Science.gov

Sample records for lines co-express neuronal

  1. The co-expression of Neogenin with SOX2 in hippocampal neurons.

    PubMed

    Hong, Namgue; Kim, Mi-Hye; Min, Churl K; Kim, Hee Jung; Lee, Jae Ho

    2017-08-19

    Dementia has been shown to be closely related with neuronal degeneration and/or a decrease in the activity of neural stem cells in many brain regions, including the hippocampus. It has been recently established that Neogenin is involved in the cell fate determination by regulating Oct3/4, SOX and Nanog, notable embryonic cell markers, expressions in pre-implantation mouse embryos. Further, Neogenin expression at both mRNA and protein levels is manifest in many brain regions in mice, but it remains unclear whether Neogenin expression is prerequisite for the maintenance of neural stem cells, particularly, playing a critical role in the hippocampus, a brain region known to be involved in memory generation and consolidation. Here, we provide evidence that supports that Neogenin is implicated in the maintenance of neural stem cells in the hippocampus by enhancing PCNA expressions. We have performed RT-PCR analysis, Western blotting, and immunohistochemistry with fetal rat brain tissues at E18 for Neogenin mRNA and protein profiling. Neuronal cells obtained from the hippocampus were subjected to FACS analysis for the identification of Neogenin-positive and/or neuronal stem cell marker-positive cells. Western blotting results showed that Neogenin expression was higher in the hippocampal region compared to the cortical region. FACS analysis results indicated that a significant population of fetal rat neuronal cells exhibiting Neogenin expression also displayed SOX2 expression, implying co-expression of Neogenin and SOX2 in the hippocampus. Next, we investigated the role of Neogenin through gain- and loss-of-function studies with cultured rat hippocampal neurons. Neogenin down-regulation by small hairpin RNAs led to a dramatic decrease in SOX2 expression while its up-regulation by overexpression caused an increase in PCNA expression, a cell proliferation marker, compared with none-transfected cells. From this study, we propose a model whereby Neogenin could maintain neural

  2. Characterization of Tusc5, an adipocyte gene co-expressed in peripheral neurons.

    PubMed

    Oort, Pieter J; Warden, Craig H; Baumann, Thomas K; Knotts, Trina A; Adams, Sean H

    2007-09-30

    Tumor suppressor candidate 5 (Tusc5, also termed brain endothelial cell derived gene-1 or BEC-1), a CD225 domain-containing, cold-repressed gene identified during brown adipose tissue (BAT) transcriptome analyses was found to be robustly-expressed in mouse white adipose tissue (WAT) and BAT, with similarly high expression in human adipocytes. Tusc5 mRNA was markedly increased from trace levels in pre-adipocytes to significant levels in developing 3T3-L1 adipocytes, coincident with several mature adipocyte markers (phosphoenolpyruvate carboxykinase 1, GLUT4, adipsin, leptin). The Tusc5 transcript levels were increased by the peroxisome proliferator activated receptor-gamma (PPARgamma) agonist GW1929 (1microg/mL, 18h) by >10-fold (pre-adipocytes) to approximately 1.5-fold (mature adipocytes) versus controls (p<0.0001). Taken together, these results suggest an important role for Tusc5 in maturing adipocytes. Intriguingly, we discovered robust co-expression of the gene in peripheral nerves (primary somatosensory neurons). In light of the marked repression of the gene observed after cold exposure, these findings may point to participation of Tusc5 in shared adipose-nervous system functions linking environmental cues, CNS signals, and WAT-BAT physiology. Characterization of such links is important for clarifying the molecular basis for adipocyte proliferation and could have implications for understanding the biology of metabolic disease-related neuropathies.

  3. EGFR and PDGFRA co-expression and heterodimerization in glioblastoma tumor sphere lines.

    PubMed

    Chakravarty, Debyani; Pedraza, Alicia M; Cotari, Jesse; Liu, Angela H; Punko, Diana; Kokroo, Aushim; Huse, Jason T; Altan-Bonnet, Gregoire; Brennan, Cameron W

    2017-08-22

    Concurrent amplifications of EGFR and PDGFRA have been reported in up to 5% of glioblastoma (GBM) and it remains unclear why such independent amplification events, and associated receptor overexpression, would be adaptive during glioma evolution. Here, we document that EGFR and PDGFRA protein co-expression occurs in 37% of GBM. There is wide cell-to-cell variation in the expressions of these receptor tyrosine kinases (RTKs) in stable tumor sphere lines, frequently defining tumor cell subpopulations with distinct sensitivities to growth factors and RTK inhibitors. We also find evidence for functional transactivation of PDGFRA by EGFR and EGF-induced receptor heterodimerization, both of which are abolished by EGFR inhibitors. These results indicate that GBM growth responses to targeted therapies previously tested in clinical trials are strongly influenced by the balance of EGFR and PDGFRA activation in individual cells, which is heterogeneous at baseline.

  4. In vivo neuronal co-expression of mu and delta opioid receptors uncovers new therapeutic perspectives

    PubMed Central

    Erbs, Eric; Faget, Lauren; Veinante, Pierre; Kieffer, Brigitte L; Massotte, Dominique

    2015-01-01

    Opioid receptors belong to the G protein coupled receptor family. They modulate brain function at all levels of neural integration and therefore impact on autonomous, sensory, emotional and cognitive processing. In vivo functional interaction between mu and delta opioid receptors are known to take place though it is still debated whether interactions occur at circuitry, cellular or molecular level. Also, the notion of receptor crosstalk via mu-delta heteromers is well documented in vitro but in vivo evidence remains scarce. To identify neurons in which receptor interactions could take place, we designed a unique double mutant knock-in mouse line that expresses functional red-fluorescent mu receptors and green-fluorescent delta receptors. We mapped mu and delta receptor distribution and co-localization throughout the nervous system and created the first interactive brain atlas with concomitant mu-delta visualization at subcellular resolution (http://mordor.ics-mci.fr/). Mu and delta receptors co-localize in neurons from subcortical networks but are mainly detected in separate neurons in the forebrain. Also, co-immunoprecipitation experiments indicated physical proximity in the hippocampus, a prerequisite to mu-delta heteromerization. Altogether, data suggest that mu-delta functional interactions take place at systems level for high-order emotional and cognitive processing whereas mu-delta may interact at cellular level in brain networks essential for survival, which has potential implications for innovative drug design in pain control, drug addiction and eating disorders. PMID:25938125

  5. In vivo neuronal co-expression of mu and delta opioid receptors uncovers new therapeutic perspectives.

    PubMed

    Erbs, Eric; Faget, Lauren; Veinante, Pierre; Kieffer, Brigitte L; Massotte, Dominique

    2014-09-01

    Opioid receptors belong to the G protein coupled receptor family. They modulate brain function at all levels of neural integration and therefore impact on autonomous, sensory, emotional and cognitive processing. In vivo functional interaction between mu and delta opioid receptors are known to take place though it is still debated whether interactions occur at circuitry, cellular or molecular level. Also, the notion of receptor crosstalk via mu-delta heteromers is well documented in vitro but in vivo evidence remains scarce. To identify neurons in which receptor interactions could take place, we designed a unique double mutant knock-in mouse line that expresses functional red-fluorescent mu receptors and green-fluorescent delta receptors. We mapped mu and delta receptor distribution and co-localization throughout the nervous system and created the first interactive brain atlas with concomitant mu-delta visualization at subcellular resolution (http://mordor.ics-mci.fr/). Mu and delta receptors co-localize in neurons from subcortical networks but are mainly detected in separate neurons in the forebrain. Also, co-immunoprecipitation experiments indicated physical proximity in the hippocampus, a prerequisite to mu-delta heteromerization. Altogether, data suggest that mu-delta functional interactions take place at systems level for high-order emotional and cognitive processing whereas mu-delta may interact at cellular level in brain networks essential for survival, which has potential implications for innovative drug design in pain control, drug addiction and eating disorders.

  6. Localization and distribution of neurons that co-express xeroderma pigmentosum-A and epidermal growth factor receptor within Rosenthal's canal.

    PubMed

    Guthrie, O'neil W

    2015-10-01

    Xeroderma pigmentosum-A (XPA) is a C4-type zinc-finger scaffolding protein that regulates the removal of bulky-helix distorting DNA damage products from the genome. Phosphorylation of serine residues within the XPA protein is associated with improved protection of genomic DNA and cell death resistance. Therefore, kinase signaling is one important mechanism for regulating the protective function of XPA. Previous experiments have shown that spiral ganglion neurons (SGNs) may mobilize XPA as a general stress response to chemical and physical ototoxicants. Therapeutic optimization of XPA via kinase signaling could serve as a means to improve DNA repair capacity within neurons following injury. The kinase signaling activity of the epidermal growth factor receptor (EGFR) has been shown in tumor cell lines to increase the repair of DNA damage products that are primarily repaired by XPA. Such observations suggest that EGFR may regulate the protective function of XPA. However, it is not known whether SGNs in particular or neurons in general could co-express XPA and EGFR. In the current study gene and protein expression of XPA and EGFR were determined from cochlear homogenates. Immunofluorescence assays were then employed to localize neurons expressing both EGFR and XPA within the ganglion. This work was then confirmed with double-immunohistochemistry. Rosenthal's canal served as the reference space in these experiments and design-based stereology was employed in first-order stereology quantification of immunoreactive neurons. The results confirmed that a population of SGNs that constitutively express XPA may also express the EGFR. These results provide the basis for future experiments designed to therapeutically manipulate the EGFR in order to regulate XPA activity and restore gene function in neurons following DNA damage.

