled with Z350 flowable composite in 1 mm thickness, followed by three incremental...incremental filling group with flowable liner showed higher cuspal deflection than the incremental filling group without flowable liner (p=0.035). The

  5. Matching an Inductive Accumulator and a System of Acceleration of a Liner with Limitation of the Breaking Voltage,

    DTIC Science & Technology

    In this work calculations are made of the efficiencies of acceleration of a liner from an inductive accumulator in the mode theta-pinch and Z-pinch...to the speed of the liner . Estimations have been made of the necessary power at the moment of switching the current on the basis of considerations of...the stability of the pinch effect of the liner . The level of energies necessary for the creation of a thermonuclear reactor on the basis of theta

  6. When shock waves collide

    SciTech Connect

    Martinez, D.; Hartigan, P.; Frank, A.; Hansen, E.; Yirak, K.; Liao, A. S.; Graham, P.; Foster, J.; Wilde, B.; Blue, B.; Rosen, P.; Farley, D.; Paguio, R.

    2016-06-01

    Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed to quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. Furthermore, the experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.

  7. When shock waves collide

    DOE PAGES

    Martinez, D.; Hartigan, P.; Frank, A.; ...

    2016-06-01

    Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed tomore » quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. Furthermore, the experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.« less

  8. Shock initiation of nitromethane

    SciTech Connect

    Yoo, C.S.; Holmes, N.C.

    1993-12-31

    The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. a broad, but strong emission has been observed in a spectral range between 350 and 700 nm from shocked nitromethane above 9 GPa. The temporal profile suggests that shocked nitromethane detonates through three characteristic periods, namely an induction period, a hock initiation period, and a thermal explosion period. This paper discusses temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15 GPa.

  9. Anti-Shock Garment

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Ames Research Center developed a prototype pressure suit for hemophiliac children, based on research of astronauts' physiological responses in microgravity. Zoex Corporation picked up the design and patents and developed an anti-shock garment for paramedic use. Marketed by Dyna Med, the suit reverses the effect of shock on the body's blood distribution by applying counterpressure to the legs and abdomen, returning blood to vital organs and stabilizing body pressure until the patient reaches a hospital. The DMAST (Dyna Med Anti-Shock Trousers) employ lower pressure than other shock garments, and are non-inflatable.

  10. Candida albicans biofilms and MMA surface treatment influence the adhesion of soft denture liners to PMMA resin.

    PubMed

    Mendonça e Bertolini, Martinna de; Cavalcanti, Yuri Wanderley; Bordin, Dimorvan; Silva, Wander José da; Cury, Altair Antoninha Del Bel

    2014-01-01

    The effect of Candida albicans biofilms and methyl methacrylate (MMA) pretreatment on the bond strength between soft denture liners and polymethyl methacrylate (PMMA) resin was analyzed. Specimens were prepared and randomly divided with respect to PMMA pretreatment, soft liner type (silicone-based or PMMA-based), and presence or absence of a C. albicans biofilm. Samples were composed of a soft denture liner bonded between two PMMA bars. Specimens (n = 10) were incubated to produce a C. albicans biofilm or stored in sterile PBS for 12 days. The tensile bond strength test was performed and failure type was determined using a stereomicroscope. Surface roughness (SR) and scanning electron microscopy (SEM) analysis were performed on denture liners (n = 8). Highest bond strength was observed in samples containing a silicone-based soft liner and stored in PBS, regardless of pretreatment (p < 0.01). Silicone-based specimens mostly underwent adhesive failures, while samples containing PMMA-based liners predominantly underwent cohesive failures. The silicone-based specimens SR decreased after 12 days of biofilm accumulation or PBS storage, while the SR of PMMA-based soft liners increased (p < 0.01). The PMMA-based soft liners surfaces presented sharp valleys and depressions, while silicone-based specimens surfaces exhibited more gentle features. In vitro exposure to C. albicans biofilms reduced the adhesion of denture liners to PMMA resin, and MMA pretreatment is recommended during relining procedures.

  11. An Evaluation of the LOS Alamos Precision Automated Turning System (pats) as a Production Tool for Atlas Liners

    NASA Astrophysics Data System (ADS)

    Anderson, W.; Day, R.; Hatch, D.; Gore, R.; Machen, D.; Bartos, J.; Salazar, M.; Hannah, P.

    2004-11-01

    The PATS is proposed as a possible means for efficient production of precision liners for Atlas [1]. The Los Alamos National Laboratory's High Energy Density Physics (HEDP) program supported an evaluation of this prospect over the last two years. The machine operations have been carefully mapped out, the status of the controllers and on-machine gauging evaluated, and dynamic error addressed. The PATS has been used to generate diamond turned liners with dimensions similar to those proposed for Atlas. In the mean time, Atlas liner criteria have become even more stringent. This paper will evaluate the known status of the PATS in view of current liner designs for Atlas.

  12. Evaluating the Long-Term Performance of Geosynethic Clay Liners Exposed to Freeze-Thaw

    SciTech Connect

    Robert K. Podgorney; Jesse E. Bennett

    2006-02-01

    Geosynethic clay liners have become an increasingly common component in landfill liner and cover systems since their introduction in the early 1980’s. An important consideration for landfills and covers constructed in the frost zone of cold climates is the possible deterioration in performance due to freeze-thaw cycling over the design life of the liner or cover system, which can be up to 1,000 years. The literature contains several examples showing that geosynethic clay liners can withstand a limited number of freeze-thaw events, but data on long-term performance are lacking The objective of this study was to examine the long-term performance of geosynethic clay liners exposed to repeated freeze-thaw cycles, encompassing their application as a final cover as well as a bottom liner. Laboratory analysis of hydraulic conductivity was performed after as many as 150 freeze-thaw cycles, with no appreciable changes observed. Based upon an analytical heat transfer analysis, this equates to [at least] 150 years of field service for placement depths greater then approximately 30 cm below the surface of the liner. The long-term insusceptibility of GCLs to increased hydraulic conductivity as a response to repeated freeze-thaw cycling is largely due to the self-healing characteristics of the sodium bentonite used in their construction. GCLs perform well and maintain efficiency as a barrier to flow after 150 freeze-thaw cycles. Other factors, such as permeant chemistry, physical disturbance, desiccation, etc., may be much more important factors to consider when planning for the long-term performance of GCLs.

  13. Laboratory development and field demonstration of self-sealing/self-healing landfill liner.

    PubMed

    Shi, Caijun; Booth, Rob

    2005-01-01

    The self-sealing/self-healing (SS/SH) barrier concept is based on the principle that two or more parent materials placed in vertical or horizontal layers will react at their interfaces to form insoluble reaction products. These products constitute a seamless impermeable seal, which is resistant to the transmission of leachate and contaminants. A SS/SH liner formulation was developed in the laboratory and demonstrated at the Sudokwon landfill site in South Korea. Laboratory testing results indicated that a seal with a hydraulic conductivity less than 10(-9) m/s formed after two to four weeks of curing at room temperature, and the seal healed itself after it was fractured. The use of the soil from the Sudokwon landfill site instead of sand as the matrix of the parent materials in the SS/SH liner retarded the sealing and healing of the seal, but did not show an obvious effect on the overall sealing and healing capacity of the seal at early stages. The construction and installation of the field demonstration SS/SH liner were carried out in the same way as for a soil cement liner. The quality of the liner was ensured by the enforcement of quality analysis/quality control procedures during installation. A single sealed ring infiltration test was performed on the field demonstration liner 36 days after the installation was completed. The measurement of water infiltration rate indicated that the liner healed after it was fractured. However, the long-term sealing and healing capacity needs to be further investigated.

