RADIATION-INDUCED GENETIC DAMAGE IN THE MEXICAN TOAD (BUFO VALLICEPS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blair, W.F.
1960-10-01
Lines of Mexican toads (Bufo valliceps) bearing x-ray induced genetic damage were established by mating normal females with males that had received gonadal x-ray doses ranging from 300 to 3000 r. Survival in the first generation was inversely proportional to dose,-as was expected. Toads of the 300-r and l000- r lines were inbred, and toads of these lines and of the 700-r line were outcrossed to normal ones. Two crosses were made between toads of the 500-r and 1000-r lines. Developmental abnormalities of various kinds appeared at life history stages rangthg from early embryonic development to post-metamorphic life in bothmore » inbred and outcross generations. These included abnormal gastrulation and neurulation, larval and post-metamorphic edema, abnormally positioned or missing limbs, optical deficiencies, prognathous jaw due to excessive elongation of the lower jaw, and melanin deficiency. The prognathous jaw, in its extreme expression, would probably be lethal in natural populations because of difficulty of feeding. The melanin deficiency, in its extreme expression, is lethal as metamorphosis fails to occur, and in lesser expression, it appears to be lethal or detrimental. The various abnormalities do not appear to be inherited in any simple way, but instead they vary in expression both within and between generations, possibly in relation to genotype and environment. (auth)« less
Sakaguchi, Kouhei; Ohno, Ryoko; Yoshida, Kentaro
2017-01-01
Triploid wheat hybrids between tetraploid wheat and Aegilops tauschii sometimes show abnormal growth phenotypes, and the growth abnormalities inhibit generation of wheat synthetic hexaploids. In type II necrosis, one of the growth abnormalities, necrotic cell death accompanied by marked growth repression occurs only under low temperature conditions. At normal temperature, the type II necrosis lines show grass-clump dwarfism with no necrotic symptoms, excess tillers, severe dwarfism and delayed flowering. Here, we report comparative expression analyses to elucidate the molecular mechanisms of the temperature-dependent phenotypic plasticity in the triploid wheat hybrids. We compared gene and small RNA expression profiles in crown tissues to characterize the temperature-dependent phenotypic plasticity. No up-regulation of defense-related genes was observed under the normal temperature, and down-regulation of wheat APETALA1-like MADS-box genes, considered to act as flowering promoters, was found in the grass-clump dwarf lines. Some microRNAs, including miR156, were up-regulated, whereas the levels of transcripts of the miR156 target genes SPLs, known to inhibit tiller and branch number, were reduced in crown tissues of the grass-clump dwarf lines at the normal temperature. Unusual expression of the miR156/SPLs module could explain the grass-clump dwarf phenotype. Dramatic alteration of gene expression profiles, including miRNA levels, in crown tissues is associated with the temperature-dependent phenotypic plasticity in type II necrosis/grass-clump dwarf wheat hybrids. PMID:28463975
Identification of nuclear genes controlling chlorophyll synthesis in barley by RNA-seq.
Shmakov, Nickolay A; Vasiliev, Gennadiy V; Shatskaya, Natalya V; Doroshkov, Alexey V; Gordeeva, Elena I; Afonnikov, Dmitry A; Khlestkina, Elena K
2016-11-16
Albinism in plants is characterized by lack of chlorophyll and results in photosynthesis impairment, abnormal plant development and premature death. These abnormalities are frequently encountered in interspecific crosses and tissue culture experiments. Analysis of albino mutant phenotypes with full or partial chlorophyll deficiency can shed light on genetic determinants and molecular mechanisms of albinism. Here we report analysis of RNA-seq transcription profiling of barley (Hordeum vulgare L.) near-isogenic lines, one of which is a carrier of mutant allele of the Alm gene for albino lemma and pericarp phenotype (line i:BwAlm). 1221 genome fragments have statistically significant changes in expression levels between lines i:BwAlm and Bowman, with 148 fragments having increased expression levels in line i:BwAlm, and 1073 genome fragments, including 42 plastid operons, having decreased levels of expression in line i:BwAlm. We detected functional dissimilarity between genes with higher and lower levels of expression in i:BwAlm line. Genes with lower level of expression in the i:BwAlm line are mostly associated with photosynthesis and chlorophyll synthesis, while genes with higher expression level are functionally associated with vesicle transport. Differentially expressed genes are shown to be involved in several metabolic pathways; the largest fraction of such genes was observed for the Calvin-Benson-Bassham cycle. Finally, de novo assembly of transcriptome contains several transcripts, not annotated in current H. vulgare genome version. Our results provide the new information about genes which could be involved in formation of albino lemma and pericarp phenotype. They demonstrate the interplay between nuclear and chloroplast genomes in this physiological process.
Zhang, Lei; Sato, Eiji; Amagasaki, Kenichi; Nakao, Atsuhito; Naganuma, Hirofumi
2006-07-01
Malignant glioma cells secrete and activate transforming growth factor-beta (TGFbeta) and are resistant to growth inhibition by that factor. Nevertheless, the mechanism underlying this effect remains poorly understood. In this study, the mechanism of the resistance to growth inhibition induced by TGFbeta was investigated. The authors examined the expression of downstream components of the TGFbeta receptor, including Smad2, Smad3, Smad4, and Smad7, and the effect of TGFbeta1 treatment on the phosphorylation of Smad2 and the nuclear translocation of Smad2 and Smad3 by using 10 glioma cell lines and the A549 cell line, which is sensitive to TGFbeta-mediated growth inhibition. The expression of two transcriptional corepressor proteins, SnoN and Ski, and the effect of TGFbeta1 treatment on the expression of the SnoN protein and the cell cycle regulators p21, p15, cyclin-dependent kinase-4 (CDK4), and cyclin D1 were also examined. Expression of the Smad2 and Smad3 proteins was lower in the glioma cell lines than in the A549 cell line and in normal astrocytes. In particular, Smad3 expression was low or very low in nine of the 10 malignant glioma cell lines. Expression of Smad4 was low in four glioma cell lines, and expression of the Smad7 protein was similar when compared with protein expression in the A549 cell line and in normal astrocytes. The levels of Smad2 phosphorylation after TGFbeta1 treatment were lower in glioma cell lines than in the A549 cell line, except for one glioma cell line. Seven of the 10 glioma cell lines exhibited lower levels of nuclear translocation of Smad2 and Smad3, and two cell lines that expressed very low levels of Smad3 protein showed no nuclear translocation. All glioma cell lines expressed the SnoN protein and its expression was unaltered by treatment with TGFbeta1. Three glioma cell lines expressed high levels of the Ski protein. The expression of the p21(cip1), p15(INK4B), CDK4, and cyclin D1 proteins was not altered by TGFbeta1, treatment, except in one cell line that displayed a slight increase in p21 protein. Overall, the expression of the Smad2 and Smad3 proteins was low in the glioma cell lines, the phosphorylation and nuclear translocation of Smad2 and Smad3 were impaired, and the TGFbeta receptor signal did not affect the expression of the SnoN, p21, p15, cyclin D1, and CDK4 proteins. These results suggest that the ability to resist TGFbeta-mediated growth inhibition in malignant glioma cells is due to abnormalities in the TGFbeta signaling pathway.
Ingrosso, Ilaria; Bonsegna, Stefania; De Domenico, Stefania; Laddomada, Barbara; Blando, Federica; Santino, Angelo; Giovinazzo, Giovanna
2011-10-01
A novel strategy to induce parthenocarpy in tomato fruits by the induction of resveratrol biosynthesis in flower tissues was exploited. Two transgenic tomato lines were considered: a higher resveratrol-producing (35SS) line, constitutively expressing a grape stilbene synthase cDNA, and a lower resveratrol-producing (LoxS) line, expressing stilbene synthase under a fruit-specific promoter. The expression of the stilbene synthase gene affected flavonoid metabolism in a different manner in the transgenic lines, and in one of these, the 35SS line, resulted in complete male sterility. Resveratrol was synthesised either in 35SS or LoxS tomato flowers, at an even higher extent (about 8-10 times) in the former line. We further investigated whether stilbene synthase expression may have resulted in impaired naringenin accumulation during flower development. In the 35SS flowers, naringenin was significantly impaired by about 50%, probably due to metabolic competition. Conversely, the amount of glycosylated flavonols increased in transgenic flowers, thereby excluding the diminished production of flavonols as a reason for parthenocarpy in tomato. We further investigated whether resveratrol synthesis may have resulted changes to pollen structure. Microscopic observations revealed the presence of few and abnormal flake-like pollen grains in 35SS flowers with no germination capability. Finally, the analysis of coumaric and ferulic acids, the precursors of lignin and sporopollenin biosynthesis, revealed significant depletion of these compounds, therefore suggesting an impairment in structural compounds as a reason for pollen ablation. These overall outcomes, to the best of our knowledge, reveal for the first time the major role displayed by resveratrol synthesis on parthenocarpy in tomato fruits. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Chaban, Inna; Khaliluev, Marat; Baranova, Ekaterina; Kononenko, Neonila; Dolgov, Sergey; Smirnova, Elena
2018-04-21
Parthenocarpy and fruit malformations are common among independent transgenic tomato lines, expressing genes encoding different pathogenesis-related (PR) protein and antimicrobal peptides. Abnormal phenotype developed independently of the expression and type of target genes, but distinctive features during flower and fruit development were detected in each transgenic line. We analyzed the morphology, anatomy, and cytoembryology of abnormal flowers and fruits from these transgenic tomato lines and compared them with flowers and fruits of wild tomatoes, line YaLF used for transformation, and transgenic plants with normal phenotype. We confirmed that the main cause of abnormal flower and fruit development was the alterations of determinate growth of generative meristem. These alterations triggered different types of anomalous growth, affecting the number of growing ectopic shoots and formation of new flowers. Investigation of the ovule ontogenesis did not show anomalies in embryo sac development, but fertilization did not occur and embryo sac degenerated. Nevertheless, the ovule continued to differentiate due to proliferation of endothelium cells. The latter substituted embryo sac and formed pseudoembryonic tissue. This process imitated embryogenesis and stimulated ovary growth, leading to the development of parthenocarpic fruit. We demonstrated that failed fertilization occurred due to defective male gametophyte formation, which was manifested in blocked division of the nucleus in the microspore and arrest of vegetative and generative cell formation. Maturing pollen grains were overgrown microspores, not competent for fertilization but capable to induce proliferation of endothelium and development of parthenocarpic ovary. Thus, our study provided new data on the structural transformations of reproductive organs during development of parthenocarpic fruits in transgenic tomato.
Wang, Yukun; Qiao, Linyi; Bai, Jianfang; Wang, Peng; Duan, Wenjing; Yuan, Shaohua; Yuan, Guoliang; Zhang, Fengting; Zhang, Liping; Zhao, Changping
2017-02-13
The JASMONATE-ZIM DOMAIN (JAZ) repressor family proteins are jasmonate co-receptors and transcriptional repressor in jasmonic acid (JA) signaling pathway, and they play important roles in regulating the growth and development of plants. Recently, more and more researches on JAZ gene family are reported in many plants. Although the genome sequencing of common wheat (Triticum aestivum L.) and its relatives is complete, our knowledge about this gene family remains vacant. Fourteen JAZ genes were identified in the wheat genome. Structural analysis revealed that the TaJAZ proteins in wheat were as conserved as those in other plants, but had structural characteristics. By phylogenetic analysis, all JAZ proteins from wheat and other plants were clustered into 11 sub-groups (G1-G11), and TaJAZ proteins shared a high degree of similarity with some JAZ proteins from Aegliops tauschii, Brachypodium distachyon and Oryza sativa. The Ka/Ks ratios of TaJAZ genes ranged from 0.0016 to 0.6973, suggesting that the TaJAZ family had undergone purifying selection in wheat. Gene expression patterns obtained by quantitative real-time PCR (qRT-PCR) revealed differential temporal and spatial regulation of TaJAZ genes under multifarious abiotic stress treatments of high salinity, drought, cold and phytohormone. Among these, TaJAZ7, 8 and 12 were specifically expressed in the anther tissues of the thermosensitive genic male sterile (TGMS) wheat line BS366 and normal control wheat line Jing411. Compared with the gene expression patterns in the normal wheat line Jing411, TaJAZ7, 8 and 12 had different expression patterns in abnormally dehiscent anthers of BS366 at the heading stage 6, suggesting that specific up- or down-regulation of these genes might be associated with the abnormal anther dehiscence in TGMS wheat line. This study analyzed the size and composition of the JAZ gene family in wheat, and investigated stress responsive and differential tissue-specific expression profiles of each TaJAZ gene in TGMS wheat line BS366. In addition, we isolated 3 TaJAZ genes that would be more likely to be involved in the regulation of abnormal anther dehiscence in TGMS wheat line. In conclusion, the results of this study contributed some novel and detailed information about JAZ gene family in wheat, and also provided 3 potential candidate genes for improving the TGMS wheat line.
Expression of the transcription factor Evi-1 in human erythroleukemia cell lines and in leukemias.
Fontenay-Roupie, M; Bouscary, D; Melle, J; Viguié, F; Picard, F; Guesnu, M; Dreyfus, F
1997-02-01
The Evi-1 proto-oncogene is a zinc finger DNA binding protein. Although activation of the Evi-1 gene has been associated with chromosomal rearrangements of the 3q25-q28 region, ectopic expression of Evi-1 could also be observed in acute myelogenous leukemias and myelodysplastic syndromes without cytogenetic abnormalities of the 3q26 locus. In this study, human erythroleukemic cell lines were screened for the expression of Evi-1 mRNA by northern blotting. Evi-1 was expressed in all the erythroid cell lines, whether undifferentiated (K 562, HEL, LAMA 84) or exhibiting spontaneous terminal erythroid differentiation (KU 812, JK-1). Evi-1 mRNA levels were constant or elevated in hemoglobin-synthesizing KU 812 or K 562 cells in response to erythropoietin or hemin treatment, respectively. In human acute myeloblastic leukemias (AML), 11/30 expressed Evi-1 by RT-PCR. Among these cases, 4/6 erythroleukemias without abnormalities of the 3q25-q28 region were found positive. The presence of acidophilic erythroblasts (15-47% of bone marrow cells) accounted for the existence of a terminal erythroid differentiation in all Evi-1-positive AML M6, whereas one negative case was poorly differentiated and referred to as AML M6 variant. These results suggest that Evi-1 mRNA expression can coexist with erythroid differentiation.
Parveen, Shagufta; Panicker, M M; Gupta, Pawan Kumar
2017-03-01
A major cause of spontaneous abortions is chromosomal abnormality of foetal cells. We report the generation of an induced pluripotent stem cell line from the fibroblasts isolated from chorionic villi of an early spontaneously aborted foetus with Turner syndrome. The Turner syndrome villus induced pluripotent stem cell line is transgene free, retains the original XO karyotype, expresses pluripotency markers and undergoes trilineage differentiation. This pluripotent stem cell model of Turner syndrome should serve as a tool to study the developmental abnormalities of foetus and placenta that lead to early embryo lethality and profound symptoms like infertility in 45 XO survivors. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Xu, Xiaohong; Tay, Yilin; Sim, Bernice; Yoon, Su-In; Huang, Yihui; Ooi, Jolene; Utami, Kagistia Hana; Ziaei, Amin; Ng, Bryan; Radulescu, Carola; Low, Donovan; Ng, Alvin Yu Jin; Loh, Marie; Venkatesh, Byrappa; Ginhoux, Florent; Augustine, George J; Pouladi, Mahmoud A
2017-03-14
Huntington disease (HD) is a dominant neurodegenerative disorder caused by a CAG repeat expansion in HTT. Here we report correction of HD human induced pluripotent stem cells (hiPSCs) using a CRISPR-Cas9 and piggyBac transposon-based approach. We show that both HD and corrected isogenic hiPSCs can be differentiated into excitable, synaptically active forebrain neurons. We further demonstrate that phenotypic abnormalities in HD hiPSC-derived neural cells, including impaired neural rosette formation, increased susceptibility to growth factor withdrawal, and deficits in mitochondrial respiration, are rescued in isogenic controls. Importantly, using genome-wide expression analysis, we show that a number of apparent gene expression differences detected between HD and non-related healthy control lines are absent between HD and corrected lines, suggesting that these differences are likely related to genetic background rather than HD-specific effects. Our study demonstrates correction of HD hiPSCs and associated phenotypic abnormalities, and the importance of isogenic controls for disease modeling using hiPSCs. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Cole, Sara L.; Dagg, Rebecca A.; Lau, Loretta M. S.; Duncan, Emma L.; Moy, Elsa L.; Reddel, Roger R.
2012-01-01
Alternative Lengthening of Telomeres (ALT) is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repressors. More recently, ATRX or DAXX was shown to be mutated both in tumors with telomere lengths suggestive of ALT activity and in ALT cell lines. Here, an ALT cell line was separately fused to each of four telomerase-positive cell lines, and four or five independent hybrid lines from each fusion were examined for expression of ATRX and DAXX and for telomere lengthening mechanism. The hybrid lines expressed either telomerase or ALT, with the other mechanism being repressed. DAXX was expressed normally in all parental cell lines and in all of the hybrids. ATRX was expressed normally in each of the four telomerase-positive parental cell lines and in every telomerase-positive hybrid line, and was abnormal in the ALT parental cells and in all but one of the ALT hybrids. This correlation between ALT activity and loss of ATRX expression is consistent with ATRX being a repressor of ALT. PMID:23185534
Chandrasekhar, Kottakota; Vijayalakshmi, Muvva; Vani, Kalasamudramu; Kaul, Tanushri; Reddy, Malireddy K
2014-05-01
Rice production is severely hampered by insect pests. Garlic lectin gene (ASAL) holds great promise in conferring protection against chewing (lepidopteran) and sap-sucking (homopteran) insect pests. We have developed transgenic rice lines resistant to sap-sucking brown hopper (Nilaparvata lugens) by ectopic expression of ASAL in their phloem tissues. Molecular analyses of T0 lines confirmed stable integration of transgene. T1 lines (NP 1-2, 4-3, 11-6 & 17-7) showed active transcription and translation of ASAL transgene. ELISA revealed ASAL expression was as high as 0.95% of total soluble protein. Insect bioassays on T2 homozygous lines (NP 18 & 32) revealed significant reduction (~74-83%) in survival rate, development and fecundity of brown hoppers in comparison to wild type. Transgenics exhibited enhanced resistance (1-2 score) against brown hoppers, minimal plant damage and no growth penalty or phenotypic abnormalities.
Bamberger, Ana-Maria; Minas, Vassilis; Kalantaridou, Sophia N.; Radde, Jessica; Sadeghian, Helen; Löning, Thomas; Charalampopoulos, Ioannis; Brümmer, Jens; Wagener, Christoph; Bamberger, Christoph M.; Schulte, Heinrich M.; Chrousos, George P.; Makrigiannakis, Antonis
2006-01-01
Abnormalities in the process of trophoblast invasion may result in abnormal placentation. Both the embryonic trophoblast and maternal decidua produce corticotropin-releasing hormone (CRH), which promotes implantation. Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), which is expressed in extravillous trophoblasts (EVTs) of normal human placenta, may also function in tro-phoblast/endometrial interactions. We investigated whether locally produced CRH plays a role in trophoblast invasion, primarily by regulating CEACAM1 expression. We examined cultures of freshly isolated human EVTs, which express CEACAM1, and an EVT-based hybridoma cell line, which is devoid of endogenous CEACAM1. CRH inhibited EVT invasion in Matrigel invasion assays, and this effect was blocked by the CRH receptor type 1 (CRHR1)-specific antagonist antalarmin. Additionally, CRH decreased CEACAM1 expression in EVTs in a dose-dependent manner. After transfection of the hybridoma cell line with a CEACAM1 expression vector, the invasiveness of these cells was strongly enhanced. This effect was inhibited by addition of blocking monoclonal antibody against CEACAM1. Furthermore, blocking of endogenous CEACAM1 in EVTs inhibited the invasive potential of these cells. Taken together these findings suggest that CRH inhibits trophoblast invasion by decreasing the expression of CEACAM1 through CRHR1, an effect that might be involved in the pathophysiology of clinical conditions, such as preeclampsia and placenta accreta. PMID:16400017
Kuriyama, Ryoko; Bettencourt-Dias, Monica; Hoffmann, Ingrid; Arnold, Marc; Sandvig, Lisa
2009-06-15
Cancer cells frequently induce aberrant centrosomes, which have been implicated in cancer initiation and progression. Human colorectal cancer cells, HCT116, contain aberrant centrioles composed of disorganized cylindrical microtubules and displaced appendages. These cells also express unique centrosome-related structures associated with a subset of centrosomal components, including gamma-tubulin, centrin and PCM1. During hydroxyurea treatment, these abnormal structures become more abundant and undergo a change in shape from small dots to elongated fibers. Although gamma-tubulin seems to exist as a ring complex, the abnormal structures do not support microtubule nucleation. Several lines of evidence suggest that the fibers correspond to a disorganized form of centriolar microtubules. Plk4, a mammalian homolog of ZYG-1 essential for initiation of centriole biogenesis, is not associated with the gamma-tubulin-specific abnormal centrosomes. The amount of Plk4 at each centrosome was less in cells with abnormal centrosomes than cells without gamma-tubulin-specific abnormal centrosomes. In addition, the formation of abnormal structures was abolished by expression of exogenous Plk4, but not SAS6 and Cep135/Bld10p, which are downstream regulators required for the organization of nine-triplet microtubules. These results suggest that HCT116 cells fail to organize the ninefold symmetry of centrioles due to insufficient Plk4.
Ding, Jin-Dong; Kelly, Una; Landowski, Michael; Toomey, Christopher B.; Groelle, Marybeth; Miller, Chelsey; Smith, Stephanie G.; Klingeborn, Mikael; Singhapricha, Terry; Jiang, Haixiang; Frank, Michael M.; Bowes Rickman, Catherine
2016-01-01
Complement factor H (CFH) is an important regulatory protein in the alternative pathway of the complement system, and CFH polymorphisms increase the genetic risk of age-related macular degeneration dramatically. These same human CFH variants have also been associated with dense deposit disease. To mechanistically study the function of CFH in the pathogenesis of these diseases, we created transgenic mouse lines using human CFH bacterial artificial chromosomes expressing full-length human CFH variants and crossed these to Cfh knockout (Cfh−/−) mice. Human CFH protein inhibited cleavage of mouse complement component 3 and factor B in plasma and in retinal pigment epithelium/choroid/sclera, establishing that human CFH regulates activation of the mouse alternative pathway. One of the mouse lines, which express relatively higher levels of CFH, demonstrated functional and structural protection of the retina owing to the Cfh deletion. Impaired visual function, detected as a deficit in the scotopic electroretinographic response, was improved in this transgenic mouse line compared with Cfh−/− mice, and transgenics had a thicker outer nuclear layer and less sub–retinal pigment epithelium deposit accumulation. In addition, expression of human CFH also completely protected the mice from developing kidney abnormalities associated with loss of CFH. These humanized CFH mice present a valuable model for study of the molecular mechanisms of age-related macular degeneration and dense deposit disease and for testing therapeutic targets. PMID:25447048
Misexpression of cyclin B3 leads to aberrant spermatogenesis.
Refik-Rogers, Jale; Manova, Katia; Koff, Andrew
2006-09-01
Mus musculus cyclin B3 is an early meiotic cyclin that is expressed in leptotene and zygotene phases during gametogenesis. In order to determine whether downregulation of cyclin B3 at zygotene-pachytene transition was important for normal spermatogenesis, we investigated the consequences of expressing H. sapiens cyclin B3 after zygotene in mouse testes. Prolonging expression of cyclin B3 until the end of meiosis led to a reduction in sperm counts and disruption of spermatogenesis in four independent lines of transgenic mice. There were three distinct morphological defects associated with the ectopic expression of cyclin B3. Seminiferous tubules were either depleted of germ cells, had an abnormal cell mass in the lumen, or were characterized by the presence of abnormal round spermatids. These defects were associated with increased apoptosis in the testes. These results suggest that downregulation of cyclin B3 at the zygotene-pachytene transition is required to ensure normal spermatogenesis.
Mouse genetic corneal disease resulting from transgenic insertional mutagenesis
Ramalho, J S; Gregory-Evans, K; Huxley, C; Seabra, M C
2004-01-01
Background/aims: To report the generation of a new mouse model for a genetically determined corneal abnormality that occurred in transgenesis experiments. Methods: Transgenic mice expressing mutant forms of Rab27a, a GTPase that has been implicated in the pathogenesis of choroideremia, were generated. Results: Only one transgenic line (T27aT15) exhibited an unexpected eye phenotype. T27aT15 mice developed corneal opacities, usually unilateral, and cataracts, resulting in some cases in phthisical eyes. Histologically, the corneal stroma was thickened and vacuolated, and both epithelium and endothelium were thinned. The posterior segment of the eye was also affected with abnormal pigmentation, vessel narrowing, and abnormal leakage of dye upon angiography but was histologically normal. Conclusion: Eye abnormality in T27aT15 mice results from random insertional mutagenesis of the transgene as it was only observed in one line. The corneal lesion observed in T27aT15 mice most closely resembles posterior polymorphous corneal dystrophy and might result from the disruption of the equivalent mouse locus. PMID:14977782
Tosa, Yukio; Yoshida, Kentaro; Park, Pyoyun; Takumi, Shigeo
2015-01-01
Hybrid chlorosis, a type of hybrid incompatibility, has frequently been reported in inter- and intraspecific crosses of allopolyploid wheat. In a previous study, we reported some types of growth abnormalities such as hybrid necrosis and observed hybrid chlorosis with mild or severe abnormalities in wheat triploids obtained in crosses between tetraploid wheat cultivar Langdon and four Ae. tauschii accessions and in their derived synthetic hexaploids. However, the molecular mechanisms underlying hybrid chlorosis are not well understood. Here, we compared cytology and gene expression in leaves to characterize the abnormal growth in wheat synthetics showing mild and severe chlorosis. In addition, we compared disease resistance to wheat blast fungus. In total 55 and 105 genes related to carbohydrate metabolism and 53 and 89 genes for defense responses were markedly up-regulated in the mild and severe chlorosis lines, respectively. Abnormal chloroplasts formed in the mesophyll cells before the leaves yellowed in the hybrid chlorosis lines. The plants with mild chlorosis showed increased resistance to wheat blast and powdery mildew fungi, although significant differences only in two, third internode length and maturation time, out of the examined agricultural traits were found between the wild type and plants showing mild chlorosis. These observations suggest that senescence might be accelerated in hybrid chlorosis lines of wheat synthetics. Moreover, in wheat synthetics showing mild chlorosis, the negative effects on biomass can be minimized, and they may show substantial fitness under pathogen-polluted conditions. PMID:25806790
Ren, Ya-Jun; Huang, Tao; Yu, Hong-Lu; Zhang, Li; He, Qian-Jin; Xiong, Zhi-Fan; Peng, Hua
2016-12-01
This study aimed to investigate the expression of β-catenin in hepatocellular carcinoma (HCC) tissues and its relationship with α-fetoprotein (AFP) in HCC. Immunohistochemistry was used to determine the expression of β-catenin in normal liver tissues (n=10), liver cirrhosis tissues (n=20), and primary HCC tissues (n=60). The relationship between β-catenin expression and clinical parameters of HCC was investigated. Real-time PCR and Western blotting were used to detect the mRNA and protein expression levels of β-catenin in the liver cancer cell line SMMC-7721 transfected with a plasmid encoding AFP, and also the mRNA and protein expression levels of β-catenin were measured in the liver cancer cell line Huh7 before and after the transfection with AFP shRNA plasmids. The results showed that β-catenin was only expressed on the cell membrane in normal liver tissues. Its localization to the cytoplasm and nucleus of cells was observed in a small proportion of cirrhotic tissues or adjacent HCC tissues, and such ectopic expression of β-catenin was predominant in HCC tissues. The abnormal expression of β-catenin was correlated with serum AFP levels, cancer cell differentiation and vascular invasion (P<0.05). Additionally, the increased expression of AFP resulted in the upregulation of β-catenin mRNA and protein levels, while knockdown of AFP with AFP shRNA led to significantly decreased β-catenin mRNA and protein levels (P<0.05). It was suggested that the abnormal expression of β-catenin is implicated in hepatic carcinogenesis and development. AFP can lead to increased expression of β-catenin, which may account for the poor prognosis of AFP-associated HCC patients.
RNA editing is induced by type I interferon in esophageal squamous cell carcinoma.
Zhang, Jinyao; Chen, Zhaoli; Tang, Zefang; Huang, Jianbing; Hu, Xueda; He, Jie
2017-07-01
In recent years, abnormal RNA editing has been shown to play an important role in the development of esophageal squamous cell carcinoma, as such abnormal editing is catalyzed by ADAR (adenosine deaminases acting on RNA). However, the regulatory mechanism of ADAR1 in esophageal squamous cell carcinomas remains largely unknown. In this study, we investigated ADAR1 expression and its association with RNA editing in esophageal squamous cell carcinomas. RNA sequencing applied to esophageal squamous cell carcinoma clinical samples showed that ADAR1 expression was correlated with the expression of STAT1, STAT2, and IRF9. In vitro experiments showed that the abundance of ADAR1 protein was associated with the induced activation of the JAK/STAT pathway by type I interferon. RNA sequencing results showed that treatment with type I interferon caused an increase in the number and degree of RNA editing in esophageal squamous cell carcinoma cell lines. In conclusion, the activation of the JAK/STAT pathway is a regulatory mechanism of ADAR1 expression and causes abnormal RNA editing profile in esophageal squamous cell carcinoma. This mechanism may serve as a new target for esophageal squamous cell carcinoma therapy.
Bollinedi, Haritha; S., Gopala Krishnan; Prabhu, Kumble Vinod; Singh, Nagendra Kumar; Mishra, Sushma; Khurana, Jitendra P.; Singh, Ashok Kumar
2017-01-01
Homozygous Golden Rice lines developed in the background of Swarna through marker assisted backcross breeding (MABB) using transgenic GR2-R1 event as a donor for the provitamin A trait have high levels of provitamin A (up to 20 ppm) but are dwarf with pale green leaves and drastically reduced panicle size, grain number and yield as compared to the recurrent parent, Swarna. In this study, we carried out detailed morphological, biochemical and molecular characterization of these lines in a quest to identify the probable reasons for their abnormal phenotype. Nucleotide blast analysis with the primer sequences used to amplify the transgene revealed that the integration of transgene disrupted the native OsAux1 gene, which codes for an auxin transmembrane transporter protein. Real time expression analysis of the transgenes (ZmPsy and CrtI) driven by endosperm-specific promoter revealed the leaky expression of the transgene in the vegetative tissues. We propose that the disruption of OsAux1 disturbed the fine balance of plant growth regulators viz., auxins, gibberellic acid and abscisic acid, leading to the abnormalities in the growth and development of the lines homozygous for the transgene. The study demonstrates the conserved roles of OsAux1 gene in rice and Arabidopsis. PMID:28068433
Bollinedi, Haritha; S, Gopala Krishnan; Prabhu, Kumble Vinod; Singh, Nagendra Kumar; Mishra, Sushma; Khurana, Jitendra P; Singh, Ashok Kumar
2017-01-01
Homozygous Golden Rice lines developed in the background of Swarna through marker assisted backcross breeding (MABB) using transgenic GR2-R1 event as a donor for the provitamin A trait have high levels of provitamin A (up to 20 ppm) but are dwarf with pale green leaves and drastically reduced panicle size, grain number and yield as compared to the recurrent parent, Swarna. In this study, we carried out detailed morphological, biochemical and molecular characterization of these lines in a quest to identify the probable reasons for their abnormal phenotype. Nucleotide blast analysis with the primer sequences used to amplify the transgene revealed that the integration of transgene disrupted the native OsAux1 gene, which codes for an auxin transmembrane transporter protein. Real time expression analysis of the transgenes (ZmPsy and CrtI) driven by endosperm-specific promoter revealed the leaky expression of the transgene in the vegetative tissues. We propose that the disruption of OsAux1 disturbed the fine balance of plant growth regulators viz., auxins, gibberellic acid and abscisic acid, leading to the abnormalities in the growth and development of the lines homozygous for the transgene. The study demonstrates the conserved roles of OsAux1 gene in rice and Arabidopsis.
Dhawan, Puneet; Veldurthy, Vaishali; Yehia, Ghassan; Hsaio, Connie; Porta, Angela; Kim, Ki-In; Patel, Nishant; Lieben, Liesbet; Verlinden, Lieve; Carmeliet, Geert; Christakos, Sylvia
2017-11-01
Although the intestine plays the major role in 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] action on calcium homeostasis, the mechanisms involved remain incompletely understood. The established model of 1,25(OH)2D3-regulated intestinal calcium absorption postulates a critical role for the duodenum. However, the distal intestine is where 70% to 80% of ingested calcium is absorbed. To test directly the role of 1,25(OH)2D3 and the vitamin D receptor (VDR) in the distal intestine, three independent knockout (KO)/transgenic (TG) lines expressing VDR exclusively in the ileum, cecum, and colon were generated by breeding VDR KO mice with TG mice expressing human VDR (hVDR) under the control of the 9.5-kb caudal type homeobox 2 promoter. Mice from one TG line (KO/TG3) showed low VDR expression in the distal intestine (<50% of the levels observed in KO/TG1, KO/TG2, and wild-type mice). In the KO/TG mice, hVDR was not expressed in the duodenum, jejunum, kidney, or other tissues. Growth arrest, elevated parathyroid hormone level, and hypocalcemia of the VDR KO mice were prevented in mice from KO/TG lines 1 and 2. Microcomputed tomography analysis revealed that the expression of hVDR in the distal intestine of KO/TG1 and KO/TG2 mice rescued the bone defects associated with systemic VDR deficiency, including growth plate abnormalities and altered trabecular and cortical parameters. KO/TG3 mice showed rickets, but less severely than VDR KO mice. These findings show that expression of VDR exclusively in the distal intestine can prevent abnormalities in calcium homeostasis and bone mineralization associated with systemic VDR deficiency. Copyright © 2017 Endocrine Society.
[Cytogenomic studies of hydatiform moles and gestational choriocarcinoma].
Poaty, Henriette; Coullin, Philippe; Leguern, Eric; Dessen, Philippe; Valent, Alexandre; Afoutou, José-Marie; Peko, Jean-Félix; Candelier, Jean-Jacques; Gombé-Mbalawa, Charles; Picard, Jean-Yves; Bernheim, Alain
2012-09-01
The complete hydatidiform mole (CHM), a gestational trophoblastic disease, is usually caused by the development of an androgenic egg whose genome is exclusively paternal. Due to parental imprinting, only trophoblasts develop in the absence of a fetus. CHM are diploid and no abnormal karyotype is observed. It is 46,XX in most cases and less frequently 46,XY. The major complication of this disease is gestational choriocarcinoma, a metastasizing tumor and a true allografted malignancy. This complication is infrequent in developed countries, but is more common in the developing countries and is then worsened by delayed care. The malignancies are often accompanied by acquired, possibly etiological genomic abnormalities. We investigated the presence of recurrent cytogenetic abnormalities in CHM and post-molar choriocarcinoma using metaphasic CGH (mCGH) and high-resolution 244K aCGH techniques. The 10 CHM studied by mCGH showed no chromosomal gains or losses. For post-molar choriocarcinoma, 11 tumors, whose diagnosis was verified by histopathology, were investigated by aCGH. Their androgenic nature and the absence of tumor DNA contamination by maternal DNA were verified by the analysis of microsatellite markers. Three choriocarcinoma cell lines (BeWo, JAR and JEG) were also analyzed by aCGH. The results allowed us to observe some chromosomal rearrangements in primary tumors, and more in the cell lines. Chromosomal abnormalities were confirmed by FISH and functional effect by immunohistochemical analysis of gene expression. Forty minimum critical regions (MCR) were defined on chromosomes. Candidate genes implicated in choriocarcinoma oncogenesis were selected. The presence in the MCR of many miRNA clusters whose expression is modulated by parental imprinting has been observed, for example in 14q32 or in 19q13.4. This suggests that, in gestational choriocarcinoma, the consequences of gene abnormalities directly linked to acquired chromosomal abnormalities are superimposed upon those of imprinted genes altered at fertilization.
Bonnelye, Edith; Saltel, Frédéric; Chabadel, Anne; Zirngibl, Ralph A; Aubin, Jane E; Jurdic, Pierre
2010-01-01
The orphan nuclear receptor, estrogen receptor-related receptor α (ERRα) is expressed in osteoblasts and osteoclasts (OCs) and has been proposed to be a modulator of estrogen signaling. To determine the role of ERRα in OC biology, we knocked down ERRα activity by transient transfection of an siRNA directed against ERRα in the RAW264.7 monocyte–macrophage cell line that differentiates into OCs in the presence of receptor activator of nuclear factor κB-ligands and macrophage colony-stimulating factor. In parallel, stable RAW cell lines expressing a dominant-negative form of ERRα and green fluorescent protein (RAW-GFP-ERRαΔAF2) were used. Expression of OC markers was assessed by real-time PCR, and adhesion and transmigration tests were performed. Actin cytoskeletal organization was visualized using confocal microscopy. We found that RAW264.7 cells expressing siRNA directed against ERRα and RAW-GFP-ERRαΔAF2 OCs displayed abnormal spreading, and decreased osteopontin and β3 integrin subunit expression compared with the corresponding control cells. Decreased adhesion and the absence of podosome belts concomitant with abnormal localization of c-src were also observed in RAW-GFP-ERRαΔAF2-derived OCs. In addition, RAW-GFP-ERRαΔAF2-derived OCs failed to transmigrate through osteoblast cell layers. Our data show that the impairment of ERRα function does not alter OC precursor proliferation and differentiation but does alter the adhesion/spreading and migration capacities of mature OCs. PMID:20841427
Gothilf, Yoav; Toyama, Reiko; Coon, Steven L; Du, Shao-Jun; Dawid, Igor B; Klein, David C
2002-11-01
Zebrafish serotonin-N-acetyltransferase-2 (zfAANAT-2) mRNA is exclusively expressed in the pineal gland (epiphysis) at the embryonic stage. Here, we have initiated an effort to study the mechanisms underlying tissue-specific expression of this gene. DNA constructs were prepared in which green fluorescent protein (GFP) is driven by regulatory regions of the zfAANAT-2 gene. In vivo transient expression analysis in zebrafish embryos indicated that in addition to the 5'-flanking region, a regulatory sequence in the 3'-flanking region is required for pineal-specific expression. This finding led to an effort to produce transgenic lines expressing GFP under the control of the 5' and 3' regulatory regions of the zfAANAT-2 gene. Embryos transiently expressing GFP were raised to maturity and tested for germ cell transmission of the transgene. Three transgenic lines were produced in which GFP fluorescence in the pineal was detected starting 1 to 2 days after fertilization. One line was crossed with mindbomb and floating head mutants that cause abnormal development of the pineal and an elevation or reduction of zfAANAT-2 mRNA levels, respectively. Homozygous mutant transgenic embryos exhibited similar effects on GFP expression in the pineal gland. These observations indicate that the transgenic lines described here will be useful in studying the development of the pineal gland and the mechanisms that determine pineal-specific gene expression in the zebrafish. Published 2002 Wiley-Liss, Inc.
He, Guoyang; Zou, Liyuan; Zhou, Lin; Gao, Peiqiong; Qian, Xinlai; Cui, Jing
2017-01-01
Cysteine-rich intestinal protein 1 (CRIP1), a member of the LIM/double zinc finger protein family, is abnormally expressed in several tumour types. However, few data are available on the role of CRIP1 in cancer. In the present study, we aimed to investigate the expression profile and functions of CRIP1 in colorectal cancer. To examine the protein expression level of CRIP1, immunohistochemistry (IHC) was performed on 56 pairs of colon cancer tissue samples. Western blotting was performed to investigate CRIP1 protein expression in four colon cancer cell lines. The endogenous expression of CRIP1 was suppressed using short interfering RNAs (siRNAs). Cell proliferation assays were used to determine whether CRIP1 silencing affected cell proliferation. Flow cytometry analysis was used to detect cell apoptosis. The effects of silencing CRIP1 on cell migration and invasion was detected using the transwell and wound-healing assays. IHC analysis showed that protein level of CRIP1 was significantly higher in tumour tissue samples than in paired non-tumour tissue samples and that the CRIP1 level was higher in metastatic tissue samples than in non-metastatic tissue samples. In addition, protein levels of CRIP1 were higher in highly metastatic colon cancer cell lines than in colon cancer cell lines with low metastasis. Further, CRIP1 silencing had no effect on cell proliferation or apoptosis in SW620 and HT29 cells. CRIP1 silencing suppressed cell migration and invasion obviously in SW620 and HT29 cells. The present study provides new evidence that abnormal expression of CRIP1 might be related to the degree of metastasis in colorectal cancer and that CRIP1 silencing could effectively inhibit migration and invasion during colorectal cancer development. These findings might aid the development of a biomarker for colon cancer prognosis and metastasis, and thus help to treat this common type of cancer. © 2017 The Author(s). Published by S. Karger AG, Basel.
Altered expression of MUC2, MUC4, and MUC5 mucin genes in pancreas tissues and cancer cell lines.
Balagué, C; Gambús, G; Carrato, C; Porchet, N; Aubert, J P; Kim, Y S; Real, F X
1994-04-01
Neoplastic transformation of epithelial cells is commonly associated with altered synthesis and structure of mucin glycoproteins. The aim of the study was to determine if altered mucin gene expression takes place in pancreas cancer. To examine mucin gene expression in normal pancreas and pancreas cancer, antibodies detecting the MUC1, MUC2, MUC5B, and MUC5C apomucins were used in immunohistochemical techniques and complementary DNA probes specific for the MUC1-MUC5 genes were used in Northern blots. MUC1 is the major apomucin expressed in normal pancreas, whereas MUC2-MUC5 are weakly expressed or undetectable. In pancreas cancer tissues and cell lines, increased expression of MUC2, MUC4, and MUC5C is shown. The cytoplasmic expression of MUC2 and MUC5C in tumor cells suggests that these apomucins are underglycosylated and abnormally compartmentalized. Enhanced expression of MUC2, MUC4, and MUC5C genes is a frequent event in pancreas cancer and may contribute to the alterations in the biochemical structure of pancreas cancer mucins.
Burns, J. E.; Baird, M. C.; Clark, L. J.; Burns, P. A.; Edington, K.; Chapman, C.; Mitchell, R.; Robertson, G.; Soutar, D.; Parkinson, E. K.
1993-01-01
Using immunocytochemical and Western blotting techniques we have demonstrated the presence of abnormally high levels of p53 protein in 8/24 (33%) of human squamous cell carcinomas (SCC) and 9/18 (50%) of SCC cell lines. There was a correlation between the immunocytochemical results obtained with eight SCC samples and their corresponding cell lines. Direct sequencing of PCR-amplified, reverse transcribed, p53 mRNA confirmed the expression of point mutations in six of the positive cell lines and detected in-frame deletions in two others. We also detected two stop mutations and three out-of-frame deletions in five lines which did not express elevated levels of p53 protein. Several of the mutations found in SCC of the tongue (3/7) were in a region (codons 144-166) previously identified as being a p53 mutational hot spot in non-small cell lung tumours (Mitsudomi et al., 1992). In 11/13 cases only the mutant alleles were expressed suggesting loss or reduced expression of the wild type alleles in these cases. Six of the mutations were also detected in the SCCs from which the lines were derived, strongly suggesting that the mutations occurred, and were selected, in vivo. The 12th mutation GTG-->GGG (valine-->glycine) at codon 216 was expressed in line SCC-12 clone B along with an apparently normal p53 allele and is to our knowledge a novel mutation. Line BICR-19 also expressed a normal p53 allele in addition to one where exon 10 was deleted. Additionally 15 of the SCC lines (including all of those which did not show elevated p53 protein levels) were screened for the presence of human papillomavirus types 16 and 18 and were found to be negative. These results are discussed in relation to the pathogenesis of SCC and the immortalisation of human keratinocytes in vitro. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8390283
Lymphocytes from wasted mice express enhanced spontaneous and {gamma}-ray-induced apoptosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woloschak, G.E.; Chang-Liu, Chin-Mei; Chung, Jen
1993-09-01
Mice bearing the autosomal recessive mutation wasted (wst/wst) display a disease pattern including faulty repair of DNA damage in lymphocytes after radiation exposure, neurologic abnormalities, and immunodeficiency. Many of the features of this mouse model have suggested a premature or increased spontaneous frequency of apoptosis in thymocytes; past work has shown an inability to establish cultured T cell lines, an abnormally high death rate of stimulated T cells in culture, and an increased sensitivity of T cells to the killing effects of ionizing radiations in wst/wst mice relative to controls. The experiments reported here were designed to examine splenic andmore » thymic lymphocytes from wasted and control mice for signs of early apoptosis. Our results revealed enhanced expression of Rp-8 mRNA (associated with apoptosis) in thymic lymphocytes and reduced expression in splenic lymphocytes of wst/wst mice relative to controls; expression of Rp-2 and Td-30 mRNA (induced during apoptosis) were not detectable in spleen or thymus. Higher spontaneous DNA fragmentation was observed in wasted mice than in controls; however, {gamma}-ray-induced DNA fragmentation peaked at a lower dose and occurred to a greater extent in wasted mice relative to controls. These results provide evidence for high spontaneous and {gamma}-ray-induced apoptosis in T cells of wasted mice as a mechanism underlying the observed lymphocyte and DNA repair abnormalities.« less
The role of the cytoplasmic domain of the L1 cell adhesion molecule in brain development
Nakamura, Yukiko; Lee, Suni; Haddox, Candace L.; Weaver, Eli J.; Lemmon, Vance P.
2011-01-01
Mutations in the human L1CAM gene cause X-linked Hydrocephalus and MASA syndrome. In vitro studies have shown the L1 cytoplasmic domain (L1CD) is involved in L1 trafficking, neurite branching, signaling, and interactions with the cytoskeleton. L1cam knock-out (L1KO) mice have hydrocephalus, a small cerebellum, hyperfasciculation of corticothalamic tracts and abnormal peripheral nerves. To explore the function of the L1CD, we made three new mice lines in which different parts of the L1CD have been altered. In all mutant lines L1 protein is expressed and transported into the axon. Interestingly, these new L1CD mutant lines display normal brain morphology. However, the expression of L1 protein in the adult is dramatically reduced in the two L1CD mutant lines that lack the ankyrin-binding region and they show defects in motor function. Therefore, the L1CD is not responsible for the major defects observed in L1KO mice, yet it is required for continued L1 protein expression and motor function in the adult. PMID:20127821
Mitochondrial Abnormality Facilitates Cyst Formation in Autosomal Dominant Polycystic Kidney Disease
Ishimoto, Yu; Yoshihara, Daisuke; Kugita, Masanori; Nagao, Shizuko; Shimizu, Akira; Takeda, Norihiko; Wake, Masaki; Honda, Kenjiro; Zhou, Jing
2017-01-01
ABSTRACT Autosomal dominant polycystic kidney disease (ADPKD) constitutes the most inherited kidney disease. Mutations in the PKD1 and PKD2 genes, encoding the polycystin 1 and polycystin 2 Ca2+ ion channels, respectively, result in tubular epithelial cell-derived renal cysts. Recent clinical studies demonstrate oxidative stress to be present early in ADPKD. Mitochondria comprise the primary reactive oxygen species source and also their main effector target; however, the pathophysiological role of mitochondria in ADPKD remains uncharacterized. To clarify this function, we examined the mitochondria of cyst-lining cells in ADPKD model mice (Ksp-Cre PKD1flox/flox) and rats (Han:SPRD Cy/+), demonstrating obvious tubular cell morphological abnormalities. Notably, the mitochondrial DNA copy number and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) expression were decreased in ADPKD model animal kidneys, with PGC-1α expression inversely correlated with oxidative stress levels. Consistent with these findings, human ADPKD cyst-derived cells with heterozygous and homozygous PKD1 mutation exhibited morphological and functional abnormalities, including increased mitochondrial superoxide. Furthermore, PGC-1α expression was suppressed by decreased intracellular Ca2+ levels via calcineurin, p38 mitogen-activated protein kinase (MAPK), and nitric oxide synthase deactivation. Moreover, the mitochondrion-specific antioxidant MitoQuinone (MitoQ) reduced intracellular superoxide and inhibited cyst epithelial cell proliferation through extracellular signal-related kinase/MAPK inactivation. Collectively, these results indicate that mitochondrial abnormalities facilitate cyst formation in ADPKD. PMID:28993480
Toh, Huishi; Cao, Mingju; Daniels, Eugene; Bateman, Andrew
2013-01-01
Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2–promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5–14.5) and later (E15.5–17.5) developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with subsequent effects in the formation of the mural cell layer and weakening of vessel integrity. These results demonstrate that overexpression of progranulin in endothelial cells influences normal angiogenesis in vivo. PMID:23741441
Toh, Huishi; Cao, Mingju; Daniels, Eugene; Bateman, Andrew
2013-01-01
Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2-promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5-14.5) and later (E15.5-17.5) developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with subsequent effects in the formation of the mural cell layer and weakening of vessel integrity. These results demonstrate that overexpression of progranulin in endothelial cells influences normal angiogenesis in vivo.
Reddy, Chinreddy Subramanyam; Vijayalakshmi, Muvva; Kaul, Tanushri; Islam, Tahmina; Reddy, Malireddy K
2015-05-01
Monellin a sweet-tasting protein exists naturally as a heterodimer of two non-covalently linked subunits chain A and B, which loses its sweetness on denaturation. In this study, we validated the expression of a synthetic monellin gene encoding a single polypeptide chain covalently linking the two subunits under T7 and fruit-ripening-specific promoters in Escherichia coli and tomato fruits, respectively. Purified recombinant monellin protein retained its sweet flavour at 70 °C and pH 2. We developed 15 transgenic T0 tomato plants overexpressing monellin, which were devoid of any growth penalty or phenotypic abnormalities during greenhouse conditions. T-DNA integration and fruit-specific heterologous expression of monellin had occurred in these transgenic tomato lines. ELISA revealed that expression of monellin was 4.5% of the total soluble fruit protein. Functional analyses of transgenic tomatoes of T2-5 and T2-14 lines revealed distinctly strong sweetness compared with wild type. Monellin a potential non-carbohydrate sweetener, if expressed in high amounts in fruits and vegetables, would enhance their flavour and quality.
Multiple autism-like behaviors in a novel transgenic mouse model
Hamilton, Shannon M.; Spencer, Corinne M.; Harrison, Wilbur R.; Yuva-Paylor, Lisa A.; Graham, Deanna F.; Daza, Ray A.M.; Hevner, Robert F.; Overbeek, Paul A.; Paylor, Richard
2011-01-01
Autism spectrum disorder (ASD) diagnoses are behaviorally-based with no defined universal biomarkers, occur at a 1:110 ratio in the population, and predominantly affect males compared to females at approximately a 4:1 ratio. One approach to investigate and identify causes of ASD is to use organisms that display abnormal behavioral responses that model ASD-related impairments. This study describes a novel transgenic mouse, MALTT, which was generated using a forward genetics approach. It was determined that the transgene integrated within a noncoding region on the X chromosome. The MALTT line exhibited a complete repertoire of ASD-like behavioral deficits in all three domains required for an ASD diagnosis: reciprocal social interaction, communication, and repetitive or inflexible behaviors. Specifically, MALTT male mice showed deficits in social interaction and interest, abnormalities in pup and juvenile ultrasonic vocalization communications, and exhibited a repetitive stereotypy. Abnormalities were also observed in the domain of sensory function, a secondary phenotype prevalently associated with ASD. Mapping and expression studies suggested that the Fam46 gene family may be linked to the observed ASD-related behaviors. The MALTT line provides a unique genetic model for examining the underlying biological mechanisms involved in ASD-related behaviors. PMID:21093492
Li, Wenxue; Lee, Michael K
2005-06-01
Abnormalities of alpha-synuclein (alpha-Syn) are mechanistically linked to Parkinson's disease (PD) and other alpha-synucleinopathies. To gain additional insights into the relationships between alpha-Syn expression and cell death, we examined the effects of expressing human alpha-Syn (Hualpha-Syn) variants on the cellular vulnerability to apoptotic stimuli. We show that the expression of wild-type (WT) and A30P mutant, but not A53T mutant, Hualpha-Syn leads to the protection of neuronal cell lines from apoptosis but not necrosis. Significantly, Hualpha-Syn did not protect non-neuronal cell lines from apoptosis. We also show that A53T mutant is a loss of function in regards to the antiapoptotic property since the expression of WT Hualpha-Syn with an excess of A53T mutant Hualpha-Syn leads to protection of the cells from apoptosis. The antiapoptotic property is specific to human alpha-Syn as neither beta-Syn nor mouse alpha-Syn protected cells from apoptosis, and the carboxy-terminal 20 amino acids are required for the antiapoptotic property. Analyses of capase-3 and caspase-9 activation reveal that the antiapoptotic property of Hualpha-Syn in neuronal cell lines is associated with the attenuation of caspase-3 activity without affecting the caspase-9 activity or the levels of cleaved, active caspase-3. We conclude that Hualpha-Syn modulates the activity of cleaved caspase-3 product in neuronal cell lines.
Eykelenboom, Jennifer E.; Briggs, Gareth J.; Bradshaw, Nicholas J.; Soares, Dinesh C.; Ogawa, Fumiaki; Christie, Sheila; Malavasi, Elise L.V.; Makedonopoulou, Paraskevi; Mackie, Shaun; Malloy, Mary P.; Wear, Martin A.; Blackburn, Elizabeth A.; Bramham, Janice; McIntosh, Andrew M.; Blackwood, Douglas H.; Muir, Walter J.; Porteous, David J.; Millar, J. Kirsty
2012-01-01
Disrupted-In-Schizophrenia 1 (DISC1) was identified as a risk factor for psychiatric illness through its disruption by a balanced chromosomal translocation, t(1;11)(q42.1;q14.3), that co-segregates with schizophrenia, bipolar disorder and depression. We previously reported that the translocation reduces DISC1 expression, consistent with a haploinsufficiency disease model. Here we report that, in lymphoblastoid cell lines, the translocation additionally results in the production of abnormal transcripts due to the fusion of DISC1 with a disrupted gene on chromosome 11 (DISC1FP1/Boymaw). These chimeric transcripts encode abnormal proteins, designated CP1, CP60 and CP69, consisting of DISC1 amino acids 1–597 plus 1, 60 or 69 amino acids, respectively. The novel 69 amino acids in CP69 induce increased α-helical content and formation of large stable protein assemblies. The same is predicted for CP60. Both CP60 and CP69 exhibit profoundly altered functional properties within cell lines and neurons. Both are predominantly targeted to mitochondria, where they induce clustering and loss of membrane potential, indicative of severe mitochondrial dysfunction. There is currently no access to neural material from translocation carriers to confirm these findings, but there is no reason to suppose that these chimeric transcripts will not also be expressed in the brain. There is thus potential for the production of abnormal chimeric proteins in the brains of translocation carriers, although at substantially lower levels than for native DISC1. The mechanism by which inheritance of the translocation increases risk of psychiatric illness may therefore involve both DISC1 haploinsufficiency and mitochondrial deficiency due to the effects of abnormal chimeric protein expression. GenBank accession numbers: DISC1FP1 (EU302123), Boymaw (GU134617), der 11 chimeric transcript DISC1FP1 exon 2 to DISC1 exon 9 (JQ650115), der 1 chimeric transcript DISC1 exon 4 to DISC1FP1 exon 4 (JQ650116), der 1 chimeric transcript DISC1 exon 6 to DISC1FP1 exon 3a (JQ650117). PMID:22547224
Molecular Characterization of Acquired Tolerance of Tumor Cells to Picropodophyllin (PPP)
Hashemi, Jamileh; Worrall, Claire; Vasilcanu, Daiana; Fryknäs, Mårten; Sulaiman, Luqman; Karimi, Mohsen; Weng, Wen-Hui; Lui, Weng-Onn; Rudduck, Christina; Axelson, Magnus; Jernberg-Wiklund, Helena; Girnita, Leonard; Larsson, Olle; Larsson, Catharina
2011-01-01
Background Picropodophyllin (PPP) is a promising novel anti-neoplastic agent that efficiently kills tumor cells in vitro and causes tumor regression and increased survival in vivo. We have previously reported that PPP treatment induced moderate tolerance in two out of 10 cell lines only, and here report the acquired genomic and expression alterations associated with PPP selection over 1.5 years of treatment. Methodology/Principal Findings Copy number alterations monitored using metaphase and array-based comparative genomic hybridization analyses revealed largely overlapping alterations in parental and maximally tolerant cells. Gain/ amplification of the MYC and PVT1 loci in 8q24.21 were verified on the chromosome level. Abnormalities observed in connection to PPP treatment included regular gains and losses, as well as homozygous losses in 10q24.1-q24.2 and 12p12.3-p13.2 in one of the lines and amplification at 5q11.2 in the other. Abnormalities observed in both tolerant derivatives include amplification/gain of 5q11.2, gain of 11q12.1-q14.3 and gain of 13q33.3-qter. Using Nexus software analysis we combined the array-CGH data with data from gene expression profilings and identified genes that were altered in both inputs. A subset of genes identified as downregulated (ALDH1A3, ANXA1, TLR4 and RAB5A) or upregulated (COX6A1, NFIX, ME1, MAPK and TAP2) were validated by siRNA in the tolerant or parental cells to alter sensitivity to PPP and confirmed to alter sensitivity to PPP in further cell lines. Conclusions Long-term PPP selection lead to altered gene expression in PPP tolerant cells with increase as well as decrease of genes involved in cell death such as PTEN and BCL2. In addition, acquired genomic copy number alterations were observed that were often reflected by altered mRNA expression levels for genes in the same regions. PMID:21423728
Molecular characterization of acquired tolerance of tumor cells to picropodophyllin (PPP).
Hashemi, Jamileh; Worrall, Claire; Vasilcanu, Daiana; Fryknäs, Mårten; Sulaiman, Luqman; Karimi, Mohsen; Weng, Wen-Hui; Lui, Weng-Onn; Rudduck, Christina; Axelson, Magnus; Jernberg-Wiklund, Helena; Girnita, Leonard; Larsson, Olle; Larsson, Catharina
2011-03-14
Picropodophyllin (PPP) is a promising novel anti-neoplastic agent that efficiently kills tumor cells in vitro and causes tumor regression and increased survival in vivo. We have previously reported that PPP treatment induced moderate tolerance in two out of 10 cell lines only, and here report the acquired genomic and expression alterations associated with PPP selection over 1.5 years of treatment. Copy number alterations monitored using metaphase and array-based comparative genomic hybridization analyses revealed largely overlapping alterations in parental and maximally tolerant cells. Gain/amplification of the MYC and PVT1 loci in 8q24.21 were verified on the chromosome level. Abnormalities observed in connection to PPP treatment included regular gains and losses, as well as homozygous losses in 10q24.1-q24.2 and 12p12.3-p13.2 in one of the lines and amplification at 5q11.2 in the other. Abnormalities observed in both tolerant derivatives include amplification/gain of 5q11.2, gain of 11q12.1-q14.3 and gain of 13q33.3-qter. Using Nexus software analysis we combined the array-CGH data with data from gene expression profilings and identified genes that were altered in both inputs. A subset of genes identified as downregulated (ALDH1A3, ANXA1, TLR4 and RAB5A) or upregulated (COX6A1, NFIX, ME1, MAPK and TAP2) were validated by siRNA in the tolerant or parental cells to alter sensitivity to PPP and confirmed to alter sensitivity to PPP in further cell lines. Long-term PPP selection lead to altered gene expression in PPP tolerant cells with increase as well as decrease of genes involved in cell death such as PTEN and BCL2. In addition, acquired genomic copy number alterations were observed that were often reflected by altered mRNA expression levels for genes in the same regions.
Alazami, Anas M; Al-Owain, Mohammad; Alzahrani, Fatema; Shuaib, Taghreed; Al-Shamrani, Hussain; Al-Falki, Yahya H; Al-Qahtani, Saleh M; Alsheddi, Tarfa; Colak, Dilek; Alkuraya, Fowzan S
2012-10-01
Primordial dwarfism (PD) is a clinically and genetically heterogeneous condition. Various molecular mechanisms are known to underlie the disease including impaired mitotic mechanics, abnormal IGF2 expression, perturbed DNA damage response, defective spliceosomal machinery, and abnormal replication licensing. Here, we describe a syndromic form of PD associated with severe intellectual disability and distinct facial features in a large multiplex Saudi family. Analysis reveals a novel underlying mechanism for PD involving depletion of 7SK, an abundant cellular noncoding RNA (ncRNA), due to mutation of its chaperone LARP7. We show that 7SK levels are tightly linked to LARP7 expression across cell lines, and that this chaperone is ubiquitously expressed in the mouse embryo. The 7SK is known to influence the expression of a wide array of genes through its inhibitory effect on the positive transcription elongation factor b (P-TEFb) as well as its competing role in HMGA1-mediated transcriptional regulation. This study documents a critical role played by ncRNA in human development and adds to the growing list of molecular mechanisms that, when perturbed, converge on the PD phenotype. © 2012 Wiley Periodicals, Inc.
The Use of Biologic Therapies in Uveitis.
Schwartzman, Sergio; Schwartzman, Monica
2015-12-01
Therapy for autoimmune ophthalmic disease is currently evolving. The improved understanding of the abnormal immune response in the various forms of uveitis has resulted in targeted therapy. The aberrations of the immune system have been characterized by atypical cell populations, cytokine expression, and cell-cell interactions. Different patterns of cytokine expression have now been delineated in the abnormal uveal tract with exaggerated and/or abnormal expression of TNF, IL-1, IL-2, IL-6, and IL-17. The development of therapies for other conditions in which these cytokines play an important role has resulted in the availability of biological agents that have been adopted for use in the therapy for uveitis. Adalimumab and infliximab have been the best studied anti-TNF agents and indeed have now been recommended by an expert panel as first-line treatment of ocular manifestations of Behçet's disease and second-line treatment for other forms of uveitis (Levy-Clarke et al. (Ophthalmology, 2013). Other anti-TNF agents have been studied as well. Daclizumab, a monoclonal antibody directed against the IL-2 receptor, has also demonstrated utility in treating uveitis as have some of the anti-IL1 agents. Gevokizumab has been granted orphan drug designation for the treatment of resistant forms of uveitis. Therapies affecting IL-6, including tocilizumab are being studied, and available medications that block antigen presenting cell and T cell interaction such as abatacept have been reported to be effective in uveitis. Interferons as well as rituximab have also been evaluated in small studies. Although these biologic therapies have provided a larger armamentarium to treat uveitis, challenges remain. Uveitis is not a single illness; rather, it is a manifestation of many potential systemic diseases that may have very specific individual therapeutic targets. Identifying and characterizing these underlying diseases is not always achieved, and more importantly, the most effective therapies for each entity have not been defined.
Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin
2013-01-01
Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU−, Ki67− and phospho-histone 3-positive cells in E11.5–12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon. PMID:24073229
Chang, Sunny Li-Yun; Chen, Shih-Yun; Huang, Huai-Huei; Ko, Hsin-An; Liu, Pei-Tsen; Liu, Ya-Chi; Chen, Ping-Hau; Liu, Fu-Chin
2013-01-01
Nolz-1, as a murine member of the NET zinc-finger protein family, is expressed in post-mitotic differentiating neurons of striatum during development. To explore the function of Nolz-1 in regulating the neurogenesis of forebrain, we studied the effects of ectopic expression of Nolz-1 in neural progenitors. We generated the Cre-loxP dependent conditional transgenic mice in which Nolz-1 was ectopically expressed in proliferative neural progenitors. Ectopic expression of Nolz-1 in neural progenitors by intercrossing the Nolz-1 conditional transgenic mice with the nestin-Cre mice resulted in hypoplasia of telencephalon in double transgenic mice. Decreased proliferation of neural progenitor cells were found in the telencephalon, as evidenced by the reduction of BrdU-, Ki67- and phospho-histone 3-positive cells in E11.5-12.5 germinal zone of telencephalon. Transgenic Nolz-1 also promoted cell cycle exit and as a consequence might facilitate premature differentiation of progenitors, because TuJ1-positive neurons were ectopically found in the ventricular zone and there was a general increase of TuJ1 immunoreactivity in the telencephalon. Moreover, clusters of strong TuJ1-expressing neurons were present in E12.5 germinal zone. Some of these strong TuJ1-positive clusters, however, contained apoptotic condensed DNA, suggesting that inappropriate premature differentiation may lead to abnormal apoptosis in some progenitor cells. Consistent with the transgenic mouse analysis in vivo, similar effects of Nozl-1 over-expression in induction of apoptosis, inhibition of cell proliferation and promotion of neuronal differentiation were also observed in three different N18, ST14A and N2A neural cell lines in vitro. Taken together, our study indicates that ectopic expression of Nolz-1 in neural progenitors promotes cell cycle exit/premature neuronal differentiation and induces abnormal apoptosis in the developing telencephalon.
1987-02-06
MICROCOPY RESOLUTION TEST CHART NA7 UNAL hu AT ’N Ad . . 0 0 10 PROCEEDINGS THE TWENTY-SIXTH MIDWINTER CONFERENCE OF IMMUNOLOGISTS January 17-20, 1987...monoclonal BA5 has also been used to study the abnormal regulation of expression of BCGF receptors in common variable ilmmunodeficiency, SLE , and B cell...antigen, we have shown that membrane Ig-mediated antigen presentation by small B cells to rabbit globulin - specific T cell lines results in a vigorous
Characterization of Treefoil Peptide Genes in Iron-Ion or X-Irradiated Human Cells
NASA Technical Reports Server (NTRS)
Balcer-Kubiczek, E. K.; Harrison, G. H.; Xu, J. F.; Zhou, X. F.
1999-01-01
The gastrointestinal (GI) tract is especially sensitive to ionizing radiation, probably because of its high rate of cell turn over. Most of the data in the literature concerns the histological/anatomical description of damage rather than functional studies. In fact, previous reports in humans have shown that, at doses of 2 Gy or more, functional abnormalities appear indicating that in radiation sensitive tissues the effects of radiation are not limited to cell death. GI functions are controlled in particular by GI peptides. One hypothesis is that ionizing radiation may modulate the synthesis and release of these peptides and consequently may contribute largely to abnormalities in GI function. However, no previous studies have been concerned with GI-specific gene expression in irradiated GI tissues. The family of human trefoil peptides comprises three members thus far, all of which are expressed in specific regions of the GI tract. In addition, two trefoil peptides, pS2 (TFFI) and HITF (TFF2) are expressed in breast tissue. Their exact function in GI and breast tissues is unclear but mucosal integrity, repair, mucin secretion and responsiveness to hormones have been shown. We recently isolated and characterized pS2 as a novel p53- and estrogen receptor-independent gene whose MRNA expression in several cells lines was found to be delayed 4 to 7 days after irradiation with X-rays, fission neutrons or 1 GeV/n Fe-ions. The aim of the present study was to determine whether pS2 and HITF have a similar induction kinetics in irradiated gastric and breast cell lines, and whether they have the phorbol ester (TPA) responsive element (TRE).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceman, S.; Rudersdorf, R.A.; Petersen, J.M.
1995-03-15
Previous studies have shown that homozygous mutations between the LMP2 and DNA loci in the human MHC cause class II molecules to be abnormally conformed and unstable in the presence of SDS at low temperature, and impede class II-associated Ag processing and presentation. These abnormalities result from impaired ability to form intracellular class II/peptide complexes that predominate in normal cells. We show in this work that this defect results from deficient expression of either the DMA or the DMB gene. Human B-LCL.174 (DR3) cells, which have a deletion of all known expressible genes in the class II region, express transgene-encodedmore » HLA-DR3, but have the abnormalities. Transfer of cosmid HA14, which contains the DMA and DMB genes, into .174 (DR3) cells restored normal DR3 conformation, stability in 0.4% SDS at 0{degrees}, and ability to process and present tetanus toxoid, but only when both DMA and DMB mRNAs were present. The requirement for both genetic expressions in engendering normal phenotypes was confirmed by transferring the cloned genes into .174 (DR3) cells separately or together. Because normal phenotypes were fully restored in transferent cells expressing DMA plus DMB, other genes in the {approximately} 1-mb homozygous class II region deletion in .174 (DR3) cells either do not participate in or are dispensable for apparently normal production of intracellular class II/peptide complexes. The properties of DM-deficient EBV-transformed B lymphoblastoid cell lines (LCLs) suggest ways of identifying humans in whom DM deficiency contributes to congenital immunodeficiency and malignancy. 67 refs., 5 figs., 1 tab.« less
PECTATE LYASE-LIKE 9 from Brassica campestris is associated with intine formation.
Jiang, Jingjing; Yao, Lina; Yu, Youjian; Liang, Ying; Jiang, Jianxia; Ye, Nenghui; Miao, Ying; Cao, Jiashu
2014-12-01
Brassica campestris pectate lyase-like 9 (BcPLL9) was previously identified as a differentially expressed gene both in buds during late pollen developmental stage and in pistils during fertilization in Chinese cabbage. To characterize the gene's function, antisense-RNA lines of BcPLL9 (bcpll9) were constructed in Chinese cabbage. Self- and cross-fertilization experiments harvested half seed yields when bcpll9 lines were used as pollen donors. In vivo and in vitro pollen germination assays showed that nearly half of the pollen tubes in bcpll9 were irregular with shorter length and uneven surface. Aniline blue staining identified abnormal accumulation of a specific bright blue unknown material in the bcpll9 pollen portion. Scanning electron microscopy observation verified the abnormal outthrust material to be near the pollen germinal furrows. Transmission electron microscopy observation revealed the internal endintine layer was overdeveloped and predominantly occupied the intine. This abnormally formed intine likely induced the wavy structure and growth arrest of the pollen tube in half of the bcpll9 pollen grains, which resulted in less seed yields. Collectively, this study presented a novel PLL gene that has an important function in B. campestris intine formation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Liu, Xi-Qiong; Liu, Zhi-Quan; Yu, Cheng-Yu; Dong, Jun-Gang; Hu, Sheng-Wu; Xu, Ai-Xia
2017-01-01
The thermo-sensitive genic male sterility (TGMS) line SP2S is a spontaneous rapeseed mutation with several traits that are favorable for the production of two-line hybrids. To uncover the key cellular events and genetic regulation associated with TGMS expression, a combined study using cytological observation, transcriptome profiling, and gene expression analysis was conducted for SP2S and its near-isogenic line SP2F grown under warm conditions. Asynchronous microsporocyte meiosis and abnormal tapetal plastids and elaioplasts were demonstrated in the anther of SP2S. The tetrad microspore did not undergo mitosis before the cytoplasm degenerated. Delayed degradation of the tetrad wall, which led to tetrad microspore aggregation, resulted in postponement of sexine (outer layer of pollen exine) formation and sexine fusion in the tetrad. The nexine (foot layer of exine) was also absent. The delay of tetrad wall degradation and abnormality of the exine structure suggested that the defective tapetum lost important functions. Based on transcriptomic comparisons between young flower buds of SP2S and SP2F plants, a total of 465 differentially expressed transcripts (DETs) were identified, including 303 up-regulated DETs and 162 down-regulated DETs in SP2S. Several genes encoding small RNA degrading nuclease 2, small RNA 2′-O-methyltransferase, thioredoxin reductase 2, regulatory subunit A alpha isoform of serine/threonine-protein phosphatase 2A, glycine rich protein 1A, transcription factor bHLH25, leucine-rich repeat receptor kinase At3g14840 like, and fasciclin-like arabinogalactan proteins FLA19 and FLA20 were greatly depressed in SP2S. Interestingly, a POLLENLESS3-LIKE 2 gene encoding the Arabidopsis MS5 homologous protein, which is necessary for microsporocyte meiosis, was down-regulated in SP2S. Other genes that were up-regulated in SP2S encoded glucanase A6, ethylene-responsive transcription factor 1A-like, pollen-specific SF3, stress-associated endoplasmic reticulum protein 2, WRKY transcription factors and pentatricopeptide repeat (PPR) protein At1g07590. The tapetum-development-related genes, including BnEMS1, BnDYT1, and BnAMS, were slightly up-regulated in 3-mm-long flower buds or their anthers, and their downstream genes, BnMS1 and BnMYB80, which affect callose dissolution and exine formation, were greatly up-regulated in SP2S. This aberrant genetic regulation corresponded well with the cytological abnormalities. The results suggested that expression of TGMS associates with complex transcriptional regulation. PMID:28775729
Kim, Yong-June; Yoon, Hyung-Yoon; Kim, Seon-Kyu; Kim, Young-Won; Kim, Eun-Jung; Kim, Isaac Yi; Kim, Wun-Jae
2011-07-01
Abnormal DNA methylation is associated with many human cancers. The aim of the present study was to identify novel methylation markers in prostate cancer (PCa) by microarray analysis and to test whether these markers could discriminate normal and PCa cells. Microarray-based DNA methylation and gene expression profiling was carried out using a panel of PCa cell lines and a control normal prostate cell line. The methylation status of candidate genes in prostate cell lines was confirmed by real-time reverse transcriptase-PCR, bisulfite sequencing analysis, and treatment with a demethylation agent. DNA methylation and gene expression analysis in 203 human prostate specimens, including 106 PCa and 97 benign prostate hyperplasia (BPH), were carried out. Further validation using microarray gene expression data from the Gene Expression Omnibus (GEO) was carried out. Epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) was identified as a lead candidate methylation marker for PCa. The gene expression level of EFEMP1 was significantly higher in tissue samples from patients with BPH than in those with PCa (P < 0.001). The sensitivity and specificity of EFEMP1 methylation status in discriminating between PCa and BPH reached 95.3% (101 of 106) and 86.6% (84 of 97), respectively. From the GEO data set, we confirmed that the expression level of EFEMP1 was significantly different between PCa and BPH. Genome-wide characterization of DNA methylation profiles enabled the identification of EFEMP1 aberrant methylation patterns in PCa. EFEMP1 might be a useful indicator for the detection of PCa.
Bonin, L R; Madden, K; Shera, K; Ihle, J; Matthews, C; Aziz, S; Perez-Reyes, N; McDougall, J K; Conroy, S C
1999-03-01
The study of atherogenesis in humans has been restricted by the limited availability and brief in vitro life span of plaque smooth muscle cells (SMCs). We describe plaque SMC lines with extended life spans generated by the expression of the human papillomavirus (HPV)-16 E6 and E7 genes, which has been shown to extend the life span of normal adult human aortic SMCs. Resulting cell lines (pdSMC1A and 2) demonstrated at least 10-fold increases in life span; pdSMC1A became immortal. The SMC identity of both pdSMC lines was confirmed by SM22 mRNA expression. pdSMC2 were generally diploid but with various structural and numerical alterations; pdSMC1A demonstrated several chromosomal abnormalities, most commonly -Y, +7, -13, anomalies previously reported in both primary pdSMCs and atherosclerotic tissue. Confluent pdSMC2 appeared grossly similar to HPV-16 E6/E7-expressing normal adult aortic SMCs (AASMCs), exhibiting typical SMC morphology/growth patterns; pdSMC1A displayed irregular cell shape/organization with numerous mitotic figures. Dedifferentiation to a synthetic/proliferative phenotype has been hypothesized as a critical step in atherogenesis, because rat neonatal SMCs and adult intimal SMCs exhibit similar gene expression patterns. To confirm that our pdSMC lines likewise express this apparent plaque phenotype, osteopontin, platelet-derived growth factor B, and elastin mRNA levels were determined in pdSMC1A, pdSMC2, and AASMCs. However, no significant increases in osteopontin or platelet-derived growth factor B expression levels were observed in either pdSMC compared with AASMCs. pdSMC2 alone expressed high levels of elastin mRNA. Lower levels of SM22 mRNA in pdSMC1A suggested greater dedifferentiation and/or additional population doublings in pdSMC1A relative to pdSMC2. Both pdSMC lines (particularly 1A) demonstrated high message levels for matrix Gla protein, previously reported to be highly expressed by human neointimal SMCs in vitro. These results describe 2 novel plaque cell lines exhibiting various features of plaque SMC biology; pdSMC2 may represent an earlier plaque SMC phenotype, whereas pdSMC1A may be representative of cells comprising an advanced atherosclerotic lesion.
Van Vlierberghe, Pieter; van Grotel, Martine; Tchinda, Joëlle; Lee, Charles; Beverloo, H. Berna; van der Spek, Peter J.; Stubbs, Andrew; Cools, Jan; Nagata, Kyosuke; Fornerod, Maarten; Buijs-Gladdines, Jessica; Horstmann, Martin; van Wering, Elisabeth R.; Soulier, Jean; Pieters, Rob
2008-01-01
T-cell acute lymphoblastic leukemia (T-ALL) is mostly characterized by specific chromosomal abnormalities, some occurring in a mutually exclusive manner that possibly delineate specific T-ALL subgroups. One subgroup, including MLL-rearranged, CALM-AF10 or inv (7)(p15q34) patients, is characterized by elevated expression of HOXA genes. Using a gene expression–based clustering analysis of 67 T-ALL cases with recurrent molecular genetic abnormalities and 25 samples lacking apparent aberrations, we identified 5 new patients with elevated HOXA levels. Using microarray-based comparative genomic hybridization (array-CGH), a cryptic and recurrent deletion, del (9)(q34.11q34.13), was exclusively identified in 3 of these 5 patients. This deletion results in a conserved SET-NUP214 fusion product, which was also identified in the T-ALL cell line LOUCY. SET-NUP214 binds in the promoter regions of specific HOXA genes, where it interacts with CRM1 and DOT1L, which may transcriptionally activate specific members of the HOXA cluster. Targeted inhibition of SET-NUP214 by siRNA abolished expression of HOXA genes, inhibited proliferation, and induced differentiation in LOUCY but not in other T-ALL lines. We conclude that SET-NUP214 may contribute to the pathogenesis of T-ALL by enforcing T-cell differentiation arrest. PMID:18299449
Ueda, Kenji; Yoshimura, Fumiaki; Miyao, Akio; Hirochika, Hirohiko; Nonomura, Ken-Ichi; Wabiko, Hiroetsu
2013-01-01
We isolated a pollen-defective mutant, collapsed abnormal pollen1 (cap1), from Tos17 insertional mutant lines of rice (Oryza sativa). The cap1 heterozygous plant produced equal numbers of normal and collapsed abnormal grains. The abnormal pollen grains lacked almost all cytoplasmic materials, nuclei, and intine cell walls and did not germinate. Genetic analysis of crosses revealed that the cap1 mutation did not affect female reproduction or vegetative growth. CAP1 encodes a protein consisting of 996 amino acids that showed high similarity to Arabidopsis (Arabidopsis thaliana) l-arabinokinase, which catalyzes the conversion of l-arabinose to l-arabinose 1-phosphate. A wild-type genomic DNA segment containing CAP1 restored mutants to normal pollen grains. During rice pollen development, CAP1 was preferentially expressed in anthers at the bicellular pollen stage, and the effects of the cap1 mutation were mainly detected at this stage. Based on the metabolic pathway of l-arabinose, cap1 pollen phenotype may have been caused by toxic accumulation of l-arabinose or by inhibition of cell wall metabolism due to the lack of UDP-l-arabinose derived from l-arabinose 1-phosphate. The expression pattern of CAP1 was very similar to that of another Arabidopsis homolog that showed 71% amino acid identity with CAP1. Our results suggested that CAP1 and related genes are critical for pollen development in both monocotyledonous and dicotyledonous plants. PMID:23629836
Klawitter, Sabine; Fuchs, Nina V; Upton, Kyle R; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L; Faulkner, Geoffrey J; Schumann, Gerald G
2016-01-08
Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs.
Yokozaki, H; Tahara, H; Oue, N; Tahara, E
2000-01-01
A new transcription variant of hepatocyte growth factor/scatter factor (HGF/SF) was cloned from human gastric cancer cell line HSC-39. Northern blot analysis of eight human gastric cancer cell lines (TMK-1, MKN-1, MKN-7, MKN-28, MKN-45, MKN-74, KATO-III and HSC-39) demonstrated that HSC-39 cells expressed a 1.3 kb abnormal HGF/SF transcript. Screening of 1 x 10(6) colonies of cDNA library from HSC-39 constructed in pAP3neo mammalian expression vector selected four positive clones containing HGF/SF transcript. Among them, two contained a 1.3 kbp insert detecting the identical transcript to that obtained with HGF/SF probe by Northern blotting. Deoxynucleotide sequencing of the 1.3 kbp insert revealed that it was composed of a part of HGF/SF cDNA from exon 14 to exon 18, corresponding to the whole sequence of HGF/SF light chain, with 5' 75 nucleotides unrelated to any sequence involved in HGF/SF.
Klawitter, Sabine; Fuchs, Nina V.; Upton, Kyle R.; Muñoz-Lopez, Martin; Shukla, Ruchi; Wang, Jichang; Garcia-Cañadas, Marta; Lopez-Ruiz, Cesar; Gerhardt, Daniel J.; Sebe, Attila; Grabundzija, Ivana; Merkert, Sylvia; Gerdes, Patricia; Pulgarin, J. Andres; Bock, Anja; Held, Ulrike; Witthuhn, Anett; Haase, Alexandra; Sarkadi, Balázs; Löwer, Johannes; Wolvetang, Ernst J.; Martin, Ulrich; Ivics, Zoltán; Izsvák, Zsuzsanna; Garcia-Perez, Jose L.; Faulkner, Geoffrey J.; Schumann, Gerald G.
2016-01-01
Human induced pluripotent stem cells (hiPSCs) are capable of unlimited proliferation and can differentiate in vitro to generate derivatives of the three primary germ layers. Genetic and epigenetic abnormalities have been reported by Wissing and colleagues to occur during hiPSC derivation, including mobilization of engineered LINE-1 (L1) retrotransposons. However, incidence and functional impact of endogenous retrotransposition in hiPSCs are yet to be established. Here we apply retrotransposon capture sequencing to eight hiPSC lines and three human embryonic stem cell (hESC) lines, revealing endogenous L1, Alu and SINE-VNTR-Alu (SVA) mobilization during reprogramming and pluripotent stem cell cultivation. Surprisingly, 4/7 de novo L1 insertions are full length and 6/11 retrotransposition events occurred in protein-coding genes expressed in pluripotent stem cells. We further demonstrate that an intronic L1 insertion in the CADPS2 gene is acquired during hiPSC cultivation and disrupts CADPS2 expression. These experiments elucidate endogenous retrotransposition, and its potential consequences, in hiPSCs and hESCs. PMID:26743714
Gene expression analysis of induced pluripotent stem cells from aneuploid chromosomal syndromes
2013-01-01
Background Human aneuploidy is the leading cause of early pregnancy loss, mental retardation, and multiple congenital anomalies. Due to the high mortality associated with aneuploidy, the pathophysiological mechanisms of aneuploidy syndrome remain largely unknown. Previous studies focused mostly on whether dosage compensation occurs, and the next generation transcriptomics sequencing technology RNA-seq is expected to eventually uncover the mechanisms of gene expression regulation and the related pathological phenotypes in human aneuploidy. Results Using next generation transcriptomics sequencing technology RNA-seq, we profiled the transcriptomes of four human aneuploid induced pluripotent stem cell (iPSC) lines generated from monosomy × (Turner syndrome), trisomy 8 (Warkany syndrome 2), trisomy 13 (Patau syndrome), and partial trisomy 11:22 (Emanuel syndrome) as well as two umbilical cord matrix iPSC lines as euploid controls to examine how phenotypic abnormalities develop with aberrant karyotype. A total of 466 M (50-bp) reads were obtained from the six iPSC lines, and over 13,000 mRNAs were identified by gene annotation. Global analysis of gene expression profiles and functional analysis of differentially expressed (DE) genes were implemented. Over 5000 DE genes are determined between aneuploidy and euploid iPSCs respectively while 9 KEGG pathways are overlapped enriched in four aneuploidy samples. Conclusions Our results demonstrate that the extra or missing chromosome has extensive effects on the whole transcriptome. Functional analysis of differentially expressed genes reveals that the genes most affected in aneuploid individuals are related to central nervous system development and tumorigenesis. PMID:24564826
Phenotypes and Karyotypes of Human Malignant Mesothelioma Cell Lines
Relan, Vandana; Morrison, Leanne; Parsonson, Kylie; Clarke, Belinda E.; Duhig, Edwina E.; Windsor, Morgan N.; Matar, Kevin S.; Naidoo, Rishendran; Passmore, Linda; McCaul, Elizabeth; Courtney, Deborah; Yang, Ian A.; Fong, Kwun M.; Bowman, Rayleen V.