  7. ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks

    PubMed Central

    Ho, Ritchie; Sances, Samuel; Gowing, Genevieve; Amoroso, Mackenzie Weygandt; O'Rourke, Jacqueline G.; Sahabian, Anais; Wichterle, Hynek; Baloh, Robert H.; Sareen, Dhruv

    2016-01-01

    Modeling Amyotrophic Lateral Sclerosis (ALS) with human induced pluripotent stem cells (iPSCs) aims to reenact embryogenesis, maturation, and aging of spinal motor neurons (spMNs) in vitro. As the maturity of spMNs grown in vitro compared to spMNs in vivo remains largely unaddressed, it is unclear to what extent this in vitro system captures critical aspects of spMN development and molecular signatures associated with ALS. Here, we compared transcriptomes among iPSC-derived spMNs, fetal, and adult spinal tissues. This approach produced a maturation scale revealing that iPSC-derived spMNs were more similar to fetal spinal tissue than to adult spMNs. Additionally, we resolved gene networks and pathways associated with spMN maturation and aging. These networks enriched for pathogenic familial ALS genetic variants and were disrupted in sporadic ALS spMNs. Altogether, our findings suggest that developing strategies to further mature and age iPSC-derived spMNs will provide more effective iPSC models of ALS pathology. PMID:27428653

  8. ALS disrupts spinal motor neuron maturation and aging pathways within gene co-expression networks.

    PubMed

    Ho, Ritchie; Sances, Samuel; Gowing, Genevieve; Amoroso, Mackenzie Weygandt; O'Rourke, Jacqueline G; Sahabian, Anais; Wichterle, Hynek; Baloh, Robert H; Sareen, Dhruv; Svendsen, Clive N

    2016-09-01

    Modeling amyotrophic lateral sclerosis (ALS) with human induced pluripotent stem cells (iPSCs) aims to reenact embryogenesis, maturation and aging of spinal motor neurons (spMNs) in vitro. As the maturity of spMNs grown in vitro compared to spMNs in vivo remains largely unaddressed, it is unclear to what extent this in vitro system captures critical aspects of spMN development and molecular signatures associated with ALS. Here, we compared transcriptomes among iPSC-derived spMNs, fetal spinal tissues and adult spinal tissues. This approach produced a maturation scale revealing that iPSC-derived spMNs were more similar to fetal spinal tissue than to adult spMNs. Additionally, we resolved gene networks and pathways associated with spMN maturation and aging. These networks enriched for pathogenic familial ALS genetic variants and were disrupted in sporadic ALS spMNs. Altogether, our findings suggest that developing strategies to further mature and age iPSC-derived spMNs will provide more effective iPSC models of ALS pathology.

  9. Characterization of enteric neurons in wild-type and mutant zebrafish using semi-automated cell counting and co-expression analysis.

    PubMed

    Simonson, Levi W; Ganz, Julia; Melancon, Ellie; Eisen, Judith S

    2013-06-01

    To characterize fluorescent enteric neurons labeled for expression of cytoplasmic markers in zebrafish mutants, we developed a new MATLAB-based program that can be trained by user input. We used the program to count enteric neurons and to analyze co-expression of the neuronal marker, Elavl, and the neuronal subtype marker, serotonin, in 3D confocal image stacks of dissected whole-mount zebrafish intestines. We quantified the entire population of enteric neurons and the serotonergic subpopulation in specific regions of the intestines of gutwrencher mutant and wild-type sibling larvae. We show a marked decrease in enteric neurons in gutwrencher mutants that is more severe at the caudal end of the intestine. We also show that gutwrencher mutants have the same number of serotonin-positive enteroendocrine cells in the intestine as wild types.

  10. Neuronal cell lines as model dorsal root ganglion neurons

    PubMed Central

    Yin, Kathleen; Baillie, Gregory J

    2016-01-01

    Background Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with those expressed in intact peripheral neurons is lacking. Results In this study, we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing, and compared the results with native whole murine dorsal root ganglions. The gene expression profiles of these three cell lines did not resemble any specific defined dorsal root ganglion subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the Transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Global gene ontology analysis on whole dorsal root ganglions and cell lines showed similar enrichment of biological process terms across all samples. Conclusions This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines compared with whole murine dorsal root ganglions, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration. PMID:27130590

  11. Co-expression of perforin and granzyme B genes induces apoptosis and inhibits the tumorigenicity of laryngeal cancer cell line Hep-2

    PubMed Central

    Li, Xiu-Ying; Li, Zhi; An, Gui-Jie; Liu, Sha; Lai, Yan-Dong

    2014-01-01

    Granzyme B and perforin, two of the most important components, have shown anticancer properties in various cancers, but their effects in laryngeal cancer remain unexplored. Here we decided to examine the effects of Granzyme B and perforin in Hep-2 cells and clarify the role of perforin and granzyme B in the tumorigenicity of laryngeal cancer cell line. Hep-2 cells were transfected with pVAX1-PIG co-expression vector (comprising perforin and granzyme B genes), and then the growth and apoptosis of these Hep-2 cells were evaluated. The tumorigenicity of Hep-2 cell line co-expressing perforin and granzyme B genes was tested in BALB/c nu/nu mice. We found that the co-expression of perforin and granzyme B genes could obviously inhibit cell focus formation and induce cell apoptosis in Hep-2 cells. Furthermore, after subcutaneous injection of Hep-2 cells transfected with pVAX1-PIG, an extensive delay in tumor growth was observed in BALB/c-nu/nu mice. Moreover, our studies demonstrated that the anticancer activity of perforin and granzyme B was sustainable in vivo as tumor development by inducing cell apoptosis. Taken together, our data indicate that the co-expression of perforin and granzyme B genes exhibits anticancer potential, and hopefully provide potential therapeutic applications in laryngeal cancer. PMID:24696715

  12. Co-expression of perforin and granzyme B genes induces apoptosis and inhibits the tumorigenicity of laryngeal cancer cell line Hep-2.

    PubMed

    Li, Xiu-Ying; Li, Zhi; An, Gui-Jie; Liu, Sha; Lai, Yan-Dong

    2014-01-01

    Granzyme B and perforin, two of the most important components, have shown anticancer properties in various cancers, but their effects in laryngeal cancer remain unexplored. Here we decided to examine the effects of Granzyme B and perforin in Hep-2 cells and clarify the role of perforin and granzyme B in the tumorigenicity of laryngeal cancer cell line. Hep-2 cells were transfected with pVAX1-PIG co-expression vector (comprising perforin and granzyme B genes), and then the growth and apoptosis of these Hep-2 cells were evaluated. The tumorigenicity of Hep-2 cell line co-expressing perforin and granzyme B genes was tested in BALB/c nu/nu mice. We found that the co-expression of perforin and granzyme B genes could obviously inhibit cell focus formation and induce cell apoptosis in Hep-2 cells. Furthermore, after subcutaneous injection of Hep-2 cells transfected with pVAX1-PIG, an extensive delay in tumor growth was observed in BALB/c-nu/nu mice. Moreover, our studies demonstrated that the anticancer activity of perforin and granzyme B was sustainable in vivo as tumor development by inducing cell apoptosis. Taken together, our data indicate that the co-expression of perforin and granzyme B genes exhibits anticancer potential, and hopefully provide potential therapeutic applications in laryngeal cancer.

  13. Co-expression of alpha7 and beta2 nicotinic acetylcholine receptor subunit mRNAs within rat brain cholinergic neurons.

    PubMed

    Azam, L; Winzer-Serhan, U; Leslie, F M

    2003-01-01

    Nicotine enhances cognitive and attentional processes through stimulation of the basal forebrain cholinergic system. Although muscarinic cholinergic autoreceptors have been well characterized, pharmacological characterization of nicotinic autoreceptors has proven more difficult. The present study used double-labeling in situ hybridization to determine expression of nicotinic acetylcholine receptor (nAChR) subunit mRNAs within basal forebrain cholinergic neurons in order to gain information about possible nAChR autoreceptor properties. Cholinergic cells of the mesopontine tegmentum and striatal interneurons were also examined, as were septohippocampal GABAergic neurons that interact with cholinergic neurons to regulate hippocampal activity. alpha7 and beta2 nAChR mRNAs were found to be co-expressed in almost all cholinergic cells and in the majority of GABAergic neurons examined. alpha4 nAChR mRNA expression was restricted to cholinergic cells of the nucleus basalis magnocellularis, and to non-cholinergic cells of the medial septum and mesopontine tegmentum. These data suggest possible regional differences in the pharmacological properties of nicotinic autoreceptors on cholinergic cells. Whereas most cholinergic cells express rapidly desensitizing alpha7 homomers or alpha7beta2 heteromers, cortical projection neurons may also express a pharmacologically distinct alpha4beta2 nAChR subtype. There may also be differential nAChR regulation of cholinergic and non-cholinergic cells within the mesopontine tegmentum that are implicated in acquisition of nicotine self-administration.

  14. Co-expression of FBN1 with mesenchyme-specific genes in mouse cell lines: implications for phenotypic variability in Marfan syndrome

    PubMed Central

    Summers, Kim M; Raza, Sobia; van Nimwegen, Erik; Freeman, Thomas C; Hume, David A

    2010-01-01

    Mutations in the human FBN1 gene cause Marfan syndrome, a complex disease affecting connective tissues but with a highly variable phenotype. To identify genes that might participate in epistatic interactions with FBN1, and could therefore explain the observed phenotypic variability, we have looked for genes that are co-expressed with Fbn1 in the mouse. Microarray expression data derived from a range of primary mouse cells and cell lines were analysed using the network analysis tool BioLayout Express3D. A cluster of 205 genes, including Fbn1, were selectively expressed by mouse cell lines of different mesenchymal lineages and by mouse primary mesenchymal cells (preadipocytes, myoblasts, fibroblasts, osteoblasts). Promoter analysis of this gene set identified several candidate transcriptional regulators. Genes within this co-expressed cluster are candidate genetic modifiers for Marfan syndrome and for other connective tissue diseases. PMID:20551991

  15. Connections between EM2-containing terminals and GABA/μ-opioid receptor co-expressing neurons in the rat spinal trigeminal caudal nucleus

    PubMed Central

    Li, Meng-Ying; Wu, Zhen-Yu; Lu, Ya-Cheng; Yin, Jun-Bin; Wang, Jian; Zhang, Ting; Dong, Yu-Lin; Wang, Feng

    2014-01-01

    Endomorphin-2 (EM2) demonstrates a potent antinociceptive effect via the μ-opioid receptor (MOR). To provide morphological evidence for the pain control effect of EM2, the synaptic connections between EM2-immunoreactive (IR) axonal terminals and γ-amino butyric acid (GABA)/MOR co-expressing neurons in lamina II of the spinal trigeminal caudal nucleus (Vc) were investigated in the rat. Dense EM2-, MOR- and GABA-IR fibers and terminals were mainly observed in lamina II of the Vc. Within lamina II, GABA- and MOR-neuronal cell bodies were also encountered. The results of immunofluorescent histochemical triple-staining showed that approximately 14.2 or 18.9% of GABA-IR or MOR-IR neurons also showed MOR- or GABA-immunopositive staining in lamina II; approximately 45.2 and 36.1% of the GABA-IR and MOR-IR neurons, respectively, expressed FOS protein in their nuclei induced by injecting formalin into the left lower lip of the mouth. Most of the GABA/MOR, GABA/FOS, and MOR/FOS double-labeled neurons made close contacts with EM2-IR fibers and terminals. Immuno-electron microscopy confirmed that the EM2-IR terminals formed synapses with GABA-IR or MOR-IR dendritic processes and neuronal cell bodies in lamina II of the Vc. These results suggest that EM2 might participate in pain transmission and modulation by binding to MOR-IR and GABAergic inhibitory interneuron in lamina II of the Vc to exert inhibitory effect on the excitatory interneuron in lamina II and projection neurons in laminae I and III. PMID:25386121