  14. High Thermal Conductivity NARloy-Z-Diamond Composite Combustion Chamber Liner For Advanced Rocket Engines

    NASA Technical Reports Server (NTRS)

    Bhat, Biliyar N.; Ellis, David; Singh, Jogender

    2014-01-01

    Advanced high thermal conductivity materials research conducted at NASA Marshall Space Flight Center (MSFC) with state of the art combustion chamber liner material NARloy-Z showed that its thermal conductivity can be increased significantly by adding diamond particles and sintering it at high temperatures. For instance, NARloy-Z containing 40 vol. percent diamond particles, sintered at 975C to full density by using the Field assisted Sintering Technology (FAST) showed 69 percent higher thermal conductivity than baseline NARloy-Z. Furthermore, NARloy-Z-40vol. percent D is 30 percent lighter than NARloy-Z and hence the density normalized thermal conductivity is 140 percent better. These attributes will improve the performance and life of the advanced rocket engines significantly. By one estimate, increased thermal conductivity will directly translate into increased turbopump power up to 2X and increased chamber pressure for improved thrust and ISP, resulting in an expected 20 percent improvement in engine performance. Follow on research is now being conducted to demonstrate the benefits of this high thermal conductivity NARloy-Z-D composite for combustion chamber liner applications in advanced rocket engines. The work consists of a) Optimizing the chemistry and heat treatment for NARloy-Z-D composite, b) Developing design properties (thermal and mechanical) for the optimized NARloy-Z-D, c) Fabrication of net shape subscale combustion chamber liner, and d) Hot fire testing of the liner for performance. FAST is used for consolidating and sintering NARlo-Z-D. The subscale cylindrical liner with built in channels for coolant flow is also fabricated near net shape using the FAST process. The liner will be assembled into a test rig and hot fire tested in the MSFC test facility to determine performance. This paper describes the development of this novel high thermal conductivity NARloy-Z-D composite material, and the advanced net shape technology to fabricate the combustion

  15. Investigation of Surface Phenomena in Shocked Tin in Converging Geometry

    SciTech Connect

    Rousculp, Christopher L.; Oro, David Michael; Margolin, Len G.; Griego, Jeffrey Randall; Reinovsky, Robert Emil; Turchi, Peter John

    2015-08-06

    There is great interest in the behavior of the free surface of tin under shock loading. While it is known that meso-scale surface imperfections can seed the Richtmyer-Meshkov Instability (RMI) for a surface that is melted on release, much less is known about a tin surface that is solid, but plastically deforming. Here material properties such as shear and yield strength come into play especially in converging geometry. Previous experiments have been driven by direct contact HE. Usually a thin, flat target coupon is fielded with various single-mode, sinusoidal, machined, profiles on the free surface. The free surface is adjacent to either vacuum or an inert receiver gas. Most of these previous driver/target configurations have been nominal planer geometry. With modern HE it has been straightforward to shock tin into melt on release. However it has been challenging to achieve a low enough pressure for solid state on release. Here we propose to extend the existing base of knowledge to include the behavior of the free surface of tin in cylindrical converging geometry. By shock loading a cylindrical tin shell with a magnetically driven cylindrical liner impactor, the free surface evolution can be diagnosed with proton radiography. With the PHELIX capacitor bank, the drive can easily be varied to span the pressure range to achieve solid, mixed, and liquid states on release.

  16. Blueberry shock virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberry shock disease first observed in Washington state in 1987 and initially confused with blueberry scorch caused by Blueberry scorch virus (BlScV). However, shock affected plants produced a second flush of leaves after flowering and the plants appeared normal by late summer except for the lac...

  17. What Is Cardiogenic Shock?

    MedlinePlus

    ... think that you or someone else is in shock, call 9–1–1 right away for emergency treatment. Prompt medical care can save your life and ... half of the people who go into cardiogenic shock survive. This is because of ... improved treatments, such as medicines and devices. These treatments can ...

  18. [Historical vision of shock].

    PubMed

    Dosne Pasqualini, C

    1998-01-01

    The concept of shock and its close relationship with that of stress dates back to the experiments of Hans Selye initiated in 1936 at McGill University in Montreal, with whom I collaborated between 1939 and 1942. It was demonstrated that the General Adaptation Syndrome begins with an Alarm Reaction, which consists of a Stage of Shock and one of Counter-Shock, followed by a Stage of Adaptation and finally a Stage of Exhaustion. My Ph.D. thesis concluded that shock was due to an adrenal insufficiency postulating that active metabolic processes drain the body of certain essential compounds the lack of which causes shock. My interest in the role of the glucose metabolism in shock led me to work with Bernardo Houssay in 1942 at the Institute of Physiology of the University of Buenos Aires and in 1944 with C.N.H. Long at Yale University. There I developed a method for the induction of hemorrhagic shock in the guinea pig with 94% lethality; curiously, the administration of 200 mg of ascorbic acid prevented death. Upon my return to Buenos Aires, these results were confirmed and moreover, it was demonstrated that the administration of cortisone led to 40% survival of the animals while desoxycorticosterone had no effect. At the time, no explanation was available but to-day, half a century later, this Symposium should be able to explain the mechanisms leading to death by hemorrhagic shock.

  19. Normal Shock Vortex Interaction

    DTIC Science & Technology

    2003-03-01

    Figure 9: Breakdown map for normal-shock vortex-interaction. References [1] O. Thomer, W. Schroder and M. Meinke , Numerical Simulation of Normal...and Oblique-Shock Vortex Interaction, ZAMM Band 80, Sub. 1, pp. 181-184, 2000. [2] O. Thomer, E. Krause, W. Schroder and M. Meinke , Computational

  20. Liner-less Tanks for Space Application - Design and Manufacturing Considerations

    NASA Technical Reports Server (NTRS)

    Jones, Brian H.; Li, Min-Chung

    2003-01-01

    Composite pressure vessels, used extensively for gas and fuel containment in space vehicles, are generally constructed with a metallic liner, while the fiber reinforcement carries the major portion of the pressure-induced load. The design is dominated by the liner s low strain at yield since the reinforcing fibers cannot operate at their potential load-bearing capability without resorting to pre-stressing (or autofrettaging). An ultra high-efficiency pressure vessel, which operates at the optimum strain capability of the fibers, can be potentially achieved with a liner-less construction. This paper discusses the design and manufacturing challenges to be overcome in the development of such a pressure vessel. These include: (1) gas/liquid containment and permeation, (2) design and structural analysis, and (3) manufacturing process development. The paper also presents the development and validation tests on a liner-less pressure vessel developed by Kaiser Compositek Inc. (KCI). It should be noted that KCI s liner-less tank exhibits a highly controlled leak-before-burst mode. This feature results in a structure having the highest level of safety.

  1. Large Engine Technology Program. Task 21: Rich Burn Liner for Near Term Experimental Evaluations

    NASA Technical Reports Server (NTRS)

    Hautman, D. J.; Padget, F. C.; Kwoka, D.; Siskind, K. S.; Lohmann, R. P.

    2005-01-01

    The objective of the task reported herein, which was conducted as part of the NASA sponsored Large Engine Technology program, was to define and evaluate a near-term rich-zone liner construction based on currently available materials and fabrication processes for a Rich-Quench-Lean combustor. This liner must be capable of operation at the temperatures and pressures of simulated HSCT flight conditions but only needs sufficient durability for limited duration testing in combustor rigs and demonstrator engines in the near future. This must be achieved at realistic cooling airflow rates since the approach must not compromise the emissions, performance, and operability of the test combustors, relative to the product engine goals. The effort was initiated with an analytical screening of three different liner construction concepts. These included a full cylinder metallic liner and one with multiple segments of monolithic ceramic, both of which incorporated convective cooling on the external surface using combustor airflow that bypassed the rich zone. The third approach was a metallic platelet construction with internal convective cooling. These three metal liner/jacket combinations were tested in a modified version of an existing Rich-Quench-Lean combustor rig to obtain data for heat transfer model refinement and durability verification.

  2. Micro- and Macro-Fluid Dynamics and Acoustics of Resonant Liners

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Watson, Willie (Technical Monitor)

    2002-01-01

    The objectives of this project are to perform direct numerical simulation of the micro-fluid and acoustic fields of a resonant acoustic liner and to investigate the physical processes by which incident sound waves are damped by the acoustic liner. We would like to report that our research work and results have fulfilled both objectives of the grant. The following is a summary of the important accomplishments: (1) Two dimensional direct numerical simulation of the flow and acoustic field around the cavity of resonant liner were successfully carried out; (2) The simulations of (1) were extended to include a laminar grazing flow; (3) The numerical simulations provided strong evidence that there are two principal mechanisms by which a resonant liner damps out an incident acoustic wave; (4) A validation test was performed by comparing the computed dissipation coefficients (not impedance) with impedance tube measurements done at GTRI; and (5) Some resources of this grant were used to support the development of new CAA methods. (Our work on numerical simulation of acoustic liners has benefited by the availability of these improved methods).

  3. The PLX- α project: demonstrating the viability of spherically imploding plasma liners as an MIF driver

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Witherspoon, F. D.; Cassibry, J. T.; Gilmore, M.; Samulyak, R.; Stoltz, P.; the PLX-α Team

    2015-11-01

    Under ARPA-E's ALPHA program, the Plasma Liner Experiment-ALPHA (PLX- α) project aims to demonstrate the viability and scalability of spherically imploding plasma liners as a standoff, high-implosion-velocity magneto-inertial-fusion (MIF) driver that is potentially compatible with both low- and high- β targets. The project has three major objectives: (a) advancing existing contoured-gap coaxial-gun technology to achieve higher operational reliability/precision and better control/reproducibility of plasma-jet properties and profiles; (2) conducting ~ π / 2 -solid-angle plasma-liner experiments with 9 guns to demonstrate (along with extrapolations from modeling) that the jet-merging process leads to Mach-number degradation and liner uniformity that are acceptable for MIF; and (3) conducting 4 π experiments with up to 60 guns to demonstrate the formation of an imploding spherical plasma liner for the first time, and to provide empirical ram-pressure and uniformity scaling data for benchmarking our codes and informing us whether the scalings justify further development beyond ALPHA. This talk will provide an overview of the PLX- α project as well as key research results to date. Supported by ARPA-E's ALPHA program; original PLX construction supported by DOE Fusion Energy Sciences.