2013-01-01
Background Malignant mesothelioma is an aggressive tumour of serosal surfaces most commonly pleura. Characterised cell lines represent a valuable tool to study the biology of mesothelioma. The aim of this study was to develop and biologically characterise six malignant mesothelioma cell lines to evaluate their potential as models of human malignant mesothelioma. Methods Five lines were initiated from pleural biopsies, and one from pleural effusion of patients with histologically proven malignant mesothelioma. Mesothelial origin was assessed by standard morphology, Transmission Electron Microscopy (TEM) and immunocytochemistry. Growth characteristics were assayed using population doubling times. Spectral karyotyping was performed to assess chromosomal abnormalities. Authentication of donor specific derivation was undertaken by DNA fingerprinting using a panel of SNPs. Results Most of cell lines exhibited spindle cell shape, with some retaining stellate shapes. At passage 2 to 6 all lines stained positively for calretinin and cytokeratin 19, and demonstrated capacity for anchorage-independent growth. At passage 4 to 16, doubling times ranged from 30–72 hours, and on spectral karyotyping all lines exhibited numerical chromosomal abnormalities ranging from 41 to 113. Monosomy of chromosomes 8, 14, 22 or 17 was observed in three lines. One line displayed four different karyotypes at passage 8, but only one karyotype at passage 42, and another displayed polyploidy at passage 40 which was not present at early passages. At passages 5–17, TEM showed characteristic features of mesothelioma ultrastructure in all lines including microvilli and tight intercellular junctions. Conclusion These six cell lines exhibit varying cell morphology, a range of doubling times, and show diverse passage-dependent structural chromosomal changes observed in malignant tumours. However they retain characteristic immunocytochemical protein expression profiles of mesothelioma during maintenance in artificial culture systems. These characteristics support their potential as in vitro model systems for studying cellular, molecular and genetic aspects of mesothelioma. PMID:23516439
Qiu, Yilan; Liao, Lijuan; Jin, Xiaorui; Mao, Dandan; Liu, Rushi
2018-01-30
CMS, which refers to the inability to generate functional pollen grains while still producing a normal gynoecium, has been widely used for pepper hybrid seed production. Pepper line 8214A is an excellent CMS line exhibiting 100% male sterility and superior economic characteristics. A TUNEL assay revealed the nuclear DNA is damaged in 8214A PMCs during meiosis. TEM images indicated that the 8214A PMCs exhibited asynchronous meiosis after prophase I, and some PMCs degraded prematurely with morphological features typical of PCD. Additionally, at the end of meiosis, the 8214A PMCs formed abnormal non-tetrahedral tetrads that degraded in situ. To identify the genes involved in the pollen abortion of line 8214A, the transcriptional profiles of the 8214A and the 8214B anthers (i.e., from the fertile maintainer line) during meiosis were analyzed using an RNA-seq approach. A total of 1355 genes were determined to be differentially expressed, including 424 and 931 up- and down- regulated genes, respectively, in the 8214A anthers during meiosis relative to the expression levels in the 8214B. The expression levels of ubiquitin ligase and cell cycle-related genes were apparently down-regulated, while the expression of methyltransferase genes was up-regulated in the 8214A anthers during meiosis, which likely contributed to the PCD of these PMCs during meiosis. Thus, our results may be useful for revealing the molecular mechanism regulating the pollen abortion of CMS pepper. Copyright © 2017. Published by Elsevier B.V.
Mammary Tumors Initiated by Constitutive Cdk2 Activation Contain an Invasive Basal-like Component1
Corsino, Patrick E; Davis, Bradley J; Nörgaard, Peter H; Teoh Parker, Nicole N; Law, Mary; Dunn, William; Law, Brian K
2008-01-01
The basal-like subtype of breast cancer is associated with invasiveness, high rates of postsurgical recurrence, and poor prognosis. Aside from inactivation of the BRCA1 tumor-suppressor gene, little is known concerning the mechanisms that cause basal breast cancer or the mechanisms responsible for its invasiveness. Here, we show that the heterogeneous mouse mammary tumor virus-cyclin D1-Cdk2 (MMTV-D1K2) transgenic mouse mammary tumors contain regions of spindle-shaped cells expressing both luminal and myoepithelial markers. Cell lines cultured from these tumors exhibit the same luminal/myoepithelial mixed-lineage phenotype that is associated with human basal-like breast cancer and express a number of myoepithelial markers including cytokeratin 14, P-cadherin, α smooth muscle actin, and nestin. The MMTV-D1K2 tumor-derived cell lines form highly invasive tumors when injected into mouse mammary glands. Invasion is associated with E-cadherin localization to the cytoplasm or loss of E-cadherin expression. Cytoplasmic E-cadherin correlates with lack of colony formation in vitro and β-catenin and p120ctn localization to the cytoplasm. The data suggest that the invasiveness of these cell lines results from a combination of factors including mislocalization of E-cadherin, β-catenin, and p120ctn to the cytoplasm. Nestin expression and E-cadherin mislocalization were also observed in human basal-like breast cancer cell lines, suggesting that these results are relevant to human tumors. Together, these results suggest that abnormal Cdk2 activation may contribute to the formation of basal-like breast cancers. PMID:18953433
Abnormal placental development and early embryonic lethality in EpCAM-null mice.
Nagao, Keisuke; Zhu, Jianjian; Heneghan, Mallorie B; Hanson, Jeffrey C; Morasso, Maria I; Tessarollo, Lino; Mackem, Susan; Udey, Mark C
2009-12-31
EpCAM (CD326) is encoded by the tacstd1 gene and expressed by a variety of normal and malignant epithelial cells and some leukocytes. Results of previous in vitro experiments suggested that EpCAM is an intercellular adhesion molecule. EpCAM has been extensively studied as a potential tumor marker and immunotherapy target, and more recent studies suggest that EpCAM expression may be characteristic of cancer stem cells. To gain insights into EpCAM function in vivo, we generated EpCAM -/- mice utilizing an embryonic stem cell line with a tacstd1 allele that had been disrupted. Gene trapping resulted in a protein comprised of the N-terminus of EpCAM encoded by 2 exons of the tacstd1 gene fused in frame to betageo. EpCAM +/- mice were viable and fertile and exhibited no obvious abnormalities. Examination of EpCAM +/- embryos revealed that betageo was expressed in several epithelial structures including developing ears (otocysts), eyes, branchial arches, gut, apical ectodermal ridges, lungs, pancreas, hair follicles and others. All EpCAM -/- mice died in utero by E12.5, and were small, developmentally delayed, and displayed prominent placental abnormalities. In developing placentas, EpCAM was expressed throughout the labyrinthine layer and by spongiotrophoblasts as well. Placentas of EpCAM -/- embryos were compact, with thin labyrinthine layers lacking prominent vascularity. Parietal trophoblast giant cells were also dramatically reduced in EpCAM -/- placentas. EpCAM was required for differentiation or survival of parietal trophoblast giant cells, normal development of the placental labyrinth and establishment of a competent maternal-fetal circulation. The findings in EpCAM-reporter mice suggest involvement of this molecule in development of vital organs including the gut, kidneys, pancreas, lungs, eyes, and limbs.
Nutrition meets heredity: a case of RNA-mediated transmission of acquired characters.
Rassoulzadegan, Minoo; Cuzin, François
2018-04-01
RNA-based inheritance provides a reasonable hypothesis to explain multigenerational maintenance of the disease in the progeny of either a male or female parent suffering from the metabolic syndrome (obesity and type 2 diabetes) induced by abnormal diet. Although, it is still difficult to formulate a complete rational mechanism, study of inheritance is a most direct way to learn about the epigenetic control of gene expression and we wished to summarised our current approach along this line.
Veneziani, Irene; Brandetti, Elisa; Ognibene, Marzia; Pezzolo, Annalisa; Pistoia, Vito
2018-01-01
Neuroblastoma (NB), the most common extracranial solid tumor of childhood, causes death in almost 15% of children affected by cancer. Treatment of neuroblastoma is based on the combination of chemotherapy with other therapeutic interventions such as surgery, radiotherapy, use of differentiating agents, and immunotherapy. In particular, adoptive NK cell transfer is a new immune-therapeutic approach whose efficacy may be boosted by several anticancer agents able to induce the expression of ligands for NK cell-activating receptors, thus rendering cancer cells more susceptible to NK cell-mediated lysis. Here, we show that chemotherapeutic drugs commonly used for the treatment of NB such as cisplatin, topotecan, irinotecan, and etoposide are unable to induce the expression of activating ligands in a panel of NB cell lines. Consistently, cisplatin-treated NB cell lines were not more susceptible to NK cells than untreated cells. The refractoriness of NB cell lines to these drugs has been partially associated with the abnormal status of genes for ATM, ATR, Chk1, and Chk2, the major transducers of the DNA damage response (DDR), triggered by several anticancer agents and promoting different antitumor mechanisms including the expression of ligands for NK cell-activating receptors. Moreover, both the impaired production of reactive oxygen species (ROS) in some NB cell lines and the transient p53 stabilization in response to our genotoxic drugs under our experimental conditions could contribute to inefficient induction of activating ligands. These data suggest that further investigations, exploiting molecular strategies aimed to potentiate the NK cell-mediated immunotherapy of NB, are warranted. PMID:29805983
Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132
Kim, Hee-Jung; Joo, Hye Joon; Kim, Yung Hee; Ahn, Soyeon; Chang, Jun; Hwang, Kyu-Baek; Lee, Dong-Hee; Lee, Kong-Joo
2011-01-01
The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins. PMID:21738571
Genomic Instability and Telomere Fusion of Canine Osteosarcoma Cells
Maeda, Junko; Yurkon, Charles R.; Fujisawa, Hiroshi; Kaneko, Masami; Genet, Stefan C.; Roybal, Erica J.; Rota, Garrett W.; Saffer, Ethan R.; Rose, Barbara J.; Hanneman, William H.; Thamm, Douglas H.; Kato, Takamitsu A.
2012-01-01
Canine osteosarcoma (OSA) is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH) using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA. PMID:22916246
A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toki, Yasumichi; Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp; Tanaka, Hiroki
2016-08-05
Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncatedmore » peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.« less
Wu, Jinwen; Chen, Lin; Chen, Zhixiong; Wang, Lan; Lu, Yonggen
2015-01-01
Intersubspecific autotetraploid rice (Oryza sativa ssp. indica × japonica) hybrids have greater biological and yield potentials than diploid rice. However, the low fertility of intersubspecific autotetraploid hybrids, which is largely caused by high pollen abortion rates, limits their commercial utility. To decipher the cytological and molecular mechanisms underlying allelic interactions in autotetraploid rice, we developed an autotetraploid rice hybrid that was heterozygous (SiSj) at F1 pollen sterility loci (Sa, Sb, and Sc) using near-isogenic lines. Cytological studies showed that the autotetraploid had higher percentages (>30%) of abnormal chromosome behavior and aberrant meiocytes (>50%) during meiosis than did the diploid rice hybrid control. Analysis of gene expression profiles revealed 1,888 genes that were differentially expressed between the autotetraploid and diploid hybrid lines at the meiotic stage, among which 889 and 999 were up- and down-regulated, respectively. Of the 999 down-regulated genes, 940 were associated with the combined effect of polyploidy and pollen sterility loci interactions (IPE). Gene Ontology enrichment analysis identified a prominent functional gene class consisting of seven genes related to photosystem I (Gene Ontology 0009522). Moreover, 55 meiosis-related or meiosis stage-specific genes were associated with IPE in autotetraploid rice, including Os02g0497500, which encodes a DNA repair-recombination protein, and Os02g0490000, which encodes a component of the ubiquitin-proteasome pathway. These results suggest that polyploidy enhances epistatic interactions between alleles of pollen sterility loci, thereby altering the expression profiles of important meiosis-related or meiosis stage-specific genes and resulting in high pollen sterility. PMID:26511913
Wu, Jinwen; Shahid, Muhammad Qasim; Chen, Lin; Chen, Zhixiong; Wang, Lan; Liu, Xiangdong; Lu, Yonggen
2015-12-01
Intersubspecific autotetraploid rice (Oryza sativa ssp. indica × japonica) hybrids have greater biological and yield potentials than diploid rice. However, the low fertility of intersubspecific autotetraploid hybrids, which is largely caused by high pollen abortion rates, limits their commercial utility. To decipher the cytological and molecular mechanisms underlying allelic interactions in autotetraploid rice, we developed an autotetraploid rice hybrid that was heterozygous (S(i)S(j)) at F1 pollen sterility loci (Sa, Sb, and Sc) using near-isogenic lines. Cytological studies showed that the autotetraploid had higher percentages (>30%) of abnormal chromosome behavior and aberrant meiocytes (>50%) during meiosis than did the diploid rice hybrid control. Analysis of gene expression profiles revealed 1,888 genes that were differentially expressed between the autotetraploid and diploid hybrid lines at the meiotic stage, among which 889 and 999 were up- and down-regulated, respectively. Of the 999 down-regulated genes, 940 were associated with the combined effect of polyploidy and pollen sterility loci interactions (IPE). Gene Ontology enrichment analysis identified a prominent functional gene class consisting of seven genes related to photosystem I (Gene Ontology 0009522). Moreover, 55 meiosis-related or meiosis stage-specific genes were associated with IPE in autotetraploid rice, including Os02g0497500, which encodes a DNA repair-recombination protein, and Os02g0490000, which encodes a component of the ubiquitin-proteasome pathway. These results suggest that polyploidy enhances epistatic interactions between alleles of pollen sterility loci, thereby altering the expression profiles of important meiosis-related or meiosis stage-specific genes and resulting in high pollen sterility. © 2015 American Society of Plant Biologists. All Rights Reserved.
Mousa, Ahmad A; Strauss, Jerome F; Walsh, Scott W
2012-06-01
Preeclampsia is characterized by increased thromboxane and decreased prostacyclin levels, which predate symptoms, and can explain some of the clinical manifestations of preeclampsia, including hypertension and thrombosis. In this study, we examined DNA methylation of the promoter region of the thromboxane synthase gene (TBXAS1) and the expression of thromboxane synthase in systemic blood vessels of normal pregnant and preeclamptic women. Thromboxane synthase is responsible for the synthesis of thromboxane A(2), a potent vasoconstrictor and activator of platelets. We also examined the effect of experimentally induced DNA hypomethylation on the expression of thromboxane synthase in a neutrophil-like cell line (HL-60 cells) and in cultured vascular smooth muscle and endothelial cells. We found that DNA methylation of the TBXAS1 promoter was decreased and thromboxane synthase expression was increased in omental arteries of preeclamptic women as compared with normal pregnant women. Increased thromboxane synthase expression was observed in vascular smooth muscles cells, endothelial cells, and infiltrating neutrophils. Experimentally induced DNA hypomethylation only increased expression of thromboxane synthase in the neutrophil-like cell line, whereas tumor necrosis factor-α, a neutrophil product, increased its expression in cultured vascular smooth muscle cells. Our study suggests that epigenetic mechanisms and release of tumor necrosis factor-α by infiltrating neutrophils could contribute to the increased expression of thromboxane synthase in maternal systemic blood vessels, contributing to the hypertension and coagulation abnormalities associated with preeclampsia.
Reduced post-synaptic serotonin type 1A receptor binding in bipolar depression
Nugent, Allison C.; Bain, Earle E.; Carlson, Paul J.; Neumeister, Alexander; Bonne, Omer; Carson, Richard E.; Eckelman, William; Herscovitch, Peter; Zarate, Carlos A.; Charney, Dennis S.; Drevets, Wayne C.
2013-01-01
Multiple lines of evidence suggest that serotonin type 1A (5-HT1A) receptor dysfunction is involved in the pathophysiology of mood disorders, and that alterations in 5-HT1A receptor function play a role in the mechanisms of antidepressant and mood stabilizer treatment. The literature is in disagreement, however, as to whether 5-HT1A receptor binding abnormalities exist in bipolar disorder (BD). We acquired PET images of 5-HT1A receptor binding in 26 unmedicated BD subjects and 37 healthy controls using [18F]FCWAY, a highly selective 5-HT1A receptor radio-ligand. The mean 5-HT1A receptor binding potential (BPP) was significantly lower in BD subjects compared to controls in cortical regions where 5-HT1A receptors are expressed post-synaptically, most prominently in the mesiotemporal cortex. Post-hoc assessments involving other receptor specific binding parameters suggested that this difference particularly affected the females with BD. The mean BPP did not differ between groups in the raphe nucleus, however, where 5-HT1A receptors are predominantly expressed pre-synaptically. Across subjects the BPP in the mesiotemporal cortex was inversely correlated with trough plasma cortisol levels, consistent with preclinical literature indicating that hippocampal 5-HT1A receptor expression is inhibited by glucocorticoid receptor stimulation. These findings suggest that 5-HT1A receptor binding is abnormally reduced in BD, and this abnormality may particularly involve the postsynaptic 5-HT1A receptor system of individuals with a tendency toward cortisol hypersecretion. PMID:23434290
Gonsebatt, M E; Del Razo, L M; Cerbon, M A; Zúñiga, O; Sanchez-Peña, L C; Ramírez, P
2007-09-01
Cytokeratins (CK) constitute a family of cytoskeletal intermediate filament proteins that are typically expressed in epithelial cells. An abnormal structure and function are effects that are clearly related to liver diseases as non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. We have previously observed that sodium arsenite (SA) induced the synthesis of CK18 protein and promotes a dose-related disruption of cytoplasmic CK18 filaments in a human hepatic cell line. Both abnormal gene expression and disturbance of structural organization are toxic effects that are likely to cause liver disease by interfering with normal hepatocyte function. To investigate if a disruption in the CK18 expression pattern is associated with arsenite liver damage, we investigated CK18 mRNA and protein levels in liver slices treated with low levels of SA. Organotypic cultures were incubated with 0.01, 1 and 10 microM of SA in the absence and presence of N-acetyl cysteine (NAC). Cell viability and inorganic arsenic metabolism were determined. Increased expression of CK18 was observed after exposure to SA. The addition of NAC impeded the oxidative effects of SA exposure, decreasing the production of thiobarbituric acid-reactive substances and significantly diminishing the up regulation of CK18 mRNA and protein. Liver arsenic levels correlated with increased levels of mRNA. Mice treated with intragastric single doses of 2.5 and 5 mg/kg of SA showed an increased expression of CK18. Results suggest that CK18 expression may be a sensible early biomarker of oxidative stress and damage induced by arsenite in vitro and in vivo. Then, during SA exposure, altered CK expression may compromise liver function.
Correction of mouse ornithine transcarbamylase deficiency by gene transfer into the germ line.
Cavard, C; Grimber, G; Dubois, N; Chasse, J F; Bennoun, M; Minet-Thuriaux, M; Kamoun, P; Briand, P
1988-01-01
The sparse fur with abnormal skin and hair (Spf-ash) mouse is a model for the human X-linked hereditary disorder, ornithine transcarbamylase (OTC) deficiency. In Spf-ash mice, both OTC mRNA and enzyme activity are 5% of control values resulting in hyperammonemia, pronounced orotic aciduria and an abnormal phenotype characterized by growth retardation and sparse fur. Using microinjection, we introduced a construction containing rat OTC cDNA linked to the SV40 early promoter into fertilized eggs of Spf-ash mice. The expression of the transgene resulted in the development of a transgenic mouse whose phenotype and orotic acid excretion are fully normalized. Thus, the possibility of correcting hereditary enzymatic defect by gene transfer of heterologous cDNA coding for the normal enzyme has been demonstrated. Images PMID:3162766
Bone marrow mesenchymal stem cells are abnormal in multiple myeloma
Corre, Jill; Mahtouk, Karène; Attal, Michel; Gadelorge, Mélanie; Huynh, Anne; Fleury-Cappellesso, Sandrine; Danho, Clotaire; Laharrague, Patrick; Klein, Bernard; Rème, Thierry; Bourin, Philippe
2007-01-01
Recent literature suggested that cell of the microenvironment of solid tumors could be abnormal as well. To address this hypothesis in multiple myeloma (MM), we studied bone marrow mesenchymal stem cells (BMMSCs), the only long-lived cells of the bone marrow microenvironment, by gene expression with Affymetrix arrays and phenotypic and functional study in 3 groups of individuals: patients with MM and those with monoclonal gamopathy of undefined significance (MGUS), and healthy aged-matched subjects. Gene expression profile independently classified the BMMSCs of these individuals in a normal and in a MM group. MGUS BMMSCs were interspersed between those 2 groups. Among the 145 distinct genes differentially expressed in MM and normal BMMSCs 46% were involved in tumor-microenvironment cross-talk. Known soluble factors involved in MM pathophysiologic features, (interleukin (IL)-6, IL-1β, DKK1 and amphiregulin, were revealed and new ones found. In particular, GDF-15 was found to induce dose-dependant growth of MOLP-6, a stromal cell-dependent myeloma cell line. Functionally, MM BMMSCs induced an over-growth of MOLP-6, and their capacity to differentiate into an osteoblastic lineage was impaired. Thus, BMMSCs from MM patients could create a very efficient niche to support the survival and proliferation of the myeloma stem cells. PMID:17344918
Sun, Yi; Yang, Yixuan; Zeng, Sicong; Tan, Yueqiu; Lu, Guangxiu; Lin, Ge
2014-01-01
Previous reports have demonstrated that human embryonic stem cells (hESCs) tend to develop genomic alterations and progress to a malignant state during long-term in vitro culture. This raises concerns of the clinical safety in using cultured hESCs. However, transformed hESCs might serve as an excellent model to determine the process of embryonic stem cell transition. In this study, ITRAQ-based tandem mass spectrometry was used to quantify normal and aberrant karyotypic hESCs proteins from simple to more complex karyotypic abnormalities. We identified and quantified 2583 proteins, and found that the expression levels of 316 proteins that represented at least 23 functional molecular groups were significantly different in both normal and abnormal hESCs. Dysregulated protein expression in epigenetic regulation was further verified in six pairs of hESC lines in early and late passage. In summary, this study is the first large-scale quantitative proteomic analysis of the malignant transformation of aberrant karyotypic hESCs. The data generated should serve as a useful reference of stem cell-derived tumor progression. Increased expression of both HDAC2 and CTNNB1 are detected as early as the pre-neoplastic stage, and might serve as prognostic markers in the malignant transformation of hESCs. PMID:24465727
Stock, W; Tsai, T; Golden, C; Rankin, C; Sher, D; Slovak, M L; Pallavicini, M G; Radich, J P; Boldt, D H
2000-04-01
To test the hypothesis that cell cycle regulatory gene abnormalities are determinants of clinical outcome in adult acute lymphoblastic leukemia (ALL), we screened lymphoblasts from patients on a Southwest Oncology Group protocol for abnormalities of the genes, retinoblastoma (Rb), p53, p15(INK4B), and p16(INK4A). Aberrant expression occurred in 33 (85%) patients in the following frequencies: Rb, 51%; p16(INK4A), 41%; p53, 26%. Thirteen patients (33%) had abnormalities in 2 or more genes. Outcomes were compared in patients with 0 to 1 abnormality versus patients with multiple abnormalities. The 2 groups did not differ in a large number of clinical and laboratory characteristics. The CR rates for patients with 0 to 1 and multiple abnormalities were similar (69% and 54%, respectively). Patients with 0 to 1 abnormality had a median survival time of 25 months (n = 26; 95% CI, 13-46 months) versus 8 months (n = 13; 95% CI, 4-12 months) for those with multiple abnormalities (P <.01). Stem cells (CD34+lin-) were isolated from adult ALL bone marrows and tested for p16(INK4A) expression by immunocytochemistry. In 3 of 5 patients lymphoblasts and sorted stem cells lacked p16(INK4A) expression. In 2 other patients only 50% of sorted stem cells expressed p16(INK4A). By contrast, p16 expression was present in the CD34+ lin- compartment in 95% (median) of 9 patients whose lymphoblasts expressed p16(INK4A). Therefore, cell cycle regulatory gene abnormalities are frequently present in adult ALL lymphoblasts, and they may be important determinants of disease outcome. The presence of these abnormalities in the stem compartment suggests that they contribute to leukemogenesis. Eradication of the stem cell subset harboring these abnormalities may be important to achieve cure.
Rymer, Jodi; Choh, Vivian; Bharadwaj, Shrikant; Padmanabhan, Varuna; Modilevsky, Laura; Jovanovich, Elizabeth; Yeh, Brenda; Zhang, Zhan; Guan, Huanxian; Payne, W; Wildsoet, Christine F
2007-10-01
Albinism is associated with a variety of ocular anomalies including refractive errors. The purpose of this study was to investigate the ocular development of an albino chick line. The ocular development of both albino and normally pigmented chicks was monitored using retinoscopy to measure refractive errors and high frequency A-scan ultrasonography to measure axial ocular dimensions. Functional tests included an optokinetic nystagmus paradigm to assess visual acuity, and flash ERGs to assess retinal function. The underlying genetic abnormality was characterized using a gene microarray, PCR and a tyrosinase assay. The ultrastructure of the retinal pigment epithelium (RPE) was examined using transmission electron microscopy. PCR confirmed that the genetic abnormality in this line is a deletion in exon 1 of the tyrosinase gene. Tyrosinase gene expression in isolated RPE cells was minimally detectable, and there was minimal enzyme activity in albino feather bulbs. The albino chicks had pink eyes and their eyes transilluminated, reflecting the lack of melanin in all ocular tissues. All three main components, anterior chamber, crystalline lens and vitreous chamber, showed axial expansion over time in both normal and albino animals, but the anterior chambers of albino chicks were consistently shallower than those of normal chicks, while in contrast, their vitreous chambers were longer. Albino chicks remained relatively myopic, with higher astigmatism than the normally pigmented chicks, even though both groups underwent developmental emmetropization. Albino chicks had reduced visual acuity yet the ERG a- and b-wave components had larger amplitudes and shorter than normal implicit times. Developmental emmetropization occurs in the albino chick but is impaired, likely because of functional abnormalities in the RPE and/or retina as well as optical factors. In very young chicks the underlying genetic mutation may also contribute to refractive error and eye shape abnormalities.
Transcriptome Analysis for Abnormal Spike Development of the Wheat Mutant dms
Zhu, Xin-Xin; Li, Qiao-Yun; Shen, Chun-Cai; Duan, Zong-Biao; Yu, Dong-Yan; Niu, Ji-Shan; Ni, Yong-Jing; Jiang, Yu-Mei
2016-01-01
Background Wheat (Triticum aestivum L.) spike development is the foundation for grain yield. We obtained a novel wheat mutant, dms, characterized as dwarf, multi-pistil and sterility. Although the genetic changes are not clear, the heredity of traits suggests that a recessive gene locus controls the two traits of multi-pistil and sterility in self-pollinating populations of the medium plants (M), such that the dwarf genotype (D) and tall genotype (T) in the progeny of the mutant are ideal lines for studies regarding wheat spike development. The objective of this study was to explore the molecular basis for spike abnormalities of dwarf genotype. Results Four unigene libraries were assembled by sequencing the mRNAs of the super-bulked differentiating spikes and stem tips of the D and T plants. Using integrative analysis, we identified 419 genes highly expressed in spikes, including nine typical homeotic genes of the MADS-box family and the genes TaAP2, TaFL and TaDL. We also identified 143 genes that were significantly different between young spikes of T and D, and 26 genes that were putatively involved in spike differentiation. The result showed that the expression levels of TaAP1-2, TaAP2, and other genes involved in the majority of biological processes such as transcription, translation, cell division, photosynthesis, carbohydrate transport and metabolism, and energy production and conversion were significantly lower in D than in T. Conclusions We identified a set of genes related to wheat floral organ differentiation, including typical homeotic genes. Our results showed that the major causal factors resulting in the spike abnormalities of dms were the lower expression homeotic genes, hormonal imbalance, repressed biological processes, and deficiency of construction materials and energy. We performed a series of studies on the homeotic genes, however the other three causal factors for spike abnormal phenotype of dms need further study. PMID:26982202
Enkhmandakh, Badam; Makeyev, Alexandr V.; Bayarsaihan, Dashzeveg
2006-01-01
Lim1, Ssdp1, and Ldb1 proteins are components of the Ldb1-associated transcriptional complex, which is important in the head-organizing activity during early mouse development. Depletion of each individual protein alone causes a headless phenotype. To explore in more detail the modular architecture of the complex, we have generated two different gene-trapped mouse lines that express truncated forms of Ssdp1. Embryos derived from the gene-trapped line that encodes a truncated Ssdp1 lacking the proline-rich sequence exhibit a lethal abnormal head-development phenotype, resembling mouse embryos deficient for Lim1, Ssdp1, or Otx2 genes. Embryos derived from the second gene-trapped line, in which most of the proline-rich domain of Ssdp1 is retained, did not show abnormalities in head development. Our data demonstrate that components of the Ldb1-dependent module can be subdivided further into discrete functional domains and that the proline-rich stretch of Ssdp1 is critical for embryonic head development. Furthermore, phylogenetic comparisons revealed that in Caenorhabditis elegans, a similar proline-rich sequence is absent in Ssdp but present in Ldb1. We conclude that although the overall architecture of the Ldb1-dependent module has been preserved, the genetic specification of its individual components has diversified during evolution, without compromising the function of the module. PMID:16864769
Enkhmandakh, Badam; Makeyev, Alexandr V; Bayarsaihan, Dashzeveg
2006-08-01
Lim1, Ssdp1, and Ldb1 proteins are components of the Ldb1-associated transcriptional complex, which is important in the head-organizing activity during early mouse development. Depletion of each individual protein alone causes a headless phenotype. To explore in more detail the modular architecture of the complex, we have generated two different gene-trapped mouse lines that express truncated forms of Ssdp1. Embryos derived from the gene-trapped line that encodes a truncated Ssdp1 lacking the proline-rich sequence exhibit a lethal abnormal head-development phenotype, resembling mouse embryos deficient for Lim1, Ssdp1, or Otx2 genes. Embryos derived from the second gene-trapped line, in which most of the proline-rich domain of Ssdp1 is retained, did not show abnormalities in head development. Our data demonstrate that components of the Ldb1-dependent module can be subdivided further into discrete functional domains and that the proline-rich stretch of Ssdp1 is critical for embryonic head development. Furthermore, phylogenetic comparisons revealed that in Caenorhabditis elegans, a similar proline-rich sequence is absent in Ssdp but present in Ldb1. We conclude that although the overall architecture of the Ldb1-dependent module has been preserved, the genetic specification of its individual components has diversified during evolution, without compromising the function of the module.
Characterization of immortalized human mammary epithelial cell line HMEC 2.6.
Joshi, Pooja S; Modur, Vishnu; Cheng, JiMing; Robinson, Kathy; Rao, Krishna
2017-10-01
Primary human mammary epithelial cells have a limited life span which makes it difficult to study them in vitro for most purposes. To overcome this problem, we have developed a cell line that was immortalized using defined genetic elements, and we have characterized this immortalized non-tumorigenic human mammary epithelial cell line to establish it as a potential model system. human mammary epithelial cells were obtained from a healthy individual undergoing reduction mammoplasty at SIU School of Medicine. The cells were transduced with CDK4R24C followed by transduction with human telomerase reverse transcriptase. Post all manipulation, the cells displayed a normal cell cycle phase distribution and were near diploid in nature, which was confirmed by flow cytometry and karyotyping. In vitro studies showed that the cells were anchorage dependent and were non-invasive in nature. The cell line expressed basal epithelial markers such as cytokeratin 7, CD10, and p63 and was negative for the expression of estrogen receptor and progesterone receptor. Upon G-band karyotyping, the cell line displayed the presence of a few cytogenic abnormalities, including trisomy 20 and trisomy 7, which are also commonly present in other immortalized mammary cell lines. Furthermore, the benign nature of these cells was confirmed by multiple in vitro and in vivo experiments. Therefore, we think that this cell line could serve as a good model to understand the molecular mechanisms involved in the development and progression of breast cancer and to also assess the effect of novel therapeutics on human mammary epithelial cells.
A New Mouse Allele of Glutamate Receptor Delta 2 with Cerebellar Atrophy and Progressive Ataxia
Miyoshi, Yuka; Yoshioka, Yoshichika; Suzuki, Kinuko; Miyazaki, Taisuke; Koura, Minako; Saigoh, Kazumasa; Kajimura, Naoko; Monobe, Yoko; Kusunoki, Susumu; Matsuda, Junichiro; Watanabe, Masahiko; Hayasaka, Naoto
2014-01-01
Spinocerebellar degenerations (SCDs) are a large class of sporadic or hereditary neurodegenerative disorders characterized by progressive motion defects and degenerative changes in the cerebellum and other parts of the CNS. Here we report the identification and establishment from a C57BL/6J mouse colony of a novel mouse line developing spontaneous progressive ataxia, which we refer to as ts3. Frequency of the phenotypic expression was consistent with an autosomal recessive Mendelian trait of inheritance, suggesting that a single gene mutation is responsible for the ataxic phenotype of this line. The onset of ataxia was observed at about three weeks of age, which slowly progressed until the hind limbs became entirely paralyzed in many cases. Micro-MRI study revealed significant cerebellar atrophy in all the ataxic mice, although individual variations were observed. Detailed histological analyses demonstrated significant atrophy of the anterior folia with reduced granule cells (GC) and abnormal morphology of cerebellar Purkinje cells (PC). Study by ultra-high voltage electron microscopy (UHVEM) further indicated aberrant morphology of PC dendrites and their spines, suggesting both morphological and functional abnormalities of the PC in the mutants. Immunohistochemical studies also revealed defects in parallel fiber (PF)–PC synapse formation and abnormal distal extension of climbing fibers (CF). Based on the phenotypic similarities of the ts3 mutant with other known ataxic mutants, we performed immunohistological analyses and found that expression levels of two genes and their products, glutamate receptor delta2 (grid2) and its ligand, cerebellin1 (Cbln1), are significantly reduced or undetectable. Finally, we sequenced the candidate genes and detected a large deletion in the coding region of the grid2 gene. Our present study suggests that ts3 is a new allele of the grid2 gene, which causes similar but different phenotypes as compared to other grid2 mutants. PMID:25250835
Chen, Qian; Pang, Min-Hui; Ye, Xiao-Hong; Yang, Guang; Lin, Chen
2018-05-18
Acute T-lymphocyte leukaemia is a form of haematological malignancy with abnormal activation of NF-κB pathway, which results in high expression of A20 and ABIN1, which constitute a negative feedback mechanism for the regulation of NF-κB activation. Clinical studies have found that acute T-lymphocyte leukaemia patients are susceptible to Toxoplasma gondii infection; however, the effect of T. gondii on the proliferation and apoptosis of human leukaemia T-cells remains unclear. Here, we used the T. gondii ME-49 strain to infect human leukaemia T-cell lines Jurkat and Molt-4, to explore the effect of T. gondii on proliferation and apoptosis, which is mediated by NF-κB in human leukaemia T-cells. The Tunel assay was used to detect cell apoptosis. Cell Counting Kit-8 was used to detect cell proliferation viability. The apoptosis level and the expression level of NF-κB related proteins in human leukaemia T-cells were detected by flow cytometry and Western blotting. Western blotting analyses revealed that the T. gondii ME-49 strain increased the expression of A20 and decreased both ABIN1 expression and NF-κB p65 phosphorylation. By constructing a lentiviral-mediated shRNA to knockdown the A20 gene in Jurkat T-cells and Molt-4 T-cells, the apoptosis levels of the two cell lines decreased after T. gondii ME-49 infection, and levels of NF-κB p65 phosphorylation and ABIN1 were higher than in the non-konckdown group. After knockingdown ABIN1 gene expression by constructing the lentiviral-mediated shRNA and transfecting the recombinant expression plasmid containing the ABIN1 gene into two cell lines, apoptosis levels and cleaved caspase-8 expression increased or decreased in response to T. gondii ME-49 infection, respectively. Our data suggest that ABIN1 protects human leukaemia T-cells by allowing them to resist the apoptosis induced by T. gondii ME-49 and that the T. gondii ME-49 strain induces the apoptosis of human leukaemia T-cells via A20-mediated downregulation of ABIN1 expression.
Behboodi, E; Ayres, S L; Memili, E; O'Coin, M; Chen, L H; Reggio, B C; Landry, A M; Gavin, W G; Meade, H M; Godke, R A; Echelard, Y
2005-01-01
Nuclear transfer (NT) using transfected primary cells is an efficient approach for the generation of transgenic goats. However, reprogramming abnormalities associated with this process might result in compromised animals. We examined the health, reproductive performance, and milk production of four transgenic does derived from somatic cell NT. Goats were derived from two fetal cell lines, each transfected with a transgene expressing a different version of the MSP-1(42) malaria antigen, either glycosylated or non-glycosylated. Two female kids were produced per cell line. Health and growth of these NT animals were monitored and compared with four age-matched control does. There were no differences in birth and weaning weights between NT and control animals. The NT does were bred and produced a total of nine kids. The control does delivered five kids. The NT does expressing the glycosylated antigen lactated only briefly, probably as a result of over-expression of the MSP-1(42) protein. However, NT does expressing the non-glycosylated antigen had normal milk yields and produced the recombinant protein. These data demonstrated that the production of healthy transgenic founder goats by somatic cell NT is readily achievable and that these animals can be used successfully for the production of a candidate Malaria vaccine.
Alvarez-Buylla, Elena R; García-Ponce, Berenice; Garay-Arroyo, Adriana
2006-01-01
APETALA1 (AP1) and CAULIFLOWER (CAL) are closely related MADS box genes that are partially redundant during Arabidopsis thaliana floral meristem determination. AP1 is able to fully substitute for CAL functions, but not vice versa, and AP1 has unique sepal and petal identity specification functions. In this study, the unique and redundant functions of these two genes has been mapped to the four protein domains that characterize type-II MADS-domain proteins by expressing all 15 chimeric combinations of AP1 and CAL cDNA regions under control of the AP1 promoter in ap1-1 loss-of-function plants. The "in vivo" function of these chimeric genes was analysed in Arabidopsis plants by expressing the chimeras. Rescue of flower meristem and sepal/petal identities was scored in single and multiple insert homozygous transgenic lines. Using these chimeric lines, it was found that distinct residues of the AP1 K domain not shared by the same CAL domain are necessary and sufficient for complete recovery of floral meristem identity, in the context of the CAL protein sequence, while both AP1 COOH and K domains are indispensable for complete rescue of sepal identity. By contrast, either one of these two AP1 domains is necessary and sufficient for complete petal identity recovery. It was also found that there were positive and negative synergies among protein domains and their combinations, and that multiple-insert lines showed relatively better rescue than equivalent single-insert lines. Finally, several lines had flowers with extra sepals and petals suggesting that chimeric proteins yield abnormal transcriptional complexes that may alter the expression or regulation of genes that control floral organ number under normal conditions.
Puppin, Cinzia; Durante, Cosimo; Sponziello, Marialuisa; Verrienti, Antonella; Pecce, Valeria; Lavarone, Elisa; Baldan, Federica; Campese, Antonio Francesco; Boichard, Amelie; Lacroix, Ludovic; Russo, Diego; Filetti, Sebastiano; Damante, Giuseppe
2014-11-01
Abnormal expression of non-coding micro RNA (miRNA) has been described in medullary thyroid carcinoma (MTC). Expression of genes encoding factors involved in miRNA biogenesis results often deregulated in human cancer and correlates with aggressive clinical behavior. In this study, expression of four genes involved in miRNA biogenesis (DICER, DROSHA, DCGR8, and XPO5) was investigated in 54 specimens of MTC. Among them, 33 and 13 harbored RET and RAS mutations, respectively. DICER, DGCR8, and XPO5 mRNA levels were significantly overexpressed in MTC harboring RET mutations, in particular, in the presence of RET634 mutation. When MTCs with RET and RAS mutations were compared, only DGCR8 displayed a significant difference, while MTCs with RAS mutations did not show significant differences with respect to non-mutated tumors. We then attempted to correlate expression of miRNA biogenesis genes with tumor aggressiveness. According to the TNM status, MTCs were divided in two groups and compared (N0 M0 vs. N1 and/or M1): for all four genes no significant difference was detected. Cell line experiments, in which expression of a RET mutation is silenced by siRNA, suggest the existence of a causal relationship between RET mutation and overexpression of DICER, DGCR8, and XPO5 genes. These findings demonstrate that RET- but not RAS-driven tumorigenic alterations include abnormalities in the expression of some important genes involved in miRNA biogenesis that could represent new potential markers for targeted therapies in the treatment of RET-mutated MTCs aimed to restore the normal miRNA expression profile.
NASA Astrophysics Data System (ADS)
Haziza, Simon; Mohan, Nitin; Loe-Mie, Yann; Lepagnol-Bestel, Aude-Marie; Massou, Sophie; Adam, Marie-Pierre; Le, Xuan Loc; Viard, Julia; Plancon, Christine; Daudin, Rachel; Koebel, Pascale; Dorard, Emilie; Rose, Christiane; Hsieh, Feng-Jen; Wu, Chih-Che; Potier, Brigitte; Herault, Yann; Sala, Carlo; Corvin, Aiden; Allinquant, Bernadette; Chang, Huan-Cheng; Treussart, François; Simonneau, Michel
2017-05-01
Brain diseases such as autism and Alzheimer's disease (each inflicting >1% of the world population) involve a large network of genes displaying subtle changes in their expression. Abnormalities in intraneuronal transport have been linked to genetic risk factors found in patients, suggesting the relevance of measuring this key biological process. However, current techniques are not sensitive enough to detect minor abnormalities. Here we report a sensitive method to measure the changes in intraneuronal transport induced by brain-disease-related genetic risk factors using fluorescent nanodiamonds (FNDs). We show that the high brightness, photostability and absence of cytotoxicity allow FNDs to be tracked inside the branches of dissociated neurons with a spatial resolution of 12 nm and a temporal resolution of 50 ms. As proof of principle, we applied the FND tracking assay on two transgenic mouse lines that mimic the slight changes in protein concentration (∼30%) found in the brains of patients. In both cases, we show that the FND assay is sufficiently sensitive to detect these changes.
[Immunohistochemical expression of the E-cadherin-catenin complex in gastric cancer].
Guzmán, Pablo; Araya, Juan; Villaseca, Miguel; Roa, Iván; Melo, Angélica; Muñoz, Sergio; Roa, Juan
2006-08-01
The E-cadherin/catenin complex plays an essential role in the control of epithelial differentiation. Abnormal expression in tumors correlates with histological grade, advanced stage and poor prognosis. To evaluate the expression pattern of E-cadherin/catenin complex in gastric carcinoma and analyze their association with tumor clinicopathological features and patient survival. Inmunohistochemical staining of E-cadherin, alpha and ss-catenin was performed from paraffin specimens of 65 gastric carcinomas. Abnormal expression of E-cadherin, alpha and ss-catenin was demonstrated in 82%, 85% and 88% of gastric carcinomas, respectively. There was a significant correlation between abnormal expression and Lauren pathological classification and depth of infiltration, but not with tumor stage, positive lymph node metastases and survival. Abnormal expression of E-cadherin, alpha and ss-catenin occurs frequently in gastric carcinoma and correlates with histological grade.
2013-01-01
Background The goal of this study was to determine a predominant cell type expressing fractalkine receptor (CX3CR1) in mature ovarian teratomas and to establish functional significance of its expression in cell differentiation. Methods Specimens of ovarian teratoma and human fetal tissues were analyzed by immunohistochemistry for CX3CR1expression. Ovarian teratocarcinoma cell line PA-1 was used as a model for cell differentiation. Results We found that the majority of the specimens contained CX3CR1-positive cells of epidermal lineage. Skin keratinocytes in fetal tissues were also CX3CR1- positive. PA-1 cells with downregulated CX3CR1 failed to express a skin keratinocyte marker cytokeratin 14 when cultured on Matrigel in the presence of a morphogen, bone morphogenic protein 4 (BMP-4), as compared to those expressing scrambled shRNA. Conclusions Here we demonstrate that CX3CR1 is expressed in both normally (fetal skin) and abnormally (ovarian teratoma) differentiated keratinocytes and is required for cell differentiation into epidermal lineage. PMID:23958497
Roberts, I; Gordon, A; Wang, R; Pritchard-Jones, K; Shipley, J; Coleman, N
2001-01-01
Rhabdomyosarcoma in children is a "small round blue cell tumour" that displays skeletal muscle differentiation. Two main histological variants are recognised, alveolar (ARMS) and embryonal (ERMS) rhabdomyosarcoma. Whereas consistent chromosome translocations characteristic of ARMS have been reported, no such cytogenetic abnormality has yet been described in ERMS. We have used multiple colour chromosome painting to obtain composite karyotypes for five ERMS cell lines and one PAX-FOXO1A fusion gene negative ARMS. The cell lines were assessed by spectral karyotyping (SKY), tailored multi-fluorophore fluorescence in situ hybridisation (M-FISH) using series of seven colour paint sets generated to examine specific abnormalities, and comparative genomic hybridisation (CGH). This approach enabled us to obtain karyotypes of the cell lines in greater detail than previously possible. Several recurring cytogenetic abnormalities were demonstrated, including translocations involving chromosomes 1 and 15 and chromosomes 2 and 15, in 4/6 and 2/6 cell lines respectively. All six cell lines demonstrated abnormalities of chromosome 15. Translocations between chromosomes 1 and 15 have previously been recorded in two primary cases of ERMS by conventional cytogenetics. Analysis of the translocation breakpoints may suggest mechanisms of ERMS tumourigenesis and may enable the development of novel approaches to the clinical management of this tumour. Copyright 2002 S. Karger AG, Basel
Meiotic behavior as a selection tool in silage corn breeding.
Souza, V F; Pagliarini, M S; Scapim, C A; Rodovalho, M; Faria, M V
2010-10-19
In breeding programs, commercial hybrids are frequently used as a source of inbred lines to obtain new hybrids. Considering that maize production is dependent on viable gametes, the selection of populations to obtain inbred lines with high meiotic stability could contribute to the formation of new silage corn hybrids adapted to specific region. We evaluated the meiotic stability of five commercial hybrids of silage corn used in southern Brazil with conventional squashing methods. All of them showed meiotic abnormalities. Some abnormalities, such as abnormal chromosome segregation and absence of cytokinesis, occurred in all the genotypes, while others, including cytomixis and abnormal spindle orientation, were found only in some genotypes. The hybrid SG6010 had the lowest mean frequency of abnormal cells (21.27%); the highest frequency was found in the hybrid P30K64 (44.43%). However, the frequency of abnormal meiotic products was much lower in most genotypes, ranging from 7.63% in the hybrid CD304 to 43.86% in Garra. Taking into account the percentage of abnormal meiotic products and, hence, meiotic stability, only the hybrids CD304, P30K64, SG6010, and P30F53 are recommended to be retained in the breeding program to obtain inbred lines to create new hybrids.
Ovine induced pluripotent stem cells are resistant to reprogramming after nuclear transfer.
German, Sergio D; Campbell, Keith H S; Thornton, Elisabeth; McLachlan, Gerry; Sweetman, Dylan; Alberio, Ramiro
2015-02-01
Induced pluripotent stem cells (iPSCs) share similar characteristics of indefinite in vitro growth with embryonic stem cells (ESCs) and may therefore serve as a useful tool for the targeted genetic modification of farm animals via nuclear transfer (NT). Derivation of stable ESC lines from farm animals has not been possible, therefore, it is important to determine whether iPSCs can be used as substitutes for ESCs in generating genetically modified cloned farm animals. We generated ovine iPSCs by conventional retroviral transduction using the four Yamanaka factors. These cells were basic fibroblast growth factor (bFGF)- and activin A-dependent, showed persistent expression of the transgenes, acquired chromosomal abnormalities, and failed to activate endogenous NANOG. Nonetheless, iPSCs could differentiate into the three somatic germ layers in vitro. Because cloning of farm animals is best achieved with diploid cells (G1/G0), we synchronized the iPSCs in G1 prior to NT. Despite the cell cycle synchronization, preimplantation development of iPSC-NT embryos was lower than with somatic cells (2% vs. 10% blastocysts, p<0.01). Furthermore, analysis of the blastocysts produced demonstrated persistent expression of the transgenes, aberrant expression of endogenous SOX2, and a failure to activate NANOG consistently. In contrast, gene expression in blastocysts produced with the parental fetal fibroblasts was similar to those generated by in vitro fertilization. Taken together, our data suggest that the persistent expression of the exogenous factors and the acquisition of chromosomal abnormalities are incompatible with normal development of NT embryos produced with iPSCs.
Anaka, Matthew; Freyer, Claudia; Gedye, Craig; Caballero, Otavia; Davis, Ian D; Behren, Andreas; Cebon, Jonathan
2012-02-01
The ability of cell lines to accurately represent cancer is a major concern in preclinical research. Culture of glioma cells as neurospheres in stem cell media (SCM) has been shown to better represent the genotype and phenotype of primary glioblastoma in comparison to serum cell lines. Despite the use of neurosphere-like models of many malignancies, there has been no robust analysis of whether other cancers benefit from a more representative phenotype and genotype when cultured in SCM. We analyzed the growth properties, transcriptional profile, and genotype of melanoma cells grown de novo in SCM, as while melanocytes share a common precursor with neural cells, melanoma frequently demonstrates divergent behavior in cancer stem cell assays. SCM culture of melanoma cells induced a neural lineage gene expression profile that was not representative of matched patient tissue samples and which could be induced in serum cell lines by switching them into SCM. There was no enrichment for expression of putative melanoma stem cell markers, but the SCM expression profile did overlap significantly with that of SCM cultures of glioma, suggesting that the observed phenotype is media-specific rather than melanoma-specific. Xenografts derived from either culture condition provided the best representation of melanoma in situ. Finally, SCM culture of melanoma did not prevent ongoing acquisition of DNA copy number abnormalities. In conclusion, SCM culture of melanoma does not provide a better representation of the phenotype or genotype of metastatic melanoma, and the resulting neural bias could potentially confound therapeutic target identification. Copyright © 2011 AlphaMed Press.
Rawat, Preeti; Singh, Amarjeet Kumar; Ray, Krishna; Chaudhary, Bhupendra; Kumar, Sanjeev; Gautam, Taru; Kanoria, Shaveta; Kaur, Gurpreet; Kumar, Paritosh; Pental, Deepak; Burma, Pradeep Kumar
2011-06-01
High levels of expression of the cry1Ac gene from Bacillus thuringiensis cannot be routinely achieved in transgenic plants despite modifications made in the gene to improve its expression. This has been attributed to the instability of the transcript in a few reports. In the present study, based on the genetic transformation of cotton and tobacco, we show that the expression of the Cry1Ac endotoxin has detrimental effects on both the in vitro and in vivo growth and development of transgenic plants. A number of experiments on developing transgenics in cotton with different versions of cry1Ac gene showed that the majority of the plants did not express any Cry1Ac protein. Based on Southern blot analysis, it was also observed that a substantial number of lines did not contain the cry1Ac gene cassette although they contained the marker gene nptII. More significantly, all the lines that showed appreciable levels of expression were found to be phenotypically abnormal. Experiments on transformation of tobacco with different constructs expressing the cry1Ac gene showed that in vitro regeneration was inhibited by the encoded protein. Further, out of a total of 145 independent events generated with the different cry1Ac gene constructs in tobacco, only 21 showed expression of the Cry1Ac protein, confirming observations made in cotton that regenerants that express high levels of the Cry1Ac protein are selected against during regeneration of transformed events. This problem was circumvented by targeting the Cry1Ac protein to the chloroplast, which also significantly improved the expression of the protein.
Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice
Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.
2017-01-01
Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060
Mo, Yichao; Lu, Yaoyong; Wang, Peng; Huang, Simin; He, Longguang; Li, Dasheng; Li, Fuliang; Huang, Junwei; Lin, Xiaoxia; Li, Xueru; Che, Siyao; Chen, Qinshou
2017-02-01
Abnormal expression of long non-coding RNA often contributes to unrestricted growth of cancer cells. Long non-coding RNA XIST expression is upregulated in several cancers; however, its modulatory mechanisms have not been reported in hepatocellular carcinoma. In this study, we found that XIST expression was significantly increased in hepatocellular carcinoma tissues and cell lines. XIST promoted cell cycle progression from the G1 phase to the S phase and protected cells from apoptosis, which contributed to hepatocellular carcinoma cell growth. In addition, we revealed that there was reciprocal repression between XIST and miR-139-5p. PDK1 was identified as a direct target of miR-139-5p. We proposed that XIST was responsible for hepatocellular carcinoma cell proliferation, and XIST exerted its function through the miR-139-5p/PDK1 axis.
Dihydroartemisinin promotes angiogenesis during the early embryonic development of zebrafish
Ba, Qian; Duan, Juan; Tian, Jia-qiang; Wang, Zi-liang; Chen, Tao; Li, Xiao-guang; Chen, Pei-zhan; Wu, Song-jie; Xiang, Li; Li, Jing-quan; Chu, Rui-ai; Wang, Hui
2013-01-01
Aim: To investigate the embryotoxicity of dihydroartemisinin (DHA), the main active metabolite of artemisinin, in zebrafish, and explore the corresponding mechanisms. Methods: The embryos of wild type and TG (flk1:GFP) transgenic zebrafish were exposed to DHA. Developmental phenotypes of the embryos were observed. Development of blood vessels was directly observed in living embryos of TG (flk1:GFP) transgenic zebrafish under fluorescence microscope. The expression of angiogenesis marker genes vegfa, flk1, and flt1 in the embryos was detected using real-time PCR and RNA in situ hybridization assays. Results: Exposure to DHA (1–10 mg/L) dose-dependently caused abnormal zebrafish embryonic phenotypes in the early developmental stage. Furthermore, exposure to DHA (10 mg/L) resulted in more pronounced embryonic angiogenesis in TG (flk1:GFP) zebrafish line. Exposure to DHA (10 mg/L) significantly increased the mRNA expression of vegfa, flk1, and flt1 in the embryos. Knockdown of the flk1 protein partially blocked the effects of DHA on embryogenesis. Conclusion: DHA causes abnormal embryonic phenotypes and promotes angiogenesis in zebrafish early embryonic development, demonstrating the potential embryotoxicity of DHA. PMID:23708556
G Protein-Coupled Estrogen Receptor (GPER) Expression in Normal and Abnormal Endometrium
Lessey, Bruce A.; Taylor, Robert N.; Wang, Wei; Bagchi, Milan K.; Yuan, Lingwen; Scotchie, Jessica; Fritz, Marc A.; Young, Steven L.
2012-01-01
Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen’s importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase–polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis. PMID:22378861
G protein-coupled estrogen receptor (GPER) expression in normal and abnormal endometrium.
Plante, Beth J; Lessey, Bruce A; Taylor, Robert N; Wang, Wei; Bagchi, Milan K; Yuan, Lingwen; Scotchie, Jessica; Fritz, Marc A; Young, Steven L
2012-07-01
Rapid estrogen effects are mediated by membrane receptors, and evidence suggests a role for both a membrane-associated form of estrogen receptor alpha (ESR1; ERα) and G-protein coupled receptor 30 (GPER; GPR30). Considering estrogen's importance in endometrial physiology and endometriosis pathophysiology, we hypothesized that GPER could be involved in both cyclic changes in endometrial estrogen action and that aberrant expression might be seen in the eutopic endometrium of women with endometriosis. Using real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and immunohistochemical analysis of normal endometrium, endometrial samples demonstrated cycle-regulated expression of GPER, with maximal expression in the proliferative phase. Eutopic and ectopic endometrium from women with endometriosis overexpressed GPER as compared to eutopic endometrium of normal participants. Ishikawa cells, an adenocarcinoma cell line, expressed GPER, with increased expression upon treatment with estrogen or an ESR1 agonist, but not with a GPER-specific agonist. Decreased expression was seen in Ishikawa cells stably transfected with progesterone receptor A. Together, these data suggest that normal endometrial GPER expression is cyclic and regulated by nuclear estrogen and progesterone receptors, while expression is dysregulated in endometriosis.
Feng, Jing; Wang, Xiaojuan; Zhu, Weihua; Chen, Si; Feng, Changwei
2017-06-01
In the present study, we investigated the functional role of microRNA (miR)-630 in epithelial-to-mesenchymal transition (EMT) of gastric cancer (GC) cells, as well as the regulatory mechanism. Cells of human GC cell line SGC 7901 were transfected with miR-630 mimic or miR-630 inhibitor. The transfection efficiency was confirmed by qRT-PCR. Cell migration and invasion were determined by Transwell assay. Protein expression of E-cadherin, vimentin, and Forkhead box protein M1 (FoxM1) was tested by Western blot. Moreover, the expression of FoxM1 was elevated or suppressed, and then the effects of miR-630 abnormal expression on EMT and properties of migration and invasion were examined again, as well as protein expression of Ras/phosphoinositide 3-kinase (PI3K)/AKT related factors. The results showed that (i) the EMT and properties of migration and invasion were statistically decreased by overexpression of miR-630 compared to the control group but markedly increased by suppression of miR-630. However, (ii) abnormal expression of FoxM1 reversed these effects in GC cells. Moreover, (iii) expression of GTP-Rac1, p-PI3K, and p-AKT was decreased by miR-630 overexpression but increased by FoxM1 overexpression. (iv) The decreased levels of GTP-Rac1, p-PI3K, and p-AKT induced by miR-630 overexpression were dramatically elevated by simultaneous overexpression of FoxM1. In conclusion, our results suggest that miR-630 might be a tumor suppressor in GC cells. MiR-630 suppresses EMT by regulating FoxM1 in GC cells, supposedly via inactivation of the Ras/PI3K/AKT pathway.
Merali, Zara; Mayer, Melinda J; Parker, Mary L; Michael, Anthony J; Smith, Andrew C; Waldron, Keith W
2012-06-01
Tobacco plants (Nicotiana tabacum cv XHFD 8) were genetically modified to express a bacterial 4-hydroxycinnamoyl-CoA hydratase/lyase (HCHL) enzyme which is active with intermediates of the phenylpropanoid pathway. We have previously shown that HCHL expression in tobacco stem resulted in various pleiotropic effects, indicative of a reduction in the carbon flux through the phenylpropanoid pathway, accompanied by an abnormal phenotype. Here, we report that in addition to the reduction in lignin and phenolic biosynthesis, HCHL expression also resulted in several gross morphological changes in poorly lignified tissue, such as abnormal mesophyll and palisade. The effect of HCHL expression was also noted in lignin-free single cells, with suspension cultures displaying an altered shape and different growth patterns. Poorly/non-lignified cell walls also exhibited a greater ease of alkaline extractability of simple phenolics and increased levels of incorporation of vanillin and vanillic acid. However, HCHL expression had no significant effect on the cell wall carbohydrate chemistry of these tissues. Evidence from this study suggests that changes in the transgenic lines result from a reduction in phenolic intermediates which have an essential role in maintaining structural integrity of low-lignin or lignin-deprived cell walls. These results emphasize the importance of the intermediates and products of phenylpropanoid pathway in modulating aspects of normal growth and development of tobacco. Analysis of these transgenic plants also shows the plasticity of the lignification process and reveals the potential to bioengineer plants with reduced phenolics (without deleterious effects) which could enhance the bioconversion of lignocellulose for industrial applications. Copyright © Physiologia Plantarum 2012.
Lin, Sue; Dong, Heng; Zhang, Fang; Qiu, Lin; Wang, Fangzhan; Cao, Jiashu; Huang, Li
2014-01-01
Background and Aims The arabinogalactan protein (AGP) gene family is involved in plant reproduction. However, little is known about the function of individual AGP genes in pollen development and pollen tube growth. In this study, Brassica campestris male fertility 8 (BcMF8), a putative AGP-encoding gene previously found to be pollen specific in Chinese cabbage (B. campestris ssp. chinensis), was investigated. Methods Real-time reverse transcription–PCR and in situ hybridization were used to analyse the expression pattern of BcMF8 in pistils. Prokaryotic expression and western blots were used to ensure that BcMF8 could encode a protein. Antisense RNA technology was applied to silence gene expression, and morphological and cytological approaches (e.g. scanning electron microscopy and transmission electron microscopy) were used to reveal abnormal phenotypes caused by gene silencing. Key Results The BcMF8 gene encoded a putative AGP protein that was located in the cell wall, and was expressed in pollen grains and pollen tubes. The functional interruption of BcMF8 by antisense RNA technology resulted in slipper-shaped and bilaterally sunken pollen with abnormal intine development and aperture formation. The inhibition of BcMF8 led to a decrease in the percentage of in vitro pollen germination. In pollen that did germinate, the pollen tubes were unstable, abnormally shaped and burst more frequently relative to controls, which corresponded to an in vivo arrest of pollen germination at the stigma surface and retarded pollen tube growth in the stylar transmitting tissues. Conclusions The phenotypic defects of antisense BcMF8 RNA lines (bcmf8) suggest a crucial function of BcMF8 in modulating the physical nature of the pollen wall and in helping in maintaining the integrity of the pollen tube wall matrix. PMID:24489019
Van Roy, N; Van Limbergen, H; Vandesompele, J; Van Gele, M; Poppe, B; Salwen, H; Laureys, G; Manoel, N; De Paepe, A; Speleman, F
2001-10-01
Cancer cell lines are essential gene discovery tools and have often served as models in genetic and functional studies of particular tumor types. One of the future challenges is comparison and interpretation of gene expression data with the available knowledge on the genomic abnormalities in these cell lines. In this context, accurate description of these genomic abnormalities is required. Here, we show that a combination of M-FISH with banding analysis, standard FISH, and CGH allowed a detailed description of the genetic alterations in 16 neuroblastoma cell lines. In total, 14 cryptic chromosome rearrangements were detected, including a balanced t(2;4)(p24.3;q34.3) translocation in cell line NBL-S, with the 2p24 breakpoint located at about 40 kb from MYCN. The chromosomal origin of 22 marker chromosomes and 41 cytogenetically undefined translocated segments was determined. Chromosome arm 2 short arm translocations were observed in six cell lines (38%) with and five (31%) without MYCN amplification, leading to partial chromosome arm 2p gain in all but one cell line and loss of material in the various partner chromosomes, including 1p and 11q. These 2p gains were often masked in the GGH profiles due to MYCN amplification. The commonly overrepresented region was chromosome segment 2pter-2p22, which contains the MYCN gene, and five out of eleven 2p breakpoints clustered to the interface of chromosome bands 2p16 and 2p21. In neuroblastoma cell line SJNB-12, with double minutes (dmins) but no MYCN amplification, the dmins were shown to be derived from 16q22-q23 sequences. The ATBF1 gene, an AT-binding transcription factor involved in normal neurogenesis and located at 16q22.2, was shown to be present in the amplicon. This is the first report describing the possible implication of ATBF1 in neuroblastoma cells. We conclude that a combined approach of M-FISH, cytogenetics, and CGH allowed a more complete and accurate description of the genetic alterations occurring in the investigated cell lines. Copyright 2001 Wiley-Liss, Inc.
Peng, Xiaojue; Wang, Kun; Hu, Chaofeng; Zhu, Youlin; Wang, Ting; Yang, Jing; Tong, Jiping; Li, Shaoqing; Zhu, Yingguo
2010-06-24
Cytoplasmic male sterility (CMS) has often been associated with abnormal mitochondrial open reading frames. The mitochondrial gene orfH79 is a candidate gene for causing the CMS trait in CMS-Honglian (CMS-HL) rice. However, whether the orfH79 expression can actually induce CMS in rice remains unclear. Western blot analysis revealed that the ORFH79 protein is mainly present in mitochondria of CMS-HL rice and is absent in the fertile line. To investigate the function of ORFH79 protein in mitochondria, this gene was fused to a mitochondrial transit peptide sequence and used to transform wild type rice, where its expression induced the gametophytic male sterile phenotype. In addition, excessive accumulation of reactive oxygen species (ROS) in the microspore, a reduced ATP/ADP ratio, decreased mitochondrial membrane potential and a lower respiration rate in the transgenic plants were found to be similar to those in CMS-HL rice. Moreover, retarded growth of primary and lateral roots accompanied by abnormal accumulation of ROS in the root tip was observed in both transgenic rice and CMS-HL rice (YTA). These results suggest that the expression of orfH79 in mitochondria impairs mitochondrial function, which affects the development of both male gametophytes and the roots of CMS-HL rice.
Ishihara, Keiichi
2017-01-01
Down syndrome, caused by the triplication of human chromosome 21, is the most frequent genetic cause of mental retardation. Mice with a segmental trisomy for mouse chromosome 16, which is orthologous to human chromosome 21, exhibit abnormalities similar to those in individuals with Down syndrome and therefore offer the opportunity for a genotype-phenotype correlation. In the current review, I present several mouse lines with trisomic regions of various lengths and discuss their usefulness for elucidating the mechanisms underlying Down syndrome-associated developmental cognitive disabilities. In addition, our recent comprehensive study attempting to identify molecules with disturbed expression in the brain of a mouse model of Down syndrome in order to develop a pharmacologic therapy for Down syndrome is described.
IRX1 hypomethylation promotes osteosarcoma metastasis via induction of CXCL14/NF-κB signaling
Lu, Jinchang; Song, Guohui; Tang, Qinglian; Zou, Changye; Han, Feng; Zhao, Zhiqiang; Yong, Bicheng; Yin, Junqiang; Xu, Huaiyuan; Xie, Xianbiao; Kang, Tiebang; Lam, YingLee; Yang, Huiling; Shen, Jingnan; Wang, Jin
2015-01-01
Osteosarcoma is a common malignant bone tumor with a propensity to metastasize to the lungs. Epigenetic abnormalities have been demonstrated to underlie osteosarcoma development; however, the epigenetic mechanisms that are involved in metastasis are not yet clear. Here, we analyzed 2 syngeneic primary human osteosarcoma cell lines that exhibit disparate metastatic potential for differences in epigenetic modifications and expression. Using methylated DNA immunoprecipitation (MeDIP) and microarray expression analysis to screen for metastasis-associated genes, we identified Iroquois homeobox 1 (IRX1). In both human osteosarcoma cell lines and clinical osteosarcoma tissues, IRX1 overexpression was strongly associated with hypomethylation of its own promoter. Furthermore, experimental modulation of IRX1 in osteosarcoma cell lines profoundly altered metastatic activity, including migration, invasion, and resistance to anoikis in vitro, and influenced lung metastasis in murine models. These prometastatic effects of IRX1 were mediated by upregulation of CXCL14/NF-κB signaling. In serum from osteosarcoma patients, the presence of IRX1 hypomethylation in circulating tumor DNA reduced lung metastasis–free survival. Together, these results identify IRX1 as a prometastatic gene, implicate IRX1 hypomethylation as a potential molecular marker for lung metastasis, and suggest that epigenetic reversion of IRX1 activation may be beneficial for controlling osteosarcoma metastasis. PMID:25822025
Mice over-expressing BDNF in forebrain neurons develop an altered behavioral phenotype with age.
Weidner, Kate L; Buenaventura, Diego F; Chadman, Kathryn K
2014-07-15
Evidence from clinical studies suggests that abnormal activity of brain derived neurotrophic factor (BDNF) contributes to the pathogenesis of autism spectrum disorders (ASDs). A genetically modified line of mice over-expressing a BDNF transgene in forebrain neurons was used to investigate if this mutation leads to changes in behavior consistent with ASD. The mice used in these experiments were behaviorally tested past 5 months of age when spontaneous seizures were evident. These seizures were not observed in age-matched wildtype (WT) mice or younger mice from this transgenic line. The BDNF mice in these experiments weighed less than their WT littermates. The BDNF transgenic (BDNF-tg) mice demonstrated similar levels of sociability in the social approach test. Conversely, the BDNF-tg mice demonstrated less obsessive compulsive-like behavior in the marble burying test, less anxiety-like behavior in the elevated plus maze test, and less depressive-like behavior in the forced swim test. Changes in behavior were found in these older mice that have not been observed in younger mice from this transgenic line, which may be due to the development of seizures as the mice age. These mice do not have an ASD phenotype but may be useful to study adult onset epilepsy. Copyright © 2014 Elsevier B.V. All rights reserved.
Cheong, Rachel Y; Czieselsky, Katja; Porteous, Robert; Herbison, Allan E
2015-10-28
Circulating estradiol exerts a profound influence on the activity of the gonadotropin-releasing hormone (GnRH) neuronal network controlling fertility. Using genetic strategies enabling neuron-specific deletion of estrogen receptor α (Esr1), we examine here whether estradiol-modulated GABA and glutamate transmission are critical for the functioning of the GnRH neuron network in the female mouse. Using Vgat- and Vglut2-ires-Cre knock-in mice and ESR1 immunohistochemistry, we demonstrate that subpopulations of GABA and glutamate neurons throughout the limbic forebrain express ESR1, with ESR1-GABAergic neurons being more widespread and numerous than ESR1-glutamatergic neurons. We crossed Vgat- and Vglut2-ires-Cre mice with an Esr1(lox/lox) line to generate animals with GABA-neuron-specific or glutamate-neuron-specific deletion of Esr1. Vgat-ires-Cre;Esr1(lox/lox) mice were infertile, with abnormal estrous cycles, and exhibited a complete failure of the estrogen positive feedback mechanism responsible for the preovulatory GnRH surge. However, puberty onset and estrogen negative feedback were normal. Vglut2-ires-Cre;Esr1(lox/lox) mice were also infertile but displayed a wider range of deficits, including advanced puberty onset, abnormal negative feedback, and abolished positive feedback. Whereas <25% of preoptic kisspeptin neurons expressed Cre in Vgat- and Vglut2-ires-Cre lines, ∼70% of arcuate kisspeptin neurons were targeted in Vglut2-ires-Cre;Esr1(lox/lox) mice, possibly contributing to their advanced puberty phenotype. These observations show that, unexpectedly, ESR1-GABA neurons are only essential for the positive feedback mechanism. In contrast, we reveal the key importance of ESR1 in glutamatergic neurons for multiple estrogen feedback loops within the GnRH neuronal network required for fertility in the female mouse. Copyright © 2015 the authors 0270-6474/15/3514533-11$15.00/0.
Weeks, Robert J.; Ludgate, Jackie L.; LeMée, Gwenn; Morison, Ian M.
2016-01-01
Background Childhood acute lymphoblastic leukaemia (ALL) is the most common malignancy in children. Despite high cure rates, side effects and late consequences of the intensive treatments are common. Unquestionably, the identification of new therapeutic targets will lead to safer, more effective treatments. We identified TES promoter methylation and transcriptional silencing as a very common molecular abnormality in childhood ALL, irrespective of molecular subtype. The aims of the present study were to demonstrate that TES promoter methylation is aberrant, to determine the effects of TES re-expression in ALL, and to determine if those effects are mediated via TP53 activity. Methods Normal fetal and adult tissue DNA was isolated and TES promoter methylation determined by Sequenom MassARRAY. Quantitative RT-PCR and immunoblot were used to confirm re-expression of TES in ALL cell lines after 5’-aza-2’-deoxycytidine (decitabine) exposure or transfection with TES expression plasmids. The effects of TES re-expression on ALL cells were investigated using standard cell proliferation, cell death and cell cycle assays. Results In this study, we confirm that the TES promoter is unmethylated in normal adult and fetal tissues. We report that decitabine treatment of ALL cell lines results in demethylation of the TES promoter and attendant expression of TES mRNA. Re-expression of TESTIN protein in ALL cells using expression plasmid transfection results in rapid cell death or cell cycle arrest independent of TP53 activity. Conclusions These results suggest that TES is aberrantly methylated in ALL and that re-expression of TESTIN has anti-leukaemia effects which point to novel therapeutic opportunities for childhood ALL. PMID:26985820
Expression of HSF2 decreases in mitosis to enable stress-inducible transcription and cell survival
Elsing, Alexandra N.; Aspelin, Camilla; Björk, Johanna K.; Bergman, Heidi A.; Himanen, Samu V.; Kallio, Marko J.; Roos-Mattjus, Pia
2014-01-01
Unless mitigated, external and physiological stresses are detrimental for cells, especially in mitosis, resulting in chromosomal missegregation, aneuploidy, or apoptosis. Heat shock proteins (Hsps) maintain protein homeostasis and promote cell survival. Hsps are transcriptionally regulated by heat shock factors (HSFs). Of these, HSF1 is the master regulator and HSF2 modulates Hsp expression by interacting with HSF1. Due to global inhibition of transcription in mitosis, including HSF1-mediated expression of Hsps, mitotic cells are highly vulnerable to stress. Here, we show that cells can counteract transcriptional silencing and protect themselves against proteotoxicity in mitosis. We found that the condensed chromatin of HSF2-deficient cells is accessible for HSF1 and RNA polymerase II, allowing stress-inducible Hsp expression. Consequently, HSF2-deficient cells exposed to acute stress display diminished mitotic errors and have a survival advantage. We also show that HSF2 expression declines during mitosis in several but not all human cell lines, which corresponds to the Hsp70 induction and protection against stress-induced mitotic abnormalities and apoptosis. PMID:25202032
Bozzato, Andrea; Barlati, Sergio; Borsani, Giuseppe
2008-04-01
Mucolipidosis type IV (MLIV, MIM 252650) is an autosomal recessive lysosomal storage disorder that causes mental and motor retardation as well as visual impairment. The lysosomal storage defect in MLIV is consistent with abnormalities of membrane traffic and organelle dynamics in the late endocytic pathway. MLIV is caused by mutations in the MCOLN1 gene, which codes for mucolipin-1 (MLN1), a member of the large family of transient receptor potential (TRP) cation channels. Although a number of studies have been performed on mucolipin-1, the pathological mechanisms underlying MLIV are not fully understood. To identify genes that characterize pathogenic changes in mucolipidosis type IV, we compared the expression profiles of three MLIV and three normal skin fibroblasts cell lines using oligonucleotide microarrays. Genes that were differentially expressed in patients' cells were identified. 231 genes were up-regulated, and 116 down-regulated. Real-Time RT-PCR performed on selected genes in six independent MLIV fibroblasts cell lines was generally consistent with the microarray findings. This study allowed to evidence the modulation at the transcriptional level of a discrete number of genes relevant in biological processes which are altered in the disease such as endosome/lysosome trafficking, lysosome biogenesis, organelle acidification and lipid metabolism.
Functional redundancy and nonredundancy between two Troponin C isoforms in Drosophila adult muscles
Chechenova, Maria B.; Maes, Sara; Oas, Sandy T.; Nelson, Cloyce; Kiani, Kaveh G.; Bryantsev, Anton L.; Cripps, Richard M.
2017-01-01
We investigated the functional overlap of two muscle Troponin C (TpnC) genes that are expressed in the adult fruit fly, Drosophila melanogaster: TpnC4 is predominantly expressed in the indirect flight muscles (IFMs), whereas TpnC41C is the main isoform in the tergal depressor of the trochanter muscle (TDT; jump muscle). Using CRISPR/Cas9, we created a transgenic line with a homozygous deletion of TpnC41C and compared its phenotype to a line lacking functional TpnC4. We found that the removal of either of these genes leads to expression of the other isoform in both muscle types. The switching between isoforms occurs at the transcriptional level and involves minimal enhancers located upstream of the transcription start points of each gene. Functionally, the two TpnC isoforms were not equal. Although ectopic TpnC4 in TDT muscles was able to maintain jumping ability, TpnC41C in IFMs could not effectively support flying. Simultaneous functional disruption of both TpnC genes resulted in jump-defective and flightless phenotypes of the survivors, as well as abnormal sarcomere organization. These results indicated that TpnC is required for myofibril assembly, and that there is functional specialization among TpnC isoforms in Drosophila. PMID:28077621
Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella
2002-01-01
Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394
Combination of Ibrutinib and ABT-199 in Diffuse Large B-Cell Lymphoma and Follicular Lymphoma.
Kuo, Hsu-Ping; Ezell, Scott A; Schweighofer, Karl J; Cheung, Leo W K; Hsieh, Sidney; Apatira, Mutiah; Sirisawad, Mint; Eckert, Karl; Hsu, Ssucheng J; Chen, Chun-Te; Beaupre, Darrin M; Versele, Matthias; Chang, Betty Y
2017-07-01
Diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma are the most prevalent B-lymphocyte neoplasms in which abnormal activation of the Bruton tyrosine kinase (BTK)-mediated B-cell receptor signaling pathway contributes to pathogenesis. Ibrutinib is an oral covalent BTK inhibitor that has shown some efficacy in both indications. To improve ibrutinib efficacy through combination therapy, we first investigated differential gene expression in parental and ibrutinib-resistant cell lines to better understand the mechanisms of resistance. Ibrutinib-resistant TMD8 cells had higher BCL2 gene expression and increased sensitivity to ABT-199, a BCL-2 inhibitor. Consistently, clinical samples from ABC-DLBCL patients who experienced poorer response to ibrutinib had higher BCL2 gene expression. We further demonstrated synergistic growth suppression by ibrutinib and ABT-199 in multiple ABC-DLBCL, GCB-DLBCL, and follicular lymphoma cell lines. The combination of both drugs also reduced colony formation, increased apoptosis, and inhibited tumor growth in a TMD8 xenograft model. A synergistic combination effect was also found in ibrutinib-resistant cells generated by either genetic mutation or drug treatment. Together, these findings suggest a potential clinical benefit from ibrutinib and ABT-199 combination therapy. Mol Cancer Ther; 16(7); 1246-56. ©2017 AACR . ©2017 American Association for Cancer Research.
Sato, Shinya; Peshenko, Igor V; Olshevskaya, Elena V; Kefalov, Vladimir J; Dizhoor, Alexander M
2018-03-21
The Arg838Ser mutation in retinal membrane guanylyl cyclase 1 (RetGC1) has been linked to autosomal dominant cone-rod dystrophy type 6 (CORD6). It is believed that photoreceptor degeneration is caused by the altered sensitivity of RetGC1 to calcium regulation via guanylyl cyclase activating proteins (GCAPs). To determine the mechanism by which this mutation leads to degeneration, we investigated the structure and function of rod photoreceptors in two transgenic mouse lines, 362 and 379, expressing R838S RetGC1. In both lines, rod outer segments became shorter than in their nontransgenic siblings by 3-4 weeks of age, before the eventual photoreceptor degeneration. Despite the shortening of their outer segments, the dark current of transgenic rods was 1.5-2.2-fold higher than in nontransgenic controls. Similarly, the dim flash response amplitude in R838S + rods was larger, time to peak was delayed, and flash sensitivity was increased, all suggesting elevated dark-adapted free cGMP in transgenic rods. In rods expressing R838S RetGC1, dark-current noise increased and the exchange current, detected after a saturating flash, became more pronounced. These results suggest disrupted Ca 2+ phototransduction feedback and abnormally high free-Ca 2+ concentration in the outer segments. Notably, photoreceptor degeneration, which typically occurred after 3 months of age in R838S RetGC1 transgenic mice in GCAP1,2 +/+ or GCAP1,2 +/- backgrounds, was prevented in GCAP1,2 -/- mice lacking Ca 2+ feedback to guanylyl cyclase. In summary, the dysregulation of guanylyl cyclase in RetGC1-linked CORD6 is a "phototransduction disease," which means it is associated with increased free-cGMP and Ca 2+ levels in photoreceptors. SIGNIFICANCE STATEMENT In a mouse model expressing human membrane guanylyl cyclase 1 (RetGC1, GUCY2D ), a mutation associated with early progressing congenital blindness, cone-rod dystrophy type 6 (CORD6), deregulates calcium-sensitive feedback of phototransduction to the cyclase mediated by guanylyl cyclase activating proteins (GCAPs), which are calcium-sensor proteins. The abnormal calcium sensitivity of the cyclase increases cGMP-gated dark current in the rod outer segments, reshapes rod photoresponses, and triggers photoreceptor death. This work is the first to demonstrate a direct physiological effect of GUCY2D CORD6-linked mutation on photoreceptor physiology in vivo It also identifies the abnormal regulation of the cyclase by calcium-sensor proteins as the main trigger for the photoreceptor death. Copyright © 2018 the authors 0270-6474/18/382990-11$15.00/0.
PLK1-associated microRNAs are correlated with pediatric medulloblastoma prognosis.
Pezuk, Julia Alejandra; Brassesco, María Sol; de Oliveira, Ricardo Santos; Machado, Hélio Rubens; Neder, Luciano; Scrideli, Carlos Alberto; Tone, Luiz Gonzaga
2017-04-01
Medulloblastoma (MB) is the most common malignant tumor of the central nervous system (CNS) in children. Despite its relative good survival rates, treatment can cause long time sequels and may impair patients' lifespan and quality, making the search for new treatment options still necessary. Polo like kinases (PLKs) constitute a five-member serine/threonine kinases family (PLK 1-5) that regulates different stages during cell cycle. Abnormal PLKs expression has been observed in several cancer types, including MB. As gene regulators, miRNAs have also been described with variable expression in cancer. We evaluated gene expression profiles of all PLK family members and related miRNAs (miR-100, miR-126, miR-219, and miR-593*) in MB cell lines and tumor samples. RT-qPCR analysis revealed increased levels of PLK1-4 in all cell lines and in most MB samples, while PLK5 was found underexpressed. In parallel, miR-100 was also found upregulated while miR-129, miR-216, and miR-593* were decreased in MB cell lines. Variable miRNAs expression patterns were observed in MB samples. However, a correlation between miR-100 and PLK4 expression was observed, and associations between miR-100, miR-126, and miR-219 expression and overall and event free survival were also evinced in our cohort. Moreover, despite the lack of association with clinico-pathological features, when comparing primary tumors to those relapsed, we found a consistent decrease on PLK2, miR-219, and miR-598* and an increase on miR-100 and miR-126. Specific dysregulation on PLKs and associated miRNAs may be important in MB and can be used to predict prognosis. Although miRNAs sequences are fundamental to predict its target, the cell type may also be consider once that mRNA repertoire can define different roles for specific miRNA in a given cell.
Zhu, Zhenya; Wang, Yong; Zhang, Chunhui; Yu, Shiyong; Zhu, Qi; Hou, Kun; Yan, Bo
2016-01-12
Tripartite Motif Containing 25 (TRIM25), a member of TRIM proteins, has been found abnormally expressed in cancers of female reproductive system. Here, TRIM25 was conspicuously expressed in human gastric cancer (GC) tissues in which its higher expression generally correlated with the poor prognosis of patients. Small interfering RNA (siRNA)-mediated knockdown of TRIM25 expression in MGC-803 and AGS cells had no effects on cell proliferation, whereas reduced cell migration and invasion. Gene set enrichment analysis on The Cancer Genome Atlas stomach adenocarcinoma (STAD) dataset revealed that several signaling pathways, including the migration, E-cadherin and transforming growth factor-β (TGF-β) pathways, were enriched in TRIM25 higher expression patients. Moreover, ectopic expression of TRIM25 in a GC cell line with lower expression of TRIM25 significantly promoted the migration and invasion. Further experiments with TGF-β inhibitor suggested that TRIM25 may exert its function through TGF-β pathway. In summary, our results indicate that TRIM25 acts as an oncogene in GC and thus presents a novel target for the detection and treatment of GC.
Zhu, Zhenya; Wang, Yong; Zhang, Chunhui; Yu, Shiyong; Zhu, Qi; Hou, Kun; Yan, Bo
2016-01-01
Tripartite Motif Containing 25 (TRIM25), a member of TRIM proteins, has been found abnormally expressed in cancers of female reproductive system. Here, TRIM25 was conspicuously expressed in human gastric cancer (GC) tissues in which its higher expression generally correlated with the poor prognosis of patients. Small interfering RNA (siRNA)-mediated knockdown of TRIM25 expression in MGC-803 and AGS cells had no effects on cell proliferation, whereas reduced cell migration and invasion. Gene set enrichment analysis on The Cancer Genome Atlas stomach adenocarcinoma (STAD) dataset revealed that several signaling pathways, including the migration, E-cadherin and transforming growth factor-β (TGF-β) pathways, were enriched in TRIM25 higher expression patients. Moreover, ectopic expression of TRIM25 in a GC cell line with lower expression of TRIM25 significantly promoted the migration and invasion. Further experiments with TGF-β inhibitor suggested that TRIM25 may exert its function through TGF-β pathway. In summary, our results indicate that TRIM25 acts as an oncogene in GC and thus presents a novel target for the detection and treatment of GC. PMID:26754079
Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat
2015-01-01
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF. PMID:26053554
Mohapatra, Sushil Kumar; Sandhu, Anjit; Singh, Karn Pratap; Singla, Suresh Kumar; Chauhan, Manmohan Singh; Manik, Radheysham; Palta, Prabhat
2015-01-01
Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (>1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.
Wang, Ning; Xu, Zhi-Wen; Wang, Kun-Hao
2014-01-01
MicroRNAs (miRNAs) are small non-coding RNA molecules found in multicellular eukaryotes which are implicated in development of cancer, including cutaneous squamous cell carcinoma (cSCC). Expression is controlled by transcription factors (TFs) that bind to specific DNA sequences, thereby controlling the flow (or transcription) of genetic information from DNA to messenger RNA. Interactions result in biological signal control networks. Molecular components involved in cSCC were here assembled at abnormally expressed, related and global levels. Networks at these three levels were constructed with corresponding biological factors in term of interactions between miRNAs and target genes, TFs and miRNAs, and host genes and miRNAs. Up/down regulation or mutation of the factors were considered in the context of the regulation and significant patterns were extracted. Participants of the networks were evaluated based on their expression and regulation of other factors. Sub-networks with two core TFs, TP53 and EIF2C2, as the centers are identified. These share self-adapt feedback regulation in which a mutual restraint exists. Up or down regulation of certain genes and miRNAs are discussed. Some, for example the expression of MMP13, were in line with expectation while others, including FGFR3, need further investigation of their unexpected behavior. The present research suggests that dozens of components, miRNAs, TFs, target genes and host genes included, unite as networks through their regulation to function systematically in human cSCC. Networks built under the currently available sources provide critical signal controlling pathways and frequent patterns. Inappropriate controlling signal flow from abnormal expression of key TFs may push the system into an incontrollable situation and therefore contributes to cSCC development.
A conserved role of αA-crystallin in the development of the zebrafish embryonic lens.