  16. Co-expression of GAD67 and choline acetyltransferase reveals a novel neuronal phenotype in the mouse medulla oblongata

    PubMed Central

    Gotts, Jittima; Atkinson, Lucy; Edwards, Ian J.; Yanagawa, Yuchio; Deuchars, Susan A.; Deuchars, Jim

    2015-01-01

    GABAergic and cholinergic systems play an important part in autonomic pathways. To determine the distribution of the enzymes responsible for the production of GABA and acetylcholine in areas involved in autonomic control in the mouse brainstem, we used a transgenic mouse expressing green fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67) neurones, combined with choline acetyl transferase (ChAT) immunohistochemistry. ChAT-immunoreactive (IR) and GAD67-GFP containing neurones were observed throughout the brainstem. A small number of cells contained both ChAT-IR and GAD67-GFP. Such double labelled cells were observed in the NTS (predominantly in the intermediate and central subnuclei), the area postrema, reticular formation and lateral paragigantocellular nucleus. All ChAT-IR neurones in the area postrema contained GAD67-GFP. Double labelled neurones were not observed in the dorsal vagal motor nucleus, nucleus ambiguus or hypoglossal nucleus. Double labelled ChAT-IR/GAD67-GFP cells in the NTS did not contain neuronal nitric oxide synthase (nNOS) immunoreactivity, whereas those in the reticular formation and lateral paragigantocellular nucleus did. The function of these small populations of double labelled cells is currently unknown, however their location suggests a potential role in integrating signals involved in oromotor behaviours. PMID:26015156

  17. Co-expression of GAD67 and choline acetyltransferase reveals a novel neuronal phenotype in the mouse medulla oblongata.

    PubMed

    Gotts, Jittima; Atkinson, Lucy; Edwards, Ian J; Yanagawa, Yuchio; Deuchars, Susan A; Deuchars, Jim

    2015-12-01

    GABAergic and cholinergic systems play an important part in autonomic pathways. To determine the distribution of the enzymes responsible for the production of GABA and acetylcholine in areas involved in autonomic control in the mouse brainstem, we used a transgenic mouse expressing green fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67) neurones, combined with choline acetyl transferase (ChAT) immunohistochemistry. ChAT-immunoreactive (IR) and GAD67-GFP containing neurones were observed throughout the brainstem. A small number of cells contained both ChAT-IR and GAD67-GFP. Such double labelled cells were observed in the NTS (predominantly in the intermediate and central subnuclei), the area postrema, reticular formation and lateral paragigantocellular nucleus. All ChAT-IR neurones in the area postrema contained GAD67-GFP. Double labelled neurones were not observed in the dorsal vagal motor nucleus, nucleus ambiguus or hypoglossal nucleus. Double labelled ChAT-IR/GAD67-GFP cells in the NTS did not contain neuronal nitric oxide synthase (nNOS) immunoreactivity, whereas those in the reticular formation and lateral paragigantocellular nucleus did. The function of these small populations of double labelled cells is currently unknown, however their location suggests a potential role in integrating signals involved in oromotor behaviours.

  18. Co-expression of the transcription factors CEH-14 and TTX-1 regulates AFD neuron-specific genes gcy-8 and gcy-18 in C. elegans.

    PubMed

    Kagoshima, Hiroshi; Kohara, Yuji

    2015-03-15

    A wide variety of cells are generated by the expression of characteristic sets of genes, primarily those regulated by cell-specific transcription. To elucidate the mechanism regulating cell-specific gene expression in a highly specialized cell, AFD thermosensory neuron in Caenorhabditis elegans, we analyzed the promoter sequences of guanylyl cyclase genes, gcy-8 and gcy-18, exclusively expressed in AFD. In this study, we showed that AFD-specific expression of gcy-8 and gcy-18 requires the co-expression of homeodomain proteins, CEH-14/LHX3 and TTX-1/OTX1. We observed that mutation of ttx-1 or ceh-14 caused a reduction in the expression of gcy-8 and gcy-18 and that the expression was completely lost in double mutants. This synergy effect was also observed with other AFD marker genes, such as ntc-1, nlp-21and cng-3. Electrophoretic mobility shift assays revealed direct interaction of CEH-14 and TTX-1 proteins with gcy-8 and gcy-18 promoters in vitro. The binding sites of CEH-14 and TTX-1 proteins were confirmed to be essential for AFD-specific expression of gcy-8 and gcy-18 in vivo. We also demonstrated that forced expression of CEH-14 and TTX-1 in AWB chemosensory neurons induced ectopic expression of gcy-8 and gcy-18 reporters in this neuron. Finally, we showed that the regulation of gcy-8 and gcy-18 expression by ceh-14 and ttx-1 is evolutionally conserved in five Caenorhabditis species. Taken together, ceh-14 and ttx-1 expression determines the fate of AFD as terminal selector genes at the final step of cell specification.

  19. IFN-γ, IL-21, and IL-10 co-expression in evolving autoimmune vitiligo lesions of Smyth line chickens.

    PubMed

    Shi, Fengying; Erf, Gisela F

    2012-03-01

    The Smyth line (SL) of chicken is an excellent animal model for human autoimmune vitiligo. In SL vitiligo (SLV), postnatal loss of melanocytes in feathers appears to be due to cell-mediated immunity. In this study, leukocyte infiltration and associated expression (RNA) of immune function-related cytokines in growing feathers were investigated throughout SLV development and progression. Both leukocyte infiltration and cytokine expression levels started to increase near visible SLV onset (early SLV), reached peak levels during active SLV, and decreased to near pre-vitiligo levels after complete loss of melanocytes. Specifically, significant increases were noticed in relative proportions of T cells, B cells, and major histocompatibility complex (MHC) II-expressing cells during active SLV. Levels of T-cell infiltration were higher than those of B cells, with more CD8+ than CD4+ cells throughout SLV. Elevated leukocyte infiltration in early and active SLV was accompanied by increased levels of cytokine expression, especially in IFN-γ, IL-10, and IL-21. Low expression of IL-4 and IL-17 did not suggest important roles of Th2 and Th17 cells in SLV pathogenesis. Taken together, SLV appears to be a Th1-polarized autoimmune disease, whereby IFN-γ expression is strongly associated with parallel increases in IL-10 and IL-21, particularly during early and active stages of SLV.

  20. Co-expression of CD44 and ABCG2 in spheroid body-forming cells of gastric cancer cell line MKN45.

    PubMed

    Liu, Jianming; Ma, Lilin; Xu, Junfei; Liu, Chun; Zhang, Jianguo; Liu, Jie; Chen, Ruixin; Zhou, Youlang

    2013-01-01

    The cancer stem cell (CSC) theory hypothesizes that CSCs are regarded as the cause of tumor formation, recurrence and metastasis. This study aimed to investigate whether spheroid body-forming cells in human gastric cancer cell were enriched for CSC properties, and to assess the expression of candidate CSC markers, cluster of differentiation 44 (CD44) and adenosine triphosphate binding cassette transporter G 2 (ABCG2) in the MKN45 spheroid body cells. Human gastric cancer cell line MKN45 were plated in stem cell conditioned culture system allowed for spheroid body forming. The expression levels of CD44 and ABCG2 in the spheroid body cells were assessed by quantitative real-time PCR, western blot analysis and immunofluorescence staining, and the tumorigenicity of the spheroid body-forming cells were assessed by in vivo xenograft studies in nude mice. The MKN45 cells could form spheroid bodies cultured in stem cell conditioned medium. The spheroid body-forming cells showed a significantly greater (p <0.05) expression of CD44 and ABCG2 than the parental cells. Spheroid body cells from gastric cancer cell line MKN45 cultured in stem cell conditioned medium possessed gastric CSC properties. The cells co-expressed of CD44 and ABCG2 might represent a subpopulation of gastric CSCs.

  1. Development of recombinant cell line co-expressing mutated Nav1.5, Kir2.1, and hERG for the safety assay of drug candidates.

    PubMed

    Fujii, Masato; Ohya, Susumu; Yamamura, Hisao; Imaizumi, Yuji

    2012-07-01

    To provide a high-throughput screening method for human ether-a-go-go-gene-related gene (hERG) K(+) channel inhibition, a new recombinant cell line, in which single action potential (AP)-induced cell death was produced by gene transfection. Mutated human cardiac Na(+) channel Nav1.5 (IFM/Q3), which shows extremely slow inactivation, and wild-type inward rectifier K(+) channel, Kir2.1, were stably co-expressed in HEK293 cells (IFM/Q3+Kir2.1). In IFM/Q3+Kir2.1, application of single electrical stimulation (ES) elicited a long AP lasting more than 30 s and led cells to die by more than 70%, whereas HEK293 co-transfected with wild-type Nav1.5 and Kir2.1 fully survived. The additional expression of hERG K(+) channels in IFM/Q3+Kir2.1 shortened the duration of evoked AP and thereby markedly reduced the cell death. The treatment of the cells with hERG channel inhibitors such as nifekalant, E-4031, cisapride, terfenadine, and verapamil, recovered the prolonged AP and dose-dependently facilitated cell death upon ES. The EC(50) values to induce the cell death were 3 µM, 19 nM, 17 nM, 74 nM, and 3 µM, respectively, whereas 10 µM nifedipine did not induce cell death. Results indicate the high utility of this cell system for hERG K(+) channel safety assay.

  2. Visual experience without lines: effect on developing cortical neurons.

    PubMed

    Pettigrew, J D; Freeman, R D

    1973-11-09

    Kittens were reared in a planetarium-like visual environment that lacked straight line contours. Cortical neurons were subsequently highly sensitive to spots of light but not to straight lines, in marked contrast to those from a normal cat. If linear contour processing is an innate function it appears to be subject to substantial modification by early visual experience.

  3. Closing the Phenotypic Gap between Transformed Neuronal Cell Lines in Culture and Untransformed Neurons

    NASA Technical Reports Server (NTRS)

    Myers, Tereance A.; Nickerson, Cheryl A.; Kaushal, Deepak; Ott, C. Mark; HonerzuBentrup, Kerstin; Ramamurthy, Rajee; Nelman-Gonzales, Mayra; Pierson, Duane L.; Philipp, Mario T.