  4. Autofrettage to Counteract Coefficient of Thermal Expansion Mismatch in Cryogenic Pressurized Pipes with Metallic Liners

    NASA Technical Reports Server (NTRS)

    Wen, Ed; Barbero, Ever; Tygielski, Phlip; Turner, James E. (Technical Monitor)

    2001-01-01

    Composite feedlines with metal liners have the potential to reduce weight/cost while providing the same level of permeation resistance and material compatibility of all-metal feedlines carrying cryogenic propellants in spacecraft. The major technical challenges are the large difference in Coefficient of Thermal Expansion between the liner and the composite, and the manufacturing method required to make a very thin liner with the required strength and dimensional tolerance. This study investigates the use of autofrettage (compressive preload) to counteract Coefficient of Thermal Expansion when pre-pressurization procedures cannot be used to solve this problem. Promising materials (aluminum 2219, Inconel 718, nickel, nickel alloy) and manufacturing techniques (chemical milling, electroplating) are evaluated to determine the best liner candidates. Robust, autofrettaged feedlines with a low Coefficient of Thermal Expansion liner (Inconel 718 or nickel alloy) are shown to successfully counteract mismatch at LOX temperature. A new concept, autofrettage by temperature, is introduced for high Coefficient of Thermal Expansion materials (aluminum and pure nickel) where pressure cannot be used to add compressive preload.

  5. Long-term tritium transport through field-scale compacted soil liner

    USGS Publications Warehouse

    Toupiol, C.; Willingham, T.W.; Valocchi, A.J.; Werth, C.J.; Krapac, I.G.; Stark, T.D.; Daniel, D.E.

    2002-01-01

    A 13-year study of tritium transport through a field-scale earthen liner was conducted by the Illinois State Geological Survey to determine the long-term performance of compacted soil liners in limiting chemical transport. Two field-sampling procedures (pressure-vacuum lysimeter and core sampling) were used to determine the vertical tritium concentration profiles at different times and locations within the liner. Profiles determined by the two methods were similar and consistent. Analyses of the concentration profiles showed that the tritium concentration was relatively uniformly distributed horizontally at each sampling depth within the liner and thus there was no apparent preferential transport. A simple one-dimensional analytical solution to the advective-dispersive solute transport equation was used to model tritium transport through the liner. Modeling results showed that diffusion was the dominant contaminant transport mechanism. The measured tritium concentration profiles were accurately modeled with an effective diffusion coefficient of 6 ?? 10-4 mm2/s, which is in the middle of the range of values reported in the literature.

  6. Validation of structural analysis methods using burner liner cyclic rig test data

    NASA Technical Reports Server (NTRS)

    Thompson, R.

    1983-01-01

    The objectives of the hot section technology (HOST) burner liner cyclic rig test program are basically threefold: (1) to assist in developing predictive tools needed to improve design analyses and procedures for the efficient and accurate prediction of burner liner structural response; (2) to calibrate, evaluate and validate these predictive tools by comparing the predicted results with the experimental data generated in the tests; and (3) to evaluate existing as well as advanced temperature and strain measurement instrumentation, both contact and noncontact, in a simulated engine cycle environment. The data generated will include measurements of the thermal environment (metal surface temperatures) as well as structural (strain) and life (fatigue) responses of simulated burner liners and specimens under controlled boundary and operating conditions. These data will be used to calibrate, compare and validate analytical theories, methodologies and design procedures, as well as improvements in them, for predicting liner temperatures, stress-strain responses and cycles to failure. Comparison of predicted results with experimental data will be used to show where the predictive theories, etc. need improvements. In addition, as the predictive tools, as well as the tests, test methods, and data acquisition and reduction techniques, are developed and validated, a proven, integrated analysis/experiment method will be developed to determine the cyclic life of a simulated burner liner.

  7. Liner-on-plasma system near stagnation: Stabilizing effect of a magnetic cushion

    SciTech Connect

    Ryutov, D. D.

    2011-06-15

    This brief communication is concerned with the adiabatic compression of a high-beta plasma by a heavy liner. Elongated cylindrical and quasi-cylindrical geometries are considered. The magnetic field in a plasma is parallel to the axis, whereas the drive field has azimuthal direction. During the liner acceleration, the most dangerous modes are axisymmetric (m = 0) modes. Near stagnation, these modes are further amplified at the inner surface, as the liner is decelerated by the isotropic pressure of a high-beta plasma. This picture, however, is not complete: due to a heat loss from the plasma core to the relatively cold liner, a zone of a strong axial magnetic field may appear between a hot, high-beta plasma and a cold liner. This magnetic cushion is backed from inside by a very high-beta plasma. The stability of such a system with respect to m = 0 modes is studied and the conclusion is drawn that the stabilizing effect of the magnetic cushion remains strong even for relatively thin cushions and moderate magnetic fields in them.

  8. Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities

    SciTech Connect

    Slough, John

    2015-02-01

    To take advantage of the smaller scale, higher density regime of fusion an efficient method for achieving the compressional heating required to reach fusion gain conditions must be found. What is proposed is a more flexible metallic liner compression scheme that minimizes the kinetic energy required to reach fusion. It is believed that it is possible to accomplish this at sub-megajoule energies. This however will require operation at very small scale. To have a realistic hope of inexpensive, repetitive operation, it is essential to have the liner kinetic energy under a megajoule which allows for the survivability of the vacuum and power systems. At small scale the implosion speed must be reasonably fast to maintain the magnetized plasma (FRC) equilibrium during compression. For limited liner kinetic energy, it becomes clear that the thinnest liner imploded to the smallest radius consistent with the requirements for FRC equilibrium lifetime is desired. The proposed work is directed toward accomplishing this goal. Typically an axial (Z) current is employed for liner compression. There are however several advantages to using a θ-pinch coil. With the θ-pinch the liner currents are inductively driven which greatly simplifies the apparatus and vacuum system, and avoids difficulties with the post implosion vacuum integrity. With fractional flux leakage, the foil liner automatically provides for the seed axial compression field. To achieve it with optimal switching techniques, and at an accelerated pace however will require additional funding. This extra expense is well justified as the compression technique that will be enabled by this funding is unique in the ability to implode individual segments of the liner at different times. This is highly advantageous as the liner can be imploded in a manner that maximizes the energy transfer to the FRC. Production of shaped liner implosions for additional axial compression can thus be readily accomplished with the modified power

  9. Development and Validation of an Interactive Liner Design and Impedance Modeling Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M.; Jones, Michael G.; Buckley, James L.

    2012-01-01

    The Interactive Liner Impedance Analysis and Design (ILIAD) tool is a LabVIEW-based software package used to design the composite surface impedance of a series of small-diameter quarter-wavelength resonators incorporating variable depth and sharp bends. Such structures are useful for packaging broadband acoustic liners into constrained spaces for turbofan engine noise control applications. ILIAD s graphical user interface allows the acoustic channel geometry to be drawn in the liner volume while the surface impedance and absorption coefficient calculations are updated in real-time. A one-dimensional transmission line model serves as the basis for the impedance calculation and can be applied to many liner configurations. Experimentally, tonal and broadband acoustic data were acquired in the NASA Langley Normal Incidence Tube over the frequency range of 500 to 3000 Hz at 120 and 140 dB SPL. Normalized impedance spectra were measured using the Two-Microphone Method for the various combinations of channel configurations. Comparisons between the computed and measured impedances show excellent agreement for broadband liners comprised of multiple, variable-depth channels. The software can be used to design arrays of resonators that can be packaged into complex geometries heretofore unsuitable for effective acoustic treatment.

  10. Global and local mapping of motor blocks liners roughness for the analysis of honing performance

    NASA Astrophysics Data System (ADS)

    Cabanettes, F.; Fahlgren, L.; Hoering, T.; Rosén, B.-G.

    2014-03-01

    The manufacturing and finishing (honing) of cylinder liners for the automotive industry is a constant challenge in order to reduce friction losses and oil consumption. A better knowledge of surfaces generated during plateau honing is then required for optimization of the process. Despite a well-known and controlled honing process, variations in surface roughness appear at both global (due to honing tool wear) and local (TDC, middle stroke, BDC) scales and need to be mapped and analysed. The following paper proposes to map the global and local variations in roughness by using a confocal 3D measuring equipment able to measure and scan any area of a cylinder liner. Six motor blocks (five liners each) are evaluated with twenty topography measurements per liner. In total, six hundred 3D measurements of size 1×1 mm are performed and roughness parameters are computed. The results show that some parameters do correlate with the honing tool wear specific to each cylinder. Experimental models could be built. Furthermore surface roughness varies significantly over the axial length of the liners due to waviness deviations combined with a lack of flexibility of the honing tool in axial direction.