Zou, Ping; Wu, Shu-Yu; Koteiche, Hanane A; Mishra, Sanjay; Levic, Daniel S; Knapik, Ela; Chen, Wenbiao; Mchaourab, Hassane S
2015-09-01
αA- and αB-crystallins are small heat shock proteins that bind thermodynamically destabilized proteins thereby inhibiting their aggregation. Highly expressed in the mammalian lens, the α-crystallins have been postulated to play a critical role in the maintenance of lens optical properties by sequestering age-damaged proteins prone to aggregation as well as through a multitude of roles in lens epithelial cells. Here, we have examined the role of α-crystallins in the development of the vertebrate zebrafish lens. For this purpose, we have carried out morpholino-mediated knockdown of αA-, αBa- and αBb-crystallin and characterized the gross morphology of the lens. We observed lens abnormalities, including increased reflectance intensity, as a consequence of the interference with expression of these proteins. These abnormalities were less frequent in transgenic zebrafish embryos expressing rat αA-crystallin suggesting a specific role of α-crystallins in embryonic lens development. To extend and confirm these findings, we generated an αA-crystallin knockout zebrafish line. A more consistent and severe lens phenotype was evident in maternal/zygotic αA-crystallin mutants compared to those observed by morpholino knockdown. The penetrance of the lens phenotype was reduced by transgenic expression of rat αA-crystallin and its severity was attenuated by maternal αA-crystallin expression. These findings demonstrate that the role of α-crystallins in lens development is conserved from mammals to zebrafish and set the stage for using the embryonic lens as a model system to test mechanistic aspects of α-crystallin chaperone activity and to develop strategies to fine-tune protein-protein interactions in aging and cataracts. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gaines, Peter; Tien, Chiung W.; Olins, Ada L.; Olins, Donald E.; Shultz, Leonard D.; Carney, Lisa; Berliner, Nancy
2008-01-01
Objective The capacity of neutrophils to eradicate bacterial infections is dependent on normal development and the activation of functional responses, which include chemotaxis and the generation of oxygen radicals during the respiratory burst. A unique feature of the neutrophil is its highly lobulated nucleus, which is thought to facilitate chemotaxis but may also play a role in other critical neutrophil functions. Nuclear lobulation is dependent on the expression of the inner nuclear envelope protein, the lamin B receptor (LBR), mutations of which cause hypolobulated neutrophil nuclei in human Pelger-Huët anomaly (PHA) and the "ichthyosis" (ic) phenotype in mice. In this study we have investigated roles for LBR in mediating neutrophil development and the activation of multiple neutrophil functions, including chemotaxis and the respiratory burst. Materials and Methods A progenitor EML cell line was generated from an ic/ic mouse, and derived cells that lacked LBR expression were induced to mature neutrophils and then examined for abnormal morphology and functional responses. Results Neutrophils derived from EML-ic/ic cells exhibited nuclear hypolobulation identical to that observed in ichthyosis mice. The ic/ic neutrophils also displayed abnormal chemotaxis, supporting the notion that nuclear segmentation augments neutrophil extravasation. Furthermore, promyelocytic forms of ic/ic cells displayed decreased proliferative responses and produced a deficient respiratory burst upon terminal maturation. Conclusions Our studies of promyelocytes that lack LBR expression have identified roles for LBR in regulating not only the morphologic maturation of the neutrophil nucleus but also proliferative and functional responses that are critical to innate immunity. PMID:18550262
Characterization of fibroblast-free CWR-R1ca castration-recurrent prostate cancer cell line.
Shourideh, Mojgan; DePriest, Adam; Mohler, James L; Wilson, Elizabeth M; Koochekpour, Shahriar
2016-09-01
The previously established CWR-R1 cell line has been used as an in vitro model representing castration-recurrent prostate cancer. Microscopic observation of subconfluent cells demonstrated two distinct cellular morphologies: polygonal closely aggregated epithelial cells surrounded by bipolar fibroblastic cells with long processes. This study sought to establish and characterize a fibroblast-free derivative of the CWR-R1 cell line. The CWR-R1ca cell line was established from CWR-R1 cells by removing fibroblasts using multiple cycles of short-term trypsinization, cloning, and pooling single-cell colonies. Authentication of fibroblast-free CWR-R1ca cells was demonstrated by analyzing the expression of cytodifferentiation and prostate-associated markers, DNA and cytogenetic profiling, and growth pattern in the absence or presence of androgen. CWR-R1ca is an androgen-sensitive cell line that expresses the androgen receptor (AR) and its splice variant 7 and the luminal epithelia markers, CK-8, CK-18, and c-Met. CWR-R1fb fibroblasts isolated from CWR-R1 cells express AR, hepatocyte growth factor-α, and mouse β-actin but not AR-V7 or epithelial markers. Cytogenetic analysis of CWR-R1ca cells revealed a hyperdiploid male with numerical gains in chromosomes 1, 7, 8, 10, 11, and 12, deletion of one chromosome 2 allele, structural abnormalities that include der(1)t(1:4), der(4)t(2:4), der(10)t(4:10), and an unbalanced reciprocal translocation between chromosome 6 and 14. DNA-profiling revealed that CWR-R1ca cells had significant short-tandem repeat marker homology with CWR22Pc and CWR22Rv1 cell lines, which indicated lineage derivation from CWR22 prostate cancer xenografts. CWR-R1ca cells were responsive to the growth stimulatory effects of dihydrotestosterone (DHT) in the femtomolar range. This study establishes CWR-R1ca cells as a fibroblast-free derivative of the castration-recurrent CWR-R1 cell line. Prostate 76:1067-1077, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Effects of Hatchery Rearing on the Structure and Function of Salmonid Mechanosensory Systems.
Brown, Andrew D; Sisneros, Joseph A; Jurasin, Tyler; Coffin, Allison B
2016-01-01
This paper reviews recent studies on the effects of hatchery rearing on the auditory and lateral line systems of salmonid fishes. Major conclusions are that (1) hatchery-reared juveniles exhibit abnormal lateral line morphology (relative to wild-origin conspecifics), suggesting that the hatchery environment affects lateral line structure, perhaps due to differences in the hydrodynamic conditions of hatcheries versus natural rearing environments, and (2) hatchery-reared salmonids have a high proportion of abnormal otoliths, a condition associated with reduced auditory sensitivity and suggestive of inner ear dysfunction.
The interaction between RACK1 and WEE1 regulates the growth of gastric cancer cell line HGC27
Liu, Chao; Ren, Lili; Wang, Yizhao; Liu, Yimeng; Xiao, Jianying
2017-01-01
Receptor of activated C Kinase 1 (RACK1) is an essential scaffold and anchoring protein, which serves an important role in multiple tumorigenesis signaling pathways. The present study aimed to investigate the expression of RACK1 in gastric cancer (GC), and its association with the occurrence and development of GC. In addition, the effect and mechanism of RACK1 overexpression on the growth, and proliferation of GC cells was examined. Firstly, the protein expression of RACK1 was detected in 70 cases of GC tissues and 30 cases of noncancerous tissues using immunohistochemical staining, and the association between clinical and pathological features of GC was analyzed. Secondly, the mRNA and protein expression of RACK1 was determined in the poorly-differentiated human gastric cancer cell line HGC27 and gastric epithelial cell line GES-1. The growth of HGC27 cells following the upregulation of RACK1 was detected using MTT method. Subsequently, the interaction and co-location between RACK1, and WEE1 homolog (S. pombe) (WEE1) in HGC27 cells was confirmed using co-immunoprecipitation and indirect immunofluorescence. The expression level of RACK1 in GC was significantly lower compared with that in pericarcinous tissues (P<0.05). The protein level of RACK1 expression correlated with tumor node metastasis stage, tumor differentiation and lymph node metastasis. The mRNA and protein levels of RACK1 in HGC27 cells were significantly reduced, and overexpressed RACK1 downregulated WEE1 protein expression, thus inhibiting the growth of HGC27 cells. Co-immunoprecipitation and immunofluorescence confirmed that RACK1, and WEE1 interacted and co-located in the cytoplasm of HGC27 cells. Therefore, the abnormal expression of RACK1 in GC tissues was identified to be involved in the occurrence and development of GC. Overexpression of RACK1 was able to inhibit the growth of HGC27 cells. The current study suggests that low expression of RACK1 is an important indicator of poor prognosis of GC. RACK1 and WEE1 interact to regulate the growth of HGC27 cells. PMID:29085480
Shinmura, Kazuya; Kato, Hisami; Kawanishi, Yuichi; Igarashi, Hisaki; Goto, Masanori; Tao, Hong; Inoue, Yusuke; Nakamura, Satoki; Misawa, Kiyoshi; Mineta, Hiroyuki; Sugimura, Haruhiko
2016-01-01
The effects of abnormalities in the DNA glycosylases NEIL1, NEIL2, and NEIL3 on human cancer have not been fully elucidated. In this paper, we found that the median somatic total mutation loads and the median somatic single nucleotide mutation loads exhibited significant inverse correlations with the median NEIL1 and NEIL2 expression levels and a significant positive correlation with the median NEIL3 expression level using data for 13 cancer types from the Cancer Genome Atlas (TCGA) database. A subset of the cancer types exhibited reduced NEIL1 and NEIL2 expressions and elevated NEIL3 expression, and such abnormal expressions of NEIL1, NEIL2, and NEIL3 were also significantly associated with the mutation loads in cancer. As a mechanism underlying the reduced expression of NEIL1 in cancer, the epigenetic silencing of NEIL1 through promoter hypermethylation was found. Finally, we investigated the reason why an elevated NEIL3 expression level was associated with an increased number of somatic mutations in cancer and found that NEIL3 expression was positively correlated with the expression of APOBEC3B, a potent inducer of mutations, in diverse cancers. These results suggested that the abnormal expressions of NEIL1, NEIL2, and NEIL3 are involved in cancer through their association with the somatic mutation load.
C-Type Lectin Receptor Dectin-2 Binds to an Endogenous Protein β-Glucuronidase on Dendritic Cells
Mori, Daiki; Shibata, Kensuke; Yamasaki, Sho
2017-01-01
C-type lectin receptors (CLRs) recognize pathogen-derived ligands and abnormal self that trigger protective immune responses. However, the precise nature of self ligands recognized by CLRs remains to be determined. Here, we found that Dectin-2 recognizes bone marrow-derived dendritic cells (BMDCs) using Dectin-2-expressing reporter cells. This activity was inhibited by an excessive amount of mannose, and by the mutation of mannose-binding motif in Dectin-2. β-glucuronidase (Gusb) was identified as a protein bound to Dectin-2 and mutations of N-glycosylation sites in Gusb impaired the binding of Gusb to Dectin-2. Overexpression of Gusb in a macrophage cell line conferred an ability to stimulate Dectin-2-expressing reporter cells. Our study suggests that a glycosylated protein with mannose-related structure is recognized by Dectin-2. PMID:28046067
C-Type Lectin Receptor Dectin-2 Binds to an Endogenous Protein β-Glucuronidase on Dendritic Cells.
Mori, Daiki; Shibata, Kensuke; Yamasaki, Sho
2017-01-01
C-type lectin receptors (CLRs) recognize pathogen-derived ligands and abnormal self that trigger protective immune responses. However, the precise nature of self ligands recognized by CLRs remains to be determined. Here, we found that Dectin-2 recognizes bone marrow-derived dendritic cells (BMDCs) using Dectin-2-expressing reporter cells. This activity was inhibited by an excessive amount of mannose, and by the mutation of mannose-binding motif in Dectin-2. β-glucuronidase (Gusb) was identified as a protein bound to Dectin-2 and mutations of N-glycosylation sites in Gusb impaired the binding of Gusb to Dectin-2. Overexpression of Gusb in a macrophage cell line conferred an ability to stimulate Dectin-2-expressing reporter cells. Our study suggests that a glycosylated protein with mannose-related structure is recognized by Dectin-2.
McLennan, Andrew; Palma-Dias, Ricardo; da Silva Costa, Fabricio; Meagher, Simon; Nisbet, Debbie L; Scott, Fergus
2016-02-01
There are limited data regarding noninvasive prenatal testing (NIPT) in low-risk populations, and the ideal aneuploidy screening model for a pregnant population has yet to be established. To assess the implementation of NIPT into clinical practice utilising both first- and second-line screening models. Three private practices specialising in obstetric ultrasound and prenatal diagnosis in Australia offered NIPT as a first-line test, ideally followed by combined first-trimester screening (cFTS), or as a second-line test following cFTS, particularly in those with a calculated risk between 1:50 and 1:1000. NIPT screening was performed in 5267 women and as a first-line screening method in 3359 (63.8%). Trisomies 21 and 13 detection was 100% and 88% for trisomy 18. Of cases with known karyotypes, the positive predictive value (PPV) of the test was highest for trisomy 21 (97.7%) and lowest for monosomy X (25%). Ultrasound detection of fetal structural abnormality resulted in the detection of five additional chromosome abnormalities, two of which had high-risk cFTS results. For all chromosomal abnormalities, NIPT alone detected 93.4%, a contingent model detected 81.8% (P = 0.097), and cFTS alone detected 65.9% (P < 0.005). NIPT achieved 100% T21 detection and had a higher DR of all aneuploidy when used as a first-line test. Given the false-positive rate for all aneuploidies, NIPT is an advanced screening test, rather than a diagnostic test. The benefit of additional cFTS was the detection of fetal structural abnormalities and some unusual chromosomal abnormalities. © 2016 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.
Ooi, Jolene; Hayden, Michael R; Pouladi, Mahmoud A
2015-12-01
Monoamine oxidases (MAO) are important components of the homeostatic machinery that maintains the levels of monoamine neurotransmitters, including dopamine, in balance. Given the imbalance in dopamine levels observed in Huntington disease (HD), the aim of this study was to examine MAO activity in a mouse striatal cell model of HD and in human neural cells differentiated from control and HD patient-derived induced pluripotent stem cell (hiPSC) lines. We show that mouse striatal neural cells expressing mutant huntingtin (HTT) exhibit increased MAO expression and activity. We demonstrate using luciferase promoter assays that the increased MAO expression reflects enhanced epigenetic activation in striatal neural cells expressing mutant HTT. Using cellular stress paradigms, we further demonstrate that the increase in MAO activity in mutant striatal neural cells is accompanied by enhanced susceptibility to oxidative stress and impaired viability. Treatment of mutant striatal neural cells with MAO inhibitors ameliorated oxidative stress and improved cellular viability. Finally, we demonstrate that human HD neural cells exhibit increased MAO-A and MAO-B expression and activity. Altogether, this study demonstrates abnormal MAO expression and activity and suggests a potential use for MAO inhibitors in HD.
Zernov, Nikolay V; Skoblov, Mikhail Y; Marakhonov, Andrey V; Shimomura, Yutaka; Vasilyeva, Tatyana A; Konovalov, Fedor A; Abrukova, Anna V; Zinchenko, Rena A
2016-06-01
Hypotrichosis is an abnormal condition characterized by decreased hair density and various defects in hair structure and growth patterns. In particular, in woolly hair, hypotrichosis is characterized by a tightly curled structure and abnormal growth. In this study, we present a detailed comparative examination of individuals affected by autosomal-recessive hypotrichosis (ARH), which distinguishes two types of ARH. Earlier, we demonstrated that exon 4 deletion in the lipase H gene caused an ARH (hypotrichosis 7; MIM: 604379) in populations of the Volga-Ural region of Russia. Screening for this mutation in all affected individuals revealed its presence only in the group with the hypotrichosis 7 phenotype. Other patients formed a separate group of woolly hair-associated ARH, with a homozygous missense mutation c.712G>T (p.Val238Leu) in a highly conserved position of type I keratin KRT25 (K25). Haplotype analysis indicated a founder effect. An expression study in the HaCaT cell line demonstrated a deleterious effect of the p.Val238Leu mutation on the formation of keratin intermediate filaments. Hence, we have identified a previously unreported missense mutation in the KRT25 gene causing ARH with woolly hair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines
Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang
2013-01-01
Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213
Chen, Chun-Fa; Dou, Xiao-Wei; Liang, Yuan-Ke; Lin, Hao-Yu; Bai, Jing-Wen; Zhang, Xi-Xun; Wei, Xiao-Long; Li, Yao-Chen; Zhang, Guo-Jun
2016-01-01
Uncontrolled cell proliferation, genomic instability and cancer are closely related to the abnormal activation of the cell cycle. Therefore, blocking the cell cycle of cancer cells has become one of the key goals for treating malignancies. Unfortunately, the factors affecting cell cycle progression remain largely unknown. In this study, we have explored the effects of Notch3 on the cell cycle in breast cancer cell lines by 3 methods: overexpressing the intra-cellular domain of Notch3 (N3ICD), knocking-down Notch3 by RNA interference, and using X-ray radiation exposure. The results revealed that overexpression of Notch3 arrested the cell cycle at the G0/G1 phase, and inhibited the proliferation and colony-formation rate in the breast cancer cell line, MDA-MB-231. Furthermore, overexpressing N3ICD upregulated Cdh1 expression and resulted in p27(Kip) accumulation by accelerating Skp2 degradation. Conversely, silencing of Notch3 in the breast cancer cell line, MCF-7, caused a decrease in expression levels of Cdh1 and p27(Kip) at both the protein and mRNA levels, while the expression of Skp2 only increased at the protein level. Correspondingly, there was an increase in the percentage of cells in the G0/G1 phase and an elevated proliferative ability and colony-formation rate, which may be caused by alterations of the Cdh1/Skp2/p27 axis. These results were also supported by exposing MDA-MB-231 cells or MCF-7 treated with siN3 to X-irradiation at various doses. Overall, our data showed that overexpression of N3ICD upregulated the expression of Cdh1 and caused p27(Kip) accumulation by accelerating Skp2 degradation, which in turn led to cell cycle arrest at the G0/G1 phase, in the context of proliferating breast cancer cell lines. These findings help to illuminate the precision therapy targeted to cell cycle progression, required for cancer treatment.
Williams, Lisa K; Csaki, Lauren S; Cantor, Rita M; Reue, Karen; Lawson, Greg W
2012-01-01
Ulcerative dermatitis (UD) is a common syndrome of unknown etiology that results in profound morbidity in C57BL/6 mice and lines on a C57BL/6 background. The lesions are due to severe pruritus-induced self-trauma, progressing from superficial excoriations to deep ulcerations. UD may be behavioral in origin, with ulcerative lesions resulting from self-mutilating behavior in response to unresolved inflammation or compulsion. Alternatively, abnormal oxidative damage may be a mechanism underlying UD. To evaluate whether UD behaves similarly to normal wounds, consistent with a secondary self-inflicted lesion, or is a distinct disorder with abnormal wound response, we evaluated expression levels of genes representing various arms of the oxidative stress response pathway UD-affected and unwounded C57BL/6J mice. No evidence indicated that UD wounds have a defect in the oxidative stress response. Our findings are consistent with an understanding of C57BL/6 UD lesions as typical rather than atypical wounds. PMID:22776048
Measurement of plasma homovanillic acid concentrations in schizophrenic patients.
Kaminski, R; Powchick, P; Warne, P A; Goldstein, M; McQueeney, R T; Davidson, M
1990-01-01
1. Several lines of evidence suggest that abnormalities of central dopaminergic transmission may be involved in the expression of some schizophrenic symptoms. However, elucidation of the role of dopamine (DA) in schizophrenia has eluded investigative efforts partially because no accurate and easily repeatable measure of brain DA activity exists. 2. The development of a technique to measure homovanillic acid in plasma has offered the possibility of performing serial measurements of this major DA metabolite. 3. Assuming that plasma homovanillic acid (PHVA) concentrations is an index of brain DA activity, measurement of PHVA can play a role in elucidating the DA abnormality in schizophrenia. 4. Results to date suggest that plasma homovanillic acid concentrations are lower in chronic schizophrenic patients compared to normal controls, and that PHVA values correlate with schizophrenic symptom severity. 5. In addition, PHVA levels were shown to initially rise and subsequently decline during chronic neuroleptic administration in treatment responsive but not in treatment refractory schizophrenic patients.
Altered Cerebellar Organization and Function in Monoamine Oxidase A Hypomorphic Mice
Alzghoul, Loai; Bortolato, Marco; Delis, Foteini; Thanos, Panayotis K.; Darling, Ryan D.; Godar, Sean C; Zhang, Junlin; Grant, Samuel; Wang, Gene-Jack; Simpson, Kimberly L.; Chen, Kevin; Volkow, Nora D.; Lin, Rick C.S.; Shih, Jean C.
2012-01-01
Monoamine oxidase A (MAO-A) is the key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA). We recently generated and characterized a novel line of MAO-A hypormorphic mice (MAO-ANeo), featuring elevated monoamine levels, social deficits and perseverative behaviors as well as morphological changes in the basolateral amygdala and orbitofrontal cortex. Here we showed that MAO-ANeo mice displayed deficits in motor control, manifested as subtle disturbances in gait, motor coordination, and balance. Furthermore, magnetic resonance imaging of the cerebellum revealed morphological changes and a moderate reduction in the cerebellar size of MAO- ANeo mice compared to wild type (WT) mice. Histological and immunohistochemical analyses using calbindin-D-28k (CB) expression of Purkinje cells revealed abnormal cerebellar foliation with vermal hypoplasia and decreased in Purkinje cell count and their dendritic density in MAO- ANeo mice compared to WT. Our current findings suggest that congenitally low MAO-A activity leads to abnormal development of the cerebellum. PMID:22971542
Oravecz-Wilson, Katherine I; Kiel, Mark J; Li, Lina; Rao, Dinesh S; Saint-Dic, Djenann; Kumar, Priti D; Provot, Melissa M; Hankenson, Kurt D; Reddy, Venkat N; Lieberman, Andrew P; Morrison, Sean J; Ross, Theodora S
2004-04-15
Huntingtin Interacting Protein 1 (HIP1) binds clathrin and AP2, is overexpressed in multiple human tumors, and transforms fibroblasts. The function of HIP1 is unknown although it is thought to play a fundamental role in clathrin trafficking. Gene-targeted Hip1-/- mice develop premature testicular degeneration and severe spinal deformities. Yet, although HIP1 is expressed in many tissues including the spleen and bone marrow and was part of a leukemogenic translocation, its role in hematopoiesis has not been examined. In this study we report that three different mutations of murine Hip1 lead to hematopoietic abnormalities reflected by diminished early progenitor frequencies and resistance to 5-FU-induced bone marrow toxicity. Two of the Hip1 mutant lines also display the previously described spinal defects. These observations indicate that, in addition to being required for the survival/proliferation of cancer cells and germline progenitors, HIP1 is also required for the survival/proliferation of diverse types of somatic cells, including hematopoietic progenitors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasoreck, Elise K.; Su, Jin; Silverman, Ian M.
The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were similar to 4300-fold higher in C and CN lines than in N, but all accumulated similar to 150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level ofmore » transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. In conclusion, the mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.« less
Pasoreck, Elise K.; Su, Jin; Silverman, Ian M.; ...
2016-03-08
The impact of metabolic engineering on nontarget pathways and outcomes of metabolic engineering from different genomes are poorly understood questions. Therefore, squalene biosynthesis genes FARNESYL DIPHOSPHATE SYNTHASE (FPS) and SQUALENE SYNTHASE (SQS) were engineered via the Nicotiana tabacum chloroplast (C), nuclear (N) or both (CN) genomes to promote squalene biosynthesis. SQS levels were similar to 4300-fold higher in C and CN lines than in N, but all accumulated similar to 150-fold higher squalene due to substrate or storage limitations. Abnormal leaf and flower phenotypes, including lower pollen production and reduced fertility, were observed regardless of the compartment or level ofmore » transgene expression. Substantial changes in metabolomes of all lines were observed: levels of 65-120 unrelated metabolites, including the toxic alkaloid nicotine, changed by as much as 32-fold. Profound effects of transgenesis on nontarget gene expression included changes in the abundance of 19 076 transcripts by up to 2000-fold in CN; 7784 transcripts by up to 1400-fold in N; and 5224 transcripts by as much as 2200-fold in C. Transporter-related transcripts were induced, and cell cycle-associated transcripts were disproportionally repressed in all three lines. Transcriptome changes were validated by qRT-PCR. In conclusion, the mechanism underlying these large changes likely involves metabolite-mediated anterograde and/or retrograde signalling irrespective of the level of transgene expression or end product, due to imbalance of metabolic pools, offering new insight into both anticipated and unanticipated consequences of metabolic engineering.« less
Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia
Arrant, Andrew E.; Filiano, Anthony J.; Unger, Daniel E.; Young, Allen H.
2017-01-01
Loss-of-function mutations in progranulin (GRN), a secreted glycoprotein expressed by neurons and microglia, are a common autosomal dominant cause of frontotemporal dementia, a neurodegenerative disease commonly characterized by disrupted social and emotional behaviour. GRN mutations are thought to cause frontotemporal dementia through progranulin haploinsufficiency, therefore, boosting progranulin expression from the intact allele is a rational treatment strategy. However, this approach has not been tested in an animal model of frontotemporal dementia and it is unclear if boosting progranulin could correct pre-existing deficits. Here, we show that adeno-associated virus-driven expression of progranulin in the medial prefrontal cortex reverses social dominance deficits in Grn+/– mice, an animal model of frontotemporal dementia due to GRN mutations. Adeno-associated virus-progranulin also corrected lysosomal abnormalities in Grn+/– mice. The adeno-associated virus-progranulin vector only transduced neurons, suggesting that restoring neuronal progranulin is sufficient to correct deficits in Grn+/– mice. To further test the role of neuronal progranulin in the development of frontotemporal dementia-related deficits, we generated two neuronal progranulin-deficient mouse lines using CaMKII-Cre and Nestin-Cre. Measuring progranulin levels in these lines indicated that most brain progranulin is derived from neurons. Both neuronal progranulin-deficient lines developed social dominance deficits similar to those in global Grn+/– mice, showing that neuronal progranulin deficiency is sufficient to disrupt social behaviour. These data support the concept of progranulin-boosting therapies for frontotemporal dementia and highlight an important role for neuron-derived progranulin in maintaining normal social function. PMID:28379303
Fingerprint changes and verification failure among patients with hand dermatitis.
Lee, Chew Kek; Chang, Choong Chor; Johar, Asmah; Puwira, Othman; Roshidah, Baba
2013-03-01
To determine the prevalence of fingerprint verification failure and to define and quantify the fingerprint changes associated with fingerprint verification failure. Case-control study. Referral public dermatology center. The study included 100 consecutive patients with clinical hand dermatitis involving the palmar distal phalanx of either thumb and 100 age-, sex-, and ethnicity-matched controls. Patients with an altered thumb print due to other causes and palmar hyperhidrosis were excluded. Fingerprint verification(pass/fail) and hand eczema severity index score. Twenty-seven percent of patients failed fingerprint verification compared with 2% of controls. Fingerprint verification failure was associated with a higher hand eczema severity index score (P.001). The main fingerprint abnormalities were fingerprint dystrophy (42.0%) and abnormal white lines (79.5%). The number of abnormal white lines was significantly higher among the patients with hand dermatitis compared with controls(P=.001). Among the patients with hand dermatitis, theodds of failing fingerprint verification with fingerprint dystrophy was 4.01. The presence of broad lines and long lines was associated with a greater odds of fingerprint verification failure (odds ratio [OR], 8.04; 95% CI, 3.56-18.17 and OR, 2.37; 95% CI, 1.31-4.27, respectively),while the presence of thin lines was protective of verification failure (OR, 0.45; 95% CI, 0.23-0.89). Fingerprint verification failure is a significant problem among patients with more severe hand dermatitis. It is mainly due to fingerprint dystrophy and abnormal white lines. Malaysian National Medical Research Register Identifier: NMRR-11-30-8226
Association of abnormal morphology and altered gene expression in human preimplantation embryos.
Wells, Dagan; Bermúdez, Mercedes G; Steuerwald, Nury; Malter, Henry E; Thornhill, Alan R; Cohen, Jacques
2005-08-01
We set out to characterize the expression of nine genes in human preimplantation embryos and determine whether abnormal morphology is associated with altered gene activity. Reverse transcription and real-time polymerase chain reaction were used to quantify the expression of multiple genes in each embryo. The genes studied have various important cellular roles (e.g., cell cycle regulation, DNA repair, and apoptosis). Research laboratory working closely with a clinical IVF practice. Over 50 embryos were donated by infertile patients (various etiologies). Among these, all major stages of preimplantation development and a variety of common morphologic abnormalities were represented. None. Quantification of mRNA transcripts. We detected an association between certain forms of abnormal morphology and disturbances of gene activity. Cellular fragmentation was associated with altered expression of several genes, including TP53, suggesting that fragmenting blastomeres are suffering stress of a type monitored by p53, possibly as a consequence of suboptimal culture conditions. Appropriate gene expression is vital for the regulation of metabolic pathways and key developmental events. Our data indicates a possible causal relationship between changes in gene expression and the formation of clinically relevant abnormal embryo morphologies. We hypothesize that embryos with expression profiles characteristic of good morphology and appropriate for their developmental stage have the greatest potential for implantation. If confirmed, this could lead to a new generation of preimplantation genetic diagnosis (PGD) tests for assessing embryo viability and predicting implantation potential.
Paquet, Sophie; Daude, Nathalie; Courageot, Marie-Pierre; Chapuis, Jérôme; Laude, Hubert; Vilette, Didier
2007-01-01
We have studied the interactions of exogenous prions with an epithelial cell line inducibly expressing PrPc protein and permissive to infection by a sheep scrapie agent. We demonstrate that abnormal PrP (PrPSc) and prion infectivity are efficiently internalized in Rov cells, whether or not PrPc is expressed. At odds with earlier studies implicating cellular heparan sulfates in PrPSc internalization, we failed to find any involvement of such molecules in Rov cells, indicating that prions can enter target cells by several routes. We further show that PrPSc taken up in the absence of PrPc was unable to promote efficient prion multiplication once PrPc expression was restored in the cells. This observation argues that interaction of PrPSc with PrPc has to occur early, in a specific subcellular compartment(s), and is consistent with the view that the first prion multiplication events may occur at the cell surface. PMID:17626095
Kolostova, Katarina; Zhang, Yong; Hoffman, Robert M; Bobek, Vladimir
2014-09-01
In the present study, we demonstrate an animal model and recently introduced size-based exclusion method for circulating tumor cells (CTCs) isolation. The methodology enables subsequent in vitro CTC-culture and characterization. Human lung cancer cell line H460, expressing red fluorescent protein (H460-RFP), was orthotopically implanted in nude mice. CTCs were isolated by a size-based filtration method and successfully cultured in vitro on the separating membrane (MetaCell®), analyzed by means of time-lapse imaging. The cultured CTCs were heterogeneous in size and morphology even though they originated from a single tumor. The outer CTC-membranes were blebbing in general. Abnormal mitosis resulting in three daughter cells was frequently observed. The expression of RFP ensured that the CTCs originated from lung tumor. These readily isolatable, identifiable and cultivable CTCs can be used to characterize individual patient cancers and for screening of more effective treatment.
Peltier, Claire; Schmidlin, Laure; Klein, Elodie; Taconnat, Ludivine; Prinsen, Els; Erhardt, Mathieu; Heintz, Dimitri; Weyens, Guy; Lefebvre, Marc; Renou, Jean-Pierre; Gilmer, David
2011-06-01
The RNA-3-encoded p25 protein was previously characterized as one of the major symptom determinants of the Beet necrotic yellow vein virus. Previous analyses reported the influence of the p25 protein in root proliferation phenotype observed in rhizomania disease on infected sugar beets (Beta vulgaris). A transgenic approach was developed, in which the p25 protein was constitutively expressed in Arabidopsis thaliana Columbia (Col-0) ecotype in order to provide new clues as to how the p25 protein might promote alone disease development and symptom expression. Transgenic plants were characterized by Southern blot and independent lines carrying single and multiple copies of the transgene were selected. Mapping of the T-DNA insertion was performed on the monocopy homozygote lines. P25 protein was localized both in the nucleus and in the cytoplasm of epidermal and root cells of transgenic plants. Although A. thaliana was not described as a susceptible host for BNYVV infection, abnormal root branching was observed on p25 protein-expressing A. thaliana plants. Moreover, these transgenic plants were more susceptible than wild-type plants to auxin analog treatment (2,4-D) but more resistant to methyl jasmonate (MeJA), abscisic acid (ABA) and to lesser extend to salicylic acid (SA). Hormonal content assays measuring plant levels of auxin (IAA), jasmonate (JA) and ethylene precursor (ACC) revealed major hormonal changes. Global transcript profiling analyses on roots displayed differential gene expressions that could corroborate root branching phenotype and stress signaling modifications.
Characterization of a candidate bcl-1 gene.
Withers, D A; Harvey, R C; Faust, J B; Melnyk, O; Carey, K; Meeker, T C
1991-01-01
The t(11;14)(q13;q32) translocation has been associated with human B-lymphocytic malignancy. Several examples of this translocation have been cloned, documenting that this abnormality joins the immunoglobulin heavy-chain gene to the bcl-1 locus on chromosome 11. However, the identification of the bcl-1 gene, a putative dominant oncogene, has been elusive. In this work, we have isolated genomic clones covering 120 kb of the bcl-1 locus. Probes from the region of an HpaII-tiny-fragment island identified a candidate bcl-1 gene. cDNAs representing the bcl-1 mRNA were cloned from three cell lines, two with the translocation. The deduced amino acid sequence from these clones showed bcl-1 to be a member of the cyclin gene family. In addition, our analysis of expression of bcl-1 in an extensive panel of human cell lines showed it to be widely expressed except in lymphoid or myeloid lineages. This observation may provide a molecular basis for distinct modes of cell cycle control in different mammalian tissues. Activation of the bcl-1 gene may be oncogenic by directly altering progression through the cell cycle. Images PMID:1833629
Code of Federal Regulations, 2014 CFR
2014-01-01
... accordance with subpart C of this part. Line-Operational Simulation means simulation conducted using... operations. Line operational simulation simulations are conducted for training and evaluation purposes and include random, abnormal, and emergency occurrences. Line operational simulation specifically includes...
Gurak, Kayla; Weisman de Mamani, Amy
2017-06-01
Expressed emotion (EE) is a family environmental construct that assesses how much criticism, hostility, and/or emotional over-involvement a family member expresses about a patient (Hooley, Annual Review of Clinical Psychology, 2007, 3, 329). Having high levels of EE within the family environment has generally been associated with poorer patient outcomes for schizophrenia and a range of other disorders. Paradoxically, for African-American patients, high-EE may be associated with a better symptom course (Rosenfarb, Bellack, & Aziz, Journal of Abnormal Psychology, 2006, 115, 112). However, this finding is in need of additional support and, if confirmed, clarification. In line with previous research, using a sample of 30 patients with schizophrenia and their primary caregivers, we hypothesized that having a caregiver classified as low-EE would be associated with greater patient symptom severity. We also aimed to better understand why this pattern may exist by examining the content of interviews taken from the Five-Minute Speech Sample. Results supported study hypotheses. In line with Rosenfarb et al. (2006), having a low-EE caregiver was associated with greater symptom severity in African-American patients. A content analysis uncovered some interesting patterns that may help elucidate this finding. Results of this study suggest that attempts to lower high-EE in African Americans may, in fact, be counterproductive. © 2015 Family Process Institute.
Discovery of ATL: an odyssey in restrospect.
Yodoi, Junji; Maeda, Michiyuki
2011-11-01
Forty years have passed since our initial description of peculiar cases of adult-onset leukemia with abnormal cells having multi-convoluted nuclei and T cell properties, frequent in the southern regions of Japan in the early 1970s. Retrospectively, the study of adult T cell leukemia (ATL) and the related virus HTLV-I was a forerunner for all of human retrovirology, in which AIDS and the related retrovirus HIV were identified a few years later in the 1980s. Using the anti-TAC monoclonal antibody generated by the late Takashi Uchiyama during his stay in T. A. Waldmann's laboratory in NIH Bethesda, a cDNA encoding IL-2Rα chain was cloned by our group in Kyoto and by Waldmann's group in Bethesda. Abnormal IL-2Rα chain expression and the IL-2 dependency of ATL cell lines greatly contributed to the study of leukemogenesis of ATL. A new soluble factor named ADF/ATL-derived factor was also detected in ATL cell lines. After years of study, ADF proved to be a first human counterpart of thiol-related oxido-reductase thioredoxin/TRX, which opened the field of redox regulation of cell signaling involved in a variety of diseases. Close interaction among Drs. Kimishige Ishizaka, Kiyoshi Takastuki and T. A. Waldmanns before ATL and HTLV-I study was an essential base for our initiation of ATL research with Takashi Uchiyama and many other colleagues.
Code of Federal Regulations, 2013 CFR
2013-01-01
... instruction in accordance with subpart C of this part. Line-Operational Simulation means simulation conducted..., and ground operations. Line operational simulation simulations are conducted for training and evaluation purposes and include random, abnormal, and emergency occurrences. Line operational simulation...
Code of Federal Regulations, 2012 CFR
2012-01-01
... instruction in accordance with subpart C of this part. Line-Operational Simulation means simulation conducted..., and ground operations. Line operational simulation simulations are conducted for training and evaluation purposes and include random, abnormal, and emergency occurrences. Line operational simulation...
Code of Federal Regulations, 2011 CFR
2011-01-01
... instruction in accordance with subpart C of this part. Line-Operational Simulation means simulation conducted..., and ground operations. Line operational simulation simulations are conducted for training and evaluation purposes and include random, abnormal, and emergency occurrences. Line operational simulation...
Understanding the epigenetics of neurodevelopmental disorders and DOHaD.
Kubota, T; Miyake, K; Hariya, N; Mochizuki, K
2015-04-01
The Developmental Origins of Health and Disease (DOHaD) hypothesis refers to the concept that 'malnutrition during the fetal period induces a nature of thrift in fetuses, such that they have a higher change of developing non-communicable diseases, such as obesity and diabetes, if they grow up in the current well-fed society.' Epigenetics is a chemical change in DNA and histones that affects how genes are expressed without alterations of DNA sequences. Several lines of evidence suggest that malnutrition during the fetal period alters the epigenetic expression status of metabolic genes in the fetus and that this altered expression can persist, and possibly lead to metabolic disorders. Similarly, mental stress during the neonatal period can alter the epigenetic expression status of neuronal genes in neonates. Moreover, such environmental, stress-induced, epigenetic changes are transmitted to the next generation via an acquired epigenetic status in sperm. The advantage of epigenetic modifications over changes in genetic sequences is their potential reversibility; thus, epigenetic alterations are potentially reversed with gene expression. Therefore, we potentially establish 'preemptive medicine,' that, in combination with early detection of abnormal epigenetic status and early administration of epigenetic-restoring drugs may prevent the development of disorders associated with the DOHaD.
Altered sperm chromatin structure in mice exposed to sodium fluoride through drinking water.
Sun, Zilong; Niu, Ruiyan; Wang, Bin; Wang, Jundong
2014-06-01
This study investigated the effects of sodium fluoride (NaF) on sperm abnormality, sperm chromatin structure, protamine 1 and protamine 2 (P1 and P2) mRNA expression, and histones expression in sperm in male mice. NaF was orally administrated to male mice at 30, 70, and 150 mg/l for 49 days (more than one spermatogenic cycle). Sperm head and tail abnormalities were significantly enhanced at middle and high doses. Similarly, sperm chromatin structure was also adversely affected by NaF exposure, indicating DNA integrity damage. Furthermore, middle and high NaF significantly reduced the mRNA expressions of P1 and P2, and P1/P2 ratio, whereas the sperm histones level was increased, suggesting the abnormal histone-protamine replacement. Therefore, we concluded that the mechanism by which F induced mice sperm abnormality and DNA integrity damage may involved in the alterations in P1, P2, and histones expression in sperm of mice. Copyright © 2012 Wiley Periodicals, Inc.
Hulver, Matthew W.; Berggren, Jason R.; Carper, Michael J.; Miyazaki, Makoto; Ntambi, James M.; Hoffman, Eric P.; Thyfault, John P.; Stevens, Robert; Dohm, G. Lynis; Houmard, Joseph A.; Muoio, Deborah M.
2014-01-01
Summary Obesity and type 2 diabetes are strongly associated with abnormal lipid metabolism and accumulation of intramyocellular triacylglycerol, but the underlying cause of these perturbations are yet unknown. Herein, we show that the lipogenic gene, stearoyl-CoA desaturase 1 (SCD1), is robustly up-regulated in skeletal muscle from extremely obese humans. High expression and activity of SCD1, an enzyme that catalyzes the synthesis of monounsaturated fatty acids, corresponded with low rates of fatty acid oxidation, increased triacylglycerol synthesis and increased monounsaturation of muscle lipids. Elevated SCD1 expression and abnormal lipid partitioning were retained in primary skeletal myocytes derived from obese compared to lean donors, implying that these traits might be driven by epigenetic and/or heritable mechanisms. Overexpression of human SCD1 in myotubes from lean subjects was sufficient to mimic the obese phenotype. These results suggest that elevated expression of SCD1 in skeletal muscle contributes to abnormal lipid metabolism and progression of obesity. PMID:16213227
Hulver, Matthew W; Berggren, Jason R; Carper, Michael J; Miyazaki, Makoto; Ntambi, James M; Hoffman, Eric P; Thyfault, John P; Stevens, Robert; Dohm, G Lynis; Houmard, Joseph A; Muoio, Deborah M
2005-10-01
Obesity and type 2 diabetes are strongly associated with abnormal lipid metabolism and accumulation of intramyocellular triacylglycerol, but the underlying cause of these perturbations are yet unknown. Herein, we show that the lipogenic gene, stearoyl-CoA desaturase 1 (SCD1), is robustly up-regulated in skeletal muscle from extremely obese humans. High expression and activity of SCD1, an enzyme that catalyzes the synthesis of monounsaturated fatty acids, corresponded with low rates of fatty acid oxidation, increased triacylglycerol synthesis and increased monounsaturation of muscle lipids. Elevated SCD1 expression and abnormal lipid partitioning were retained in primary skeletal myocytes derived from obese compared to lean donors, implying that these traits might be driven by epigenetic and/or heritable mechanisms. Overexpression of human SCD1 in myotubes from lean subjects was sufficient to mimic the obese phenotype. These results suggest that elevated expression of SCD1 in skeletal muscle contributes to abnormal lipid metabolism and progression of obesity.
NASA Astrophysics Data System (ADS)
Sugita, Kazunari; Ikenouchi-Sugita, Atsuko; Nakayama, Yasuko; Yoshioka, Haruna; Nomura, Takashi; Sakabe, Jun-Ichi; Nakahigashi, Kyoko; Kuroda, Etsushi; Uematsu, Satoshi; Nakamura, Jun; Akira, Shizuo; Nakamura, Motonobu; Narumiya, Shuh; Miyachi, Yoshiki; Tokura, Yoshiki; Kabashima, Kenji
2013-10-01
Pellagra is a photosensitivity syndrome characterized by three ``D's'': diarrhea, dermatitis, and dementia as a result of niacin deficiency. However, the molecular mechanisms of photosensitivity dermatitis, the hallmark abnormality of this syndrome, remain unclear. We prepared niacin deficient mice in order to develop a murine model of pellagra. Niacin deficiency induced photosensitivity and severe diarrhea with weight loss. In addition, niacin deficient mice exhibited elevated expressions of COX-2 and PGE syntheses (Ptges) mRNA. Consistently, photosensitivity was alleviated by a COX inhibitor, deficiency of Ptges, or blockade of EP4 receptor signaling. Moreover, enhanced PGE2 production in niacin deficiency was mediated via ROS production in keratinocytes. In line with the above murine findings, human skin lesions of pellagra patients confirmed the enhanced expression of Ptges. Niacin deficiency-induced photosensitivity was mediated through EP4 signaling in response to increased PGE2 production via induction of ROS formation.
Prediction of epigenetically regulated genes in breast cancer cell lines.
Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria E H; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram
2010-06-04
Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profiles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profiles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fixed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically significant negative correlation between methylation profiles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identified 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators.
Granovsky, Yelena; Shor, Merav; Shifrin, Alla; Sprecher, Elliot; Yarnitsky, David; Bar-Shalita, Tami
2018-03-27
Migraineurs with aura (MWA) express higher interictal response to non-noxious and noxious experimental sensory stimuli compared with migraineurs without aura (MWoA), but whether these differences also prevail in response to everyday non-noxious stimuli is not yet explored. This is a cross-sectional study testing 53 female migraineurs (30 MWA; 23 MWoA) who underwent a wide battery of noxious psychophysical testing at a pain-free phase, and completed a Sensory Responsiveness Questionnaire and pain-related psychological questionnaires. The MWA group showed higher questionnaire-based sensory over-responsiveness (P = .030), higher magnitude of pain temporal summation (P = .031) as well as higher monthly attack frequency (P = .027) compared with the MWoA group. Overall, 45% of migraineurs described abnormal sensory (hyper- or hypo-) responsiveness; its incidence was higher among MWA (19 of 30, 63%) versus MWoA (6 of 23, 27%, P = .012), with an odds ratio of 3.58 for MWA. Sensory responsiveness scores were positively correlated with attack frequency (r = .361, P = .008) and temporal summation magnitude (r = .390, P = .004), both regardless of migraine type. MWA express higher everyday sensory responsiveness than MWoA, in line with higher response to experimental noxious stimuli. Abnormal scores of sensory responsiveness characterize people with sensory modulation dysfunction, suggesting possible underlying mechanisms overlap, and possibly high incidence of both clinical entities. This article presents findings distinguishing MWA, showing enhanced pain amplification, monthly attack frequency, and over-responsiveness to everyday sensations, compared with MWoA. Further, migraine is characterized by a high incidence of abnormal responsiveness to everyday sensation, specifically sensory over-responsiveness, that was also found related to pain. Copyright © 2018 The American Pain Society. Published by Elsevier Inc. All rights reserved.
Building a bridge between neurobiology and mental illness.
Costa, E
1992-10-01
GABA (gamma amino butyric acid) is the most abundant and important inhibitory transmitter in mammalian CNS. It counterbalances the glutamate mediated neuronal excitation. Abnormalities of the interaction of these two transmitters might change the mechanisms of neuronal group selection that according to Edelman [Neural Darwinism. Basic Books, New York] play a role in mediating several brain functions including cognition processes. Indeed imbalances in GABAergic functions were shown to elicit psychoses. They can be obtained by administration of drugs that affect synthesis, metabolism and uptake of GABA and thereby cause a persistent stimulation of GABAA receptors or perhaps by genetic abnormalities in DNA transcription, pre-mRNA splicing, mRNA translation and posttranslation modifications of GABAA receptor subunits. The complexities in the regulation of GABAA receptor subunit structure, synthesis, assembly and the brain location of specific mRNA encoding for these subunits are investigated with in situ mRNA hybridization specific for subunits of GABAA receptors. The role of the variability resulting from the complexities in the regulation of GABAA receptor allosteric modulation by drugs and putative endogenous allosteric modulators of GABA action at GABAA receptors is discussed. This discussion gives relevance to the possibility that genetic abnormalities in the expression of proteins participating in GABAergic function are to be considered as a possible target of the genetic defects operative in psychoses. In line with this thinking, it is suggested that partial allosteric modulators (partial agonists) of GABAA receptors and the phosphothioate or methylphosphonate analogs antisense to specific mRNA oligonucleotides that mediate the expression of genetic information concerning GABAA and glutamate receptor subunits may become valuable tools in psychiatric research. Perhaps in the future these studies might generate new ideas useful in the therapy of genetically determined psychiatric illness.
Dell'Omo, Roberto; Mura, Marco; Lesnik Oberstein, Sarit Y; Bijl, Heico; Tan, H Stevie
2012-04-01
To describe fundus autofluorescence and optical coherence tomography (OCT) features of the macula after pars plana vitrectomy for rhegmatogenous retinal detachment. Thirty-three eyes of 33 consecutive patients with repaired rhegmatogenous retinal detachment with or without the involvement of the macula were prospectively investigated with simultaneous fundus autofluorescence and OCT imaging using the Spectralis HRA+OCT (Heidelberg Engineering, Heidelberg, Germany) within a few weeks after the operation. Fundus autofluorescence imaging of the macula showed lines of increased and decreased autofluorescence in 19 cases (57.6%). On OCT, these lines corresponded to the following abnormalities: outer retinal folds, inner retinal folds, and skip reflectivity abnormalities of the photoreceptor inner segment/outer segment band. Other OCT findings, not related to abnormal lines on fundus autofluorescence, consisted of disruption of photoreceptor inner segment/outer segment band and collection of intraretinal or subretinal fluid. The presence of outer retinal folds significantly related to metamorphopsia but did not relate to poor postoperative visual acuity. Partial-thickness retinal folds occur commonly after vitrectomy for rhegmatogenous retinal detachment repair and may represent an important anatomical substrate for postoperative metamorphopsia. Fundus autofluorescence and OCT are both sensitive techniques for the detection of these abnormalities.
Khammanivong, Ali; Wang, Chengxing; Sorenson, Brent S.; Ross, Karen F.; Herzberg, Mark C.
2013-01-01
Malignant transformation results in abnormal cell cycle regulation and uncontrolled growth in head and neck squamous cell carcinoma (HNSCC) and other cancers. S100A8/A9 (calprotectin) is a calcium-binding heterodimeric protein complex implicated in cell cycle regulation, but the specific mechanism and role in cell cycle control and carcinoma growth are not well understood. In HNSCC, S100A8/A9 is downregulated at both mRNA and protein levels. We now report that downregulation of S100A8/A9 correlates strongly with a loss of cell cycle control and increased growth of carcinoma cells. To show its role in carcinogenesis in an in vitro model, S100A8/A9 was stably expressed in an S100A8/A9-negative human carcinoma cell line (KB cells, HeLa-like). S100A8/A9 expression increases PP2A phosphatase activity and p-Chk1 (Ser345) phosphorylation, which appears to signal inhibitory phosphorylation of mitotic p-Cdc25C (Ser216) and p-Cdc2 (Thr14/Tyr15) to inactivate the G2/M Cdc2/cyclin B1 complex. Cyclin B1 expression then downregulates and the cell cycle arrests at the G2/M checkpoint, reducing cell division. As expected, S100A8/A9-expressing cells show both decreased anchorage-dependent and -independent growth and mitotic progression. Using shRNA, silencing of S100A8/A9 expression in the TR146 human HNSCC cell line increases growth and survival and reduces Cdc2 inhibitory phosphorylation at Thr14/Tyr15. The level of S100A8/A9 endogenous expression correlates strongly with the reduced p-Cdc2 (Thr14/Tyr14) level in HNSCC cell lines, SCC-58, OSCC-3 and UMSCC-17B. S100A8/A9-mediated control of the G2/M cell cycle checkpoint is, therefore, a likely suppressive mechanism in human squamous cell carcinomas and may suggest new therapeutic approaches. PMID:23874958
Stimers, Joseph R; Song, Li; Rusch, Nancy J; Rhee, Sung W
2015-01-01
Long QT syndrome is characterized by a prolongation of the interval between the Q wave and the T wave on the electrocardiogram. This abnormality reflects a prolongation of the ventricular action potential caused by a number of genetic mutations or a variety of drugs. Since effective treatments are unavailable, we explored the possibility of using cardiac expression of the large-conductance, Ca2+-activated K+ (BK) channel to shorten action potential duration (APD). We hypothesized that expression of the pore-forming α subunit of human BK channels (hBKα) in HL-1 cells would shorten action potential duration in this mouse atrial cell line. Expression of hBKα had minimal effects on expression levels of other ion channels with the exception of a small but significant reduction in Kv11.1. Patch-clamped hBKα expressing HL-1 cells exhibited an outward voltage- and Ca2+-sensitive K+ current, which was inhibited by the BK channel blocker iberiotoxin (100 nM). This BK current phenotype was not detected in untransfected HL-1 cells or in HL-1 null cells sham-transfected with an empty vector. Importantly, APD in hBKα-expressing HL-1 cells averaged 14.3 ± 2.8 ms (n = 10), which represented a 53% reduction in APD compared to HL-1 null cells lacking BKα expression. APD in the latter cells averaged 31.0 ± 5.1 ms (n = 13). The shortened APD in hBKα-expressing cells was restored to normal duration by 100 nM iberiotoxin, suggesting that a repolarizing K+ current attributed to BK channels accounted for action potential shortening. These findings provide initial proof-of-concept that the introduction of hBKα channels into a cardiac cell line can shorten APD, and raise the possibility that gene-based interventions to increase hBKα channels in cardiac cells may hold promise as a therapeutic strategy for long QT syndrome.
Chen, Lin; Zhu, Zhe; Gao, Wei; Jiang, Qixin; Yu, Jiangming; Fu, Chuangang
2017-09-05
Insulin-like growth factor 1 receptor (IGF-1R) is proved to contribute the development of many types of cancers. But, little is known about its roles in radio-resistance of colorectal cancer (CRC). Here, we demonstrated that low IGF-1R expression value was associated with the better radiotherapy sensitivity of CRC. Besides, through Quantitative Real-time PCR (qRT-PCR), the elevated expression value of epidermal growth factor receptor (EGFR) was observed in CRC cell lines (HT29, RKO) with high radio-sensitivity compared with those with low sensitivity (SW480, LOVO). The irradiation induced apoptosis rates of wild type and EGFR agonist (EGF) or IGF-1R inhibitor (NVP-ADW742) treated HT29 and SW480 cells were quantified by flow cytometry. As a result, the apoptosis rate of EGF and NVP-ADW742 treated HT29 cells was significantly higher than that of those wild type ones, which indicated that high EGFR and low IGF-1R expression level in CRC was associated with the high sensitivity to radiotherapy. We next conducted systemic bioinformatics analysis of genome-wide expression profiles of CRC samples from the Cancer Genome Atlas (TCGA). Differential expression analysis between IGF-1R and EGFR abnormal CRC samples, i.e. CRC samples with higher IGF-1R and lower EGFR expression levels based on their median expression values, and the rest of CRC samples identified potential genes contribute to radiotherapy sensitivity. Functional enrichment of analysis of those differential expression genes (DEGs) in the Database for Annotation, Visualization and Integrated Discovery (DAVID) indicated PPAR signaling pathway as an important pathway for the radio-resistance of CRC. Our study identified the potential biomarkers for the rational selection of radiotherapy for CRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.
An immortal cell line to study the role of endogenous CFTR in electrolyte absorption.
Bell, C L; Quinton, P M
1995-01-01
The intact human reabsorptive sweat duct (RD) has been a reliable model for investigations of the functional role of "endogenous" CFTR (cystic fibrosis transmembrane conductance regulator) in normal and abnormal electrolyte absorptive function. But to overcome the limitations imposed by the use of fresh, intact tissue, we transformed cultured RD cells using the chimeric virus Ad5/SV40 1613 ori-. The resultant cell line, RD2(NL), has remained differentiated forming a polarized epithelium that expressed two fundamental components of absorption, a cAMP activated Cl- conductance (GCl) and an amiloride-sensitive Na+ conductance (GNa). In the unstimulated state, there was a low level of transport activity; however, addition of forskolin (10(-5) M) significantly increased the Cl- diffusion potential (Vt) generated by a luminally directed Cl- gradient from -15.3 +/- 0.7 mV to -23.9 +/- 1.1 mV, n = 39; and decreased the transepithelial resistance (Rt) from 814.8 +/- 56.3 omega.cm2 to 750.5 +/- 47.5 omega.cm2, n = 39, (n = number of cultures). cAMP activation, anion selectivity (Cl- > I- > gluconate), and a dependence upon metabolic energy (metabolic poisoning inhibited GCl), all indicate that the GCl expressed in RD2(NL) is in fact CFTR-GCl. The presence of an apical amiloride-sensitive GNa was shown by the amiloride (10(-5) M) inhibition of GNa as indicated by a reduction of Vt and equivalent short circuit current by 78.0 +/- 3.1% and 77.9 +/- 2.6%, respectively, and an increase in Rt by 7.2 +/- 0.8%, n = 36. In conclusion, the RD2(NL) cell line presents the first model system in which CFTR-GCl is expressed in a purely absorptive tissue.(ABSTRACT TRUNCATED AT 250 WORDS)
Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia.
Arrant, Andrew E; Filiano, Anthony J; Unger, Daniel E; Young, Allen H; Roberson, Erik D
2017-05-01
Loss-of-function mutations in progranulin (GRN), a secreted glycoprotein expressed by neurons and microglia, are a common autosomal dominant cause of frontotemporal dementia, a neurodegenerative disease commonly characterized by disrupted social and emotional behaviour. GRN mutations are thought to cause frontotemporal dementia through progranulin haploinsufficiency, therefore, boosting progranulin expression from the intact allele is a rational treatment strategy. However, this approach has not been tested in an animal model of frontotemporal dementia and it is unclear if boosting progranulin could correct pre-existing deficits. Here, we show that adeno-associated virus-driven expression of progranulin in the medial prefrontal cortex reverses social dominance deficits in Grn+/- mice, an animal model of frontotemporal dementia due to GRN mutations. Adeno-associated virus-progranulin also corrected lysosomal abnormalities in Grn+/- mice. The adeno-associated virus-progranulin vector only transduced neurons, suggesting that restoring neuronal progranulin is sufficient to correct deficits in Grn+/- mice. To further test the role of neuronal progranulin in the development of frontotemporal dementia-related deficits, we generated two neuronal progranulin-deficient mouse lines using CaMKII-Cre and Nestin-Cre. Measuring progranulin levels in these lines indicated that most brain progranulin is derived from neurons. Both neuronal progranulin-deficient lines developed social dominance deficits similar to those in global Grn+/- mice, showing that neuronal progranulin deficiency is sufficient to disrupt social behaviour. These data support the concept of progranulin-boosting therapies for frontotemporal dementia and highlight an important role for neuron-derived progranulin in maintaining normal social function. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Anway, Matthew D; Skinner, Michael K
2008-04-01
The ability of an endocrine disruptor exposure during gonadal sex determination to promote a transgenerational prostate disease phenotype was investigated in the current study. Exposure of an F0 gestating female rat to the endocrine disruptor vinclozolin during F1 embryo gonadal sex determination promoted a transgenerational adult onset prostate disease phenotype. The prostate disease phenotype and physiological parameters were determined for males from F1 to F4 generations and the prostate transcriptome was assessed in the F3 generation. Although the prostate in prepubertal animals develops normally, abnormalities involving epithelial cell atrophy, glandular dysgenesis, prostatitis, and hyperplasia of the ventral prostate develop in older animals. The ventral prostate phenotype was transmitted for four generations (F1-F4). Analysis of the ventral prostate transcriptome demonstrated 954 genes had significantly altered expression between control and vinclozolin F3 generation animals. Analysis of isolated ventral prostate epithelial cells identified 259 genes with significantly altered expression between control and vinclozolin F3 generation animals. Characterization of regulated genes demonstrated several cellular pathways were influenced, including calcium and WNT. A number of genes identified have been shown to be associated with prostate disease and cancer, including beta-microseminoprotein (Msp) and tumor necrosis factor receptor superfamily 6 (Fadd). The ability of an endocrine disruptor to promote transgenerational prostate abnormalities appears to involve an epigenetic transgenerational alteration in the prostate transcriptome and male germ-line. Potential epigenetic transgenerational alteration of prostate gene expression by environmental compounds may be important to consider in the etiology of adult onset prostate disease.
Anway, Matthew D.; Skinner, Michael K.
2018-01-01
PURPOSE The ability of an endocrine disruptor exposure during gonadal sex determination to promote a transgenerational prostate disease phenotype was investigated in the current study. METHODS Exposure of an F0 gestating female rat to the endocrine disruptor vinclozolin during F1 embryo gonadal sex determination promoted a transgenerational adult onset prostate disease phenotype. The prostate disease phenotype and physiological parameters were determined for males from F1 to F4 generations and the prostate transcriptome was assessed in the F3 generation. RESULTS Although the prostate in prepubertal animals develops normally, abnormalities involving epithelial cell atrophy, glandular dysgenesis, prostatitis, and hyperplasia of the ventral prostate develop in older animals. The ventral prostate phenotype was transmitted for four generations (F1–F4). Analysis of the ventral prostate transcriptome demonstrated 954 genes had significantly altered expression between control and vinclozolin F3 generation animals. Analysis of isolated ventral prostate epithelial cells identified 259 genes with significantly altered expression between control and vinclozolin F3 generation animals. Characterization of regulated genes demonstrated several cellular pathways were influenced, including calcium and WNT. A number of genes identified have been shown to be associated with prostate disease and cancer, including beta-microseminoprotein (Msp) and tumor necrosis factor receptor superfamily 6 (Fadd). CONCLUSIONS The ability of an endocrine disruptor to promote transgenerational prostate abnormalities appears to involve an epigenetic transgenerational alteration in the prostate transcriptome and male germ-line. Potential epigenetic transgenerational alteration of prostate gene expression by environmental compounds may be important to consider in the etiology of adult onset prostate disease. PMID:18220299
Gene miles-apart is required for formation of otic vesicle and hair cells in zebrafish.
Hu, Z-y; Zhang, Q-y; Qin, W; Tong, J-w; Zhao, Q; Han, Y; Meng, J; Zhang, J-p
2013-10-31
Hearing loss is a serious burden to physical and mental health worldwide. Aberrant development and damage of hearing organs are recognized as the causes of hearing loss, the molecular mechanisms underlining these pathological processes remain elusive. Investigation of new molecular mechanisms involved in proliferation, differentiation, migration and maintenance of neuromast primordium and hair cells will contribute to better understanding of hearing loss pathology. This knowledge will enable the development of protective agents and mechanism study of drug ototoxicity. In this study, we demonstrate that the zebrafish gene miles-apart, a homolog of sphingosine-1-phosphate receptor 2 (s1pr2) in mammals, has an important role in the development of otic vesicle, neuromasts and survival of hair cells. Whole-mount in situ hybridization of embryos showed that miles-apart expression occurred mainly in the encephalic region and the somites at 24 h.p.f. (hour post fertilization), in the midbrain/hindbrain boundary, the brainstem and the pre-neuromast of lateral line at 48 h.p.f. in a strict spatiotemporal regulation. Both up- and downregulation of miles-apart led to abnormal otoliths and semicircular canals, excess or few hair cells and neuromasts, and their disarranged depositions in the lateral lines. Miles-apart (Mil) dysregulation also caused abnormal expression of hearing-associated genes, including hmx2, fgf3, fgf8a, foxi1, otop1, pax2.1 and tmieb during zebrafish organogenesis. Moreover, in larvae miles-apart gene knockdown significantly upregulated proapoptotic gene zBax2 and downregulated prosurvival gene zMcl1b; in contrast, the level of zBax2 was decreased and of zMcl1b enhanced by miles-apart overexpression. Collectively, Mil activity is linked to organization and number decision of hair cells within a neuromast, also to deposition of neuromasts and formation of otic vesicle during zebrafish organogenesis. At the larva stage, Mil as an upstream regulator of bcl-2 gene family has a role in protection of hair cells against apoptosis by promoting expression of prosurvival gene zMcl1b and suppressing proapoptotic gene zBax2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tharapel, A.T.; Zhao, J.; Smith, M.E.
1994-09-01
Reported here is a patient with two most unusual structural rearrangements, both involving chromosome 11. The first cell line showed an interstitial deletion of a chromosome 11 with a 46,XX,del(11)(q13q23) chromosome complement. In the second cell line, one of the chromosome 11s had a duplication for the exact region, (11)(q13q23), that was deleted in the first cell line. This duplication also appeared to be inverted with karyotype 46,XX,inv dup(11)(q13q23). Interestingly, chromosome analysis did not reveal a normal cell line and the two abnormal cell lines were present in a 1:1 ratio. Parental chromosome analyses showed normal karyotypes. The patient wasmore » referred for genetic evaluation because of developmental delay. Minor congenital anomalies presented on physical examination included: weight and height at or below the 5th percentile, microcephaly, downward slanting palpebral fissures, severe clinodactyly of one toe, bilateral short fifth fingers and a broad based gait. Results of the MRI and urine metabolic screen were normal. Two hypotheses are advanced to explain the origin of the abnormality. It is most likely that the abnormality arose as a postzygotic event at the very early zygotic division. During the first DNA synthesis after fertilization and before the zygotic division, DNA synthesis errors could result in two chromatids, one with a deletion and the other with a duplication. It is also possible that after the DNA synthesis prior to the first cell division, the chromatids of the same chromosome 11 for unknown reasons were involved in uneven double somatic crossing over events resulting in deleted and duplicated chromatids, respectively. The 1:1 cell ratio found in the patient and the apparent non-existence of a normal cell line further suggest that the origin of the abnormality was post-zygotic.« less
Baviskar, Sandhya N; Shields, Malcolm S
2010-01-01
Glucose-regulated 94 kDa protein (Grp94) is a resident of the endoplasmic reticulum (ER) of multicellular eukaryotes. It is a constitutively expressed protein that is overexpressed in certain abnormal conditions of the cell such as depletion of glucose and calcium, and low oxygen and pH. The protein is also implicated in diseased conditions like cancer and Alzheimer's disease. In this study, the consequences of downregulation of Grp94 were investigated at both unicellular and multicellular stages of Dictyostelium discoideum. Previous studies have shown the expression of Dd-Grp94 (Dictyostelium discoideum glucose-regulated 94 kDa protein) in wild-type cells varies during development, and overexpression of Dd-Grp94 leads to abnormal cell shape and inhibition of development (i.e., formation of fruiting bodies). Grp94 is a known calcium binding protein and an efficient calcium buffer. Therefore, in the present study we hypothesized that downregulation of Dd-Grp94 protein would affect Dictyostelium cell structure, growth, and development. We found that Dd-grp94 RNAi recombinants exhibited reduced growth rate, cell size, and a subtle change in cell motility compared to the parental cells. The recombinants also exhibited a delay in development and small fruiting bodies. These results establish that Dd-grp94 plays a crucial role in determining normal cell structure, growth and differentiation.
Zhang, Xun; Gejman, Roger; Mahta, Ali; Zhong, Ying; Rice, Kimberley A; Zhou, Yunli; Cheunsuchon, Pornsuk; Louis, David N; Klibanski, Anne
2010-03-15
Meningiomas are common tumors, representing 15% to 25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. The chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore, it has been proposed that an as yet unidentified tumor suppressor is present at this locus. Maternally expressed gene 3 (MEG3) is an imprinted gene located at 14q32 which encodes a noncoding RNA with an antiproliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by approximately 60% in bromodeoxyuridine incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by approximately 80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that MEG3, which encodes a noncoding RNA, may be a tumor suppressor gene at chromosome 14q32 involved in meningioma progression via a novel mechanism.
Reversible Block of Mouse Neural Stem Cell Differentiation in the Absence of Dicer and MicroRNAs
Sansom, Stephen N.; Alsiö, Jessica M.; Kaneda, Masahiro; Smith, James; O'Carroll, Donal; Tarakhovsky, Alexander; Livesey, Frederick J.
2010-01-01
Background To investigate the functions of Dicer and microRNAs in neural stem (NS) cell self-renewal and neurogenesis, we established neural stem cell lines from the embryonic mouse Dicer-null cerebral cortex, producing neural stem cell lines that lacked all microRNAs. Principal Findings Dicer-null NS cells underwent normal self-renewal and could be maintained in vitro indefinitely, but had subtly altered cell cycle kinetics and abnormal heterochromatin organisation. In the absence of all microRNAs, Dicer-null NS cells were incapable of generating either glial or neuronal progeny and exhibited a marked dependency on exogenous EGF for survival. Dicer-null NS cells assumed complex differences in mRNA and protein expression under self-renewing conditions, upregulating transcripts indicative of self-renewing NS cells and expressing genes characteristic of differentiating neurons and glia. Underlining the growth-factor dependency of Dicer-null NS cells, many regulators of apoptosis were enriched in expression in these cells. Dicer-null NS cells initiate some of the same gene expression changes as wild-type cells under astrocyte differentiating conditions, but also show aberrant expression of large sets of genes and ultimately fail to complete the differentiation programme. Acute replacement of Dicer restored their ability to differentiate to both neurons and glia. Conclusions The block in differentiation due to loss of Dicer and microRNAs is reversible and the significantly altered phenotype of Dicer-null NS cells does not constitute a permanent transformation. We conclude that Dicer and microRNAs function in this system to maintain the neural stem cell phenotype and to facilitate the completion of differentiation. PMID:20976144
Yang, Yinhui; Bai, Yang; He, Yundong; Zhao, Yu; Chen, Jiaxiang; Ma, Linlin; Pan, Yunqian; Hinten, Michael; Zhang, Jun; Karnes, R. Jeffrey; Kohli, Manish; Westendorf, Jennifer J.; Li, Benyi; Zhu, Runzhi; Huang, Haojie; Xu, Wanhai
2018-01-01
Purpose Intratumoral androgen synthesis (IAS) is a key mechanism promoting androgen receptor (AR)reactivation and anti-androgen resistance in castration-resistant prostate cancer (CRPC). However, signaling pathways driving aberrant IAS remain poorly understood. Experimental Design The effect of components of the AKT-RUNX2-osteocalcin (OCN)-GPRC6A-CREB signaling axis on expression of steroidogenesis genes CYP11A1 and CYP17A1 and testosterone level were examined in PTEN-null human PCa cell lines. Pten knockout mice were employed to examine the effect of Runx2 heterozygous deletion or abiraterone acetate (ABA), a prodrug of the CYP17A1 inhibitor abiraterone on Cyp11a1 and Cyp17a1 expression, testosterone level and tumor microenvironment (TME) remodeling in vivo. Results We uncovered that activation of the AKT-RUNX2-OCN-GPRC6A-CREB signaling axis induced expression of CYP11A1 and CYP17A1 and testosterone production in PTEN-null PCa cell lines in culture. Deletion of Runx2 in Pten homozygous knockout prostate tumors decreased Cyp11a1 and Cyp17a1 expression, testosterone level and tumor growth in castrated mice. ABA treatment also inhibited testosterone synthesis and alleviated Pten loss-induced tumorigenesis in vivo. Pten deletion induced TME remodeling, but Runx2 heterozygous deletion or ABA treatment reversed the effect of Pten loss by decreasing expression of the collagenase Mmp9. Conclusions Abnormal RUNX2 activation plays a pivotal role in PTEN loss-induced IAS and TME remodeling, suggesting that the identified signaling cascade represents a viable target for effective treatment of PTEN-null PCa including CRPC. PMID:29167276
2012-01-01
Background Ethylene production and signalling play an important role in somatic embryogenesis, especially for species that are recalcitrant in in vitro culture. The AP2/ERF superfamily has been identified and classified in Hevea brasiliensis. This superfamily includes the ERFs involved in response to ethylene. The relative transcript abundance of ethylene biosynthesis genes and of AP2/ERF genes was analysed during somatic embryogenesis for callus lines with different regeneration potential, in order to identify genes regulated during that process. Results The analysis of relative transcript abundance was carried out by real-time RT-PCR for 142 genes. The transcripts of ERFs from group I, VII and VIII were abundant at all stages of the somatic embryogenesis process. Forty genetic expression markers for callus regeneration capacity were identified. Fourteen markers were found for proliferating calli and 35 markers for calli at the end of the embryogenesis induction phase. Sixteen markers discriminated between normal and abnormal embryos and, lastly, there were 36 markers of conversion into plantlets. A phylogenetic analysis comparing the sequences of the AP2 domains of Hevea and Arabidopsis genes enabled us to predict the function of 13 expression marker genes. Conclusions This first characterization of the AP2/ERF superfamily in Hevea revealed dramatic regulation of the expression of AP2/ERF genes during the somatic embryogenesis process. The gene expression markers of proliferating callus capacity to regenerate plants by somatic embryogenesis should make it possible to predict callus lines suitable to be used for multiplication. Further functional characterization of these markers opens up prospects for discovering specific AP2/ERF functions in the Hevea species for which somatic embryogenesis is difficult. PMID:23268714
Versican Promotes Tumor Progression, Metastasis and Predicts Poor Prognosis in Renal Carcinoma.
Mitsui, Yozo; Shiina, Hiroaki; Kato, Taku; Maekawa, Shigekatsu; Hashimoto, Yutaka; Shiina, Marisa; Imai-Sumida, Mitsuho; Kulkarni, Priyanka; Dasgupta, Pritha; Wong, Ryan Kenji; Hiraki, Miho; Arichi, Naoko; Fukuhara, Shinichiro; Yamamura, Soichiro; Majid, Shahana; Saini, Sharanjot; Deng, Guoren; Dahiya, Rajvir; Nakajima, Koichi; Tanaka, Yuichiro
2017-07-01
The proteoglycan versican (VCAN) promotes tumor progression and enhances metastasis in several cancers; however, its role in clear cell renal cell carcinoma (ccRCC) remains unknown. Recent evidence suggests that VCAN is an important target of chromosomal 5q gain, one of the most prevalent genetic abnormalities in ccRCC. Thus, we investigated whether VCAN expression is associated with the pathogenesis of ccRCC. VCAN expression was analyzed using three RCC and normal kidney cell lines as well as a clinical cohort of 84 matched ccRCC and normal renal tissues. Functional analyses on growth and progression properties were performed using VCAN-depleted ccRCC cells. Microarray expression profiling was employed to investigate the target genes and biologic pathways involved in VCAN-mediated ccRCC carcinogenesis. ccRCC had elevated VCAN expression in comparison with normal kidney in both cell lines and clinical specimens. The elevated expression of VCAN was significantly correlated with metastasis ( P < 0.001) and worse 5-year overall survival after radical nephrectomy ( P = 0.014). In vitro , VCAN knockdown significantly decreased cell proliferation and increased apoptosis in Caki-2 and 786-O cells, and this was associated with alteration of several TNF signaling-related genes such as TNFα, BID , and BAK Furthermore, VCAN depletion markedly decreased cell migration and invasion which correlated with reduction of MMP7 and CXCR4. These results demonstrate that VCAN promotes ccRCC tumorigenesis and metastasis and thus is an attractive target for novel diagnostic, prognostic, and therapeutic strategies. Implications: This study highlights the oncogenic role of VCAN in renal cell carcinogenesis and suggests that this gene has therapeutic and/or biomarker potential for renal cell cancer. Mol Cancer Res; 15(7); 884-95. ©2017 AACR . ©2017 American Association for Cancer Research.
Efficient Metabolic Engineering of GM3 on Tumor Cells by N-Phenylacetyl-D-mannosamine†
Chefalo, Peter; Pan, Yanbin; Nagy, Nancy; Guo, Zhongwu; Harding, Clifford V.
2008-01-01
Abnormal carbohydrates expressed on tumor cells, which are referred to as tumor-associated carbohydrate antigens (TACAs), are potential targets for development of cancer vaccines. However, immune tolerance to TACAs has severely hindered progress in this area. To overcome this problem, we have developed a novel immunotherapeutic strategy based on synthetic cancer vaccines and metabolic engineering of TACAs on tumor cells. One critical step of this new strategy is metabolic engineering of cancer, namely to induce expression of an artificial form of a TACA by supplying tumors with an artificial monosaccharide precursor. To identify the proper precursor for this application, N-propionyl, N-butanoyl, N-iso-butanoyl and N-phenylacetyl derivatives of D-mannosamine were synthesized, and their efficiency as biosynthetic precursors to modify sialic acid and induce expression of modified forms of GM3 antigen on tumor cells was investigated. For this purpose, tumor cells were incubated with different N-acyl-D-mannosamines, and modified forms of GM3 expressed on tumor cells were analyzed by flow cytometry using antigen-specific antisera. N-phenylacetyl-D-mannosamine was efficiently incorporated in a time and dose dependent manner to bioengineer GM3 expression by several tumor cell lines including K562, SKMEL-28 and B16-F0. Moreover, these tumor cell lines also showed ManPAc-dependent sensitivity to cytotoxicity medicated by anti-PAcGM3 immune serum and complement. These results provide an important validation for this novel therapeutic strategy. Because N-phenylacetyl GM3-protein conjugates are particularly immunogenic, the combination of an N-phenylacetyl GM3 conjugate vaccine with systemic N-phenylacetyl-D-mannosamine treatment is a promising immunotherapy for future development and application to melanoma and other GM3-bearing tumors. PMID:16533056
Fruchart, C; Lenormand, B; Bastard, C; Boulet, D; Lesesve, J F; Callat, M P; Stamatoullas, A; Monconduit, M; Tilly, H
1996-11-01
The hemopoietic stem cell marker CD34 has been reported to be a useful predictor of treatment outcome in acute myeloid leukemia (AML). Previous data suggested that CD34 expression may be associated with other poor prognosis factors in AML such as undifferentiated leukemia, secondary AML (SAML), and clonal abnormalities involving chromosome 5 and 7. In order to analyze the correlations between the clinicopathologic features, cytogenetic and CD34 expression in AML, we retrospectively investigated 99 patients with newly diagnosed AML: 85 with de novo disease and 14 with secondary AML (SAML). Eighty-six patients who received the same induction chemotherapy were available for clinical outcome. Defining a case as positive when > or = 20% of bone marrow cells collected at diagnosis expressed the CD34 antigen, forty-five patients were included in the CD34 positive group. Ninety patients had adequate cytogenetic analysis. Thirty-two patients (72%) with CD34 positive AML exhibited an abnormal karyotype whereas 15 patients (28%) with CD34 negative AML had abnormal metaphases (P < 0.01). Monosomy 7/7q- or monosomy 5/5q- occurred in 10 patients and 8 of them expressed the CD34 antigen (P < 0.05). All patients with t(8;21) which is considered as a favorable factor in AML had levels of CD34 >/= 20% (P < 0.05). We did not find any association between CD34 expression and attainment of complete remission, overall survival, or disease-free survival. In conclusion, the variations of CD34 expression in AML are correlated with cytogenetic abnormalities associated both with poor and favorable outcome. The evaluation of the correlations between CD34 antigen and clinical outcome in AML should take into account the results of pretreatment karyotype.
Parkinson's disease: increased motor network activity in the absence of movement.
Ko, Ji Hyun; Mure, Hideo; Tang, Chris C; Ma, Yilong; Dhawan, Vijay; Spetsieris, Phoebe; Eidelberg, David
2013-03-06
We used a network approach to assess systems-level abnormalities in motor activation in humans with Parkinson's disease (PD). This was done by measuring the expression of the normal movement-related activation pattern (NMRP), a previously validated activation network deployed by healthy subjects during motor performance. In this study, NMRP expression was prospectively quantified in (15)O-water PET scans from a PD patient cohort comprised of a longitudinal early-stage group (n = 12) scanned at baseline and at two or three follow-up visits two years apart, and a moderately advanced group scanned on and off treatment with either subthalamic nucleus deep brain stimulation (n = 14) or intravenous levodopa infusion (n = 14). For each subject and condition, we measured NMRP expression during both movement and rest. Resting expression of the abnormal PD-related metabolic covariance pattern was likewise determined in the same subjects. NMRP expression was abnormally elevated (p < 0.001) in PD patients scanned in the nonmovement rest state. By contrast, network activity measured during movement did not differ from normal (p = 0.34). In the longitudinal cohort, abnormal increases in resting NMRP expression were evident at the earliest clinical stages (p < 0.05), which progressed significantly over time (p = 0.003). Analogous network changes were present at baseline in the treatment cohort (p = 0.001). These abnormalities improved with subthalamic nucleus stimulation (p < 0.005) but not levodopa (p = 0.25). In both cohorts, the changes in NMRP expression that were observed did not correlate with concurrent PD-related metabolic covariance pattern measurements (p > 0.22). Thus, the resting state in PD is characterized by changes in the activity of normal as well as pathological brain networks.
Lockwood, Charles J.; Krikun, Graciela; Hickey, Martha; Huang, S. Joseph; Schatz, Frederick
2011-01-01
Factor VII binds trans-membrane tissue factor to initiate hemostasis by forming thrombin. Tissue factor expression is enhanced in decidualized human endometrial stromal cells during the luteal phase. Long-term progestin only contraceptives elicit: 1) abnormal uterine bleeding from fragile vessels at focal bleeding sites, 2) paradoxically high tissue factor expression at bleeding sites; 3) reduced endometrial blood flow promoting local hypoxia and enhancing reactive oxygen species levels; and 4) aberrant angiogenesis reflecting increased stromal cell-expressed vascular endothelial growth factor, decreased Angiopoietin-1 and increased endothelial cell-expressed Angiopoietin-2. Aberrantly high local vascular permeability enhances circulating factor VII to decidualized stromal cell-expressed tissue factor to generate excess thrombin. Hypoxia-thrombin interactions augment expression of vascular endothelial growth factor and interleukin-8 by stromal cells. Thrombin, vascular endothelial growth factor and interlerukin-8 synergis-tically augment angiogenesis in a milieu of reactive oxygen species-induced endothelial cell activation. The resulting enhanced vessel fragility promotes abnormal uterine bleeding. PMID:19208784
Liu, Yan; Wu, Qian; Cui, Huiting; Li, Qinghe; Zhao, Yiqiang; Luo, Juan; Liu, Qiuyue; Sun, Xiuzhu; Tang, Bo; Zhang, Lei; Dai, Yunping; Li, Ning
2008-12-01
Both enhanced green fluorescence protein (EGFP) and neomycin phosphotransferase type II enzyme (NPTII) are widely used in transgenic studies, but their side effects have not been extensively investigated. In this study, we evaluated the expression profiles of the two marker genes and the relationship between their expression and organ abnormalities. Eight transgenic cloned cattle were studied, four harboring both EGFP and NPTII, and four harboring only the NPTII gene. Four age-matched cloned cattle were used as controls. EGFP and NPTII expression were measured and detected by Q-PCR, Western blot, ELISA, and RIA in heart, liver, and lungs, and the values ranged from 0.3 to 5 microg/g. The expression profiles exhibited differential or mosaic pattern between the organs, the pathologic symptoms of which were identified, but were similar to those of age-matched cloned cattle. All data indicated that the expression of EGFP and NPTII is not associated with organ abnormalities in transgenic cloned cattle.
Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.
Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S
1996-03-19
Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart.
Liu, Xiaodan; Liao, Wang; Peng, Hongxia; Luo, Xuequn; Luo, Ziyan; Jiang, Hua; Xu, Ling
2016-01-01
Abnormal expression of miRNAs is intimately related to a variety of human cancers. The purpose of this study is to confirm the expression of miR-181a and elucidate its physiological function and mechanism in pediatric acute myeloid leukemia (AML). Pediatric AML patients and healthy controls were enrolled, and the expression of miR-181a and ataxia telangiectasia mutated (ATM) in tissues were examined using quantitative PCR. Moreover, cell proliferation and cell cycle were evaluated in several cell lines (HL60, NB4 and K562) by using flow cytometry after transfected with miR-181a mimics and inhibitors, or ATM siRNA and control siRNA. Finally, ATM as the potential target protein of miR-181a was examined. We found that miR-181a was significantly increased in pediatric AML, which showed an inverse association with ATM expression. Overexpressed miR-181a in cell lines significantly enhanced cell proliferation, as well as increased the ratio of S-phase cells by miR-181a mimics transfection in vitro. Luciferase activity of the reporter construct identified ATM as the direct molecular target of miR-181a. ATM siRNA transfection significantly enhanced cell proliferation and increased the ratio of S-phase cells in vitro. The results revealed novel mechanism through which miR-181a regulates G1/S transition and cell proliferation in pediatric AML by regulating the tumor suppressor ATM, providing insights into the molecular mechanism in pediatric AML.
Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.
Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R
2017-04-01
The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.
Guo, Xiaochuan; Hamilton, Peter J; Reish, Nicholas J; Sweatt, J David; Miller, Courtney A; Rumbaugh, Gavin
2009-06-01
Abnormal function of NMDA receptors is believed to be a contributing factor to the pathophysiology of schizophrenia. NMDAR subunits and postsynaptic-interacting proteins of these channels are abnormally expressed in some patients with this illness. In mice, reduced NMDAR expression leads to behaviors analogous to symptoms of schizophrenia, but reports of animals with mutations in core postsynaptic density proteins having similar a phenotype have yet to be reported. Here we show that reduced expression of the neuronal RasGAP and NMDAR-associated protein, SynGAP, results in abnormal behaviors strikingly similar to that reported in mice with reduced NMDAR function. SynGAP mutant mice exhibited nonhabituating and persistent hyperactivity that was ameliorated by the antipsychotic clozapine. An NMDAR antagonist, MK-801, induced hyperactivity in normal mice but SynGAP mutants were less responsive, suggesting that NMDAR hypofunction contributes to this behavioral abnormality. SynGAP mutants exhibited enhanced startle reactivity and impaired sensory-motor gating. These mice also displayed a complete lack of social memory and a propensity toward social isolation. Finally, SynGAP mutants had deficits in cued fear conditioning and working memory, indicating abnormal function of circuits that control emotion and choice. Our results demonstrate that SynGAP mutant mice have gross neurological deficits similar to other mouse models of schizophrenia. Because SynGAP interacts with NMDARs, and the signaling activity of this protein is regulated by these channels, our data in dicate that SynGAP lies downstream of NMDARs and is a required intermediate for normal neural circuit function and behavior. Taken together, these data support the idea that schizophrenia may arise from abnormal signaling pathways that are mediated by NMDA receptors.
Deletion of ultraconserved elements yields viable mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahituv, Nadav; Zhu, Yiwen; Visel, Axel
2007-07-15
Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lackingmore » these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.« less
Ho, Nelson; Morrison, Jodi; Silva, Andreza; Coomber, Brenda L.