    2008-01-01

    Studies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a dimensional (3-D) cell culture system would drive the phenotype of transformed neurons closer to that of untransformed cells. In our studies comparing 3-D versus 2-dimensional (2-D) culture, neuronal SH-SY5Y (SY) cells underwent distinct morphological changes combined with a significant drop in their rate of cell division. Expression of the proto-oncogene N-myc and the RNA binding protein HuD was decreased in 3-D culture as compared to standard 2-D conditions. We observed a decline in the anti-apoptotic protein Bcl-2 in 3-D culture, coupled with increased expression of the pro-apoptotic proteins Bax and Bak. Moreover, thapsigargin (TG)-induced apoptosis was enhanced in the 3-D cells. Microarray analysis demonstrated significantly differing mRNA levels for over 700 genes in the cells of each culture type. These results indicate that a 3-D culture approach narrows the phenotypic gap between neuronal cell lines and primary neurons. The resulting cells may readily be used for in vitro research of neuronal pathogenesis.

  4. LINE-1 Retrotransposons: Mediators of Somatic Variation in Neuronal Genomes?

    PubMed Central

    Singer, Tatjana; McConnell, Michael J.; Marchetto, Maria C.N.; Coufal, Nicole G.; Gage, Fred H.

    2010-01-01

    LINE-1 (L1) elements are retrotransposons that insert extra copies of themselves throughout the genome using a “copy and paste” mechanism. L1s have contributed ~20% to total human genome content and are able to influence chromosome integrity and gene expression upon reinsertion. Recent studies show that L1 elements are active and “jumping” during neuronal differentiation. New somatic L1 insertions may generate “genomic plasticity” in neurons by causing variation in genomic DNA sequences and by altering the transcriptome of individual cells. Thus, L1-induced variation may affect neuronal plasticity and behavior. Here, we discuss potential consequences of L1-induced neuronal diversity and propose that a mechanism generating diversity in the brain could broaden the spectrum of behavioral phenotypes that can originate from any single genome. PMID:20471112

  5. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line

    PubMed Central

    Faggi, Fiorella; Codenotti, Silvia; Poliani, Pietro Luigi; Cominelli, Manuela; Chiarelli, Nicola; Colombi, Marina; Vezzoli, Marika; Monti, Eugenio; Bono, Federica; Tulipano, Giovanni; Fiorentini, Chiara; Zanola, Alessandra; Lo, Harriet P.; Parton, Robert G.; Keller, Charles; Fanzani, Alessandro

    2015-01-01

    The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS. PMID:26086601

  6. Establishment of functional clonal lines of neurons from mouse neuroblastoma.

    PubMed

    Augusti-Tocco, G; Sato, G

    1969-09-01

    Clonal lines of neurons were obtained in culture from a mouse neuroblastoma. The neuroblastoma cells were adapted to culture growth by the animal-culture alternate passage technique and cloned after single-cell plating. The clonal lines retained the ability to form tumors when injected back into mice. A striking morphological change was observed in the cells adapted to culture growth; they appeared as mature neurons, while the cells of the tumor appeared as immature neuroblasts. Acetylcholinesterase and the enzymes for the synthesis of neurotransmitters, cholineacetylase and tyrosine hydroxylase were assayed in the tumor and compared with brain levels; tyrosine hydroxylase was found to be particularly high, as described previously in human neuroblastomas. The three enzymes were found in the clonal cultures at levels comparable to those found in the tumors. Similarly, there were no remarkable differences between the three clones examined.

  7. Visualization of Sensory Neurons and Their Projections in an Upper Motor Neuron Reporter Line.

    PubMed

    Genç, Barış; Lagrimas, Amiko Krisa Bunag; Kuru, Pınar; Hess, Robert; Tu, Michael William; Menichella, Daniela Maria; Miller, Richard J; Paller, Amy S; Özdinler, P Hande

    2015-01-01

    Visualization of peripheral nervous system axons and cell bodies is important to understand their development, target recognition, and integration into complex circuitries. Numerous studies have used protein gene product (PGP) 9.5 [a.k.a. ubiquitin carboxy-terminal hydrolase L1 (UCHL1)] expression as a marker to label sensory neurons and their axons. Enhanced green fluorescent protein (eGFP) expression, under the control of UCHL1 promoter, is stable and long lasting in the UCHL1-eGFP reporter line. In addition to the genetic labeling of corticospinal motor neurons in the motor cortex and degeneration-resistant spinal motor neurons in the spinal cord, here we report that neurons of the peripheral nervous system are also fluorescently labeled in the UCHL1-eGFP reporter line. eGFP expression is turned on at embryonic ages and lasts through adulthood, allowing detailed studies of cell bodies, axons and target innervation patterns of all sensory neurons in vivo. In addition, visualization of both the sensory and the motor neurons in the same animal offers many advantages. In this report, we used UCHL1-eGFP reporter line in two different disease paradigms: diabetes and motor neuron disease. eGFP expression in sensory axons helped determine changes in epidermal nerve fiber density in a high-fat diet induced diabetes model. Our findings corroborate previous studies, and suggest that more than five months is required for significant skin denervation. Crossing UCHL1-eGFP with hSOD1G93A mice generated hSOD1G93A-UeGFP reporter line of amyotrophic lateral sclerosis, and revealed sensory nervous system defects, especially towards disease end-stage. Our studies not only emphasize the complexity of the disease in ALS, but also reveal that UCHL1-eGFP reporter line would be a valuable tool to visualize and study various aspects of sensory nervous system development and degeneration in the context of numerous diseases.

  8. Engineered LINE-1 retrotransposition in nondividing human neurons.

    PubMed

    Macia, Angela; Widmann, Thomas J; Heras, Sara R; Ayllon, Veronica; Sanchez, Laura; Benkaddour-Boumzaouad, Meriem; Muñoz-Lopez, Martin; Rubio, Alejandro; Amador-Cubero, Suyapa; Blanco-Jimenez, Eva; Garcia-Castro, Javier; Menendez, Pablo; Ng, Philip; Muotri, Alysson R; Goodier, John L; Garcia-Perez, Jose L

    2017-03-01

    Half the human genome is made of transposable elements (TEs), whose ongoing activity continues to impact our genome. LINE-1 (or L1) is an autonomous non-LTR retrotransposon in the human genome, comprising 17% of its genomic mass and containing an average of 80-100 active L1s per average genome that provide a source of inter-individual variation. New LINE-1 insertions are thought to accumulate mostly during human embryogenesis. Surprisingly, the activity of L1s can further impact the somatic human brain genome. However, it is currently unknown whether L1 can retrotranspose in other somatic healthy tissues or if L1 mobilization is restricted to neuronal precursor cells (NPCs) in the human brain. Here, we took advantage of an engineered L1 retrotransposition assay to analyze L1 mobilization rates in human mesenchymal (MSCs) and hematopoietic (HSCs) somatic stem cells. Notably, we have observed that L1 expression and engineered retrotransposition is much lower in both MSCs and HSCs when compared to NPCs. Remarkably, we have further demonstrated for the first time that engineered L1s can retrotranspose efficiently in mature nondividing neuronal cells. Thus, these findings suggest that the degree of somatic mosaicism and the impact of L1 retrotransposition in the human brain is likely much higher than previously thought. © 2017 Macia et al.; Published by Cold Spring Harbor Laboratory Press.

  9. Myelination in coculture of established neuronal and Schwann cell lines.

    PubMed

    Sango, Kazunori; Kawakami, Emiko; Yanagisawa, Hiroko; Takaku, Shizuka; Tsukamoto, Masami; Utsunomiya, Kazunori; Watabe, Kazuhiko

    2012-06-01

    Establishing stable coculture systems with neuronal and Schwann cell lines has been considered difficult, presumably because of their high proliferative activity and phenotypic differences from primary cultured cells. The present study is aimed at developing methods for myelin formation under coculture of the neural crest-derived pheochromocytoma cell line PC12 and the immortalized adult rat Schwann cell line IFRS1. Prior to coculture, PC12 cells were seeded at low density (3 × 10(2)/cm(2)) and maintained in serum-free medium with N2 supplement, ascorbic acid (50 μg/ml), and nerve growth factor (NGF) (50 ng/ml) for a week. Exposure to such a NGF-rich environment with minimum nutrients accelerated differentiation and neurite extension, but not proliferation, of PC12 cells. When IFRS1 cells were added to NGF-primed PC12 cells, the cell density ratio of PC12 cells to IFRS1 cells was adjusted from 1:50 to 1:100. The cocultured cells were then maintained in serum-free medium with B27 supplement, ascorbic acid (50 μg/ml), NGF (10 ng/ml), and recombinant soluble neuregulin-1 type III (25 ng/ml). Myelin formation was illustrated by light and electron microscopy performed at day 28 of coculture. The stable PC12-IFRS1 coculture system is free of technical and ethical problems arising from the primary culture and can be a valuable tool to study peripheral nerve degeneration and regeneration.

  10. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines

    PubMed Central

    Gibson, Gary E.; Xu, Hui; Chen, Huan-Lian; Chen, Wei; Denton, Travis; Zhang, Sheng

    2015-01-01

    Reversible post-translation modifications of proteins are common in all cells and appear to regulate many processes. Nevertheless, the enzyme(s) responsible for the alterations and the significance of the modification are largely unknown. Succinylation of proteins occurs and causes large changes in the structure of proteins; however, the source of the succinyl groups, the targets, and the consequences of these modifications on other proteins are unknown. These studies focused on succinylation of mitochondrial proteins. The results demonstrate that the α-ketoglutarate dehydrogenase complex (KGDHC) can serve as a trans-succinylase that mediates succinylation in an α-ketoglutarate-dependent manner. Inhibition of KGDHC reduced suc-cinylation of both cytosolic and mitochondrial proteins in cultured neurons and in a neuronal cell line. Purified KGDHC can succinylate multiple proteins including other enzymes of the tricarboxylic acid (TCA) cycle leading to modification of their activity. Inhibition of KGDHC also modifies acetylation by modifying the pyruvate dehydrogenase complex. The much greater effectiveness of KGDHC than succinyl CoA suggests that the catalysis due to the E2k suc-cinyltransferase is important. Succinylation appears to be a major signaling system and it can be mediated by KGDHC. PMID:25772995