  11. Design, engineering and evaluation of refractory liners for slagging gasifiers. Final report

    SciTech Connect

    deTineo, B J; Booth, G; Firestone, R F; Greaves, M J; Hales, C; Lamoureux, J P; Ledford, R R

    1982-08-01

    The contract for this program was awarded at the end of September 1978. Work was started on 1 October 1978, on Tasks A, B, and E. Task A, Conceptual Liner Designs, and Task B, Test System Design and Construction, were completed. Task C, Liner Tests, and Task D, Liner Design Evaluation, were to begin upon completion of Task B. Task E, Liner Model Development, is inactive after an initial data compilation and theoretical model development effort. It was to be activated as soon as data were available from Task D. Task F, Liner Design Handbook, was active along with Task A since the reports of both tasks were to use the same format. At this time, Tasks C, D, and F are not to be completed since funding of this project was phased out by DOE directive. The refractory text facility, which was constructed, was tested and found to perform satisfactorily. It is described in detail, including a hazard analysis which was performed. (LTN)

  12. Purpose-built PDC bit successfully drills 7-in liner equipment and formation: An integrated solution

    SciTech Connect

    Puennel, J.G.A.; Huppertz, A.; Huizing, J.

    1996-12-31

    Historically, drilling out the 7-in, liner equipment has been a time consuming operation with a limited success ratio. The success of the operation is highly dependent on the type of drill bit employed. Tungsten carbide mills and mill tooth rock bits required from 7.5 to 11.5 hours respectively to drill the pack-off bushings, landing collar, shoe track and shoe. Rates of penetration dropped dramatically when drilling the float equipment. While conventional PDC bits have drilled the liner equipment successfully (averaging 9.7 hours), severe bit damage invariably prevented them from continuing to drill the formation at cost-effective penetration rates. This paper describes the integrated development and application of an IADC M433 Class PDC bit, which was designed specifically to drill out the 7-in. liner equipment and continue drilling the formation at satisfactory penetration rates. The development was the result of a joint investigation There the operator and bit/liner manufacturers shared their expertise in solving a drilling problem, The heavy-set bit was developed following drill-off tests conducted to investigate the drillability of the 7-in. liner equipment. Key features of the new bit and its application onshore The Netherlands will be presented and analyzed.

  13. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experimentsa)

    NASA Astrophysics Data System (ADS)

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Herrmann, M. C.; Hess, M. H.; Lamppa, D. C.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Rochau, G. A.; Savage, M. E.; Schroen, D. G.; Stygar, W. A.; Vesey, R. A.

    2015-05-01

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6-8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2-0.4 g/cm3. In these experiments, up to 5 × 1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1-2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  14. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    DOE PAGES

    Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; ...

    2015-04-29

    In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as highmore » as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.« less

  15. Pathophysiology of shock.

    PubMed

    Houston, M C

    1990-06-01

    Shock is an acute widespread reduction in effective tissue perfusion that invokes an imbalance of oxygen supply and demand, anaerobic metabolism, lactic acidosis, cellular and organ dysfunction, metabolic abnormalities, and, if prolonged, irreversible damage and death. The pathophysiologic events in the various types of shock are different and complex with hemodynamic and oxygenation changes, alterations in the composition of the fluid compartments, and various mediators. Shock results from a change in one or a combination of the following: intravascular volume, myocardial function, systemic vascular resistance, or distribution of blood flow. The clinical types of shock include hypovolemic, cardiogenic, distributive (septic), and obstructive. An understanding of the pathophysiologic changes, rapid diagnosis, appropriate monitoring, and appropriate therapy can reduce the high morbidity and mortality in shock states.

  16. Reflection of curved shock waves

    NASA Astrophysics Data System (ADS)

    Mölder, S.

    2017-03-01

    Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.

  17. Comparison of shock severity measures

    SciTech Connect

    Baca, T.J.

    1989-01-01

    In an effort to clarify the issues associated with quantifying shock severity, this paper compares the merits of two measures of shock severity. The first measure is the widely used absolute acceleration shock response spectrum (SAA). The second measure of shock severity is relatively new and is known as the shock intensity spectrum (SIS). Overall information content of SAA and SIS spectra are compared and discussed in the context of two shock excitations having known amplitude, duration, and frequency content. The first is a burst of band-limited white noise and the second is a classical haversine pulse. After describing both the SAA and SIS shock measures, numerous examples are described which emphasize the strengths and limitations of each shock characterization method. This discussion reveals how the use of different shock measures may alter an engineer's conclusions about relative shock severity between two shock environments. 8 refs., 15 figs.

  18. Test Method Designed to Evaluate Cylinder Liner-Piston Ring Coatings for Advanced Heat Engines

    NASA Technical Reports Server (NTRS)

    Radil, Kevin C.

    1997-01-01

    Research on advanced heat engine concepts, such as the low-heat-rejection engine, have shown the potential for increased thermal efficiency, reduced emissions, lighter weight, simpler design, and longer life in comparison to current diesel engine designs. A major obstacle in the development of a functional advanced heat engine is overcoming the problems caused by the high combustion temperatures at the piston ring/cylinder liner interface, specifically at top ring reversal (TRR). Therefore, advanced cylinder liner and piston ring materials are needed that can survive under these extreme conditions. To address this need, researchers at the NASA Lewis Research Center have designed a tribological test method to help evaluate candidate piston ring and cylinder liner materials for advanced diesel engines.

  19. Wear testing and particle characterisation of sequentially crosslinked polyethylene acetabular liners using different femoral head sizes.

    PubMed

    Zietz, Carmen; Fabry, Christian; Middelborg, Lars; Fulda, Gerhard; Mittelmeier, Wolfram; Bader, Rainer

    2013-08-01

    Larger femoral heads lead to a decreased risk of total hip dislocation and an improved range of motion. However, the larger diameter is associated with increased wear rates. The low wear rates of crosslinked polyethylene opens up the possibility of using larger heads. The aim of this experimental study was to evaluate the wear of conventional non-crosslinked versus sequentially crosslinked polyethylene liners in combination with different ceramic head sizes (28, 36, 44 mm). Wear testing was performed in a hip simulator according to ISO 14242. Wear particles from the polyethylene liners were characterized after wear testing. The wear measurements revealed a significant increase in the wear of crosslinked polyethylene liners with larger heads. By sequential crosslinking, however, the gravimetric wear using larger heads was reduced to a fractional amount of the wear using conventional polyethylene. Significant differences were observed for particle morphology but not for the number of particles when comparing non-crosslinked and crosslinked polyethylene.

  20. Fusion-neutron measurements for magnetized liner inertial fusion experiments on the Z accelerator

    SciTech Connect

    Hahn, K. D.; Chandler, G. A.; Ruiz, C. L.; Cooper, G. W.; Gomez, M. R.; Slutz, S.; Sefkow, A. B.; Sinars, D. B.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Harding, E.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Torres, J. A.; Bur, J. A.; Cuneo, M. E.; Glebov, V. Yu; Harvey-Thompson, A. J.; Herrman, M. C.; Hess, M. H.; Johns, O.; Jones, B.; Lamppa, D. C.; Lash, J. S.; Martin, M. R.; McBride, R. D.; Peterson, K. J.; Porter, J. L.; Reneker, J.; Robertson, G. K.; Rochau, G. A.; Savage, M. E.; Smith, I. C.; Styron, J. D.; Vesey, R. A.

    2016-05-26

    Several magnetized liner inertial fusion (MagLIF) experiments have been conducted on the Z accelerator at Sandia National Laboratories since late 2013. Measurements of the primary DD (2.45 MeV) neutrons for these experiments suggest that the neutron production is thermonuclear. Primary DD yields up to 3e12 with ion temperatures ~2-3 keV have been achieved. Measurements of the secondary DT (14 MeV) neutrons indicate that the fuel is significantly magnetized. Measurements of down-scattered neutrons from the beryllium liner suggest ρRliner ~ 1g/cm2. Neutron bang times, estimated from neutron time-of-flight (nTOF) measurements, coincide with peak x-ray production. Furthermore, plans to improve and expand the Z neutron diagnostic suite include neutron burn-history diagnostics, increased sensitivity and higher precision nTOF detectors, and neutron recoil-based yield and spectral measurements.

  1. Progress in the Design of the Stabilized Liner Compressor for MTF/MIF Plasma Target Development

    NASA Astrophysics Data System (ADS)

    Frese, Sherry; Frese, Michael; Turchi, Peter; Gale, Don

    2016-10-01

    The Stabilized Liner Compressor (SLC) seeks to extend concepts for repetitive, rotationally stabilized, liquid-metal liners driven by free-pistons to much higher drive pressures (25 vs 5 kpsi) and faster implosion speeds (2000 vs 100 m/s) than previously demonstrated. Such extension is needed to enable experiments with magnetized-plasma targets presently offering sizes and lifetimes of 10's cm diam and 10's microsec. SLC represents the confluence of several difficult technologies, including pulsed high pressures, high-speed rotating machinery and alkali-metal (Na, NaK) handling. Solution of the two-dimensional, unsteady, compressible flow of a rotating liquid-metal liner requires advanced numerical techniques. We report the use of the 2-1/2 dimensional MHD code MACH2 to explore flow options, including magnetic flux compression, and to provide pulsed pressure distributions for mechanical design. Supported by ARPA-E ALPHA Program.