2016-01-01
Cancer cells heavily rely on the glycolytic pathway regardless of oxygen tension. Hexokinase II (HKII) catalyses the first irreversible step of glycolysis and is often overexpressed in cancer cells. 3-Bromopyruvate (3BP) has been shown to primarily target HKII, and is a promising anti-cancer compound capable of altering critical metabolic pathways in cancer cells. Abnormal vasculature within tumours leads to heterogeneous microenvironments, including glucose availability, which may affect drug sensitivity. The aim of the present study was to elucidate the mechanisms by which 3BP acts on colorectal cancer (CRC) cells with focus on the HKII/Akt signalling axis. High HKII-expressing cell lines were more sensitive to 3BP than low HKII-expressing cells. 3BP-induced rapid Akt phosphorylation at site Thr-308 and cell death via both apoptotic and necrotic mechanisms. Cells grown under lower glucose concentrations showed greater resistance towards 3BP. Cells with HKII knockdown showed no changes in 3BP sensitivity, suggesting the effects of 3BP are independent of HKII expression. These results emphasize the importance of the tumour microenvironment and glucose availability when considering therapeutic approaches involving metabolic modulation. PMID:26740252
Ho, Nelson; Morrison, Jodi; Silva, Andreza; Coomber, Brenda L
2016-01-06
Cancer cells heavily rely on the glycolytic pathway regardless of oxygen tension. Hexokinase II (HKII) catalyses the first irreversible step of glycolysis and is often overexpressed in cancer cells. 3-Bromopyruvate (3BP) has been shown to primarily target HKII, and is a promising anti-cancer compound capable of altering critical metabolic pathways in cancer cells. Abnormal vasculature within tumours leads to heterogeneous microenvironments, including glucose availability, which may affect drug sensitivity. The aim of the present study was to elucidate the mechanisms by which 3BP acts on colorectal cancer (CRC) cells with focus on the HKII/Akt signalling axis. High HKII-expressing cell lines were more sensitive to 3BP than low HKII-expressing cells. 3BP-induced rapid Akt phosphorylation at site Thr-308 and cell death via both apoptotic and necrotic mechanisms. Cells grown under lower glucose concentrations showed greater resistance towards 3BP. Cells with HKII knockdown showed no changes in 3BP sensitivity, suggesting the effects of 3BP are independent of HKII expression. These results emphasize the importance of the tumour microenvironment and glucose availability when considering therapeutic approaches involving metabolic modulation. © 2016 Authors.
Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: Implications for therapy
Tovar, Christian; Rosinski, James; Filipovic, Zoran; Higgins, Brian; Kolinsky, Kenneth; Hilton, Holly; Zhao, Xiaolan; Vu, Binh T.; Qing, Weiguo; Packman, Kathryn; Myklebost, Ola; Heimbrook, David C.; Vassilev, Lyubomir T.
2006-01-01
The p53 tumor suppressor retains its wild-type conformation and transcriptional activity in half of all human tumors, and its activation may offer a therapeutic benefit. However, p53 function could be compromised by defective signaling in the p53 pathway. Using a small-molecule MDM2 antagonist, nutlin-3, to probe downstream p53 signaling we find that the cell-cycle arrest function of the p53 pathway is preserved in multiple tumor-derived cell lines expressing wild-type p53, but many have a reduced ability to undergo p53-dependent apoptosis. Gene array analysis revealed attenuated expression of multiple apoptosis-related genes. Cancer cells with mdm2 gene amplification were most sensitive to nutlin-3 in vitro and in vivo, suggesting that MDM2 overexpression may be the only abnormality in the p53 pathway of these cells. Nutlin-3 also showed good efficacy against tumors with normal MDM2 expression, suggesting that many of the patients with wild-type p53 tumors may benefit from antagonists of the p53–MDM2 interaction. PMID:16443686
NASA Technical Reports Server (NTRS)
Evans, Helen H.; Horng, Min-Fen; Ricanati, Marlene; Diaz-Insua, Mireya; Jordan, Robert; Schwartz, Jeffrey L.
2002-01-01
Genomic instability in the human lymphoblast cell line TK6 was studied in clones surviving 36 generations after exposure to accelerated 56Fe ions. Clones were assayed for 20 characteristics, including chromosome aberrations, plating efficiency, apoptosis, cell cycle distribution, response to a second irradiation, and mutant frequency at two loci. The primary effect of the 56Fe-ion exposure on the surviving clones was a significant increase in the frequency of unstable chromosome aberrations compared to the very low spontaneous frequency, along with an increase in the phenotypic complexity of the unstable clones. The radiation-induced increase in the frequency of unstable chromosome aberrations was much greater than that observed previously in clones of the related cell line, WTK1, which in comparison to the TK6 cell line expresses an increased radiation resistance, a mutant TP53 protein, and an increased frequency of spontaneous unstable chromosome aberrations. The characteristics of the unstable clones of the two cell lines also differed. Most of the TK6 clones surviving exposure to 56Fe ions showed unstable cytogenetic abnormalities, while the phenotype of the WTK1 clones was more diverse. The results underscore the importance of genotype in the characteristics of instability after radiation exposure.
2012-01-01
Background In the silkworm, Bombyx mori, femaleness is strongly controlled by the female-specific W chromosome. Originally, it was presumed that the W chromosome encodes female-determining gene(s), accordingly called Fem. However, to date, neither Fem nor any protein-coding gene has been identified from the W chromosome. Instead, the W chromosome is occupied with numerous transposon-related sequences. Interestingly, the silkworm W chromosome is a source of female-enriched PIWI-interacting RNAs (piRNAs). piRNAs are small RNAs of 23-30 nucleotides in length, which are required for controlling transposon activity in animal gonads. A recent study has identified a novel mutant silkworm line called KG, whose mutation in the W chromosome causes severe female masculinization. However, the molecular nature of KG line has not been well characterized yet. Results Here we molecularly characterize the KG line. Genomic PCR analyses using currently available W chromosome-specific PCR markers indicated that no large deletion existed in the KG W chromosome. Genetic analyses demonstrated that sib-crosses within the KG line suppressed masculinization. Masculinization reactivated when crossing KG females with wild type males. Importantly, the KG ovaries exhibited a significantly abnormal transcriptome. First, the KG ovaries misexpressed testis-specific genes. Second, a set of female-enriched piRNAs was downregulated in the KG ovaries. Third, several transposons were overexpressed in the KG ovaries. Conclusions Collectively, the mutation in the KG W chromosome causes broadly altered expression of testis-specific genes, piRNAs, and transposons. To our knowledge, this is the first study that describes a W chromosome mutant with such an intriguing phenotype. PMID:22452797
BOD1 Is Required for Cognitive Function in Humans and Drosophila
Motazacker, M. Mahdi; Nijhof, Bonnie; Castells-Nobau, Anna; Asztalos, Zoltan; Weißmann, Robert; Behjati, Farkhondeh; Tzschach, Andreas; Felbor, Ute; Scherthan, Harry; Sayfati, Seyed Morteza; Ropers, H. Hilger.; Kahrizi, Kimia; Najmabadi, Hossein; Swedlow, Jason R.; Schenck, Annette; Kuss, Andreas W.
2016-01-01
Here we report a stop-mutation in the BOD1 (Biorientation Defective 1) gene, which co-segregates with intellectual disability in a large consanguineous family, where individuals that are homozygous for the mutation have no detectable BOD1 mRNA or protein. The BOD1 protein is required for proper chromosome segregation, regulating phosphorylation of PLK1 substrates by modulating Protein Phosphatase 2A (PP2A) activity during mitosis. We report that fibroblast cell lines derived from homozygous BOD1 mutation carriers show aberrant localisation of the cell cycle kinase PLK1 and its phosphatase PP2A at mitotic kinetochores. However, in contrast to the mitotic arrest observed in BOD1-siRNA treated HeLa cells, patient-derived cells progressed through mitosis with no apparent segregation defects but at an accelerated rate compared to controls. The relatively normal cell cycle progression observed in cultured cells is in line with the absence of gross structural brain abnormalities in the affected individuals. Moreover, we found that in normal adult brain tissues BOD1 expression is maintained at considerable levels, in contrast to PLK1 expression, and provide evidence for synaptic localization of Bod1 in murine neurons. These observations suggest that BOD1 plays a cell cycle-independent role in the nervous system. To address this possibility, we established two Drosophila models, where neuron-specific knockdown of BOD1 caused pronounced learning deficits and significant abnormalities in synapse morphology. Together our results reveal novel postmitotic functions of BOD1 as well as pathogenic mechanisms that strongly support a causative role of BOD1 deficiency in the aetiology of intellectual disability. Moreover, by demonstrating its requirement for cognitive function in humans and Drosophila we provide evidence for a conserved role of BOD1 in the development and maintenance of cognitive features. PMID:27166630
Du, Zhong-Jun; Cui, Guan-Qun; Zhang, Juan; Liu, Xiao-Mei; Zhang, Zhi-Hu; Jia, Qiang; Ng, Jack C; Peng, Cheng; Bo, Cun-Xiang; Shao, Hua
2017-01-01
Gap junction intercellular communication (GJIC) between cardiomyocytes is essential for synchronous heart contraction and relies on connexin-containing channels. Connexin 43 (Cx43) is a major component involved in GJIC in heart tissue, and its abnormal expression is closely associated with various cardiac diseases. Silica nanoparticles (SNPs) are known to induce cardiovascular toxicity. However, the mechanisms through which GJIC plays a role in cardiomyocytes apoptosis induced by SNPs remain unknown. The aim of the present study is to determine whether SNPs-decreased GJIC promotes apoptosis in rat cardiomyocytes cell line (H9c2 cells) via the mitochondrial pathway using CCK-8 Kit, scrape-loading dye transfer technique, Annexin V/PI double-staining assays, and Western blot analysis. The results showed that SNPs elicited cytotoxicity in H9c2 cells in a time- and concentration-dependent manner. SNPs also reduced GJIC in H9c2 cells in a concentration-dependent manner through downregulation of Cx43 and upregulation of P-Cx43. Inhibition of gap junctions by gap junction blocker carbenoxolone disodium resulted in decreased survival and increased apoptosis, whereas enhancement of the gap junctions by retinoic acid led to enhanced survival but decreased apoptosis. Furthermore, SNPs-induced apoptosis through the disrupted functional gap junction was correlated with abnormal expressions of the proteins involved in the mitochondrial pathway-related apoptosis such as Bcl-2/Bax, cytochrome C, Caspase-9, and Caspase-3. Taken together, our results provide the first evidence that SNPs-decreased GJIC promotes apoptosis in cardiomyocytes via the mitochondrial pathway. In addition, downregulation of GJIC by SNPs in cardiomyocytes is mediated through downregulation of Cx43 and upregulation of P-Cx43. These results suggest that in rat cardiomyocytes cell line, GJIC plays a protective role in SNPs-induced apoptosis and that GJIC may be one of the targets for SNPs-induced biological effects.
Abnormal expression of ephrin-A5 affects brain development of congenital hypothyroidism rats.
Suo, Guihai; Shen, Feifei; Sun, Baolan; Song, Honghua; Xu, Meiyu; Wu, Youjia
2018-05-14
EphA5 and its ligand ephrin-A5 interaction can trigger synaptogenesis during early hippocampus development. We have previously reported that abnormal EphA5 expression can result in synaptogenesis disorder in congenital hypothyroidism (CH) rats. To better understand its precise molecular mechanism, we further analyzed the characteristics of ephrin-A5 expression in the hippocampus of CH rats. Our study revealed that ephrin-A5 expression was downregulated by thyroid hormone deficiency in the developing hippocampus and hippocampal neurons in rats. Thyroxine treatment for hypothyroid hippocampus and triiodothyronine treatment for hypothyroid hippocampal neurons significantly improved ephrin-A5 expression but could not restore its expression to control levels. Hypothyroid hippocampal neurons in-vitro showed synaptogenesis disorder characterized by a reduction in the number and length of neurites. Furthermore, the synaptogenesis-associated molecular expressions of NMDAR-1 (NR1), PSD95 and CaMKII were all downregulated correspondingly. These results suggest that ephrin-A5 expression may be decreased in CH, and abnormal activation of ephrin-A5/EphA5 signaling affects synaptogenesis during brain development. Such findings provide an important basis for exploring the pathogenesis of CH genetically.
Barrena, M J; Echaniz, P; Garcia-Serrano, C; Zubillaga, P; Cuadrado, E
1992-01-01
We analysed the expression of lymphocyte function-associated antigen LFA-1 on the cell surface of peripheral blood lymphocytes, monocytes and granulocytes from 20 children with Down's syndrome. No differences in LFA-1 expression was found within monocytes or granulocytes from either normal or Down's syndrome children; however, a clear-cut difference was observed on lymphoid cells. Both normal and Down's syndrome lymphocytes displayed a bimodal pattern of LFA-1 staining by flow cytometry, with a predominance of cells with low expression in normal population, and an increased proportion of lymphocytes with high level of LFA-1 expression in Down's syndrome children. This difference correlates well with the abnormal proportion of T cell subsets and inversion of CD4/CD8 observed in a majority of our cases, and therefore, it could merely reflect the increase of certain T cell subsets normally expressing higher number of LFA-1 molecules. Taken together, our results do not support an abnormally increased expression of leucocytes integrins in trisomy 21 cells, and raise some doubt about the suggested role of the abnormal cellular expression of LFA-1 in the pathogensis of secondary immunodeficiency associated to Down's syndrome. PMID:1348667
Ren, Xinguo; Rizavi, Hooriyah S.; Khan, Mansoor A.; Bhaumik, Runa; Dwivedi, Yogesh; Pandey, Ghanshyam N.
2013-01-01
Background Abnormalities of cyclic-AMP (cAMP) response element binding protein (CREB) function has been suggested in bipolar (BP) illness and schizophrenia (SZ), based on both indirect and direct evidence. To further elucidate the role of CREB in these disorders, we studied CREB expression and function in two brain areas implicated in these disorders, i.e., dorsolateral prefrontal cortex (DLPFC) and cingulate gyrus (CG). Methods We determined CREB protein expression using Western blot technique, CRE-DNA binding using gel shift assay, and mRNA expression using real-time RT-polymerase chain reaction (qPCR) in DLPFC and CG of the postmortem brain of BP (n = 19), SZ (n = 20), and normal control (NC, n = 20) subjects. Results We observed that CREB protein and mRNA expression and CRE-DNA binding activity were significantly decreased in the nuclear fraction of DLPFC and CG obtained from BP subjects compared with NC subjects. However, the protein and mRNA expression and CRE-DNA binding in SZ subjects was significantly decreased in CG, but not in DLPFC, compared with NC. Conclusion These studies thus indicate region-specific abnormalities of CREB expression and function in both BP and SZ. They suggest that abnormalities of CREB in CG may be associated with both BP and SZ, but its abnormality in DLPFC is specific to BP illness. PMID:24148789
Huang, Yongyi; Liu, Jianjun; Zhao, Yanhui; Jiang, Lizhen; Huang, Qin
2013-01-01
Sperm abnormalities are one of the main factors responsible for male infertility; however, their pathogenesis remains unclear. The role of microRNAs in the development of sperm abnormalities in infertile men has not yet been investigated. Here, we used human induced pluripotent stem cells to investigate the influence of miR-122 expression on the differentiation of these cells into spermatozoa-like cells in vitro. After induction, mutant miR-122-transfected cells formed spermatozoa-like cells. Flow cytometry of DNA content revealed a significant increase in the haploid cell population in spermatozoa-like cells derived from mutant miR-122-transfected cells as compared to those derived from miR-122-transfected cells. During induction, TNP2 and protamine mRNA and protein levels were significantly higher in mutant miR-122-transfected cells than in miR-122-transfected cells. High-throughput isobaric tags for relative and absolute quantification were used to identify and quantify the different protein expression levels in miR-122- and mutant miR-122-transfected cells. Among all the proteins analyzed, the expression of lipoproteins, for example, APOB and APOA1, showed the most significant difference between the two groups. This study illustrates that miR-122 expression is associated with abnormal sperm development. MiR-122 may influence spermatozoa-like cells by suppressing TNP2 expression and inhibiting the expression of proteins associated with sperm development. PMID:23327642
Shojaei Saadi, Habib A; van Riemsdijk, Evine; Dance, Alysha L; Rajamanickam, Gayathri D; Kastelic, John P; Thundathil, Jacob C
2013-04-26
The objective was to investigate expression patterns of proteins in pyriform sperm, a common morphological abnormality in bull sperm. Ejaculates were collected from sexually mature Holstein bulls (n=3) twice weekly for 10 weeks (pre-thermal insult samples). Testicular temperature was elevated in all bulls by scrotal insulation for 72 consecutive hours during week 2. Total sperm proteins were extracted from pre- and post-thermal insult sperm samples and subjected to two-dimensional gel electrophoresis. Among the protein spots detected, 131 spots were significantly expressed (False Detection Rate <0.01) with ≥ 2 fold changes between normal and pyriform sperm. Among them, 25 spots with ≥ 4 fold difference in expression patterns were identified using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins regulating antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. To our knowledge, this study is the first report on differential expression of proteins in pyriform bovine sperm versus morphologically normal sperm. We report that expression of several proteins involved in sperm capacitation, sperm-egg interaction and sperm cytoskeletal structure was decreased in pyriform sperm, whereas proteins which regulate antioxidant activity, apoptosis and metabolic activity were increased. Contents of reactive oxygen species and ubiquitinated proteins were higher in pyriform sperm. In addition to understanding the molecular basis of functional deficiencies in sperm with specific morphological abnormalities, our results suggest that comparing normal versus morphologically abnormal sperm appeared to be a suitable experimental model for identifying important sperm functional proteins. Copyright © 2013 Elsevier B.V. All rights reserved.
Decreased expression of thymus-specific proteasome subunit β5t in Down syndrome patients.
Tomaru, Utano; Tsuji, Takahiro; Kiuchi, Shizuka; Ishizu, Akihiro; Suzuki, Akira; Otsuka, Noriyuki; Ito, Tomoki; Ikeda, Hitoshi; Fukasawa, Yuichiro; Kasahara, Masanori
2015-08-01
The majority of patients with Down syndrome (DS), trisomy 21, have morphologically abnormal thymuses and present with intrinsic immunological abnormalities affecting mainly the cellular immune response. The aim of this study was to examine whether the expression of functionally important molecules is altered in thymic stromal cells in patients with DS. We analysed thymic tissues from patients with trisomy 13 (n = 4), trisomy 18 (n = 14) and trisomy 21 (n = 13) for histological alterations, and for the expression of functionally important molecules such as β5t, a thymoproteasome subunit, and cathepsins L and S. In patients with trisomy 13 and trisomy 18, the thymus was morphologically normal or showed only mild depletion of cortical thymocytes. In contrast, the thymus showed variable histological changes in patients with trisomy 21; six of 13 cases showed severe depletion of thymocytes accompanied by the disappearance of thymic lobular architecture. In such thymuses, spindle-shaped keratin-positive cells were densely distributed, and expression of β5t, but not of cathepsin L, was markedly decreased. The present study suggests that abnormal thymic architecture and decreased expression of functionally important molecules in thymic stromal cells may be involved in immunological abnormalities in DS patients. © 2015 John Wiley & Sons Ltd.
Kiso, Minako; Manabe, Noboru; Komatsu, Kohji; Shimabe, Munetake; Miyamoto, Hajime
2003-12-01
Senescence accelerated mouse-prone (SAMP) mice with a shortened life span show accelerated changes in many of the signs of aging and a shorter reproductive life span than SAM-resistant (SAMR) controls. We previously showed that functional regression (progesterone dissimilation) occurs in abnormally accumulated luteal bodies (aaLBs) of SAMP mice, but structural regression of luteal cells in aaLB is inhibited. A deficiency of luteal cell apoptosis causes the abnormal accumulation of LBs in SAMP ovaries. In the present study, to show the abnormality of Fas ligand (FasL)/Fas-mediated apoptosis signal transducing factors in the aaLBs of the SAMP ovaries, we assessed the changes in the expression of FasL, Fas, caspase-8 and caspase-3 mRNAs by reverse transcription-polymerase chain reaction, and in the expression and localization of FasL, Fas and activated caspase-3 proteins by Western blotting and immunohistochemistry, respectively, during the estrus cycle/luteolysis. These mRNAs and proteins were expressed in normal LBs of both SAMP and SAMR ovaries, but not at all or only in trace amounts in aaLBs of SAMP, indicating that structural regression is inhibited by blockage of the expression of these transducing factors in luteal cells of aaLBs in SAMP mice.
Mutant calreticulin-expressing cells induce monocyte hyperreactivity through a paracrine mechanism
Garbati, Michael R.; Welgan, Catherine A.; Landefeld, Sally H.; Newell, Laura F.; Agarwal, Anupriya; Dunlap, Jennifer B.; Chourasia, Tapan K.; Lee, Hyunjung; Elferich, Johannes; Traer, Elie; Rattray, Rogan; Cascio, Michael J.; Press, Richard D.; Bagby, Grover C.; Tyner, Jeffrey W.; Druker, Brian J.; Dao, Kim-Hien T.
2016-01-01
Mutations in the calreticulin gene (CALR) were recently identified in approximately 70–80% of patients with JAK2-V617F-negative essential thrombocytosis and primary myelofibrosis. All frameshift mutations generate a recurring novel C-terminus. Here we provide evidence that mutant calreticulin does not accumulate efficiently in cells and is abnormally enriched in the nucleus and extracellular space compared to wildtype calreticulin. The main determinant of these findings is the loss of the calcium-binding and KDEL domains. Expression of type I mutant CALR in Ba/F3 cells confers minimal IL-3-independent growth. Interestingly, expression of type I and type II mutant CALR in a non-hematopoietic cell line does not directly activate JAK/STAT signaling compared to JAK2-V617F expression. These results led us to investigate paracrine mechanisms of JAK/STAT activation. Here we show that conditioned media from cells expressing type I mutant CALR exaggerate cytokine production from normal monocytes with or without treatment with a toll-like receptor agonist. These effects are not dependent on the novel C-terminus. These studies offer novel insights into the mechanism of JAK/STAT activation in patients with JAK2-V617F-negative essential thrombocytosis and primary myelofibrosis. PMID:26573090
Heart-specific expression of laminopathic mutations in transgenic zebrafish.
Verma, Ajay D; Parnaik, Veena K
2017-07-01
Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.
Kalemeera, Francis; Mbango, Christofina; Mubita, Mwangana; Naikaku, Esther; Gaida, Razia; Godman, Brian
2016-08-01
Tenofovir disoproxil fumarate (TDF) and lopinavir/ritonavir (LPV/r) can cause renal impairment with this combination co-administered during second-line combination antiretroviral therapy (cART) potentially associated with greater risk of nephrotoxicity. As a result, the aim of this study is to assess effects of second-line cART on renal function. Retrospective longitudinal study in patients receiving cART. 71 patients received TDF, zidovudine or stavudine, each combined with 3TC/NVP or 3TC/EFV. Before second-line cART, 46.5% had abnormal kidney function. First-line cART had no relationship with calculated creatinine clearance (CrCl). During second-line cART, more males than females had abnormal renal function and more females experienced increases in CrCl. Calculated CrCl during second-line cART related strongly with CrCl during first-line cART. Time spent on cART had a weak relationship with CrCl. Patients on first-line cART for several years without renal impairment may experience new onset impairment during second line cART. Patients with pre-existing renal impairment just before switching to second-line cART may experience a further decline.
Transvaginal Ultrasound for the Diagnosis of Abnormal Uterine Bleeding.
Wheeler, Karen C; Goldstein, Steven R
2017-03-01
Transvaginal ultrasound is the first-line imaging test for the evaluation of abnormal uterine bleeding in both premenopausal and postmenopausal women. Transvaginal ultrasound can be used to diagnose structural causes of abnormal bleeding such as polyps, adenomyosis, leiomyomas, hyperplasia, and malignancy, and can also be beneficial in making the diagnosis of ovulatory dysfunction. Traditional 2-dimensional imaging is often enhanced by the addition of 3-dimension imaging with coronal reconstruction and saline infusion sonohysterography. In this article we discuss specific ultrasound findings and technical considerations useful in the diagnosis of abnormal uterine bleeding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Junghwa; Jung, Hye Jin; Jeong, Seung Hun
2014-12-12
Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identificationmore » and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.« less
Kato, Yoko; Li, Xiangping; Amarnath, Dasari; Ushizawa, Koichi; Hashizume, Kazuyoshi; Tokunaga, Tomoyuki; Taniguchi, Masanori; Tsunoda, Yukio
2007-01-01
Placental abnormalities are the main factor in the high incidence of somatic cell clone abnormalities. The expression of several trophoblast cell-specific molecules is enhanced during gestational days 7 to 14. To determine the possible genes whose expression patterns might reflect calf normality, we first compared the gene expression profiles on day 15 between in vitro-fertilized (IVF) embryos and two types of somatic cell nuclear-transferred embryos with either a high (FNT) or low (CNT) incidence of neonatal abnormalities using a cDNA microarray containing 16 of 21 placenta-specific genes developed from tissues collected across gestation. To identify significant genes from the screening of day 15 embryos, genes with a less than two-fold difference in expression between IVF and CNT embryos, and those with a greater than two-fold difference between IVF and FNT and between CNT and FNT were considered to contribute to clone abnormalities. These two comparisons revealed 18 down-regulated and 18 upregulated genes of the 1722 genes examined. We then examined the expression levels of 10 genes with known functions in eight-cell and blastocyst-stage embryos by real-time PCR. The mRNA expression pattern of interferon (IFN)-tau, a trophectoderm-related gene, differed between IVF, CNT, and FNT eight-cell embryos; few or none of the IVF or CNT eight-cell embryos expressed IFN-tau mRNA, but all eight-cell FNT embryos expressed IFN-tau. IFN-tau mRNA expression was significantly higher in IVF blastocysts, however, than in nuclear-transferred blastocysts. Average IFN-tau mRNA expression in FNT blastocysts was not different from that in CNT blastocysts, due to one CNT blastocyst with high expression. The precise relation between early expression of IFN-tau mRNA and inferior developmental potential in cloned embryos should be examined further.
Honda, Takuya; Morii, Mariko; Nakayama, Yuji; Suzuki, Ko; Yamaguchi, Noritaka; Yamaguchi, Naoto
2018-01-18
v-Src is the first identified oncogene product and has a strong tyrosine kinase activity. Much of the literature indicates that v-Src expression induces anchorage-independent and infinite cell proliferation through continuous stimulation of growth signaling by v-Src activity. Although all of v-Src-expressing cells are supposed to form transformed colonies, low frequencies of v-Src-induced colony formation have been observed so far. Using cells that exhibit high expression efficiencies of inducible v-Src, we show that v-Src expression causes cell-cycle arrest through p21 up-regulation despite ERK activation. v-Src expression also induces chromosome abnormalities and unexpected suppression of v-Src expression, leading to p21 down-regulation and ERK inactivation. Importantly, among v-Src-suppressed cells, only a limited number of cells gain the ability to re-proliferate and form transformed colonies. Our findings provide the first evidence that v-Src-driven transformation is attributed to chromosome abnormalities, but not continuous stimulation of growth signaling, possibly through stochastic genetic alterations.
Deletion of the Snord116/SNORD116 Alters Sleep in Mice and Patients with Prader-Willi Syndrome.
Lassi, Glenda; Priano, Lorenzo; Maggi, Silvia; Garcia-Garcia, Celina; Balzani, Edoardo; El-Assawy, Nadia; Pagani, Marco; Tinarelli, Federico; Giardino, Daniela; Mauro, Alessandro; Peters, Jo; Gozzi, Alessandro; Grugni, Graziano; Tucci, Valter
2016-03-01
Sleep-wake disturbances are often reported in Prader-Willi syndrome (PWS), a rare neurodevelopmental syndrome that is associated with paternally-expressed genomic imprinting defects within the human chromosome region 15q11-13. One of the candidate genes, prevalently expressed in the brain, is the small nucleolar ribonucleic acid-116 (SNORD116). Here we conducted a translational study into the sleep abnormalities of PWS, testing the hypothesis that SNORD116 is responsible for sleep defects that characterize the syndrome. We studied sleep in mutant mice that carry a deletion of Snord116 at the orthologous locus (mouse chromosome 7) of the human PWS critical region (PWScr). In particular, we assessed EEG and temperature profiles, across 24-h, in PWScr (m+/p-) heterozygous mutants compared to wild-type littermates. High-resolution magnetic resonance imaging (MRI) was performed to explore morphoanatomical differences according to the genotype. Moreover, we complemented the mouse work by presenting two patients with a diagnosis of PWS and characterized by atypical small deletions of SNORD116. We compared the individual EEG parameters of patients with healthy subjects and with a cohort of obese subjects. By studying the mouse mutant line PWScr(m+/p-), we observed specific rapid eye movement (REM) sleep alterations including abnormal electroencephalograph (EEG) theta waves. Remarkably, we observed identical sleep/EEG defects in the two PWS cases. We report brain morphological abnormalities that are associated with the EEG alterations. In particular, mouse mutants have a bilateral reduction of the gray matter volume in the ventral hippocampus and in the septum areas, which are pivotal structures for maintaining theta rhythms throughout the brain. In PWScr(m+/p-) mice we also observed increased body temperature that is coherent with REM sleep alterations in mice and human patients. Our study indicates that paternally expressed Snord116 is involved in the 24-h regulation of sleep physiological measures, suggesting that it is a candidate gene for the sleep disturbances that most individuals with PWS experience. © 2016 Associated Professional Sleep Societies, LLC.
Colitz, C M; Malarkey, D E; Woychik, R P; Wilkinson, J E
2000-09-01
Persistent hyperplastic tunica vasculosa lentis and persistent hyperplastic primary vitreous are congenital ocular anomalies that can lead to cataract formation. A line of insertional mutant mice, TgN3261Rpw, generated at the Oak Ridge National Laboratory in a large-scale insertional mutagenesis program was found to have a low incidence (8/243; 3.29%) of multiple developmental ocular abnormalities. The ocular abnormalities include persistent hyperplastic primary vitreous, persistent hyperplastic tunica vasculosa lentis, failure of cleavage of the anterior segment, retrolental fibrovascular membrane, posterior polar cataract, and detached retina. This transgenic mouse line provides an ontogenetic model because of the high degree of similarity of this entity in humans, dogs, and mice.
ERIC Educational Resources Information Center
Rahko, Jukka S.; Paakki, Jyri-Johan; Starck, Tuomo H.; Nikkinen, Juha; Pauls, David L.; Katsyri, Jari V.; Jansson-Verkasalo, Eira M.; Carter, Alice S.; Hurtig, Tuula M.; Mattila, Marja-Leena; Jussila, Katja K.; Remes, Jukka J.; Kuusikko-Gauffin, Sanna A.; Sams, Mikko E.; Bolte, Sven; Ebeling, Hanna E.; Moilanen, Irma K.; Tervonen, Osmo; Kiviniemi, Vesa
2012-01-01
FMRI was performed with the dynamic facial expressions fear and happiness. This was done to detect differences in valence processing between 25 subjects with autism spectrum disorders (ASDs) and 27 typically developing controls. Valence scaling was abnormal in ASDs. Positive valence induces lower deactivation and abnormally strong activity in ASD…
Alcalde, Ignacio; Íñigo-Portugués, Almudena; González-González, Omar; Almaraz, Laura; Artime, Enol; Morenilla-Palao, Cruz; Gallar, Juana; Viana, Félix; Merayo-Lloves, Jesús; Belmonte, Carlos
2018-08-01
Morphological and functional alterations of peripheral somatosensory neurons during the aging process lead to a decline of somatosensory perception. Here, we analyze the changes occurring with aging in trigeminal ganglion (TG), TRPM8-expressing cold thermoreceptor neurons innervating the mouse cornea, which participate in the regulation of basal tearing and blinking and have been implicated in the pathogenesis of dry eye disease (DED). TG cell bodies and axonal branches were examined in a mouse line (TRPM8 BAC -EYFP) expressing a fluorescent reporter. In 3 months old animals, about 50% of TG cold thermoreceptor neurons were intensely fluorescent, likely providing strongly fluorescent axons and complex corneal nerve terminals with ongoing activity at 34°C and low-threshold, robust responses to cooling. The remaining TRPM8 + corneal axons were weakly fluorescent with nonbeaded axons, sparsely ramified nerve terminals, and exhibited a low-firing rate at 34°C, responding moderately to cooling pulses as do weakly fluorescent TG neurons. In aged (24 months) mice, the number of weakly fluorescent TG neurons was strikingly high while the morphology of TRPM8 + corneal axons changed drastically; 89% were weakly fluorescent, unbranched, and often ending in the basal epithelium. Functionally, 72.5% of aged cold terminals responded as those of young animals, but 27.5% exhibited very low-background activity and abnormal responsiveness to cooling pulses. These morpho-functional changes develop in parallel with an enhancement of tear's basal flow and osmolarity, suggesting that the aberrant sensory inflow to the brain from impaired peripheral cold thermoreceptors contributes to age-induced abnormal tearing and to the high incidence of DED in elderly people. © 2018 Wiley Periodicals, Inc.
Prediction of epigenetically regulated genes in breast cancer cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen
Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines,more » which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the panel of breast cancer cell lines. Subnetwork enrichment of these genes has identifed 35 common regulators with 6 or more predicted markers. In addition to identifying epigenetically regulated genes, we show evidence of differentially expressed methylation patterns between the basal and luminal subtypes. Our results indicate that the proposed computational protocol is a viable platform for identifying epigenetically regulated genes. Our protocol has generated a list of predictors including COL1A2, TOP2A, TFF1, and VAV3, genes whose key roles in epigenetic regulation is documented in the literature. Subnetwork enrichment of these predicted markers further suggests that epigenetic regulation of individual genes occurs in a coordinated fashion and through common regulators.« less
Cardioprotective effects of 70-kDa heat shock protein in transgenic mice.
Radford, N B; Fina, M; Benjamin, I J; Moreadith, R W; Graves, K H; Zhao, P; Gavva, S; Wiethoff, A; Sherry, A D; Malloy, C R; Williams, R S
1996-01-01
Heat shock proteins are proposed to limit injury resulting from diverse environmental stresses, but direct metabolic evidence for such a cytoprotective function in vertebrates has been largely limited to studies of cultured cells. We generated lines of transgenic mice to express human 70-kDa heat shock protein constitutively in the myocardium. Hearts isolated from these animals demonstrated enhanced recovery of high energy phosphate stores and correction of metabolic acidosis following brief periods of global ischemia sufficient to induce sustained abnormalities of these variables in hearts from nontransgenic littermates. These data demonstrate a direct cardioprotective effect of 70-kDa heat shock protein to enhance postischemic recovery of the intact heart. Images Fig. 1 Fig. 3 PMID:8637874
Silencing VDAC1 Expression by siRNA Inhibits Cancer Cell Proliferation and Tumor Growth In Vivo
Arif, Tasleem; Vasilkovsky, Lilia; Refaely, Yael; Konson, Alexander; Shoshan-Barmatz, Varda
2014-01-01
Alterations in cellular metabolism and bioenergetics are vital for cancer cell growth and motility. Here, the role of the mitochondrial protein voltage-dependent anion channel (VDAC1), a master gatekeeper regulating the flux of metabolites and ions between mitochondria and the cytoplasm, in regulating the growth of several cancer cell lines was investigated by silencing VDAC1 expression using small interfering RNA (siRNA). A single siRNA specific to the human VDAC1 sequence at nanomolar concentrations led to some 90% decrease in VDAC1 levels in the lung A549 and H358, prostate PC-3, colon HCT116, glioblastoma U87, liver HepG2, and pancreas Panc-1 cancer cell lines. VDAC1 silencing persisted 144 hours post-transfection and resulted in profound inhibition of cell growth in cancer but not in noncancerous cells, with up to 90% inhibition being observed over 5 days that was prolonged by a second transfection. Cells expressing low VDAC1 levels showed decreased mitochondrial membrane potential and adenoside triphosphate (ATP) levels, suggesting limited metabolite exchange between mitochondria and cytosol. Moreover, cells silenced for VDAC1 expression showed decreased migration, even in the presence of the wound healing accelerator basic fibroblast growth factor (bFGF). VDAC1-siRNA inhibited cancer cell growth in a Matrigel-based assay in host nude mice. Finally, in a xenograft lung cancer mouse model, chemically modified VDAC1-siRNA not only inhibited tumor growth but also resulted in tumor regression. This study thus shows that VDAC1 silencing by means of RNA interference (RNAi) dramatically inhibits cancer cell growth and tumor development by disabling the abnormal metabolic behavior of cancer cells, potentially paving the way for a more effective pipeline of anticancer drugs. PMID:24781191
Zhang, Xun; Gejman, Roger; Mahta, Ali; Zhong, Ying; Rice, Kimberley A.; Zhou, Yunli; Cheunsuchon, Pornsuk; Louis, David N.; Klibanski, Anne
2010-01-01
Meningiomas are common tumors, representing 15-25% of all central nervous system tumors. NF2 gene inactivation on chromosome 22 has been shown as an early event in tumorigenesis; however, few factors underlying tumor growth and progression have been identified. Chromosomal abnormalities of 14q32 are often associated with meningioma pathogenesis and progression; therefore it has been proposed that an as yet unidentified tumor suppressor is present at this locus. MEG3 is an imprinted gene located at 14q32 that encodes a non-coding RNA with an anti-proliferative function. We found that MEG3 mRNA is highly expressed in normal arachnoidal cells. However, MEG3 is not expressed in the majority of human meningiomas or the human meningioma cell lines IOMM-Lee and CH157-MN. There is a strong association between loss of MEG3 expression and tumor grade. Allelic loss at the MEG3 locus is also observed in meningiomas, with increasing prevalence in higher grade tumors. In addition, there is an increase in CpG methylation within the promoter and the imprinting control region of MEG3 gene in meningiomas. Functionally, MEG3 suppresses DNA synthesis in both IOMM-Lee and CH157-MN cells by approximately 60% in BrdU incorporation assays. Colony-forming efficiency assays show that MEG3 inhibits colony formation in CH157-MN cells by approximately 80%. Furthermore, MEG3 stimulates p53-mediated transactivation in these cell lines. Therefore, these data are consistent with the hypothesis that MEG3, which encodes a non-coding RNA, may be a tumor suppressor gene at chromosome 14q32 involved in meningioma progression via a novel mechanism. PMID:20179190
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwan, Johnson; Baumgartner, Adolf; Lu, Chun-Mei
2009-03-09
Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, RET and neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- and interchromosomal rearrangements has been suggested as a cause of the disease. However, many phenotypically similar tumors do not carry an activated RET or NTRK-1 gene or express abnormal ret or NTRK-1 transcripts. Thus, we hypothesize that other cellular RTK-type genes are aberrantly expressed in these tumors. Using fluorescence in situ hybridization-based methods, we are studying karyotype changes in a relativelymore » rare subgroup of PTCs, i.e., tumors that arose in children following the 1986 nuclear accident in Chernobyl, Ukraine. Here, we report our technical developments and progress in deciphering complex chromosome aberrations in case S48TK, an aggressively growing PTC cell line, which shows an unusual high number of unbalanced translocations.« less
Inohaya, Keiji; Takano, Yoshiro; Kudo, Akira
2010-06-01
The floor plate is a key organizer that controls the specification of neurons in the central nervous system. Here, we show a new role of the floor plate: segmental pattern formation of the vertebral column. Analysis of a spontaneous medaka mutant, fused centrum (fsc), which exhibits fused centra and the absence of the intervertebral ligaments, revealed that fsc encodes wnt4b, which was expressed exclusively in the floor plate. In fsc mutants, we found that wnt4b expression was completely lost in the floor plate and that abnormal conversion of the intervertebral ligament cells into osteoblasts appeared to cause a defect of the intervertebral ligaments. The establishment of the transgenic rescue lines and mosaic analyses allowed the conclusion to be drawn that production of wnt4b by floor plate cells is essential for the segmental patterning of the vertebral column. Our findings provide a novel perspective on the mechanism of vertebrate development.
Zhang, Bao-gui; Hu, Lei; Zang, Ming-de; Wang, He-xiao; Zhao, Wei; Li, Jian-fang; Su, Li-ping; Shao, Zhifeng; Zhao, Xiaodong; Zhu, Zheng-gang; Yan, Min; Liu, Bingya
2016-03-01
Methylation of CpG islands in tumor suppressor gene prompter is one of the most characteristic abnormalities in Helicobacter pylori (HP)-associated gastric carcinoma (GC). Here, we investigated the pathogenic and molecular mechanisms underlying hypermethylation of tumor suppressor genes in HP induced GC development. We found that tumor suppressor genes hypermethylation, represented by MGMT, positively correlated with CagA in clinical specimens, gastric tissues from HP infected C57 mice and GC cell lines transfected by CagA or treated by HP infection. CagA enhanced PDK1 and AKT interaction and increased AKT phosphorylation. The P-AKT subsequent activated NFκB, which then bound to DNMT1 promoter and increased its expression. Finally, the upregulated DNMT1 promoted tumor suppressor genes hypermethylation with MGMT as a representative. In conclusion, CagA increased tumor suppressor genes hypermethylation via stimulating DNMT1 expression through the AKT-NFκB pathway.
Wang, He-xiao; Zhao, Wei; Li, Jian-fang; Su, Li-ping; Shao, Zhifeng; Zhao, Xiaodong; Zhu, Zheng-gang; Yan, Min; Liu, Bingya
2016-01-01
Methylation of CpG islands in tumor suppressor gene prompter is one of the most characteristic abnormalities in Helicobacter pylori (HP)-associated gastric carcinoma (GC). Here, we investigated the pathogenic and molecular mechanisms underlying hypermethylation of tumor suppressor genes in HP induced GC development. We found that tumor suppressor genes hypermethylation, represented by MGMT, positively correlated with CagA in clinical specimens, gastric tissues from HP infected C57 mice and GC cell lines transfected by CagA or treated by HP infection. CagA enhanced PDK1 and AKT interaction and increased AKT phosphorylation. The P-AKT subsequent activated NFκB, which then bound to DNMT1 promoter and increased its expression. Finally, the upregulated DNMT1 promoted tumor suppressor genes hypermethylation with MGMT as a representative. In conclusion, CagA increased tumor suppressor genes hypermethylation via stimulating DNMT1 expression through the AKT-NFκB pathway. PMID:26848521
Fertility in 47,XXX and 45,X patients.
Dewhurst, J
1978-01-01
Female patients with a sex chromosome abnormality may be fertile. In patients with a 47,XXX cell line there appears to be an increased risk of a cytogenetically abnormal child but the extent of this risk cannot yet be determined; it is probably lower in the non-mosaic 47,XXX patient than the mosaic 46,XX/47,XXX one. Patients with a 45,X cell line rarly become pregnant, and when they do they appear to have a high risk of an abnormal child or repeated unsuccessfuly pregnancies; this risk is certainly exaggerated by the method of reporting; when the poor reproductive perforamcne is first identified leading to the recognition of the maternal cytogenetic fault, the reproductive failure rate is naturally high; when the maternal fault is first identified and the reproductive history then established far better results are evident. PMID:641947
Cell death cascade and molecular therapy in ADAR2-deficient motor neurons of ALS.
Yamashita, Takenari; Kwak, Shin
2018-06-23
TAR DNA-binding protein (TDP-43) pathology in the motor neurons is the most reliable pathological hallmark of amyotrophic lateral sclerosis (ALS), and motor neurons bearing TDP-43 pathology invariably exhibit failure in RNA editing at the GluA2 glutamine/arginine (Q/R) site due to down-regulation of adenosine deaminase acting on RNA 2 (ADAR2). Conditional ADAR2 knockout (AR2) mice display ALS-like phenotype, including progressive motor dysfunction due to loss of motor neurons. Motor neurons devoid of ADAR2 express Q/R site-unedited GluA2, and AMPA receptors with unedited GluA2 in their subunit assembly are abnormally permeable to Ca 2+ , which results in progressive neuronal death. Moreover, analysis of AR2 mice has demonstrated that exaggerated Ca 2+ influx through the abnormal AMPA receptors overactivates calpain, a Ca 2+ -dependent protease, that cleaves TDP-43 into aggregation-prone fragments, which serve as seeds for TDP-43 pathology. Activated calpain also disrupts nucleo-cytoplasmic transport and gene expression by cleaving molecules involved in nucleocytoplasmic transport, including nucleoporins. These lines of evidence prompted us to develop molecular targeting therapy for ALS by normalization of disrupted intracellular environment due to ADAR2 down-regulation. In this review, we have summarized the work from our group on the cell death cascade in sporadic ALS and discussed a potential therapeutic strategy for ALS. Copyright © 2018 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Yang, Yang; Wu, Dan; Liu, Dewu; Shi, Junsong; Zhou, Rong; He, Xiaoyan; Quan, Jianping; Cai, Gengyuan; Zheng, Enqin; Wu, Zhenfang; Li, Zicong
2017-06-01
XIST is an X-linked, non-coding gene responsible for the cis induction of X-chromosome inactivation (XCI). Knockout of the XIST allele on an active X chromosome abolishes erroneous XCI and enhances the in vivo development of cloned mouse embryos by more than 10-fold. This study aimed to investigate whether a similar manipulation would improve cloning efficiency in pigs. A male, porcine kidney cell line containing an EGFP insert in exon 1 of the XIST gene, resulting in a knockout allele (XIST-KO), was generated by homologous recombination using transcription activator-like effector nucleases (TALENs). The expression of X-linked genes in embryos cloned from the XIST-KO kidney cells was significantly higher than in male embryos cloned from wild-type (WT) kidney cells, but remained lower than that of in vivo fertilization-produced counterparts. The XIST-KO cloned embryos also had a significantly lower blastocyst rate and a reduced full-term development rate compared to cloned WT embryos. These data suggested that while mutation of a XIST gene can partially rescue abnormal XCI, it cannot improve the developmental efficiency of cloned male porcine embryos-a deficiency that may be caused by incomplete rescue of abnormal XCI and/or by long-term drug selection of the XIST-KO nuclear donor cells, which might adversely affect the developmental efficiency of embryos created from them. © 2017 Wiley Periodicals, Inc.
Computer-Aided Diagnostic System For Mass Survey Chest Images
NASA Astrophysics Data System (ADS)
Yasuda, Yoshizumi; Kinoshita, Yasuhiro; Emori, Yasufumi; Yoshimura, Hitoshi
1988-06-01
In order to support screening of chest radiographs on mass survey, a computer-aided diagnostic system that automatically detects abnormality of candidate images using a digital image analysis technique has been developed. Extracting boundary lines of lung fields and examining their shapes allowed various kind of abnormalities to be detected. Correction and expansion were facilitated by describing the system control, image analysis control and judgement of abnormality in the rule type programing language. In the experiments using typical samples of student's radiograms, good results were obtained for the detection of abnormal shape of lung field, cardiac hypertrophy and scoliosis. As for the detection of diaphragmatic abnormality, relatively good results were obtained but further improvements will be necessary.
Mps1 as a link between centrosomes and genomic instability.
Kasbek, Christopher; Yang, Ching-Hui; Fisk, Harold A
2009-10-01
Centrosomes are microtubule-organizing centers that must be precisely duplicated before mitosis. Centrosomes regulate mitotic spindle assembly, and the presence of excess centrosomes leads to the production of aberrant mitotic spindles which generate chromosome segregation errors. Many human tumors possess excess centrosomes that lead to the production of abnormal spindles in situ. In some tumors, these extra centrosomes appear before aneuploidy, suggesting that defects in centrosome duplication might promote genomic instability and tumorigenesis. The Mps1 protein kinase is required for centrosome duplication, and preventing the proteasome-dependent degradation of Mps1 at centrosomes increases its local concentration and causes the production of excess centrosomes during a prolonged S-phase. Here, we show that Mps1 degradation is misregulated in two tumor-derived cell lines, and that the failure to appropriately degrade Mps1 correlates with the ability of these cells to produce extra centrosomes during a prolonged S-phase. In the 21NT breast-tumor derived cell line, a mutant Mps1 protein that is normally constitutively degraded can accumulate at centrosomes and perturb centrosome duplication, suggesting that these cells have a defect in the mechanisms that target Mps1 to the proteasome. In contrast, the U2OS osteosarcoma cell line expresses a nondegradable form of Mps1, which we show causes the dose-dependent over duplication of centrioles even at very low levels of expression. Our data demonstrate that defects in Mps1 degradation can occur through multiple mechanisms, and suggest that Mps1 may provide a link between the control of centrosome duplication and genomic instability. (c) 2009 Wiley-Liss, Inc.
Hernández, Luis; Navarro, Alba; Beà, Sílvia; Pinyol, Magda; López-Guillermo, Armando; Rosenwald, Andreas; Ott, German; Campo, Elías; Jares, Pedro
2011-01-01
Background Mantle cell lymphoma (MCL) is genetically characterized by the t(11;14)(q13;q32) translocation and a high number of secondary chromosomal alterations. The contribution of DNA methylation to MCL lymphomagenesis is not well known. We sought to identify epigenetically silenced genes in these tumours that might have clinical relevance. Methodology/Principal Findings To identify potential methylated genes in MCL we initially investigated seven MCL cell lines treated with epigenetic drugs and gene expression microarray profiling. The methylation status of selected candidate genes was validated by a quantitative assay and subsequently analyzed in a series of primary MCL (n = 38). After pharmacological reversion we identified 252 potentially methylated genes. The methylation analysis of a subset of these genes (n = 25) in the MCL cell lines and normal B lymphocytes confirmed that 80% of them were methylated in the cell lines but not in normal lymphocytes. The subsequent analysis in primary MCL identified five genes (SOX9, HOXA9, AHR, NR2F2, and ROBO1) frequently methylated in these tumours. The gene methylation events tended to occur in the same primary neoplasms and correlated with higher proliferation, increased number of chromosomal abnormalities, and shorter survival of the patients. Conclusions We have identified a set of genes whose methylation degree and gene expression levels correlate with aggressive clinicopathological features of MCL. Our findings also suggest that a subset of MCL might show a CpG island methylator phenotype (CIMP) that may influence the behaviour of the tumours. PMID:21603610
Jin, Wei; Jia, Kuntong; Yang, Lili; Chen, Jialin; Wu, Yuping; Yi, Meisheng
2013-06-01
The marine mammalian Indo-Pacific humpback dolphin, once widely lived in waters of the Indian to western Pacific oceans, has become an endangered species. The individual number of this dolphin has significantly declined in recent decades, which raises the concern of extinction. Direct concentration on laboratorial conservation of the genetic and cell resources should be paid to this marine species. Here, we report the successful derivation of cell lines form the skin of Indo-Pacific humpback dolphin. The cell cultures displayed the characteristics of fibroblast in morphology and grew rapidly at early passages, but showed obvious growth arrest at higher passages. The karyotype of the cells consisted of 42 autosomes and sex chromosomes X and Y. The immortalized cell lines obtained by forced expression of the SV40 large T-antigen were capable of proliferation at high rate in long-term culture. Immortalization and long-term culture did not cause cytogenetically observable abnormality in the karyotype. The cell type of the primary cultures and immortalized cell lines were further characterized as fibroblasts by the specific expression of vimentin. Gene transfer experiments showed that exogenetic genes could be efficiently delivered into the cells by both plasmid transfection and lentivirus infection. The cells derived from the skin of the Indo-Pacific humpback dolphin may serve as a useful in vitro system for studies on the effects of environmental pollutants and pathogens in habitats on the dolphin animals. More importantly, because of their high proliferation rate and susceptibility to lentivirus, these cells are potential ideal materials for generation of induced pluripotent stem cells.
Yu, Chaowen; Huang, Shuodan; Wang, Ming; Zhang, Juan; Liu, Hao; Yuan, Zhaojian; Wang, Xingbin; He, Xiaoyan; Wang, Jie; Zou, Lin
2017-02-10
Traditional methods for thalassemia screening are time-consuming and easily affected by cell hemolysis or hemoglobin degradation in stored blood samples. Tandem mass spectrometry (MS/MS) proved to be an effective technology for sickle cell disorders (SCD) screening. Here, we developed a novel MS/MS method for β-thalassemia screening from dried blood spots (DBS). Stable isotopic-labeled peptides were used as internal standards for quantification and calculation of the α:β-globin ratios. We used the α:β-globin ratio cutoffs to differentiate between normal individuals and patients with thalassemia. About 781 patients and 300 normal individuals were analyzed. The α:β-globin ratios showed significant difference between normal and β-thalassemia patients (P<0.01), particularly when the disease was homozygous or double heterozygous with another α- or β-thalassemia mutation. In the parallel study, all cases screened for suspected thalassemia from six hundred DBS samples by using this MS/MS method were successfully confirmed by genotyping. The intra-assay and inter-assay CVs of the ratios ranged from 2.4% to 3.9% and 4.7% to 7.1%, and there was no significant sample carryover or matrix effect for this MS/MS method. Combined with SCD screening, this MS/MS method could be used as a first-line screening assay for both structural and expression abnormalities of human hemoglobin. Traditional methods for thalassemia screening were depending on the structural integrity of tetramers and could be affected by hemolysis and degradation of whole blood samples, especially when stored. We used proteospecific peptides produced by the tryptic digestion of each globin to evaluate the production ratio between α- and β-globin chains, which turned out to be quite stable even when stored for more than two months. Though most of the peptides were specific to α-globin or β-globin, we only chose four most informative peptides and its stable isotopic-labeled peptides as internal standards for analysis, which could obtain a high accuracy. Currently, we are the first to address the application of MS/MS for thalassemia screening, when combined with SCD screening, this MS/MS method could be used as a first-line screening assay for both structural and expression abnormalities of human hemoglobin. Copyright © 2016. Published by Elsevier B.V.
Katsel, Pavel; Tan, Weilun; Abazyan, Bagrat; Davis, Kenneth L; Ross, Christopher; Pletnikov, Mikhail V; Haroutunian, Vahram
2011-01-01
Abnormalities in oligodendrocyte (OLG) differentiation and OLG gene expression deficit have been described in schizophrenia (SZ). Recent studies revealed a critical requirement for Disrupted-in-Schizophrenia 1 (DISC1) in neural development. Transgenic mice with forebrain restricted expression of mutant human DISC1 (ΔhDISC1) are characterized by neuroanatomical and behavioral abnormalities reminiscent of some features of SZ. We sought to determine whether the expression of ΔhDISC1 may influence the development of OLGs in this mouse model. OLG- and cell cycle-associated gene and protein expression were characterized in the forebrain of ΔhDISC1 mice during different stages of neurodevelopment (E15 and P1 days) and in adulthood. The results suggest that the expression of ΔhDISC1 exerts a significant influence on oligodendrocyte differentiation and function, evidenced by premature OLG differentiation and increased proliferation of their progenitors. Additional findings showed that neuregulin 1 and its receptors may be contributing factors to the observed upregulation of OLG genes. Thus, OLG function may be perturbed by mutant hDISC1 in a model system that provides new avenues for studying aspects of the pathogenesis of SZ. PMID:21605958
VE-Cadherin–Mediated Epigenetic Regulation of Endothelial Gene Expression
Morini, Marco F.; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I.; Conze, Lei L.; O’Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P.
2018-01-01
Rationale: The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. Objective: We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. Methods and Results: We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5, vascular endothelial-protein tyrosine phosphatase (VE-PTP), and von Willebrand factor (vWf). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5, VE-PTP, and vWf. VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5, VE-PTP, and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. Conclusions: These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system. PMID:29233846
VE-Cadherin-Mediated Epigenetic Regulation of Endothelial Gene Expression.
Morini, Marco F; Giampietro, Costanza; Corada, Monica; Pisati, Federica; Lavarone, Elisa; Cunha, Sara I; Conze, Lei L; O'Reilly, Nicola; Joshi, Dhira; Kjaer, Svend; George, Roger; Nye, Emma; Ma, Anqi; Jin, Jian; Mitter, Richard; Lupia, Michela; Cavallaro, Ugo; Pasini, Diego; Calado, Dinis P; Dejana, Elisabetta; Taddei, Andrea
2018-01-19
The mechanistic foundation of vascular maturation is still largely unknown. Several human pathologies are characterized by deregulated angiogenesis and unstable blood vessels. Solid tumors, for instance, get their nourishment from newly formed structurally abnormal vessels which present wide and irregular interendothelial junctions. Expression and clustering of the main endothelial-specific adherens junction protein, VEC (vascular endothelial cadherin), upregulate genes with key roles in endothelial differentiation and stability. We aim at understanding the molecular mechanisms through which VEC triggers the expression of a set of genes involved in endothelial differentiation and vascular stabilization. We compared a VEC-null cell line with the same line reconstituted with VEC wild-type cDNA. VEC expression and clustering upregulated endothelial-specific genes with key roles in vascular stabilization including claudin-5 , vascular endothelial-protein tyrosine phosphatase ( VE-PTP ), and von Willebrand factor ( vWf ). Mechanistically, VEC exerts this effect by inhibiting polycomb protein activity on the specific gene promoters. This is achieved by preventing nuclear translocation of FoxO1 (Forkhead box protein O1) and β-catenin, which contribute to PRC2 (polycomb repressive complex-2) binding to promoter regions of claudin-5 , VE-PTP , and vWf . VEC/β-catenin complex also sequesters a core subunit of PRC2 (Ezh2 [enhancer of zeste homolog 2]) at the cell membrane, preventing its nuclear translocation. Inhibition of Ezh2/VEC association increases Ezh2 recruitment to claudin-5 , VE-PTP , and vWf promoters, causing gene downregulation. RNA sequencing comparison of VEC-null and VEC-positive cells suggested a more general role of VEC in activating endothelial genes and triggering a vascular stability-related gene expression program. In pathological angiogenesis of human ovarian carcinomas, reduced VEC expression paralleled decreased levels of claudin-5 and VE-PTP. These data extend the knowledge of polycomb-mediated regulation of gene expression to endothelial cell differentiation and vessel maturation. The identified mechanism opens novel therapeutic opportunities to modulate endothelial gene expression and induce vascular normalization through pharmacological inhibition of the polycomb-mediated repression system. © 2017 The Authors.
Expression of human PQBP-1 in Drosophila impairs long-term memory and induces abnormal courtship.
Yoshimura, Natsue; Horiuchi, Daisuke; Shibata, Masao; Saitoe, Minoru; Qi, Mei-Ling; Okazawa, Hitoshi
2006-04-17
Frame shift mutations of the polyglutamine binding protein-1 (PQBP1) gene lead to total or partial truncation of the C-terminal domain (CTD) and cause mental retardation in human patients. Interestingly, normal Drosophila homologue of PQBP-1 lacks CTD. As a model to analyze the molecular network of PQBP-1 affecting intelligence, we generated transgenic flies expressing human PQBP-1 with CTD. Pavlovian olfactory conditioning revealed that the transgenic flies showed disturbance of long-term memory. In addition, they showed abnormal courtship that male flies follow male flies. Abnormal functions of PQBP-1 or its binding partner might be linked to these symptoms.
Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos
Geens, Mieke; Mateizel, Ileana; Sermon, Karen; De Rycke, Martine; Spits, Claudia; Cauffman, Greet; Devroey, Paul; Tournaye, Herman; Liebaers, Inge; Van de Velde, Hilde
2009-01-01
BACKGROUND Recently, we demonstrated that single blastomeres of a 4-cell stage human embryo are able to develop into blastocysts with inner cell mass and trophectoderm. To further investigate potency at the 4-cell stage, we aimed to derive pluripotent human embryonic stem cells (hESC) from single blastomeres. METHODS Four 4-cell stage embryos were split on Day 2 of preimplantation development and the 16 blastomeres were individually cultured in sequential medium. On Day 3 or 4, the blastomere-derived embryos were plated on inactivated mouse embryonic fibroblasts (MEFs). RESULTS Ten out of sixteen blastomere-derived morulae attached to the MEFs, and two produced an outgrowth. They were mechanically passaged onto fresh MEFs as described for blastocyst ICM-derived hESC, and shown to express the typical stemness markers by immunocytochemistry and/or RT–PCR. In vivo pluripotency was confirmed by the presence of all three germ layers in the teratoma obtained after injection in immunodeficient mice. The first hESC line displays a mosaic normal/abnormal 46, XX, dup(7)(q33qter), del(18)(q23qter) karyotype. The second hESC line displays a normal 46, XY karyotype. CONCLUSION We report the successful derivation and characterization of two hESC lines from single blastomeres of four split 4-cell stage human embryos. These two hESC lines were derived from distinct embryos, proving that at least one of the 4-cell stage blastomeres is pluripotent. PMID:19633307
Ren, Xiaomeng; Ustiyan, Vladimir; Pradhan, Arun; Cai, Yuqi; Havrilak, Jamie A; Bolte, Craig S; Shannon, John M; Kalin, Tanya V; Kalinichenko, Vladimir V
2014-09-26
Inactivating mutations in the Forkhead Box transcription factor F1 (FOXF1) gene locus are frequently found in patients with alveolar capillary dysplasia with misalignment of pulmonary veins, a lethal congenital disorder, which is characterized by severe abnormalities in the respiratory, cardiovascular, and gastrointestinal systems. In mice, haploinsufficiency of the Foxf1 gene causes alveolar capillary dysplasia and developmental defects in lung, intestinal, and gall bladder morphogenesis. Although FOXF1 is expressed in multiple mesenchyme-derived cell types, cellular origins and molecular mechanisms of developmental abnormalities in FOXF1-deficient mice and patients with alveolar capillary dysplasia with misalignment of pulmonary veins remain uncharacterized because of lack of mouse models with cell-restricted inactivation of the Foxf1 gene. In the present study, the role of FOXF1 in endothelial cells was examined using a conditional knockout approach. A novel mouse line harboring Foxf1-floxed alleles was generated by homologous recombination. Tie2-Cre and Pdgfb-CreER transgenes were used to delete Foxf1 from endothelial cells. FOXF1-deficient embryos exhibited embryonic lethality, growth retardation, polyhydramnios, cardiac ventricular hypoplasia, and vascular abnormalities in the lung, placenta, yolk sac, and retina. Deletion of FOXF1 from endothelial cells reduced endothelial proliferation, increased apoptosis, inhibited vascular endothelial growth factor signaling, and decreased expression of endothelial genes critical for vascular development, including vascular endothelial growth factor receptors Flt1 and Flk1, Pdgfb, Pecam1, CD34, integrin β3, ephrin B2, Tie2, and the noncoding RNA Fendrr. Chromatin immunoprecipitation assay demonstrated that Flt1, Flk1, Pdgfb, Pecam1, and Tie2 genes are direct transcriptional targets of FOXF1. FOXF1 is required for the formation of embryonic vasculature by regulating endothelial genes critical for vascular development and vascular endothelial growth factor signaling. © 2014 American Heart Association, Inc.
Mohamad Zaid, Siti Sarah; Kassim, Normadiah M.; Othman, Shatrah
2015-01-01
Bisphenol A (BPA) is an endocrine disrupting chemical (EDC) that can disrupt the normal functions of the reproductive system. The objective of the study is to investigate the potential protective effects of Tualang honey against BPA-induced uterine toxicity in pubertal rats. The rats were administered with BPA by oral gavage over a period of six weeks. Uterine toxicity in BPA-exposed rats was determined by the degree of the morphological abnormalities, increased lipid peroxidation, and dysregulated expression and distribution of ERα, ERβ, and C3 as compared to the control rats. Concurrent treatment of rats with BPA and Tualang honey significantly improved the uterine morphological abnormalities, reduced lipid peroxidation, and normalized ERα, ERβ, and C3 expressions and distribution. There were no abnormal changes observed in rats treated with Tualang honey alone, comparable with the control rats. In conclusion, Tualang honey has potential roles in protecting the uterus from BPA-induced toxicity, possibly accounted for by its phytochemical properties. PMID:26788107
Sajaroff, Elisa Olga; Mansini, Adrian; Rubio, Patricia; Alonso, Cristina Noemí; Gallego, Marta S; Coccé, Mariela C; Eandi-Eberle, Silvia; Bernasconi, Andrea Raquel; Ampatzidou, Maria; Paterakis, George; Papadhimitriou, Stefanos I; Petrikkos, Loizos; Papadakis, Vassilios; Polychronopoulou, Sophia; Rossi, Jorge G; Felice, Maria Sara
2016-10-01
The association between mature-B phenotype and MLL abnormalities in acute lymphoblastic leukemia (ALL) is a very unusual finding; only 14 pediatric cases have been reported so far. We describe the clinical and biological characteristics and outcome of five pediatric cases of newly diagnosed B lineage ALL with MLL abnormalities and mature immunophenotype based on light chain restriction and surface Ig expression. Blasts showed variable expression of CD10/CD34/TdT. MLL abnormalities with no MYC involvement were detected in all patients by G-banding, FISH, and/or RT-PCR. Three patients were treated according to Interfant protocol, one to ALLIC-09, and one received B-NHL-BFM-2004. All patients achieved complete remission and three of them relapsed. Despite the small cohort size, it could be postulated that B lineage ALL with MLL abnormalities and mature phenotype is a distinct entity that differs both from the typical Pro B ALL observed in infants and mature B-ALL with high MYC expression.
Airborne radioactivity survey of parts of Atlantic Ocean beach, Virginia to Florida
Moxham, R.M.; Johnson, R.W.
1953-01-01
The accompanying maps show the results of an airborne radioactivity survey along the Atlantic Ocean beach from Cape Henry, Virginia to Cape Fear, North Carolina and from Savannah Bach Georgia to Miami Beach, Florida. The survey was made March 23-24, 1953, as part of a cooperative program with the U.S. Atomic Energy Commission. The survey was made with scintillation detection equipment mounted in a Douglas DC-3 aircraft and consisted of one flight line, at a 500-foot altitude, parallel to the beach. The vertical projection of the flight line coincided approximately with the landward limit of the modern beach. The width of the zone on the ground from which anomalous radiation is measured at the normal 500 foot flight altitude varies with the areal extent radioactivity of the source. For strong sources of radioactivity the width of the zone would be as much as 1,400 feet. The location of the flight lines is shown on the index map below. No abnormal radioactivity was detected along the northern flight line between Cape Henry, Virginia and Cape Fear, North Carolina. Along the southern flight line fourteen areas of abnormal radioactivity were detected between Savannah Beach, Georgia and Anastasia Island, Florida as shown on the map on the left. The abnormal radioactivity is apparently due to radioactive minerals associated with "black sand" deposits with occur locally along the beach in this region. The present technique of airborne radioactivity measurement does not permit distinguishing between activity sue to thorium and that due to uranium. An anomaly, therefore, may represent radioactivity due entirely to one or to a combination of these elements. It is not possible to determine the extent or radioactive content of the materials responsible for the abnormal radioactivity. The information given on the accompanying map indicates only those localities of greater-than-average radioactivity and, therefore suggest areas in which uranium and thorium deposits are more likely to occur.
Gut-expressed gustducin and taste receptors regulate secretion of glucagon-like peptide-1
Jang, Hyeung-Jin; Kokrashvili, Zaza; Theodorakis, Michael J.; Carlson, Olga D.; Kim, Byung-Joon; Zhou, Jie; Kim, Hyeon Ho; Xu, Xiangru; Chan, Sic L.; Juhaszova, Magdalena; Bernier, Michel; Mosinger, Bedrich; Margolskee, Robert F.; Egan, Josephine M.
2007-01-01
Glucagon-like peptide-1 (GLP-1), released from gut endocrine L cells in response to glucose, regulates appetite, insulin secretion, and gut motility. How glucose given orally, but not systemically, induces GLP-1 secretion is unknown. We show that human duodenal L cells express sweet taste receptors, the taste G protein gustducin, and several other taste transduction elements. Mouse intestinal L cells also express α-gustducin. Ingestion of glucose by α-gustducin null mice revealed deficiencies in secretion of GLP-1 and the regulation of plasma insulin and glucose. Isolated small bowel and intestinal villi from α-gustducin null mice showed markedly defective GLP-1 secretion in response to glucose. The human L cell line NCI-H716 expresses α-gustducin, taste receptors, and several other taste signaling elements. GLP-1 release from NCI-H716 cells was promoted by sugars and the noncaloric sweetener sucralose, and blocked by the sweet receptor antagonist lactisole or siRNA for α-gustducin. We conclude that L cells of the gut “taste” glucose through the same mechanisms used by taste cells of the tongue. Modulating GLP-1 secretion in gut “taste cells” may provide an important treatment for obesity, diabetes and abnormal gut motility. PMID:17724330
Udono, Miyako; Fujii, Kaoru; Harada, Gakuro; Tsuzuki, Yumi; Kadooka, Keishi; Zhang, Pingbo; Fujii, Hiroshi; Amano, Maho; Nishimura, Shin-Ichiro; Tashiro, Kosuke; Kuhara, Satoru; Katakura, Yoshinori
2015-11-27
Many genes and signaling pathways have been found to be involved in cellular senescence program. In the present study, we have identified 16 senescence-associated genes by differential proteomic analysis of the normal human diploid fibroblast cell line, TIG-1, and focused on ATP6V0A2. The aim of this study is to clarify the role of ATP6V0A2, the causal gene for ARCL2, a syndrome of abnormal glycosylation and impaired Golgi trafficking, in cellular senescence program. Here we showed that ATP6V0A2 is critical for cellular senescence; impaired expression of ATP6V0A2 disperses the Golgi structure and triggers senescence, suggesting that ATP6V0A2 mediates these processes. FITC-lectin staining and glycoblotting revealed significantly different glycosylation structures in presenescent (young) and senescent (old) TIG-1 cells; reducing ATP6V0A2 expression in young TIG-1 cells yielded structures similar to those in old TIG-1 cells. Our results suggest that senescence-associated impaired expression of ATP6V0A2 triggers changes in Golgi structure and glycosylation in old TIG-1 cells, which demonstrates a role of ATP6V0A2 in cellular senescence program.
Udono, Miyako; Fujii, Kaoru; Harada, Gakuro; Tsuzuki, Yumi; Kadooka, Keishi; Zhang, Pingbo; Fujii, Hiroshi; Amano, Maho; Nishimura, Shin-Ichiro; Tashiro, Kosuke; Kuhara, Satoru; Katakura, Yoshinori
2015-01-01
Many genes and signaling pathways have been found to be involved in cellular senescence program. In the present study, we have identified 16 senescence-associated genes by differential proteomic analysis of the normal human diploid fibroblast cell line, TIG-1, and focused on ATP6V0A2. The aim of this study is to clarify the role of ATP6V0A2, the causal gene for ARCL2, a syndrome of abnormal glycosylation and impaired Golgi trafficking, in cellular senescence program. Here we showed that ATP6V0A2 is critical for cellular senescence; impaired expression of ATP6V0A2 disperses the Golgi structure and triggers senescence, suggesting that ATP6V0A2 mediates these processes. FITC-lectin staining and glycoblotting revealed significantly different glycosylation structures in presenescent (young) and senescent (old) TIG-1 cells; reducing ATP6V0A2 expression in young TIG-1 cells yielded structures similar to those in old TIG-1 cells. Our results suggest that senescence-associated impaired expression of ATP6V0A2 triggers changes in Golgi structure and glycosylation in old TIG-1 cells, which demonstrates a role of ATP6V0A2 in cellular senescence program. PMID:26611489
Burgdorf, Jeffrey; Moskal, Joseph R; Brudzynski, Stefan M; Panksepp, Jaak
2013-08-15
Early childhood autism is characterized by deficits in social approach and play behaviors, socio-emotional relatedness, and communication/speech abnormalities, as well as repetitive behaviors. These core neuropsychological features of autism can be modeled in laboratory rats, and the results may be useful for drug discovery and therapeutic development. We review data that show that rats selectively bred for low rates of play-related pro-social ultrasonic vocalizations (USVs) can be used to model social deficit symptoms of autism. Low-line animals engage in less social contact time with conspecifics, show lower rates of play induced pro-social USVs, and show an increased proportion of non-frequency modulated (i.e. monotonous) ultrasonic vocalizations compared to non-selectively bred random-line animals. Gene expression patterns in the low-line animals show significant enrichment in autism-associated genes, and the NMDA receptor family was identified as a significant hub. Treatment of low-line animals with the NMDAR functional glycine site partial agonist, GLYX-13, rescued the deficits in play-induced pro-social 50-kHz USVs and reduced monotonous USVs. Since the NMDA receptor has been implicated in the genesis of autistic symptoms, it is possible that GLYX-13 may be of therapeutic value in the treatment of autism. Copyright © 2013 Elsevier B.V. All rights reserved.
Burgdorf, Jeffrey; Moskal, Joseph R.; Brudzynski, Stefan M.; Panksepp, Jaak
2016-01-01
Early childhood autism is characterized by deficits in social approach and play behaviors, socio-emotional relatedness, and communication/speech abnormalities, as well as repetitive behaviors. These core neuropsychological features of autism can be modeled in laboratory rats, and the results may be useful for drug discovery and therapeutic development. We review data that show that rats selectively bred for low rates of play-related pro-social ultrasonic vocalizations (USVs) can be used to model social deficit symptoms of autism. Low-line animals engage in less social contact time with conspecifics, show lower rates of play induced pro-social USVs, and show an increased proportion of non-frequency modulated (i.e. monotonous) ultrasonic vocalizations compared to non-selectively bred random-line animals. Gene expression patterns in the low-line animals show significant enrichment in autism-associated genes, and the NMDA receptor family was identified as a significant hub. Treatment of low-line animals with the NMDAR functional glycine site partial agonist, GLYX-13, rescued the deficits in play-induced pro-social 50-kHz USVs and reduced monotonous USVs. Since the NMDA receptor has been implicated in the genesis of autistic symptoms, it is possible that GLYX-13 may be of therapeutic value in the treatment of autism. PMID:23623884
Fotaki, Vassiliki; Yu, Tian; Zaki, Paulette A.; Mason, John O.; Price, David J.
2008-01-01
The transcription factor Gli3 (glioma-associated oncogene homolog) is essential for normal development of the mammalian forebrain. One extreme requirement for Gli3 is at the dorsomedial telencephalon, which does not form in Gli3Xt/Xt mutant mice lacking functional Gli3. In this study, we analyzed expression of Gli3 in the wild-type telencephalon and observed a highdorsal-to-lowventral gradient of Gli3 expression and predominance of the cleaved form of the Gli3 protein dorsally. This graded expression correlates with the severedorsal-to-mildventral telencephalic phenotype observed in Gli3Xt/Xt mice. We characterized the abnormal joining of the telencephalon to the diencephalon and defined the medial limit of the dorsal telencephalon in Gli3Xt/Xt mice early in corticogenesis. Based on this analysis, we concluded that some of the abnormal expression of ventral telencephalic markers previously described as being in the dorsal telencephalon is, in fact, expression in adjacent diencephalic tissue, which expresses many of the same genes that mark the ventral telencephalon. We observed occasional cells with diencephalic character in the Foxg1 (forkhead box)-expressing Gli3Xt/Xt telencephalon at embryonic day 10.5, a day after the anatomical subdivision of the forebrain vesicle. Large clusters of such cells appear in the Gli3Xt/Xt neocortical region at later ages, when the neocortex becomes highly disorganized, forming rosettes comprising mainly neural progenitors. We propose that Gli3 is indispensable for formation of an intact telencephalic-diencephalic boundary and for preventing the abnormal positioning of diencephalic cells in the dorsal telencephalon. PMID:16957084
Mesquita, Fernando S; Machado, Sergio A; Drnevich, Jenny; Borowicz, Pawel; Wang, Zhongde; Nowak, Romana A
2013-01-30
Poor success rates in somatic cell cloning are often attributed to abnormal early embryonic development as well as late abnormal fetal growth and placental development. Although promising results have been reported following chromatin transfer (CT), a novel cloning method that includes the remodeling of the donor nuclei in vitro prior to their transfer into enucleated oocytes, animals cloned by CT show placental abnormalities similar to those observed following conventional nuclear transfer. We hypothesized that the placental gene expression pattern from cloned fetuses was ontologically related to the frequently observed placental phenotype. The aim of the present study was to compare global gene expression by microarray analysis of Day 44-47 cattle placentas derived from CT cloned fetuses with those derived from in vitro fertilization (i.e. control), and confirm the altered mRNA and protein expression of selected molecules by qRT-PCR and immunohistochemistry, respectively. The differentially expressed genes identified in the present study are known to be involved in a range of activities associated with cell adhesion, cell cycle control, intracellular transport and proteolysis. Specifically, an imprinted gene, involved with cell proliferation and placentomegaly in humans (CDKN1C) and a peptidase that serves as a marker for non-invasive trophoblast cells in human placentas (DPP4), had mRNA and protein altered in CT placentas. It was concluded that the altered pattern of gene expression observed in CT samples may contribute to the abnormal placental development phenotypes commonly identified in cloned offspring, and that expression of imprinted as well as trophoblast invasiveness-related genes is altered in cattle cloned by CT. Copyright © 2012 Elsevier B.V. All rights reserved.
Hadzijusufovic, E; Peter, B; Herrmann, H; Rülicke, T; Cerny-Reiterer, S; Schuch, K; Kenner, L; Thaiwong, T; Yuzbasiyan-Gurkan, V; Pickl, W F; Willmann, M; Valent, P
2012-01-01
Background Advanced mast cell (MC) disorders are characterized by uncontrolled growth of neoplastic MC in various organs, mediator-related symptoms, and a poor prognosis. Kit mutations supposedly contribute to abnormal growth and drug resistance in these patients. Methods We established a novel canine mastocytoma cell line, NI-1, from a patient suffering from MC leukemia. Results NI-1 cells were found to form mastocytoma lesions in NOD/SCID IL-2Rgammanull mice and to harbor several homozygous Kit mutations, including missense mutations at nucleotides 107(C→T) and 1187(A→G), a 12-bp duplication (nucleotide 1263), and a 12-bp deletion (nucleotide 1550). NI-1 cells expressed several MC differentiation antigens, including tryptase, Kit, and a functional IgE receptor. Compared to the C2 mastocytoma cell line harboring a Kit exon 11 mutation, NI-1 cells were found to be less responsive against the Kit tyrosine kinase inhibitors (TKI) masitinib and imatinib, but were even more sensitive against proliferation-inhibitory effects of the mammalian target of rapamycin (mTOR) blocker RAD001 and PI3-kinase/mTOR blocker NVP-BEZ235. The Kit-targeting multikinase inhibitors PKC412 and dasatinib were also found to override TKI resistance in NI-1 cells, and produced growth inhibition with reasonable IC50 values (<0.1 μM). Conclusion NI-1 may serve as a useful tool to investigate IgE-dependent reactions and mechanisms of abnormal growth and drug resistance in neoplastic MC in advanced mastocytosis. PMID:22583069
Daveau, Romain; Combaret, Valérie; Pierre-Eugène, Cécile; Cazes, Alex; Louis-Brennetot, Caroline; Schleiermacher, Gudrun; Ferrand, Sandrine; Pierron, Gaëlle; Lermine, Alban; Frio, Thomas Rio; Raynal, Virginie; Vassal, Gilles; Barillot, Emmanuel; Delattre, Olivier; Janoueix-Lerosey, Isabelle
2013-01-01
Neuroblastoma is a pediatric cancer of the peripheral nervous system in which structural chromosome aberrations are emblematic of aggressive tumors. In this study, we performed an in-depth analysis of somatic rearrangements in two neuroblastoma cell lines and two primary tumors using paired-end sequencing of mate-pair libraries and RNA-seq. The cell lines presented with typical genetic alterations of neuroblastoma and the two tumors belong to the group of neuroblastoma exhibiting a profile of chromothripsis. Inter and intra-chromosomal rearrangements were identified in the four samples, allowing in particular characterization of unbalanced translocations at high resolution. Using complementary experiments, we further characterized 51 rearrangements at the base pair resolution that revealed 59 DNA junctions. In a subset of cases, complex rearrangements were observed with templated insertion of fragments of nearby sequences. Although we did not identify known particular motifs in the local environment of the breakpoints, we documented frequent microhomologies at the junctions in both chromothripsis and non-chromothripsis associated breakpoints. RNA-seq experiments confirmed expression of several predicted chimeric genes and genes with disrupted exon structure including ALK, NBAS, FHIT, PTPRD and ODZ4. Our study therefore indicates that both non-homologous end joining-mediated repair and replicative processes may account for genomic rearrangements in neuroblastoma. RNA-seq analysis allows the identification of the subset of abnormal transcripts expressed from genomic rearrangements that may be involved in neuroblastoma oncogenesis. PMID:23991058
CXCL12/CXCR4 pathway is activated by oncogenic JAK2 in a PI3K-dependent manner
Abdelouahab, Hadjer; Zhang, Yanyan; Wittner, Monika; Oishi, Shinya; Fujii, Nobutaka; Besancenot, Rodolphe; Plo, Isabelle; Ribrag, Vincent; Solary, Eric; Vainchenker, William; Barosi, Giovanni; Louache, Fawzia
2017-01-01
JAK2 activation is the driver mechanism in BCR-ABL-negative myeloproliferative neoplasms (MPN). These diseases are characterized by an abnormal retention of hematopoietic stem cells within the bone marrow microenvironment and their increased trafficking to extramedullary sites. The CXCL12/CXCR4 axis plays a central role in hematopoietic stem cell/ progenitor trafficking and retention in hematopoietic sites. The present study explores the crosstalk between JAK2 and CXCL12/CXCR4 signaling pathways in MPN. We show that JAK2, activated by either MPL-W515L expression or cytokine stimulation, cooperates with CXCL12/CXCR4 signaling to increase the chemotactic response of human cell lines and primary CD34+ cells through an increased phosphatidylinositol-3-kinase (PI3K) signaling. Accordingly, primary myelofibrosis (MF) patient cells demonstrate an increased CXCL12-induced chemotaxis when compared to controls. JAK2 inhibition by knock down or chemical inhibitors decreases this effect in MPL-W515L expressing cell lines and reduces the CXCL12/CXCR4 signaling in some patient primary cells. Taken together, these data indicate that CXCL12/CXCR4 pathway is overactivated in MF patients by oncogenic JAK2 that maintains high PI3K signaling over the threshold required for CXCR4 activation. These results suggest that inhibition of this crosstalk may contribute to the therapeutic effects of JAK2 inhibitors. PMID:28903325
Horiguchi, Masahito; Todorovic, Vesna; Hadjiolova, Krassimira; Weiskirchen, Ralf; Rifkin, Daniel B
2015-04-01
Latent transforming growth factor-β binding protein-1 (LTBP-1) is an extracellular protein that is structurally similar to fibrillin and has an important role in controlling transforming growth factor-β (TGF-β) signaling by storing the cytokine in the extracellular matrix and by being involved in the conversion of the latent growth factor to its active form. LTBP-1 is found as both short (LTBP-1S) and long (LTBP-1L) forms, which are derived through the use of separate promoters. There is controversy regarding the importance of LTBP-1L, as Ltbp1L knockout mice showed multiple cardiovascular defects but the complete null mice did not. Here, we describe a third line of Ltbp1 knockout mice generated utilizing a conditional knockout strategy that ablated expression of both L and S forms of LTBP-1. These mice show severe developmental cardiovascular abnormalities and die perinatally; thus these animals display a phenotype similar to previously reported Ltbp1L knockout mice. We reinvestigated the other "complete" knockout line and found that these mice express a splice variant of LTBP-1L and, therefore, are not complete Ltbp1 knockouts. Our results clarify the phenotypes of Ltbp1 null mice and re-emphasize the importance of LTBP-1 in vivo. Copyright © 2015. Published by Elsevier B.V.
Choi, Yong-Min; Kim, Han-Kyul; Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun
2015-01-01
The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player.