  11. PLANEX: the plant co-expression database.

    PubMed

    Yim, Won Cheol; Yu, Yongbin; Song, Kitae; Jang, Cheol Seong; Lee, Byung-Moo

    2013-05-20

    The PLAnt co-EXpression database (PLANEX) is a new internet-based database for plant gene analysis. PLANEX (http://planex.plantbioinformatics.org) contains publicly available GeneChip data obtained from the Gene Expression Omnibus (GEO) of the National Center for Biotechnology Information (NCBI). PLANEX is a genome-wide co-expression database, which allows for the functional identification of genes from a wide variety of experimental designs. It can be used for the characterization of genes for functional identification and analysis of a gene's dependency among other genes. Gene co-expression databases have been developed for other species, but gene co-expression information for plants is currently limited. We constructed PLANEX as a list of co-expressed genes and functional annotations for Arabidopsis thaliana, Glycine max, Hordeum vulgare, Oryza sativa, Solanum lycopersicum, Triticum aestivum, Vitis vinifera and Zea mays. PLANEX reports Pearson's correlation coefficients (PCCs; r-values) that distribute from a gene of interest for a given microarray platform set corresponding to a particular organism. To support PCCs, PLANEX performs an enrichment test of Gene Ontology terms and Cohen's Kappa value to compare functional similarity for all genes in the co-expression database. PLANEX draws a cluster network with co-expressed genes, which is estimated using the k-mean method. To construct PLANEX, a variety of datasets were interpreted by the IBM supercomputer Advanced Interactive eXecutive (AIX) in a supercomputing center. PLANEX provides a correlation database, a cluster network and an interpretation of enrichment test results for eight plant species. A typical co-expressed gene generates lists of co-expression data that contain hundreds of genes of interest for enrichment analysis. Also, co-expressed genes can be identified and cataloged in terms of comparative genomics by using the 'Co-expression gene compare' feature. This type of analysis will help interpret

  12. Accelerated neuronal differentiation toward motor neuron lineage from human embryonic stem cell line (H9).

    PubMed

    Lu, David; Chen, Eric Y T; Lee, Philip; Wang, Yung-Chen; Ching, Wendy; Markey, Christopher; Gulstrom, Chase; Chen, Li-Ching; Nguyen, Thien; Chin, Wei-Chun

    2015-03-01

    Motor neurons loss plays a pivotal role in the pathoetiology of various debilitating diseases such as, but not limited to, amyotrophic lateral sclerosis, primary lateral sclerosis, progressive muscular atrophy, progressive bulbar palsy, pseudobulbar palsy, and spinal muscular atrophy. However, advancement in motor neuron replacement therapy has been significantly constrained by the difficulties in large-scale production at a cost-effective manner. Current methods to derive motor neuron heavily rely on biochemical stimulation, chemical biological screening, and complex physical cues. These existing methods are seriously challenged by extensive time requirements and poor yields. An innovative approach that overcomes prior hurdles and enhances the rate of successful motor neuron transplantation in patients is of critical demand. Iron, a trace element, is indispensable for the normal development and function of the central nervous system. Whether ferric ions promote neuronal differentiation and subsequently promote motor neuron lineage has never been considered. Here, we demonstrate that elevated iron concentration can drastically accelerate the differentiation of human embryonic stem cells (hESCs) toward motor neuron lineage potentially via a transferrin mediated pathway. HB9 expression in 500 nM iron-treated hESCs is approximately twofold higher than the control. Moreover, iron treatment generated more matured and functional motor neuron-like cells that are ∼1.5 times more sensitive to depolarization when compared to the control. Our methodology renders an expedited approach to harvest motor neuron-like cells for disease, traumatic injury regeneration, and drug screening.

  13. On-line, voluntary control of human temporal lobe neurons.

    PubMed

    Cerf, Moran; Thiruvengadam, Nikhil; Mormann, Florian; Kraskov, Alexander; Quiroga, Rodrigo Quian; Koch, Christof; Fried, Itzhak

    2010-10-28

    Daily life continually confronts us with an exuberance of external, sensory stimuli competing with a rich stream of internal deliberations, plans and ruminations. The brain must select one or more of these for further processing. How this competition is resolved across multiple sensory and cognitive regions is not known; nor is it clear how internal thoughts and attention regulate this competition. Recording from single neurons in patients implanted with intracranial electrodes for clinical reasons, here we demonstrate that humans can regulate the activity of their neurons in the medial temporal lobe (MTL) to alter the outcome of the contest between external images and their internal representation. Subjects looked at a hybrid superposition of two images representing familiar individuals, landmarks, objects or animals and had to enhance one image at the expense of the other, competing one. Simultaneously, the spiking activity of their MTL neurons in different subregions and hemispheres was decoded in real time to control the content of the hybrid. Subjects reliably regulated, often on the first trial, the firing rate of their neurons, increasing the rate of some while simultaneously decreasing the rate of others. They did so by focusing onto one image, which gradually became clearer on the computer screen in front of their eyes, and thereby overriding sensory input. On the basis of the firing of these MTL neurons, the dynamics of the competition between visual images in the subject's mind was visualized on an external display.

  14. On-line, voluntary control of human temporal lobe neurons

    PubMed Central

    Cerf, Moran; Thiruvengadam, Nikhil; Mormann, Florian; Kraskov, Alexander; Quiroga, Rodrigo Quian; Koch, Christof; Fried, Itzhak

    2010-01-01

    Daily life continually confronts us with an exuberance of external, sensory stimuli competing with a rich stream of internal deliberations, plans and ruminations. The brain must select one or more of these for further processing. How this competition is resolved across multiple sensory and cognitive regions is not known; nor is it clear how internal thoughts and attention regulate this competition1–4. Recording from single neurons in patients implanted with intracranial electrodes for clinical reasons5–9, here we demonstrate that humans can regulate the activity of their neurons in the medial temporal lobe (MTL) to alter the outcome of the contest between external images and their internal representation. Subjects looked at a hybrid superposition of two images representing familiar individuals, landmarks, objects or animals and had to enhance one image at the expense of the other, competing one. Simultaneously, the spiking activity of their MTL neurons in different subregions and hemispheres was decoded in real time to control the content of the hybrid. Subjects reliably regulated, often on the first trial, the firing rate of their neurons, increasing the rate of some while simultaneously decreasing the rate of others. They did so by focusing onto one image, which gradually became clearer on the computer screen in front of their eyes, and thereby overriding sensory input. On the basis of the firing of these MTL neurons, the dynamics of the competition between visual images in the subject's mind was visualized on an external display. PMID:20981100

  15. A Transgenic Mouse Line Expressing the Red Fluorescent Protein tdTomato in GABAergic Neurons

    PubMed Central

    Besser, Stefanie; Sicker, Marit; Marx, Grit; Winkler, Ulrike; Eulenburg, Volker; Hülsmann, Swen; Hirrlinger, Johannes

    2015-01-01

    GABAergic inhibitory neurons are a large population of neurons in the central nervous system (CNS) of mammals and crucially contribute to the function of the circuitry of the brain. To identify specific cell types and investigate their functions labelling of cell populations by transgenic expression of fluorescent proteins is a powerful approach. While a number of mouse lines expressing the green fluorescent protein (GFP) in different subpopulations of GABAergic cells are available, GFP expressing mouse lines are not suitable for either crossbreeding to other mouse lines expressing GFP in other cell types or for Ca2+-imaging using the superior green Ca2+-indicator dyes. Therefore, we have generated a novel transgenic mouse line expressing the red fluorescent protein tdTomato in GABAergic neurons using a bacterial artificial chromosome based strategy and inserting the tdTomato open reading frame at the start codon within exon 1 of the GAD2 gene encoding glutamic acid decarboxylase 65 (GAD65). TdTomato expression was observed in all expected brain regions; however, the fluorescence intensity was highest in the olfactory bulb and the striatum. Robust expression was also observed in cortical and hippocampal neurons, Purkinje cells in the cerebellum, amacrine cells in the retina as well as in cells migrating along the rostral migratory stream. In cortex, hippocampus, olfactory bulb and brainstem, 80% to 90% of neurons expressing endogenous GAD65 also expressed the fluorescent protein. Moreover, almost all tdTomato-expressing cells coexpressed GAD65, indicating that indeed only GABAergic neurons are labelled by tdTomato expression. This mouse line with its unique spectral properties for labelling GABAergic neurons will therefore be a valuable new tool for research addressing this fascinating cell type. PMID:26076353

  16. Nanotopography induced contact guidance of the F11 cell line during neuronal differentiation: a neuronal model cell line for tissue scaffold development

    NASA Astrophysics Data System (ADS)

    Wieringa, Paul; Tonazzini, Ilaria; Micera, Silvestro; Cecchini, Marco

    2012-07-01

    The F11 hybridoma, a dorsal root ganglion-derived cell line, was used to investigate the response of nociceptive sensory neurons to nanotopographical guidance cues. This established this cell line as a model of peripheral sensory neuron growth for tissue scaffold design. Cells were seeded on substrates of cyclic olefin copolymer (COC) films imprinted via nanoimprint lithography (NIL) with a grating pattern of nano-scale grooves and ridges. Different ridge widths were employed to alter the focal adhesion formation, thereby changing the cell/substrate interaction. Differentiation was stimulated with forskolin in culture medium consisting of either 1 or 10% fetal bovine serum (FBS). Per medium condition, similar neurite alignment was achieved over the four day period, with the 1% serum condition exhibiting longer, more aligned neurites. Immunostaining for focal adhesions found the 1% FBS condition to also have fewer, less developed focal adhesions. The robust response of the F11 to guidance cues further builds on the utility of this cell line as a sensory neuron model, representing a useful tool to explore the design of regenerative guidance tissue scaffolds.

  17. Phase II enzyme induction by a carotenoid, lutein, in a PC12D neuronal cell line

    SciTech Connect

    Miyake, Seiji; Kobayashi, Saori; Tsubota, Kazuo; Ozawa, Yoko

    2014-04-04

    Highlights: • Lutein reduced ROS levels in a PC12D neuronal cell line. • Lutein induced mRNAs of phase II antioxidative enzymes in PC12D neuronal cells. • Lutein increased protein levels of HO-1, SOD2, and NQO-1 in PC12D neuronal cells. • Lutein had no effect on intranuclear Nrf2 levels in PC12D neuronal cells. • Lutein did not activate potential upstream Nrf2 nuclear translocation pathways. - Abstract: The mechanism by which lutein, a carotenoid, acts as an antioxidant in retinal cells is still not fully understood. Here, lutein treatment of a neuronal cell line (PC12D) immediately resulted in reduced intracellular ROS levels, implying that it has a direct role in ROS scavenging. Significantly, lutein treatment also induced phase II antioxidative enzyme expression, probably via a nuclear factor-like 2 (Nrf2) independent pathway. This latter mechanism could explain why lutein acts diversely to protect against oxidative/cytotoxic stress, and why it is physiologically involved in the human neural tissue, such as the retina.