  2. User guide for STRMLN: A boundary-layer program for contoured wind-tunnel liner design

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.

    1979-01-01

    A 2-D boundary layer computer code developed to process data for an arbitrary number of streamlines is presented. Provisions are included for the computer code to determine either mass transfer rates necessary for an effective boundary layer displacement of zero thickness or the effective displacement thickness for a specified mass transfer-rate distribution. The computer code was developed to be compatible with other computer codes which are being modified and/or developed at the NASA-Langley Research Center in order to design the three dimensional, contoured, wind tunnel liner used in transonic testing of a laminar flow control system installed on a supercritical airfoil section. A brief discription of the liner design procedure, representative liner calculations, adaptive-wall design for a two dimensional wind tunnel test, and other applications are reported.

  3. Liners of natural porous materials to minimize pollutant migration. Final report, Oct. 1975 - Sep. 1977

    SciTech Connect

    Fuller, W.H.

    1981-07-01

    The use of natural low-cost materials as barriers for minimizing pollution migration out of landfills by retaining contaminants from liquids was investigated. The relative effectiveness of natural low-cost liners of crushed limestone, clayey soil, hydrous oxides of iron, and crushed pecan hulls for minimizing the migration of Be, Cd, Cr, Fe, Ni, Zn, and total organic carbon constituents of municipal solid waste landfill leachates was evaluated. Several leachate variables such as aqueous dilution, aeration, pH, and flux were also studied for their effect on movement of metals through 11 representative U.S. soils. Laboratory investigations using soil columns as a first step in screening for potential liners and manipulation practices are described. Limestone and hydrous iron oxide were found to be potentially useful as porous liners for retention of metallic leachate constituents. The amounts of these materials in natural soil were also found to be useful predictors of contaminant removal.

  4. A 1D (radial) Plasma Jet Propagation Study for the Plasma Liner Experiment (PLX)

    NASA Astrophysics Data System (ADS)

    Thompson, J. R.; Bogatu, I. N.; Galkin, S. A.; Kim, J. S.; Welch, D. R.; Thoma, C.; Golovkin, I.; Macfarlane, J. J.; Case, A.; Messer, S. J.; Witherspoon, F. D.; Cassibry, J. T.; Awe, T. J.; Hsu, S. C.

    2011-10-01

    The Plasma Liner Experiment will explore the formation of imploding spherical ``plasma liners'' that reach peak pressures of 0.1 Mbar upon stagnation. The liners will be formed through the merging of dense, high velocity plasma jets (n ~1017 cm-3, T ~3 eV, v ~50 km/s) in a spherically convergent geometry. The focus of this 1D (radial) study is argon plasma jet evolution during propagation from the rail gun source to the jet merging radius. The study utilizes the Large Scale Plasma (LSP) PIC code with atomic physics included through the use of a non-Local Thermal Equilibrium (NLTE) Equation of State (EOS) table. We will present scenarios for expected 1D (radial) plasma jet evolution, from upon exiting the PLX rail gun to reaching the jet merging radius. The importance of radiation cooling early in the simulation is highlighted. Work supported by US DOE grant DE-FG02-05ER54835.

  5. Optimization of suppression for two-element treatment liners for turbomachinery exhaust ducts

    NASA Technical Reports Server (NTRS)

    Motsinger, R. E.; Kraft, R. E.; Zwick, J. W.; Vukelich, S. I.; Minner, G. L.; Baumeister, K. J.

    1976-01-01

    Sound wave propagation in a soft-walled rectangular duct with steady uniform flow was investigated at exhaust conditions, incorporating the solution equations for sound wave propagation in a rectangular duct with multiple longitudinal wall treatment segments. Modal analysis was employed to find the solution equations and to study the effectiveness of a uniform and of a two-sectional liner in attenuating sound power in a treated rectangular duct without flow (M = 0) and with uniform flow of Mach 0.3. Two-segment liners were shown to increase the attenuation of sound as compared to a uniform liner. The predicted sound attenuation was compared with measured laboratory results for an optimized two-segment suppressor. Good correlation was obtained between the measured and predicted suppressions when practical variations in the modal content and impedance were taken into account. Two parametric studies were also completed.

  6. Stress relieving behaviour of flowable composite liners: A finite element analysis.

    PubMed

    Anatavara, Sarida; Sitthiseripratip, Kriskrai; Senawongse, Pisol

    2016-01-01

    The purpose of this study was to investigate the consequences of using flowable composite as a liner beneath class I resin composite restorations on polymerization shrinkage stress and occlusal force. Models of class I resin composite restorations were generated. A control model received no flowable composite liner. Thirteen test models received different flowable composite liners with varying elastic modulus. Finite element analysis was used. The polymerization shrinkage of the resin composite and an occlusal force were simulated in the models. The stress and strain energy density in each model were investigated. The results demonstrated that all flowable composite linings were able to reduce polymerization shrinkage stress and occlusal force in enamel, dentin, the hybrid layer, and the adhesive layer to various degrees in tooth-restoration systems. Therefore, additional techniques may be applied to reduce the remaining stress and to ensure the long-term success of restorations.

  7. Shock Bench Enhancements

    NASA Astrophysics Data System (ADS)

    Charvet, B.; Dilhan, D.; Palladino, M.

    2014-06-01

    In 2008 a contract placed by CNES in partnership with ESA has led MECANO ID to develop a shock bench to qualify spacecraft equipment. A spacecraft shall withstand several shocks without degradation: launcher fairing or stages separation, spacecraft separation, the release of appendage (solar arrays, antenna reflectors, booms) and shocks generated when the pyrovalves of the propulsion system are fired.The Shock Response Spectrum (SRS) requirement, to be applied to the equipment, depends on its mass, its size and its location in the satellite. CNES has performed a survey of the pyroshock qualification requirements on CNES and ESA satellites. The outcome of the activity was the input for the bench development (Fig. 1). The design and sizing of the pyroshock bench started with non linear shock analysis with the help of the Dytran software.A lot of solutions have been compared: mono-plate, bi- plate, Hopkinson bar. The bi-plate was chosen thanks to its very rich frequency content. Also, the shock can be generated on one plate with the equipment mounted on the other, to avoid the direct transmission of the shock to the equipment basis.This study led to a 1000 mm x 650 mm steel bi-plate with a 300 mm aluminum cube fitted on one side. The equipment to test is mounted on the cube (Fig. 2 & 3).

  8. The Aerodynamic Performance of an Over-the-Rotor Liner With Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Richard F.; Hughes, Christopher E.; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1 percent which is within the repeatability of this experiment.

  9. The Aerodynamic Performance of an Over-The-Rotor Liner with Circumferential Grooves on a High Bypass Ratio Turbofan Rotor

    NASA Technical Reports Server (NTRS)

    Bozak, Rick; Hughes, Christopher; Buckley, James

    2013-01-01

    While liners have been utilized throughout turbofan ducts to attenuate fan noise, additional attenuation is obtainable by placing an acoustic liner over-the-rotor. Previous experiments have shown significant fan performance losses when acoustic liners are installed over-the-rotor. The fan blades induce an oscillating flow in the acoustic liners which results in a performance loss near the blade tip. An over-the-rotor liner was designed with circumferential grooves between the fan blade tips and the acoustic liner to reduce the oscillating flow in the acoustic liner. An experiment was conducted in the W-8 Single-Stage Axial Compressor Facility at NASA Glenn Research Center on a 1.5 pressure ratio fan to evaluate the impact of this over-the-rotor treatment design on fan aerodynamic performance. The addition of a circumferentially grooved over-the-rotor design between the fan blades and the acoustic liner reduced the performance loss, in terms of fan adiabatic efficiency, to less than 1% which is within the repeatability of this experiment.

  10. Initial magnetic field compression studies using gas-puff Z-pinches and thin liners on COBRA

    NASA Astrophysics Data System (ADS)

    Gourdain, P.-A.; Concepcion, R. J.; Evans, M. T.; Greenly, J. B.; Hammer, D. A.; Hoyt, C. L.; Kroupp, E.; Kusse, B. R.; Maron, Y.; Novick, A. S.; Pikuz, S. A.; Qi, N.; Rondeau, G.; Rosenberg, E.; Schrafel, P. C.; Seyler, C. E.; Shelkovenko, T. C.