2012-01-01
Introduction Prevalence of an abnormal Papanicolaou smear was significantly increased in lupus patients in cross-sectional studies, associated with a higher prevalence of high-risk human papillomavirus (HPV) infection. The nucleic acid-specific Toll-like receptors (TLRs) locate at the endolysosomal compartments and trigger the induction of cytokines for the innate immune response. This study evaluated whether abnormal host innate immune response in lupus patients may enhance HPV persistence. Methods Protein levels of TLRs 3, 7, 8 and 9 in cervical epithelial cells of lupus patients and controls with or without HPV infection were assessed using flow cytometry. Characteristics associated with the differential expression of TLRs in systemic lupus erythematosus (SLE) were elucidated. The effect and interferon-stimulated genes (ISGs) (ISG15 and Mx-1) gene expressions were then measured in oncogenic HeLa (HPV18), CaSki (HPV) and C33A (HPV negative) cell lines using flow cytometry and quantitative real-time PCR. Ex vivo productions of cytokines and interferon-gamma (IFN-γ) upon TLR ligands stimulations were subsequently measured using cytometric bead array and ELISA. Results For subjects with HPV infection, levels of TLR3 and TLR7 were significantly lower in lupus patients compared with controls. Significantly decreased TLRs 7, 8 and 9 levels were observed in HPV-negative SLE compared to healthy controls. For SLE with and without HPV infection, TLR7 and 9 levels were significantly lower in infected SLE than those in HPV-negative patients. Independent explanatory variables associated with down-regulation of TLR7 level included HPV infection and a higher cumulative dose of prednisolone; while a higher cumulative dose of hydroxychloroquine and HPV infection were associated with down-regulation of TLR9 level. In cervical cell lines, TLRs 3, 7, 8, 9 protein levels and antiviral ISG15 and Mx-1 gene expressions were inhibited in two oncogenic HPV types. Functional data showed that the induction of pro-inflammatory cytokines by TLR ligands (R837, ssRNA and ODN2395) was greatly impaired in CaSki and HeLa than C33A cells. Conclusions In conclusion, prednisolone and TLR antagonist (hydroxychloroquine) may down-regulate protein levels of TLR7 and TLR9 in lupus patients, thereby decreasing the innate immune response against HPV infection. Upon infection, HPV further down-regulate TLR7 and 9 levels for viral persistence. Furthermore, reduction of nucleic acid-sensing TLRs 7, 8 and 9 in carcinogenic HPVs ensures that the expression of inducible pro-inflammatory cytokines is minimized to prevent the expression of antiviral ISGs (ISG15 and Mx-1) on a biologically relevant antiviral response. PMID:22513098
NASA Astrophysics Data System (ADS)
Yeshitla, Samrawit
In the United States (U.S.), lung cancer is the number one cause of cancer death among men and women. Previous studies on human and animal epithelial lung cells showed that ionizing radiation and certain environmental pollutants are carcinogens. The surface area of the lungs and the slow turnover rate of the epithelial cells are suggested to play a role in the vulnerability of the cells, which lead to increase in the progenitor cell of the lung. It has been proposed that these progenitor cells, when exposed to radiation undergo multiple alterations that cause the cells to become cancerous. The current thought is that the lungs contain several facultative progenitor cells that are situated throughout the lung epithelium and are regionally restricted in their regenerative capacity. In this study, normal Human Bronchial Epithelial Cells (HBECs) were immortalized through the expression of Cdk4 and hTERT and evaluated for the effects radiation using in vitro study. The HBECs retained its novel multipotent capacity in vitro and represented unrestricted progenitor cells of the adult lungs, which resemble an embryonic progenitor. Analysis of the transformed clones of human bronchial epithelial cell line, HEBC3KT exposed to Fe ions and gamma rays revealed chromosomal abnormality, which was detected with the Multi-color Fluorescent In Situ Hybridization (mFish). In Part two of this study the F344 rats exposed to lunar dust, for 4 weeks (6h/d; 5d/wk.) in nose-only inhalation chambers at concentrations of 0 (control air), 2.1, 6.8, 20.8, and 61 mg/m3 of lunar dust, were used to determine the lunar dust toxicity on the lung tissues and total RNA were prepared from the tissues and used for gene expression. Analysis of gene expression data using Ingenuity Pathway Analysis tool identified multiple pathways of which fibrosis was one of the pathways. The Rat Fibrosis RT 2 Profile PCR Array was used to profile the expression of 84 genes that are relevant to fibrosis in the lung tissue, after removing the infiltrated of the bronchoalveolar lavage (BAL) cells by lavaging. At a dose of 61mg/m 3, 29 genes showed changes and of 29 genes, nine genes, Bmp7, Cc112, Cc13, Itgb8, Serpinel, Smad6, Tgfbrl, Thbs2, and Tnf, showed significant fold change difference of up-regulation or down-regulation. The data in this study showed that iron ions and gamma rays promote chromosomal abnormality in HBEC3KT, and for the first time, the lunar dust altered gene expression of 29 genes that are relevant to fibrosis in the lung tissue.
Crosswell, Hal E; Dasgupta, Anindya; Alvarado, Carlos S; Watt, Tanya; Christensen, James G; De, Pradip; Durden, Donald L; Findley, Harry W
2009-11-25
c-Met is a tyrosine kinase receptor for hepatocyte growth factor/scatter factor (HGF/SF), and both c-Met and its ligand are expressed in a variety of tissues. C-Met/HGF/SF signaling is essential for normal embryogenesis, organogenesis, and tissue regeneration. Abnormal c-Met/HGF/SF signaling has been demonstrated in different tumors and linked to aggressive and metastatic tumor phenotypes. In vitro and in vivo studies have demonstrated inhibition of c-Met/HGF/SF signaling by the small-molecule inhibitor PHA665752. This study investigated c-Met and HGF expression in two neuroblastoma (NBL) cell lines and tumor tissue from patients with NBL, as well as the effects of PHA665752 on growth and motility of NBL cell lines. The effect of the tumor suppressor protein PTEN on migration and proliferation of tumor cells treated with PHA665752 was also evaluated. Expression of c-Met and HGF in NBL cell lines SH-EP and SH-SY5Y and primary tumor tissue was assessed by immunohistochemistry and quantitative RT-PCR. The effect of PHA665752 on c-Met/HGF signaling involved in NBL cell proliferation and migration was evaluated in c-Met-positive cells and c-Met-transfected cells. The transwell chemotaxis assay and the MTT assay were used to measure migration and proliferation/cell-survival of tumor cells, respectively. The PPAR-gamma agonist rosiglitazone was used to assess the effect of PTEN on PHA665752-induced inhibition of NBL cell proliferation/cell-survival and migration High c-Met expression was detected in SH-EP cells and primary tumors from patients with advanced-stage disease. C-Met/HGF signaling induced both migration and proliferation of SH-EP cells. Migration and proliferation/cell-survival were inhibited by PHA665752 in a dose-dependent manner. We also found that induced overexpression of PTEN following treatment with rosiglitazone significantly enhanced the inhibitory effect of PHA665752 on NBL-cell migration and proliferation. c-Met is highly expressed in most tumors from patients with advanced-stage, metastatic NBL. Furthermore, using the NBL cell line SH-EP as a model, PHA665752 was shown to inhibit cMet/HGF/SF signaling in vitro, suggesting c-Met inhibitors may have efficacy for blocking local progression and/or metastatic spread of c-Met-positive NBL in vivo. These are novel findings for this disease and suggest that further studies of agents targeting the c-Met/HGF axis in NBL are warranted.
Rahman, Hifzur; Ramanathan, Valarmathi; Nallathambi, Jagedeeshselvam; Duraialagaraja, Sudhakar; Muthurajan, Raveendran
2016-05-11
NAC proteins (NAM (No apical meristem), ATAF (Arabidopsis transcription activation factor) and CUC (cup-shaped cotyledon)) are plant-specific transcription factors reported to be involved in regulating growth, development and stress responses. Salinity responsive transcriptome profiling in a set of contrasting finger millet genotypes through RNA-sequencing resulted in the identification of a NAC homolog (EcNAC 67) exhibiting differential salinity responsive expression pattern. Full length cDNA of EcNAC67 was isolated, characterized and validated for its role in abiotic stress tolerance through agrobacterium mediated genetic transformation in a rice cultivar ASD16. Bioinformatics analysis of putative NAC transcription factor (TF) isolated from a salinity tolerant finger millet showed its genetic relatedness to NAC67 family TFs in related cereals. Putative transgenic lines of rice over-expressing EcNAC67 were generated through Agrobacterium mediated transformation and presence/integration of transgene was confirmed through PCR and southern hybridization analysis. Transgenic rice plants harboring EcNAC67 showed enhanced tolerance against drought and salinity under greenhouse conditions. Transgenic rice plants were found to possess higher root and shoot biomass during stress and showed better revival ability upon relief from salinity stress. Upon drought stress, transgenic lines were found to maintain higher relative water content and lesser reduction in grain yield when compared to non-transgenic ASD16 plants. Drought induced spikelet sterility was found to be much lower in the transgenic lines than the non-transgenic ASD16. Results revealed the significant role of EcNAC67 in modulating responses against dehydration stress in rice. No detectable abnormalities in the phenotypic traits were observed in the transgenic plants under normal growth conditions. Results indicate that EcNAC67 can be used as a novel source for engineering tolerance against drought and salinity stress in rice and other crop plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hann, E.; Beauregard, L.; Mikumo, R.
Braum et al.(1993) established three cell lines from keratinizing and nonkeratinizing cervical carcinomas. These cell lines were subsequently analyzed for growth properties and the physical state of the human papillomavirus type 16 genome. TC140, derived from a keratinizing cervical tumor, contains human papillomavirus type 16 in the episomal state. TC-146A and TC-146B, derived from a nonkeratinizing large-cell cervical carcinoma, contain human papillomavirus type 16 in the integrated state. The goal of the present study was to cytogenetically characterize these cell lines, developed from cervical carcinoma with a defined histopathology, in order to shed additional light on the biological basis ofmore » the histological and clinical heterogeneity of cervical cancers. Information on solid tumors has been limited because they are often difficult to culture and the karyotypes on the available metaphases are often complex with unidentifiable markers. The chromosomes of these three cell lines were characterized in the present study using GTG-banding. For cell line 140, the most striking chromosomal abnormalities noted were the presence of an i(5p) or i(12p) marker, an isochromosome 8q marker and multiple copies of chromosome 9. For cell line 146A, the most notable chromosomal abnormalities noted were the presence of a marker chromosome 7 with additional materials present on the long arms, an isochomosome of the long arms of chromosome 8 and a question of chromosome 19 markers. For cell line 146B, the most notable chromosomal abnormalities were found to be a deleted X chromosome, a marker chromosome 7 with additional material on the long arm, an isochromosome 8q marker, and isochromosome 16q marker and one or more copies of an isochromosome 17q marker. Fluorescent in situ hybridization experiments performed using select probes further corroborate the results of the above-mentioned conventional cytogenetic studies.« less
The Role of Epigenetic Regulation in Epstein-Barr Virus-Associated Gastric Cancer
Nishikawa, Jun; Iizasa, Hisashi; Nakamura, Munetaka; Saito, Mari; Sasaki, Sho; Shimokuri, Kanami; Yanagihara, Masashi; Sakai, Kouhei; Suehiro, Yutaka; Yamasaki, Takahiro; Sakaida, Isao
2017-01-01
The Epstein–Barr virus (EBV) is detected in about 10% of gastric carcinoma cases throughout the world. In EBV-associated gastric carcinoma (EBVaGC), all tumor cells harbor the clonal EBV genome. The expression of latent EBV genes is strictly regulated through the methylation of EBV DNA. The methylation of viral DNA regulates the type of EBV latency, and methylation of the tumor suppressor genes is a key abnormality in EBVaGC. The methylation frequencies of several tumor suppressor genes and cell adhesion molecules are significantly higher in EBVaGC than in control cases. EBV-derived microRNAs repress translation from viral and host mRNAs. EBV regulates the expression of non-coding RNA in gastric carcinoma. With regard to the clinical application of demethylating agents against EBVaGC, we investigated the effects of decitabine against the EBVaGC cell lines. Decitabine inhibited the cell growth of EBVaGC cells. The promoter regions of p73 and Runt-related transcription factor 3(RUNX3) were demethylated, and their expression was upregulated by the treatment. We review the role of epigenetic regulation in the development and maintenance of EBVaGC and discuss the therapeutic application of DNA demethylating agents for EBVaGC. PMID:28757548
The Role of Epigenetic Regulation in Epstein-Barr Virus-Associated Gastric Cancer.
Nishikawa, Jun; Iizasa, Hisashi; Yoshiyama, Hironori; Nakamura, Munetaka; Saito, Mari; Sasaki, Sho; Shimokuri, Kanami; Yanagihara, Masashi; Sakai, Kouhei; Suehiro, Yutaka; Yamasaki, Takahiro; Sakaida, Isao
2017-07-25
The Epstein-Barr virus (EBV) is detected in about 10% of gastric carcinoma cases throughout the world. In EBV-associated gastric carcinoma (EBVaGC), all tumor cells harbor the clonal EBV genome. The expression of latent EBV genes is strictly regulated through the methylation of EBV DNA. The methylation of viral DNA regulates the type of EBV latency, and methylation of the tumor suppressor genes is a key abnormality in EBVaGC. The methylation frequencies of several tumor suppressor genes and cell adhesion molecules are significantly higher in EBVaGC than in control cases. EBV-derived microRNAs repress translation from viral and host mRNAs. EBV regulates the expression of non-coding RNA in gastric carcinoma. With regard to the clinical application of demethylating agents against EBVaGC, we investigated the effects of decitabine against the EBVaGC cell lines. Decitabine inhibited the cell growth of EBVaGC cells. The promoter regions of p73 and Runt-related transcription factor 3(RUNX3) were demethylated, and their expression was upregulated by the treatment. We review the role of epigenetic regulation in the development and maintenance of EBVaGC and discuss the therapeutic application of DNA demethylating agents for EBVaGC.
Genomic deletion of a long-range bone enhancer misregulatessclerostin in Van Buchem disease
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loots, Gabriela G.; Kneissel, Michaela; Keller, Hansjoerg
2005-04-15
Mutations in distant regulatory elements can negatively impact human development and health, yet due to the difficulty of detecting these critical sequences we predominantly focus on coding sequences for diagnostic purposes. We have undertaken a comparative sequence-based approach to characterize a large noncoding region deleted in patients affected by Van Buchem disease (VB), a severe sclerosing bone dysplasia. Using BAC recombination and transgenesis we characterized the expression of human sclerostin (sost) from normal (hSOSTwt) or Van Buchem(hSOSTvb D) alleles. Only the hSOSTwt allele faithfully expressed high levels of human sost in the adult bone and impacted bone metabolism, consistent withmore » the model that the VB noncoding deletion removes a sost specific regulatory element. By exploiting cross-species sequence comparisons with in vitro and in vivo enhancer assays we were able to identify a candidate enhancer element that drives human sost expression in osteoblast-like cell lines in vitro and in the skeletal anlage of the E14.5 mouse embryo, and discovered a novel function for sclerostin during limb development. Our approach represents a framework for characterizing distant regulatory elements associated with abnormal human phenotypes.« less
Chemoprevention of rat liver toxicity and carcinogenesis by Spirulina.
Ismail, Mohamed F; Ali, Doaa A; Fernando, Augusta; Abdraboh, Mohamed E; Gaur, Rajiv L; Ibrahim, Wael M; Raj, Madhwa H G; Ouhtit, Allal
2009-06-02
Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phyto-antioxidant, anti-inflammatory and anti-cancerous properties. The present study aimed to investigate the chemopreventive effect of SP against rat liver toxicity and carcinogenesis induced by dibutyl nitrosamine (DBN) precursors, and further characterized its underlying mechanisms of action in HepG2 cell line. Investigation by light and electron microscopy showed that DBN treatment induced severe liver injury and histopathological abnormalities, which were prevented by SP supplementation. The incidence of liver tumors was significantly reduced from 80 to 20% by SP. Immunohistochemical results indicated that both PCNA and p53 were highly expressed in the liver of DBN-treated rats, but were significantly reduced by SP supplementation. Molecular analysis indicated that SP treatment inhibited cell proliferation, which was accompanied by increased p21 and decreased Rb expression levels at 48hrs post-treatment. In addition, SP increased Bax and decreased Bcl-2 expression, indicating induction of apoptosis by 48hrs. This is the first report of the in vivo chemopreventive effect of SP against DBN-induced rat liver cytotoxicity and carcinogenesis, suggesting its potential use in chemoprevention of cancer.
Chemoprevention of rat liver toxicity and carcinogenesis by Spirulina
Ismail, Mohamed F; Ali, Doaa A; Fernando, Augusta; Abdraboh, Mohamed E; Gaur, Rajiv L; Ibrahim, Wael M; Raj, Madhwa HG; Ouhtit, Allal
2009-01-01
Spirulina platensis (SP) is a filamentous cyanobacterium microalgae with potent dietary phyto-antioxidant, anti-inflammatory and anti-cancerous properties. The present study aimed to investigate the chemopreventive effect of SP against rat liver toxicity and carcinogenesis induced by dibutyl nitrosamine (DBN) precursors, and further characterized its underlying mechanisms of action in HepG2 cell line. Investigation by light and electron microscopy showed that DBN treatment induced severe liver injury and histopathological abnormalities, which were prevented by SP supplementation. The incidence of liver tumors was significantly reduced from 80 to 20% by SP. Immunohistochemical results indicated that both PCNA and p53 were highly expressed in the liver of DBN-treated rats, but were significantly reduced by SP supplementation. Molecular analysis indicated that SP treatment inhibited cell proliferation, which was accompanied by increased p21 and decreased Rb expression levels at 48hrs post-treatment. In addition, SP increased Bax and decreased Bcl-2 expression, indicating induction of apoptosis by 48hrs. This is the first report of the in vivo chemopreventive effect of SP against DBN-induced rat liver cytotoxicity and carcinogenesis, suggesting its potential use in chemoprevention of cancer. PMID:19521547
Hu, Valerie W.; Sarachana, Tewarit; Kim, Kyung Soon; Nguyen, AnhThu; Kulkarni, Shreya; Steinberg, Mara E.; Luu, Truong; Lai, Yinglei; Lee, Norman H.
2009-01-01
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by delayed/abnormal language development, deficits in social interaction, repetitive behaviors and restricted interests. The heterogeneity in clinical presentation of ASD, likely due to different etiologies, complicates genetic/biological analyses of these disorders. DNA microarray analyses were conducted on 116 lymphoblastoid cell lines (LCL) from individuals with idiopathic autism who are divided into three phenotypic subgroups according to severity scores from the commonly used Autism Diagnostic Interview-Revised questionnaire and age-matched, nonautistic controls. Statistical analyses of gene expression data from control LCL against that of LCL from ASD probands identify genes for which expression levels are either quantitatively or qualitatively associated with phenotypic severity. Comparison of the significant differentially expressed genes from each subgroup relative to the control group reveals differentially expressed genes unique to each subgroup as well as genes in common across subgroups. Among the findings unique to the most severely affected ASD group are 15 genes that regulate circadian rhythm, which has been shown to have multiple effects on neurological as well as metabolic functions commonly dysregulated in autism. Among the genes common to all three subgroups of ASD are 20 novel genes mostly in putative noncoding regions, which appear to associate with androgen sensitivity and which may underlie the strong 4:1 bias toward affected males. PMID:19418574
Jiang, Xv
2014-10-01
To investigate the effects of 5-aza-2-deoxycytidine on methylation status and invasion ability of RECK gene in tongue cancer SCC-4 cells. Tongue cancer cell line SCC-4 cells were treated with 5-aza-dC at different concentrations for 72 h. Methylation status of RECK gene of SCC-4 cells was detected by methylation specific PCR (MSP), the expression of RECK gene mRNA was detected by real-time quantitative PCR. The expression of RECK protein was detected by Western blot, and the invasion ability of SCC-4 cell was examined by Transwell assay. SPSS13.0 software package was used for statistical analysis. RECK gene of SCC-4 cells was in high methylation status in untreated group, abnormal methylation was effectively reversed by 5-aza-dC treatment. After treatment with different concentration of 5-aza-dC for 72 h, relative mRNA expression level increased gradually (P<0.05). The relative expression level of RECK protein in 5-aza-dC treated group was significantly higher than that in the control group,the invasion ability of SCC-4 cell was decreased gradually. 5-aza-dC treatment for tongue cancer SCC-4 cells can successfully reverse high methylation status of RECK gene and restore the expression of RECK gene mRNA and protein, and reduced the invasion ability.
Raaphorst, Frank M.; Vermeer, Maarten; Fieret, Elly; Blokzijl, Tjasso; Dukers, Danny; Sewalt, Richard G.A.B.; Otte, Arie P.; Willemze, Rein; Meijer, Chris J.L.M.
2004-01-01
Polycomb-group (PcG) genes preserve cell identity by gene silencing, and contribute to regulation of lymphopoiesis and malignant transformation. We show that primary nodal large B-cell lymphomas (LBCLs), and secondary cutaneous deposits from such lymphomas, abnormally express the BMI-1, RING1, and HPH1 PcG genes in cycling neoplastic cells. By contrast, tumor cells in primary cutaneous LBCLs lacked BMI-1 expression, whereas RING1 was variably detected. Lack of BMI-1 expression was characteristic for primary cutaneous LBCLs, because other primary extranodal LBCLs originating from brain, testes, and stomach were BMI-1-positive. Expression of HPH1 was rarely detected in primary cutaneous LBCLs of the head or trunk and abundant in primary cutaneous LBCLs of the legs, which fits well with its earlier recognition as a distinct clinical pathological entity with different clinical behavior. We conclude that clinically defined subclasses of primary LBCLs display site-specific abnormal expression patterns of PcG genes of the HPC-HPH/PRC1 PcG complex. Some of these patterns (such as the expression profile of BMI-1) may be diagnostically relevant. We propose that distinct expression profiles of PcG genes results in abnormal formation of HPC-HPH/PRC1 PcG complexes, and that this contributes to lymphomagenesis and different clinical behavior of clinically defined LBCLs. PMID:14742259
Ogé, Laurent; Bourdais, Gildas; Bove, Jérôme; Collet, Boris; Godin, Béatrice; Granier, Fabienne; Boutin, Jean-Pierre; Job, Dominique; Jullien, Marc; Grappin, Philippe
2008-01-01
The formation of abnormal amino acid residues is a major source of spontaneous age-related protein damage in cells. The protein l-isoaspartyl methyltransferase (PIMT) combats protein misfolding resulting from l-isoaspartyl formation by catalyzing the conversion of abnormal l-isoaspartyl residues to their normal l-aspartyl forms. In this way, the PIMT repair enzyme system contributes to longevity and survival in bacterial and animal kingdoms. Despite the discovery of PIMT activity in plants two decades ago, the role of this enzyme during plant stress adaptation and in seed longevity remains undefined. In this work, we have isolated Arabidopsis thaliana lines exhibiting altered expression of PIMT1, one of the two genes encoding the PIMT enzyme in Arabidopsis. PIMT1 overaccumulation reduced the accumulation of l-isoaspartyl residues in seed proteins and increased both seed longevity and germination vigor. Conversely, reduced PIMT1 accumulation was associated with an increase in the accumulation of l-isoaspartyl residues in the proteome of freshly harvested dry mature seeds, thus leading to heightened sensitivity to aging treatments and loss of seed vigor under stressful germination conditions. These data implicate PIMT1 as a major endogenous factor that limits abnormal l-isoaspartyl accumulation in seed proteins, thereby improving seed traits such as longevity and vigor. The PIMT repair pathway likely works in concert with other anti-aging pathways to actively eliminate deleterious protein products, thus enabling successful seedling establishment and strengthening plant proliferation in natural environments. PMID:19011119
Jin, Jing; Peng, Qi; Hou, Zhipeng; Jiang, Mali; Wang, Xin; Langseth, Abraham J.; Tao, Michael; Barker, Peter B.; Mori, Susumu; Bergles, Dwight E.; Ross, Christopher A.; Detloff, Peter J.; Zhang, Jiangyang; Duan, Wenzhen
2015-01-01
White matter abnormalities have been reported in premanifest Huntington's disease (HD) subjects before overt striatal neuronal loss, but whether the white matter changes represent a necessary step towards further pathology and the underlying mechanism of these changes remains unknown. Here, we characterized a novel knock-in mouse model that expresses mouse HD gene homolog (Hdh) with extended CAG repeat- HdhQ250, which was derived from the selective breeding of HdhQ150 mice. HdhQ250 mice manifest an accelerated and robust phenotype compared with its parent line. HdhQ250 mice exhibit progressive motor deficits, reduction in striatal and cortical volume, accumulation of mutant huntingtin aggregation, decreased levels of DARPP32 and BDNF and altered striatal metabolites. The abnormalities detected in this mouse model are reminiscent of several aspects of human HD. In addition, disturbed myelination was evident in postnatal Day 14 HdhQ250 mouse brain, including reduced levels of myelin regulatory factor and myelin basic protein, and decreased numbers of myelinated axons in the corpus callosum. Thinner myelin sheaths, indicated by increased G-ratio of myelin, were also detected in the corpus callosum of adult HdhQ250 mice. Moreover, proliferation of oligodendrocyte precursor cells is altered by mutant huntingtin both in vitro and in vivo. Our data indicate that this model is suitable for understanding comprehensive pathogenesis of HD in white matter and gray matter as well as developing therapeutics for HD. PMID:25609071
Tallafuss, Alexandra; Bally-Cuif, Laure
2003-09-01
The midbrain-hindbrain domain (MH) of the vertebrate embryonic neural tube develops in response to the isthmic organizer (IsO), located at the midbrain-hindbrain boundary (MHB). MH derivatives are largely missing in mutants affected in IsO activity; however, the potentialities and fate of MH precursors in these conditions have not been directly determined. To follow the dynamics of MH maintenance in vivo, we used artificial chromosome transgenesis in zebrafish to construct lines where egfp transcription is driven by the complete set of regulatory elements of her5, the first known gene expressed in the MH area. In these lines, egfp transcription faithfully recapitulates her5 expression from its induction phase onwards. Using the stability of GFP protein as lineage tracer, we first demonstrate that her5 expression at gastrulation is a selective marker of MH precursor fate. By comparing GFP protein and her5 transcription, we further reveal the spatiotemporal dynamics of her5 expression that conditions neurogenesis progression towards the MHB over time. Finally, we trace the molecular identity of GFP-positive cells in the acerebellar (ace) and no-isthmus (noi) mutant backgrounds to analyze directly fgf8 and pax2.1 mutant gene activities for their ultimate effect on cell fate. We demonstrate that most MH precursors are maintained in both mutants but express abnormal identities, in a manner that strikingly differs between the ace and noi contexts. Our observations directly support a role for Fgf8 in protecting anterior tectal and metencephalic precursors from acquiring anterior identities, while Pax2.1 controls the choice of MH identity as a whole. Together, our results suggest a model where an ordered MH pro-domain is identified at gastrulation, and where cell identity choices within this domain are subsequently differentially controlled by Fgf8 and Pax2.1 functions.
Pol, Arno; van Ruissen, Fred; Schalkwijk, Joost
2002-08-01
Inflamed epidermis (psoriasis, wound healing, ultraviolet-irradiated skin) harbors keratinocytes that are hyperproliferative and display an abnormal differentiation program. A distinct feature of this so-called regenerative maturation pathway is the expression of proteins such as the cytokeratins CK6, CK16, and CK17 and the antiinflammatory protein SKALP/elafin. These proteins are absent in normal skin but highly induced in lesional psoriatic skin. Expression of these genes can be used as a surrogate marker for psoriasis in drug-screening procedures of large compound libraries. The aim of this study was to develop a keratinocyte cell line that contained a reporter gene under the control of a psoriasis-associated endogenous promoter and demonstrate its use in an assay suitable for screening. We generated a stably transfected keratinocyte cell line that expresses enhanced green fluorescent protein (EGFP), under the control of a 0.8-kb fragment derived from the promoter of the SKALP/elafin gene, which confers high levels of tissue-specific expression at the mRNA level. Induction of the SKALP promoter by tumor necrosis factor-alpha resulted in increased expression levels of the secreted SKALP-EGFP fusion protein as assessed by direct readout of fluorescence and fluorescence polarization in 96-well cell culture plates. The fold stimulation of the reporter gene was comparable to that of the endogenous SKALP gene as assessed by enzyme-linked immunosorbent assay. Although the dynamic range of the screening system is limited, the small standard deviation yields a Z factor of 0.49. This indicates that the assay is suitable as a high-throughput screen, and provides proof of the concept that a secreted EGFP fusion protein under the control of a physiologically relevant endogenous promoter can be used as a fluorescence-based high-throughput screen for differentiation-modifying or antiinflammatory compounds that act via the keratinocyte.
Halene, Stephanie; Gaines, Peter; Sun, Hong; Zibello, Theresa; Lin, Sharon; Khanna-Gupta, Arati; Williams, Simon C.; Perkins, Archibald; Krause, Diane; Berliner, Nancy
2010-01-01
Objective Mutations in the C/EBPε gene have been identified in the cells of patients with neutrophil specific granule deficiency (SGD), a rare congenital disorder marked by recurrent bacterial infections. Their neutrophils, in addition to lacking specific granules required for normal respiratory burst activity, also lack normal phagocytosis and chemotaxis. Although the SGD phenotype has been replicated in C/EBPε−/− (KO) mice, the mechanisms by which C/EBPε mutations act to decrease neutrophil function are not entirely clear. Methods In order to determine the role of C/EBPε in neutrophil differentiation and migration, we generated immortalized progenitor cell lines from C/EBPε KO and wild type (WT) mice and performed expression and flow cytometric analysis and functional studies. Results Expression of lineage specific cell surface antigens on our in vitro differentiated cell lines revealed persistent expression of monocytic markers on KO granulocytes. We verified this in primary murine peripheral blood and bone marrow cells. In addition, KO BM had an increase in immature myeloid precursors at the common myeloid progenitor (CMP) and granulocyte monocyte progenitor (GMP) level suggesting a critical role for C/EBPε not only in granulocyte maturation beyond the promyelocyte stage, but also in the monocyte/granulocyte lineage decision. We found that restoration of Hlx (H2.0-like homeo box 1) expression, which was decreased in C/EBPε KO cells, rescued chemotaxis, but not the other defects of C/EBPε KO neutrophils. Summary We show two new regulatory functions of C/EBPε in myelopoiesis: in the absence of C/EBPε, there is not only incomplete differentiation of granulocytes, but myelopoiesis is disrupted with the appearance of an intermediate cell type with monocyte and granulocyte features, and the neutrophils have abnormal chemotaxis. Restoration of expression of Hlx provides partial recovery of function; it has no effect on neutrophil maturation, but can completely ameliorate the chemotaxis defect in C/EBPe KO cells. PMID:19925846
Menalled, Liliana B; Kudwa, Andrea E; Miller, Sam; Fitzpatrick, Jon; Watson-Johnson, Judy; Keating, Nicole; Ruiz, Melinda; Mushlin, Richard; Alosio, William; McConnell, Kristi; Connor, David; Murphy, Carol; Oakeshott, Steve; Kwan, Mei; Beltran, Jose; Ghavami, Afshin; Brunner, Dani; Park, Larry C; Ramboz, Sylvie; Howland, David
2012-01-01
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive and psychiatric manifestations. Since the mutation responsible for the disease was identified as an unstable expansion of CAG repeats in the gene encoding the huntingtin protein in 1993, numerous mouse models of HD have been generated to study disease pathogenesis and evaluate potential therapeutic approaches. Of these, knock-in models best mimic the human condition from a genetic perspective since they express the mutation in the appropriate genetic and protein context. Behaviorally, however, while some abnormal phenotypes have been detected in knock-in mouse models, a model with an earlier and more robust phenotype than the existing models is required. We describe here for the first time a new mouse line, the zQ175 knock-in mouse, derived from a spontaneous expansion of the CAG copy number in our CAG 140 knock-in colony [1]. Given the inverse relationship typically observed between age of HD onset and length of CAG repeat, since this new mouse line carries a significantly higher CAG repeat length it was expected to be more significantly impaired than the parent line. Using a battery of behavioral tests we evaluated both heterozygous and homozygous zQ175 mice. Homozygous mice showed motor and grip strength abnormalities with an early onset (8 and 4 weeks of age, respectively), which were followed by deficits in rotarod and climbing activity at 30 weeks of age and by cognitive deficits at around 1 year of age. Of particular interest for translational work, we also found clear behavioral deficits in heterozygous mice from around 4.5 months of age, especially in the dark phase of the diurnal cycle. Decreased body weight was observed in both heterozygotes and homozygotes, along with significantly reduced survival in the homozygotes. In addition, we detected an early and significant decrease of striatal gene markers from 12 weeks of age. These data suggest that the zQ175 knock-in line could be a suitable model for the evaluation of therapeutic approaches and early events in the pathogenesis of HD.
Hollingsworth, M A; Strawhecker, J M; Caffrey, T C; Mack, D R
1994-04-15
We examined the steady-state expression levels of mRNA for the MUC1, MUC2, MUC3 and MUC4 gene products in 12 pancreatic tumor cell lines, 6 colon tumor cell lines, and one ileocecal tumor cell line. The results showed that 10 of 12 pancreatic tumor cell lines expressed MUC1 mRNA and that 7 of these 12 lines also expressed relatively high levels of MUC4 mRNA. In contrast, MUC2 mRNA was expressed at only low levels and MUC3 was not detected in the pancreatic tumor cell lines. All 7 intestinal tumor cell lines examined expressed MUC2, and 5 of 7 expressed MUC3; however only one expressed significant levels of MUC1 and 2 expressed low levels of MUC4 mRNA. This report of high levels of MUC4 mRNA expression by pancreatic tumor cells raises the possibility that mucin carbohydrate epitopes defined by antibodies such as DuPan 2 may be expressed on a second mucin core protein produced by pancreatic tumor cells.
AC Glow Discharge Plasma in N2O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousif, F. B.; Martinez, H.; Robledo-Martinez, A.
2006-12-04
This paper considers the optical and electrical characterization of AC glow discharge plasma in the abnormal glow mode used for optical emission spectroscopy. The total discharge current and applied voltage are measured using conventional techniques. The electrical characteristics of the planer-cathode glow discharge confirmed that the plasma is operating at abnormal discharge mode characterized by the increases in the operating voltage as the current was raised under given pressure. Optical emission spectroscopy was used to determine the main emission lines of the glow discharge plasma of N2O at pressures between 0.5 and 4.0 Torr. It shows that the discharge emissionmore » range is mainly within 300-400 nm. The emission lines correspond to NO, O2, and O{sub 2}{sup +} are the dominant lines in the glow discharge plasma in the present study. Intensity of the emission lines show linear increase with the discharge current up to 0.4 A followed by saturation at higher currents. No emission lines were observed in this work corresponding to atomic oxygen or nitrogen.« less
Zebrafish as a model for monocarboxyl transporter 8-deficiency.
Vatine, Gad David; Zada, David; Lerer-Goldshtein, Tali; Tovin, Adi; Malkinson, Guy; Yaniv, Karina; Appelbaum, Lior
2013-01-04
Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor retardation characterized by neurological impairment and abnormal thyroid hormone (TH) levels. Mutations in the TH transporter, monocarboxylate transporter 8 (MCT8), are associated with AHDS. MCT8 knock-out mice exhibit impaired TH levels; however, they lack neurological defects. Here, the zebrafish mct8 gene and promoter were isolated, and mct8 promoter-driven transgenic lines were used to show that, similar to humans, mct8 is primarily expressed in the nervous and vascular systems. Morpholino-based knockdown and rescue experiments revealed that MCT8 is strictly required for neural development in the brain and spinal cord. This study shows that MCT8 is a crucial regulator during embryonic development and establishes the first vertebrate model for MCT8 deficiency that exhibits a neurological phenotype.
Ramirez, Elisa; Singh, Rajesh R; Kunkalla, Kranthi; Liu, Yadong; Qu, Changju; Cain, Christine; Multani, Asha S.; Lennon, Patrick A; Jackacky, Jared; Ho, Michael; Dawud, Sity; Gu, Jun; Yang, Su; Hu, Peter C; Vega, Francisco
2012-01-01
Hedgehog (Hh) signaling pathway is activated in diffuse large B-cell lymphoma (DLBCL). Genetic abnormalities that explain activation of Hh signaling in DLBCL are unknown. We investigate the presence of amplifications of Hh genes that might result in activation of this pathway in DLBCL. Our data showed few extra copies of GLI1 and SMO due to chromosomal aneuploidies in a subset of DLBCL cell lines. We also showed that pharmacologic inhibition of PI3K/AKT and NF-KB pathways resulted in decreased expression of GLI1 and Hh ligands. In conclusion, our data support the hypothesis that aberrant activation of Hh signaling in DLBCL mainly results from integration of deregulated oncogenic signaling inputs converging into Hh signaling. PMID:22809693
Epigenome analysis of pluripotent stem cells
Ricupero, Christopher L.; Swerdel, Mavis R.; Hart, Ronald P.
2015-01-01
Summary Mis-regulation of gene expression due to epigenetic abnormalities has been linked with complex genetic disorders, psychiatric illness and cancer. In addition, the dynamic epigenetic changes that occur in pluripotent stem cells are believed to impact regulatory networks essential for proper lineage development. Chromatin immunoprecipitation (ChIP) is a technique used to isolate and enrich chromatin fragments using antibodies against specific chromatin modifications, such as DNA binding proteins or covalent histone modifications. Until recently, many ChIP protocols required millions of cells for each immunoprecipitation. This severely limited analysis of rare cell populations or post-mitotic, differentiated cell lines. Here, we describe a low cell number ChIP protocol with next generation sequencing and analysis, that has the potential to uncover novel epigenetic regulatory pathways that were previously difficult or impossible to obtain. PMID:23546758
Epigenetic Transgenerational Actions of Vinclozolin on the Development of Disease and Cancer
Skinner, Michael K.; Anway, Matthew D.
2018-01-01
Exposure to an environmental endocrine disruptor (e.g., vinclozolin) during embryonic gonadal sex determination appears to alter the male germ line epigenome and subsequently promotes transgenerational adult onset disease. The epigenetic mechanism involves the induction of new imprinted-like genes/DNA sequences in the germ line that appear to transmit disease phenotypes. The disease phenotypes include testis abnormalities, prostate disease, kidney disease, immune abnormalities, and tumor development. This epigenetic transgenerational disease mechanism provides a unique perspective from which to view inheritable adult onset disease states, such as cancer, and ultimately offers new insights into novel diagnostic and therapeutic strategies. PMID:17956218
Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes.
Tomoyasu, Chihiro; Imamura, Toshihiko; Tomii, Toshihiro; Yano, Mio; Asai, Daisuke; Goto, Hiroaki; Shimada, Akira; Sanada, Masashi; Iwamoto, Shotaro; Takita, Junko; Minegishi, Masayoshi; Inukai, Takeshi; Sugita, Kanji; Hosoi, Hajime
2018-05-21
In this study, we performed genetic analysis of 83 B cell precursor acute lymphoblastic leukemia (B-ALL) cell lines. First, we performed multiplex ligation-dependent probe amplification analysis to identify copy number abnormalities (CNAs) in eight genes associated with B-ALL according to genetic subtype. In Ph + B-ALL cell lines, the frequencies of IKZF1, CDKN2A/2B, BTG1, and PAX5 deletion were significantly higher than those in Ph - B-ALL cell lines. The frequency of CDKN2A/2B deletion in KMT2A rearranged cell lines was significantly lower than that in non-KMT2A rearranged cell lines. These findings suggest that CNAs are correlated with genetic subtype in B-ALL cell lines. In addition, we determined that three B-other ALL cell lines had IKZF1 deletions (YCUB-5, KOPN49, and KOPN75); we therefore performed comprehensive genetic analysis of these cell lines. YCUB-5, KOPN49, and KOPN75 had P2RY8-CRLF2, IgH-CRLF2, and PAX5-ETV6 fusions, respectively. Moreover, targeted capture sequencing revealed that YCUB-5 had JAK2 R683I and KRAS G12D, and KOPN49 had JAK2 R683G and KRAS G13D mutations. These data may contribute to progress in the field of leukemia research.
Function of the Sex Chromosomes in Mammalian Fertility
Heard, Edith; Turner, James
2011-01-01
The sex chromosomes play a highly specialized role in germ cell development in mammals, being enriched in genes expressed in the testis and ovary. Sex chromosome abnormalities (e.g., Klinefelter [XXY] and Turner [XO] syndrome) constitute the largest class of chromosome abnormalities and the commonest genetic cause of infertility in humans. Understanding how sex-gene expression is regulated is therefore critical to our understanding of human reproduction. Here, we describe how the expression of sex-linked genes varies during germ cell development; in females, the inactive X chromosome is reactivated before meiosis, whereas in males the X and Y chromosomes are inactivated at this stage. We discuss the epigenetics of sex chromosome inactivation and how this process has influenced the gene content of the mammalian X and Y chromosomes. We also present working models for how perturbations in sex chromosome inactivation or reactivation result in subfertility in the major classes of sex chromosome abnormalities. PMID:21730045
Sun, Nianfeng; Xue, Yu; Dai, Ting; Li, Xiding; Zheng, Nanxiang
2017-08-31
Tripartite motif containing 25 (TRIM25) is a member of TRIM proteins and functions as an E3 (ubiquitin ligase). It has been found to act as an oncogene in gastric cancer cells and is abnormally expressed in cancers in female reproductive system. Here, we investigated the function of TRIM25 in colorectal cancer. TRIM25 was found to be significantly up-regulated in colorectal cancer tissues and cancer cell lines through real-time PCR assay. Colorectal cancer cells (CRCs) overexpressing TRIM25 exhibited a two-fold higher proliferation and migration rate compared with their parental lines in vitro Moreover, TRIM25 also promoted tumor progression in vivo Further study indicated that TRIM25 worked through positively regulating transforming growth factor β (TGF-β) signaling pathway to regulate the proliferation and invasion of CRCs. In summary, our results indicate that TRIM25 also acts as an oncogene in colorectal cancer and it functions through TGF-β signaling pathway. Thus, TRIM25 represents potential targets for the treatment of colorectal cancer. © 2017 The Author(s).
Sun, Nianfeng; Xue, Yu; Dai, Ting; Li, Xiding
2017-01-01
Tripartite motif containing 25 (TRIM25) is a member of TRIM proteins and functions as an E3 (ubiquitin ligase). It has been found to act as an oncogene in gastric cancer cells and is abnormally expressed in cancers in female reproductive system. Here, we investigated the function of TRIM25 in colorectal cancer. TRIM25 was found to be significantly up-regulated in colorectal cancer tissues and cancer cell lines through real-time PCR assay. Colorectal cancer cells (CRCs) overexpressing TRIM25 exhibited a two-fold higher proliferation and migration rate compared with their parental lines in vitro. Moreover, TRIM25 also promoted tumor progression in vivo. Further study indicated that TRIM25 worked through positively regulating transforming growth factor β (TGF-β) signaling pathway to regulate the proliferation and invasion of CRCs. In summary, our results indicate that TRIM25 also acts as an oncogene in colorectal cancer and it functions through TGF-β signaling pathway. Thus, TRIM25 represents potential targets for the treatment of colorectal cancer. PMID:28620119
Bollen, Sander; Leddin, Mathias; Andrade-Navarro, Miguel A; Mah, Nancy
2014-05-15
The current methods available to detect chromosomal abnormalities from DNA microarray expression data are cumbersome and inflexible. CAFE has been developed to alleviate these issues. It is implemented as an R package that analyzes Affymetrix *.CEL files and comes with flexible plotting functions, easing visualization of chromosomal abnormalities. CAFE is available from https://bitbucket.org/cob87icW6z/cafe/ as both source and compiled packages for Linux and Windows. It is released under the GPL version 3 license. CAFE will also be freely available from Bioconductor. sander.h.bollen@gmail.com or nancy.mah@mdc-berlin.de Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baconnais, S.; Delavoie, F.; Zahm, J.M.
The absence or decreased expression of cystic fibrosis transmembrane conductance regulator (CFTR) induces increased Na{sup +} absorption and hyperabsorption of the airway surface liquid (ASL) resulting in a dehydrated and hyperviscous ASL. Although the implication of abnormal airway submucosal gland function has been suggested, the ion and water content in the Cystic Fibrosis (CF) glandular secretory granules, before exocytosis, is unknown. We analyzed, in non-CF and CF human airway glandular cell lines (MM-39 and KM4, respectively), the ion content in the secretory granules by electron probe X-ray microanalysis and the water content by quantitative dark field imaging on freeze-dried cryosections.more » We demonstrated that the ion content (Na{sup +}, Mg{sup 2+}, P, S and Cl{sup -}) is significantly higher and the water content significantly lower in secretory granules from the CF cell line compared to the non-CF cell line. Using videomicroscopy, we observed that the secretory granule expansion was deficient in CF glandular cells. Transfection of CF cells with CFTR cDNA or inhibition of non-CF cells with CFTR{sub inh}-172, respectively restored or decreased the water content and granule expansion, in parallel with changes in ion content. We hypothesize that the decreased water and increased ion content in glandular secretory granules may contribute to the dehydration and increased viscosity of the ASL in CF.« less
Li, Yu-jun; Ji, Xiang-rui
2003-06-01
To study the relationship between the abnormal expression of beta-catenin (beta-cat) and the high expressions of cyclin D1 and c-myc and the occurance, proliferation, infiltration, metastasis and prognosis of pancreatic cancer, and to provide rational basis for the clinical diagnosis and treatment. Immunohistochemical PicTure trade mark was used to examine the expressions of beta-cat, cyclin D1 and c-myc in 47 cases of the cancerous tissue of pancreas, 12 cases of the pancreatic intraepithelial neoplasia and 10 cases of normal tissue of pancreas, respectively. Pancreatic cancer proliferation cell nuclear antigen (PCNA) was also tested as the index of the extent of proliferation of the pancreatic cancer. beta-cat was expressed normally in the 10 cases of the normal pancreatic tissue, while cyclin D1 and c-myc were negative. The expression rates of beta-cat, cyclin D1 and c-myc in the tissues of the pancreatic intraepithelial neoplasia and the pancreatic cancer had no significant difference [6/12 and 68.1% (32/47), 6/12 and 74.5% (35/47), 5/12 and 70.2% (33/47) respectively;P values were all more than 0.05]. The abnormal expression rate of beta-cat was significantly correlated to the metastasis of the pancreatic cancer and the one-year survival rate (both P < 0.05), but had no relation with the size, the extent of differentiation, the activity of proliferation, or infiltration of the pancreatic cancer (both P > 0.05). The expression rate of cyclin D1 was correlated with the proliferation of the pancreatic cancer and the extent of differentiation (both P < 0.05), but not with the size, infiltration, metastasis, or one-year survival rate of the pancreatic cancer (both P > 0.05). The expression rate of c-myc was not correlated with the size, the extent of proliferation, infiltration, metastasis, or one-year survival rate (both P > 0.05), but closely with the proliferation activity of the cancerous tissue of pancreas (P < 0.05). The abnormal expression of beta-cat and the high expressions of cyclin D1 and c-myc had a parallel relationship with the pancreatic intraepithelial neoplasia and pancreatic cancer (both P < 0.05, gamma = 1.000, 0.845, 0.437, 0.452). The abnormal expression of beta-cat activates cyclin D1 and c-myc, and results in the unchecked proliferation and differentiation, which may play an important role in the genesis of the pancreatic cancer. The abnormal expression of beta-cat is one of the mechanisms for the spread of pancreatic cancer and an index in the molecular biology to determine the metastasis and prognosis of pancreatic cancer.
Xu, Yin; Zhang, Jin; Tian, Chan; Ren, Ke; Yan, Yu-E; Wang, Ke; Wang, Hui; Chen, Cao; Wang, Jing; Shi, Qi; Dong, Xiao-Ping
2014-04-01
The protein of p62/sequestosome 1 (SQSTM1), a key cargo adaptor protein involved in autophagy-lysosome degradation, exhibits inclusion bodies structure in cytoplasm and plays a protective role in some models of neurodegenerative diseases. Some PrP mutants, such as PrP-CYTO and PrP-PG14, also form cytosolic inclusion bodies and trigger neuronal apoptosis either in cultured cells or in transgenic mice. Here, we demonstrated that the cellular p62/SQSTM1 incorporated into the inclusion bodies formed by expressing the abnormal PrP mutants, PrP-CYTO and PrP-PG14, in human embryonic kidney 293 cells. Overexpression of p62/SQSTM1 efficiently relieved the cytosolic aggregations and cell apoptosis induced by the abnormal PrPs. Autophagy-lysosome inhibitors instead of proteasome inhibitor sufficiently blocked the p62/SQSTM1-mediated degradations of abnormal PrPs. Overexpression of p62/SQSTM1 did not alter the levels of light chain 3 (LC3) in the cells expressing various PrPs. However, more complexes of p62/SQSTM1 with LC3 were detected in the cells expressing the misfolded PrPs. These data imply that p62/SQSTM1 plays an important role in the homeostasis of abnormal PrPs via autophagy-lysosome-dependent way.
Liu, Baoshan; Yan, Rongdi; Zhang, Jie; Wang, Bin; Sun, Hu; Cui, Xing
2017-08-02
As evidence was shown that abnormal shortening of telomeres begins to accumulate in myelodysplastic syndrome (MDS) patients, this study was conducted to determine the relationship between the mRNA expression levels of telomere-binding proteins (TRF1/TRF2/TIN2/TPP1/POT1/RAP1) and the risk level in MDS. There were 40 patients with MDS and 40 normal controls in this study. Methods including telomere content assays and quantitative reverse transcription-polymerase chain reaction were used to examine the mRNA levels of TRF1/TRF2/TIN2/TPP1/POT1/RAP1 in patients with MDS. Compared to the normal group used as a control, the mRNA expression levels of RAP1/POT1/TPP1 of the patients with MDS were decreased, whereas their levels of TRF1/TRF2 and TIN2 were increased. A positive correlation was found between the TRF1, TRF2, and TIN2 mRNA expression levels and the risk level of the International Prognostic Scoring System (IPSS) and the World Health Organization Prognostic Scoring System (WPSS) criteria; however, a negative correlation was found between RAP1/POT1/TPP1 mRNA expression levels and the risk levels of IPSS and WPSS criteria. Because the reduction of TRF1/TRF2/TIN2 mRNA expression and the increase of RAP1/POT1/TPP1 mRNA expression are closely related to the risk levels of the IPSS and WPSS criteria in MDS, it is thought that these telomere-binding proteins could lead to abnormal telomere length and function, which cause chromosomal abnormalities in MDS. With this evidence, we suggest that those proteins' mRNA expressions could be used as biomarkers for the assessment of the risk degree of MDS patients.
Bai, Yu; Zhang, Quan-Geng; Wang, Xin-Hua
2014-12-11
Gliomas are the most common human brain tumors. Glioblastoma, also known as glioblastoma multiform (GBM), is the most aggressive, malignant, and lethal glioma. The investigation of prognostic and diagnostic molecular biomarkers in glioma patients to provide direction on clinical practice is urgent. Recent studies demonstrated that abnormal DNA methylation states play a key role in the pathogenesis of this kind of tumor. In this study, we want to identify a novel biomarker related to glioma initiation and find the role of the glioma-related gene. We performed a methylation-specific microarray on the promoter region to identify methylation gene(s) that may affect outcome of GBM patients. Normal and GBM tissues were collected from Tiantan Hospital. Genomic DNA was extracted from these tissues and analyzed with a DNA promoter methylation microarray. Testis derived transcript (TES) protein expression was analyzed by immunohistochemistry in paraffin-embedded patient tissues. Western blotting was used to detect TES protein expression in the GBM cell line U251 with or without 5-aza-dC treatment. Cell apoptosis was evaluated by flow cytometry analysis using Annexin V/PI staining. We found that the TES promoter was hypermethylated in GBM compared to normal brain tissues under DNA promoter methylation microarray analysis. The GBM patients with TES hypermethylation had a short overall survival (P <0.05, log-rank test). Among GBM samples, reduced TES protein level was detected in 33 (89.2%) of 37 tumor tissues by immunohistochemical staining. Down regulation of TES was also correlated with worse patient outcome (P <0.05, log-rank test). Treatment on the GBM cell line U251 with 5-aza-dC can greatly increase TES expression, confirming the hypermethylation of TES promoter in GBM. Up-regulation of TES prompts U251 apoptosis significantly. This study demonstrated that both TES promoter hypermethylation and down-regulated protein expression significantly correlated with worse patient outcome. Treatment on the GBM cell line (U251) with 5-aza-dC can highly release TES expression resulting in significant apoptosis in these cells. Our findings suggest that the TES gene is a novel tumor suppressor gene and might represent a valuable prognostic marker for glioblastoma, indicating a potential target for future GBM therapy.
Cytogenetics of small cell carcinoma of the lung.
Wurster-Hill, D H; Cannizzaro, L A; Pettengill, O S; Sorenson, G D; Cate, C C; Maurer, L H
1984-12-01
Nineteen cell lines derived from various malignant tissues of 15 patients with small cell carcinoma of the lung (SCCL) have been studied. The results showed heterogeneity in all cell lines, with no one consistent abnormality among them. Cell lines from 11 of the patients had minute and double minute chromosomes, and cell lines from 2 patients had abnormally banding regions, designated as ABRs, as distinguished from homogeneously staining regions (HSRs). The latter 2 and several of the former cell lines were derived from specimens taken before the patients were placed on therapy. All but 2 of the cell lines had a constant marker load, consisting of 24%-35% of the complement. Some markers remained stable through months and years of culture life, while other markers came and went. Chromosomes #1, #6 and #11 were most frequently involved in marker formation in the cell lines, and these were compared to similar markers in direct bone marrow preparations. Chromosome #1 markers were of variable structure, whereas #6 and #11 most often took the form of 6q- and 11p+ markers, with breakpoints most frequently at 6q23-25 and 11p11-12. A 3p- marker was found in a minority of cell lines. All of these markers were also found in direct marrow preparations from some patients with SCCL. Nonmonoclonal tumors arose from inoculation of bimodal cell lines into nude mice, but population selection by undetermined mechanism was evident. Cytogenetic parameters showed no positive correlation with hormone production by these cell lines.
Liu, Jin; Nam, Hwa Kyung; Campbell, Cassie; Gasque, Kellen Cristina da Silva; Millán, José Luis; Hatch, Nan E.
2014-01-01
Tissue-nonspecific alkaline phosphatase (TNAP) is an enzyme present on the surface of mineralizing cells and their derived matrix vesicles that promotes hydroxyapatite crystal growth. Hypophosphatasia (HPP) is an inborn-error-of-metabolism that, dependent upon age of onset, features rickets or osteomalacia due to loss-of function mutations in the gene (Alpl) encoding TNAP. Craniosynostosis is prevalent in infants with HPP and other forms of rachitic disease but how craniosynostosis develops in these disorders is unknown. Objectives: Because craniosynostosis carries high morbidity, we are investigating craniofacial skeletal abnormalities in Alpl−/− mice to establish these mice as a model of HPP-associated craniosynostosis and determine mechanisms by which TNAP influences craniofacial skeletal development. Methods: Cranial bone, cranial suture and cranial base abnormalities were analyzed by micro-CT and histology. Craniofacial shape abnormalities were quantified using digital calipers. TNAP expression was suppressed in MC3T3E1(C4) calvarial cells by TNAP-specific shRNA. Cells were analyzed for changes in mineralization, gene expression, proliferation, apoptosis, matrix deposition and cell adhesion. Results: Alpl−/− mice feature craniofacial shape abnormalities suggestive of limited anterior-posterior growth. Craniosynostosis in the form of bony coronal suture fusion is present by three weeks after birth. Alpl−/− mice also exhibit marked histologic abnormalities of calvarial bones and the cranial base involving growth plates, cortical and trabecular bone within two weeks of birth. Analysis of calvarial cells in which TNAP expression was suppressed by shRNA indicates that TNAP deficiency promotes aberrant osteoblastic gene expression, diminished matrix deposition, diminished proliferation, increased apoptosis and increased cell adhesion. Conclusions: These findings demonstrate that Alpl−/− mice exhibit a craniofacial skeletal phenotype similar to that seen in infants with HPP, including true bony craniosynostosis in the context of severely diminished bone mineralization. Future studies will be required to determine if TNAP deficiency and other forms of rickets promote craniosynostosis directly through abnormal calvarial cell behavior, or indirectly due to deficient growth of the cranial base. PMID:25014884
Barese, Cecilia N.; Felizardo, Tania C.; Sellers, Stephanie E.; Keyvanfar, Keyvan; Di Stasi, Antonio; Metzger, Mark E.; Krouse, Allen E.; Donahue, Robert E.; Spencer, David M.; Dunbar, Cynthia E.
2014-01-01
The high risk of insertional oncogenesis reported in clinical trials utilizing integrating retroviral vectors to genetically-modify hematopoietic stem and progenitor cells (HSPC) requires the development of safety strategies to minimize risks associated with novel cell and gene therapies. The ability to ablate genetically modified cells in vivo is desirable, should an abnormal clone emerge. Inclusion of “suicide genes” in vectors to facilitate targeted ablation of vector-containing abnormal clones in vivo is one potential safety approach. We tested whether the inclusion of the “inducible Caspase-9” (iCasp9) suicide gene in a gamma-retroviral vector facilitated efficient elimination of vector-containing HSPCs and their hematopoietic progeny in vivo long-term, in an autologous non-human primate transplantation model. Following stable engraftment of iCasp9 expressing hematopoietic cells in rhesus macaques, administration of AP1903, a chemical inducer of dimerization able to activate iCasp9, specifically eliminated vector-containing cells in all hematopoietic lineages long-term, suggesting activity at the HSPC level. Between 75–94% of vector-containing cells were eliminated by well-tolerated AP1903 dosing, but lack of complete ablation was linked to lower iCasp9 expression in residual cells. Further investigation of resistance mechanisms demonstrated upregulation of Bcl-2 in hematopoietic cell lines transduced with the vector and resistant to AP1903 ablation. These results demonstrate both the potential and the limitations of safety approaches utilizing iCasp9 to HSPC-targeted gene therapy settings, in a model with great relevance to clinical development. PMID:25330775
Rossi, Michael; LaDuca, Jeff; Cowell, John; Srivastava, Bejai I.S.; Matsui, Sei-ichi
2010-01-01
We performed aCGH, SKY /FISH, molecular mapping and expression analyses on a permanent CD8+ NK/T cell line, ‘SRIK-NKL’ established from a lymphoma (ALL) patient, in attempt to define the fundamental genetic profile of its unique NK phenotypes. aCGH revealed hemizygous deletion of 6p containing genes responsible for hematopoietic functions. The SKY demonstrated that a constitutive reciprocal translocation, rcpt(5;14)(p13.2;q11) is a stable marker. Using somatic hybrids containing der(5) derived from SRIK-NKL, we found that the breakpoint in one homologue of no. 5 is located upstream of IL7R and also that the breakpoint in no. 14 is located within TRA@. The FISH analysis using BAC which contains TRA@ and its flanking region further revealed a ~231 kb deletion within 14q11 in the der(5) but not in the normal homologue of no. 14. The RT-PCR analysis detected mRNA for TRA@ transcripts which were extending across, but not including, the deleted region. IL7R was detected at least at mRNA levels. These findings were consistent with the immunological findings that TRA@ and IL7R are both expressed at mRNA levels and TRA@ at cytoplasmic protein levels in SRIK-NKL cells. In addition to rept(5;14), aCGH identified novel copy number abnormalities suggesting that the unique phenotype of the SRIK-NKL cell line is not solely due to the TRA@ rearrangement. These findings provide supportive evidence for the notion that SRIK-NKL cells may be useful for studying not only the function of NK cells but also genetic deregulations associated with leukemiogenesis. PMID:17640729
Yin, Chunyue; Evason, Kimberley J; Maher, Jacquelyn J; Stainier, Didier Y R
2012-11-01
Hepatic stellate cells (HSCs) are liver-specific mesenchymal cells that play vital roles in liver development and injury. Our knowledge of HSC biology is limited by the paucity of in vivo data. HSCs and sinusoidal endothelial cells (SECs) reside in close proximity, and interactions between these two cell types are potentially critical for their development and function. Here, we introduce a transgenic zebrafish line, Tg(hand2:EGFP), that labels HSCs. We find that zebrafish HSCs share many similarities with their mammalian counterparts, including morphology, location, lipid storage, gene-expression profile, and increased proliferation and matrix production, in response to an acute hepatic insult. Using the Tg(hand2:EGFP) line, we conducted time-course analyses during development to reveal that HSCs invade the liver after SECs do. However, HSCs still enter the liver in mutants that lack most endothelial cells, including SECs, indicating that SECs are not required for HSC differentiation or their entry into the liver. In the absence of SECs, HSCs become abnormally associated with hepatic biliary cells, suggesting that SECs influence HSC localization during liver development. We analyzed factors that regulate HSC development and show that inhibition of vascular endothelial growth factor signaling significantly reduces the number of HSCs that enter the liver. We also performed a pilot chemical screen and identified two compounds that affect HSC numbers during development. Our work provides the first comprehensive description of HSC development in zebrafish and reveals the requirement of SECs in HSC localization. The Tg(hand2:EGFP) line represents a unique tool for in vivo analysis and molecular dissection of HSC behavior. Copyright © 2012 American Association for the Study of Liver Diseases.
Supernumerary nipples in association with Hailey-Hailey disease in a Tunisian family.
Benmously-Mlika, R; Deghais, S; Bchetnia, M; Charfeddine, C; Mokni, M; Kassar, S; Haouet, S; Boubaker, S; Mokhtar, I; Abdelhak, S; Dhahri, A Ben Osman
2008-06-15
Supernumerary nipples (SNs) or polythelia are developmental abnormalities of breast tissue. They are located along the embryonic mammary lines. Polythelia usually occurs as a sporadic abnormality, although familial aggregation has been occasionally reported. Hailey-Hailey disease is a rare autosomal genodermatosis characterized by disturbed keratinocyte adhesion. These cutaneous disorders have been described in correlation with many other abnormalities. We report here the association of Hailey-Hailey disease and supernumerary nipples in a Northern Tunisian family. To our knowledge, this is the first report of such a clinical association.
Expression and rearrangement of the ROS1 gene in human glioblastoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birchmeier, C.; Sharma, S.; Wigler, M.
1987-12-01
The human ROS1 gene, which possibly encodes a growth factor receptor, was found to be expressed in human tumor cell lines. In a survey of 45 different human cell lines, the authors found ROS1 to be expressed in glioblastoma-derived cell lines at high levels and not to be expressed at all, or expressed at very low levels, in the remaining cell lines. The ROS1 gene was present in normal copy numbers in all cell lines that expressed the gene. However, in one particular glioblastoma line, they detected a potentially activating mutation at the ROS1 locus.
Del Pino, Alberto; Ligero, Gertrudis; López, María B; Navarro, Héctor; Carrillo, Jose A; Pantoll, Siobhan C; Díaz de la Guardia, Rafael
2015-02-01
Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2. Copyright © 2014 Elsevier Inc. All rights reserved.
Liu, Tao; Zhao, Han; Wang, Jianfeng; Shu, Xin; Gao, Yuan; Mu, Xiaoli; Gao, Fei; Liu, Hongbin
2017-11-01
The present study aimed to identify the molecular mechanisms underlying the effects of the fructose‑1,6‑bisphosphatase 1 (FBP1) signaling pathway within normal follicle development and in hyperandrogenism‑induced abnormal follicle growth. To achieve this, murine primary follicles, granulosa cells (GCs) and theca‑interstitial cells (TICs) were isolated, cultured in vitro and treated with a high concentration of androgens. A concentration of 1x10‑5 mol/l testosterone was considerable to induce hyperandrogenism by MTT assay. All cells were divided into four groups, as follows: Control group, testosterone group, androgen receptor antagonist‑flutamide group and flutamide + testosterone group. Flutamide was used in the present study as it blocks the effects of the androgen receptor. The mRNA expression levels of FBP1 were detected using reverse transcription‑quantitative polymerase chain reaction. The expression levels and localization of FBP1 were analyzed by western blot analysis and immunofluorescence staining. The experimental results demonstrated that androgen presence stimulated follicle development, whereas excessive testosterone inhibited development. FBP1 was identified as being mainly expressed in follicles; FBP1 protein was significantly expressed in GCs of the 14‑day‑cultured follicle, as well as in the cytoplasm and nuclei of GCs and TICs in vitro. Testosterone increased FBP1 expression during a specific range of testosterone concentrations. Testosterone increased the expression of FBP1 within GCs. Furthermore, FBP1 and phosphoenolpyruvate carboxykinase 1 (PCK1) mRNA expression was increased in GCs treated with testosterone, whereas forkhead box protein O1 (FOXO1) and peroxisome proliferator‑activated receptor γ coactivator‑1α mRNA expression was significantly decreased in the testosterone group. In TICs, testosterone and flutamide inhibited the mRNA expression levels of FOXO1 and glucose‑6‑phosphatase enzyme, and promoted the expression of PCK1. These results suggested that the FBP1 signaling pathway may serve an important role in normal follicle growth and hyperandrogenism‑induced abnormal development, which may be associated with abnormal glucose metabolism induced by high concentrations of testosterone.
Long interspersed nuclear element-1 expression and retrotransposition in prostate cancer cells.
Briggs, Erica M; Ha, Susan; Mita, Paolo; Brittingham, Gregory; Sciamanna, Ilaria; Spadafora, Corrado; Logan, Susan K
2018-01-01
Long Interspersed Nuclear Element-1 (LINE-1) is an autonomous retrotransposon that generates new genomic insertions through the retrotransposition of a RNA intermediate. Expression of LINE-1 is tightly repressed in most somatic tissues to prevent DNA damage and ensure genomic integrity. However, the reactivation of LINE-1 has been documented in cancer and the role of LINE-1 protein expression and retrotransposition has become of interest in the development, progression, and adaptation of many epithelial neoplasms, including prostate cancer. Here, we examined endogenous LINE-1 protein expression and localization in a panel of prostate cancer cells and observed a diverse range of LINE-1 expression patterns between cell lines. Subcellular localization of LINE-1 proteins, ORF1p and ORF2p, revealed distinct expression patterns. ORF1p, a nucleic acid chaperone that binds LINE-1 mRNA, was predominantly expressed in the cytoplasm, with minor localization in the nucleus. ORF2p, containing endonuclease and reverse transcriptase domains, exhibited punctate foci in the nucleus and also displayed co-localization with PCNA and γH2AX. Using a retrotransposition reporter assay, we found variations in LINE-1 retrotransposition between cell lines. Overall, our findings reveal new insight into the expression and retrotransposition of LINE-1 in prostate cancer. The prostate cancer cells we investigated provide a unique model for investigating endogenous LINE-1 activity and provide a functional model for studying LINE-1 mechanisms in prostate cancer.
The transcriptional diversity of 25 Drosophila cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherbas, Lucy; Willingham, Aarron; Zhang, Dayu
2010-12-22
Drosophila melanogaster cell lines are important resources for cell biologists. In this article, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signalingmore » pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. We report the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25 lines with emphasis on what those patterns reveal about the origins of the lines and the stability of spatial expression patterns. In addition, we offer an initial analysis of previously unannotated transcripts in the cell lines.« less
The Role of Hox Genes in Female Reproductive Tract Development, Adult Function, and Fertility.
Du, Hongling; Taylor, Hugh S
2015-11-09
HOX genes convey positional identity that leads to the proper partitioning and adult identity of the female reproductive track. Abnormalities in reproductive tract development can be caused by HOX gene mutations or altered HOX gene expression. Diethylstilbestrol (DES) and other endocrine disruptors cause Müllerian defects by changing HOX gene expression. HOX genes are also essential regulators of adult endometrial development. Regulated HOXA10 and HOXA11 expression is necessary for endometrial receptivity; decreased HOXA10 or HOXA11 expression leads to decreased implantation rates. Alternation of HOXA10 and HOXA11 expression has been identified as a mechanism of the decreased implantation associated with endometriosis, polycystic ovarian syndrome, leiomyoma, polyps, adenomyosis, and hydrosalpinx. Alteration of HOX gene expression causes both uterine developmental abnormalities and impaired adult endometrial development that prevent implantation and lead to female infertility. Copyright © 2016 Cold Spring Harbor Laboratory Press; all rights reserved.
Gu, Yajun; Pan, Yi; Meng, Bin; Guan, Bingxin; Fu, Kai; Sun, Baocun; Zheng, Fang
2013-06-01
We aimed to investigate bcl-2, bcl-6, and c-myc rearrangements in patients with lymphoblastic lymphoma (LBL), especially focus on the correlation of protein expression with genetic abnormalities. Moreover, their prognostic significance was further analyzed in LBL. Protein expression and genetic abnormalities of bcl-2, bcl-6, and c-myc were investigated in microarrayed tumors from 33 cases of T cell LBL and eight cases of B cell lineage. Immunohistochemical (IHC) staining was performed to evaluate protein expression, including bcl-2, bcl-6, c-myc, TdT, CD1α, CD34, Ki-67, PAX-5, CD2, CD3, CD4, CD8, and CD20. Genetic abnormalities of bcl-2, bcl-6, and c-myc were detected by dual color fluorescence in situ hybridization (FISH). Bcl-2 protein was positive in 51.2 % (21/41) of the patients, bcl-6 protein in 7.3 % (three out of 41), and c-myc protein in 78.0 % (32/41). Bcl-2 breakpoint was found in two cases by FISH analysis. There was no evidence of bcl-6 or c-myc rearrangement in patients with LBL. However, both gene gain and loss events occurred in bcl-2, bcl-6, and c-myc. A univariate analysis showed that stage III or IV, elevated lactate dehydrogenase (LDH), and positivity for bcl-2 protein were associated with shorter survival (p<0.05). Enhanced protein expression and detectable genetic abnormalities of bcl-2, bcl-6, and c-myc were observed in patients with LBL. No statistical correlation was found between IHC results and cytogenetic findings. Stage III or IV, elevated LDH, and positivity for bcl-2 protein were identified as adverse prognostic factors. The patients with more adverse factors would have increasingly worse prognosis.
49 CFR 192.605 - Procedural manual for operations, maintenance, and emergencies.
Code of Federal Regulations, 2011 CFR
2011-10-01
... maintenance activities and for emergency response. For transmission lines, the manual must also include... and effective manner. (5) Starting up and shutting down any part of the pipeline in a manner designed... control room management procedures required by § 192.631. (c) Abnormal operation. For transmission lines...
Adams, C E; Yonchek, J C; Schulz, K M; Graw, S L; Stitzel, J; Teschke, P U; Stevens, K E
2012-04-05
The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter GABA and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous (Het) deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism, and epilepsy. Each of these diseases are characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing, and increased hippocampal CA3 pyramidal neuron activity in C3H mice Het for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABA(A) receptors, the GABA synthetic enzyme l-glutamic acid decarboxylase-65 (GAD-65), and the vesicular GABA transporter 1 (GAT-1) in wild-type (Chrna7 +/+) and Het (Chrna7 +/-) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female Het C3H α7 mice, whereas GABA(A) receptors were significantly reduced only in male Het C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism, and/or epilepsy. Published by Elsevier Ltd.
Adams, Catherine E.; Yonchek, Joan C.; Schulz, Kalynn M.; Graw, Sharon L.; Stitzel, Jerry; Teschke, Patricia U.; Stevens, Karen E.
2012-01-01
The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism and epilepsy. Each of these diseases is characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. Reduced Chrna7 expression results in decreased hippocampal α7* receptor density, abnormal hippocampal auditory sensory processing and increased hippocampal CA3 pyramidal neuron activity in C3H mice heterozygous for a null mutation in Chrna7. These abnormalities demonstrate that decreased Chrna7 expression alters hippocampal inhibitory circuit function. The current study examined the specific impact of reduced Chrna7 expression on hippocampal inhibitory circuits by measuring the levels of GABA, GABAA receptors, the GABA synthetic enzyme glutamate decarboxylase-65 (GAD-65) and the vesicular GABA transporter GAT-1 in wild type (Chrna7 +/+) and heterozygous (Chrna7 +/−) C3H α7 mice of both genders. GAD-65 levels were significantly decreased in male and female heterozygous C3H α7 mice while GABAA receptors were significantly reduced only in male heterozygous C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism and/or epilepsy. PMID:22314319
Bates, Anthony; Miles, Kenneth
2017-12-01
To validate MR textural analysis (MRTA) for detection of transition zone (TZ) prostate cancer through comparison with co-registered prostate-specific membrane antigen (PSMA) PET-MR. Retrospective analysis was performed for 30 men who underwent simultaneous PSMA PET-MR imaging for staging of prostate cancer. Thirty texture features were derived from each manually contoured T2-weighted, transaxial, prostatic TZ using texture analysis software that applies a spatial band-pass filter and quantifies texture through histogram analysis. Texture features of the TZ were compared to PSMA expression on the corresponding PET images. The Benjamini-Hochberg correction controlled the false discovery rate at <5%. Eighty-eight T2-weighted images in 18 patients demonstrated abnormal PSMA expression within the TZ on PET-MR. 123 images were PSMA negative. Based on the corrected p-value of 0.005, significant differences between PSMA positive and negative slices were found for 16 texture parameters: Standard deviation and mean of positive pixels for all spatial filters (p = <0.0001 for both at all spatial scaling factor (SSF) values) and mean intensity following filtration for SSF 3-6 mm (p = 0.0002-0.0018). Abnormal expression of PSMA within the TZ is associated with altered texture on T2-weighted MR, providing validation of MRTA for the detection of TZ prostate cancer. • Prostate transition zone (TZ) MR texture analysis may assist in prostate cancer detection. • Abnormal transition zone PSMA expression correlates with altered texture on T2-weighted MR. • TZ with abnormal PSMA expression demonstrates significantly reduced MI, SD and MPP.
Shirpoor, Alireza; Zerehpoosh, Mitra; Ansari, Mohammad Hasan Khadem; Kheradmand, Fatemeh; Rasmi, Yousef
2017-09-01
The association between ethanol consumption and heart abnormalities, such as chamber dilation, myocyte damage, ventricular hypertrophy, and hypertension is well known. However, underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. The aim of this study was to investigate the effect of chronic ethanol exposure on alpha and beta - myosin heavy chain (MHC) isoforms gene expression transition and oxidative stress in rats' heart. It was also planned to find out whether ginger extract mitigated the abnormalities induced by ethanol in rats' heart. Male wistar rats were divided into three groups of eight animals as follows: Control, ethanol, and ginger extract treated ethanolic (GETE) groups. After six weeks of treatment, the results revealed a significant increase in the β-MHC gene expression, 8- OHdG amount, and NADPH oxidase level. Furthermore, a significant decrease in the ratio of α-MHC/β-MHC gene expression to the amount of paraoxonase enzyme in the ethanol group compared to the control group was found. The consumption of Ginger extract along with ethanol ameliorated the changes in MHC isoforms gene expression and reduced the elevated amount of 8-OHdG and NADPH oxidase. Moreover, compared to the consumption of ethanol alone, it increased the paraoxonase level significantly. These findings indicate that ethanol-induced heart abnormalities may in part be associated with MHC isoforms changes mediated by oxidative stress, and that these effects can be alleviated by using ginger extract as an antioxidant molecule. Copyright © 2017 Elsevier B.V. All rights reserved.
Al-Griw, Mohamed A.; Treesh, Soad A.; Alghazeer, Rabia O.; Regeai, Sassia O.
2017-01-01
Environmental toxicants such as chemicals, heavy metals, and pesticides have been shown to promote transgenerational inheritance of abnormal phenotypes and/or diseases to multiple subsequent generations following parental and/or ancestral exposures. This study was designed to examine the potential transgenerational action of the environmental toxicant trichloroethane (TCE) on transmission of liver abnormality, and to elucidate the molecular etiology of hepatocyte cell damage. A total of thirty two healthy immature female albino mice were randomly divided into three equal groups as follows: a sham group, which did not receive any treatment; a vehicle group, which received corn oil alone, and TCE treated group (3 weeks, 100 μg/kg i.p., every 4th day). The F0 and F1 generation control and TCE populations were sacrificed at the age of four months, and various abnormalities histpathologically investigated. Cell death and oxidative stress indices were also measured. The present study provides experimental evidence for the inheritance of environmentally induced liver abnormalities in mice. The results of this study show that exposure to the TCE promoted adult onset liver abnormalities in F0 female mice as well as unexposed F1 generation offspring. It is the first study to report a transgenerational liver abnormalities in the F1 generation mice through maternal line prior to gestation. This finding was based on careful evaluation of liver histopathological abnormalities, apoptosis of hepatocytes, and measurements of oxidative stress biomarkers (lipid peroxidation, protein carbonylation, and nitric oxide) in control and TCE populations. There was an increase in liver histopathological abnormalities, cell death, and oxidative lipid damage in F0 and F1 hepatic tissues of TCE treated group. In conclusion, this study showed that the biological and health impacts of environmental toxicant TCE do not end in maternal adults, but are passed on to offspring generations. Hence, linking observed liver abnormality in the offspring to environmental exposure of their parental line. This study also illustrated that oxidative stress and apoptosis appear to be a molecular component of the hepatocyte cell injury. PMID:28884077
Wang, Bo; Bao, Jianwei; Wang, Shikui; Wang, Houjun; Sheng, Qinghong
2017-01-01
Remote sensing images could provide us with tremendous quantities of large-scale information. Noise artifacts (stripes), however, made the images inappropriate for vitalization and batch process. An effective restoration method would make images ready for further analysis. In this paper, a new method is proposed to correct the stripes and bad abnormal pixels in charge-coupled device (CCD) linear array images. The method involved a line tracing method, limiting the location of noise to a rectangular region, and corrected abnormal pixels with the Lagrange polynomial algorithm. The proposed detection and restoration method were applied to Gaofen-1 satellite (GF-1) images, and the performance of this method was evaluated by omission ratio and false detection ratio, which reached 0.6% and 0%, respectively. This method saved 55.9% of the time, compared with traditional method. PMID:28441754
Protein kinase C-δ-mediated recycling of active KIT in colon cancer.
Park, Misun; Kim, Won Kyu; Song, Meiying; Park, Minhee; Kim, Hyunki; Nam, Hye Jin; Baek, Sung Hee; Kim, Hoguen
2013-09-15
Abnormal signaling through receptor tyrosine kinase (RTK) moieties is important in tumorigenesis and drug targeting of colorectal cancers. Wild-type KIT (WT-KIT), a RTK that is activated upon binding with stem cell factor (SCF), is highly expressed in some colon cancers; however, little is known about the functional role of SCF-dependent KIT activation in colon cancer pathogenesis. We aimed to elucidate the conditions and roles of WT-KIT activation in colon cancer tumorigenesis. Colorectal cancers with KIT expression were characterized by immunoblotting and immunohistochemistry. The biologic alterations after KIT-SCF binding were analyzed with or without protein kinase C (PKC) activation. We found that WT-KIT was expressed in a subset of colon cancer cell lines and was activated by SCF, leading to activation of downstream AKT and extracellular signal-regulated kinase (ERK) signaling pathways. We also showed that KIT expression gradually decreased, after prolonged SCF stimulation, due to lysosomal degradation. Degradation of WT-KIT after SCF binding was significantly rescued when PKC was activated. We also showed the involvement of activated PKC-δ in the recycling of WT-KIT. We further showed that a subset of colorectal cancers exhibit expressions of both WT-KIT and activated PKC-δ and that expression of KIT is correlated with poor patient survival (P = 0.004). Continuous downstream signal activation after KIT-SCF binding is accomplished through PKC-δ-mediated recycling of KIT. This sustained KIT activation may contribute to tumor progression in a subset of colon cancers with KIT expression and might provide the rationale for a therapeutic approach targeting KIT. ©2013 AACR.
NASA Astrophysics Data System (ADS)
Mialitsin, Aleksej V.; Mascarenhas, Angelo
2013-05-01
We identify the signature of a localized-to-delocalized transition in the resonant Raman scattering spectra from GaAs1-xNx. Our measurements in the ultradilute nitrogen doping concentrations demonstrate an energy shift in the line width resonance of the LO phonon. With decreasing nitrogen concentration, the EW line width resonance energy reduces abruptly by ca. 47 meV at x≈0.35%. This value corresponds to the concentration at which GaAs1-xNx has been recently shown to transition from an impurity regime to an alloy regime. Our study elucidates the evolution of dilute abnormal alloys and their Raman response.
Chang, S E; Foster, S; Betts, D; Marnock, W E
1992-12-02
There are many reports of cell lines being established from human oral squamous-cell carcinomas but apparently none of cell lines from dysplastic or "pre-malignant" oral mucosa. We describe here the isolation and characterization of a cell line, DOK (dysplastic oral keratinocyte), from a piece of dorsal tongue showing epithelial dysplasia. The tissue was obtained from a 57-year-old man who was a heavy smoker prior to the appearance of a white patch on his tongue. Eleven years later a squamous-cell carcinoma developed at the site and was excised. Subsequently the remaining dysplasia was removed, and it was from a piece of this that the primary cell cultures which eventually gave rise to DOK were initiated. The DOK line has been single-cell cloned and is apparently immortal. It grows in the absence of 3T3 feeder cells, is anchorage-dependent for growth and is non-tumorigenic in nude mice. The keratin profile of the cells shows a striking similarity to that of the original tongue dysplasia. The karyotype of DOK is aneuploid and complex. By PCR and oligonucleotide hybridization on dot blots, codons 12, 13 and 61 of Ha-ras, Ki-ras and N-ras in DNA extracted from DOK cells were shown to be normal. Immunohistochemistry showed no abnormal, i.e., elevated expression of the onco-suppressor protein p53. Because of its origin and partially transformed phenotype, DOK presents an opportunity to study whether specific carcinogens associated with tobacco and areca nut can cause malignant transformation of oral keratinocytes in vitro.
Perron, Gabrielle; Jandaghi, Pouria; Solanki, Shraddha; Safisamghabadi, Maryam; Storoz, Cristina; Karimzadeh, Mehran; Papadakis, Andreas I; Arseneault, Madeleine; Scelo, Ghislaine; Banks, Rosamonde E; Tost, Jorg; Lathrop, Mark; Tanguay, Simon; Brazma, Alvis; Huang, Sidong; Brimo, Fadi; Najafabadi, Hamed S; Riazalhosseini, Yasser
2018-05-08
Widespread remodeling of the transcriptome is a signature of cancer; however, little is known about the post-transcriptional regulatory factors, including RNA-binding proteins (RBPs) that regulate mRNA stability, and the extent to which RBPs contribute to cancer-associated pathways. Here, by modeling the global change in gene expression based on the effect of sequence-specific RBPs on mRNA stability, we show that RBP-mediated stability programs are recurrently deregulated in cancerous tissues. Particularly, we uncovered several RBPs that contribute to the abnormal transcriptome of renal cell carcinoma (RCC), including PCBP2, ESRP2, and MBNL2. Modulation of these proteins in cancer cell lines alters the expression of pathways that are central to the disease and highlights RBPs as driving master regulators of RCC transcriptome. This study presents a framework for the screening of RBP activities based on computational modeling of mRNA stability programs in cancer and highlights the role of post-transcriptional gene dysregulation in RCC. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Plumb, Darren; Vo, Phoung; Shah, Mittal; Staines, Katherine; Sampson, Alexandra; Shefelbine, Sandra; Pitsillides, Andrew A.; Bou-Gharios, George
2016-01-01
Bone development and length relies on the growth plate formation, which is dependent on degradative enzymes such as MMPs. Indeed, deletion of specific members of this enzyme family in mice results in important joint and bone abnormalities, suggesting a role in skeletal development. As such, the control of MMP activity is vital in the complex process of bone formation and growth. We generated a transgenic mouse line to overexpress TIMP3 in mouse chondrocytes using the Col2a1-chondrocyte promoter. This overexpression in cartilage resulted in a transient shortening of growth plate in homozygote mice but bone length was restored at eight weeks of age. However, tibial bone structure and mechanical properties remained compromised. Despite no transgene expression in adult osteoblasts from transgenic mice in vitro, their differentiation capacity was decreased. Neonates, however, did show transgene expression in a subset of bone cells. Our data demonstrate for the first time that transgene function persists in the chondro-osseous lineage continuum and exert influence upon bone quantity and quality. PMID:28002442
Labbé, D; Bénichou, L; Iodice, A; Giot, J-P
2012-06-01
After facial paralysis recovery, it is common to note a co-contraction between depressor anguli oris (DAO) muscle and zygomatic muscles. This DAO co-contraction will "obstruct" the patient's smile. The purpose of this technical note is to show how to find the DAO sign and how to free up the smile. TECHNICAL: This co-contraction between the zygomatic muscles and DAO research is placing a finger on marionette line, asking the patient to smile: we perceive a rope under the skin corresponding to the abnormal contraction and powerful DAO. A diagnostic test with lidocaine injection into the DAO can be performed to confirm the diagnosis. The treatment of pathological DAO's contraction can be by injection of botulinum toxin in the DAO, or by surgical myectomy. In all cases, a speech therapy complete the treatment. The DAO sign is a semiological entity easy to find. His treatment releases smile without negative effect on the facial expression as the DAO is especially useful in the expression of disgust. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Role of RANKL (TNFSF11)-dependent osteopetrosis in the dental phenotype of Msx2 null mutant mice.
Castaneda, Beatriz; Simon, Yohann; Ferbus, Didier; Robert, Benoit; Chesneau, Julie; Mueller, Christopher; Berdal, Ariane; Lézot, Frédéric
2013-01-01
The MSX2 homeoprotein is implicated in all aspects of craniofacial skeletal development. During postnatal growth, MSX2 is expressed in all cells involved in mineralized tissue formation and plays a role in their differentiation and function. Msx2 null (Msx2 (-/-)) mice display complex craniofacial skeleton abnormalities with bone and tooth defects. A moderate form osteopetrotic phenotype is observed, along with decreased expression of RANKL (TNFSF11), the main osteoclast-differentiating factor. In order to elucidate the role of such an osteopetrosis in the Msx2 (-/-) mouse dental phenotype, a bone resorption rescue was performed by mating Msx2 (-/-) mice with a transgenic mouse line overexpressing Rank (Tnfrsf11a). Msx2 (-/-) Rank(Tg) mice had significant improvement in the molar phenotype, while incisor epithelium defects were exacerbated in the enamel area, with formation of massive osteolytic tumors. Although compensation for RANKL loss of function could have potential as a therapy for osteopetrosis, but in Msx2 (-/-) mice, this approach via RANK overexpression in monocyte-derived lineages, amplified latent epithelial tumor development in the peculiar continuously growing incisor.