  18. Characterization of forebrain neurons derived from late-onset Huntington's disease human embryonic stem cell lines

    PubMed Central

    Niclis, Jonathan C.; Pinar, Anita; Haynes, John M.; Alsanie, Walaa; Jenny, Robert; Dottori, Mirella; Cram, David S.

    2012-01-01

    Huntington's disease (HD) is an incurable neurodegenerative disorder caused by a CAG repeat expansion in exon 1 of the Huntingtin (HTT) gene. Recently, induced pluripotent stem cell (iPSC) lines carrying atypical and aggressive (CAG60+) HD variants have been generated and exhibit disparate molecular pathologies. Here we investigate two human embryonic stem cell (hESC) lines carrying CAG37 and CAG51 typical late-onset repeat expansions in comparison to wildtype control lines during undifferentiated states and throughout forebrain neuronal differentiation. Pluripotent HD lines demonstrate growth, viability, pluripotent gene expression, mitochondrial activity and forebrain specification that is indistinguishable from control lines. Expression profiles of crucial genes known to be dysregulated in HD remain unperturbed in the presence of mutant protein and throughout differentiation; however, elevated glutamate-evoked responses were observed in HD CAG51 neurons. These findings suggest typical late-onset HD mutations do not alter pluripotent parameters or the capacity to generate forebrain neurons, but that such progeny may recapitulate hallmarks observed in established HD model systems. Such HD models will help further our understanding of the cascade of pathological events leading to disease onset and progression, while simultaneously facilitating the identification of candidate HD therapeutics. PMID:23576953

  19. Transient receptor potential cation channel subfamily V member 1 expressing corneal sensory neurons can be subdivided into at least three subpopulations.

    PubMed

    Alamri, Abdulhakeem; Bron, Romke; Brock, James A; Ivanusic, Jason J

    2015-01-01

    The cornea is innervated by three main functional classes of sensory neurons: polymodal nociceptors, pure mechano-nociceptors and cold-sensing neurons. Here we explored transient receptor potential cation channel subfamily V member 1 (TRPV1) expression in guinea pig corneal sensory neurons, a widely used molecular marker of polymodal nociceptors. We used retrograde tracing to identify corneal afferent neurons in the trigeminal ganglion (TG) and double label in situ hybridization and/or immunohistochemistry to determine their molecular profile. In addition, we used immunohistochemistry to reveal the neurochemistry and structure of TRPV1 expressing nerve endings in the corneal epithelium. Approximately 45% of corneal afferent neurons expressed TRPV1, 28% expressed Piezo2 (a marker of putative pure mechano-nociceptors) and 8% expressed the transient receptor potential cation channel subfamily M member 8 (TRPM8; a marker of cold-sensing neurons). There was no co-expression of TRPV1 and Piezo2 in corneal afferent neurons, but 6% of TRPV1 neurons co-expressed TRPM8. The TRPV1 expressing corneal afferent neurons could be divided into three subpopulations on the basis of calcitonin gene-related peptide (CGRP) and/or or glial cell line-derived neurotrophic factor family receptor alpha3 (GFRα3) co-expression. In the corneal epithelium, the TRPV1 axons that co-expressed CGRP and GFRα3 ended as simple unbranched endings in the wing cell layer. In contrast, those that only co-expressed GFRα3 had ramifying endings that branched and terminated in the squamous cell layer, whereas those that only co-expressed CGRP had simple endings in the basal epithelium. This study shows that the majority of TRPV1 expressing corneal afferent neurons (>90%) are likely to be polymodal nociceptors. Furthermore, TRPV1 expressing corneal afferent neurons can be subdivided into specific subpopulations based on their molecular phenotype, nerve terminal morphology and distribution in the corneal

  20. Transient receptor potential cation channel subfamily V member 1 expressing corneal sensory neurons can be subdivided into at least three subpopulations

    PubMed Central

    Alamri, Abdulhakeem; Bron, Romke; Brock, James A.; Ivanusic, Jason J.

    2015-01-01

    The cornea is innervated by three main functional classes of sensory neurons: polymodal nociceptors, pure mechano-nociceptors and cold-sensing neurons. Here we explored transient receptor potential cation channel subfamily V member 1 (TRPV1) expression in guinea pig corneal sensory neurons, a widely used molecular marker of polymodal nociceptors. We used retrograde tracing to identify corneal afferent neurons in the trigeminal ganglion (TG) and double label in situ hybridization and/or immunohistochemistry to determine their molecular profile. In addition, we used immunohistochemistry to reveal the neurochemistry and structure of TRPV1 expressing nerve endings in the corneal epithelium. Approximately 45% of corneal afferent neurons expressed TRPV1, 28% expressed Piezo2 (a marker of putative pure mechano-nociceptors) and 8% expressed the transient receptor potential cation channel subfamily M member 8 (TRPM8; a marker of cold-sensing neurons). There was no co-expression of TRPV1 and Piezo2 in corneal afferent neurons, but 6% of TRPV1 neurons co-expressed TRPM8. The TRPV1 expressing corneal afferent neurons could be divided into three subpopulations on the basis of calcitonin gene-related peptide (CGRP) and/or or glial cell line-derived neurotrophic factor family receptor alpha3 (GFRα3) co-expression. In the corneal epithelium, the TRPV1 axons that co-expressed CGRP and GFRα3 ended as simple unbranched endings in the wing cell layer. In contrast, those that only co-expressed GFRα3 had ramifying endings that branched and terminated in the squamous cell layer, whereas those that only co-expressed CGRP had simple endings in the basal epithelium. This study shows that the majority of TRPV1 expressing corneal afferent neurons (>90%) are likely to be polymodal nociceptors. Furthermore, TRPV1 expressing corneal afferent neurons can be subdivided into specific subpopulations based on their molecular phenotype, nerve terminal morphology and distribution in the corneal

  1. Unique Responses are Observed in Transient Receptor Potential Ankyrin 1 and Vanilloid 1 (TRPA1 and TRPV1) Co-Expressing Cells.

    PubMed

    Sadofsky, Laura R; Sreekrishna, Koti T; Lin, Yakang; Schinaman, Renee; Gorka, Kate; Mantri, Yogita; Haught, John Christian; Huggins, Thomas G; Isfort, Robert J; Bascom, Charles C; Morice, Alyn H

    2014-06-11

    Transient receptor potential (TRP) ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors are implicated in modulation of cough and nociception. In vivo, TRPA1 and TRPV1 are often co-expressed in neurons and TRPA1V1 hetero-tetramer formation is noted in cells co-transfected with the respective expression plasmids. In order to understand the impact of TRP receptor interaction on activity, we created stable cell lines expressing the TRPA1, TRPV1 and co-expressing the TRPA1 and TRPV1 (TRPA1V1) receptors. Among the 600 compounds screened against these receptors, we observed a number of compounds that activated the TRPA1, TRPV1 and TRPA1V1 receptors; compounds that activated TRPA1 and TRPA1V1; compounds that activated TRPV1 and TRPA1V1; compounds in which TRPA1V1 response was modulated by either TRPA1 or TRPV1; and compounds that activated only TRPV1 or TRPA1 or TRPA1V1; and one compound that activated TRPA1 and TRPV1, but not TRPA1V1. These results suggest that co-expression of TRPA1 and TRPV1 receptors imparts unique activation profiles different from that of cells expressing only TRPA1 or TRPV1.

  2. Tools for Co-expressing Multiple Proteins in Mammalian Cells

    PubMed Central

    Assur, Zahra; Hendrickson, Wayne A.; Mancia, Filippo

    2013-01-01

    Summary Structural and functional studies of many mammalian systems are critically dependent on abundant supplies of recombinant multi-protein complexes. Mammalian cells are often the most ideal, if not the only suitable host for such experiments. This is due to their intrinsic capability to generate functional mammalian proteins. This advantage is frequently countered by problems with yields in expression, time required to generate over-expressing lines, and elevated costs. Co-expression of multiple proteins adds another level of complexity to these experiments, as cells need to be screened and selected for expression of suitable levels of each component. Here we present an efficient fluorescence marking procedure for establishing stable cell lines that over-express two proteins in co-ordination, and we validate the method in the production of recombinant monoclonal antibody Fab fragments. This procedure may readily be expanded to systems of greater complexity, comprising more then two components. PMID:21987254

  3. Organelle Transport in Cultured Drosophila Cells: S2 Cell Line and Primary Neurons.

    PubMed Central

    Gelfand, Vladimir I.

    2013-01-01

    Drosophila S2 cells plated on a coverslip in the presence of any actin-depolymerizing drug form long unbranched processes filled with uniformly polarized microtubules. Organelles move along these processes by microtubule motors. Easy maintenance, high sensitivity to RNAi-mediated protein knock-down and efficient procedure for creating stable cell lines make Drosophila S2 cells an ideal model system to study cargo transport by live imaging. The results obtained with S2 cells can be further applied to a more physiologically relevant system: axonal transport in primary neurons cultured from dissociated Drosophila embryos. Cultured neurons grow long neurites filled with bundled microtubules, very similar to S2 processes. Like in S2 cells, organelles in cultured neurons can be visualized by either organelle-specific fluorescent dyes or by using fluorescent organelle markers encoded by DNA injected into early embryos or expressed in transgenic flies. Therefore, organelle transport can be easily recorded in neurons cultured on glass coverslips using living imaging. Here we describe procedures for culturing and visualizing cargo transport in Drosophila S2 cells and primary neurons. We believe that these protocols make both systems accessible for labs studying cargo transport. PMID:24300413

  4. Organelle transport in cultured Drosophila cells: S2 cell line and primary neurons.

    PubMed

    Lu, Wen; Del Castillo, Urko; Gelfand, Vladimir I

    2013-11-20

    Drosophila S2 cells plated on a coverslip in the presence of any actin-depolymerizing drug form long unbranched processes filled with uniformly polarized microtubules. Organelles move along these processes by microtubule motors. Easy maintenance, high sensitivity to RNAi-mediated protein knock-down and efficient procedure for creating stable cell lines make Drosophila S2 cells an ideal model system to study cargo transport by live imaging. The results obtained with S2 cells can be further applied to a more physiologically relevant system: axonal transport in primary neurons cultured from dissociated Drosophila embryos. Cultured neurons grow long neurites filled with bundled microtubules, very similar to S2 processes. Like in S2 cells, organelles in cultured neurons can be visualized by either organelle-specific fluorescent dyes or by using fluorescent organelle markers encoded by DNA injected into early embryos or expressed in transgenic flies. Therefore, organelle transport can be easily recorded in neurons cultured on glass coverslips using living imaging. Here we describe procedures for culturing and visualizing cargo transport in Drosophila S2 cells and primary neurons. We believe that these protocols make both systems accessible for labs studying cargo transport.