    2013-08-01

    This magnetic compression of cylindrical liners filled with DT gas has promise as an efficient way to achieve fusion burn using pulsed-power machines. However, to avoid rapid cooling of the fuel by transfer of heat to the liner an axial magnetic field is required. This field has to be compressed during the implosion since the thermal insulation is more demanding as the compressed DT plasma becomes hotter and its volume smaller. This compression of the magnetic field is driven both by the imploding liner and plasma. To highlight how this magnetic field compression by the plasma and liner evolves we have separately studied Z-pinch implosions generated by gas puff and liner loads. The masses of the gas puff and liner loads were adjusted to match COBRA's current rise times. Our results have shown that Ne gas-puff implosions are well described by a snowplow model where electrical currents are predominately localized to the outer surface of the imploding plasma and the magnetic field is external to the imploding plasma. Liner implosions are dominated by the plasma ablation process on the inside surface of the liner and the electrical currents and magnetic fields are advected into the inner plasma volume; the sharp radial gradient associated with the snowplow process is not present.

  11. Design report on the SSCL prototype 80 K Synchrotron Radiation Liner System

    SciTech Connect

    Shu, Q.S.; Barts, T.; Chou, W.

    1993-09-01

    This report documents the effort to develop a viable design for an SSC prototype 80 K Synchrotron Radiation Liner System. This liner is designed to be tested in the Superconducting Super Collider Accelerator Systems String Test (ASST) facility. The liner is one method under consideration to minimize the presence of photodesorbed gases in the particle beam line vacuum environment. Secondly, the liner is aimed at improving the Collider cryogenic thermal efficiency which would allow a potential luminosity upgrade. The SSC Collider is the first proton superconducting accelerator designed to operate at an energy of 20 TeV (each beam) and a beam current of 72 mA. The Collider will produce a synchrotron power of 0.14 W/m and a total of 18 kW into 4.2 K for the two rings. This radiated power may trigger a serious impact of photodesorbed gases on the operational availability of the Collider. The interaction between beam particle and photodesorbed gases may greatly reduce the beam lifetime and the scattered beam power may lead to quenching of the superconducting magnets. Collider availability may be unacceptable if this concern is not properly addressed. The liner is one method under consideration to minimize the presence of photodesorbed gases in the particle beam line vacuum. Secondly, the liner is aimed improving the Collider`s cryogenic thermal efficiency which would allow a potential luminosity upgrade. The ultimate goal is to require no more than one machine warm up per year for vacuum maintenance during operation of the SSC Collider.

  12. Echocardiography in shock management.

    PubMed

    McLean, Anthony S

    2016-08-20

    Echocardiography is pivotal in the diagnosis and management of the shocked patient. Important characteristics in the setting of shock are that it is non-invasive and can be rapidly applied.In the acute situation a basic study often yields immediate results allowing for the initiation of therapy, while a follow-up advanced study brings the advantage of further refining the diagnosis and providing an in-depth hemodynamic assessment. Competency in basic critical care echocardiography is now regarded as a mandatory part of critical care training with clear guidelines available. The majority of pathologies found in shocked patients are readily identified using basic level 2D and M-mode echocardiography. A more comprehensive diagnosis can be achieved with advanced levels of competency, for which practice guidelines are also now available. Hemodynamic evaluation and ongoing monitoring are possible with advanced levels of competency, which includes the use of colour Doppler, spectral Doppler, and tissue Doppler imaging and occasionally the use of more recent technological advances such as 3D or speckled tracking.The four core types of shock-cardiogenic, hypovolemic, obstructive, and vasoplegic-can readily be identified by echocardiography. Even within each of the main headings contained in the shock classification, a variety of pathologies may be the cause and echocardiography will differentiate which of these is responsible. Increasingly, as a result of more complex and elderly patients, the shock may be multifactorial, such as a combination of cardiogenic and septic shock or hypovolemia and ventricular outflow obstruction.The diagnostic benefit of echocardiography in the shocked patient is obvious. The increasing prevalence of critical care physicians experienced in advanced techniques means echocardiography often supplants the need for more invasive hemodynamic assessment and monitoring in shock.

  13. Shock formation of HCO/+/

    NASA Astrophysics Data System (ADS)

    Elitzur, M.

    1983-04-01

    It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO(+) relative abundance, in agreement with previous results by Iglesias and Silk (1978). The shock enhancement of HCO(+) detected in the supernova remnant IC 443 by Dickinson et al. (1980) is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model.

  14. Sepsis and septic shock.

    PubMed

    Maloney, Patrick J

    2013-08-01

    Early recognition of sepsis and septic shock in children relies on obtaining an attentive clinical history, accurate vital signs, and a physical examination focused on mental status, work of breathing, and circulatory status. Laboratory tests may support the diagnosis but are not reliable in isolation. The goal of septic shock management is reversal of tissue hypoperfusion. The therapeutic end point is shock reversal. Mortality is significantly better among children when managed appropriately. Every physician who cares for children must strive to have a high level of suspicion and keen clinical acumen for recognizing the rare but potentially seriously ill child.

  15. Shock effects in meteorites

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Bischoff, A.; Buchwald, V.; Rubin, A. E.

    1988-01-01

    The impacts that can occur between objects on intersecting solar system orbits can generate shock-induced deformations and transformations, creating new mineral phases or melting old ones. These shock-metamorphic effects affect not only the petrography but the chemical and isotopic properties and the ages of primordial meteoritic materials. A fuller understanding of shock metamorphism and breccia formation in meteorites will be essential not only in the study of early accretion, differentiation, and regolith-evolution processes, but in the characterization of the primordial composition of the accreted material itself.

  16. Shocks near Jamming

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  17. Environmental Protection Agency's municipal-solid-waste landfill-liner design criteria

    SciTech Connect

    Landreth, R.E.

    1992-01-01

    The soon to be published non-hazardous land disposal regulation, RCRA sub title D (40 CFR Parts 257 and 258) must achieve three objectives. The first is to be protective of human health and the environment, second to be flexible so as not to stifle innovative designs, and third to allow individual states the latitude to develop state specific regulations. The containment systems (liners) currently under consideration will achieve these three goals. The paper will briefly discuss the approach to the liner design. Additional information will be forth coming as final decisions are made.

  18. Construction of low permeability soil-bentonite barrier caps and liners for landfills

    SciTech Connect

    Webber, T.; Williams, M.

    1995-12-31

    A low permeability soil barrier layer is the usual regulatory requirement for both caps and liner systems on modern municipal, industrial, and hazardous waste landfills. This soil layer is either used as the sole barrier or as the soil component of a composite liner system. This paper presents construction experience for blending on site soils with sodium bentonite to produce a thick, low permeability soil barrier layer. The paper begins with a description of the components and construction of the barrier layer and discusses how soil-bentonite barrier layers meet or exceed the regulatory performance criteria for both State and Federal agencies.

  19. Modeling for compression of field-reversed configurations by an imploding liner

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoguang; Wang, Guanqiong; Liu, Bin; Li, Lulu; Yang, Xianjun

    2016-11-01

    This article proposes a one-dimensional physical model to investigate the compression of reversed-field configurations (FRCs) by an imploding cylindrical liner. In this model, axial contraction of FRCs is included and parallel thermal conduction is considered as well as the radial, approximately in the open field line region of FRCs. Comparison with Spencer's analytic model of FRCs adiabatic compression shows similar results. Modeling results also indicate that classical transport model is preferred in the magnetized target fusion regime and axial contraction plays an important role in the dynamics of compression of FRCs using an imploding liner.

  20. Nucleation, wetting and agglomeration of copper and copper-alloy thin films on metal liner surfaces

    NASA Astrophysics Data System (ADS)

    LaBarbera, Stephanie Florence

    One of the key challenges in fabricating narrower and higher aspect ratio interconnects using damascene technology has been achieving an ultra-thin (˜2 nm) and continuous Cu seed coverage on trench sidewalls. The thin seed is prone to agglomeration because of poor Cu wetting on the Ta liner. Using in-situ conductance measurements, the effect of lowering the substrate temperature during Cu seed deposition has been studied on tantalum (Ta) and ruthenium (Ru) liner surfaces. On a Ta surface, it was found that lowering the deposition temperature to --65°C increases the nucleation rate of the Cu thin film, and reduces the minimum coalescing thickness for Cu on Ta liner from ˜4.5 nm (at room temperature) to ˜2 nm. On a Ru surface, Cu coalesces at < 1 nm at room temperature, and no further reduction in initial coalescing thickness was found at low temperature. For the Cu seed deposited at --65°C on a Ta liner on trench sidewalls, extensive thermal stress-induced grain growth was observed during warming up to room temperature. No grain growth was observed in the seed layer deposited at low temperatures on a Ru liner. Small feature size and high current densities make electromigration an important concern for on-chip Cu interconnects. Cu-alloy seeds or Cu-alloy interconnects are therefore needed for future technology. The wetting angle, coalescing thickness, and agglomeration resistance of thin Cu-3% Au, Cu-3% Mn, and Cu-3% Al layers on a Ta liner surface have been studied. It was found that the alloying increases the wetting angle of Cu on Ta at high temperature, as a result of either reduction in Cu alloy surface energy, solute surface segregation, or solute-liner interactions. In addition, the Cu alloys were found to be less agglomeration resistive as compared to pure Cu; their smaller grain size, interaction with the liner surface, and tendency to oxidize were found to accelerate their agglomeration. The coalescing thickness of the Cu alloys was found to be reduced

  1. Prospects for x-ray polarimetry measurements of magnetic fields in magnetized liner inertial fusion plasmas

    SciTech Connect

    Lynn, Alan G. Gilmore, Mark

    2014-11-15

    Magnetized Liner Inertial Fusion (MagLIF) experiments, where a metal liner is imploded to compress a magnetized seed plasma may generate peak magnetic fields ∼10{sup 4} T (100 Megagauss) over small volumes (∼10{sup −10}m{sup 3}) at high plasma densities (∼10{sup 28}m{sup −3}) on 100 ns time scales. Such conditions are extremely challenging to diagnose. We discuss the possibility of, and issues involved in, using polarimetry techniques at x-ray wavelengths to measure magnetic fields under these extreme conditions.