Kugler, Jamie E.; Horsch, Marion; Huang, Di; Furusawa, Takashi; Rochman, Mark; Garrett, Lillian; Becker, Lore; Bohla, Alexander; Hölter, Sabine M.; Prehn, Cornelia; Rathkolb, Birgit; Racz, Ildikó; Aguilar-Pimentel, Juan Antonio; Adler, Thure; Adamski, Jerzy; Beckers, Johannes; Busch, Dirk H.; Eickelberg, Oliver; Klopstock, Thomas; Ollert, Markus; Stöger, Tobias; Wolf, Eckhard; Wurst, Wolfgang; Yildirim, Ali Önder; Zimmer, Andreas; Gailus-Durner, Valérie; Fuchs, Helmut; Hrabě de Angelis, Martin; Garfinkel, Benny; Orly, Joseph; Ovcharenko, Ivan; Bustin, Michael
2013-01-01
The nuclei of most vertebrate cells contain members of the high mobility group N (HMGN) protein family, which bind specifically to nucleosome core particles and affect chromatin structure and function, including transcription. Here, we study the biological role of this protein family by systematic analysis of phenotypes and tissue transcription profiles in mice lacking functional HMGN variants. Phenotypic analysis of Hmgn1tm1/tm1, Hmgn3tm1/tm1, and Hmgn5tm1/tm1 mice and their wild type littermates with a battery of standardized tests uncovered variant-specific abnormalities. Gene expression analysis of four different tissues in each of the Hmgntm1/tm1 lines reveals very little overlap between genes affected by specific variants in different tissues. Pathway analysis reveals that loss of an HMGN variant subtly affects expression of numerous genes in specific biological processes. We conclude that within the biological framework of an entire organism, HMGNs modulate the fidelity of the cellular transcriptional profile in a tissue- and HMGN variant-specific manner. PMID:23620591
Zhou, Hao; Shen, Fengxian; Li, Juan; Xie, Zhenwei
2017-01-01
Objective To explore the expression level of Nrf2 in adenomyosis and study the mechanism of abnormal expression of Nrf2 in the pathogenesis of adenomyosis. Methods Western blot, immunohistochemistry(IHC) and real time PCR were used to measure Nrf2 expression levels in tissue and cell samples. Knockdown and overexpression of Nrf2 were used to investigate the variation of migration ability of endometrial glandular cells as well as the regulatory mechanism. Results Nrf2 protein levels were significantly higher in the eutopic and ectopic endometrial glands when compared with control cases using IHC and western blot methods. (p< 0.05). However, there was no statistical difference in Nrf2 mRNA expression levels between the adenomyosis and control groups. Using an agonist and Nrf2 siRNA, we regulated the Nrf2 protein levels of primary cultured endometrial glandular cells. With increased expression of Nrf2, cell scratch assay showed that the agonist-treated group migrated significantly faster than the control group, with MMP9 protein level markedly elevated. In contrast, Nrf2 siRNA-treated group migrated slower than the control group, with decreased expression of MMP9 protein. All of the scratching healing spaces and protein levels between the treated and control groups were statistically significant (p< 0.05). Conclusions Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis. Specified reduction of Nrf2 expression could prove to be a new therapeutic target in the clinical treatment of adenomyosis. PMID:28817677
Chen, Ning; Du, Baoying; Zhou, Hao; Shen, Fengxian; Li, Juan; Xie, Zhenwei
2017-01-01
To explore the expression level of Nrf2 in adenomyosis and study the mechanism of abnormal expression of Nrf2 in the pathogenesis of adenomyosis. Western blot, immunohistochemistry(IHC) and real time PCR were used to measure Nrf2 expression levels in tissue and cell samples. Knockdown and overexpression of Nrf2 were used to investigate the variation of migration ability of endometrial glandular cells as well as the regulatory mechanism. Nrf2 protein levels were significantly higher in the eutopic and ectopic endometrial glands when compared with control cases using IHC and western blot methods. (p< 0.05). However, there was no statistical difference in Nrf2 mRNA expression levels between the adenomyosis and control groups. Using an agonist and Nrf2 siRNA, we regulated the Nrf2 protein levels of primary cultured endometrial glandular cells. With increased expression of Nrf2, cell scratch assay showed that the agonist-treated group migrated significantly faster than the control group, with MMP9 protein level markedly elevated. In contrast, Nrf2 siRNA-treated group migrated slower than the control group, with decreased expression of MMP9 protein. All of the scratching healing spaces and protein levels between the treated and control groups were statistically significant (p< 0.05). Abnormal expression of Nrf2 may play an important role in the pathogenesis and development of adenomyosis. Specified reduction of Nrf2 expression could prove to be a new therapeutic target in the clinical treatment of adenomyosis.
De Luca, Luciana; Trino, Stefania; Laurenzana, Ilaria; Tagliaferri, Daniela; Falco, Geppino; Grieco, Vitina; Bianchino, Gabriella; Nozza, Filomena; Campia, Valentina; D'Alessio, Francesca; La Rocca, Francesco; Caivano, Antonella; Villani, Oreste; Cilloni, Daniela; Musto, Pellegrino; Del Vecchio, Luigi
2017-01-01
Lin28A is a highly conserved RNA-binding protein that concurs to control the balance between stemness and differentiation in several tissue lineages. Here, we report the role of miR-128a/Lin28A axis in blocking cell differentiation in acute myeloid leukemia (AML), a genetically heterogeneous disease characterized by abnormally controlled proliferation of myeloid progenitor cells accompanied by partial or total inability to undergo terminal differentiation. First, we found Lin28A underexpressed in blast cells from AML patients and AML cell lines as compared with CD34+ normal precursors. In vitro transfection of Lin28A in NPM1-mutated OCI-AML3 cell line significantly triggered cell-cycle arrest and myeloid differentiation, with increased expression of macrophage associate genes (EGR2, ZFP36 and ANXA1). Furthermore, miR-128a, a negative regulator of Lin28A, was found overexpressed in AML cells compared with normal precursors, especially in acute promyelocytic leukemia (APL) and in ‘AML with maturation’ (according to 2016 WHO classification of myeloid neoplasms and acute leukemia). Its forced overexpression by lentiviral infection in OCI-AML3 downregulated Lin28A with ensuing repression of macrophage-oriented differentiation. Finally, knockdown of miR-128a in OCI-AML3 and in APL/AML leukemic cells (by transfection and lentiviral infection, respectively) induced myeloid cell differentiation and increased expression of Lin28A, EGR2, ZFP36 and ANXA1, reverting myeloid differentiation blockage. In conclusion, our findings revealed a new mechanism for AML differentiation blockage, suggesting new strategies for AML therapy based upon miR-128a inhibition. PMID:28569789
López-González, Irene; Viana, Rosa; Sanz, Pascual; Ferrer, Isidre
2017-07-01
Lafora progressive myoclonus epilepsy (Lafora disease, LD) is a fatal rare autosomal recessive neurodegenerative disorder characterized by the accumulation of insoluble ubiquitinated polyglucosan inclusions in the cytoplasm of neurons, which is most commonly associated with mutations in two genes: EPM2A, encoding the glucan phosphatase laforin, and EPM2B, encoding the E3-ubiquitin ligase malin. The present study analyzes possible inflammatory responses in the mouse lines Epm2a -/- (laforin knock-out) and Epm2b -/- (malin knock-out) with disease progression. Increased numbers of reactive astrocytes (expressing the GFAP marker) and microglia (expressing the Iba1 marker) together with increased expression of genes encoding cytokines and mediators of the inflammatory response occur in both mouse lines although with marked genotype differences. C3ar1 and CxCl10 messenger RNAs (mRNAs) are significantly increased in Epm2a -/- mice aged 12 months when compared with age-matched controls, whereas C3ar1, C4b, Ccl4, CxCl10, Il1b, Il6, Tnfα, and Il10ra mRNAs are significantly upregulated in Epm2b -/- at the same age. This is accompanied by increased protein levels of IL1-β, IL6, TNFα, and Cox2 particularly in Epm2b -/- mice. The severity of inflammatory changes correlates with more severe clinical symptoms previously described in Epm2b -/- mice. These findings show for the first time increased innate inflammatory responses in a neurodegenerative disease with polyglucosan intraneuronal deposits which increase with disease progression, in a way similar to what is seen in neurodegenerative diseases with abnormal protein aggregates. These findings also point to the possibility of using anti-inflammatory agents to mitigate the degenerative process in LD.
A Focus on the Beneficial Effects of Alpha Synuclein and a Re-Appraisal of Synucleinopathies
Ryskalin, Larisa; Busceti, Carla L.; Limanaqi, Fiona; Biagioni, Francesca; Gambardella, Stefano; Fornai, Francesco
2018-01-01
Alpha synuclein (α-syn) belongs to a class of proteins which are commonly considered to play a detrimental role in neuronal survival. This assumption is based on the occurrence of a severe neuronal degeneration in patients carrying a multiplication of the α-syn gene (SNCA) and in a variety of experi-mental models, where overexpression of α-syn leads to cell death and neurological impairment. In these conditions, a higher amount of normally structured α-syn produces a damage, which is even worse com-pared with that produced by α-syn owning an abnormal structure (as occurring following point gene muta-tions). In line with this, knocking out the expression of α-syn is reported to protect from specific neurotox-ins such as 1-methyl, 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP). In the present review we briefly dis-cuss these well-known detrimental effects but we focus on findings showing that, in specific conditions α-syn is beneficial for cell survival. This occurs during methamphetamine intoxication which is counteracted by endogenous α-syn. Similarly, the dysfunction of the chaperone cysteine-string protein-alpha leads to cell pathology which is counteracted by over-expressing α-syn. In line with this, an increased expression of α-syn protects against oxidative damage produced by dopamine. Remarkably, when the lack of α-syn is combined with a depletion of β- and γ- synucleins, alterations in brain structure and function occur. This review tries to balance the evidence showing a beneficial effect with the bulk of data reporting a detri-mental effect of endogenous α-syn. The specific role of α-syn as a chaperone protein is discussed to ex-plain such a dual effect. PMID:29150919
A Focus on the Beneficial Effects of Alpha Synuclein and a Re-Appraisal of Synucleinopathies.
Ryskalin, Larisa; Busceti, Carla L; Limanaqi, Fiona; Biagioni, Francesca; Gambardella, Stefano; Fornai, Francesco
2018-01-01
Alpha synuclein (α-syn) belongs to a class of proteins which are commonly considered to play a detrimental role in neuronal survival. This assumption is based on the occurrence of a severe neuronal degeneration in patients carrying a multiplication of the α-syn gene (SNCA) and in a variety of experimental models, where overexpression of α-syn leads to cell death and neurological impairment. In these conditions, a higher amount of normally structured α-syn produces a damage, which is even worse compared with that produced by α-syn owning an abnormal structure (as occurring following point gene mutations). In line with this, knocking out the expression of α-syn is reported to protect from specific neurotoxins such as 1-methyl, 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP). In the present review we briefly discuss these well-known detrimental effects but we focus on findings showing that, in specific conditions α-syn is beneficial for cell survival. This occurs during methamphetamine intoxication which is counteracted by endogenous α-syn. Similarly, the dysfunction of the chaperone cysteine-string protein- alpha leads to cell pathology which is counteracted by over-expressing α-syn. In line with this, an increased expression of α-syn protects against oxidative damage produced by dopamine. Remarkably, when the lack of α-syn is combined with a depletion of β- and γ- synucleins, alterations in brain structure and function occur. This review tries to balance the evidence showing a beneficial effect with the bulk of data reporting a detrimental effect of endogenous α-syn. The specific role of α-syn as a chaperone protein is discussed to explain such a dual effect. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Li-hong; Li, Hui; Li, Jin-ping
2011-12-09
Highlights: Black-Right-Pointing-Pointer miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. Black-Right-Pointing-Pointer Ectopic restoration of miR-125b suppresses cell proliferation and migration in vitro. Black-Right-Pointing-Pointer STAT3 is the direct and functional downstream target of miR-125b. Black-Right-Pointing-Pointer STAT3 can bind to the promoter region of miR-125b and serves as a transactivator. -- Abstract: There is accumulating evidence that microRNAs are involved in multiple processes in development and tumor progression. Abnormally expressed miR-125b was found to play a fundamental role in several types of cancer; however, whether miR-125b participates in regulating the initiation and progress of osteosarcoma still remains unclear.more » Here we demonstrate that miR-125b is frequently down-regulated in osteosarcoma samples and human osteosarcoma cell lines. The ectopic restoration of miR-125b expression in human osteosarcoma cells suppresses proliferation and migration in vitro and inhibits tumor formation in vivo. We further identified signal transducer and activator of transcription 3 (STAT3) as the direct and functional downstream target of miR-125b. Interestingly, we discovered that the expression of miR-125b is regulated by STAT3 at the level of transcription. STAT3 binds to the promoter region of miR-125b in vitro and serves as a transactivator. Taken together, our findings point to an important role in the molecular etiology of osteosarcoma and suggest that miR-125b is a potential target in the treatment of osteosarcoma.« less
[Expression of Chemokine receptor CXCR6 and its significance in breast cancer cell lines].
Cheng, Hao; Chen, Nian-yong
2014-05-01
To detect the expression of Chemokine receptor CXCR6 in invasive breast cancer cell lines and normal mammary epithelial cell line, and assess the relationship between CXCR6 expression and malignant behavior of breast cancer cells. Expression level of CXCR6 in different invasive breast cancer cell lines (SK-BR-3, MCF-7, MDA-MB-231) and normal mammary epithelial cell line (MCF-10A)was detected by real time reverse transcription-polymerase chain reaction (real time-PCR) and Western blot. Lentivirus was employed to interfere CXCR6 expression in MDA-MB-231. MTT assay and transwell chamber were used to study proliferative and invasive ability of those cells respectively. Vascular enothelial growth factor (VEGF) expression was detected to study the role of CXCR6 in angiogenesis. At both mRNA level and protein level, normal mammary epithelial cell line MCF-10A showed the weakest CXCR6 expression. The breast cancer cell lines expressed CXCR6 in different levels, the expression level of CXCR6 in highly invasive cell line MDA-MB-231 was significantly higher than that in two low-invasive cell lines SK-BR-3 and MCF-7 (P < 0.05). Silencing CXCR6 gene by Lentivirus-mediated RNA interference in MDA-MB-231 inhibited its proliferation ability, invasion ability and angiogenesis ability in vitro (P < 0.05). Different invasive breast cancer cell lines express CXCR6 at different levels, positively correlated with its invasive ability.
2011-01-01
Background Fatty acid binding proteins (FABP) play an important role in carcinogenesis. Modified FABP expression patterns were described for prostate, bladder and for renal cell carcinoma. Studies on metabolic relationships and interactions in permanent cell lines allow a deeper insight into molecular processes. The aim of this study is therefore a systematic overview on mRNA and protein expressions of seven FABPs in frequently used urological cell lines. Methods Nine cell lines of renal carcinomas, seven of urinary bladder carcinomas, and five of prostate carcinomas were investigated. Quantitative RT-qPCR and western blotting were used to determine different FABPs. In addition, 46 paired cancerous and noncancerous tissue samples from nephrectomy specimen with renal cell carcinomas were investigated regarding the ileum FABP mRNA expression level and associated with survival outcome. Results General characteristics of all urological carcinoma cell lines were the expression of E-and IL-FABP on mRNA and protein level, while the expressions differed between the cell lines. The protein expression was not always congruent with the mRNA expression. Renal cell carcinoma cell lines showed expressions of L-, H- and B-FABP mRNA in addition to the general FABP expression in five out of the eight investigated cell lines. In bladder cancer cell lines, we additionally found the expression of A-FABP mRNA in six cell lines, while H-FABP was present only in three cell lines. In prostate cancer cell lines, a strong reduction of A- and E- FABP mRNA was observed. The expression of B-FABP mRNA and protein was observed only in the 22 RV-1 cells. IL-FABP mRNA was over-expressed in renal tumour tissue. The IL-FABP ratio was identified as an independent indicator of survival outcome. Conclusions Distinctly different FABP expression patterns were observed not only between the cell lines derived from the three cancer types, but also between the cell lines from the same cancer. The FABP patterns in the cell lines do not always reflect the real situation in the tumours. These facts have to be considered in functional studies concerning the different FABPs. PMID:21767383
Soluble interleukin 2 receptors are released from activated human lymphoid cells in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, L.A.; Kurman, C.C.; Fritz, M.E.
1985-11-01
With the use of an enzyme-linked immunoabsorbent assay to measure soluble human interleukin 2 receptors (IL 2R), certain human T cell leukemia virus I (HTLV I)-positive T cell lines were found to spontaneously release large quantities of IL 2R into culture supernatants. This was not found with HTLV I-negative and IL 2 independent T cell lines, and only one of seven B cell-derived lines examined produced small amounts of IL 2R. In addition to this constitutive production of soluble IL 2R by certain cell lines, normal human peripheral blood mononuclear cells (PBMC) could be induced to release soluble IL 2Rmore » by plant lectins, the murine monoclonal antibody OKT3, tetanus toxoid, and allogeneic cells. Such activated cells also expressed cellular IL 2R measurable in detergent solubilized cell extracts. The generation of cellular and supernatant IL 2R was: dependent on cellular activation, rapid, radioresistant (3000 rad), and inhibited by cycloheximide treatment. NaDodSO4-polyacrylamide gel electrophoresis analysis of soluble IL 2R demonstrated molecules of apparent Mr = 35,000 to 40,000, and 45,000 to 50,000, respectively, somewhat smaller than the mature surface receptor on these cells. The release of soluble IL 2R appears to be a characteristic marker of T lymphocyte activation and might serve an immunoregulatory function during both normal and abnormal cell growth and differentiation.« less
Anaka, Matthew; Hudson, Christopher; Lo, Pu-Han; Do, Hongdo; Caballero, Otavia L; Davis, Ian D; Dobrovic, Alexander; Cebon, Jonathan; Behren, Andreas
2013-10-11
Intratumoral heterogeneity is a major obstacle for the treatment of cancer, as the presence of even minor populations that are insensitive to therapy can lead to disease relapse. Increased clonal diversity has been correlated with a poor prognosis for cancer patients, and we therefore examined genetic, transcriptional, and functional diversity in metastatic melanoma. Amplicon sequencing and SNP microarrays were used to profile somatic mutations and DNA copy number changes in multiple regions from metastatic lesions. Clonal genetic and transcriptional heterogeneity was also assessed in single cell clones from early passage cell lines, which were then subjected to clonogenicity and drug sensitivity assays. MAPK pathway and tumor suppressor mutations were identified in all regions of the melanoma metastases analyzed. In contrast, we identified copy number abnormalities present in only some regions in addition to homogeneously present changes, suggesting ongoing genetic evolution following metastatic spread. Copy number heterogeneity from a tumor was represented in matched cell line clones, which also varied in their clonogenicity and drug sensitivity. Minor clones were identified based on dissimilarity to the parental cell line, and these clones were the most clonogenic and least sensitive to drugs. Finally, treatment of a polyclonal cell line with paclitaxel to enrich for drug-resistant cells resulted in the adoption of a gene expression profile with features of one of the minor clones, supporting the idea that these populations can mediate disease relapse. Our results support the hypothesis that minor clones might have major consequences for patient outcomes in melanoma.
ERIC Educational Resources Information Center
Nicolazzo, Z.
2016-01-01
Being labeled as "abnormal, or deviant, or not being one of the rest of us" has real effects for one's life chances. Trans* people are one such group who have continually been codified as abnormal, abject, weird, deceptive, and social pariahs. The purpose of the following study was to explore how the concepts of passing, realness, and…
Analysis of Knee Joint Line Obliquity after High Tibial Osteotomy.
Oh, Kwang-Jun; Ko, Young Bong; Bae, Ji Hoon; Yoon, Suk Tae; Kim, Jae Gyoon
2016-11-01
The aim of this study was to evaluate which lower extremity alignment (knee and ankle joint) parameters affect knee joint line obliquity (KJLO) in the coronal plane after open wedge high tibial osteotomy (OWHTO). Overall, 69 knees of patients that underwent OWHTO were evaluated using radiographs obtained preoperatively and from 6 weeks to 3 months postoperatively. We measured multiple parameters of knee and ankle joint alignment (hip-knee-ankle angle [HKA], joint line height [JLH], posterior tibial slope [PS], femoral condyle-tibial plateau angle [FCTP], medial proximal tibial angle [MPTA], mechanical lateral distal femoral angle [mLDFA], KJLO, talar tilt angle [TTA], ankle joint obliquity [AJO], and the lateral distal tibial ground surface angle [LDTGA]; preoperative [-pre], postoperative [-post], and the difference between -pre and -post values [-Δ]). We categorized patients into two groups according to the KJLO-post value (the normal group [within ± 4 degrees, 56 knees] and the abnormal group [greater than ± 4 degrees, 13 knees]), and compared their -pre parameters. Multiple logistic regression analysis was used to examine the contribution of the -pre parameters to abnormal KJLO-post. The mean HKA-Δ (-9.4 ± 4.7 degrees) was larger than the mean KJLO-Δ (-2.1 ± 3.2 degrees). The knee joint alignment parameters (the HKA-pre, FCTP-pre) differed significantly between the two groups ( p < 0.05). In addition, the HKA-pre (odds ratio [OR] = 1.27, p = 0.006) and FCTP-pre (OR = 2.13, p = 0.006) were significant predictors of abnormal KJLO-post. However, -pre ankle joint parameters (TTA, AJO, and LDTGA) did not differ significantly between the two groups and were not significantly associated with the abnormal KJLO-post. The -pre knee joint alignment and knee joint convergence angle evaluated by HKA-pre and FCTP-pre angle, respectively, were significant predictors of abnormal KJLO after OWHTO. However, -pre ankle joint parameters were not significantly associated with abnormal KJLO after OWHTO. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Uhlenbrock, Franziska; van Andel, Esther; Andresen, Lars; Skov, Søren
2015-08-01
Malignant cells expressing NKG2D ligands on their cell surface can be directly sensed and killed by NKG2D-bearing lymphocytes. To ensure this immune recognition, accumulating evidence suggests that NKG2D ligands are trafficed via alternative pathways to the cell surface. We have previously shown that the NKG2D ligand ULBP2 traffics over an invariant chain (Ii)-dependent pathway to the cell surface. This study set out to elucidate how Ii regulates ULBP2 cell-surface transport: We discovered conserved tryptophan (Trp) residues in the primary protein sequence of ULBP1-6 but not in the related MICA/B. Substitution of Trp to alanine resulted in cell-surface inhibition of ULBP2 in different cancer cell lines. Moreover, the mutated ULBP2 constructs were retained and not degraded inside the cell, indicating a crucial role of this conserved Trp-motif in trafficking. Finally, overexpression of Ii increased surface expression of wt ULBP2 while Trp-mutants could not be expressed, proposing that this Trp-motif is required for an Ii-dependent cell-surface transport of ULBP2. Aberrant soluble ULBP2 is immunosuppressive. Thus, targeting a distinct protein module on the ULBP2 sequence could counteract this abnormal expression of ULBP2. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aspesi, Anna; Pavesi, Elisa; Robotti, Elisa; Crescitelli, Rossella; Boria, Ilenia; Avondo, Federica; Moniz, Hélène; Da Costa, Lydie; Mohandas, Narla; Roncaglia, Paola; Ramenghi, Ugo; Ronchi, Antonella; Gustincich, Stefano; Merlin, Simone; Marengo, Emilio; Ellis, Steven R.; Follenzi, Antonia; Santoro, Claudio; Dianzani, Irma
2014-01-01
Defects in genes encoding ribosomal proteins cause Diamond Blackfan Anemia (DBA), a red cell aplasia often associated with physical abnormalities. Other bone marrow failure syndromes have been attributed to defects in ribosomal components but the link between erythropoiesis and the ribosome remains to be fully defined. Several lines of evidence suggest that defects in ribosome synthesis lead to “ribosomal stress” with p53 activation and either cell cycle arrest or induction of apoptosis. Pathways independent of p53 have also been proposed to play a role in DBA pathogenesis. We took an unbiased approach to identify p53-independent pathways activated by defects in ribosome synthesis by analyzing global gene expression in various cellular models of DBA. Ranking-Principal Component Analysis (Ranking-PCA) was applied to the identified datasets to determine whether there are common sets of genes whose expression is altered in these different cellular models. We observed consistent changes in the expression of genes involved in cellular amino acid metabolic process, negative regulation of cell proliferation and cell redox homeostasis. These data indicate that cells respond to defects in ribosome synthesis by changing the level of expression of a limited subset of genes involved in critical cellular processes. Moreover, our data support a role for p53-independent pathways in the pathophysiology of DBA. PMID:24835311
p53 mutation and expression in lymphoma.
Adamson, D. J.; Thompson, W. D.; Dawson, A. A.; Bennett, B.; Haites, N. E.
1995-01-01
Mutation and abnormal expression of p53 was studied in 38 lymphomas [five Hodgkin's disease and 33 non-Hodgkin's lymphoma (NHL)]. CM1 polyclonal antibody was used to detect overexpression of p53. Three missense mutations were characterised in three cases of NHL after screening exons 5-8 of p53 of all the tumours with single-strand conformation polymorphism (SSCP) analysis. Only two out of three tumours with a missense mutation showed abnormal expression of p53 as measured by CM1. Conversely, seven out of nine tumours with positive CM1 staining had no point mutation demonstrated. Overexpression of p53 in the cases of NHL occurred in three out of twenty four low-grade tumours and five out of nine high-grade tumours (Kiel classification). The results suggest that abnormalities of p53 are commoner in high-grade than low-grade NHL, and that positive immunocytochemistry cannot be used to determine which tumours have mutations of p53. Images Figure 1 Figure 2 PMID:7599045
Vlamings, Petra Hendrika Johanna Maria; Jonkman, Lisa Marthe; van Daalen, Emma; van der Gaag, Rutger Jan; Kemner, Chantal
2010-12-15
A detailed visual processing style has been noted in autism spectrum disorder (ASD); this contributes to problems in face processing and has been directly related to abnormal processing of spatial frequencies (SFs). Little is known about the early development of face processing in ASD and the relation with abnormal SF processing. We investigated whether young ASD children show abnormalities in low spatial frequency (LSF, global) and high spatial frequency (HSF, detailed) processing and explored whether these are crucially involved in the early development of face processing. Three- to 4-year-old children with ASD (n = 22) were compared with developmentally delayed children without ASD (n = 17). Spatial frequency processing was studied by recording visual evoked potentials from visual brain areas while children passively viewed gratings (HSF/LSF). In addition, children watched face stimuli with different expressions, filtered to include only HSF or LSF. Enhanced activity in visual brain areas was found in response to HSF versus LSF information in children with ASD, in contrast to control subjects. Furthermore, facial-expression processing was also primarily driven by detail in ASD. Enhanced visual processing of detailed (HSF) information is present early in ASD and occurs for neutral (gratings), as well as for socially relevant stimuli (facial expressions). These data indicate that there is a general abnormality in visual SF processing in early ASD and are in agreement with suggestions that a fast LSF subcortical face processing route might be affected in ASD. This could suggest that abnormal visual processing is causative in the development of social problems in ASD. Copyright © 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice
2017-01-01
Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo. The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer. PMID:28123849
Peralta-Arrieta, Irlanda; Hernández-Sotelo, Daniel; Castro-Coronel, Yaneth; Leyva-Vázquez, Marco Antonio; Illades-Aguiar, Berenice
2017-01-01
Altered promoter DNA methylation is one of the most important epigenetic abnormalities in human cancer. DNMT3B, de novo methyltransferase, is clearly related to abnormal methylation of tumour suppressor genes, DNA repair genes and its overexpression contributes to oncogenic processes and tumorigenesis in vivo . The purpose of this study was to assess the effect of the overexpression of DNMT3B in HaCaT cells on global gene expression and on the methylation of selected genes to the identification of genes that can be target of DNMT3B. We found that the overexpression of DNMT3B in HaCaT cells, modulate the expression of genes related to cancer, downregulated the expression of 151 genes with CpG islands and downregulated the expression of the VAV3 gene via methylation of its promoter. These results highlight the importance of DNMT3B in gene expression and human cancer.
Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M
2013-01-01
N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.
Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M.
2013-01-01
Background N-MYC DOWN-REGULATED-LIKE (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Methodology/Principal Findings Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. Conclusion/Significance NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients. PMID:24223735
Buzhdygan, Tetyana; Lisinicchia, Joshua; Patel, Vipulkumar; Johnson, Kenneth; Neugebauer, Volker; Paessler, Slobodan; Jennings, Kristofer; Gelman, Benjamin
2016-06-01
The prevalence of HIV-associated neurocognitive disorders (HAND) remains high in patients with effective suppression of virus replication by combination antiretroviral therapy (cART). Several neurotransmitter systems were reported to be abnormal in HIV-infected patients, including the inhibitory GABAergic system, which mediates fine-tuning of neuronal processing and plays an essential role in cognitive functioning. To elucidate the role of abnormal GABAergic transmission in HAND, the expression of GABAergic markers was measured in 449 human brain specimens from HIV-infected patients with and without HAND. Using real-time polymerase chain reaction, immunoblotting and immunohistochemistry we found that the GABAergic markers were significantly decreased in most sectors of cerebral neocortex, the neostriatum, and the cerebellum of HIV-infected subjects. Low GABAergic expression in frontal neocortex was correlated significantly with high expression of endothelial cell markers, dopamine receptor type 2 (DRD2L), and preproenkephalin (PENK) mRNAs, and with worse performance on tasks of verbal fluency. Significant associations were not found between low GABAergic mRNAs and HIV-1 RNA concentration in the brain, the history of cART, or HIV encephalitis. Pathological evidence of neurodegeneration of the affected GABAergic neurons was not present. We conclude that abnormally low expression of GABAergic markers is prevalent in HIV-1 infected patients. Interrelationships with other neurotransmitter systems including dopaminergic transmission and with endothelial cell markers lend added support to suggestions that synaptic plasticity and cerebrovascular anomalies are involved with HAND in virally suppressed patients.
Yi, Y; Zhang, M; Liu, C
2001-06-01
To set up an efficient expressing system for recombinant hepatitis B virus surface antigen (HBsAg) in dhfr gene negative CHO cell line. HBsAg gene expressing plasmid pCI-dhfr-S was constructed by integrating HBsAg gene into plasmid pCI which carries dhfr gene. The HBsAg expressing cell line was set up by transfection of plasmid pCI-dhfr-S into dhfr gene negative CHO cell line in the way of lipofectin. Under the selective pressure of MTX, 18 of 28 clonized cell lines expressed HBsAg, 4 of them reached a high titer of 1:32 and protein content 1-3 micrograms/ml. In this study, the high level expression of HBsAg demonstrated that the dhfr negative mammalian cell line when recombined with plasmid harboring the corresponding deleted gene can efficiently express the foreign gene. The further steps toward building optimum conditions of the expressing system and the increase of expressed product are under study.
Yanagibashi, T; Gorai, I; Nakazawa, T; Miyagi, E; Hirahara, F; Kitamura, H; Minaguchi, H
1997-01-01
Six permanent human ovarian carcinoma cell lines (OVISE, OVTOKO, OVMANA and OVSAYO from clear cell adenocarcinoma, and OVSAHO and OVKATE from serous papillary adenocarcinoma) were established from solid tumours. The cell lines have been in culture for 5-8 years, the passage number varying from 62 to 246. Immunohistochemical analysis has shown that five of the six cell lines express at least six cytokeratin (CK) polypeptides. OVISE and OVSAYO expressed CKs 6, 7, 8, 18, 19 and 15 and/or 16. OVTOKO was positive for CKs 7, 8, 18, 19 and 15 and/or 16. OVSAHO expressed CKs 6, 7, 8, 14, 18, 19 and 15 and/or 16. OVMANA expressed CKs 6, 7, 8, 18, 19, 20 and 15 and/or 16. OVKATE expressed CKs 6, 7, 8, 13, 17, 18, 19, 20 and 15 and/or 16. The expression of CK7, additional expression of vimentin, and clinical and histopathological findings enabled us to confirm that six cell lines had been established from primary ovarian cancers. Two of the six cell lines were positive for CK20, although CK20 was not expressed in the original tumours. The heterotransplanted tumours produced by CK20-positive cells also expressed CK20. This is the first report of ovarian carcinoma cell lines that express CK20 irrespective of their histological type. CK20 has been found in all colon carcinoma cell lines, but only in the mucinous type of ovarian tumours. These new ovarian carcinoma cell lines will therefore provide a relevant experimental system for elucidating the regulatory control mechanisms of intermediate filament expression.
Shin, Masashi; Hu, Yuanyuan; Tye, Coralee E.; Guan, Xiaomu; Deagle, Craig C.; Antone, Jerry V.; Smith, Charles E.; Simmer, James P.; Bartlett, John D.
2014-01-01
Background Matrix metalloproteinase-20 (Mmp20) ablated mice have enamel that is thin and soft with an abnormal rod pattern that abrades from the underlying dentin. We asked if introduction of transgenes expressing Mmp20 would revert this Mmp20 null phenotype back to normal. Unexpectedly, for transgenes expressing medium or high levels of Mmp20, we found opposite enamel phenotypes depending on the genetic background (Mmp20−/− or Mmp20+/+) in which the transgenes were expressed. Methodology/Principal Findings Amelx-promoter-Mmp20 transgenic founder mouse lines were assessed for transgene expression and those expressing low, medium or high levels of Mmp20 were selected for breeding into the Mmp20 null background. Regardless of expression level, each transgene brought the null enamel back to full thickness. However, the high and medium expressing Mmp20 transgenes in the Mmp20 null background had significantly harder more mineralized enamel than did the low transgene expresser. Strikingly, when the high and medium expressing Mmp20 transgenes were present in the wild-type background, the enamel was significantly less well mineralized than normal. Protein gel analysis of enamel matrix proteins from the high and medium expressing transgenes present in the wild-type background demonstrated that greater than normal amounts of cleavage products and smaller quantities of higher molecular weight proteins were present within their enamel matrices. Conclusions/Significance Mmp20 expression levels must be within a specific range for normal enamel development to occur. Creation of a normally thick enamel layer may occur over a wider range of Mmp20 expression levels, but acquisition of normal enamel hardness has a narrower range. Since over-expression of Mmp20 results in decreased enamel hardness, this suggests that a balance exists between cleaved and full-length enamel matrix proteins that are essential for formation of a properly hardened enamel layer. It also suggests that few feedback controls are present in the enamel matrix to prevent excessive MMP20 activity. PMID:24466234
Jobe, Timothy O.; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A.; Mendoza-Cózatl, David G.; Schroeder, Julian I.
2015-01-01
Summary Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M2 seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion, are necessary to induce the transcription of sulfate assimilation genes during early cadmium stress. PMID:22283708
NASA Astrophysics Data System (ADS)
Hang, Xiaoming; Sun, Yeqing; Wu, Di; Li, Yixiao; Liu, Zhiyuan
In the past decades, alterations in the morphology, cytoskeleton and cell cycle have been observed in cells in vitro under microgravity conditions. But the underlying mechanisms are not absolutely identified yet. Our previous study on proteomic and microRNA expression profiles of zebrafish embryos exposed to simulated-microgravity has demonstrated a serial of microgravity-sensitive molecules. Centrosomal protein of 135 kDa (CEP135) was found down-regulated, but the mRNA expression level of it was up-regulated in zebrafish embryos after simulated-microgravity. However, the functional study on CEP135 is very limited and it has not been cloned in zebrafish till now. In this study, we try to determine whether the cytoskeleton disorder and cell cycle arrest is associated with the alteration of CEP135 by microgravity. Full-length cDNA of cep135 gene was firstly cloned from mitosis phase of ZF4. The sequence was analyzed and the phylogenetic tree was constructed based on the similarity to other species. Zebrafish embryonic cell line ZF4 were exposed to simulated microgravity for 24 and 48 hours, using a rotary cell culture system (RCCS) designed by NASA. Quantitative analysis by western blot showed that CEP135 expression level was significantly decreased two times after 24 hour simulated microgravity. Cell cycle detection by flow cytometer indicated ZF4 cells were blocked in G1 phase after 24 and 48 hour simulated microgravity. Moreover, double immunostained ZF4 cells with anti-tubulin and anti-CEP135antibodies demonstrated simulated microgravity could lead to cytoskeleton disorder and CEP135 abnormality. Further investigations are currently being carried out to determine whether knockdown and over-expression of CEP135 will modulate cytoskeleton and cell cycle. In vitro data in combination within vivo results might, at least in part, explain the dramatic effects of microgravity. Key Words: microgravity; CEP135; Cytoskeleton disorder; G1 arrest; ZF4 cell line
Seim, Inge; Jeffery, Penny L; de Amorim, Laura; Walpole, Carina M; Fung, Jenny; Whiteside, Eliza J; Lourie, Rohan; Herington, Adrian C; Chopin, Lisa K
2013-07-23
Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function.
Reeve, J. G.; Xiong, J.; Morgan, J.; Bleehen, N. M.
1996-01-01
As a first step towards elucidating the potential role(s) of bcl-2 and bcl-2-related genes in lung tumorigenesis and therapeutic responsiveness, the expression of these genes has been examined in a panel of lung cancer cell lines derived from untreated and treated patients, and in cell lines selected in vitro for multidrug resistance. Bcl-2 was hyperexpressed in 15 of 16 small-cell lung cancer (SCLC) cell lines and two of five non-small-cell lung cancer (NSCLC) lines compared with normal lung and brain, and hyperexpression was not chemotherapy related. Bcl-x was hyperexpressed in the majority of SCLC and NSCLC cell lines as compared with normal tissues, and all lung tumour lines preferentially expressed bcl-x1-mRNA, the splice variant form that inhibits apoptosis. Bax gene transcripts were hyperexpressed in most SCLC and NSCLC cell lines examined compared with normal adult tissues. Mutant p53 gene expression was detected in the majority of the cell lines and no relationship between p53 gene expression and the expression of either bcl-2, bcl-x or bax was observed. No changes in bcl-2, bcl-x and bax gene expression were observed in multidrug-resistant cell lines compared with their drug-sensitive counterparts. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8630278
Jagtap, Chandrashekhar Y.; Chaudhari, Swapnil Y.; Thakkar, Jalaram H.; Galib, R.; Prajapati, P. K.
2014-01-01
Objectives: Herbo-mineral formulations are being successfully used in therapeutics since centuries. But recently, they came under the scanner for their metallic contents especially the presence of heavy metals. Hence it is the need of the hour to assess and establish the safety of these formulations through toxicity studies. In line with the various toxicity studies that are being carried out, Government of India expressed the need for conducting genotoxicity studies of different metal- or mineral-based drugs. Till date very few Ayurvedic herbo-mineral formulations have been studied for their genotoxic potential. The present study is aimed to evaluate the genotoxic potential of Hridayarnava Rasa. Materials and Methods: It was prepared as per classical guidelines and administered to Swiss albino mice for 14 consecutive days. Chromosomal aberration and sperm abnormality assay were done to evaluate the genotoxic potential of the test drugs. Cyclophosphamide (CP) was taken as positive group and results were compared. Results: All treated groups exhibited significant body weight gain in comparison to CP group. Results revealed no structural deformity in the above parameters in comparison to the CP-treated group. Conclusion: Reported data showed that both tested samples of Hridayarnava Rasa does not possess genotoxic potential under the experimental conditions and can be safely used. PMID:25948961
Shim, Wooyoung; Anwar, Muhammad Ayaz; Kwon, Ji-Woong; Kwon, Hyuk-Kwon; Kim, Hyung Joong; Jeong, Hyobin; Kim, Hwan Myung; Hwang, Daehee; Kim, Hyung Sik; Choi, Sangdun
2015-01-01
The chemotherapeutic use of cisplatin is limited by its severe side effects. In this study, by conducting different omics data analyses, we demonstrated that cisplatin induces cell death in a proximal tubular cell line by suppressing glycolysis- and tricarboxylic acid (TCA)/mitochondria-related genes. Furthermore, analysis of the urine from cisplatin-treated rats revealed the lower expression levels of enzymes involved in glycolysis, TCA cycle, and genes related to mitochondrial stability and confirmed the cisplatin-related metabolic abnormalities. Additionally, an increase in the level of p53, which directly inhibits glycolysis, has been observed. Inhibition of p53 restored glycolysis and significantly reduced the rate of cell death at 24 h and 48 h due to p53 inhibition. The foremost reason of cisplatin-related cytotoxicity has been correlated to the generation of mitochondrial reactive oxygen species (ROS) that influence multiple pathways. Abnormalities in these pathways resulted in the collapse of mitochondrial energy production, which in turn sensitized the cells to death. The quenching of ROS led to the amelioration of the affected pathways. Considering these observations, it can be concluded that there is a significant correlation between cisplatin and metabolic dysfunctions involving mROS as the major player. PMID:26247588
Broccolini, Aldobrando; Gidaro, Teresa; De Cristofaro, Raimondo; Morosetti, Roberta; Gliubizzi, Carla; Ricci, Enzo; Tonali, Pietro A; Mirabella, Massimiliano
2008-05-01
Autosomal recessive hereditary inclusion-body myopathy (h-IBM) is caused by mutations of the UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase gene, a rate-limiting enzyme in the sialic acid metabolic pathway. Previous studies have demonstrated an abnormal sialylation of glycoproteins in h-IBM. h-IBM muscle shows the abnormal accumulation of proteins including amyloid-beta (Abeta). Neprilysin (NEP), a metallopeptidase that cleaves Abeta, is characterized by the presence of several N-glycosylation sites, and changes in these sugar moieties affect its stability and enzymatic activity. In the present study, we found that NEP is hyposialylated and its expression and enzymatic activity reduced in all h-IBM muscles analyzed. In vitro, the experimental removal of sialic acid by Vibrio Cholerae neuraminidase in cultured myotubes resulted in reduced expression of NEP. This was most likely because of a post-translational modification consisting in an abnormal sialylation of the protein that leads to its reduced stability. Moreover, treatment with Vibrio Cholerae neuraminidase was associated with an increased immunoreactivity for Abeta mainly in the form of distinct cytoplasmic foci within myotubes. We hypothesize that, in h-IBM muscle, hyposialylated NEP has a role in hampering the cellular Abeta clearing system, thus contributing to its abnormal accumulation within vulnerable fibers and possibly promoting muscle degeneration.
Kong, Qiongman; Takahashi, Kou; Schulte, Delanie; Stouffer, Nathan; Lin, Yuchen; Lin, Chien-liang Glenn
2013-01-01
Several lines of evidence indicate that glutamate plays a crucial role in the initiation of seizures and their propagation; abnormal glutamate release causes synchronous firing of large populations of neurons, leading to seizures. In the present study, we investigated whether enhanced glutamate uptake by increased glial glutamate transporter EAAT2, the major glutamate transporter, could prevent seizure activity and reduce epileptogenic processes. EAAT2 transgenic mice, which have a 1.5-2 fold increase in EAAT2 protein levels as compared to their non-transgenic counterparts, were tested in a pilocarpine-induced status epilepticus (SE) model. Several striking phenomena were observed in EAAT2 transgenic mice compared with their non-transgenic littermates. First, the post-SE mortality rate and chronic seizure frequency were significantly decreased. Second, neuronal degeneration in hippocampal subfields after SE were significantly reduced. Third, the SE-induced neurogenesis and mossy fiber sprouting were significantly decreased. The severity of cell loss in epileptic mice was positively correlated with that of mossy fiber sprouting and chronic seizure frequency. Our results suggest that increased EAAT2 expression can protect mice against SE-induced death, neuropathological changes, and chronic seizure development. This study suggests that enhancing EAAT2 protein expression is a potential therapeutic approach. PMID:22513140
Ayar, Sonali P; Ravula, Sreelakshmi; Polski, Jacek M
2014-01-01
Little literature exists regarding granulocyte and monocyte immunophenotype abnormalities in Acute Myeloid Leukemia (AML). We hypothesized that granulocyte and monocyte immunophenotype abnormalities are common in AML, and especially in AML with myelodysplasia-related changes (AMLMRC). Bone marrow or peripheral blood specimens from 48 cases of AML and 22 cases of control specimens were analyzed by flow cytometric immunophenotyping. Granulocyte, monocyte, and blast immunophenotype abnormalities were compared between cases of AML versus controls and AMLMRC versus AML without myelodysplasia. The results revealed that granulocyte, monocyte, and blast abnormalities were more common in AMLMRC than in AML without myelodysplasia or control cases. The difference reached statistical significance for abnormalities of granulocytes and abnormalities in all cells of interest. From the numerous individual abnormalities, only CD25 expression in blasts was significantly more prevalent in AMLMRC in this study. We conclude that detection of granulocyte, monocyte, and blast immunophenotype abnormalities can contribute to the diagnosis of AMLMRC.
Isodicentric Y mosaicism involving a 46, XX cell line: Implications for management.
Hipp, Lauren E; Mohnach, Lauren H; Wei, Sainan; Thomas, Inas H; Elhassan, Maha E; Sandberg, David E; Quint, Elisabeth H; Keegan, Catherine E
2016-01-01
Carriers of isodicentric Y (idicY) mosaicism exhibit a wide range of clinical features, including short stature, gonadal abnormalities, and external genital anomalies. However, the phenotypic spectrum for individuals carrying an idicY and a 46, XX cell line is less clearly defined. A more complete description of the phenotype related to idicY is thus essential to guide management related to pubertal development, fertility, and gonadoblastoma risk in mosaic carriers. Findings from the evaluation of twin females with an abnormal karyotype, 48, XX, +idic(Yq) x2/47, XX, +idic(Yq)/46, XX, are presented to highlight the importance of interdisciplinary care in the management of multifaceted disorders of sex development. © 2015 Wiley Periodicals, Inc.
Smith, Philip J.; Levine, Adam P.; Dunne, Jenny; Guilhamon, Paul; Turmaine, Mark; Sewell, Gavin W.; O'Shea, Nuala R.; Vega, Roser; Paterson, Jennifer C.; Oukrif, Dahmane; Beck, Stephan; Bloom, Stuart L.; Novelli, Marco; Rodriguez-Justo, Manuel; Smith, Andrew M.
2014-01-01
Background: Mucosal abnormalities are potentially important in the primary pathogenesis of ulcerative colitis (UC). We investigated the mucosal transcriptomic expression profiles of biopsies from patients with UC and healthy controls, taken from macroscopically noninflamed tissue from the terminal ileum and 3 colonic locations with the objective of identifying abnormal molecules that might be involved in disease development. Methods: Whole-genome transcriptional analysis was performed on intestinal biopsies taken from 24 patients with UC, 26 healthy controls, and 14 patients with Crohn's disease. Differential gene expression analysis was performed at each tissue location separately, and results were then meta-analyzed. Significantly, differentially expressed genes were validated using quantitative polymerase chain reaction. The location of gene expression within the colon was determined using immunohistochemistry, subcellular fractionation, electron and confocal microscopy. DNA methylation was quantified by pyrosequencing. Results: Only 4 probes were abnormally expressed throughout the colon in patients with UC with Bone morphogenetic protein/Retinoic acid Inducible Neural-specific 3 (BRINP3) being the most significantly underexpressed. Attenuated expression of BRINP3 in UC was independent of current inflammation, unrelated to phenotype or treatment, and remained low at rebiopsy an average of 22 months later. BRINP3 is localized to the brush border of the colonic epithelium and expression is influenced by DNA methylation within its promoter. Conclusions: Genome-wide expression analysis of noninflamed mucosal biopsies from patients with UC identified BRINP3 as significantly underexpressed throughout the colon in a large subset of patients with UC. Low levels of this gene could predispose or contribute to the maintenance of the characteristic mucosal inflammation seen in this condition. PMID:25171508
Molecular analysis of nicotinic receptor expression in autism.
Martin-Ruiz, C M; Lee, M; Perry, R H; Baumann, M; Court, J A; Perry, E K
2004-04-07
Autism is a developmental disorder of unknown aetiopathology and lacking any specific pharmacological therapeutic intervention. Neurotransmitters such as serotonin, gamma-aminobutyric acid (GABA) and acetylcholine have been implicated. Abnormalities in nicotinic acetylcholine receptors have been identified including cortical loss of binding to the alpha4/beta2 subtype and increase in cerebellar alpha7 binding. Receptor expression (mRNA) has not so far been systematically examined. This study aims to further explore the role of nicotinic receptors in autism by analysing nicotinic receptor subunit mRNA in conjunction with protein levels and receptor binding in different brain areas. Quantitative RT-PCR for alpha4, alpha7 and beta2 subunit mRNA expression levels; alpha3, alpha4, alpha7 and beta2 subunit protein expression immunochemistry and specific radioligand receptor binding were performed in adult autism and control brain samples from cerebral cortex and cerebellum. Alpha4 and beta2 protein expression and receptor binding density as well as alpha4 mRNA levels were lower in parietal cortex in autism, while alpha7 did not change for any of these parameters. In cerebellum, alpha4 mRNA expression was increased, whereas subunit protein and receptor levels were decreased. Alpha7 receptor binding in cerebellum was increased alongside non-significant elevations in mRNA and protein expression levels. No significant changes were found for beta2 in cerebellum. The data obtained, using complementary measures of receptor expression, indicate that reduced gene expression of the alpha4beta2 nicotinic receptor in the cerebral cortex is a major feature of the neurochemical pathology of autism, whilst post-transcriptional abnormalities of both this and the alpha7 subtype are apparent in the cerebellum. The findings point to dendritic and/or synaptic nicotinic receptor abnormalities that may relate to disruptions in cerebral circuitry development.
Osteoblast role in osteoarthritis pathogenesis.
Maruotti, Nicola; Corrado, Addolorata; Cantatore, Francesco P
2017-11-01
Even if osteoarthritis pathogenesis is still poorly understood, numerous evidences suggest that osteoblasts dysregulation plays a key role in osteoarthritis pathogenesis. An abnormal expression of OPG and RANKL has been described in osteoarthritis osteoblasts, which is responsible for abnormal bone remodeling and decreased mineralization. Alterations in genes expression are involved in dysregulation of osteoblast function, bone remodeling, and mineralization, leading to osteoarthritis development. Moreover, osteoblasts produce numerous transcription factors, growth factors, and other proteic molecules which are involved in osteoarthritis pathogenesis. © 2017 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc.
Hassan, Hesham M.; Varney, Michelle L.; Jain, Smrati; Weisenburger, Dennis D.; Singh, Rakesh K.; Dave, Bhavana J.
2015-01-01
The TP73 gene is located at the chromosome 1p36 locus that is commonly disrupted or deleted in follicular lymphoma (FL) with poor prognosis. Therefore, we analyzed the expression of the pro-apoptotic TAp73 and anti-apoptotic ΔNp73 isoforms in FL cases with normal or abnormal 1p36. We observed a significant increase in ΔNp73 expression and ΔNp73:TAp73 ratio, lower expression of cleaved caspase-3 and a higher frequency of Ki-67 and PCNA positive cells in FL cases with abnormal 1p36. A negative correlation between the ΔNp73:TAp73 ratio and cleaved caspase-3 expression, and a positive correlation between ΔNp73 expression and Ki-67 or PCNA were observed. The expression of TAp73 and its pro-apoptotic transcriptional targets Bim, Puma, and Noxa were significantly lower in FL compared to reactive follicular hyperplasia. Together, our data demonstrates that 1p36 disruption is associated with increased ΔNp73 expression, decreased apoptosis and increased proliferation in FL. PMID:24660851
Zubor, Pavol; Hatok, Jozef; Moricova, Petra; Kapustova, Ivana; Kajo, Karol; Mendelova, Andrea; Sivonova, Monika Kmetova; Danko, Jan
2015-02-01
Gene expression profile‑based taxonomy of breast cancer (BC) has been described as a significant breakthrough in comprehending the differences in the origin and behavior of cancer to allow individually tailored therapeutic approaches. In line with this, we hypothesized that the gene expression profile of histologically normal epithelium (HNEpi) could harbor certain genetic abnormalities predisposing breast tissue cells to develop human epidermal growth factor receptor 2 (HER2)‑positive BC. Thus, the aim of the present study was to assess gene expression in normal and BC tissue (BCTis) from patients with BC in order to establish its value as a potential diagnostic marker for cancer development. An array study evaluating a panel of 84 pathway‑ and disease‑specific genes in HER2‑positive BC and tumor‑adjacent HNEpi was performed using quantitative polymerase chain reaction in 12 patients using microdissected samples from frozen tissue. Common prognostic and predictive parameters of BC were assessed by immunohistochemistry and in situ hybridization. In the BCTis and HNEpi samples of 12 HER2‑positive subjects with BC, the expression of 2,016 genes was assessed. A total of 39.3% of genes were deregulated at a minimal two‑fold deregulation rate and 10.7% at a five‑fold deregulation rate in samples of HNEpi or BCTis. Significant differences in gene expression between BCTis and HNEpi samples were revealed for BCL2L2, CD44, CTSD, EGFR, ERBB2, ITGA6, NGFB, RPL27, SCBG2A1 and SCGB1D2 genes (P<0.05), as well as GSN, KIT, KLK5, SERPINB5 and STC2 genes (P<0.01). Insignificant differences (P<0.07) were observed for CCNA1, CLU, DLC1, GABRP and IL6 genes. The ontological gene analyses revealed that the majority of the deregulated genes in the HNEpi samples were part of the functional gene group directly associated with BC origin and prognosis. Functional analysis showed that the most frequent gene deregulations occurred in genes associated with apoptosis and cell cycle regulation in BCTis samples, and with angiogenesis, regulation of the cell cycle and transcriptional activity in HNEpi samples. The molecular profiling of HNEpi breast tissue revealed gene expression abnormalities that may represent potential markers of increased risk for HER2‑positive malignant transformation of breast tissue, and may be able to be employed as predictors of prognosis.
Chen, Hancai; Bodulovic, Greg; Hall, Prudence J; Moore, Andy; Higgins, Thomas J V; Djordjevic, Michael A; Rolfe, Barry G
2009-09-01
Seeds of genetically modified (GM) peas (Pisum sativum L.) expressing the gene for alpha-amylase inhibitor-1 (alphaAI1) from the common bean (Phaseolus vulgaris L. cv. Tendergreen) exhibit resistance to the pea weevil (Bruchus pisorum). A proteomic analysis was carried out to compare seeds from GM pea lines expressing the bean alphaAI1 protein and the corresponding alphaAI1-free segregating lines and non-GM parental line to identify unintended alterations to the proteome of GM peas due to the introduction of the gene for alphaAI1. Proteomic analysis showed that in addition to the presence of alphaAI1, 33 other proteins were differentially accumulated in the alphaAI1-expressing GM lines compared with their non-GM parental line and these were grouped into five expression classes. Among these 33 proteins, only three were found to be associated with the expression of alphaAI1 in the GM pea lines. The accumulation of the remaining 30 proteins appears to be associated with Agrobacterium-mediated transformation events. Sixteen proteins were identified after MALDI-TOF-TOF analysis. About 56% of the identified proteins with altered accumulation in the GM pea were storage proteins including legumin, vicilin or convicilin, phaseolin, cupin and valosin-containing protein. Two proteins were uniquely expressed in the alphaAI1-expressing GM lines and one new protein was present in both the alphaAI1-expressing GM lines and their alphaAI1-free segregating lines, suggesting that both transgenesis and transformation events led to demonstrable changes in the proteomes of the GM lines tested.
PECTATE LYASE-LIKE10 is associated with pollen wall development in Brassica campestris.
Jiang, Jingjing; Yao, Lina; Yu, Youjian; Lv, Meiling; Miao, Ying; Cao, Jiashu
2014-11-01
PECTATE LYASE-LIKE10 (PLL10) was previously identified as one of the differentially expressed genes both in microspores during the late pollen developmental stages and in pistils during the fertilization process in Chinese cabbage (Brassica campestris ssp. chinensis). Here, antisense-RNA was used to study the functions of BcPLL10 in Chinese cabbage. Abnormal pollen was identified in the transgenic lines (bcpll10-4, -5, and -6). In fertilization experiments, fewer seeds were harvested when the antisense-RNA lines were used as pollen donor. In vivo and in vitro pollen germination assays less germinated pollen tubes were observed in bcpll10 lines. Scanning electron microscopy observation verified that the tryphine materials were over accumulated around the pollen surface and sticked them together in bcpll10. Moreover, transmission electron microscopy observation revealed that the internal endintine was overdeveloped and predominantly occupied the intine, and disturbed the normal proportional distribution of the two layers in the non-germinal furrow region; and no obvious demarcation existed between them in the germinal furrow region in the bcpll10 pollen. Collectively, this study presented a novel PLL gene that played an important role during the pollen wall development in B. campestris, which may also possess potential importance for male sterility usage in agriculture. © 2014 Institute of Botany, Chinese Academy of Sciences.
Ohnishi, Hiroe; Kawasaki, Takashi; Deguchi, Tomonori; Yuba, Shunsuke
2015-08-01
Xeroderma pigmentosum group A (XP-A) is a genetic disorder in which there is an abnormality in nucleotide excision repair that causes hypersensitivity to sunlight and multiple skin cancers. The development of central and peripheral neurological disorders not correlated to ultraviolet light exposure is associated with XP-A. The genes responsible for XP-A have been identified and a XPA knockout mouse has been generated. These knockout mice exhibit cutaneous symptoms, but they do not show neurological disorders. The mechanism of pathogenesis of neurological disorders is still unclear and therapeutic methods have not been established. Therefore, we generated XP-A patient-derived human induced pluripotent stem cells (XPA-iPSCs) to produce in vitro models of neurological disorders. We obtained iPSC lines from fibroblasts of two patients carrying different mutations. Drugs screened using XPA-iPSC lines can be helpful for treating XP-A patients in Japan. Additionally, we revealed that these iPSCs have the potential to differentiate into neural lineage cells, including dopaminergic neurons, which decrease in XP-A patients. Our results indicate that expression of the normal XPA gene without mutations is not required for generation of iPSCs and differentiation of iPSCs into neural lineage cells. XPA-iPSCs may become useful models that clarify our understanding of neurological pathogenesis and help to establish therapeutic methods.
Impaired plant growth and development caused by human immunodeficiency virus type 1 Tat.
Cueno, Marni E; Hibi, Yurina; Imai, Kenichi; Laurena, Antonio C; Okamoto, Takashi
2010-10-01
Previous attempts to express the human immunodeficiency virus 1 (HIV-1) Tat (trans-activator of transcription) protein in plants resulted in a number of physiological abnormalities, such as stunted growth and absence of seed formation, that could not be explained. In the study reported here, we expressed Tat in tomato and observed phenotypic abnormalities, including stunted growth, absence of root formation, chlorosis, and plant death, as a result of reduced cytokinin levels. These reduced levels were ascribed to a differentially expressed CKO35 in Tat-bombarded tomato. Of the two CKO isoforms that are naturally expressed in tomato, CKO43 and CKO37, only the expression of CKO37 was affected by Tat. Our analysis of the Tat confirmed that the Arg-rich and RGD motifs of Tat have functional relevance in tomato and that independent mutations at these motifs caused inhibition of the differentially expressed CKO isoform and the extracellular secretion of the Tat protein, respectively, in our Tat-bombarded tomato samples.
Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE
Wang, Xin; Zhao, Yongjun; Wong, Kim; Ehlers, Peter; Kohara, Yuji; Jones, Steven J; Marra, Marco A; Holt, Robert A; Moerman, Donald G; Hansen, Dave
2009-01-01
Background Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm) or female (oocyte) fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. Results We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Conclusion Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution. PMID:19426519
Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik
2017-01-01
Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.
Progressive neurostructural changes in adolescent and adult patients with bipolar disorder.
Lisy, Megan E; Jarvis, Kelly B; DelBello, Melissa P; Mills, Neil P; Weber, Wade A; Fleck, David; Strakowski, Stephen M; Adler, Caleb M
2011-06-01
Several lines of evidence suggest that bipolar disorder is associated with progressive changes in gray matter volume (GMV), particularly in brain structures involved in emotional regulation and expression. The majority of these studies however, have been cross-sectional in nature. In this study we compared baseline and follow-up scans in groups of bipolar disorder and healthy subjects. We hypothesized bipolar disorder subjects would demonstrate significant GMV changes over time. A total of 58 bipolar disorder and 48 healthy subjects participated in structural magnetic resonance imaging (MRI). Subjects were rescanned 3-34 months after their baseline MRI. MRI images were segmented, normalized to standard stereotactic space, and compared voxel-by-voxel using statistical parametrical mapping software (SPM2). A model was developed to investigate differences in GMV at baseline, and associated with time and episodes, as well as in comparison to healthy subjects. We observed increases in GMV in bipolar disorder subjects across several brain regions at baseline and over time, including portions of the prefrontal cortex as well as limbic and subcortical structures. Time-related changes differed to some degree between adolescent and adult bipolar disorder subjects. The interval between scans positively correlated with GMV increases in bipolar disorder subjects in portions of the prefrontal cortex, and both illness duration and number of depressive episodes were associated with increased GMV in subcortical and limbic structures. Our findings support suggestions that widely observed progressive neurofunctional changes in bipolar disorder patients may be related to structural brain abnormalities in anterior limbic structures. Abnormalities largely involve regions previously noted to be integral to emotional expression and regulation, and appear to vary by age. © 2011 John Wiley and Sons A/S.
Fiedler, Nicola; Quant, Ellen; Fink, Ludger; Sun, Jianguang; Schuster, Ralph; Gerlich, Wolfram H; Schaefer, Stephan
2006-01-01
AIM: Hepatitis B virus protein X (HBx) has been shown to be weakly oncogenic in vitro. The transforming activities of HBx have been linked with the inhibition of several functions of the tumor suppressor p53. We have studied whether HBx may have different effects on p53 depending on the cell type. METHODS: We used the human hepatoma cell line HepG2 and the immortalized murine hepatocyte line AML12 and analyzed stably transfected clones which expressed physiological amounts of HBx. P53 was induced by UV irradiation. RESULTS: The p53 induction by UV irradiation was unaffected by stable expression of HBx. However, the expression of the cyclin kinase inhibitor p21waf/cip/sdi which gets activated by p53 was affected in the HBx transformed cell line AML12-HBx9, but not in HepG2. In AML-HBx9 cells, p21waf/cip/sdi-protein expression and p21waf/cip/sdi transcription were deregulated. Furthermore, the process of apoptosis was affected in opposite ways in the two cell lines investigated. While stable expression of HBx enhanced apoptosis induced by UV irradiation in HepG2-cells, apoptosis was decreased in HBx transformed AML12-HBx9. P53 repressed transcription from the HBV enhancer I, when expressed from expression vectors or after induction of endogenous p53 by UV irradiation. Repression by endogenous p53 was partially reversible by stably expressed HBx in both cell lines. CONCLUSION: Stable expression of HBx leads to deregulation of apoptosis induced by UV irradiation depending on the cell line used. In an immortalized hepatocyte line HBx acted anti-apoptotic whereas expression in a carcinoma derived hepatocyte line HBx enhanced apoptosis. PMID:16937438
Involvement of the VEP1 gene in vascular strand development in Arabidopsis thaliana.
Jun, Ji Hyung; Ha, Chan Man; Nam, Hong Gil
2002-03-01
A dominant mutant line characterized by abnormal leaf venation pattern was isolated from a transgenic Arabidopsis plant pool that was generated with Agrobacterium culture harboring an Arabidopsis antisense cDNA library. In the mutant line, the phenotype was due to antisense suppression of a gene we named VEP1 (Vein Patterning). The predicted amino acid sequence of the gene contained a motif related to the mammalian death domain that is found in the apoptotic machinery. Reduced expression of the VEP1 gene resulted in the reduced complexity of the venation pattern of the cotyledons and foliar leaves, which was mainly due to the reduced number of the minor veins and their incomplete connection. The analysis of mutant embryos indicated that the phenotype was originated, at least in part, from a defect in the procambium patterning. In the mutant, the stem and root were thinner than those in wild type. This phenotype was associated with reduced vascular development. The promoter activity of the VEP1 gene was detected preferentially in the vascular regions. We propose that the death domain-containing protein VEP1 functions as a positive element required for vascular strand development in Arabidopsis thaliana.
2013-01-01
Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function. PMID:23879975
Transcriptome study of differential expression in schizophrenia
Sanders, Alan R.; Göring, Harald H. H.; Duan, Jubao; Drigalenko, Eugene I.; Moy, Winton; Freda, Jessica; He, Deli; Shi, Jianxin; Gejman, Pablo V.
2013-01-01
Schizophrenia genome-wide association studies (GWAS) have identified common SNPs, rare copy number variants (CNVs) and a large polygenic contribution to illness risk, but biological mechanisms remain unclear. Bioinformatic analyses of significantly associated genetic variants point to a large role for regulatory variants. To identify gene expression abnormalities in schizophrenia, we generated whole-genome gene expression profiles using microarrays on lymphoblastoid cell lines (LCLs) from 413 cases and 446 controls. Regression analysis identified 95 transcripts differentially expressed by affection status at a genome-wide false discovery rate (FDR) of 0.05, while simultaneously controlling for confounding effects. These transcripts represented 89 genes with functions such as neurotransmission, gene regulation, cell cycle progression, differentiation, apoptosis, microRNA (miRNA) processing and immunity. This functional diversity is consistent with schizophrenia's likely significant pathophysiological heterogeneity. The overall enrichment of immune-related genes among those differentially expressed by affection status is consistent with hypothesized immune contributions to schizophrenia risk. The observed differential expression of extended major histocompatibility complex (xMHC) region histones (HIST1H2BD, HIST1H2BC, HIST1H2BH, HIST1H2BG and HIST1H4K) converges with the genetic evidence from GWAS, which find the xMHC to be the most significant susceptibility locus. Among the differentially expressed immune-related genes, B3GNT2 is implicated in autoimmune disorders previously tied to schizophrenia risk (rheumatoid arthritis and Graves’ disease), and DICER1 is pivotal in miRNA processing potentially linking to miRNA alterations in schizophrenia (e.g. MIR137, the second strongest GWAS finding). Our analysis provides novel candidate genes for further study to assess their potential contribution to schizophrenia. PMID:23904455
TPH2 polymorphisms and expression in Prader-Willi syndrome subjects with differing genetic subtypes.
Henkhaus, Rebecca S; Bittel, Douglas C; Butler, Merlin G
2010-09-01
Prader-Willi syndrome (PWS) is a genetic imprinting disease that causes developmental and behavioral disturbances resulting from loss of expression of genes from the paternal chromosome 15q11-q13 region. In about 70% of subjects, this portion of the paternal chromosome is deleted, while 25% have two copies of the maternal chromosome 15, or uniparental maternal disomy (UPD; the remaining subjects have imprinting center defects. There are several documented physical and behavioral differences between the two major PWS genetic subtypes (deletion and UPD) indicating the genetic subtype plays a role in clinical presentation. Serotonin is known to be disturbed in PWS and affects both eating behavior and compulsion, which are reported to be abnormal in PWS. We investigated the tryptophan hydroxylase gene (TPH2), the rate-limiting enzyme in the production of brain serotonin, by analyzing three different TPH2 gene polymorphisms, transcript expression, and correlation with PWS genetic subtype. DNA and RNA from lymphoblastoid cell lines derived from 12 PWS and 12 comparison subjects were used for the determination of genetic subtype, TPH2 polymorphisms and quantitative RT-PCR analysis. A similar frequency of TPH2 polymorphisms was seen in the PWS and comparison subjects with PWS deletion subjects showing increased expression with one or more TPH2 polymorphism. Both PWS deletion and PWS UPD subjects had significantly lower TPH2 expression than control subjects and PWS deletion subjects had significantly lower TPH2 expression compared with PWS UPD subjects. PWS subjects with 15q11-q13 deletions had lower TPH2 expression compared with PWS UPD or control subjects, requiring replication and further studies to identify the cause including identification of disturbed gene interactions resulting from the deletion process.
Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia
2006-01-01
Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sena, Gabriela C.; Freitas-Lima, Leandro C.; Merlo
Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100 ng/kg/day) for 15 days via gavage. We analyzed their effects onmore » the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be associated with abnormal HPG function. A strong negative correlation between the hyperleptinemia and lower Kiss responsiveness was observed in the TBT rats. These findings provide evidence that TBT leads to toxic effects direct on the HPG axis and/or indirectly by abnormal metabolic regulation of the HPG axis. - Highlights: • TBT disrupted proper functioning of the HPG axis in female rats. • TBT leads to obesity and abnormal kisspeptin/leptin signaling in female rats. • TBT impairs GnRH neurons function, estrogen negative feedback role and fertility in female rats. • TBT leads to hyperleptinemia that may be associated at least in part with abnormal HPG function.« less
Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background.
Carstea, Ana Claudia; Pirity, Melinda K; Dinnyes, Andras
2009-12-31
In mice, gene targeting by homologous recombination continues to play an essential role in the understanding of functional genomics. This strategy allows precise location of the site of transgene integration and is most commonly used to ablate gene expression ("knock-out"), or to introduce mutant or modified alleles at the locus of interest ("knock-in"). The efficacy of producing live, transgenic mice challenges our understanding of this complex process, and of the factors which influence germline competence of embryonic stem cell lines. Increasingly, evidence indicates that culture conditions and in vitro manipulation can affect the germline-competence of Embryonic Stem cell (ES cell) lines by accumulation of chromosome abnormalities and/or epigenetic alterations of the ES cell genome. The effectiveness of ES cell derivation is greatly strain-dependent and it may also influence the germline transmission capability. Recent technical improvements in the production of germline chimeras have been focused on means of generating ES cells lines with a higher germline potential. There are a number of options for generating chimeras from ES cells (ES chimera mice); however, each method has its advantages and disadvantages. Recent developments in induced pluripotent stem (iPS) cell technology have opened new avenues for generation of animals from genetically modified somatic cells by means of chimera technologies. The aim of this review is to give a brief account of how the factors mentioned above are influencing the germline transmission capacity and the developmental potential of mouse pluripotent stem cell lines. The most recent methods for generating specifically ES and iPS chimera mice, including the advantages and disadvantages of each method are also discussed.
One- and two-photon states for quantum information
NASA Astrophysics Data System (ADS)
Peters, Nicholas A.
To find expression stability among transgenic lines, the Recombinase Mediated Transgene Integration (RMTI) technology using the Cre/ lox-mediated site-specific gene integration system was used. The objectives were to develop an efficient method of site-specific transgene integration and to test the effectiveness of this method by assaying transgene expression in the RMTI lines. The RMTI technology allows the precise integration of a transgene in a previously placed target genomic location containing a lox site. The efficiency of CRE-mediated site-specific integration in rice by particle bombardment was found to vary from 3 to 28% in nine different experiments. Some hemizygous site-specific integration plants that were derived from homozygous target locus were found to undergo CRE-mediated reversion of the integration locus. No reversion was observed in callus; however, reverting cells may have been excluded due to selection pressure. The expression of the transgene gus was studied in all 40 callus lines, 12 regenerated T0 plants and the T1 and T2 progenies of 5 lines. The isogenic SC lines had an average expression level based on the activity of beta-glucuronidase of 158 +/- 9 units/mg protein (mean +/- SEM; n=3; variance within SC lines are expressed as standard error of the mean SEM) indicating a significantly higher level of expression, as compared to MC lines that had a much lower expression level 44 +/- 8 units/mg protein (mean +/- SEM; n=3) and the imprecise lines that had 22 +/- 8 units/mg protein (mean +/- SEM; n=3). Transgene expression in the callus cells of precise single copy lines varied by ˜3 fold, whereas that in multi-copy lines varied by ˜30 fold. Furthermore, precise single copy lines, on an average, contained ˜3.5 fold higher expression than multi-copy lines. Transgene expression in the plants of precise single-copy lines was highly variable, which was found to be due to the loss of the integration because of CRE-mediated reversion in the locus. (Abstract shortened by UMI.)
Halene, Stephanie; Gaines, Peter; Sun, Hong; Zibello, Theresa; Lin, Sharon; Khanna-Gupta, Arati; Williams, Simon C; Perkins, Archibald; Krause, Diane; Berliner, Nancy
2010-02-01
Mutations in the CCAAT enhancer binding protein epsilon (C/EBPepsilon) gene have been identified in the cells of patients with neutrophil specific granule deficiency, a rare congenital disorder marked by recurrent bacterial infections. Their neutrophils, in addition to lacking specific granules required for normal respiratory burst activity, also lack normal phagocytosis and chemotaxis. Although the specific granule deficiency phenotype has been replicated in C/EBPepsilon(-/-) (knockout [KO]) mice, the mechanisms by which C/EBPepsilon mutations act to decrease neutrophil function are not entirely clear. In order to determine the role of C/EBPepsilon in neutrophil differentiation and migration, we generated immortalized progenitor cell lines from C/EBPepsilon KO and wild-type mice and performed expression and flow cytometric analysis and functional studies. Expression of lineage-specific cell surface antigens on our in vitro differentiated cell lines revealed persistent expression of monocytic markers on KO granulocytes. We verified this in primary murine peripheral blood and bone marrow cells. In addition, KO bone marrow had an increase in immature myeloid precursors at the common myeloid progenitor and granulocyte/monocyte progenitor levels, suggesting a critical role for C/EBPepsilon not only in granulocyte maturation beyond the promyelocyte stage, but also in the monocyte/granulocyte lineage decision. We found that restoration of Hlx (H2.0-like homeo box 1) expression, which was decreased in C/EBPepsilon KO cells, rescued chemotaxis, but not the other defects of C/EBPepsilon KO neutrophils. We show two new regulatory functions of C/EBPepsilon in myelopoiesis: in the absence of C/EBPepsilon, there is not only incomplete differentiation of granulocytes, but myelopoiesis is disrupted with the appearance of an intermediate cell type with monocyte and granulocyte features, and the neutrophils have abnormal chemotaxis. Restoration of expression of Hlx provides partial recovery of function; it has no effect on neutrophil maturation, but can completely ameliorate the chemotaxis defect in C/EBPepsilon KO cells. Copyright 2010 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc. All rights reserved.
Okada, Moeko; Yoshida, Kentaro; Takumi, Shigeo
2017-12-01
Hybrid abnormalities, severe growth abortion and grass-clump dwarfism, were found in the tetraploid wheat/Aegilops umbellulata hybrids, and the gene expression changes were conserved in the hybrids with those in other wheat synthetic hexaploids. Aegilops umbellulata Zhuk., a diploid goatgrass species with a UU genome, has been utilized as a genetic resource for wheat breeding. Here, we examine the reproductive barriers between tetraploid wheat cultivar Langdon (Ldn) and various Ae. umbellulata accessions by conducting interspecific crossings. Through systematic cross experiments, three types of hybrid incompatibilities were found: seed production failure in crosses, hybrid growth abnormalities and sterility in the ABU hybrids. Hybrid incompatibilities were widely distributed over the entire range of the natural species, and in about 50% of the cross combinations between tetraploid Ldn and Ae. umbellulata accessions, ABU F 1 hybrids showed one of two abnormal growth phenotypes: severe growth abortion (SGA) or grass-clump dwarfism. Expression of the shoot meristem maintenance-related and cell cycle-related genes was markedly repressed in crown tissues of hybrids showing SGA, suggesting dysfunction of mitotic cell division in the shoot apices. The grass-clump dwarf phenotype may be explained by down-regulation of wheat APETALA1-like MADS box genes, which act as flowering promoters, and altered expression in crown tissues of the miR156/SPLs module, which controls tiller number and branching. These gene expression changes in growth abnormalities were well conserved between the Ldn/Ae. umbellulata plants and interspecific hybrids from crosses of Ldn and wheat D-genome progenitor Ae. tauschii.
RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose.
Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P; Campanucci, Verónica A
2018-01-01
Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes.
RAGE-dependent potentiation of TRPV1 currents in sensory neurons exposed to high glucose
Lam, Doris; Momeni, Zeinab; Theaker, Michael; Jagadeeshan, Santosh; Yamamoto, Yasuhiko; Ianowski, Juan P.
2018-01-01
Diabetes mellitus is associated with sensory abnormalities, including exacerbated responses to painful (hyperalgesia) or non-painful (allodynia) stimuli. These abnormalities are symptoms of diabetic peripheral neuropathy (DPN), which is the most common complication that affects approximately 50% of diabetic patients. Yet, the underlying mechanisms linking hyperglycemia and symptoms of DPN remain poorly understood. The transient receptor potential vanilloid 1 (TRPV1) channel plays a central role in such sensory abnormalities and shows elevated expression levels in animal models of diabetes. Here, we investigated the function of TRPV1 channels in sensory neurons cultured from the dorsal root ganglion (DRG) of neonatal mice, under control (5mM) and high glucose (25mM) conditions. After maintaining DRG neurons in high glucose for 1 week, we observed a significant increase in capsaicin (CAP)-evoked currents and CAP-evoked depolarizations, independent of TRPV1 channel expression. These functional changes were largely dependent on the expression of the receptor for Advanced Glycation End-products (RAGE), calcium influx, cytoplasmic ROS accumulation, PKC, and Src kinase activity. Like cultured neurons from neonates, mature neurons from adult mice also displayed a similar potentiation of CAP-evoked currents in the high glucose condition. Taken together, our data demonstrate that under the diabetic condition, DRG neurons are directly affected by elevated levels of glucose, independent of vascular or glial signals, and dependent on RAGE expression. These early cellular and molecular changes to sensory neurons in vitro are potential mechanisms that might contribute to sensory abnormalities that can occur in the very early stages of diabetes. PMID:29474476
Mechanisms of Normal and Abnormal Endometrial Bleeding
Lockwood, Charles J.
2011-01-01
Expression of tissue factor (TF), the primary initiator of coagulation, is enhanced in decidualized human endometrial stromal cells (HESC) during the progesterone-dominated luteal phase. Progesterone also augments a second HESC hemostatic factor, plasminogen activator inhibitor-1 (PAI-1). In contrast, progestins inhibit HESC matrix metalloproteinase (MMP)-1, 3 and 9 expression to stabilize endometrial stromal and vascular extracellular matrix. Through these mechanisms decidualized endometrium is rendered both hemostatic and resistant to excess trophoblast invasion in the mid-luteal phase and throughout gestation to prevent hemorrhage and accreta. In non-fertile cycles, progesterone withdrawal results in decreased HESC TF and PAI-expression and increased MMP activity and inflammatory cytokine production promoting the controlled hemorrhage of menstruation and related tissue sloughing. In contrast to these well ordered biochemical processes, unpredictable endometrial bleeding associated with anovulation reflects absence of progestational effects on TF, PAI-1 and MMP activity as well as unrestrained angiogenesis rendering the endometrium non-hemostatic, proteolytic and highly vascular. Abnormal bleeding associated with long-term progestin-only contraceptives results not from impaired hemostasis but from unrestrained angiogenesis leading to large fragile endometrial vessels. This abnormal angiogenesis reflects progestational inhibition of endometrial blood flow promoting local hypoxia and generation of reactive oxygen species that increase production of angiogenic factors such as vascular endothelial growth factor (VEGF) in HESCs and Angiopoietin-2 (Ang-2) in endometrial endothelial cells while decreasing HESC expression of angiostatic, Ang-1. The resulting vessel fragility promotes bleeding. Aberrant angiogenesis also underlies abnormal bleeding associated with myomas and endometrial polyps however there are gaps in our understanding of this pathology. PMID:21499503
Region-specific deletions of RIM1 reproduce a subset of global RIM1α−/− phenotypes
Haws, M E; Kaeser, P S; Jarvis, D L; Südhof, T C; Powell, C M
2012-01-01
The presynaptic protein RIM1α mediates multiple forms of presynaptic plasticity at both excitatory and inhibitory synapses. Previous studies of mice lacking RIM1α (RIM1α−/− throughout the brain showed that deletion of RIM1α results in multiple behavioral abnormalities. In an effort to begin to delineate the brain regions in which RIM1 deletion mediates these abnormal behaviors, we used conditional (floxed) RIM1 knockout mice (fRIM1). By crossing these fRIM1 mice to previously characterized transgenic cre lines, we aimed to delete RIM1 selectively in the dentate gyrus (DG), using a specific preproopiomelanocortin promoter driving cre recombinase (POMC-cre) line , and in pyramidal neurons of the CA3 region of hippocampus, using the kainate receptor subunit 1 promoter driving cre recombinase (KA-cre). Neither of these cre driver lines was uniquely selective to the targeted regions. In spite of this, we were able to reproduce a subset of the global RIM1α−/− behavioral abnormalities, thereby narrowing the brain regions in which loss of RIM1 is sufficient to produce these behavioral differences. Most interestingly, hypersensitivity to the pyschotomimetic MK-801 was shown in mice lacking RIM1 selectively in the DG, arcuate nucleus of the hypothalamus and select cerebellar neurons, implicating novel brain regions and neuronal subtypes in this behavior. PMID:22103334
MR Imaging of the Diabetic Foot.
McCarthy, Eoghan; Morrison, William B; Zoga, Adam C
2017-02-01
Abnormalities of the peripheral nervous, vascular, and immune systems contribute to the development of numerous foot and ankle pathologies in the diabetic population. Although radiographs remain the most practical first-line imaging tool, magnetic resonance (MR) is the tertiary imaging modality of choice, allowing for optimal assessment of bone and soft tissue abnormalities. MR allows for the accurate distinction between osteomyelitis/septic arthritis and neuropathic osteoarthropathy. Furthermore, it provides an excellent presurgical anatomic road map of involved tissues and devitalized skin to ensure successful limited amputations when required. Signal abnormality in the postoperative foot aids in the diagnosis of recurrent infection. Copyright © 2016 Elsevier Inc. All rights reserved.
Targeting Histone Abnormality in Triple Negative Breast Cancer
2016-08-01
mechanisms of polyamine analogues in cancer cells. Anti - Cancer Drugs, 16(3): 229-241, 2005. PMID: 15711175 3. Huang Y, Nayak S, Jankowitz R, Davidson NE...immunoprecipitated with anti -LSD1 antibody followed by IB with anti -HDAC5 and LSD1 antibodies in indicated breast cancer cell lines. IgG was used as...AWARD NUMBER: W81XWH-14-1-0237 TITLE: Targeting Histone Abnormality in Triple-Negative Breast Cancer PRINCIPAL INVESTIGATOR: Yi Huang
Diethylstilbestrol affects the expression of GPER in the gubernaculum testis.
Zhang, Xuan; Ke, Song; Chen, Kai-Hong; Li, Jian-Hong; Ma, Lian; Jiang, Xue-Wu
2015-01-01
Recent evidence suggested a positive correlation between environmental estrogens (EEs) and high incidence of abnormalities in male urogenital system. EEs are known to cause the abnormalities of testes development and testicular descent. Diethylstilbestrol (DES) is a nonsteroidal synthetic estrogen that disrupts the morphology and proliferation of gubernacular cells, and its nongenomic effects on gubernaculum testis cells may be mediated by G protein-coupled estrogen receptor (GPER). In this study, we detected the expression of GPER in mouse gubernacular testis and investigated the effects of DES on the expression of GPER in gubernaculum testis cells. RT-PCR analysis revealed that GPER mRNA was expressed in the gubernaculum. GPER protein was detected in the parenchymal cells of the gubernaculum early in development. Furthermore, we demonstrate that GPER inhibitor G15 relieved DES-induced inhibition of GPER expression in gubernaculum testis cell, but ER inhibitor ICI 182780 had the converse effects on DES-induced inhibition of GPER expression in these cells. These data suggest that the effects of DES on mouse gubernaculum testis cells are mediated at least partially by the regulation of GPER expression.
Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior
Fujita, Yuki; Masuda, Koji; Bando, Masashige; Nakato, Ryuichiro; Katou, Yuki; Tanaka, Takashi; Nakayama, Masahiro; Takao, Keizo; Miyakawa, Tsuyoshi; Tanaka, Tatsunori; Ago, Yukio
2017-01-01
Abnormal epigenetic regulation can cause the nervous system to develop abnormally. Here, we sought to understand the mechanism by which this occurs by investigating the protein complex cohesin, which is considered to regulate gene expression and, when defective, is associated with higher-level brain dysfunction and the developmental disorder Cornelia de Lange syndrome (CdLS). We generated conditional Smc3-knockout mice and observed greater dendritic complexity and larger numbers of immature synapses in the cerebral cortex of Smc3+/− mice. Smc3+/− mice also exhibited more anxiety-related behavior, which is a symptom of CdLS. Further, a gene ontology analysis after RNA-sequencing suggested the enrichment of immune processes, particularly the response to interferons, in the Smc3+/− mice. Indeed, fewer synapses formed in their cortical neurons, and this phenotype was rescued by STAT1 knockdown. Thus, low levels of cohesin expression in the developing brain lead to changes in gene expression that in turn lead to a specific and abnormal neuronal and behavioral phenotype. PMID:28408410
Yin, Tao; Wei, Hongji; Gou, Shanmiao; Shi, Pengfei; Yang, Zhiyong; Zhao, Gang; Wang, Chunyou
2011-01-01
Pancreatic cancer is one of the most lethal malignancies with poor prognosis. Previously, we found that a subpopulation of cancer stem cells (CSCs) in the Panc-1 pancreatic cancer cell line could propagate to form spheres. Here we characterized the malignant phenotypes of the pancreatic cancer stem CD44+/CD24+ cells, which were enriched under sphere forming conditions as analyzed by flow cytometry. These cells demonstrated increased resistance to gemcitabine and increased migration ability. Moreover, these cells exhibited epithelial to mesenchymal transition characterized by a decreased level of the epithelial marker E-cadherin and an increased level of the mesenchymal marker vimentin. Notably, abnormal expression of Bmi-1, ABCG2, Cyclin D1 and p16 were found in Panc-1 CSCs. Our results suggest that targeted inhibition of CSCs represents a novel therapeutic approach to overcome chemoresistance and metastasis of pancreatic cancer. PMID:21673909
Léger, Sophie; Brand, Michael
2002-11-01
The vertebrate inner ear develops from initially 'simple' ectodermal placode and vesicle stages into the complex three-dimensional structure which is necessary for the senses of hearing and equilibrium. Although the main morphological events in vertebrate inner ear development are known, the genetic mechanisms controlling them are scarcely understood. Previous studies have suggested that the otic placode is induced by signals from the chordamesoderm and the hindbrain, notably by fibroblast growth factors (Fgfs) and Wnt proteins. Here we study the role of Fgf8 as a bona-fide hindbrain-derived signal that acts in conjunction with Fgf3 during placode induction, maintenance and otic vesicle patterning. Acerebellar (ace) is a mutant in the fgf8 gene that results in a non-functional Fgf8 product. Homozygous mutants for acerebellar (ace) have smaller ears that typically have only one otolith, abnormal semi-circular canals, and behavioral defects. Using gene expression markers for the otic placode, we find that ace/fgf8 and Fgf-signaling are required for normal otic placode formation and maintenance. Conversely, misexpression of fgf8 or Fgf8-coated beads implanted into the vicinity of the otic placode can increase ear size and marker gene expression, although competence to respond to the induction appears restricted. Cell transplantation experiments and expression analysis suggest that Fgf8 is required in the hindbrain in the rhombomere 4-6 area to restore normal placode development in ace mutants, in close neighbourhood to the forming placode, but not in mesodermal tissues. Fgf3 and Fgf8 are expressed in hindbrain rhombomere 4 during the stages that are critical for placode induction. Joint inactivation of Fgf3 and Fgf8 by mutation or antisense-morpholino injection causes failure of placode formation and results in ear-less embryos, mimicking the phenotype we observe after pharmacological inhibition of Fgf-signaling. Fgf8 and Fgf3 together therefore act during induction and differentiation of the ear placode. In addition to the early requirement for Fgf signaling, the abnormal differentiation of inner ear structures and mechanosensory hair cells in ace mutants, pharmacological inhibition of Fgf signaling, and the expression of fgf8 and fgf3 in the otic vesicle demonstrate independent Fgf function(s) during later development of the otic vesicle and lateral line organ. We furthermore addressed a potential role of endomesomerm by studying mzoep mutant embryos that are depleted of head endomesodermal tissue, including chordamesoderm, due to a lack of Nodal-pathway signaling. In these embryos, early placode induction proceeds largely normally, but the ear placode extends abnormally to midline levels at later stages, suggesting a role for the midline in restricting placode development to dorsolateral levels. We suggest a model of zebrafish inner ear development with several discrete steps that utilize sequential Fgf signals during otic placode induction and vesicle patterning. Copyright 2002 Elsevier Science Ireland Ltd.