  5. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses

    PubMed Central

    Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo

    2015-01-01

    Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm2, and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities. PMID:25972778

  6. A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses.

    PubMed

    Qiao, Ning; Mostafa, Hesham; Corradi, Federico; Osswald, Marc; Stefanini, Fabio; Sumislawska, Dora; Indiveri, Giacomo

    2015-01-01

    Implementing compact, low-power artificial neural processing systems with real-time on-line learning abilities is still an open challenge. In this paper we present a full-custom mixed-signal VLSI device with neuromorphic learning circuits that emulate the biophysics of real spiking neurons and dynamic synapses for exploring the properties of computational neuroscience models and for building brain-inspired computing systems. The proposed architecture allows the on-chip configuration of a wide range of network connectivities, including recurrent and deep networks, with short-term and long-term plasticity. The device comprises 128 K analog synapse and 256 neuron circuits with biologically plausible dynamics and bi-stable spike-based plasticity mechanisms that endow it with on-line learning abilities. In addition to the analog circuits, the device comprises also asynchronous digital logic circuits for setting different synapse and neuron properties as well as different network configurations. This prototype device, fabricated using a 180 nm 1P6M CMOS process, occupies an area of 51.4 mm(2), and consumes approximately 4 mW for typical experiments, for example involving attractor networks. Here we describe the details of the overall architecture and of the individual circuits and present experimental results that showcase its potential. By supporting a wide range of cortical-like computational modules comprising plasticity mechanisms, this device will enable the realization of intelligent autonomous systems with on-line learning capabilities.

  7. Afferent Neurons of the Zebrafish Lateral Line Are Strict Selectors of Hair-Cell Orientation

    PubMed Central

    Faucherre, Adèle; Pujol-Martí, Jesús; Kawakami, Koichi; López-Schier, Hernán

    2009-01-01

    Hair cells in the inner ear display a characteristic polarization of their apical stereocilia across the plane of the sensory epithelium. This planar orientation allows coherent transduction of mechanical stimuli because the axis of morphological polarity of the stereocilia corresponds to the direction of excitability of the hair cells. Neuromasts of the lateral line in fishes and amphibians form two intermingled populations of hair cells oriented at 180° relative to each other, however, creating a stimulus-polarity ambiguity. Therefore, it is unknown how these animals resolve the vectorial component of a mechanical stimulus. Using genetic mosaics and live imaging in transgenic zebrafish to visualize hair cells and neurons at single-cell resolution, we show that lateral-line afferents can recognize the planar polarization of hair cells. Each neuron forms synapses with hair cells of identical orientation to divide the neuromast into functional planar-polarity compartments. We also show that afferent neurons are strict selectors of polarity that can re-establish synapses with identically oriented targets during hair-cell regeneration. Our results provide the anatomical bases for the physiological models of signal-polarity resolution by the lateral line. PMID:19223970

  8. Co-Expression of α9β1 Integrin and VEGF-D Confers Lymphatic Metastatic Ability to a Human Breast Cancer Cell Line MDA-MB-468LN

    PubMed Central

    Majumder, Mousumi; Rodriguez-Torres, Mauricio; Torres-Garcia, Jose; Wiebe, Ryan; Timoshenko, Alexander V.; Bhattacharjee, Rabindra N.; Chambers, Ann F.; Lala, Peeyush K.

    2012-01-01

    Introduction and Objectives Lymphatic metastasis is a common occurrence in human breast cancer, mechanisms remaining poorly understood. MDA-MB-468LN (468LN), a variant of the MDA-MB-468GFP (468GFP) human breast cancer cell line, produces extensive lymphatic metastasis in nude mice. 468LN cells differentially express α9β1 integrin, a receptor for lymphangiogenic factors VEGF-C/-D. We explored whether (1) differential production of VEGF-C/-D by 468LN cells provides an autocrine stimulus for cellular motility by interacting with α9β1 and a paracrine stimulus for lymphangiogenesis in vitro as measured with capillary-like tube formation by human lymphatic endothelial cells (HMVEC-dLy); (2) differential expression of α9 also promotes cellular motility/invasiveness by interacting with macrophage derived factors; (3) stable knock-down of VEGF-D or α9 in 468LN cells abrogates lymphangiogenesis and lymphatic metastasis in vivo in nude mice. Results A comparison of expression of cyclo-oxygenase (COX)-2 (a VEGF-C/-D inducer), VEGF-C/-D and their receptors revealed little COX-2 expression by either cells. However, 468LN cells showed differential VEGF-D and α9β1 expression, VEGF-D secretion, proliferative, migratory/invasive capacities, latter functions being stimulated further with VEGF-D. The requirement of α9β1 for native and VEGF-D-stimulated proliferation, migration and Erk activation was demonstrated by treating with α9β1 blocking antibody or knock-down of α9. An autocrine role of VEGF-D in migration was shown by its impairment by silencing VEGF-D and restoration with VEGF-D. 468LN cells and their soluble products stimulated tube formation, migration/invasiveness of HMVEC-dLy cell in a VEGF-D dependent manner as indicated by the loss of stimulation by silencing VEGF-D in 468LN cells. Furthermore, 468LN cells showed α9-dependent stimulation of migration/invasiveness by macrophage products. Finally, capacity for intra-tumoral lymphangiogenesis and lymphatic

  9. Co-expression of α9β1 integrin and VEGF-D confers lymphatic metastatic ability to a human breast cancer cell line MDA-MB-468LN.

    PubMed

    Majumder, Mousumi; Tutunea-Fatan, Elena; Xin, Xiping; Rodriguez-Torres, Mauricio; Torres-Garcia, Jose; Wiebe, Ryan; Timoshenko, Alexander V; Bhattacharjee, Rabindra N; Chambers, Ann F; Lala, Peeyush K

    2012-01-01

    Lymphatic metastasis is a common occurrence in human breast cancer, mechanisms remaining poorly understood. MDA-MB-468LN (468LN), a variant of the MDA-MB-468GFP (468GFP) human breast cancer cell line, produces extensive lymphatic metastasis in nude mice. 468LN cells differentially express α9β1 integrin, a receptor for lymphangiogenic factors VEGF-C/-D. We explored whether (1) differential production of VEGF-C/-D by 468LN cells provides an autocrine stimulus for cellular motility by interacting with α9β1 and a paracrine stimulus for lymphangiogenesis in vitro as measured with capillary-like tube formation by human lymphatic endothelial cells (HMVEC-dLy); (2) differential expression of α9 also promotes cellular motility/invasiveness by interacting with macrophage derived factors; (3) stable knock-down of VEGF-D or α9 in 468LN cells abrogates lymphangiogenesis and lymphatic metastasis in vivo in nude mice. A comparison of expression of cyclo-oxygenase (COX)-2 (a VEGF-C/-D inducer), VEGF-C/-D and their receptors revealed little COX-2 expression by either cells. However, 468LN cells showed differential VEGF-D and α9β1 expression, VEGF-D secretion, proliferative, migratory/invasive capacities, latter functions being stimulated further with VEGF-D. The requirement of α9β1 for native and VEGF-D-stimulated proliferation, migration and Erk activation was demonstrated by treating with α9β1 blocking antibody or knock-down of α9. An autocrine role of VEGF-D in migration was shown by its impairment by silencing VEGF-D and restoration with VEGF-D. 468LN cells and their soluble products stimulated tube formation, migration/invasiveness of HMVEC-dLy cell in a VEGF-D dependent manner as indicated by the loss of stimulation by silencing VEGF-D in 468LN cells. Furthermore, 468LN cells showed α9-dependent stimulation of migration/invasiveness by macrophage products. Finally, capacity for intra-tumoral lymphangiogenesis and lymphatic metastasis in nude mice was completely

  10. A comparison of 15 Hz sine on-line and off-line magnetic stimulation affecting the voltage-gated sodium channel currents of prefrontal cortex pyramidal neurons

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Dong, Lei; Gao, Yang; Dou, Jun-Rong; Li, Ze-yan

    2016-10-01

    Combined with the use of patch-clamp techniques, repetitive transcranial magnetic stimulation (rTMS) has proven to be a noninvasive neuromodulation tool that can inhibit or facilitate excitability of neurons after extensive research. The studies generally focused on the method: the neurons are first stimulated in an external standard magnetic exposure device, and then moved to the patch-clamp to record electrophysiological characteristics (off-line magnetic exposure). Despite its universality, real-time observation of the effects of magnetic stimulation on the neurons is more effective (on-line magnetic stimulation). In this study, we selected a standard exposure device for magnetic fields acting on mouse prefrontal cortex pyramidal neurons, and described a new method that a patch-clamp setup was modified to allow on-line magnetic stimulation. By comparing the off-line exposure and on-line stimulation of the same magnetic field intensity and frequency affecting the voltage-gated sodium channel currents, we succeeded in proving the feasibility of the new on-line stimulation device. We also demonstrated that the sodium channel currents of prefrontal cortex pyramidal neurons increased significantly under the 15 Hz sine 1 mT, and 2 mT off-line magnetic field exposure and under the 1 mT and 2 mT on-line magnetic stimulation, and the rate of acceleration was most significant on 2 mT on-line magnetic stimulation. This study described the development of a new on-line magnetic stimulator and successfully demonstrated its practicability for scientific stimulation of neurons.

  11. Computer aided solution for segmenting the neuron line in hippocampal microscope images

    NASA Astrophysics Data System (ADS)

    Albaidhani, Tahseen; Jassim, Sabah; Al-Assam, Hisham

    2017-05-01

    The brain Hippocampus component is known to be responsible for memory and spatial navigation. Its functionality depends on the status of different blood vessels within the Hippocampus and is severely impaired by Alzheimer's disease as a result blockage of increasing number of blood vessels by accumulation of amyloid-beta (Aβ) protein. Accurate counting of blood vessels within the Hippocampus of mice brain, from microscopic images, is an active research area for the understanding of Alzheimer's disease. Here, we report our work on automatic detection of the Region of Interest, i.e. the region in which blood vessels are located. This area typically falls between the hippocampus edge and the line of neurons within the Hippocampus. This paper proposes a new method to detect and exclude the neuron line to improve the accuracy of blood vessel counting because some neurons on it might lead to false positive cases as they look like blood vessels. Our proposed solution is based on using trainable segmentation approach with morphological operations, taking into account variation in colour, intensity values, and image texture. Experiments on a sufficient number of microscopy images of mouse brain demonstrate the effectiveness of the developed solution in preparation for blood vessels counting.