  2. Canted seating of the Stryker Modular Dual Mobility liner within a Trident hemispherical acetabular shell.

    PubMed

    Eskildsen, Scott M; Olsson, Erik C; Del Gaizo, Daniel J

    2016-03-01

    A 75-year-old woman who suffered a left femoral neck fracture underwent a left total hip arthroplasty using a Stryker Trident (Kalamazoo, MI) hemispherical acetabular shell and Modular Dual Mobility (MDM) metal liner. Post-operative radiographs demonstrated canted seating of the liner. The patient was taken immediately back to the operating room where the acetabular liner appeared well seated superiorly but was in a canted position inferiorly. Removal and replacement was performed and post-operative radiographs demonstrated complete seating. Subsequent follow up at 6 months demonstrated good clinical function with no adverse radiographic findings. Canted seating is a potential complication of the MDM metal liner. Providers should be aware of potential incomplete seating inferiorly despite the superior portion of the liner being well seated.

  3. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    NASA Astrophysics Data System (ADS)

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-01

    In this work, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ˜600 kA with ˜200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. This technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  4. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    SciTech Connect

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; Jordan, N. M.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As a result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.

  5. Technique for fabrication of ultrathin foils in cylindrical geometry for liner-plasma implosion experiments with sub-megaampere currents

    DOE PAGES

    Yager-Elorriaga, D. A.; Steiner, A. M.; Patel, S. G.; ...

    2015-11-19

    In this study, we describe a technique for fabricating ultrathin foils in cylindrical geometry for liner-plasma implosion experiments using sub-MA currents. Liners are formed by wrapping a 400 nm, rectangular strip of aluminum foil around a dumbbell-shaped support structure with a non-conducting center rod, so that the liner dimensions are 1 cm in height, 6.55 mm in diameter, and 400 nm in thickness. The liner-plasmas are imploded by discharging ~600 kA with ~200 ns rise time using a 1 MA linear transformer driver, and the resulting implosions are imaged four times per shot using laser-shadowgraphy at 532 nm. As amore » result, this technique enables the study of plasma implosion physics, including the magneto Rayleigh-Taylor, sausage, and kink instabilities on initially solid, imploding metallic liners with university-scale pulsed power machines.« less

  6. Laser-Driven Magnetized Liner Inertial Fusion on OMEGA

    NASA Astrophysics Data System (ADS)

    Barnak, D. H.

    2016-10-01

    Magneto-inertial fusion (MIF) is an approach that combines the implosion and compression of fusion fuel (a hallmark of inertial fusion) with strongly magnetized plasmas that suppress electron heat losses (a hallmark of magnetic fusion). It is of interest because it could potentially reduce some of the traditional velocity, pressure, and convergence ratio requirements of inertial confinement fusion (ICF). The magnetized liner inertial fusion (MagLIF) concept being studied at the Z Pulsed-Power Facility is a key target concept in the U.S. ICF Program. Laser-driven MagLIF is being developed to enable a test of the scaling of MagLIF over a range of absorbed energy from of the order of 20 kJ (on OMEGA) to 500 kJ (on Z). It is also valuable as a platform for studying the key physics of MIF. An energy-scaled point design has been developed for the Omega Laser Facility that is roughly 10 × smaller in linear dimensions than Z MagLIF targets. A 0.6-mm-outer-diam plastic cylinder filled with 2.4 mg/cm3 of D2 is placed in a 10-T axial magnetic field, generated by MIFEDS (magneto-inertial fusion electrical discharge system), the cylinder is compressed by 40 OMEGA beams, and the gas fill is preheated by a single OMEGA beam propagating along the axis. Preheating to >100 eV and axially uniform compression over a 0.7-mm height have been demonstrated, separately, in a series of preparatory experiments that meet our initial expectations. Preliminary results from the first integrated experiments combining magnetization, compression, and preheat will be reported for the first time. The scaling of laser-driven MagLIF from OMEGA up to the 1800 kJ available on the NIF (National Ignition Facility) will also be described briefly. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  7. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    SciTech Connect

    Gomez, M. R.; Slutz, S. A.; Sefkow, A. B.; Hahn, K. D.; Hansen, S. B.; Knapp, P. F.; Schmit, P. F.; Ruiz, C. L.; Sinars, D. B.; Harding, E. C.; Jennings, C. A.; Awe, T. J.; Geissel, M.; Rovang, D. C.; Smith, I. C.; Chandler, G. A.; Cooper, G. W.; Cuneo, M. E.; Harvey-Thompson, A. J.; Hess, M. H.; and others

    2015-05-15

    The magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas 17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 10{sup 12} have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm{sup 3}. In these experiments, up to 5 × 10{sup 10} secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm{sup 2}, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 10{sup 10}. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  8. Demonstration of thermonuclear conditions in magnetized liner inertial fusion experiments

    SciTech Connect

    Gomez, Matthew R.; Slutz, Stephen A.; Sefkow, Adam B.; Hahn, Kelly D.; Hansen, Stephanie B.; Knapp, Patrick F.; Schmit, Paul F.; Ruiz, Carlos L.; Sinars, Daniel Brian; Harding, Eric C.; Jennings, Christopher A.; Awe, Thomas James; Geissel, Matthias; Rovang, Dean C.; Smith, Ian C.; Chandler, Gordon A.; Cooper, Gary Wayne; Cuneo, Michael Edward; Harvey-Thompson, Adam James; Herrmann, Mark C.; Mark Harry Hess; Lamppa, Derek C.; Martin, Matthew R.; McBride, Ryan D.; Peterson, Kyle J.; Porter, John L.; Rochau, Gregory A.; Savage, Mark E.; Schroen, Diana G.; Stygar, William A.; Vesey, Roger Alan

    2015-04-29

    In this study, the magnetized liner inertial fusion concept [S. A. Slutz et al., Phys. Plasmas17, 056303 (2010)] utilizes a magnetic field and laser heating to relax the pressure requirements of inertial confinement fusion. The first experiments to test the concept [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)] were conducted utilizing the 19 MA, 100 ns Z machine, the 2.5 kJ, 1 TW Z Beamlet laser, and the 10 T Applied B-field on Z system. Despite an estimated implosion velocity of only 70 km/s in these experiments, electron and ion temperatures at stagnation were as high as 3 keV, and thermonuclear deuterium-deuterium neutron yields up to 2 × 1012 have been produced. X-ray emission from the fuel at stagnation had widths ranging from 50 to 110 μm over a roughly 80% of the axial extent of the target (6–8 mm) and lasted approximately 2 ns. X-ray yields from these experiments are consistent with a stagnation density of the hot fuel equal to 0.2–0.4 g/cm3. In these experiments, up to 5 ×1010 secondary deuterium-tritium neutrons were produced. Given that the areal density of the plasma was approximately 1–2 mg/cm2, this indicates the stagnation plasma was significantly magnetized, which is consistent with the anisotropy observed in the deuterium-tritium neutron spectra. Control experiments where the laser and/or magnetic field were not utilized failed to produce stagnation temperatures greater than 1 keV and primary deuterium-deuterium yields greater than 1010. An additional control experiment where the fuel contained a sufficient dopant fraction to substantially increase radiative losses also failed to produce a relevant stagnation temperature. The results of these experiments are consistent with a thermonuclear neutron source.

  9. Toxic shock syndrome

    MedlinePlus

    ... by a toxin produced by some types of staphylococcus bacteria. A similar problem, called toxic shock-like ... men. Risk factors include: Recent childbirth Infection with Staphylococcus aureus ( S aureus ), commonly called a Staph infection Foreign ...

  10. Early Treatment in Shock

    DTIC Science & Technology

    2011-06-01

    jasminoides Ellis). It is com- monly sold in the United States as an herbal supplement . In terms of crocetin’s fundamental mode of action in host... supplementation 15 can be beneficial in ameliorating the tissue damage produced following experimental 16 hemorrhagic shock. In the present investigation...experimental rat model of hemorrhagic shock. Our studies were designed to test two 19 hypotheses. First, L-arginine supplementation during resuscitation will

  11. Shock Properties of Kimberlite

    NASA Astrophysics Data System (ADS)

    Willmott, G. R.; Proud, W. G.; Field, J. E.