Petillo, David; Westphal, Michael; Koelzer, Katherine; Metcalf, Julie L.; Zhang, Zhongfa; Matsuda, Daisuke; Dykema, Karl J.; Houseman, Heather L.; Kort, Eric J.; Furge, Laura L.; Kahnoski, Richard J.; Richard, Stéphane; Vieillefond, Annick; Swiatek, Pamela J.; Teh, Bin Tean; Ohh, Michael; Furge, Kyle A.
2008-01-01
Chromosomal abnormalities, such as structural and numerical abnormalities, are a common occurrence in cancer. The close association of homologous chromosomes during interphase, a phenomenon termed somatic chromosome pairing, has been observed in cancerous cells, but the functional consequences of somatic pairing have not been established. Gene expression profiling studies revealed that somatic pairing of chromosome 19 is a recurrent chromosomal abnormality in renal oncocytoma, a neoplasia of the adult kidney. Somatic pairing was associated with significant disruption of gene expression within the paired regions and resulted in the deregulation of the prolyl-hydroxylase ELGN2, a key protein that regulates the oxygen-dependent degradation of hypoxia-inducible factor (HIF). Overexpression of ELGN2 in renal oncocytoma increased ubiquitin-mediated destruction of HIF and concomitantly suppressed the expression of several HIF-target genes, including the pro-death BNIP3L gene. The transcriptional changes that are associated with somatic pairing of chromosome 19 mimic the transcriptional changes that occur following DNA amplification. Therefore, in addition to numerical and structural chromosomal abnormalities, alterations in chromosomal spatial dynamics should be considered as genomic events that are associated with tumorigenesis. The identification of EGLN2 as a significantly deregulated gene that maps within the paired chromosome region directly implicates defects in the oxygen-sensing network to the biology of renal oncocytoma. PMID:18773095
ERIC Educational Resources Information Center
Olincy, Ann; Blakeley-Smith, Audrey; Johnson, Lynn; Kem, William R.; Freedman, Robert
2016-01-01
Abnormalities in CHRNA7, the alpha7-nicotinic receptor gene, have been reported in autism spectrum disorder. These genetic abnormalities potentially decrease the receptor's expression and diminish its functional role. This double-blind, placebo-controlled crossover study in two adult patients investigated whether an investigational…
Pleiotrophin is a driver of vascular abnormalization in glioblastoma.
Zhang, Lei; Dimberg, Anna
2016-01-01
In a recent report by Zhang et al. , pleiotrophin (PTN) was demonstrated to enhance glioma growth by promoting vascular abnormalization. PTN stimulates glioma vessels through anaplastic lymphoma kinase (Alk)-mediated perivascular deposition of vascular endothelial growth factor (VEGF). Targeting of Alk or VEGF signaling normalizes tumor vessels in PTN-expressing tumors.
2013-01-01
Background Intratumoral heterogeneity is a major obstacle for the treatment of cancer, as the presence of even minor populations that are insensitive to therapy can lead to disease relapse. Increased clonal diversity has been correlated with a poor prognosis for cancer patients, and we therefore examined genetic, transcriptional, and functional diversity in metastatic melanoma. Methods Amplicon sequencing and SNP microarrays were used to profile somatic mutations and DNA copy number changes in multiple regions from metastatic lesions. Clonal genetic and transcriptional heterogeneity was also assessed in single cell clones from early passage cell lines, which were then subjected to clonogenicity and drug sensitivity assays. Results MAPK pathway and tumor suppressor mutations were identified in all regions of the melanoma metastases analyzed. In contrast, we identified copy number abnormalities present in only some regions in addition to homogeneously present changes, suggesting ongoing genetic evolution following metastatic spread. Copy number heterogeneity from a tumor was represented in matched cell line clones, which also varied in their clonogenicity and drug sensitivity. Minor clones were identified based on dissimilarity to the parental cell line, and these clones were the most clonogenic and least sensitive to drugs. Finally, treatment of a polyclonal cell line with paclitaxel to enrich for drug-resistant cells resulted in the adoption of a gene expression profile with features of one of the minor clones, supporting the idea that these populations can mediate disease relapse. Conclusion Our results support the hypothesis that minor clones might have major consequences for patient outcomes in melanoma. PMID:24119551
Cárdenas, Ana María; Fernández-Olivares, Paola; Díaz-Franulic, Ignacio; González-Jamett, Arlek M; Shimahara, Takeshi; Segura-Aguilar, Juan; Caviedes, Raúl; Caviedes, Pablo
2017-11-01
The Na + /myo-inositol cotransporter (SMIT1) is overexpressed in human Down syndrome (DS) and in trisomy 16 fetal mice (Ts16), an animal model of the human condition. SMIT1 overexpression determines increased levels of intracellular myo-inositol, a precursor of phophoinositide synthesis. SMIT1 is overexpressed in CTb cells, an immortalized cell line established from the cerebral cortex of a Ts16 mouse fetus. CTb cells exhibit impaired cytosolic Ca 2+ signals in response to glutamatergic and cholinergic stimuli (increased amplitude and delayed time-dependent kinetics in the decay post-stimulation), compared to our CNh cell line, derived from the cerebral cortex of a euploid animal. Considering the role of myo-inositol in intracellular signaling, we normalized SMIT1 expression in CTb cells using specific mRNA antisenses. Forty-eight hours post-transfection, SMIT1 levels in CTb cells reached values comparable to those of CNh cells. At this time, decay kinetics of Ca 2+ signals induced by either glutamate, nicotine, or muscarine were accelerated in transfected CTb cells, to values similar to those of CNh cells. The amplitude of glutamate-induced cytosolic Ca 2+ signals in CTb cells was also normalized. The results suggest that SMIT1 overexpression contributes to abnormal cholinergic and glutamatergic Ca 2+ signals in the trisomic condition, and knockdown of DS-related genes in our Ts16-derived cell line could constitute a relevant tool to study DS-related neuronal dysfunction.
The Immune Phenotype of Three Drosophila Leukemia Models.
Arefin, Badrul; Kunc, Martin; Krautz, Robert; Theopold, Ulrich
2017-07-05
Many leukemia patients suffer from dysregulation of their immune system, making them more susceptible to infections and leading to general weakening (cachexia). Both adaptive and innate immunity are affected. The fruit fly Drosophila melanogaster has an innate immune system, including cells of the myeloid lineage (hemocytes). To study Drosophila immunity and physiology during leukemia, we established three models by driving expression of a dominant-active version of the Ras oncogene ( Ras V12 ) alone or combined with knockdowns of tumor suppressors in Drosophila hemocytes. Our results show that phagocytosis, hemocyte migration to wound sites, wound sealing, and survival upon bacterial infection of leukemic lines are similar to wild type. We find that in all leukemic models the two major immune pathways (Toll and Imd) are dysregulated. Toll-dependent signaling is activated to comparable extents as after wounding wild-type larvae, leading to a proinflammatory status. In contrast, Imd signaling is suppressed. Finally, we notice that adult tissue formation is blocked and degradation of cell masses during metamorphosis of leukemic lines, which is akin to the state of cancer-dependent cachexia. To further analyze the immune competence of leukemic lines, we used a natural infection model that involves insect-pathogenic nematodes. We identified two leukemic lines that were sensitive to nematode infections. Further characterization demonstrates that despite the absence of behavioral abnormalities at the larval stage, leukemic larvae show reduced locomotion in the presence of nematodes. Taken together, this work establishes new Drosophila models to study the physiological, immunological, and behavioral consequences of various forms of leukemia. Copyright © 2017 Arefin et al.
Dan Yue; Zhang, Yuwei; Cheng, Liuliu; Ma, Jinhu; Xi, Yufeng; Yang, Liping; Su, Chao; Shao, Bin; Huang, Anliang; Xiang, Rong; Cheng, Ping
2016-04-14
Hepatitis B virus X protein (HBx) plays an important role in HBV-related hepatocarcinogenesis; however, mechanisms underlying HBx-mediated carcinogenesis remain unclear. In this study, an NMR-based metabolomics approach was applied to systematically investigate the effects of HBx on cell metabolism. EdU incorporation assay was conducted to examine the effects of HBx on DNA synthesis, an important feature of nucleic acid metabolism. The results revealed that HBx disrupted metabolism of glucose, lipids, and amino acids, especially nucleic acids. To understand the potential mechanism of HBx-induced abnormalities of nucleic acid metabolism, gene expression profiles of HepG2 cells expressing HBx were investigated. The results showed that 29 genes involved in DNA damage and DNA repair were differentially expressed in HBx-expressing HepG2 cells. HBx-induced DNA damage was further demonstrated by karyotyping, comet assay, Western blotting, immunofluorescence and immunohistochemistry analyses. Many studies have previously reported that DNA damage can induce abnormalities of nucleic acid metabolism. Thus, our results implied that HBx initially induces DNA damage, and then disrupts nucleic acid metabolism, which in turn blocks DNA repair and induces the occurrence of hepatocellular carcinoma (HCC). These findings further contribute to our understanding of the occurrence of HCC.
Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis.
Wagschal, Alexandre; Najafi-Shoushtari, S Hani; Wang, Lifeng; Goedeke, Leigh; Sinha, Sumita; deLemos, Andrew S; Black, Josh C; Ramírez, Cristina M; Li, Yingxia; Tewhey, Ryan; Hatoum, Ida; Shah, Naisha; Lu, Yong; Kristo, Fjoralba; Psychogios, Nikolaos; Vrbanac, Vladimir; Lu, Yi-Chien; Hla, Timothy; de Cabo, Rafael; Tsang, John S; Schadt, Eric; Sabeti, Pardis C; Kathiresan, Sekar; Cohen, David E; Whetstine, Johnathan; Chung, Raymond T; Fernández-Hernando, Carlos; Kaplan, Lee M; Bernards, Andre; Gerszten, Robert E; Näär, Anders M
2015-11-01
Genome-wide association studies (GWASs) have linked genes to various pathological traits. However, the potential contribution of regulatory noncoding RNAs, such as microRNAs (miRNAs), to a genetic predisposition to pathological conditions has remained unclear. We leveraged GWAS meta-analysis data from >188,000 individuals to identify 69 miRNAs in physical proximity to single-nucleotide polymorphisms (SNPs) associated with abnormal levels of circulating lipids. Several of these miRNAs (miR-128-1, miR-148a, miR-130b, and miR-301b) control the expression of key proteins involved in cholesterol-lipoprotein trafficking, such as the low-density lipoprotein (LDL) receptor (LDLR) and the ATP-binding cassette A1 (ABCA1) cholesterol transporter. Consistent with human liver expression data and genetic links to abnormal blood lipid levels, overexpression and antisense targeting of miR-128-1 or miR-148a in high-fat diet-fed C57BL/6J and Apoe-null mice resulted in altered hepatic expression of proteins involved in lipid trafficking and metabolism, and in modulated levels of circulating lipoprotein-cholesterol and triglycerides. Taken together, these findings support the notion that altered expression of miRNAs may contribute to abnormal blood lipid levels, predisposing individuals to human cardiometabolic disorders.
Effect of abnormal notochord delamination on hindgut development in the Adriamycin mouse model.
Sato, Hideaki; Hajduk, Piotr; Furuta, Shigeyuki; Wakisaka, Munechika; Murphy, Paula; Puri, Prem; Kitagawa, Hiroaki
2013-11-01
Adriamycin mouse model (AMM) is a model of VACTERL anomalies. Sonic hedgehog (Shh) pathway, sourced by the notochord, is implicated of anorectal malformations. We hypothesized hindgut anomalies observed in the AMM are the result of abnormal effect of the notochord. Time-mated CBA/Ca mice received two intraperitoneal injections of Adriamycin (6 mg/kg) or saline as control on embryonic day (E) 7 and 8. Fetuses were harvested from E9 to E11, stained following whole mount in situ hybridization with labeled RNA probes to detect Shh and Fork head box F1(Foxf1) transcripts. Immunolocalization with endoderm marker Hnf3β was used to visualize morphology. Embryos were scanned by OPT to obtain 3D representations of expressions. In AMM, the notochord was abnormally displaced ventrally with attachment to the hindgut endoderm in 71 % of the specimens. In 32 % of the treated embryos abnormal hindgut ended blindly in a cystic structure, and both of types were remarked in 29 % of treated embryos. Endodermal Shh and mesenchymal Foxf1 genes expression were preserved around the hindgut cystic malformation. The delamination of the developing notochord in the AMM is disrupted, which may influence signaling mechanisms from the notochord to the hindgut resulting in abnormal patterning of the hindgut.
Surget, Sylvanie; Descamps, Géraldine; Brosseau, Carole; Normant, Vincent; Maïga, Sophie; Gomez-Bougie, Patricia; Gouy-Colin, Nadège; Godon, Catherine; Béné, Marie C; Moreau, Philippe; Le Gouill, Steven; Amiot, Martine; Pellat-Deceunynck, Catherine
2014-06-14
The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53(mutated) cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥ 1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤ 19%). These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies.
2014-01-01
Background The aim of this study was to evaluate the efficacy of the p53-reactivating drugs RITA and nutlin3a in killing myeloma cells. Methods A large cohort of myeloma cell lines (n = 32) and primary cells (n = 21) was used for this study. This cohort contained cell lines with various TP53 statuses and primary cells with various incidences of deletion of chromosome 17. Apoptosis was evaluated using flow cytometry with Apo2.7 staining of the cell lines or via the loss of the myeloma-specific marker CD138 in primary cells. Apoptosis was further confirmed by the appearance of a subG1 peak and the activation of caspases 3 and 9. Activation of the p53 pathway was monitored using immunoblotting via the expression of the p53 target genes p21, Noxa, Bax and DR5. The involvement of p53 was further studied in 4 different p53-silenced cell lines. Results Both drugs induced the apoptosis of myeloma cells. The apoptosis that was induced by RITA was not related to the TP53 status of the cell lines or the del17p status of the primary samples (p = 0.52 and p = 0.80, respectively), and RITA did not commonly increase the expression level of p53 or p53 targets (Noxa, p21, Bax or DR5) in sensitive cells. Moreover, silencing of p53 in two TP53mutated cell lines failed to inhibit apoptosis that was induced by RITA, which confirmed that RITA-induced apoptosis in myeloma cells was p53 independent. In contrast, apoptosis induced by nutlin3a was directly linked to the TP53 status of the cell lines and primary samples (p < 0.001 and p = 0.034, respectively) and nutlin3a increased the level of p53 and p53 targets in a p53-dependent manner. Finally, we showed that a nutlin3a-induced DR5 increase (≥1.2-fold increase) was a specific and sensitive marker (p < 0.001) for a weak incidence of 17p deletion within the samples (≤19%). Conclusion These data show that RITA, in contrast to nutlin3a, effectively induced apoptosis in a subset of MM cells independently of p53. The findings and could be of interest for patients with a 17p deletion, who are resistant to current therapies. PMID:24927749
Tsou, Wei-Ling; Qiblawi, Sultan H.; Hosking, Ryan R.; Gomez, Christopher M.
2016-01-01
ABSTRACT Spinocerebellar ataxia type 6 (SCA6) is a neurodegenerative disease that results from abnormal expansion of a polyglutamine (polyQ) repeat. SCA6 is caused by CAG triplet repeat expansion in the gene CACNA1A, resulting in a polyQ tract of 19-33 in patients. CACNA1A, a bicistronic gene, encodes the α1A calcium channel subunit and the transcription factor, α1ACT. PolyQ expansion in α1ACT causes degeneration in mice. We recently described the first Drosophila models of SCA6 that express α1ACT with a normal (11Q) or hyper-expanded (70Q) polyQ. Here, we report additional α1ACT transgenic flies, which express full-length α1ACT with a 33Q repeat. We show that α1ACT33Q is toxic in Drosophila, but less so than the 70Q version. When expressed everywhere, α1ACT33Q-expressing adults die earlier than flies expressing the normal allele. α1ACT33Q causes retinal degeneration and leads to aggregated species in an age-dependent manner, but at a slower pace than the 70Q counterpart. According to western blots, α1ACT33Q localizes less readily in the nucleus than α1ACT70Q, providing clues into the importance of polyQ tract length on α1ACT localization and its site of toxicity. We expect that these new lines will be highly valuable for future work on SCA6. PMID:27979829
Expression of nociceptive ligands in canine osteosarcoma.
Shor, S; Fadl-Alla, B A; Pondenis, H C; Zhang, X; Wycislo, K L; Lezmi, S; Fan, T M
2015-01-01
Canine osteosarcoma (OS) is associated with localized pain as a result of tissue injury from tumor infiltration and peritumoral inflammation. Malignant bone pain is caused by stimulation of peripheral pain receptors, termed nociceptors, which reside in the localized tumor microenvironment, including the periosteal and intramedullary bone cavities. Several nociceptive ligands have been determined to participate directly or indirectly in generating bone pain associated with diverse skeletal abnormalities. Canine OS cells actively produce nociceptive ligands with the capacity to directly or indirectly activate peripheral pain receptors residing in the bone tumor microenvironment. Ten dogs with appendicular OS. Expression of nerve growth factor, endothelin-1, and microsomal prostaglandin E synthase-1 was characterized in OS cell lines and naturally occurring OS samples. In 10 dogs with OS, circulating concentrations of nociceptive ligands were quantified and correlated with subjective pain scores and tumor volume in patients treated with standardized palliative therapies. Canine OS cells express and secrete nerve growth factor, endothelin-1, and prostaglandin E2. Naturally occurring OS samples uniformly express nociceptive ligands. In a subset of OS-bearing dogs, circulating nociceptive ligand concentrations were detectable but failed to correlate with pain status. Localized foci of nerve terminal proliferation were identified in a minority of primary bone tumor samples. Canine OS cells express nociceptive ligands, potentially permitting active participation of OS cells in the generation of malignant bone pain. Specific inhibitors of nociceptive ligand signaling pathways might improve pain control in dogs with OS. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.
Abnormally banded chromosomal regions in doxorubicin-resistant B16-BL6 murine melanoma cells.
Slovak, M L; Hoeltge, G A; Ganapathi, R
1986-08-01
B16-BL6 murine melanoma cells were selected for cytogenetic evaluation during the stepwise development of increasing resistance in vitro to the antitumor antibiotic, doxorubicin (DOX). Karyotypic studies demonstrated extensive heteroploidy with both numerical and structural abnormalities which were not present in the parental DOX-sensitive B16-BL6 cells. Trypsin-Giemsa banding revealed the presence of several marker chromosomes containing abnormally banding regions (ABRs) in the 44-fold B16-BL6 DOX-resistant subline. These ABRs appeared to be more homogeneously staining at the higher DOX concentrations. Length measurements (ABR index) in seven banded metaphases indicated a direct correlation with increasing DOX concentration. When the DOX-resistant cells were grown in drug-free medium for 1 yr, the drug-resistant phenotype gradually declined in parallel with the level of resistance and the ABR index. DOX-induced cytogenetic damage examined by sister chromatid exchange methodology in parental B16-BL6 cells indicated a linear sister chromatid exchange:DOX dose-response relationship. However, after continuous treatment of parental B16-BL6 cells with DOX (0.01 microgram/ml) for 30 days, sister chromatid exchange scores were found to return to base-line values. The B16-BL6 resistant cells demonstrated a cross-resistant phenotype with N-trifluoroacetyladriamycin-14-valerate, actinomycin D, and the Vinca alkaloids but not with 1-beta-D-arabinofuranosylcytosine. The results suggest that ABR-containing chromosomes in DOX-resistant sublines may represent cytogenetic alterations of specific amplified genes involved in the expression of DOX resistance. Further studies are required to identify and define the possible gene products and to correlate their relationship to the cytotoxic action of doxorubicin.
Long, Chengli; Held, Mark; Hayward, Allison; Nisler, Jaroslav; Spíchal, Lukas; Neil Emery, R J; Moffatt, Barbara A; Guinel, Frédérique C
2012-06-01
R50 (sym16) is a pea nodulation mutant that accumulates cytokinin (CK) in its vegetative organs. Total CK content increases as the plant ages because of the low activity of the enzyme cytokinin oxidase/dehydrogenase (CKX) responsible for CK degradation. R50 exhibits a large seed with high relative water content, and its seedling establishes itself slowly. Whether these two traits are linked to abnormal CK levels was considered here. R50 was found to have a similar germination rate but a much slower epicotyl emergence than Sparkle, its wild-type (WT). At the onset of emergence, the starch grains in R50 cotyledons were larger than those of WT; furthermore, they did not degrade as fast as in WT because of low amylase activity. No differences between the pea lines were observed in the CK forms identified during seed embryogenesis. However, while CK content compared to that of WT was reduced early in R50 embryogenesis, it was elevated later on in its dry seeds where CKX activity was low, although CKX transcript abundance remained high. Transcripts of the two known PsCKX isoforms exhibited tissue- and development-specific profiles with no detectable PsCKX2 expression in cotyledons. There were more of both transcripts in R50 roots than in WT roots, but less of PsCKX2 than PsCKX1 in R50 shoots compared to WT shoots. Thus, although there is a definite CKX post-transcriptional defect in R50 dry seeds, an abnormal CK homeostasis is not the basis of the delay in R50 seedling establishment, which we linked to abnormal amylase activity early in development. Copyright © Physiologia Plantarum 2012.
Zhu, Liye; Gao, Jing; Huang, Kunlun; Luo, Yunbo; Zhang, Boyang; Xu, Wentao
2015-01-01
Aflatoxin-B1 (AFB1), a hepatocarcinogenic mycotoxin, was demonstrated to induce the high rate of hepatocellular carcinoma (HCC). MicroRNAs (miRNAs) participate in the regulation of several biological processes in HCC. However, the function of miRNAs in AFB1-induced HCC has received a little attention. Here, we applied Illumina deep sequencing technology for high-throughout profiling of microRNAs in HepG2 cells lines after treatment with AFB1. Analysis of the differential expression profile of miRNAs in two libraries, we identified 9 known miRNAs and 1 novel miRNA which exhibited abnormal expression. KEGG analysis indicated that predicted target genes of differentially expressed miRNAs are involved in cancer-related pathways. Down-regulated of Drosha, DGCR8 and Dicer 1 indicated an impairment of miRNA biogenesis in response to AFB1. miR-34a was up-regulated significantly, down-regulating the expression of Wnt/β-catenin signaling pathway by target gene β-catenin. Anti-miR-34a can significantly relieved the down-regulated β-catenin and its downstream genes, c-myc and Cyclin D1, and the S-phase arrest in cell cycle induced by AFB1 can also be relieved. These results suggested that AFB1 might down-regulate Wnt/β-catenin signaling pathway in HepG2 cells by up-regulating miR-34a, which may involve in the mechanism of liver tumorigenesis. PMID:26567713
Li, Li; Li, Yixing; Song, Shufeng; Deng, Huafeng; Li, Na; Fu, Xiqin; Chen, Guanghui; Yuan, Longping
2015-01-01
In this study, we reported that a F-box protein, OsADF, as one of the direct targets of TDR , plays a critical role in rice tapetum cell development and pollen formation. The tapetum, the innermost sporophytic tissue of anther, plays an important supportive role in male reproduction in flowering plants. After meiosis, tapetal cells undergo programmed cell death (PCD) and provide nutrients for pollen development. Previously we showed that tapetum degeneration retardation (TDR), a basic helix-loop-helix transcription factor, can trigger tapetal PCD and control pollen wall development during anther development. However, the comprehensive regulatory network of TDR remains to be investigated. In this study, we cloned and characterized a panicle-specific expression F-box protein, anther development F-box (OsADF). By qRT-PCR and RNA in situ hybridization, we further confirmed that OsADF expressed specially in tapetal cells from stage 9 to stage 12 during anther development. In consistent with this specific expression pattern, the RNAi transgenic lines of OsADF exhibited abnormal tapetal degeneration and aborted microspores development, which eventually grew pollens with reduced fertility. Furthermore, we demonstrated that the TDR, a key regulator in controlling rice anther development, could regulate directly the expression of OsADF by binding to E-box motifs of its promoter. Therefore, this work highlighted the possible regulatory role of TDR, which regulates tapetal cell development and pollen formation via triggering the possible ADF-mediated proteolysis pathway.
Gantois, Ilse; Fang, Ke; Jiang, Luning; Babovic, Daniela; Lawrence, Andrew J.; Ferreri, Vincenzo; Teper, Yaroslav; Jupp, Bianca; Ziebell, Jenna; Morganti-Kossmann, Cristina M.; O'Brien, Terence J.; Nally, Rachel; Schütz, Günter; Waddington, John; Egan, Gary F.; Drago, John
2007-01-01
Huntington's disease is characterized by death of striatal projection neurons. We used a Cre/Lox transgenic approach to generate an animal model in which D1 dopamine receptor (Drd1a)+ cells are progressively ablated in the postnatal brain. Striatal Drd1a, substance P, and dynorphin expression is progressively lost, whereas D2 dopamine receptor (Drd2) and enkephalin expression is up-regulated. Magnetic resonance spectroscopic analysis demonstrated early elevation of the striatal choline/creatine ratio, a finding associated with extensive reactive striatal astrogliosis. Sequential MRI demonstrated a progressive reduction in striatal volume and secondary ventricular enlargement confirmed to be due to loss of striatal cells. Mutant mice had normal gait and rotarod performance but displayed hindlimb dystonia, locomotor hyperactivity, and handling-induced electrographically verified spontaneous seizures. Ethological assessment identified an increase in rearing and impairments in the oral behaviors of sifting and chewing. In line with the limbic seizure profile, cell loss, astrogliosis, microgliosis, and down-regulated dynorphin expression were seen in the hippocampal dentate gyrus. This study specifically implicates Drd1a+ cell loss with tail suspension hindlimb dystonia, hyperactivity, and abnormal oral function. The latter may relate to the speech and swallowing disturbances and the classic sign of tongue-protrusion motor impersistence observed in Huntington's disease. In addition, the findings of this study support the notion that Drd1a and Drd2 are segregated on striatal projection neurons. PMID:17360497
Deletion of Otx2 in GnRH neurons results in a mouse model of hypogonadotropic hypogonadism.
Diaczok, Daniel; DiVall, Sara; Matsuo, Isao; Wondisford, Fredric E; Wolfe, Andrew M; Radovick, Sally
2011-05-01
GnRH is the central regulator of reproductive function responding to central nervous system cues to control gonadotropin synthesis and secretion. GnRH neurons originate in the olfactory placode and migrate to the forebrain, in which they are found in a scattered distribution. Congenital idiopathic hypogonadotropic hypogonadism (CIHH) has been associated with mutations or deletions in a number of genes that participate in the development of GnRH neurons and expression of GnRH. Despite the critical role of GnRH in mammalian reproduction, a comprehensive understanding of the developmental factors that are responsible for regulating the establishment of mature GnRH neurons and the expression of GnRH is lacking. orthodenticle homeobox 2 (OTX2), a homeodomain protein required for the formation of the forebrain, has been shown to be expressed in GnRH neurons, up-regulated during GnRH neuronal development, and responsible for increased GnRH promoter activity in GnRH neuronal cell lines. Interestingly, mutations in Otx2 have been associated with human hypogonadotropic hypogonadism, but the mechanism by which Otx2 mutations cause CIHH is unknown. Here we show that deletion of Otx2 in GnRH neurons results in a significant decrease in GnRH neurons in the hypothalamus, a delay in pubertal onset, abnormal estrous cyclicity, and infertility. Taken together, these data provide in vivo evidence that Otx2 is critical for GnRH expression and reproductive competence.
New TFII-I family target genes involved in embryonic development.
Makeyev, Aleksandr V; Bayarsaihan, Dashzeveg
2009-09-04
Two members of the TFII-I family transcription factor genes, GTF2I and GTF2IRD1, are the prime candidates responsible for the craniofacial and cognitive abnormalities of Williams syndrome patients. We have previously generated mouse lines with targeted disruption of Gtf2i and Gtf2ird1. Microarray analysis revealed significant changes in the expression profile of mutant embryos. Here we described three unknown genes that were dramatically down-regulated in mutants. The 2410018M08Rik/Scand3 gene encodes a protein of unknown function with CHCH and hATC domains. Scand3 is down-regulated during mouse embryonic stem cell (ES) differentiation. 4933436H12Rik is a testis-specific gene, which encodes a protein with no known domains. It is expressed in mouse ES cells. 1110008P08Rik/Kbtbd7 encodes an adapter protein with BTB/POZ, BACK, and Kelch motifs, previously shown to recruit substrates to the enzymatic complexes of the histone modifying or E3 ubiquitin ligase activities. Based on its expression pattern Kbtbd7 may have a specific role in brain development and function. All three genes possess well-conserved TFII-I-binding consensus sites within proximal promoters. Therefore our analysis suggests that these genes can be direct targets of TFII-I proteins and their impaired expression, as a result of the GTF2I and GTF2IRD1 haploinsufficiency, could contribute to the etiology of Williams syndrome.
Li, Ting-Fu; Liu, Jian; Fu, Shi-Jie
2018-05-14
Pancreatic cancer (PC) is one of the most aggressive malignancies in humans. Despite advances in early detection and treatment of PC, the prognosis is still limited. LncRNA myocardial infarction-associated transcript (MIAT) is found abnormally expressed in a variety of cancers. However, the role of MIAT in PC is still unknown. This study aimed to explore whether MIAT was related to the progression of PC and the underlying mechanism. Bioinformatics analysis and luciferase reporter assay validated that miR-133 may target MIAT 3'-UTR. MIAT expression was found remarkably increased and miR-133 expression was significantly decreased in PC tissues and PC cell lines (PATU-8988, BxPC-3, PANC-1, SW1990 and AsPC-1 cells). PC patients with high MIAT level had poor prognosis than that with low MITA level. Besides that, PATU-8988 cells transfected with siMIAT and/or miR-133 inhibitor. The results exhibited that the inhibition of miR-133 expression reversed the inhibition effect of MIAT down-regulation in the growth, migration and invasion of PC cells. Moreover, tumor growth was tremendously suppressed in nude rats received injection of PATU-8988 cells transfected with siMIAT. Taken together, our results suggest that the interaction of MIAT and miR-133 play a role in the proliferation and metastasis of pancreatic carcinoma. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Goh, Ah Ra; Youn, Gi Soo; Yoo, Ki-Yeon; Won, Moo Ho; Han, Sang-Zin; Lim, Soon Sung; Lee, Keun Wook; Choi, Soo Young; Park, Jinseu
2016-07-01
Abnormal expression of pro-inflammatory mediators such as cell adhesion molecules and cytokines has been implicated in various inflammatory skin diseases, including atopic dermatitis. In this study, we investigated the anti-inflammatory activity of Aronia melanocarpa concentrate (AC) and its action mechanisms using in vivo and in vitro skin inflammation models. Topical application of AC on mouse ears significantly suppressed 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear edema formation, as judged by measuring ear thickness and weight, and histological analysis. Topical administration of AC also reduced the expression of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6 in TPA-stimulated mouse ears. Pretreatment with AC suppressed TNF-α-induced ICAM-I expression and subsequent monocyte adhesiveness in human keratinocyte cell line HaCaT. In addition, AC significantly decreased intracellular reactive oxygen species (ROS) generation as well as mitogen-activated protein kinase (MAPK) activation in TNF-α-stimulated HaCaT cells. AC and its constituent cyanidin 3-glucoside also attenuated TNF-α-induced IKK activation, IκB degradation, p65 phosphorylation/nuclear translocation, and p65 DNA binding activity in HaCaT cells. Overall, our results indicate that AC exerts anti-inflammatory activities by inhibiting expression of pro-inflammatory mediators in vitro and in vivo possibly through suppression of ROS-MAPK-NF-κB signaling pathways. Therefore, AC may be developed as a therapeutic agent to treat various inflammatory skin diseases.
Ichikawa, N; Kitano, K; Ito, T; Nakazawa, T; Shimodaira, S; Ishida, F; Kiyosawa, K
1999-04-01
We report a case of granular lymphocyte proliferative disorder accompanied with hemolytic anemia and neutropenia. Phenotypes of the cells were T cell receptor gammadelta+ CD3+ CD4- CD8+ CD16+ CD56- CD57-. Southern blot analysis of T cell receptor beta and gamma chains demonstrated rearranged bands in both. Chromosomal analysis after IL-2 stimulation showed deletion of chromosome 6. Sorted gammadelta+ T cells showed an increase in Fas ligand expression compared with the levels in sorted alphabeta+ T cells. The expression of Fas ligand on these gammadelta+ T cells increased after IL-2 stimulation. The patient's anemia improved along with a decrease in granular lymphocyte count and disappearance of the abnormal karyotype without treatment. The expression of Fas ligand may be involved in spontaneous regression of granular lymphocyte proliferation with hemolytic anemia.
Xu, Huiyun; Ning, Dandan; Zhao, Dezhi; Chen, Yunhe; Zhao, Dongdong; Gu, Sumin; Jiang, Jean X.; Shang, Peng
2017-01-01
Osteocytes, the most abundant cells in bone, are highly responsive to external environmental changes. We tested how Cx43 hemichannels which mediate the exchange of small molecules between cells and extracellular environment impact genome wide gene expression under conditions of abnormal gravity and magnetic field. To this end, we subjected osteocytic MLO-Y4 cells to a high magneto-gravitational environment and used microarray to examine global gene expression and a specific blocking antibody was used to assess the role of Cx43 hemichannels. While 3 hr exposure to abnormal gravity and magnetic field had relatively minor effects on global gene expression, blocking hemichannels significantly impacted the expression of a number of genes which are involved in cell viability, apoptosis, mineral absorption, protein absorption and digestion, and focal adhesion. Also, blocking of hemichannels enriched genes in multiple signaling pathways which are enaged by TGF-beta, Jak-STAT and VEGF. These results show the role of connexin hemichannels in bone cells in high magneto-gravitational environments. PMID:27814646
Prostate cancer cell response to paclitaxel is affected by abnormally expressed securin PTTG1.
Castilla, Carolina; Flores, M Luz; Medina, Rafael; Pérez-Valderrama, Begoña; Romero, Francisco; Tortolero, María; Japón, Miguel A; Sáez, Carmen
2014-10-01
PTTG1 protein, the human securin, has a central role in sister chromatid separation during mitosis, and its altered expression has been reported in many tumor types. Paclitaxel is a widely used chemotherapeutic drug, whose mechanism of action is related to its ability to arrest cells in mitosis and the subsequent induction of the intrinsic apoptotic pathway. By using two prostate cancer cell lines with different responses to paclitaxel treatment, we have identified two situations in which PTTG1 influences cell fate differentially. In slippage-prone PC3 cells, both PTTG1 downregulation and overexpression induce an increase in mitotic cells that is associated with diminished apoptosis after paclitaxel treatment. In LNCaP cells, however, PTTG1 downregulation prevents mitotic entry and, subsequently, inhibits mitosis-associated, paclitaxel-induced apoptosis. In contrast, PTTG1 overexpression induces an increase in mitotic cells and apoptosis after paclitaxel treatment. We have also identified a role for Mcl-1 protein in preventing apoptosis during mitosis in PC3 cells, as simultaneous PTTG1 and Mcl-1 silencing enhances mitosis-associated apoptosis after paclitaxel treatment. The finding that a more efficient mitotic arrest alone in PC3 cells is not enough to increase apoptosis was also confirmed with the observation that a selected paclitaxel-resistant PC3 cell line showed an apoptosis-resistant phenotype associated with increased mitosis upon paclitaxel treatment. These findings could contribute to identify putative responsive and nonresponsive cells and help us to approach incomplete responses to paclitaxel in the clinical setting. ©2014 American Association for Cancer Research.
Lipska, B K; Khaing, Z Z; Weickert, C S; Weinberger, D R
2001-07-01
Brain-derived neurotrophic factor (BDNF) plays an important role in development, synapse remodelling and responses to stress and injury. Its abnormal expression has been implicated in schizophrenia, a neuropsychiatric disorder in which abnormal neural development of the hippocampus and prefrontal cortex has been postulated. To clarify the effects of antipsychotic drugs used in the therapy of schizophrenia on BDNF mRNA, we studied its expression in rats treated with clozapine and haloperidol and in rats with neonatal lesions of the ventral hippocampus, used as an animal model of schizophrenia. Both antipsychotic drugs reduced BDNF expression in the hippocampus of control rats, but did not significantly lower its expression in the prefrontal cortex. The neonatal hippocampal lesion itself suppressed BDNF mRNA expression in the dentate gyrus and tended to reduce its expression in the prefrontal cortex. These results indicate that, unlike antidepressants, antipsychotics down-regulate BDNF mRNA, and suggest that their therapeutic properties are not mediated by stimulation of this neurotrophin. To the extent that the lesioned rat models some pathophysiological aspects of schizophrenia, our data suggest that a neurodevelopmental insult might suppress expression of the neurotrophin in certain brain regions.
Slusser-Nore, Andrea; Larson-Casey, Jennifer L; Zhang, Ruowen; Zhou, Xu Dong; Somji, Seema; Garrett, Scott H; Sens, Donald A; Dunlevy, Jane R
2016-01-01
This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As(+3)) and cadmium (Cd(+2))-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd(+2)-and As(+3)-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As(+3)-and Cd(+2)-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. It was shown that the As(+3)-and Cd(+2)-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. Tumor initiating cells isolated from SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.
Slusser-Nore, Andrea; Larson-Casey, Jennifer L.; Zhang, Ruowen; Zhou, Xu Dong; Somji, Seema; Garrett, Scott H.; Sens, Donald A.; Dunlevy, Jane R.
2016-01-01
Background This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As+3) and cadmium (Cd+2)-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd+2-and As+3-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. Methods Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As+3-and Cd+2-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. Results It was shown that the As+3-and Cd+2-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As+3-and Cd+2-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. Conclusions Tumor initiating cells isolated from SPARC-transfected As+3-and Cd+2-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA. PMID:26783756
Sena, Gabriela C; Freitas-Lima, Leandro C; Merlo, Eduardo; Podratz, Priscila L; de Araújo, Julia F P; Brandão, Poliane A A; Carneiro, Maria T W D; Zicker, Marina C; Ferreira, Adaliene V M; Takiya, Christina M; de Lemos Barbosa, Carolina M; Morales, Marcelo M; Santos-Silva, Ana Paula; Miranda-Alves, Leandro; Silva, Ian V; Graceli, Jones B
2017-03-15
Tributyltin chloride (TBT) is a xenobiotic used as a biocide in antifouling paints that has been demonstrated to induce endocrine-disrupting effects, such as obesity and reproductive abnormalities. An integrative metabolic control in the hypothalamus-pituitary-gonadal (HPG) axis was exerted by leptin. However, studies that have investigated the obesogenic TBT effects on the HPG axis are especially rare. We investigated whether metabolic disorders as a result of TBT are correlated with abnormal hypothalamus-pituitary-gonadal (HPG) axis function, as well as kisspeptin (Kiss) action. Female Wistar rats were administered vehicle and TBT (100ng/kg/day) for 15days via gavage. We analyzed their effects on the tin serum and ovary accumulation (as biomarker of TBT exposure), estrous cyclicity, surge LH levels, GnRH expression, Kiss action, fertility, testosterone levels, ovarian apoptosis, uterine inflammation, fibrosis, estrogen negative feedback, body weight gain, insulin, leptin, adiponectin levels, as well as the glucose tolerance (GTT) and insulin sensitivity tests (IST). TBT led to increased serum and ovary tin levels, irregular estrous cyclicity, and decreased surge LH levels, GnRH expression and Kiss responsiveness. A strong negative correlation between the serum and ovary tin levels with lower Kiss responsiveness and GnRH mRNA expression was observed in TBT rats. An increase in the testosterone levels, ovarian and uterine fibrosis, ovarian apoptosis, and uterine inflammation and a decrease in fertility and estrogen negative feedback were demonstrated in the TBT rats. We also identified an increase in the body weight gain and abnormal GTT and IST tests, which were associated with hyperinsulinemia, hyperleptinemia and hypoadiponectinemia, in the TBT rats. TBT disrupted proper functioning of the HPG axis as a result of abnormal Kiss action. The metabolic dysfunctions co-occur with the HPG axis abnormalities. Hyperleptinemia as a result of obesity induced by TBT may be associated with abnormal HPG function. A strong negative correlation between the hyperleptinemia and lower Kiss responsiveness was observed in the TBT rats. These findings provide evidence that TBT leads to toxic effects direct on the HPG axis and/or indirectly by abnormal metabolic regulation of the HPG axis. Copyright © 2017 Elsevier Inc. All rights reserved.
[Transgenerational transmission of bovine satellite DNA in transgenic mice].
Slominskaia, N A; Suchkova, I O; Klinskaia, T A; Zabezhinskaia, M A; Patkin, E L
2006-01-01
Genetical, cytogenetical and molecular analysis was made for 5 generations of mice transgenic for bovine satellite DNA (Sat). In all cases transgenic mice were generated by crosses of transgenic males and females with normal (CBA x C57B1) mice. No abnormalities in the founder development were noticed. A normal (near 50 %) ratio of transgenic and nontransgenic offsprings was observed in blastocysts. However, profound differences occurred in the rate of transgene bearing offsprings, depending on the sex of grandparents rather than of parents. The grandfather Sat transmission resulted in the appearance of 0-52.4 % transgenic grandchildren, whereas the grandmother transmission ended in the theoretically expected rate. This means that stabilization of transsatellite took place upon the female germ line transmission (a positive grandmother effect). It is essential that in hemizygous transsatellite mice Sat integration led to the occurrence of mammary tumors, inflammation of uterine horns, and infringement of mother care of transgenic females. Simultaneous FISH and G-banding showed Sat to be localized in the internal region of chromosome 12 near Pax 9 and Brms 11 genes. Commonly, these genes are implicated in tumorigenesis as their expression decreases. Thus, a kind of silencing effect of these genes' expression may be supposed.
Singh, Badri Nath; Mudgil, Yashwanti; John, Riffat; Achary, V Mohan Murali; Tripathy, Manas Kumar; Sopory, Sudhir K; Reddy, Malireddy K; Kaul, Tanushri
2015-11-01
DNA topoisomerases catalyze the inter-conversion of different topological forms of DNA. Cell cycle coupled differential accumulation of topoisomerase I (Topo I) revealed biphasic expression maximum at S-phase and M/G1-phase of cultured synchronized tobacco BY-2 cells. This suggested its active role in resolving topological constrains during DNA replication (S-phase) and chromosome decondensation (M/G1 phase). Immuno-localization revealed high concentrations of Topo I in nucleolus. Propidium iodide staining and Br-UTP incorporation patterns revealed direct correlation between immunofluorescence intensity and rRNA transcription activity within nucleolus. Immuno-stained chromosomes during metaphase and anaphase suggested possible role of Topo I in resolving topological constrains during mitotic chromosome condensation. Inhibitor studies showed that in comparison to Topo I, Topo II was essential in resolving topological constrains during chromosome condensation. Probably, Topo II substituted Topo I functioning to certain extent during chromosome condensation, but not vice-versa. Transgenic Topo I tobacco lines revealed morphological abnormalities and highlighted its crucial role in plant morphogenesis and development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Atrial natriuretic peptide synthesis in atrial tumors of transgenic mice.
Gardner, D G; Camargo, M J; Behringer, R R; Brinster, R L; Baxter, J D; Atlas, S A; Laragh, J H; Deschepper, C F
1992-04-01
Transgenic mice harboring a chimeric gene linking mouse protamine 1 5'-flanking sequence to the coding sequence of the simian virus 40 T-antigen develop spontaneous rhabdomyosarcomas of the right atria. The presence of the tumors is accompanied by dramatic elevations in plasma atrial natriuretic peptide (ANP) immunoreactivity (1,698 +/- 993 vs. 60 +/- 18 fmol/ml for controls) and hematocrit (56 +/- 8 vs. 51 +/- 2 for controls). The immunoreactive ANP (irANP) present in the tumors is similar in size to irANP found in normal mouse atria. ANP mRNA transcripts present in the tumors also appear to be very similar in overall size and 5'-termini to those produced in normal cardiac tissue. Microscopically, the tumors are composed of a disorganized array of densely packed abnormal-appearing cells. Immunocytochemistry and in situ hybridization analysis reveal considerable heterogeneity in ANP gene expression. ANP peptide and mRNA are detectable throughout the parenchyma of the tumors, but absolute levels of expression vary widely among different cells in the population. These tumors represent a potentially valuable model for the study of inappropriate ANP secretion and may provide a tissue source for the development of an ANP-producing atrial cell line.
Role of RANKL (TNFSF11)-Dependent Osteopetrosis in the Dental Phenotype of Msx2 Null Mutant Mice
Castaneda, Beatriz; Simon, Yohann; Ferbus, Didier; Robert, Benoit; Chesneau, Julie; Mueller, Christopher
2013-01-01
The MSX2 homeoprotein is implicated in all aspects of craniofacial skeletal development. During postnatal growth, MSX2 is expressed in all cells involved in mineralized tissue formation and plays a role in their differentiation and function. Msx2 null (Msx2 −/−) mice display complex craniofacial skeleton abnormalities with bone and tooth defects. A moderate form osteopetrotic phenotype is observed, along with decreased expression of RANKL (TNFSF11), the main osteoclast-differentiating factor. In order to elucidate the role of such an osteopetrosis in the Msx2 −/− mouse dental phenotype, a bone resorption rescue was performed by mating Msx2 −/− mice with a transgenic mouse line overexpressing Rank (Tnfrsf11a). Msx2 −/− RankTg mice had significant improvement in the molar phenotype, while incisor epithelium defects were exacerbated in the enamel area, with formation of massive osteolytic tumors. Although compensation for RANKL loss of function could have potential as a therapy for osteopetrosis, but in Msx2 −/− mice, this approach via RANK overexpression in monocyte-derived lineages, amplified latent epithelial tumor development in the peculiar continuously growing incisor. PMID:24278237
Site-Specific Gene Editing of Human Hematopoietic Stem Cells for X-Linked Hyper-IgM Syndrome.
Kuo, Caroline Y; Long, Joseph D; Campo-Fernandez, Beatriz; de Oliveira, Satiro; Cooper, Aaron R; Romero, Zulema; Hoban, Megan D; Joglekar, Alok V; Lill, Georgia R; Kaufman, Michael L; Fitz-Gibbon, Sorel; Wang, Xiaoyan; Hollis, Roger P; Kohn, Donald B
2018-05-29
X-linked hyper-immunoglobulin M (hyper-IgM) syndrome (XHIM) is a primary immunodeficiency due to mutations in CD40 ligand that affect immunoglobulin class-switch recombination and somatic hypermutation. The disease is amenable to gene therapy using retroviral vectors, but dysregulated gene expression results in abnormal lymphoproliferation in mouse models, highlighting the need for alternative strategies. Here, we demonstrate the ability of both the transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR/Cas9) platforms to efficiently drive integration of a normal copy of the CD40L cDNA delivered by Adeno-Associated Virus. Site-specific insertion of the donor sequence downstream of the endogenous CD40L promoter maintained physiologic expression of CD40L while overriding all reported downstream mutations. High levels of gene modification were achieved in primary human hematopoietic stem cells (HSCs), as well as in cell lines and XHIM-patient-derived T cells. Notably, gene-corrected HSCs engrafted in immunodeficient mice at clinically relevant frequencies. These studies provide the foundation for a permanent curative therapy in XHIM. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
The role of oxidative stress in Huntington's disease: are antioxidants good therapeutic candidates?
Gil-Mohapel, Joana; Brocardo, Patricia S; Christie, Brian R
2014-04-01
Huntington's disease (HD) is the most common polyglutamine neurodegenerative disorder in humans, and is caused by a mutation of an unstable expansion of CAG repeats within the coding region of the HD gene, which expresses the protein huntingtin. Although abnormal protein is ubiquitously expressed throughout the organism, cell degeneration occurs mainly in the brain, and there, predominantly in the striatum and cortex. The mechanisms that account for this selective neuronal death are multifaceted in nature and several lines of evidence suggest that mitochondrial dysfunction, overproduction of reactive oxygen species (ROS) and oxidative stress (an imbalance between pro-oxidant and antioxidant systems resulting in oxidative damage to proteins, lipids and DNA) might play important roles. Over time, this can result in the death of the affected neuronal populations. In this review article we present an overview of the preclinical and clinical studies that have indicated a link between oxidative stress, neurodegeneration, and cell death in HD. We also discuss how changes in ROS production affect neuronal survival, highlighting the evidence for the use of antioxidants including essential fatty acids, coenzyme Q10, and creatine, as potential therapeutic strategies for the treatment of this devastating neurodegenerative disorder.
Oligonucleotide therapeutics in neurodegenerative diseases.
Scoles, Daniel R; Pulst, Stefan M
2018-03-21
Therapeutics that directly target RNAs are promising for a broad spectrum of disorders, including the neurodegenerative diseases. This is exemplified by the FDA approval of Nusinersen, an antisense oligonucleotide (ASO) therapeutic for spinal muscular atrophy (SMA). RNA targeting therapeutics are currently under development for amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias. We have used an ASO approach toward developing a treatment for spinocerebellar ataxia type 2 (SCA2), for targeting the causative gene ATXN2. We demonstrated that reduction of ATXN2 expression in SCA2 mice treated by intracerebroventicular injection (ICV) of ATXN2 ASO delayed motor phenotype onset, improved the expression of several genes demonstrated abnormally reduced by transcriptomic profiling of SCA2 mice, and restored abnormal Purkinje cell firing frequency in acute cerebellar sections. Here we discuss RNA abnormalities in disease and the prospects of targeting neurodegenerative diseases at the level of RNA control using ASOs and other RNA-targeted therapeutics.
... appear as spots or lines in the tooth enamel. Enamel is the hard outer layer of the tooth. ... Infections Inherited diseases may affect the thickness of enamel or the calcium or protein content of the ...
Lee, Kyu-Sup; Baek, Dae-Won; Kim, Ki-Hyung; Shin, Byoung-Sub; Lee, Dong-Hyung; Kim, Ja-Woong; Hong, Young-Seoub; Bae, Yoe-Sik; Kwak, Jong-Young
2005-11-01
Endometriosis is a gynecologic disorder characterized by the ectopic growth of misplaced endometrial cells. Moreover, immunological abnormalities of cell-mediated and humoral immunity may be associated with the pathogenesis of endometriosis. The effects of peritoneal fluid (PF) from endometriosis patients on the expression levels of MHC class II and costimulatory molecules on the cell surfaces of monocytes were investigated. Compared to the PF of controls, the addition of 10% PF (n=10) from patients with endometriosis to culture medium significantly reduced the percentage of MHC class II-positive cells in cultures of a THP-1, monocytic cell line at 48 h. The effect of endometriosis patient PF (EPF) was dose-dependent, and similar effect was observed in peripheral blood monocytes. An inverse correlation was found between MHC class II expression level and IL-10 concentration in EPF (r=-0.518; p=0.019) and in the supernatant of peripheral blood monocyte cultured in EPF (r=-0.459; p=0.042) (n=20). The expression levels of costimulatory molecules (CD80 and CD86), but not of CD54 and B7-H1, were down-regulated by EPF. The mRNA level of HLA-DR was unaffected by EPF but protein level was reduced by EPF. Neutralizing IL-10 antibody abrogated MHC class II down-regulation on monocytes, which had been induced by EPF. However, in a functional assay, monocytes treated with EPF failed to stimulate T cell in mixed leukocyte reaction, although T cell proliferation was increased with EPF-treated monocytes and Staphylococcus enterotoxin B. These results suggest that MHC class II expression level on monocytes is down-regulated by EPF, but the cell stimulatory ability of monocytes does not coincide with MHC class II expression level.
Himeno, Misako; Neriya, Yutaro; Minato, Nami; Miura, Chihiro; Sugawara, Kyoko; Ishii, Yoshiko; Yamaji, Yasuyuki; Kakizawa, Shigeyuki; Oshima, Kenro; Namba, Shigetou
2011-09-01
Abnormal flowers are often induced by infection of certain plant pathogens, e.g. phytoplasma, but the molecular mechanisms underlying these malformations have remained poorly understood. Here, we show that infection with OY-W phytoplasma (Candidatus Phytoplasma asteris, onion yellows phytoplasma strain, line OY-W) affects the expression of the floral homeotic genes of petunia plants in an organ-specific manner. Upon infection with OY-W phytoplasma, floral morphological changes, including conversion to leaf-like structures, were observed in sepals, petals and pistils, but not in stamens. As the expression levels of homeotic genes differ greatly between floral organs, we examined the expression levels of homeotic genes in each floral organ infected by OY-W phytoplasma, compared with healthy plants. The expression levels of several homeotic genes required for organ development, such as PFG, PhGLO1 and FBP7, were significantly downregulated by the phytoplasma infection in floral organs, except the stamens, suggesting that the unique morphological changes caused by the phytoplasma infection might result from the significant decrease in expression of some crucial homeotic genes. Moreover, the expression levels of TER, ALF and DOT genes, which are known to participate in floral meristem identity, were significantly downregulated in the phytoplasma-infected petunia meristems, implying that phytoplasma would affect an upstream signaling pathway of floral meristem identity. Our results suggest that phytoplasma infection may have complex effects on floral development, resulting in the unique phenotypes that were clearly distinct from the mutant flower phenotypes produced by the knock-out or the overexpression of certain homeotic genes. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Guerra-Calderas, Lissania; González-Barrios, Rodrigo; Patiño, Carlos César; Alcaraz, Nicolás; Salgado-Albarrán, Marisol; de León, David Cantú; Hernández, Clementina Castro; Sánchez-Pérez, Yesennia; Maldonado-Martínez, Héctor Aquiles; De la Rosa-Velazquez, Inti A.; Vargas-Romero, Fernanda; Herrera, Luis A.; García-Carrancá, Alejandro; Soto-Reyes, Ernesto
2018-01-01
Histone demethylase KDM4A is involved in H3K9me3 and H3K36me3 demethylation, which are epigenetic modifications associated with gene silencing and RNA Polymerase II elongation, respectively. KDM4A is abnormally expressed in cancer, affecting the expression of multiple targets, such as the CHD5 gene. This enzyme localizes at the first intron of CHD5, and the dissociation of KDM4A increases gene expression. In vitro assays showed that KDM4A-mediated demethylation is enhanced in the presence of CTCF, suggesting that CTCF could increase its enzymatic activity in vivo, however the specific mechanism by which CTCF and KDM4A might be involved in the CHD5 gene repression is poorly understood. Here, we show that CTCF and KDM4A form a protein complex, which is recruited into the first intron of CHD5. This is related to a decrease in H3K36me3/2 histone marks and is associated with its transcriptional downregulation. Depletion of CTCF or KDM4A by siRNA, triggered the reactivation of CHD5 expression, suggesting that both proteins are involved in the negative regulation of this gene. Furthermore, the knockout of KDM4A restored the CHD5 expression and H3K36me3 and H3K36me2 histone marks. Such mechanism acts independently of CHD5 promoter DNA methylation. Our findings support a novel mechanism of epigenetic repression at the gene body that does not involve promoter silencing. PMID:29682202
Manczak, Maria; Mao, Peizhong; Calkins, Marcus J; Cornea, Anda; Reddy, Arubala P; Murphy, Michael P; Szeto, Hazel H; Park, Byung; Reddy, P Hemachandra
2010-01-01
The purpose of our study was to investigate the effects of the mitochondria-targeted antioxidants, MitoQ and SS31, and the anti-aging agent resveratrol on neurons from a mouse model (Tg2576 line) of Alzheimer's disease (AD) and on mouse neuroblastoma (N2a) cells incubated with the amyloid-beta (Abeta) peptide. Using electron and confocal microscopy, gene expression analysis, and biochemical methods, we studied mitochondrial structure and function and neurite outgrowth in N2a cells treated with MitoQ, SS31, and resveratrol, and then incubated with Abeta. In N2a cells only incubated with the Abeta, we found increased expressions of mitochondrial fission genes and decreased expression of fusion genes and also decreased expression of peroxiredoxins. Electron microscopy of the N2a cells incubated with Abeta revealed a significantly increased number of mitochondria, indicating that Abeta fragments mitochondria. Biochemical analysis revealed that function is defective in mitochondria. Neurite outgrowth was significantly decreased in Abeta-incubated N2a cells, indicating that Abeta affects neurite outgrowth. However, in N2a cells treated with MitoQ, SS31, and resveratrol, and then incubated with Abeta, abnormal expression of peroxiredoxins and mitochondrial structural genes were prevented and mitochondrial function was normal; intact mitochondria were present and neurite outgrowth was significantly increased. In primary neurons from amyloid-beta precursor protein transgenic mice that were treated with MitoQ and SS31, neurite outgrowth was significantly increased and cyclophilin D expression was significantly decreased. These findings suggest that MitoQ and SS31 prevent Abeta toxicity, which would warrant the study of MitoQ and SS31 as potential drugs to treat patients with AD.
Zhang, Guo-dong; Yang, Kai; Mei, Jie
2010-05-01
To examine and analyze the global gene expression at the different stages of golden hamster cheek pouch mucosa carcinomatous change induced by 9,10-dimethylene-1,2 benzanthracene (DMBA). The model of golden hamster cheek pouch squamous cell carcinoma was induced by DMBA. The RNA of normal mucosa, precancerous lesions and squamous cell carcinoma of fresh tissue of golden hamsters was extracted and purified and the cRNA labeled by fluorescent Cy3 synthesized, which respectively hybridized with the agilent rat cDNA microarray containing 41 000 genes-expressed sequence tags, scanning with Agilent G2565AA fluorescence scanner. The Ratio>or=2 and Ratio
Thomas, Elizabeth A; Coppola, Giovanni; Tang, Bin; Kuhn, Alexandre; Kim, SoongHo; Geschwind, Daniel H; Brown, Timothy B; Luthi-Carter, Ruth; Ehrlich, Michelle E
2011-03-15
Huntington's disease (HD), caused by a CAG repeat expansion in the huntingtin (HTT) gene, is characterized by abnormal protein aggregates and motor and cognitive dysfunction. Htt protein is ubiquitously expressed, but the striatal medium spiny neuron (MSN) is most susceptible to dysfunction and death. Abnormal gene expression represents a core pathogenic feature of HD, but the relative roles of cell-autonomous and non-cell-autonomous effects on transcription remain unclear. To determine the extent of cell-autonomous dysregulation in the striatum in vivo, we examined genome-wide RNA expression in symptomatic D9-N171-98Q (a.k.a. DE5) transgenic mice in which the forebrain expression of the first 171 amino acids of human Htt with a 98Q repeat expansion is limited to MSNs. Microarray data generated from these mice were compared with those generated on the identical array platform from a pan-neuronal HD mouse model, R6/2, carrying two different CAG repeat lengths, and a relatively high degree of overlap of changes in gene expression was revealed. We further focused on known canonical pathways associated with excitotoxicity, oxidative stress, mitochondrial dysfunction, dopamine signaling and trophic support. While genes related to excitotoxicity, dopamine signaling and trophic support were altered in both DE5 and R6/2 mice, which may be either cell autonomous or non-cell autonomous, genes related to mitochondrial dysfunction, oxidative stress and the peroxisome proliferator-activated receptor are primarily affected in DE5 transgenic mice, indicating cell-autonomous mechanisms. Overall, HD-induced dysregulation of the striatal transcriptome can be largely attributed to intrinsic effects of mutant Htt, in the absence of expression in cortical neurons.
Decreased triadin and increased calstabin2 expression in Great Danes with dilated cardiomyopathy.
Oyama, M A; Chittur, S V; Reynolds, C A
2009-01-01
Dilated cardiomyopathy (DCM) is a common cardiac disease of Great Dane dogs, yet very little is known about the underlying molecular abnormalities that contribute to disease. Discover a set of genes that are differentially expressed in Great Dane dogs with DCM as a way to identify candidate genes for further study as well as to better understand the molecular abnormalities that underlie the disease. Three Great Dane dogs with end-stage DCM and 3 large breed control dogs. Prospective study. Transcriptional activity of 42,869 canine DNA sequences was determined with a canine-specific oligonucleotide microarray. Genome expression patterns of left ventricular tissue samples from affected Great Dane dogs were evaluated by measuring the relative amount of complementary RNA hybridization to the microarray probes and comparing it with expression from large breed dogs with noncardiac disease. Three hundred and twenty-three transcripts were differentially expressed (> or = 2-fold change). The transcript with the greatest degree of upregulation (+61.3-fold) was calstabin2 (FKBP12.6), whereas the transcript with the greatest degree of downregulation (-9.07-fold) was triadin. Calstabin2 and triadin are both regulatory components of the cardiac ryanodine receptor (RyR2) and are critical to normal intracellular Ca2+ release and excitation-contraction coupling. Great Dane dogs with DCM demonstrate abnormal calstabin2 and triadin expression. These changes likely affect Ca2+ flux within cardiac cells and may contribute to the pathophysiology of disease. Microarray-based analysis identifies calstabin2, triadin, and RyR2 function as targets of future study.
Huang, Teng-Wei; Kochukov, Mikhail Y; Ward, Christopher S; Merritt, Jonathan; Thomas, Kaitlin; Nguyen, Tiffani; Arenkiel, Benjamin R; Neul, Jeffrey L
2016-05-18
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in Methyl-CpG-binding protein 2 (MECP2). Severe breathing abnormalities are common in RTT and are reproduced in mouse models of RTT. Previously, we found that removing MeCP2 from the brainstem and spinal cord in mice caused early lethality and abnormal breathing. To determine whether loss of MeCP2 in functional components of the respiratory network causes specific breathing disorders, we used the Cre/LoxP system to differentially manipulate MeCP2 expression throughout the brainstem respiratory network, specifically within HoxA4-derived tissues, which include breathing control circuitry within the nucleus tractus solitarius and the caudal part of ventral respiratory column but do not include more rostral parts of the breathing control circuitry. To determine whether respiratory phenotypes manifested in animals with MeCP2 removed from specific pons medullary respiratory circuits, we performed whole-body plethysmography and electrophysiological recordings from in vitro brainstem slices from mice lacking MeCP2 in different circuits. Our results indicate that MeCP2 expression in the medullary respiratory network is sufficient for normal respiratory rhythm and preventing apnea. However, MeCP2 expression within components of the breathing circuitry rostral to the HoxA4 domain are neither sufficient to prevent the hyperventilation nor abnormal hypoxic ventilatory response. Surprisingly, we found that MeCP2 expression in the HoxA4 domain alone is critical for survival. Our study reveals that MeCP2 is differentially required in select respiratory components for different aspects of respiratory functions, and collectively for the integrity of this network functions to maintain proper respiration. Breathing abnormalities are a significant clinical feature in Rett syndrome and are robustly reproduced in the mouse models of this disease. Previous work has established that alterations in the function of MeCP2, the protein encoded by the gene mutated in Rett syndrome, within the hindbrain are critical for control of normal breathing. Here we show that MeCP2 function plays distinct roles in specific brainstem regions in the genesis of various aspects of abnormal breathing. This provides insight into the pathogenesis of these breathing abnormalities in Rett syndrome, which could be used to target treatments to improve these symptoms. Furthermore, it provides further knowledge about the fundamental neural circuits that control breathing. Copyright © 2016 the authors 0270-6474/16/365572-15$15.00/0.
Al-Najar, Mahasen S; Ghanem, Ahmed F; AlRyalat, Saif Aldeen S; Al-Ryalat, Nosaiba T; Alhajahjeh, Sultan O
2017-09-01
To assess the usefulness of MR defecography in evaluating pelvic floor dysfunction, and to correlate several pelvic organ abnormalities with each other and with patients' symptoms and characteristics. MR defecographic examinations performed in 3T MRI machine of 95 patients (70 females, 25 males; mean age 48) were retrospectively reviewed. Pelvic organ abnormalities from all three compartments were recorded, including the anorectal junction descent, anterior rectocele, and cystocele. These were graded according to the known HMO system in relation to the pubococcygeal line. The correlation between these different abnormalities and their relation to patient symptoms and characteristics were evaluated. Anorectal junction descent and anterior rectocele were most commonly observed, predominantly manifesting in female patients. Both were associated with abnormalities from all compartments. The middle compartment was the least affected, and its abnormality of uterine/vaginal descent tended to occur in association with the anterior compartment abnormality (cystocele). Anismus was low in incidence, and was not associated with other compartments abnormalities. Both enterocele/peritoneocele and intussusception were uncommon. MR defecography is the modality of choice in assessing pelvic floor dysfunction, because it can neatly show various pelvic organ abnormalities from all compartments in a dynamic fashion, which are frequently coexistent. It can even show clinically silent or unsuspected abnormalities which can impact the management of patients.
Adventitious viruses in insect cell lines used for recombinant protein expression.
Geisler, Christoph; Jarvis, Donald L
2018-04-01
Insect cells are widely used for recombinant protein expression, typically as hosts for recombinant baculovirus vectors, but also for plasmid-mediated transient transfection or stable genetic transformation. Insect cells are used to express proteins for research, as well as to manufacture biologicals for human and veterinary medicine. Recently, several insect cell lines used for recombinant protein expression were found to be persistently infected with adventitious viruses. This has raised questions about how these infections might affect research performed using those cell lines. Furthermore, these findings raised serious concerns about the safety of biologicals produced using those cell lines. In response, new insect cell lines lacking adventitious viruses have been isolated for use as improved research tools and safer biological manufacturing platforms. Here, we review the scientific and patent literature on adventitious viruses found in insect cell lines, affected cell lines, and new virus-free cell lines. Copyright © 2017 Elsevier Inc. All rights reserved.
Chromosomal abnormalities, meiotic behavior and fertility in domestic animals.
Villagómez, D A F; Pinton, A
2008-01-01
Since the advent of the surface microspreading technique for synaptonemal complex analysis, increasing interest in describing the synapsis patterns of chromosome abnormalities associated with fertility of domestic animals has been noticed during the past three decades. In spite of the number of scientific reports describing the occurrence of structural chromosome abnormalities, their meiotic behavior and gametic products, little is known in domestic animal species about the functional effects of such chromosome aberrations in the germ cell line of carriers. However, some interesting facts gained from recent and previous studies on the meiotic behavior of chromosome abnormalities of domestic animals permit us to discuss, in the frame of recent knowledge emerging from mouse and human investigations, the possible mechanism implicated in the well known association between meiotic disruption and chromosome pairing failure. New cytogenetic techniques, based on molecular and immunofluorescent analyses, are allowing a better description of meiotic processes, including gamete production. The present communication reviews the knowledge of the meiotic consequences of chromosome abnormalities in domestic animals. Copyright 2008 S. Karger AG, Basel.
Endothelial ERK signaling controls lymphatic fate specification
Deng, Yong; Atri, Deepak; Eichmann, Anne; Simons, Michael
2013-01-01
Lymphatic vessels are thought to arise from PROX1-positive endothelial cells (ECs) in the cardinal vein in response to induction of SOX18 expression; however, the molecular event responsible for increased SOX18 expression has not been established. We generated mice with endothelial-specific, inducible expression of an RAF1 gene with a gain-of-function mutation (RAF1S259A) that is associated with Noonan syndrome. Expression of mutant RAF1S259A in ECs activated ERK and induced SOX18 and PROX1 expression, leading to increased commitment of venous ECs to the lymphatic fate. Excessive production of lymphatic ECs resulted in lymphangiectasia that was highly reminiscent of abnormal lymphatics seen in Noonan syndrome and similar “RASopathies.” Inhibition of ERK signaling during development abrogated the lymphatic differentiation program and rescued the lymphatic phenotypes induced by expression of RAF1S259A. These data suggest that ERK activation plays a key role in lymphatic EC fate specification and that excessive ERK activation is the basis of lymphatic abnormalities seen in Noonan syndrome and related diseases. PMID:23391722
Establishment of stable cell line for inducing KAP1 protein expression.
Liu, Xiaoyan; Khan, Md Asaduzzaman; Cheng, Jingliang; Wei, Chunli; Zhang, Lianmei; Fu, Junjiang
2015-06-01
Generation of the stable cell lines is a highly efficient tool in functional studies of certain genes or proteins, where the particular genes or proteins are inducibly expressed. The KRAB-associated protein-1 (KAP1) is an important transcription regulatory protein, which is investigated in several molecular biological studies. In this study, we have aimed to generate a stable cell line for inducing KAP1 expression. The recombinant plasmid pcDNA5/FRT/TO-KAP1 was constructed at first, which was then transfected into Flp-In™T-REx™-HEK293 cells to establish an inducible pcDNA5/FRT/TO-KAP1-HEK293 cell line. The Western blot analysis showed that the protein level of KAP1 is over-expressed in the established stable cell line by doxycycline induction, both dose and time dependently. Thus we have successfully established stable pcDNA5/FRT/TO-KAP1-HEK293 cell line, which can express KAP1 inducibly. This inducible cell line might be very useful for KAP1 functional studies.
Expression profiling of G-protein-coupled receptors in human urothelium and related cell lines.
Ochodnický, Peter; Humphreys, Sian; Eccles, Rachel; Poljakovic, Mirjana; Wiklund, Peter; Michel, Martin C
2012-09-01
What's known on the subject? and What does the study add? Urothelium emerged as a crucial integrator of sensory inputs and outputs in the bladder wall, and urothelial G-protein-coupled receptors (GPCRs) may represent plausible targets for treatment of various bladder pathologies. Urothelial cell lines provide a useful tool to study urothelial receptor function, but their validity as models for native human urothelium remains unclear. We characterize the mRNA expression of genes coding for GPCRs in human freshly isolated urothelium and compare the expression pattern with those in human urothelial cell lines. To characterize the mRNA expression pattern of genes coding for G-protein-coupled receptors (GPCRs) in human freshly isolated urothelium. To compare GPCR expression in human urothelium-derived cell lines to explore the suitability of these cell lines as model systems to study urothelial function. Native human urothelium (commercially sourced) and human urothelium-derived non-cancer (UROtsa and TERT-NHUC) and cancer (J82) cell lines were used. For mRNA expression profiling we used custom-designed real-time polymerase chain reaction array for 40 receptors and several related genes. Native urothelium expressed a wide variety of GPCRs, including α(1A), α(1D) and all subtypes of α(2) and β adrenoceptors. In addition, M(2) and M(3) cholinergic muscarinic receptors, angiotensin II AT(1) receptor, serotonin 5-HT(2A) receptor and all subtypes of bradykinin, endothelin, cannabinoid, tachykinin and sphingosine-1-phosphate receptors were detected. Nerve growth factor and both its low- and high-affinity receptors were also expressed in urothelium. In all cell lines expression of most GPCRs was markedly downregulated, with few exceptions. In UROtsa cells, but much less in other cell lines, the expression of β(2) adrenoceptors, M(3) muscarinic receptors, B(1) and B(2) bradykinin receptors, ET(B) endothelin receptors and several subtypes of sphingosine-1-phosphate receptors was largely retained. Human urothelium expresses a wide range of receptors which enables sensing and integration of various extracellular signals. Human urothelium-derived cell lines, especially UROtsa cells, show comparable mRNA expression to native tissue for several physiologically relevant GPCRs, but lose expression of many other receptors. The use of cell lines as model systems of human urothelium requires careful validation of suitability for the genes of interest. © 2012 BJU INTERNATIONAL.
Taguchi, Y-h
2015-01-01
Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study.
2015-01-01
Background Transgenerational epigenetics (TGE) are currently considered important in disease, but the mechanisms involved are not yet fully understood. TGE abnormalities expected to cause disease are likely to be initiated during development and to be mediated by aberrant gene expression associated with aberrant promoter methylation that is heritable between generations. However, because methylation is removed and then re-established during development, it is not easy to identify promoter methylation abnormalities by comparing normal lineages with those expected to exhibit TGE abnormalities. Methods This study applied the recently proposed principal component analysis (PCA)-based unsupervised feature extraction to previously reported and publically available gene expression/promoter methylation profiles of rat primordial germ cells, between E13 and E16 of the F3 generation vinclozolin lineage that are expected to exhibit TGE abnormalities, to identify multiple genes that exhibited aberrant gene expression/promoter methylation during development. Results The biological feasibility of the identified genes were tested via enrichment analyses of various biological concepts including pathway analysis, gene ontology terms and protein-protein interactions. All validations suggested superiority of the proposed method over three conventional and popular supervised methods that employed t test, limma and significance analysis of microarrays, respectively. The identified genes were globally related to tumors, the prostate, kidney, testis and the immune system and were previously reported to be related to various diseases caused by TGE. Conclusions Among the genes reported by PCA-based unsupervised feature extraction, we propose that chemokine signaling pathways and leucine rich repeat proteins are key factors that initiate transgenerational epigenetic-mediated diseases, because multiple genes included in these two categories were identified in this study. PMID:26677731
Heshmati, Elaheh; Shirpoor, Alireza; Kheradmand, Fatemeh; Alizadeh, Mohammad; Gharalari, Farzaneh Hosseini
2018-01-01
Association between chronic alcohol intake and cardiac abnormality is well known; however, the precise underlying molecular mediators involved in ethanol-induced heart abnormalities remain elusive. This study investigated the effect of chronic ethanol exposure on calcium/calmodulin-dependent protein kinase IIδ (CaMKIIδ) gene expression and monoamine oxidase (MAO) levels and histological changes in rat heart. It was also planned to find out whether Zingiber officinale (ginger) extract mitigated the abnormalities induced by ethanol in rat heart. Male wistar rats were divided into three groups of eight animals each: control, ethanol, and ginger extract treated-ethanol (GETE) groups. After 6 weeks of treatment, the results revealed a significant increase in CaMKIIδtotal and isoforms δ2 and δ3 of CaMKIIδ gene expression as well as a significant decrease in the MAO levels in the ethanol group compared to that in the control group. Moreover, compared to the control group, the ethanol group showed histological changes, such as fibrosis, heart muscle cells proliferation, myocyte hypertrophy, vacuolization, and focal lymphocytic infiltration. Consumption of ginger extract along with ethanol ameliorated CaMKIIδtotal. In addition, compared to the ethanol group, isoforms gene expression changed and increased the reduced MAO levels and mitigated heart structural changes. These findings indicate that ethanol-induced heart abnormalities may, in part, be associated with Ca 2+ homeostasis changes mediated by overexpression of CaMKIIδ gene and the decrease of MAO levels and that these effects can be alleviated by using ginger extract as an antioxidant and anti-inflammatory agent.
Reintegration Difficulty of Military Couples Following Deployment
2017-07-01
1989). Predictors of relapse in unipolar depressives: Expressed emotion, marital distress, and perceived criti- cism. Journal of Abnormal Psychology , 98...involvement in interparental conflict: Do they contribute independently to child adjustment? Journal of Abnormal Child Psychology , 43, 1041–1054. http...announcements to military family life professionals, state family program directors, family readiness officers, directors of psychological health, family
Singh, Deepak K.; Rath, Pramod C.
2012-01-01
We report strong somatic and germ line expression of LINE RNAs in eight different tissues of rat by using a novel ~2.8 kb genomic PstI-LINE DNA (P1-LINE) isolated from the rat brain. P1-LINE is present in a 93 kb LINE-SINE-cluster in sub-telomeric region of chromosome 12 (12p12) and as multiple truncated copies interspersed in all rat chromosomes. P1-LINEs occur as inverted repeats at multiple genomic loci in tissue-specific and mosaic patterns. P1-LINE RNAs are strongly expressed in brain, liver, lungs, heart, kidney, testes, spleen and thymus into large to small heterogeneous RNAs (~5.0 to 0.2 kb) in tissue-specific and dynamic patterns in individual rats. P1-LINE DNA is strongly methylated at CpG-dinucleotides in most genomic copies in all the tissues and weakly hypomethylated in few copies in some tissues. Small (700–75 nt) P1-LINE RNAs expressed in all tissues may be possible precursors for small regulatory RNAs (PIWI-interacting/piRNAs) bioinformatically derived from P1-LINE. The strong and dynamic expression of LINE RNAs from multiple chromosomal loci and the putative piRNAs in somatic tissues of rat under normal physiological conditions may define functional chromosomal domains marked by LINE RNAs as long noncoding RNAs (lncRNAs) unrestricted by DNA methylation. The tissue-specific, dynamic RNA expression and mosaic genomic distribution of LINEs representing a steady-state genomic flux of retrotransposon RNAs suggest for biological role of LINE RNAs as long ncRNAs and small piRNAs in mammalian tissues independent of their cellular fate for translation, reverse-transcription and retrotransposition. This may provide evolutionary advantages to LINEs and mammalian genomes. PMID:23064113
Nakles, Rebecca E.; Shiffert, Maddalena Tilli; Díaz-Cruz, Edgar S.; Cabrera, M. Carla; Alotaiby, Maram; Miermont, Anne M.; Riegel, Anna T.
2011-01-01
Amplified in breast cancer 1 (AIB1) (also known as steroid receptor coactivator-3) is a nuclear receptor coactivator enhancing estrogen receptor (ER)α and progesterone receptor (PR)-dependent transcription in breast cancer. The splice variant AIB1Δ3 demonstrates increased ability to promote ERα and PR-dependent transcription. Both are implicated in breast cancer risk and antihormone resistance. Conditional transgenic mice tested the in vivo impact of AIB1Δ3 overexpression compared with AIB1 on histological features of increased breast cancer risk and growth response to estrogen and progesterone in the mammary gland. Combining expression of either AIB1 or AIB1Δ3 with ERα overexpression, we investigated in vivo cooperativity. AIB1 and AIB1Δ3 overexpression equivalently increased the prevalence of hyperplastic alveolar nodules but not ductal hyperplasia or collagen content. When AIB1 or AIB1Δ3 overexpression was combined with ERα, both stromal collagen content and ductal hyperplasia prevalence were significantly increased and adenocarcinomas appeared. Overexpression of AIB1Δ3, especially combined with overexpressed ERα, led to an abnormal response to estrogen and progesterone with significant increases in stromal collagen content and development of a multilayered mammary epithelium. AIB1Δ3 overexpression was associated with a significant increase in PR expression and PR downstream signaling genes. AIB1 overexpression produced less marked growth abnormalities and no significant change in PR expression. In summary, AIB1Δ3 overexpression was more potent than AIB1 overexpression in increasing stromal collagen content, inducing abnormal mammary epithelial growth, altering PR expression levels, and mediating the response to estrogen and progesterone. Combining ERα overexpression with either AIB1 or AIB1Δ3 overexpression augmented abnormal growth responses in both epithelial and stromal compartments. PMID:21292825
Zhang, Jing-Jing; Zhu, Yi; Zhang, Xiong-Fei; Liang, Wen-Biao; Xie, Kun-Ling; Tao, Jin-Qiu; Peng, Yun-Peng; Xu, Ze-Kuan; Miao, Yi
2013-08-01
The human mucin 4 (MUC4) is aberrantly expressed in pancreatic adenocarcinoma and tumor cell lines, while remaining undetectable in normal pancreas, indicating its important role in pancreatic cancer development. Although its transcriptional regulation has been investigated in considerable detail, some important elements remain unknown. The aim of the present study was to demonstrate the existence of a novel inhibitory element in the MUC4 promoter and characterize some of its binding proteins. By luciferase reporter assay, we located the inhibitory element between nucleotides -2530 and -2521 in the MUC4 promoter using a series of deletion and mutant reporter constructs. Electrophoretic mobility shift assay (EMSA) with Bxpc-3 cell nuclear extracts revealed that one protein or protein complex bind to this element. The proteins binding to this element were purified and identified as Yin Yang 1 (YY1) by mass spectrometry. Supershift assay and chromatin immunoprecipitation (ChIP) assay confirmed that YY1 binds to this element in vitro and in vivo. Moreover, transient YY1 overexpression significantly inhibited MUC4 promoter activity and endogenous MUC4 protein expression. In conclusion, we reported here a novel inhibitory element in the human MUC4 promoter. This provides additional data on MUC4 gene regulation and indicates that YY1 may be a potential target for abnormal MUC4 expression.
Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects.
Reyna, Sara M; Ghosh, Sangeeta; Tantiwong, Puntip; Meka, C S Reddy; Eagan, Phyllis; Jenkinson, Christopher P; Cersosimo, Eugenio; Defronzo, Ralph A; Coletta, Dawn K; Sriwijitkamol, Apiradee; Musi, Nicolas
2008-10-01
OBJECTIVE- Tall-like receptor (TLR)4 has been implicated in the pathogenesis of free fatty acid (FFA)-induced insulin resistance by activating inflammatory pathways, including inhibitor of kappaB (IkappaB)/nuclear factor kappaB (NFkappaB). However, it is not known whether insulin-resistant subjects have abnormal TLR4 signaling. We examined whether insulin-resistant subjects have abnormal TLR4 expression and TLR4-driven (IkappaB/NFkappaB) signaling in skeletal muscle. RESEARCH DESIGN AND METHODS- TLR4 gene expression and protein content were measured in muscle biopsies in 7 lean, 8 obese, and 14 type 2 diabetic subjects. A primary human myotube culture system was used to examine whether FFAs stimulate IkappaB/NFkappaB via TLR4 and whether FFAs increase TLR4 expression/content in muscle. RESULTS- Obese and type 2 diabetic subjects had significantly elevated TLR4 gene expression and protein content in muscle. TLR4 muscle protein content correlated with the severity of insulin resistance. Obese and type 2 diabetic subjects also had lower IkappaBalpha content, an indication of elevated IkappaB/NFkappaB signaling. The increase in TLR4 and NFkappaB signaling was accompanied by elevated expression of the NFkappaB-regulated genes interleukin (IL)-6 and superoxide dismutase (SOD)2. In primary human myotubes, acute palmitate treatment stimulated IkappaB/NFkappaB, and blockade of TLR4 prevented the ability of palmitate to stimulate the IkappaB/NFkappaB pathway. Increased TLR4 content and gene expression observed in muscle from insulin-resistant subjects were reproduced by treating myotubes from lean, normal-glucose-tolerant subjects with palmitate. Palmitate also increased IL-6 and SOD2 gene expression, and this effect was prevented by inhibiting NFkappaB. CONCLUSIONS- Abnormal TLR4 expression and signaling, possibly caused by elevated plasma FFA levels, may contribute to the pathogenesis of insulin resistance in humans.
Vilgrain, Isabelle; Sidibé, Adama; Polena, Helena; Cand, Francine; Mannic, Tiphaine; Arboleas, Mélanie; Boccard, Sandra; Baudet, Antoine; Gulino-Debrac, Danielle; Bouillet, Laurence; Quesada, Jean-Louis; Mendoza, Christophe; Lebas, Jean-François; Pelletier, Laurent; Berger, François
2013-01-01
Vessel abnormalities are among the most important features in malignant glioma. Vascular endothelial (VE)-cadherin is of major importance for vascular integrity. Upon cytokine challenge, VE-cadherin structural modifications have been described including tyrosine phosphorylation and cleavage. The goal of this study was to examine whether these events occurred in human glioma vessels. We demonstrated that VE-cadherin is highly expressed in human glioma tissue and tyrosine phosphorylated at site Y685, a site previously found phosphorylated upon VEGF challenge, via Src activation. In vitro experiments showed that VEGF-induced VE-cadherin phosphorylation, preceded the cleavage of its extracellular adhesive domain (sVE, 90 kDa). Interestingly, metalloproteases (MMPs) secreted by glioma cell lines were responsible for sVE release. Because VEGF and MMPs are important components of tumor microenvironment, we hypothesized that VE-cadherin proteolysis might occur in human brain tumors. Analysis of glioma patient sera prior treatment confirmed the presence of sVE in bloodstream. Furthermore, sVE levels studied in a cohort of 53 glioma patients were significantly predictive of the overall survival at three years (HR 0.13 [0.04; 0.40] p≤0.001), irrespective to histopathological grade of tumors. Altogether, these results suggest that VE-cadherin structural modifications should be examined as candidate biomarkers of tumor vessel abnormalities, with promising applications in oncology. PMID:24358106
Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha
2013-06-01
Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.
Dong, Xiangshu; Kim, Wan Kyu; Lim, Yong-Pyo; Kim, Yeon-Ki; Hur, Yoonkang
2013-02-01
We investigated the mechanism regulating cytoplasmic male sterility (CMS) in Brassica rapa ssp. pekinensis using floral bud transcriptome analyses of Ogura-CMS Chinese cabbage and its maintainer line in B. rapa 300-K oligomeric probe (Br300K) microarrays. Ogura-CMS Chinese cabbage produced few and infertile pollen grains on indehiscent anthers. Compared to the maintainer line, CMS plants had shorter filaments and plant growth, and delayed flowering and pollen development. In microarray analysis, 4646 genes showed different expression, depending on floral bud size, between Ogura-CMS and its maintainer line. We found 108 and 62 genes specifically expressed in Ogura-CMS and its maintainer line, respectively. Ogura-CMS line-specific genes included stress-related, redox-related, and B. rapa novel genes. In the maintainer line, genes related to pollen coat and germination were specifically expressed in floral buds longer than 3mm, suggesting insufficient expression of these genes in Ogura-CMS is directly related to dysfunctional pollen. In addition, many nuclear genes associated with auxin response, ATP synthesis, pollen development and stress response had delayed expression in Ogura-CMS plants compared to the maintainer line, which is consistent with the delay in growth and development of Ogura-CMS plants. Delayed expression may reduce pollen grain production and/or cause sterility, implying that mitochondrial, retrograde signaling delays nuclear gene expression. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Dobbelaere, D A; Prospero, T D; Roditi, I J; Kelke, C; Baumann, I; Eichhorn, M; Williams, R O; Ahmed, J S; Baldwin, C L; Clevers, H
1990-01-01
The Tac antigen component of the bovine interleukin-2 receptor was expressed as a Cro-beta-galactosidase fusion protein in Escherichia coli and used to raise antibodies in rabbits. These antibodies were used for flow cytofluorimetric analysis to investigate the expression of Tac antigen in a variety of Theileria parva-infected cell lines and also in three Theileria annulata-infected cell lines. Cells expressing Tac antigen on their surface were found in all T. parva-infected cell lines tested whether these were of T- or B-cell origin. T cells expressing Tac antigen could be CD4- CD8-, CD4+ CD8-, CD4- CD8+, or CD4+ CD8+. Tac antigen expression was observed both in cultures which had been maintained in the laboratory for several years and in transformed cell lines which had recently been established by infection of lymphocytes in vitro with T. parva. Northern (RNA) blot analysis demonstrated Tac antigen transcripts in RNA isolated from all T. parva-infected cell lines. Three T. annulata-infected cell lines which were not of T-cell origin were also tested. Two of them expressed Tac antigen on their surface. Abundant Tac antigen mRNA was detected in these T. annulata-infected cell lines, but only trace amounts were demonstrated in the third cell line, which contained very few Tac antigen-expressing cells. In all cell lines tested, whether cloned or uncloned, a proportion of the cells did not express detectable levels of Tac antigen on their surface. This was also the case for a number of other leukocyte surface markers. In addition, we showed that the interleukin-2 receptors were biologically functional, because addition of recombinant interleukin-2 to cultures stimulated cell proliferation. Recombinant interleukin-2 treatment also resulted in increased amounts of steady-state Tac antigen mRNA. The relevance of interleukin-2 receptor expression on Theileria-infected cells is discussed. Images PMID:1979317
Tyulkina, D V; Pleshkan, V V; Alekseenko, I V; Kopantseva, M R; Sverdlov, E D
2016-09-01
The fibroblast activation protein (FAP) is selectively expressed in cancer-associated fibroblasts (CAFs) and facilitates tumor progression, which makes this protein an attractive therapeutic target. There are difficulties in obtaining CAFs for studying the function and suppression of FAP. In this work, the expression level of FAP was determined by PCR assay in 25 human cell lines and 8 surgical samples of tumor stroma. The expression of FAP was observed in all tumor stroma samples and in four cell lines: NGP-127, SJCRH30, SJSA-1, and A375. The level of FAP expression in NGP-127, SJCRH30, and SJSA-1 lines as well as in CAFs of patients was comparable, which makes these cell lines a possible model for studying FAP.
Kaposi sarcoma (KS) is a cancer that causes patches of abnormal tissue to grow under the skin, in the lining of ... of cancer cells, blood vessels, and blood cells. KS is caused by infection with human herpesvirus-8 ( ...
Kimmich, Tanja; Brüning, Ansgar; Käufl, Stephanie D; Makovitzky, Josef; Kuhn, Christina; Jeschke, Udo; Friese, Klaus; Mylonas, Ioannis
2010-08-01
Inhibins and activins are important regulators of the female reproductive system. Recently, two novel inhibin subunits, named betaC and betaE, have been identified and shown to be expressed in several human tissues. However, only limited data on the expression of these novel inhibin subunits in normal human endometrial tissue and endometrial adenocarcinoma cell lines exist. Samples of proliferative and secretory human endometrium were obtained from five premenopausal, non-pregnant patients undergoing gynecological surgery for benign diseases. Normal endometrial tissue and Ishikawa endometrial adenocarcinoma cell lines were analyzed by immunohistochemistry, immunofluorescence and RT-PCR. Expression of the inhibin betaC and betaE subunits could be demonstrated at the protein level by means of immunohistochemical evaluation and at the transcriptional level by establishing a betaC- and betaE-specific RT-PCR analysis in normal human endometrial tissue and the parental Ishikawa cell line. Interestingly, in a highly de-differentiated subclone of the Ishikawa cell line lacking estrogen receptor expression, the expression of the inhibin-betaC subunit appeared strongly reduced. Here, we show for the first time that the novel inhibin/activin-betaC and -betaE subunits are expressed in normal human endometrium and the estrogen receptor positive human endometrial carcinoma cell line Ishikawa using RT-PCR and immunohistochemical detection methods. Interestingly, the Ishikawa minus cell line (lacking estrogen receptor expression) demonstrated no to minimal expression of the betaC subunit as observed with immunofluorescence and RT-PCR, suggesting a possible hormone- dependency of this subunit in human endometrial cancer cells. Moreover, because the Ishikawa cell line minus is thought to be a more malignant endometrial cell line than its estrogen receptor positive counterpart, inhibin-betaC subunit might be substantially involved in the pathogenesis and malignant transformation in human endometrium.
Aranda, Alejandro; Bezunartea, Jaione; Casales, Erkuden; Rodriguez-Madoz, Juan R; Larrea, Esther; Prieto, Jesus; Smerdou, Cristian
2014-12-01
We report a new method to generate high-expressing mammalian cell lines in a quick and efficient way. For that purpose, we developed a master cell line (MCL) containing an inducible alphavirus vector expressing GFP integrated into the genome. In the MCL, recombinant RNA levels increased >4,600-fold after induction, due to a doxycycline-dependent RNA amplification loop. The MCL maintained inducibility and expression during 50 passages, being more efficient for protein expression than a conventional cell line. To generate new cell lines, mutant LoxP sites were inserted into the MCL, allowing transgene and selection gene exchange by Cre-directed recombination, leading to quick generation of inducible cell lines expressing proteins of therapeutic interest, like human cardiotrophin-1 and oncostatin-M at several mg/l/24 h. These proteins contained posttranslational modifications, showed bioactivity, and were efficiently purified. Remarkably, this system allowed production of toxic proteins, like oncostatin-M, since cells able to express it could be grown to the desired amount before induction. These cell lines were easily adapted to growth in suspension, making this methodology very attractive for therapeutic protein production.
Brain Growth Across the Life Span in Autism: Age-Specific Changes in Anatomical Pathology
Courchesne, Eric; Campbell, Kathleen; Solso, Stephanie
2014-01-01
Autism is marked by overgrowth of the brain at the earliest ages but not at older ages when decreases in structural volumes and neuron numbers are observed instead. This has lead to the theory of age-specific anatomic abnormalities in autism. Here we report age-related changes in brain size in autistic and typical subjects from 12 months to 50 years of age based on analyses of 586 longitudinal and cross-sectional MRI scans. This dataset is several times larger than the largest autism study to date. Results demonstrate early brain overgrowth during infancy and the toddler years in autistic boys and girls, followed by an accelerated rate of decline in size and perhaps degeneration from adolescence to late middle age in this disorder. We theorize that underlying these age-specific changes in anatomic abnormalities in autism there may also be age-specific changes in gene expression, molecular, synaptic, cellular and circuit abnormalities. A peak age for detecting and studying the earliest fundamental biological underpinnings of autism is prenatal life and the first three postnatal years. Studies of the older autistic brain may not address original causes but are essential to discovering how best to help the older aging autistic person. Lastly, the theory of age-specific anatomic abnormalities in autism has broad implications for a wide range of work on the disorder including the design, validation and interpretation of animal model, lymphocyte gene expression, brain gene expression, and genotype/CNV-anatomic phenotype studies. PMID:20920490
Patrick, Christina; Crews, Leslie; Desplats, Paula; Dumaop, Wilmar; Rockenstein, Edward; Achim, Cristian L; Everall, Ian P; Masliah, Eliezer
2011-04-01
Recent treatments with highly active antiretroviral therapy (HAART) regimens have been shown to improve general clinical status in patients with human immunodeficiency virus (HIV) infection; however, the prevalence of cognitive alterations and neurodegeneration has remained the same or has increased. These deficits are more pronounced in the subset of HIV patients with the inflammatory condition known as HIV encephalitis (HIVE). Activation of signaling pathways such as GSK3β and CDK5 has been implicated in the mechanisms of HIV neurotoxicity; however, the downstream mediators of these effects are unclear. The present study investigated the involvement of CDK5 and tau phosphorylation in the mechanisms of neurodegeneration in HIVE. In the frontal cortex of patients with HIVE, increased levels of CDK5 and p35 expression were associated with abnormal tau phosphorylation. Similarly, transgenic mice engineered to express the HIV protein gp120 exhibited increased brain levels of CDK5 and p35, alterations in tau phosphorylation, and dendritic degeneration. In contrast, genetic knockdown of CDK5 or treatment with the CDK5 inhibitor roscovitine improved behavioral performance in the water maze test and reduced neurodegeneration, abnormal tau phosphorylation, and astrogliosis in gp120 transgenic mice. These findings indicate that abnormal CDK5 activation contributes to the neurodegenerative process in HIVE via abnormal tau phosphorylation; thus, reducing CDK5 might ameliorate the cognitive impairments associated with HIVE. Copyright © 2011 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
A critical role of solute carrier 22a14 in sperm motility and male fertility in mice
Maruyama, Shin-ya; Ito, Momoe; Ikami, Yuusuke; Okitsu, Yu; Ito, Chizuru; Toshimori, Kiyotaka; Fujii, Wataru; Yogo, Keiichiro
2016-01-01
We previously identified solute carrier 22a14 (Slc22a14) as a spermatogenesis-associated transmembrane protein in mice. Although Slc22a14 is a member of the organic anion/cation transporter family, its expression profile and physiological role have not been elucidated. Here, we show that Slc22a14 is crucial for sperm motility and male fertility in mice. Slc22a14 is expressed specifically in male germ cells, and mice lacking the Slc22a14 gene show severe male infertility. Although the overall differentiation of sperm was normal, Slc22a14−/− cauda epididymal spermatozoa showed reduced motility with abnormal flagellar bending. Further, the ability to migrate into the female reproductive tract and fertilise the oocyte were also impaired in Slc22a14−/− spermatozoa. The abnormal flagellar bending was thought to be partly caused by osmotic cell swelling since osmotic challenge or membrane permeabilisation treatment alleviated the tail abnormality. In addition, we found structural abnormalities in Slc22a14−/− sperm cells: the annulus, a ring-like structure at the mid-piece–principal piece junction, was disorganised, and expression and localisation of septin 4, an annulus component protein that is essential for the annulus formation, was also impaired. Taken together, our results demonstrated that Slc22a14 plays a pivotal role in normal flagellar structure, motility and fertility in mouse spermatozoa. PMID:27811987
Daryabari, H; Akhlaghi, A; Zamiri, M J; Pirsaraei, Z Ansari; Mianji, G Rahimi; Deldar, H; Eghbalian, A N
2015-02-01
Probable involvement of avidin and avidin-related protein-2 (AVR2) in sperm viability in the sperm storage tubules of turkeys has been suggested. The high affinity of biotin to avidin and its analogs is also well documented. The present study aimed to determine the effect of oral biotin on reproductive performance and oviductal mRNA expression of avidin and AVR2 in 2 broiler hen lines with different fertility rates. Low-fertility (line B) and high-fertility (line D) hens (n=144) were randomly allotted to receive 0 (T0), 0.30 (T1), or 0.45 (T2) mg/L biotin in drinking water from 30 through 33 wk of age. The reproductive performance of the hens was evaluated using artificial insemination. At the end of the treatment period, 24 hens per line were killed to assay the expression of avidin and AVR2 in the uterovaginal junction. Supplementary biotin increased egg production from 73.5% for T0 to 87.8% for T2. Hens administered with biotin in line B, but not in line D, showed an increase (8.4%) in fertility rate. Hatchability, chick quality, and overall embryonic mortality were not different among the experimental groups. Real-time PCR data showed that both avidin (P=0.0013) and AVR2 (P<0.0001) expressions were influenced by a biotin×line interaction effect, where low-fertility line B hens receiving the high biotin level recorded respectively a 3.9 and 15.3% increase in avidin and AVR2 mRNA expression, although biotin did not affect these traits in line D hens. Control hens in line D had a dramatically higher AVR2 expression record (7.4-fold) compared with the control hens in line B. The correlation coefficients of fertility rate and avidin expression were 0.73 and 0.66 in lines B and D, respectively. However, the correlation of fertility and AVR2 (r=0.65) was significant for line D hens only. Overall, fertility rate and oviductal expression of avidin and AVR2 were dichotomously affected by oral biotin in low- and high-fertility line hens, where only low-fertility birds showed improvements in these attributes. © 2015 Poultry Science Association Inc.
Herranz-Martin, Saul; Lewis, Katherine; Mulcahy, Padraig; Higginbottom, Adrian; Walker, Callum; Valenzuela, Isabel Martinez-Pena y; Coldicott, Ian; Shaw, Pamela J.
2017-01-01
ABSTRACT Intronic GGGGCC repeat expansions in C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Two major pathologies stemming from the hexanucleotide RNA expansions (HREs) have been identified in postmortem tissue: intracellular RNA foci and repeat-associated non-ATG dependent (RAN) dipeptides, although it is unclear how these and other hallmarks of disease contribute to the pathophysiology of neuronal injury. Here, we describe two novel lines of mice that overexpress either 10 pure or 102 interrupted GGGGCC repeats mediated by adeno-associated virus (AAV) and recapitulate the relevant human pathology and disease-related behavioural phenotypes. Similar levels of intracellular RNA foci developed in both lines of mice, but only mice expressing 102 repeats generated C9orf72 RAN pathology, neuromuscular junction (NMJ) abnormalities, dispersal of the hippocampal CA1, enhanced apoptosis, and deficits in gait and cognition. Neither line of mice, however, showed extensive TAR DNA-binding protein 43 (TDP-43) pathology or neurodegeneration. Our data suggest that RNA foci pathology is not a good predictor of C9orf72 RAN dipeptide formation, and that RAN dipeptides and NMJ dysfunction are drivers of C9orf72 disease pathogenesis. These AAV-mediated models of C9orf72-associated ALS/FTD will be useful tools for studying disease pathophysiology and developing new therapeutic approaches. PMID:28550099
Wang, L; Chang, S; Guan, J; Shangguan, S; Lu, X; Wang, Z; Wu, L; Zou, J; Zhao, H; Bao, Y; Qiu, Z; Niu, B; Zhang, T
2015-01-01
Epigenetic regulation of long interspersed nucleotide element-1 (LINE-1) retrotransposition events plays crucial roles during early development. Previously we showed that LINE-1 hypomethylation in neuronal tissues is associated with pathogenesis of neural tube defect (NTD). Herein, we further evaluated LINE-1 Homo sapiens (L1Hs) methylation in tissues derived from three germ layers of stillborn NTD fetuses, to define patterns of tissue specific methylation and site-specific hypomethylation at CpG sites within an L1Hs promoter region. Stable, tissue-specific L1Hs methylation patterns throughout three germ layer lineages of the fetus, placenta, and maternal peripheral blood were observed. Samples from maternal peripheral blood exhibited the highest level of L1Hs methylation (64.95%) and that from placenta showed the lowest (26.82%). Between samples from NTDs and controls, decrease in L1Hs methylation was only significant in NTD-affected brain tissue at 7.35%, especially in females (8.98%). L1Hs hypomethylation in NTDs was also associated with a significant increase in expression level of an L1Hs-encoded transcript in females (r = -0.846, p = 0.004). This could be due to genomic DNA instability and alternation in chromatins accessibility resulted from abnormal L1Hs hypomethylation, as showed in this study with HCT-15 cells treated with methylation inhibitor 5-Aza.
Glial cells as key players in schizophrenia pathology: recent insights and concepts of therapy.
Bernstein, Hans-Gert; Steiner, Johann; Guest, Paul C; Dobrowolny, Henrik; Bogerts, Bernhard
2015-01-01
The past decade has witnessed an explosion of knowledge on the impact of glia for the neurobiological foundation of schizophrenia. A plethora of studies have shown structural and functional abnormalities in all three types of glial cells. There is convincing evidence of reduced numbers of oligodendrocytes, impaired cell maturation and altered gene expression of myelin/oligodendrocyte-related genes that may in part explain white matter abnormalities and disturbed inter- and intra-hemispheric connectivity, which are characteristic signs of schizophrenia. Earlier reports of astrogliosis could not be confirmed by later studies, although the expression of a variety of astrocyte-related genes is abnormal in psychosis. Since astrocytes play a key role in the synaptic metabolism of glutamate, GABA, monoamines and purines, astrocyte dysfunction may contribute to certain aspects of disturbed neurotransmission in schizophrenia. Finally, increased densities of microglial cells and aberrant expression of microglia-related surface markers in schizophrenia suggest that immunological/inflammatory factors are of considerable relevance for the pathophysiology of psychosis. This review describes current evidence for the multifaceted role of glial cells in schizophrenia and discusses efforts to develop glia-directed therapies for the treatment of the disease. Copyright © 2014 Elsevier B.V. All rights reserved.
Miyazaki, Shinji; Hiraoka, Yuichi; Hidema, Shizu; Nishimori, Katsuhiko
2016-04-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired communication, difficulty in companionship, repetitive behaviors and restricted interests. Recent studies have shown amelioration of ASD symptoms by intranasal administration of oxytocin and demonstrated the association of polymorphisms in the oxytocin receptor (Oxtr) gene with ASD patients. Deficient pruning of synapses by microglial cells in the brain has been proposed as potential mechanism of ASD. Other researchers have shown specific activation of microglial cells in brain regions related to sociality in patients with ASD. Although the roles of Oxtr and microglia in ASD are in the spotlight, the relationship between them remains to be elucidated. In this study, we found abnormal activation of microglial cells and a reduction of postsynaptic density protein PSD95 expression in the Oxtr-deficient brain. Moreover, pharmacological inhibition of microglia during development can alter the expression of PSD95 and ameliorate abnormal mother-infant communication in Oxtr-deficient mice. Our results suggest that microglial abnormality is a potential mechanism of the development of Oxt/Oxtr mediated ASD-like phenotypes. Copyright © 2016 Elsevier Inc. All rights reserved.
Amblyopic deficits in detecting a dotted line in noise.
Mussap, A J; Levi, D M
2000-01-01
We compared detectability of a dotted line masked by random-dot noise for the amblyopic versus non-amblyopic eye of two strabismic amblyopes. Small but consistent deficits in the amblyopic eye of these observers were found, and shown to be limited to dotted-line targets composed of greater than seven dots (with performance being normal for targets of less than seven dots). These deficits were unrelated to impaired visual acuity, impaired sensitivity to dot density, and differential positional uncertainty between the eyes of our observers. The deficits were also unlikely to be due to CSF losses due to abnormal low-spatial-frequency filters involved in detecting long chains of collinear dots. Instead, the results of simulations indicate that the inefficiency in utilising large numbers of dots is due to deficits of global, integrative processes in strabismic amblyopes. These simulations also show that while neither undersampling nor positional uncertainty of inputs into integrative processes can themselves account for the amblyopic deficits, if such abnormal inputs lead to the development of stunted integrative processes then impaired sensitivity to long chains of collinear dots is indeed predicted.
Parvaiz, Fahed; Manzoor, Sobia; Iqbal, Jawed; McRae, Steven; Javed, Farrakh; Ahmed, Qazi Laeeque; Waris, Gulam
2014-05-01
Chronic hepatitis C is a lethal blood-borne infection often associated with a number of pathologies such as insulin resistance and other metabolic abnormalities. Insulin is a key hormone that regulates the expression of metabolic pathways and favors homeostasis. In this study, we demonstrated the molecular mechanism of hepatitis C virus (HCV) nonstructural protein 5A (NS5A)-induced metabolic dysregulation. We showed that transient expression of HCV NS5A in human hepatoma cells increased lipid droplet formation through enhanced lipogenesis. We also showed increased transcriptional expression of peroxisome proliferator-activated receptor gamma coactivator (PGC)-1α and diacylglycerol acyltransferase-1 (DGAT-1) in NS5A-expressing cells. On the other hand, there was significantly reduced transcriptional expression of microsomal triglyceride transfer protein (MTP) and peroxisome proliferator-activated receptor γ (PPARγ) in cells expressing HCV NS5A. Furthermore, increased gluconeogenic gene expression was observed in HCV-NS5A-expressing cells. In addition, it was also shown that HCV-NS5A-expressing hepatoma cells show serine phosphorylation of IRS-1, thereby hampering metabolic activity and contributing to insulin resistance. Therefore, this study reveals that HCV NS5A is involved in enhanced gluconeogenic and lipogenic gene expression, which triggers metabolic abnormality and impairs insulin signaling pathway.
Improved segmentation of abnormal cervical nuclei using a graph-search based approach
NASA Astrophysics Data System (ADS)
Zhang, Ling; Liu, Shaoxiong; Wang, Tianfu; Chen, Siping; Sonka, Milan
2015-03-01
Reliable segmentation of abnormal nuclei in cervical cytology is of paramount importance in automation-assisted screening techniques. This paper presents a general method for improving the segmentation of abnormal nuclei using a graph-search based approach. More specifically, the proposed method focuses on the improvement of coarse (initial) segmentation. The improvement relies on a transform that maps round-like border in the Cartesian coordinate system into lines in the polar coordinate system. The costs consisting of nucleus-specific edge and region information are assigned to the nodes. The globally optimal path in the constructed graph is then identified by dynamic programming. We have tested the proposed method on abnormal nuclei from two cervical cell image datasets, Herlev and H and E stained liquid-based cytology (HELBC), and the comparative experiments with recent state-of-the-art approaches demonstrate the superior performance of the proposed method.
Prevalence of chromosomal aberrations in Mexican women with primary amenorrhoea.
Cortés-Gutiérrez, Elva I; Dávila-Rodríguez, Martha I; Vargas-Villarreal, Javier; Cerda-Flores, Ricardo M
2007-10-01
Primary amenorrhoea refers to the absence of menarche by the age of 16-18 years in the presence of secondary sexual characteristics, and occurs in 1-3% of women of reproductive age. To study the prevalence of chromosomal abnormalities and the different options available for clinical management of women in Mexico with primary amenorrhoea, a cross-sectional study was conducted in 187 women with primary amenorrhoea referred from Department of Reproductive Medicine of Morones Prieto Hospital, IMSS in Monterrey, Mexico during 1995-2003. Peripheral blood lymphocytes were cultured for chromosomal studies by the standard methods. Numerical or structural abnormalities of the sex chromosome were found in 78 women (41.71%). These women were classified into four categories: X-chromosome aneuploidies (22.99%: 12.83% pure line and 10.16% mosaicism association with a 45, X cell line); presence of chromosome Y (10.70%); structural anomalies of the X chromosome (4.28%); and marker chromosomes (3.74%). In conclusion, the prevalence of chromosomal abnormalities in Mexican women with primary amenorrhoea is within the range (24-46%) reported in world literature. Chromosomal analysis is absolutely necessary for appropriate clinical management of these patients.
Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis.
Marum, Liliana; Loureiro, João; Rodriguez, Eleazar; Santos, Conceição; Oliveira, M Margarida; Miguel, Célia
2009-09-25
An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P< or =0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.
[The correlation of synuclein-γ and matrix metalloproteinase 9 in breast cancer].
Chen, Jian; Huang, Shuo; Wu, Ke-jin; Wang, Yong-kun; Jia, Yi-jun; Lu, Yun-shu; Weng, Zi-yi
2013-07-01
To evaluate the expression of synuclein-γ (SNCG) and metalloproteinase 9 (MMP-9) both in the invasive ductal breast cancer samples and T47D and T47D(SNCG)- cell lines, to investigate the correlation between SNCG and MMP-9. Totally 96 invasive ductal breast cancer samples (female, mean age of (56 ± 8) years) were collected between June 2009 and June 2012. The expressions of SNCG and MMP-9 were investigated by immunohistochemistry. T47D and SNCG knock down T47D(SNCG)- cell lines were established and SNCG and MMP-9 protein expression were investigated by Western blot and gene expression by real-time PCR. Among 96 samples, 26 (27.1%) of them co-expressed SNCG and MMP-9, 30(31.2%) of them expressed neither SNCG nor MMP-9. The expression of SNCG was correlated with the expression of MMP-9 (r = 0.655, P = 0.000).SNCG mRNA level of T47D cell line was 13.5 fold of T47D(SNCG)- cell line and SNCG protein expression was 2.1 fold. While MMP-9 mRNA level of T47D cell line was 7.3 fold of T47D(SNCG)- cell line and MMP-9 protien expression was 1.6 fold.When SNCG was knocked down, the expression of MMP-9 decreased. SNCG and MMP-9 are significantly correlated with each other in breast cancer. SNCG may promote the invasion and metastasis of breast cancer mediated by up-regulating the expression of MMP-9.
Expression of Anger in Depressed Adolescents: The Role of the Family Environment
ERIC Educational Resources Information Center
Jackson, Jennifer; Kuppens, Peter; Sheeber, Lisa B.; Allen, Nicholas B.
2011-01-01
The expression of anger is considered to be abnormal in depression, yet its role is only poorly understood. In the present study we sought to clarify this role by examining the moderating influence of the family environment on overall levels of anger expression and anger reactivity in depressed and non-depressed adolescents during conflictual…
Calcium channel-dependent molecular maturation of photoreceptor synapses.
Zabouri, Nawal; Haverkamp, Silke
2013-01-01
Several studies have shown the importance of calcium channels in the development and/or maturation of synapses. The Ca(V)1.4(α(1F)) knockout mouse is a unique model to study the role of calcium channels in photoreceptor synapse formation. It features abnormal ribbon synapses and aberrant cone morphology. We investigated the expression and targeting of several key elements of ribbon synapses and analyzed the cone morphology in the Ca(V)1.4(α(1F)) knockout retina. Our data demonstrate that most abnormalities occur after eye opening. Indeed, scaffolding proteins such as Bassoon and RIM2 are properly targeted at first, but their expression and localization are not maintained in adulthood. This indicates that either calcium or the Ca(V)1.4 channel, or both are necessary for the maintenance of their normal expression and distribution in photoreceptors. Other proteins, such as Veli3 and PSD-95, also display abnormal expression in rods prior to eye opening. Conversely, vesicle related proteins appear normal. Our data demonstrate that the Ca(V)1.4 channel is important for maintaining scaffolding proteins in the ribbon synapse but less vital for proteins related to vesicular release. This study also confirms that in adult retinae, cones show developmental features such as sprouting and synaptogenesis. Overall we present evidence that in the absence of the Ca(V)1.4 channel, photoreceptor synapses remain immature and are unable to stabilize.
ERIC Educational Resources Information Center
Kleinhans, Natalia M.; Richards, Todd; Weaver, Kurt; Johnson, L. Clark; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth
2010-01-01
Difficulty interpreting facial expressions has been reported in autism spectrum disorders (ASD) and is thought to be associated with amygdala abnormalities. To further explore the neural basis of abnormal emotional face processing in ASD, we conducted an fMRI study of emotional face matching in high-functioning adults with ASD and age, IQ, and…
Hara, Yuta; Ago, Yukio; Taruta, Atsuki; Hasebe, Shigeru; Kawase, Haruki; Tanabe, Wataru; Tsukada, Shinji; Nakazawa, Takanobu; Hashimoto, Hitoshi; Matsuda, Toshio; Takuma, Kazuhiro
2017-11-01
Rodents exposed prenatally to valproic acid (VPA) exhibit autism spectrum disorder (ASD)-like behavioral abnormalities. We recently found that prenatal VPA exposure causes hypofunction of the prefrontal dopaminergic system in mice. This suggests that the dopaminergic system may be a potential pharmacological target for treatment of behavioral abnormalities in ASD patients. In the present study, we examined the effects of antipsychotic drugs, which affect the dopaminergic system, on the social interaction deficits, recognition memory impairment, and reduction in dendritic spine density in the VPA mouse model of ASD. Both acute and chronic administrations of the atypical antipsychotic drugs risperidone and aripiprazole increased prefrontal dopamine (DA) release, while the typical antipsychotic drug haloperidol did not. Chronic risperidone and aripiprazole, but not haloperidol, increased the expression of c-Fos in the prefrontal cortex, although they all increased c-Fos expression in the striatum. Chronic, but not acute, administrations of risperidone and aripiprazole improved the VPA-induced social interaction deficits and recognition memory impairment, as well as the reduction in dendritic spine density in the prefrontal cortex and hippocampus. In contrast, chronic administration of haloperidol did not ameliorate VPA-induced abnormalities in behaviors and dendritic spine density. These findings indicate that chronic risperidone and aripiprazole treatments improve VPA-induced abnormalities in behaviors and prefrontal dendritic spine density, which may be mediated by repeated elevation of extracellular DA in the prefrontal cortex. Our results also imply that loss of prefrontal dendritic spines may be involved in the abnormal behaviors in the VPA mouse model of ASD.
Cao, Aqin; Jin, Jie; Li, Shaoqing
2017-01-01
Inter-specific hybridization and backcrossing commonly occur in plants. The use of progeny generated from inter-specific hybridization and backcrossing has been developed as a novel model system to explore gene expression divergence. The present study investigated the analysis of gene expression and miRNA regulation in backcrossed introgression lines constructed from cultivated and wild rice. High-throughput sequencing was used to compare gene and miRNA expression profiles in three progeny lines (L1710, L1817 and L1730), with different plant heights resulting from the backcrossing of introgression lines (BC2F12) and their parents (O. sativa and O. longistaminata). A total of 25,387 to 26,139 mRNAs and 379 to 419 miRNAs were obtained in these rice lines. More differentially expressed genes and miRNAs were detected in progeny/O. longistaminata comparison groups than in progeny/O. sativa comparison groups. Approximately 80% of the genes and miRNAs showed expression level dominance to O. sativa, indicating that three progeny lines were closer to the recurrent parent, which might be influenced by their parental genome dosage. Approximately 16% to 64% of the differentially expressed miRNAs possessing coherent target genes were predicted, and many of these miRNAs regulated multiple target genes. Most genes were up-regulated in progeny lines compared with their parents, but down-regulated in the higher plant height line in the comparison groups among the three progeny lines. Moreover, certain genes related to cell walls and plant hormones might play crucial roles in the plant height variations of the three progeny lines. Taken together, these results provided valuable information on the molecular mechanisms of hybrid backcrossing and plant height variations based on the gene and miRNA expression levels in the three progeny lines. PMID:28859136
Homozygote Depression in Gamete-Derived Dragon-Fruit (Hylocereus) Lines
Li, Daqing; Arroyave Martinez, Maria F.; Shaked, Ruth; Tel-Zur, Noemi
2018-01-01
Putative gamete-derived progenies from two Hylocereus species, the diploid H. monacanthus and the tetraploid H. megalanthus, were studied with the dual aims to confirm their gamete origin and to evaluate their potential use as genetic resources. An additional goal was to determine the origin (allotetraploid vs. autotetraploid) of H. megalanthus by exploring morphological variations in the di-haploid (2x) H. megalanthus progeny. Gamete origin was proved in all five H. monacanthus lines obtained and in 49 of the 70 H. megalanthus lines by using flow cytometry and simple sequence repeat (SSR) markers. The five double-haploid (2x) H. monacanthus lines showed low vigor and abnormal flower development, with malformed ovules and aborted pollen grains. Only one flower set fruit, giving several viable seeds. For H. megalanthus, both abnormal ovules and defective anthers were observed in the di-haploid (2x) and double di-haploid (4x) lines. Among the 46 di-haploid lines, only 14 set fruit. Another 13 di-haploid lines formed flower buds that abscised before anthesis or soon after pollination. The severe sterility of the double-haploid H. monacanthus and the reduced fertility of all the di-haploid and double di-haploid H. megalanthus lines can be linked to their reduced heterozygosity, which drastically affected the development of normal female and male organs. We thus concluded that chromosome doubling, as occurred spontaneously in the double-haploid H. monacanthus and the double di-haploid H. megalanthus, is not sufficient to restore fertility in Hylocereus. We also observed very low gametoclonal variation among the di-haploid (2x) H. megalanthus lines, a finding that supported an autotetraploid, rather than an allotetraploid, origin of this species. Nonetheless, despite the above-described challenging limitations, these gamete-derived lines are currently being bred as the seed parent, offering unique possibilities for genetic research and additional breeding. PMID:29354138
Yu-Taeger, Libo; Bonin, Michael; Stricker-Shaver, Janice; Riess, Olaf; Nguyen, Hoa Huu Phuc
2017-05-01
Huntington disease (HD) is an autosomal dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the huntingtin protein (HTT). Mutant HTT (mHTT) has been proposed to cause neuronal dysfunction and neuronal loss through multiple mechanisms. Transcriptional changes may be a core pathogenic feature of HD. Utilizing the Affymetrix platform we performed a genome-wide RNA expression analysis in two BACHD transgenic rat lines (TG5 and TG9) at 12 months of age, both of which carry full-length human mHTT but with different expression levels. By defining the threshold of significance at p < 0.01, we found 1608 genes and 871 genes differentially expressed in both TG5 and TG9 rats when compared to the wild type littermates, respectively. We only chose the highly up-/down-regulated genes for further analysis by setting an additional threshold of 1.5 fold change. Comparing gene expression profiles of human HD brains and BACHD rats revealed a high concordance in both functional and IPA (Ingenuity Pathway Analysis) canonical pathways relevant to HD. In addition, we investigated the causes leading to gene expression changes at molecular and protein levels in BACHD rats including the involvement of polyQ-containing transcription factors TATA box-binding protein (TBP), Sp1 and CBP as well as the chromatin structure. We demonstrate that the BACHD rat model recapitulates the gene expression changes of the human disease supporting its role as a preclinical research animal model. We also show for the first time that TFIID complex formation is reduced, while soluble TBP is increased in an HD model. This finding suggests that mHTT is a competitor instead of a recruiter of polyQ-containing transcription factors in the transcription process in HD. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zijian; Huang, Shanzhou; Wang, Huanyu
Rapid progress and metastasis remain the major treatment failure modes of hepatocarcinoma (HCC). Unfortunately, the underlying molecular mechanisms of hepatoma cell proliferation and migration are poorly understood. Metabolic abnormalities play critical roles in tumorigenesis and progression. Hexokinase domain containing 1 (HKDC1) catalyzes the phosphorylation of glucose. However, the functions and mechanisms of HKDC1 in cancer remain unknown. In this study, real-time RT-PCR and Western blotting assays were used to detect the HKDC1 expression levels in HCC tissues and cell lines. The Oncomine™ Cancer Microarray Database was applied to analysis the correlations between HKDC1 expression and HCC clinical characteristics. MTT andmore » Transwell migration assays were performed to determine the functions of HKDC1 in HCC cells. The effect of HKDC1 on Wnt/β-catenin signaling pathway was assessed using Western blotting assay. In this study, we found that HKDC1 expression levels were elevated in HCC tissues compared with the adjacent tissues. HCC patients with high expression levels of HKDC1 had poor overall survival (OS). Furthermore, higher HKDC1 levels also predicted a worse OS of patients within solitary, elevated pre-operated serum alpha fetoprotein (AFP) level and higher tumor diameter. Moreover, silencing HKDC1 suppressed HCC cells proliferation and migration in vitro. Downregulated HKDC1 expression repressed β-Catenin and c-Myc expression, which indicates that silencing HKDC1 may reduce proliferation and migration via inhibiting the Wnt/β-catenin signaling pathway in HCC. In summary, HKDC1 provides further insight into HCC tumor progression and may provide a novel prognostic biomarker and therapeutic target for HCC treatment. -- Highlights: •HKDC1 is upregulated in HCC. •Patients with high HKDC1 expressions perform worse OS. •Silencing HKDC1 suppresses proliferation and migration. •Silencing HKDC1 represses Wnt/β-catenin signaling pathway.« less
Chen, Li-Mei; Verity, Nicole J; Chai, Karl X
2009-10-22
The glycosylphosphatidylinositol (GPI)-anchored epithelial extracellular membrane serine protease prostasin (PRSS8) is expressed abundantly in normal epithelia and essential for terminal epithelial differentiation, but down-regulated in human prostate, breast, and gastric cancers and invasive cancer cell lines. Prostasin is involved in the extracellular proteolytic modulation of the epidermal growth factor receptor (EGFR) and is an invasion suppressor. The aim of this study was to evaluate prostasin expression states in the transitional cell carcinomas (TCC) of the human bladder and in human TCC cell lines. Normal human bladder tissues and TCC on a bladder cancer tissue microarray (TMA) were evaluated for prostasin expression by means of immunohistochemistry. A panel of 16 urothelial and TCC cell lines were evaluated for prostasin and E-cadherin expression by western blot and quantitative PCR, and for prostasin gene promoter region CpG methylation by methylation-specific PCR (MSP). Prostasin is expressed in the normal human urothelium and in a normal human urothelial cell line, but is significantly down-regulated in high-grade TCC and lost in 9 (of 15) TCC cell lines. Loss of prostasin expression in the TCC cell lines correlated with loss of or reduced E-cadherin expression, loss of epithelial morphology, and promoter DNA hypermethylation. Prostasin expression could be reactivated by demethylation or inhibition of histone deacetylase. Re-expression of prostasin or a serine protease-inactive variant resulted in transcriptional up-regulation of E-cadherin. Loss of prostasin expression in bladder transitional cell carcinomas is associated with epithelial-mesenchymal transition (EMT), and may have functional implications in tumor invasion and resistance to chemotherapy.
Tie2 Expressing Monocytes in the Spleen of Patients with Primary Myelofibrosis
Campanelli, Rita; Fois, Gabriela; Catarsi, Paolo; Poletto, Valentina; Villani, Laura; Erba, Benedetta Gaia; Maddaluno, Luigi; Jemos, Basilio; Salmoiraghi, Silvia; Guglielmelli, Paola; Abbonante, Vittorio; Di Buduo, Christian Andrea; Balduini, Alessandra; Iurlo, Alessandra; Barosi, Giovanni; Rosti, Vittorio; Massa, Margherita
2016-01-01
Primary myelofibrosis (PMF) is a Philadelphia-negative (Ph−) myeloproliferative disorder, showing abnormal CD34+ progenitor cell trafficking, splenomegaly, marrow fibrosis leading to extensive extramedullary haematopoiesis, and abnormal neoangiogenesis in either the bone marrow or the spleen. Monocytes expressing the angiopoietin-2 receptor (Tie2) have been shown to support abnormal angiogenic processes in solid tumors through a paracrine action that takes place in proximity to the vessels. In this study we investigated the frequency of Tie2 expressing monocytes in the spleen tissue samples of patients with PMF, and healthy subjects (CTRLs), and evaluated their possible role in favouring spleen angiogenesis. We show by confocal microscopy that in the spleen tissue of patients with PMF, but not of CTRLs, the most of the CD14+ cells are Tie2+ and are close to vessels; by flow cytometry, we found that Tie2 expressing monocytes were Tie2+CD14lowCD16brightCDL62−CCR2− (TEMs) and their frequency was higher (p = 0.008) in spleen tissue-derived mononuclear cells (MNCs) of patients with PMF than in spleen tissue-derived MNCs from CTRLs undergoing splenectomy for abdominal trauma. By in vitro angiogenesis assay we evidenced that conditioned medium of immunomagnetically selected spleen tissue derived CD14+ cells of patients with PMF induced a denser tube like net than that of CTRLs; in addition, CD14+Tie2+ cells sorted from spleen tissue derived single cell suspension of patients with PMF show a higher expression of genes involved in angiogenesis than that found in CTRLs. Our results document the enrichment of Tie2+ monocytes expressing angiogenic genes in the spleen of patients with PMF, suggesting a role for these cells in starting/maintaining the pathological angiogenesis in this organ. PMID:27281335
Chilosi, Marco; Caliò, Anna; Rossi, Andrea; Gilioli, Eliana; Pedica, Federica; Montagna, Licia; Pedron, Serena; Confalonieri, Marco; Doglioni, Claudio; Ziesche, Rolf; Grubinger, Markus; Mikulits, Wolfgang; Poletti, Venerino
2017-01-01
Epithelial to mesenchymal transition has been suggested as a relevant contributor to pulmonary fibrosis, but how and where this complex process is triggered in idiopathic pulmonary fibrosis is not fully understood. Beta-tubulin-III (Tubβ3), ZEB1, and β-catenin are partially under the negative control of miR-200, a family of micro-RNAs playing a major role in epithelial to mesenchymal transition, that are reduced in experimental lung fibrosis and idiopathic pulmonary fibrosis. We wonder whether in situ expression of these proteins is increased in idiopathic pulmonary fibrosis, to better understand the significance of miR-200 feedback loop and epithelial to mesenchymal transition. We investigated the immunohistochemical and immunofluorescent expression and precise location of ZEB1, Tubβ3, and β-catenin in tissue samples from 34 idiopathic pulmonary fibrosis cases and 21 controls (5 normal lungs and 16 other interstitial lung diseases). In 100% idiopathic pulmonary fibrosis samples, the three proteins were concurrently expressed in fibroblastic foci, as well in damaged epithelial cells overlying these lesions and in pericytes within neo-angiogenesis areas. These results were also confirmed by immunofluorescence assay. In controls the abnormal expression of the three proteins was absent or limited. This is the first study that relates concurrent expression of Tubβ3, ZEB1, and β-catenin to abnormal epithelial and myofibroblast differentiation in idiopathic pulmonary fibrosis, providing indirect but robust evidence of miR-200 deregulation and epithelial to mesenchymal transition activation in idiopathic pulmonary fibrosis. The abnormal expression and localization of these proteins in bronchiolar fibro-proliferative lesions are unique for idiopathic pulmonary fibrosis, and might represent a disease-specific marker in challenging lung biopsies.
Hama, Taketsugu; Nakanishi, Koichi; Sato, Masashi; Mukaiyama, Hironobu; Togawa, Hiroko; Shima, Yuko; Miyajima, Masayasu; Nozu, Kandai; Nagao, Shizuko; Takahashi, Hisahide; Sako, Mayumi; Iijima, Kazumoto; Yoshikawa, Norishige; Suzuki, Hiroyuki
2017-12-01
Cystic epithelia acquire mesenchymal-like features in polycystic kidney disease (PKD). In this phenotypic alteration, it is well known that transforming growth factor (TGF)-β/Smad3 signaling is involved; however, there is emerging new data on Smad3 phosphoisoforms: Smad3 phosphorylated at linker regions (pSmad3L), COOH-terminal regions (pSmad3C), and both (pSmad3L/C). pSmad3L/C has a pathological role in colorectal cancer. Mesenchymal phenotype-specific cell responses in the TGF-β/Smad3 pathway are implicated in carcinomas. In this study, we confirmed mesenchymal features and examined Smad3 phosphoisoforms in the cpk mouse, a model of autosomal recessive PKD. Kidney sections were stained with antibodies against mesenchymal markers and domain-specific phospho-Smad3. TGF-β, pSmad3L, pSmad3C, JNK, cyclin-dependent kinase (CDK) 4, and c-Myc were evaluated by Western blotting. Cophosphorylation of pSmad3L/C was assessed by immunoprecipitation. α-Smooth muscle actin, which indicates mesenchymal features, was expressed higher in cpk mice. pSmad3L expression was increased in cpk mice and was predominantly localized in the nuclei of tubular epithelial cells in cysts; however, pSmad3C was equally expressed in both cpk and control mice. Levels of pSmad3L, JNK, CDK4, and c-Myc protein in nuclei were significantly higher in cpk mice than in controls. Immunoprecipitation showed that Smad3 was cophosphorylated (pSmad3L/C) in cpk mice. Smad3 knockout/ cpk double-mutant mice revealed amelioration of cpk abnormalities. These findings suggest that upregulating c-Myc through the JNK/CDK4-dependent pSmad3L pathway may be key to the pathophysiology in cpk mice. In conclusion, a qualitative rather than a quantitative abnormality of the TGF-β/Smad3 pathway is involved in PKD and may be a target for disease-specific intervention. Copyright © 2017 the American Physiological Society.
Gupta, Sanjay K.; Dahiya, Saurabh; Lundy, Robert F.; Kumar, Ashok
2010-01-01
Background Skeletal muscle wasting is a debilitating consequence of large number of disease states and conditions. Tumor necrosis factor-α (TNF-α) is one of the most important muscle-wasting cytokine, elevated levels of which cause significant muscular abnormalities. However, the underpinning molecular mechanisms by which TNF-α causes skeletal muscle wasting are less well-understood. Methodology/Principal Findings We have used microarray, quantitative real-time PCR (QRT-PCR), Western blot, and bioinformatics tools to study the effects of TNF-α on various molecular pathways and gene networks in C2C12 cells (a mouse myoblastic cell line). Microarray analyses of C2C12 myotubes treated with TNF-α (10 ng/ml) for 18h showed differential expression of a number of genes involved in distinct molecular pathways. The genes involved in nuclear factor-kappa B (NF-kappaB) signaling, 26s proteasome pathway, Notch1 signaling, and chemokine networks are the most important ones affected by TNF-α. The expression of some of the genes in microarray dataset showed good correlation in independent QRT-PCR and Western blot assays. Analysis of TNF-treated myotubes showed that TNF-α augments the activity of both canonical and alternative NF-κB signaling pathways in myotubes. Bioinformatics analyses of microarray dataset revealed that TNF-α affects the activity of several important pathways including those involved in oxidative stress, hepatic fibrosis, mitochondrial dysfunction, cholesterol biosynthesis, and TGF-β signaling. Furthermore, TNF-α was found to affect the gene networks related to drug metabolism, cell cycle, cancer, neurological disease, organismal injury, and abnormalities in myotubes. Conclusions TNF-α regulates the expression of multiple genes involved in various toxic pathways which may be responsible for TNF-induced muscle loss in catabolic conditions. Our study suggests that TNF-α activates both canonical and alternative NF-κB signaling pathways in a time-dependent manner in skeletal muscle cells. The study provides novel insight into the mechanisms of action of TNF-α in skeletal muscle cells. PMID:20967264
Vig, Parminder J S; Hearst, Scoty; Shao, Qingmei; Lopez, Mariper E; Murphy, Henry A; Safaya, Eshan
2011-06-01
Non-cell autonomous involvement of glial cells in the pathogenesis of polyglutamine diseases is gaining recognition in the ataxia field. We previously demonstrated that Purkinje cells (PCs) in polyglutamine disease spinocerebellar ataxia-1 (SCA1) contain cytoplasmic vacuoles rich in Bergmann glial protein S100B. The vacuolar formation in SCA1 PCs is accompanied with an abnormal morphology of dendritic spines. In addition, S100B messenger RNA (mRNA) expression levels are significantly high in the cerebella of asymptomatic SCA1 transgenic (Tg) mice and increase further with age when compared with the age-matched wild-type animals. This higher S100B mRNA expression positively correlates with an increase in the number of vacuoles. To further characterize the function of S100B in SCA1 pathology, we explored the effects of S100B protein on GFP-ataxin-1 (ATXN1) with expanded polyglutamines [82Q] in HEK stable cell line. Externally added S100B protein to these cells induced S100B-positive vacuoles similar to those seen in SCA1 PCs in vivo. Further, we found that both externally added and internally expressed S100B significantly reduced GFP-ATXN1[82Q] inclusion body formation. In contrast, the addition of S100B inhibitory peptide TRTK12 reversed S100B-mediated effects. Interestingly, in SCA1 Tg mice, PCs containing S100B vacuoles also showed the lack of nuclear inclusions, whereas PCs without vacuoles contained nuclear inclusions. Additionally, TRTK12 treatment reduced abnormal dendritic growth and morphology of PCs in cerebellar slice cultures prepared from SCA1 Tg mice. Moreover, intranasal administration of TRTK12 to SCA1 Tg mice reduced cerebellar S100B levels in the particulate fractions, and these mice displayed a significant improvement in their performance deficit on the Rotarod test. Taken together, our results suggest that glial S100B may augment degenerative changes in SCA1 PCs by modulating mutant ataxin-1 toxicity/solubility through an unknown signaling pathway.
Vig, Parminder J.S.; Hearst, Scoty; Shao, Qingmei; Lopez, Maripar E; Murphy, Henry A; Safaya, Eshan
2011-01-01
Non-cell autonomous involvement of glial cells in the pathogenesis of polyglutamine diseases is gaining recognition in the ataxia field. We previously demonstrated that Purkinje cells (PCs) in polyglutamine disease spinocerebellar ataxia-1 (SCA1) contain cytoplasmic vacuoles rich in Bergmann glial (BG) protein S100B. The vacuolar formation in SCA1 PCs is accompanied with an abnormal morphology of dendritic spines. In addition, S100B mRNA expression levels are significantly high in the cerebella of asymptomatic SCA1 transgenic (Tg) mice and increase further with age when compared with the age-matched wildtype animals. This higher S100B mRNA expression positively correlates with an increase in the number of vacuoles. To further characterize the function of S100B in SCA1 pathology, we explored the effects of S100B protein on GFP-ataxin-1 (ATXN1) with expanded polyglutamines [82Q] in HEK stable cell line. Externally added S100B protein to these cells induced S100B positive vacuoles similar to those seen in SCA1 PCs in vivo. Further, we found that both externally added and internally expressed S100B significantly reduced GFP-ATXN1[82Q] inclusion body formation. In contrast, the addition of S100B inhibitory peptide TRTK12 reversed S100B mediated effects. Interestingly, in SCA1 Tg mice, PCs containing S100B vacuoles also showed the lack of nuclear inclusions, whereas, PCs without vacuoles contained nuclear inclusions. Additionally, TRTK12 treatment reduced abnormal dendritic growth and morphology of PCs in cerebellar slice cultures prepared from SCA1 Tg mice. Moreover, intranasal administration of TRTK12 to SCA1 Tg mice reduced cerebellar S100B levels in the particulate fractions and these mice displayed a significant improvement in their performance deficit on the Rotarod test. Taken together our results suggest that glial S100B may augment degenerative changes in SCA1 PCs by modulating mutant ataxin-1 toxicity/solubility through an unknown signaling pathway. PMID:21384195
Bencurova, Petra; Baloun, Jiri; Musilova, Katerina; Radova, Lenka; Tichy, Boris; Pail, Martin; Zeman, Martin; Brichtova, Eva; Hermanova, Marketa; Pospisilova, Sarka; Mraz, Marek; Brazdil, Milan
2017-10-01
Mesial temporal lobe epilepsy (mTLE) is a severe neurological disorder characterized by recurrent seizures. mTLE is frequently accompanied by neurodegeneration in the hippocampus resulting in hippocampal sclerosis (HS), the most common morphological correlate of drug resistance in mTLE patients. Incomplete knowledge of pathological changes in mTLE+HS complicates its therapy. The pathological mechanism underlying mTLE+HS may involve abnormal gene expression regulation, including posttranscriptional networks involving microRNAs (miRNAs). miRNA expression deregulation has been reported in various disorders, including epilepsy. However, the miRNA profile of mTLE+HS is not completely known and needs to be addressed. Here, we have focused on hippocampal miRNA profiling in 33 mTLE+HS patients and nine postmortem controls to reveal abnormally expressed miRNAs. In this study, we significantly reduced technology-related bias (the most common source of false positivity in miRNA profiling data) by combining two different miRNA profiling methods, namely next generation sequencing and miRNA-specific quantitative real-time polymerase chain reaction. These methods combined have identified and validated 20 miRNAs with altered expression in the human epileptic hippocampus; 19 miRNAs were up-regulated and one down-regulated in mTLE+HS patients. Nine of these miRNAs have not been previously associated with epilepsy, and 19 aberrantly expressed miRNAs potentially regulate the targets and pathways linked with epilepsy (such as potassium channels, γ-aminobutyric acid, neurotrophin signaling, and axon guidance). This study extends current knowledge of miRNA-mediated gene expression regulation in mTLE+HS by identifying miRNAs with altered expression in mTLE+HS, including nine novel abnormally expressed miRNAs and their putative targets. These observations further encourage the potential of microRNA-based biomarkers or therapies. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Jobe, Timothy O; Sung, Dong-Yul; Akmakjian, Garo; Pham, Allis; Komives, Elizabeth A; Mendoza-Cózatl, David G; Schroeder, Julian I
2012-06-01
Plants exposed to heavy metals rapidly induce changes in gene expression that activate and enhance detoxification mechanisms, including toxic-metal chelation and the scavenging of reactive oxygen species. However, the mechanisms mediating toxic heavy metal-induced gene expression remain largely unknown. To genetically elucidate cadmium-specific transcriptional responses in Arabidopsis, we designed a genetic screen based on the activation of a cadmium-inducible reporter gene. Microarray studies identified a high-affinity sulfate transporter (SULTR1;2) among the most robust and rapid cadmium-inducible transcripts. The SULTR1;2 promoter (2.2 kb) was fused with the firefly luciferase reporter gene to quantitatively report the transcriptional response of plants exposed to cadmium. Stably transformed luciferase reporter lines were ethyl methanesulfonate (EMS) mutagenized, and stable M(2) seedlings were screened for an abnormal luciferase response during exposure to cadmium. The screen identified non-allelic mutant lines that fell into one of three categories: (i) super response to cadmium (SRC) mutants; (ii) constitutive response to cadmium (CRC) mutants; or (iii) non-response and reduced response to cadmium (NRC) mutants. Two nrc mutants, nrc1 and nrc2, were mapped, cloned and further characterized. The nrc1 mutation was mapped to the γ-glutamylcysteine synthetase gene and the nrc2 mutation was identified as the first viable recessive mutant allele in the glutathione synthetase gene. Moreover, genetic, HPLC mass spectrometry, and gene expression analysis of the nrc1 and nrc2 mutants, revealed that intracellular glutathione depletion alone would be insufficient to induce gene expression of sulfate uptake and assimilation mechanisms. Our results modify the glutathione-depletion driven model for sulfate assimilation gene induction during cadmium stress, and suggest that an enhanced oxidative state and depletion of upstream thiols, in addition to glutathione depletion, are necessary to induce the transcription of sulfate assimilation genes during early cadmium stress. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.
Soluble L1CAM promotes breast cancer cell adhesion and migration in vitro, but not invasion.
Li, Yupei; Galileo, Deni S
2010-09-15
Neural recognition molecule L1CAM, which is a key protein involved in early nervous system development, is known to be abnormally expressed and shed in several types of cancers where it participates in metastasis and progression. The distinction of L1CAM presence in cancerous vs. normal tissues has suggested it to be a new target for cancer treatment. Our current study focused on the potential role of soluble L1CAM in breast cancer cell adhesion to extracellular matrix proteins, migration, and invasion. We found L1 expression levels were correlated with breast cancer stage of progression in established data sets of clinical samples, and also were high in more metastatic breast cancer cell lines MDA-MB-231 and MDA-MB-435, but low in less migratory MDA-MB-468 cells. Proteolysis of L1 into its soluble form (sL1) was detected in cell culture medium from all three above cell lines, and can be induced by PMA activation. Over-expression of the L1 ectodomain in MDA-MB-468 cells by using a lentiviral vector greatly increased the amount of sL1 released by those cells. Concomitantly, cell adhesion to extracellular matrix and cell transmigration ability were significantly promoted, while cell invasion ability through Matrigel™ remained unaffected. On the other hand, attenuating L1 expression in MDA-MB-231 cells by using a shRNA lentiviral vector resulted in reduced cell-matrix adhesion and transmigration. Similar effects were also shown by monoclonal antibody blocking of the L1 extracellular region. Moreover, sL1 in conditioned cell culture medium induced a directional migration of MDA-MB-468 cells, which could be neutralized by antibody treatment. Our data provides new evidence for the function of L1CAM and its soluble form in promoting cancer cell adhesion to ECM and cell migration. Thus, L1CAM is validated further to be a potential early diagnostic marker in breast cancer progression and a target for breast cancer therapy.
Soluble L1CAM promotes breast cancer cell adhesion and migration in vitro, but not invasion
2010-01-01
Background Neural recognition molecule L1CAM, which is a key protein involved in early nervous system development, is known to be abnormally expressed and shed in several types of cancers where it participates in metastasis and progression. The distinction of L1CAM presence in cancerous vs. normal tissues has suggested it to be a new target for cancer treatment. Our current study focused on the potential role of soluble L1CAM in breast cancer cell adhesion to extracellular matrix proteins, migration, and invasion. Results We found L1 expression levels were correlated with breast cancer stage of progression in established data sets of clinical samples, and also were high in more metastatic breast cancer cell lines MDA-MB-231 and MDA-MB-435, but low in less migratory MDA-MB-468 cells. Proteolysis of L1 into its soluble form (sL1) was detected in cell culture medium from all three above cell lines, and can be induced by PMA activation. Over-expression of the L1 ectodomain in MDA-MB-468 cells by using a lentiviral vector greatly increased the amount of sL1 released by those cells. Concomitantly, cell adhesion to extracellular matrix and cell transmigration ability were significantly promoted, while cell invasion ability through Matrigel™ remained unaffected. On the other hand, attenuating L1 expression in MDA-MB-231 cells by using a shRNA lentiviral vector resulted in reduced cell-matrix adhesion and transmigration. Similar effects were also shown by monoclonal antibody blocking of the L1 extracellular region. Moreover, sL1 in conditioned cell culture medium induced a directional migration of MDA-MB-468 cells, which could be neutralized by antibody treatment. Conclusions Our data provides new evidence for the function of L1CAM and its soluble form in promoting cancer cell adhesion to ECM and cell migration. Thus, L1CAM is validated further to be a potential early diagnostic marker in breast cancer progression and a target for breast cancer therapy. PMID:20840789
Identification of copy number variations and translocations in cancer cells from Hi-C data.
Chakraborty, Abhijit; Ay, Ferhat
2017-10-18
Eukaryotic chromosomes adapt a complex and highly dynamic three-dimensional (3D) structure, which profoundly affects different cellular functions and outcomes including changes in epigenetic landscape and in gene expression. Making the scenario even more complex, cancer cells harbor chromosomal abnormalities (e.g., copy number variations (CNVs) and translocations) altering their genomes both at the sequence level and at the level of 3D organization. High-throughput chromosome conformation capture techniques (e.g., Hi-C), which are originally developed for decoding the 3D structure of the chromatin, provide a great opportunity to simultaneously identify the locations of genomic rearrangements and to investigate the 3D genome organization in cancer cells. Even though Hi-C data has been used for validating known rearrangements, computational methods that can distinguish rearrangement signals from the inherent biases of Hi-C data and from the actual 3D conformation of chromatin, and can precisely detect rearrangement locations de novo have been missing. In this work, we characterize how intra and inter-chromosomal Hi-C contacts are distributed for normal and rearranged chromosomes to devise a new set of algorithms (i) to identify genomic segments that correspond to CNV regions such as amplifications and deletions (HiCnv), (Nurtdinov et al.) to call inter-chromosomal translocations and their boundaries (HiCtrans) from Hi-C experiments, and (iii) to simulate Hi-C data from genomes with desired rearrangements and abnormalities (AveSim) in order to select optimal parameters for and to benchmark the accuracy of our methods. Our results on 10 different cancer cell lines with Hi-C data show that we identify a total number of 105 amplifications and 45 deletions together with 90 translocations, whereas we identify virtually no such events for two karyotypically normal cell lines. Our CNV predictions correlate very well with whole genome sequencing (WGS) data among chromosomes with CNV events for a breast cancer cell line (r=0.89) and capture most of the CNVs we simulate using Avesim. For HiCtrans predictions, we report evidence from the literature for 30 out of 90 translocations for eight of our cancer cell lines. Furthermore, we show that our tools identify and correctly classify relatively understudied rearrangements such as double minutes (DMs) and homogeneously staining regions (HSRs). Considering the inherent limitations of existing techniques for karyotyping (i.e., missing balanced rearrangements and those near repetitive regions), the accurate identification of CNVs and translocations in a cost-effective and high-throughput setting is still a challenge. Our results show that the set of tools we develop effectively utilize moderately sequenced Hi-C libraries (100-300 million reads) to identify known and de novo chromosomal rearrangements/abnormalities in well-established cancer cell lines. With the decrease in required number of cells and the increase in attainable resolution, we believe that our framework will pave the way towards comprehensive mapping of genomic rearrangements in primary cells from cancer patients using Hi-C. CNV calling: https://github.com/ay-lab/HiCnvTranslocation calling: https://github.com/ay-lab/HiCtransHi-C simulation: https://github.com/ay-lab/AveSim. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
NASA Technical Reports Server (NTRS)
Jammu, Vinay B.; Danai, Kourosh; Lewicki, David G.
1996-01-01
A new unsupervised pattern classifier is introduced for on-line detection of abnormality in features of vibration that are used for fault diagnosis of helicopter gearboxes. This classifier compares vibration features with their respective normal values and assigns them a value in (0, 1) to reflect their degree of abnormality. Therefore, the salient feature of this classifier is that it does not require feature values associated with faulty cases to identify abnormality. In order to cope with noise and changes in the operating conditions, an adaptation algorithm is incorporated that continually updates the normal values of the features. The proposed classifier is tested using experimental vibration features obtained from an OH-58A main rotor gearbox. The overall performance of this classifier is then evaluated by integrating the abnormality-scaled features for detection of faults. The fault detection results indicate that the performance of this classifier is comparable to the leading unsupervised neural networks: Kohonen's Feature Mapping and Adaptive Resonance Theory (AR72). This is significant considering that the independence of this classifier from fault-related features makes it uniquely suited to abnormality-scaling of vibration features for fault diagnosis.
Increased CYFIP1 dosage alters cellular and dendritic morphology and dysregulates mTOR.
Oguro-Ando, A; Rosensweig, C; Herman, E; Nishimura, Y; Werling, D; Bill, B R; Berg, J M; Gao, F; Coppola, G; Abrahams, B S; Geschwind, D H
2015-09-01
Rare maternally inherited duplications at 15q11-13 are observed in ~1% of individuals with an autism spectrum disorder (ASD), making it among the most common causes of ASD. 15q11-13 comprises a complex region, and as this copy number variation encompasses many genes, it is important to explore individual genotype-phenotype relationships. Cytoplasmic FMR1-interacting protein 1 (CYFIP1) is of particular interest because of its interaction with Fragile X mental retardation protein (FMRP), its upregulation in transformed lymphoblastoid cell lines from patients with duplications at 15q11-13 and ASD and the presence of smaller overlapping deletions of CYFIP1 in patients with schizophrenia and intellectual disability. Here, we confirm that CYFIP1 is upregulated in transformed lymphoblastoid cell lines and demonstrate its upregulation in the post-mortem brain from 15q11-13 duplication patients for the first time. To investigate how increased CYFIP1 dosage might predispose to neurodevelopmental disease, we studied the consequence of its overexpression in multiple systems. We show that overexpression of CYFIP1 results in morphological abnormalities including cellular hypertrophy in SY5Y cells and differentiated mouse neuronal progenitors. We validate these results in vivo by generating a BAC transgenic mouse, which overexpresses Cyfip1 under the endogenous promotor, observing an increase in the proportion of mature dendritic spines and dendritic spine density. Gene expression profiling on embryonic day 15 suggested the dysregulation of mammalian target of rapamycin (mTOR) signaling, which was confirmed at the protein level. Importantly, similar evidence of mTOR-related dysregulation was seen in brains from 15q11-13 duplication patients with ASD. Finally, treatment of differentiated mouse neuronal progenitors with an mTOR inhibitor (rapamycin) rescued the morphological abnormalities resulting from CYFIP1 overexpression. Together, these data show that CYFIP1 overexpression results in specific cellular phenotypes and implicate modulation by mTOR signaling, further emphasizing its role as a potential convergent pathway in some forms of ASD.
Wang, Li-jia; Bai, Yu; Bao, Zhao-shi; Chen, Yan; Yan, Zhuo-hong; Zhang, Wei; Zhang, Quan-geng
2013-01-01
Glioblastoma is the most common and lethal cancer of the central nervous system. Global genomic hypomethylation and some CpG island hypermethylation are common hallmarks of these malignancies, but the effects of these methylation abnormalities on glioblastomas are still largely unclear. Methylation of the O6-methylguanine-DNA methyltransferase promoter is currently an only confirmed molecular predictor of better outcome in temozolomide treatment. To better understand the relationship between CpG island methylation status and patient outcome, this study launched DNA methylation profiles for thirty-three primary glioblastomas (pGBMs) and nine secondary glioblastomas (sGBMs) with the expectation to identify valuable prognostic and therapeutic targets. We evaluated the methylation status of testis derived transcript (TES) gene promoter by microarray analysis of glioblastomas and the prognostic value for TES methylation in the clinical outcome of pGBM patients. Significance analysis of microarrays was used for genes significantly differently methylated between 33 pGBM and nine sGBM. Survival curves were calculated according to the Kaplan-Meier method, and differences between curves were assessed using the log-rank test. Then, we treated glioblastoma cell lines (U87 and U251) with 5-aza-2-deoxycytidines (5-aza-dC) and detected cell biological behaviors. Microarray data analysis identified TES promoter was hypermethylated in pGBMs compared with sGBMs (P < 0.05). Survival curves from the Kaplan-Meier method analysis revealed that the patients with TES hypermethylation had a short overall survival (P < 0.05). This abnormality is also confirmed in glioblastoma cell lines (U87 and U251). Treating these cells with 5-aza-dC released TES protein expression resulted in significant inhibition of cell growth (P = 0.013). Hypermethylation of TES gene promoter highly correlated with worse outcome in pGBM patients. TES might represent a valuable prognostic marker for glioblastoma.
Hu, Jihong; Chen, Guanglong; Zhang, Hongyuan; Qian, Qian; Ding, Yi
2016-08-05
Cytoplasmic male sterility (CMS) is an ideal model for investigating the mitochondrial-nuclear interaction and down-regulated genes in CMS lines which might be the candidate genes for pollen development in rice. In this study, a set of rice alloplasmic sporophytic CMS lines was obtained by successive backcrossing of Meixiang B, with three different cytoplasmic types: D62A (D type), ZS97A (WA type) and XQZ-A (DA type). Using microarray, the anther transcript profiles of the three indica rice CMS lines revealed 622 differentially expressed genes (DEGs) in each of the three CMS lines compared with the maintainer line Meixiang B. GO and MapMan analysis indicated that these DEGs were mainly involved in lipid metabolism and cell wall organization. Compared with the gene expression of sporophytic and gametophytic CMS lines, 303 DEGs were identified and 56 of them were down-regulated in all the CMS lines of rice. These down-regulated DEGs in the CMS lines were found to be involved in tapetum or cell wall formation and their suppressed expression might be related to male sterility. Weighted gene co-expression network analysis (WGCNA) revealed that two modules were significantly associated with male sterility and many hub genes that were differentially expressed in the CMS lines. A large set of putative genes involved in anther development was identified in the present study. The results will give some information for the nuclear gene regulation by different cytoplasmic genotypes and provide a rich resource for further functional research on the pollen development in rice.
Moskal, Joseph R; Burgdorf, Jeffrey; Kroes, Roger A; Brudzynski, Stefan M; Panksepp, Jaak
2011-10-01
Deficits in social approach behavior, rough-and-tumble play, and speech abnormalities are core features of autism that can be modeled in laboratory rats. Human twin studies show that autism has a strong genetic component, and a recent review has identified 99 genes that are dysregulated in human autism. Bioinformatic analysis of these 99 genes identified the NMDA receptor complex as a significant interaction hub based on protein-protein interactions. The NMDA receptor glycine site partial agonist d-cycloserine has been shown to treat the core symptom of social withdrawal in autistic children. Here, we show that rats selectively bred for low rates of play-induced pro-social ultrasonic vocalizations (USVs) can be used to model certain core symptoms of autism. Low-line animals engage in less social contact time with conspecifics, show lower rates of play induced pro-social USVs, and show an increased proportion of non-frequency modulated (i.e. monotonous) ultrasonic vocalizations, compared to non-selectively bred random-line animals. Gene expression patterns in the low-line animals show significant enrichment in autism-associated genes and the NMDA receptor family was identified as a significant hub. Treatment of low-line animals with the NMDAR glycine site partial agonist GLYX-13 rescued the deficits in play-induced pro-social 50-kHz and reduced monotonous USVs. Thus, the NMDA receptor has been shown to play a functional role in autism, and GLYX-13 shows promise for the treatment of autism. We dedicate this paper to Ole Ivar Lovaas (May 8, 1927-August 2, 2010), a pioneer in the field of autism. Copyright © 2011 Elsevier Ltd. All rights reserved.
IFNA-AS1 regulates CD4+ T cell activation in myasthenia gravis though HLA-DRB1.
Luo, Mengchuan; Liu, Xiaofang; Meng, Huanyu; Xu, Liqun; Li, Yi; Li, Zhibin; Liu, Chang; Luo, Yue-Bei; Hu, Bo; Xue, Yuanyuan; Liu, Yu; Luo, Zhaohui; Yang, Huan
2017-10-01
Abnormal CD4 + T cell activation is known to play roles in the pathogenesis of myasthenia gravis (MG). However, little is known about the mechanisms underlying the roles of lncRNAs in regulating CD4 + T cell. In this study, we discovered that the lncRNA IFNG-AS1 is abnormally expressed in MG patients associated with quantitative myasthenia gravis (QMG) and the positive anti-AchR Ab levels patients. IFNG-AS1 influenced Th1/Treg cell proliferation and regulated the expression levels of their transcription factors in an experimental autoimmune myasthenia gravis (EAMG)model. IFNG-AS1 could reduce the expression of HLA-DRB and HLA-DOB and they had a negative correlation in MG. Furthermore IFNG-AS1 influenced the expression levels of CD40L and CD4 + T cells activation in MG patient partly depend on effecting the HLA-DRB1 expression. It suggests that IFNG-AS1 may be involved in CD4 + T cell-mediated immune responses in MG. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Kim, Ki Chan; Rhee, Jeehae; Park, Jong-Eun; Lee, Dong-Keun; Choi, Chang Soon; Kim, Ji-Woon; Lee, Han-Woong; Song, Mi-Ryoung; Yoo, Hee Jeong; Chung, ChiHye; Shin, Chan Young
2016-12-01
In addition to its classical role as a regulator of telomere length, recent reports suggest that telomerase reverse transcriptase (TERT) plays a role in the transcriptional regulation of gene expression such as β-catenin-responsive pathways. Silencing or over-expression of TERT in cultured NPCs demonstrated that TERT induced glutamatergic neuronal differentiation. During embryonic brain development, expression of transcription factors involved in glutamatergic neuronal differentiation was increased in mice over-expressing TERT (TERT-tg mice). We observed increased expression of NMDA receptor subunits and phosphorylation of α-CaMKII in TERT-tg mice. TERT-tg mice showed autism spectrum disorder (ASD)-like behavioral phenotypes as well as lowered threshold against electrically induced seizure. Interestingly, the NMDA receptor antagonist memantine restored behavioral abnormalities in TERT-tg mice. Consistent with the alteration in excitatory/inhibitory (E/I) ratio, TERT-tg mice showed autism-like behaviors, abnormal synaptic organization, and function in mPFC suggesting the role of altered TERT activity in the manifestation of ASD, which is further supported by the significant association of certain SNPs in Korean ASD patients.
Zhao, Zhi-Hong; Wang, Sheng-Fa; Yu, Liang; Wang, Ju; Cong, De-Gang; Chang, Hao; Wang, Xue-Feng; Zhang, Tie-Wa; Zhang, Jian; Fu, Kai; Jiang, Jiu-Yang
2008-04-29
To investigate the correlation between Pokemon gene and cisplatin mechanism. Human lung adenocarcinoma cells of the lines A549 and AGZY83-a, human lung squamous carcinoma cells of the line HE-99, and human giant cell lung cancer cells of the line 95D were cultured and cisplatin was added into the medium. Other lung cancer cells of the above mentioned lines were cultured in the medium without cisplatin and were used as control groups. RT-PCR and Western blotting were used to detect the mRNA and protein expression of Pokemon. Pokemon mRNA and protein were expressed highly in all the 4 cell lines. The Pokemon gene expression did not changed significantly after cisplatin treatment groups. There were not significant differences in the mRNA and protein expression of Pokemon among the 4 experiment groups and the control groups (all P > 0.05). Cisplatin has no effect on the Pokemon gene expression of the human lung cancer cells.
Nagelhus, T A; Rofstad, E K
1993-06-01
The expression of the chondroitin sulphate proteoglycan (CSP) molecular complex in six human melanoma xenograft lines (BEX-t, COX-t, HUX-t, ROX-t, SAX-t, WIX-t) was studied by flow cytometry and immunohistochemistry using the monoclonal antibodies 9.2.27, ME31.3, G7A5, and NKI.M6. The two methods and the four antibodies gave consistent results. The six melanoma lines could be divided into three distinct groups of two lines each; expression was high in the HUX-t and ROX-t lines and intermediate in the BEX-t and SAX-t lines, whereas the COX-t and WIX-t lines were negative. The mean number of epitopes per cell for 9.2.27 was approximately twice as high as for ME31.3, G7A5, and NKI.M6 and was estimated to range from 0.8 +/- 0.1 x 10(5) to 1.9 +/- 0.2 x 10(5) in the positive xenograft lines. The expression of the CSP complex was heterogeneous. The immunofluorescence histograms measured by flow cytometry were therefore broad for all tumour lines. A significant fraction of the HUX-t cells was negative or weakly stained. These cells appeared as clear negative patches in the immunohistochemical preparations. Moreover, most morphologically intact tumour cells adjacent to necrotic areas did not show significant expression of the CSP complex, irrespective of tumour line. These cells were probably hypoxic and thus resistant to radiation therapy. The expression of the CSP complex in the xenograft lines was similar to that reported for melanoma in man.
Hijazi, Karolin; Cuppone, Anna M; Smith, Kieron; Stincarelli, Maria A; Ekeruche-Makinde, Julia; De Falco, Giulia; Hold, Georgina L; Shattock, Robin; Kelly, Charles G; Pozzi, Gianni; Iannelli, Francesco
2015-01-01
Anti-retroviral (ARV) -based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on expression of drug transporters involved in transport of tenofovir points to the possibility of combining these drugs to improve retention of individual drugs at target tissues.
Hijazi, Karolin; Cuppone, Anna M.; Smith, Kieron; Stincarelli, Maria A.; Ekeruche-Makinde, Julia; De Falco, Giulia; Hold, Georgina L.; Shattock, Robin; Kelly, Charles G.; Pozzi, Gianni; Iannelli, Francesco
2015-01-01
Anti-retroviral (ARV) –based microbicides are one of the strategies pursued to prevent HIV-1 transmission. Delivery of ARV drugs to subepithelial CD4+ T cells at concentrations for protection is likely determined by drug transporters expressed in the cervicovaginal epithelium. To define the role of drug transporters in mucosal disposition of topically applied ARV-based microbicides, these must be tested in epithelial cell line-based biopharmaceutical assays factoring the effect of relevant drug transporters. We have characterised gene expression of influx and efflux drug transporters in a panel of cervicovaginal cell lines and compared this to expression in cervicovaginal tissue. We also investigated the effect of dapivirine, darunavir and tenofovir, currently at advanced stages of microbicides development, on expression of drug transporters in cell lines. Expression of efflux ABC transporters in cervical tissue was best represented in HeLa, Ect1/E6E7 and End1/E6E7 cell lines. Expression of influx OCT and ENT transporters in ectocervix matched expression in Hela while expression of influx SLCO transporters in vagina was best reflected in VK2/E6E7 cell line. Stimulation with darunavir and dapivirine upregulated MRP transporters, including MRP5 involved in transport of tenofovir. Dapivirine also significantly downregulated tenofovir substrate MRP4 in cervical cell lines. Treatment with darunavir and dapivirine showed no significant effect on expression of BCRP, MRP2 and P-glycoprotein implicated in efflux of different ARV drugs. Darunavir strongly induced expression in most cell lines of CNT3 involved in cell uptake of nucleotide/nucleoside analogue reverse transcriptase inhibitors and SLCO drug transporters involved in cell uptake of protease inhibitors. This study provides insight into the suitability of cervicovaginal cell lines for assessment of ARV drugs in transport kinetics studies. The modulatory effect of darunavir and dapivirine on expression of drug transporters involved in transport of tenofovir points to the possibility of combining these drugs to improve retention of individual drugs at target tissues. PMID:26102284
Genetics Home Reference: lattice corneal dystrophy type II
... lattice corneal dystrophy type II can have a facial expression that appears sad. Related Information What does it ... links) Children's Craniofacial Association: A Guide to Understanding Facial ... pathogenic mechanisms in gelsolin-related amyloidosis: in vitro expression reveals an abnormal gelsolin fragment. Hum Mol Genet. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sustarsic, Elahu G.; Department of Biological Sciences, Ohio University, Athens, OH; Junnila, Riia K.
2013-11-08
Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includesmore » 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on this data, GH could be a new therapeutic target in melanoma.« less
Nocarova, Eva; Fischer, Lukas
2009-04-22
Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with a visual marker for BY-2 transformation. The cloning procedure can be used not only for efficient reduction of expression heterogeneity of such transgenes, but also as a useful tool for studies of transgene expression and other purposes.
Wu, Ming-Cheng; Chang, Yu-Wen; Lu, Kuang-Hui; Yang, En-Cheng
2017-09-01
Honey bee larvae exposed to sublethal doses of imidacloprid show behavioural abnormalities as adult insects. Previous studies have demonstrated that this phenomenon originates from abnormal neural development in response to imidacloprid exposure. Here, we further investigated the global gene expression changes in the heads of newly emerged adults and observed that 578 genes showed more than 2-fold changes in gene expression after imidacloprid exposure. This information might aid in understanding the effects of pesticides on the health of pollinators. For example, the genes encoding major royal jelly proteins (MRJPs), a group of multifunctional proteins with significant roles in the sustainable development of bee colonies, were strongly downregulated. These downregulation patterns were further confirmed through analyses using quantitative reverse transcription-polymerase chain reaction on the heads of 6-day-old nurse bees. To our knowledge, this study is the first to demonstrate that sublethal doses of imidacloprid affect mrjp expression and likely weaken bee colonies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Nakamura, E; Kadomatsu, K; Yuasa, S; Muramatsu, H; Mamiya, T; Nabeshima, T; Fan, Q W; Ishiguro, K; Igakura, T; Matsubara, S; Kaname, T; Horiba, M; Saito, H; Muramatsu, T
1998-12-01
Midkine (MK) is a growth factor implicated in the development and repair of various tissues, especially neural tissues. However, its in vivo function has not been clarified. Knockout mice lacking the MK gene (Mdk) showed no gross abnormalities. We closely analysed postnatal brain development in Mdk(-/-) mice using calcium binding proteins as markers to distinguish neuronal subpopulations. Intense and prolonged calretinin expression was found in the dentate gyrus granule cell layer of the hippocampus of infant Mdk(-/-) mice. In infant Mdk(+/+) mice, calretinin expression in the granule cell layer was weaker, and had disappeared by 4 weeks after birth, when calretinin expression still persisted in Mdk(-/-) mice. Furthermore, 4 weeks after birth, Mdk(-/-) mice showed a deficit in their working memory, as revealed by a Y-maze test, and had an increased anxiety, as demonstrated by the elevated plus-maze test. Midkine plays an important role in the regulation of postnatal development of the hippocampus.
Brenu, Ekua W; van Driel, Mieke L; Staines, Don R; Ashton, Kevin J; Ramos, Sandra B; Keane, James; Klimas, Nancy G; Marshall-Gradisnik, Sonya M
2011-05-28
Chronic Fatigue Syndrome/Myalgic Encephalomyelitis (CFS/ME) is characterised by severe prolonged fatigue, and decreases in cognition and other physiological functions, resulting in severe loss of quality of life, difficult clinical management and high costs to the health care system. To date there is no proven pathomechanism to satisfactorily explain this disorder. Studies have identified abnormalities in immune function but these data are inconsistent. We investigated the profile of markers of immune function (including novel markers) in CFS/ME patients. We included 95 CFS/ME patients and 50 healthy controls. All participants were assessed on natural killer (NK) and CD8(+) T cell cytotoxic activities, Th1 and Th2 cytokine profile of CD4(+) T cells, expression of vasoactive intestinal peptide receptor 2 (VPACR2), levels of NK phenotypes (CD56(bright) and CD56(dim)) and regulatory T cells expressing FoxP3 transcription factor. Compared to healthy individuals, CFS/ME patients displayed significant increases in IL-10, IFN-γ, TNF-α, CD4(+)CD25(+) T cells, FoxP3 and VPACR2 expression. Cytotoxic activity of NK and CD8(+) T cells and NK phenotypes, in particular the CD56(bright) NK cells were significantly decreased in CFS/ME patients. Additionally granzyme A and granzyme K expression were reduced while expression levels of perforin were significantly increased in the CFS/ME population relative to the control population. These data suggest significant dysregulation of the immune system in CFS/ME patients. Our study found immunological abnormalities which may serve as biomarkers in CFS/ME patients with potential for an application as a diagnostic tool.
Fatemi, S. Hossein; Folsom, Timothy D.
2016-01-01
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in Fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems. PMID:25432637
Stateman, William A.; Knöppel, Alexandra B.; Flegel, Willy A.; Henkin, Robert I.
2015-01-01
PURPOSE Our previous study of Type II congenital smell loss patients revealed a statistically significant lower prevalence of an FY (ACKR1, formerly DARC) haplotype compared to controls. The present study correlates this genetic feature with subgroups of patients defined by specific smell and taste functions. METHODS Smell and taste function measurements were performed by use of olfactometry and gustometry to define degree of abnormality of smell and taste function. Smell loss was classified as anosmia or hyposmia (types I, II or III). Taste loss was similarly classified as ageusia or hypogeusia (types I, II or III). Based upon these results patient erythrocyte antigen expression frequencies were categorized by smell and taste loss with results compared between patients within the Type II group and published controls. RESULTS Comparison of antigen expression frequencies revealed a statistically significant decrease in incidence of an Fyb haplotype only among patients with type I hyposmia and any form of taste loss (hypogeusia). In all other patient groups erythrocyte antigens were expressed at normal frequencies. CONCLUSIONS Data suggest that Type II congenital smell loss patients who exhibit both type I hyposmia and hypogeusia are genetically distinct from all other patients with Type II congenital smell loss. This distinction is based on decreased Fyb expression which correlated with abnormalities in two sensory modalities (hyposmia type I and hypogeusia). Only patients with these two specific sensory abnormalities expressed the Fyb antigen (encoded by the ACKR1 gene on the long arm of chromosome 1) at frequencies different from controls. PMID:27968956
Niczyj, Marta; Champagne, Antoine; Alam, Iftekhar; Nader, Joseph; Boutry, Marc
2016-11-01
Increased acidification of the external medium by an activated H + -ATPase results in cell expansion, in the absence of upstream activating signaling. The plasma membrane H + -ATPase couples ATP hydrolysis with proton transport outside the cell, and thus creates an electrochemical gradient, which energizes secondary transporters. According to the acid growth theory, this enzyme is also proposed to play a major role in cell expansion, by acidifying the external medium and so activating enzymes that are involved in cell wall-loosening. However, this theory is still debated. To challenge it, we made use of a plasma membrane H + -ATPase isoform from Nicotiana plumbaginifolia truncated from its C-terminal auto-inhibitory domain (ΔCPMA4), and thus constitutively activated. This protein was expressed in Nicotiana tabacum BY-2 suspension cells using a heat shock inducible promoter. The characterization of several independent transgenic lines showed that the expression of activated ΔCPMA4 resulted in a reduced external pH by 0.3-1.2 units, as well as in an increased H + -ATPase activity by 77-155 % (ATP hydrolysis), or 70-306 % (proton pumping) of isolated plasma membranes. In addition, ΔCPMA4-expressing cells were 17-57 % larger than the wild-type cells and displayed abnormal shapes. A proteomic comparison of plasma membranes isolated from ΔCPMA4-expressing and wild-type cells revealed the altered abundance of several proteins involved in cell wall synthesis, transport, and signal transduction. In conclusion, the data obtained in this work showed that H + -ATPase activation is sufficient to induce cell expansion and identified possible actors which intervene in this process.