    2004-07-01

    Plate impact experiments have been performed on the igneous diamond-bearing matrix kimberlite. Longitudinal and lateral stresses were measured in the uniaxial strain regime using manganin stress gauges. The shock Hugoniot of the kimberlite has been characterized at axial stresses between 1 and 9 GPa. The kimberlite has a low impedance response when compared with similar data for other geological materials. The data indicate that the rock behaves inelastically above shock stresses of 1 GPa.

  12. Fluid therapy in shock.

    PubMed

    Mandell, D C; King, L G

    1998-05-01

    The goal of treatment for all types of shock is the improvement of tissue perfusion and oxygenation. The mainstay of therapy for hypovolemic and septic shock is the expansion of the intravascular volume by fluid administration, including crystalloids, colloids, and blood products. Frequent physical examinations and monitoring enable the clinician to determine the adequacy of tissue oxygenation and thus the success of the fluid therapy.

  13. "Smart" Electromechanical Shock Absorber

    NASA Technical Reports Server (NTRS)

    Stokes, Lebarian; Glenn, Dean C.; Carroll, Monty B.

    1989-01-01

    Shock-absorbing apparatus includes electromechanical actuator and digital feedback control circuitry rather than springs and hydraulic damping as in conventional shock absorbers. Device not subject to leakage and requires little or no maintenance. Attenuator parameters adjusted in response to sensory feedback and predictive algorithms to obtain desired damping characteristic. Device programmed to decelerate slowly approaching vehicle or other large object according to prescribed damping characteristic.

  14. Early Treatment in Shock

    DTIC Science & Technology

    2007-06-01

    1471–2210/2/7. Accessed April 15, 2005. 20. Wang CJ, Lee MJ, Chang MC, Lin JK. Inhibition of tumor promotion in benzo [ a ] pyrene -initiated CD-1 mouse...model. Deliverable: A panel of genes that are reproducibly altered in white blood cells and in liver and muscle by shock and resuscitation. 1. To...Deliverable: Coordinated with objective #1, A panel of genes that are reproducibly altered in white blood cells and in liver and muscle by shock and

  15. Catecholamines in shock.

    PubMed

    Alho, A; Jäättelä, A; Lahdensuu, M; Rokkanen, P; Avikainen, V; Karaharju, E; Tervo, T; Lepistö, P

    1977-06-01

    The role of endogenous catecholamines in various clinical shock and stress states is reviewed; the effects, especially on the peripheral circulation, of catecholamine secretion are the same independent of the cause. Risks of using sympathomimetic agents in the treatment of shock are evaluated. A prolonged noradrenaline activity is to be expected in surgical stress states, e.g. multiple injuries, fat embolism syndrome, burns and infections; therapeutic approaches to minimize the sympathoadrenal activity are outlined.

  16. Electron Acceleration in Shock-Shock Interaction: Simulations and Observations

    NASA Astrophysics Data System (ADS)

    Nakanotani, M.; Matsukiyo, S.; Mazelle, C. X.; Hada, T.

    2015-12-01

    Collisionless shock waves play a crucial role in producing high energy particles (cosmic rays) in space. While most of the past studies about particle acceleration assume the presence of a single shock, in space two shocks frequently come close to or even collide with each other. Hietala et al. [2011] observed the collision of an interplanetary shock and the earth's bow shock and the associated acceleration of energetic ions. The kinetic natures of a shock-shock collision has not been well understood. Only the work done by using hybrid simulation was reported by Cargill et al. [1986], in which they focus on a collision of two supercritical shocks and the resultant ion acceleration. We expect similarly that electron acceleration can also occur in shock-shock collision. To investigate the electron acceleration process in a shock-shock collision, we perform one-dimensional full particle-in-cell (PIC) simulations. In the simulation energetic electrons are observed between the two approaching shocks before colliding. These energetic electrons are efficiently accelerated through multiple reflections at the two shocks (Fermi acceleration). The reflected electrons create a temperature anisotropy and excite large amplitude waves upstream via the electron fire hose instability. The large amplitude waves can scatter the energetic electrons in pitch angle so that some of them gain large pitch angles and are easily reflected when they encounter the shocks subsequently. The reflected electrons can sustain, or probably even strengthen, them. We further discuss observational results of an interaction of interplanetary shocks and the earth's bow shock by examining mainly Cluster data. We focus on whether or not electrons are accelerated in the shock-shock interaction.

  17. AOTV bow shock location

    NASA Technical Reports Server (NTRS)

    Desautel, D.

    1985-01-01

    Hypersonic bow-shock location and geometry are of central importance to the aerodynamics and aerothermodynamics of aeroassisted orbital transfer vehicles (AOTVs), but they are difficult to predict for a given vehicle configuration. This paper reports experimental measurements of shock standoff distance for the 70 deg cone AOTV configuration in shock-tunnel-test flows at Mach numbers of 3.8 to 7.9 and for angles of attack from 0 deg to 20 deg. The controlling parameter for hypersonic bow-shock standoff distance (for a given forebody shape) is the mean normal-shock density ratio. Values for this parameter in the tests reported are in the same range as those of the drag-brake AOTV perigee regime. Results for standoff distance are compared with those previously reported in the literature for this AOTV configuration. It is concluded that the AOTV shock standoff distance for the conical configuration, based on frustrum (base) radius, is equivalent to that of a sphere with a radius about 35 percent greater than that of the cone; the distance is, therefore, much less than reported in previous studies. Some reasons for the discrepancies between the present and previous are advanced. The smaller standoff distance determined here implies there will be less radiative heat transfer than was previously expected.

  18. Shock/shock interference on a transpiration cooled hemispherical model

    NASA Technical Reports Server (NTRS)

    Nowak, Robert J.; Wieting, Allan R.; Holden, Michael S.

    1990-01-01

    Experimental results are presented which show the effectiveness of transpiration cooling in reducing the peak heat flux caused by an impinging shock on a bow shock of a hemispherical model. The 12-inch diameter hemispherical transpiration model with helium coolant was tested in the Calspan 48-inch Hypersonic Shock Tunnel at nominal Mach 12.1 and freestream unit Reynolds number of 0.33 x 10 to the 6th/ft. An incident shock wave, generated by a blunt flat-plate shock generator inclined at 10 deg to the freestream, intersected the bow shock of the model to produce shock/shock interference. The stagnation heat flux without coolant or shock/shock interference was about 1.6 times a smooth surface laminar prediction due to effective roughness of the coolant ejection slots. A coolant mass flux 31 percent of the freestream mass flux reduced the stagnation heat flux to zero without shock/shock interference. However, for the same coolant mass flux and with shock/shock interference the peak heat flux was only reduced 8.3 percent, even though the total integrated heat load was reduced.

  19. Summary of JAYGO mixing and FSM-1 application of castable inhibitor and liner

    NASA Technical Reports Server (NTRS)

    Evans, Kurt B.

    1990-01-01

    Two JAYGO planetary mixers (12 and 42 gallon) are being qualified to mix STW5-3224 liner and STW5-3223 castable inhibitor. These mixers are an integral part of a mix process which allows for safe addition of the asbestos component. An essential part of the engineering evaluation (ETP-0347) of these mixers is the generation of static test fire data. Ultimately, these results will help confirm the adequacy of these mixers for production mixing of liner and inhibitor. (These data are not required for qualification of the Certification Test Plan CTP-0125). The details on the mixing, inhibiting, and sling-lining of JAYGO-mixed castable inhibitor and liner which were applied to the FSM-1 segments are presented. The objectives are the following: (1) to document processing events surrounding the JAYO mixing of castable inhibitor and liner, and the subsequent inhibiting and sling lining onto the FSM-1 segments; and (2) to substantiate the measured properties of these JAYGO-mixed materials (rheological and mechanical) and compare these properties to existing production database.

  20. Friction Stir Welding of GR-Cop 84 for Combustion Chamber Liners

    NASA Technical Reports Server (NTRS)

    Russell, Carolyn K.; Carter, Robert; Ellis, David L.; Goudy, Richard

    2004-01-01

    GRCop-84 is a copper-chromium-niobium alloy developed by the Glenn Research Center for liquid rocket engine combustion chamber liners. GRCop-84 exhibits superior properties over conventional copper-base alloys in a liquid hydrogen-oxygen operating environment. The Next Generation Launch Technology program has funded a program to demonstrate scale-up production capabilities of GR-Cop 84 to levels suitable for main combustion chamber production for the prototype rocket engine. This paper describes a novel method of manufacturing the main combustion chamber liner. The process consists of several steps: extrude the GR-Cop 84 powder into billets, roll the billets into plates, bump form the plates into cylinder halves and friction stir weld the halves into a cylinder. The cylinder is then metal spun formed to near net liner dimensions followed by finish machining to the final configuration. This paper describes the friction stir weld process development including tooling and non-destructive inspection techniques, culminating in the successful production of a liner preform completed through spin forming.