  12. [Neuronal differentiation of human small cell lung cancer cell line PC-6 by Solcoseryl].

    PubMed

    Shimizu, T

    1997-11-01

    Solcoseryl is composed of extracts from calf blood, and is a drug known to activate tissue respiration. In the present study, I demonstrated the cell biological effects of Solcoseryl on a human small cell lung cancer cell line, PC-6, by analyzing cell morphology, cell growth, expression of neuronal differentiation markers, and the ras proto-oncogene product(ras p21). Exposure of PC-6 cells to Solcoseryl at the concentration of 200 microliters/ml induced (1) cell morphological changes, including neurodendrite-like projections from the cell surface, and (2) complete inhibition of cell growth, that was shown by the loss of Ki-67 expression. Solcoseryl also induced the expression of neurofilament protein and acetylcholinesterase, both of which are markers of neuronal differentiation. Moreover, it upregulated the expression of the ras proto-oncogene product, ras p21. Taken together, these data suggest that Solcoseryl is composed of component(s) which can induce neuronal differentiation of the human small cell lung cancer cell line, PC-6.

  13. Descending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe.

    PubMed

    Bratton, B; Bastian, J

    1990-04-01

    The nucleus praeeminentialis projects to the electrosensory lateral line lobe via 2 distinct pathways. Neurons that project to the posterior eminentia granularis and therefore influence the electrosensory lateral line lobe indirectly are described in the preceding report. This report describes the physiological properties and anatomical characteristics, revealed with Lucifer yellow staining, of n. praeeminentialis neurons that project directly to the ventral molecular layer of the electrosensory lateral line lobe. The neurons studied were the stellate cells described by Sas and Maler (1983), and we found 2 physiological subtypes of these. These neurons typically had no spontaneous activity, but responded vigorously to either increased electric organ discharge amplitude on the contralateral side of the body (ST-E cells) or to decreased amplitude (ST-I cells). These neurons also responded to low-frequency sinusoidal electric organ discharge amplitude modulations (AM) but were inhibited by AMs having frequencies greater than about 16 Hz. These stellate neurons were unable to encode information about long-term changes in electric organ discharge amplitude, but they responded very well to moving electrolocation targets. The relatively long response latency of these neurons suggests that they receive inputs from higher centers in addition to those from the electrosensory lateral line lobe. It is suggested that these cells alter the sensitivity of restricted populations of output cells in the electrosensory lateral line lobe and process temporally and spatially restricted stimuli. They may act to increase the intensity of the neural representation of important stimuli.

  14. Establishment of cholinergic neuron-like cell lines with differential vulnerability to nitrosative stress.

    PubMed

    Personett, David A; Williams, Katrina; Baskerville, Karen A; McKinney, Michael

    2007-05-01

    Cholinergic cell lines were established by fusion of embryonic day 17 wild-type neurons from rat basal forebrain (BF) and upper brainstem (BS) with N18tg neuroblastoma cells. Isolated clones expressed choline acetyltransferase (ChAT) and neuronal nitric oxide synthase (nNOS) activities that were increased upon differentiation with retinoic acid. Clones from the BF expressed high levels of the tyrosine kinase type A (TrkA) receptor expression and activation of the mitogen-activated kinase ERK2 upon treatment with nerve growth factor. Like wild-type cholinergic populations, the six clones studied were variably resistant to nitric oxide (NO) excess from addition of S-nitroso-N-acetyl-D, L-penicillamine (SNAP). Of these, the BS2 clone exhibited resistance like in vivo BS cholinergic neurons, while the MS10 clone mimicked in vivo BF vulnerability. Apoptosis in response to NO excess was preceded by increases in mitochondrial responses bax/bcl-2 ratios, but cytochrome C was not released. Mitochondrial levels of apoptosis initiating factor (AIF) were either unchanged or increased, and only in MS clones was endonuclease G (EndoG) released. Microarray data indicated the existence of endoplasmic reticular (ER) stress and caspase-4 and caspase-12 were involved in the pathway to DNA fragmentation. The array data also indicated a survival role for mdm2, and its blockade rendered vulnerable the brainstem survivor clone BS2. Akt and ERK1/2 pathways were activated in response to NO and their blockade increased DNA fragmentation. Blockade of GSK-3 alpha/beta, a downstream target of Akt, reduced SNAP toxicity and this was more prominent in basal forebrain clones. We have identified two cholinergic cell lines useful for molecular studies of cholinergic vulnerability. We hypothesize that, in cholinergic neurons, control of ER stress signaling may be a major factor in differential vulnerability.

  15. Estimation of the orientation of short lines with a realistic population of cortical neurons

    NASA Astrophysics Data System (ADS)

    Shokhirev, Kirill Nikolai

    The inhomogeneous distribution of the receptive fields of cortical neurons influences the cortical representation of the orientation of short lines seen in visual images. A model of the response of populations of neurons in the human primary visual cortex is constructed by combining realistic response properties of individual neurons and cortical maps of orientation and location preferences. The encoding error characterizes the difference between a visual stimulus and its cortical representation, and is calculated using Fisher information, as the square root of the variance of a statistically efficient estimator. The error of encoding orientation varies with the location and orientation of the short line stimulus as modulated by the underlying orientation preference map. The average encoding error depends weakly on the structure of the orientation preference map and is smaller than the human error of estimating orientation. From this comparison I conclude that the actual mechanism of orientation perception does not make efficient use of all the information available in the neuronal responses and that the decoding of visual information from neuronal responses limits psychophysical performance. Two forms of a population vector (PV) estimator were used to test if a simple estimation mechanism can account for the human accuracy of estimation of the orientation. The canonical PV estimator is similar to the models proposed previously for estimation of movement direction in the motor cortex. The "normalized" PV estimator has coefficients scaled by the local density of neurons in the space of preferred parameters. The average variance of either estimator does not increase appreciably when a realistic distribution is used instead of a random distribution of preferred orientations and remains significantly below the psychophysical threshold. However, the bias of the canonical PV estimator increases by approximately a factor of 15 compared with the random distribution. The

  16. Descending control of electroreception. I. Properties of nucleus praeeminentialis neurons projecting indirectly to the electrosensory lateral line lobe.

    PubMed

    Bastian, J; Bratton, B

    1990-04-01

    The first-order CNS processing region within the electrosensory system, the electrosensory lateral line lobe, receives massive descending inputs from the nucleus praeeminentialis as well as the primary afferent projection. The n. praeeminentialis receives its input from the electrosensory lateral line lobe as well as from higher centers; hence this nucleus occupies an important position in a feedback loop within the electrosensory system. This report describes the physiological properties of a category of n. praeeminentialis neurons characterized by very high spontaneous firing frequency, but relatively poor sensitivity to electrolocation targets as compared to neurons in the electrosensory lateral line lobe. These neurons are specialized to encode long-term changes in electric organ discharge amplitude with high resolution. Intracellular recording and Lucifer yellow staining of these neurons show that they are the previously described multipolar neurons of the n. praeeminentialis, and they project bilaterally to the posterior eminentia granularis. Posterior eminentia granularis efferents project to the electrosensory lateral line lobe forming its dorsal molecular layer. Hence, these multipolar cells influence the electrosensory lateral line lobe circuitry indirectly. The information that the multipolar cells encode regarding the electric organ discharge amplitude may be needed for a gain control mechanism operative within the electrosensory lateral line lobe. Previous studies have shown that the indirect projection from the n. praeeminentialis to the electrosensory lateral line lobe must be intact for this gain control mechanism to operate.

  17. LOX-1 expression and oxidized LDL uptake and toxicity in the HN33 neuronal cell line.

    PubMed

    Mao, Xiaoou; Xie, Lin; Greenberg, David A

    2014-09-19

    Cardiovascular risk factors appear to influence the risk and progression of neurodegenerative disease, but the mechanisms involved are poorly understood. We investigated the possible involvement of oxidized low-density lipoprotein receptor (LOX-1) and oxidized low-density lipoprotein (Ox-LDL) in neurodegeneration by studying the expression of LOX-1 and the effects of Ox-LDL in HN33 cells, a neuronal cell line of central nervous system origin. HN33 cells showed LOX-1 protein expression, hypoxic induction of LOX-1, Ox-LDL uptake and Ox-LDL toxicity. LOX-1/Ox-LDL signaling may contribute to the association between cardiovascular risk factors and neurodegenerative disease.

  18. Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora

    PubMed Central

    Hsieh, Heidi; Vignesh, Kavitha Subramanian; Deepe, George S.; Choubey, Divaker; Shertzer, Howard G.; Genter, Mary Beth

    2016-01-01

    Zinc is both an essential and potentially toxic metal. It is widely believed that oral zinc supplementation can reduce the effects of the common cold; however, there is strong clinical evidence that intranasal (IN) zinc gluconate (ZG) gel treatment for this purpose causes anosmia, or the loss of the sense of smell, in humans. Using the rat olfactory neuron cell line, Odora, we investigated the molecular mechanism by which zinc exposure exerts its toxic effects on olfactory neurons. Following treatment of Odora cells with 100 and 200 μM ZG for 0-24 h, RNA-seq and in silico analyses revealed up-regulation of pathways associated with zinc metal response, oxidative stress, and ATP production. We observed that Odora cells recovered from zinc-induced oxidative stress, but ATP depletion persisted with longer exposure to ZG. ZG exposure increased levels of NLRP3 and IL-1β protein levels in a time-dependent manner, suggesting that zinc exposure may cause an inflammasome-mediated cell death, pyroptosis, in olfactory neurons. PMID:27179668

  19. Evaluation of the toxicity of zinc in the rat olfactory neuronal cell line, Odora.

    PubMed

    Hsieh, H; Amlal, H; Genter, M B

    2015-03-01

    Zinc (Zn) has long been touted as a panacea for common cold. Recently, there has been some controversy over whether an intranasal (IN) zinc gluconate gel, purported to fight colds, causes anosmia, or loss of the sense of smell, in humans. Previous evidence has shown that IN zinc sulfate (ZnSO4) solutions can cause anosmia in humans as well as significant damage to the olfactory epithelium in rodents. Using an in vitro olfactory neuron model (the rat Odora cell line), we tested the hypothesis that Zn toxicity was caused by inhibition of the hydrogen voltage-gated channel 1(HVCN1), leading to acidosis and apoptotic cell death. Following studies to characterize the toxicity of zinc gluconate and ZnSO4, Odora cells were grown on coverslips and loaded with 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymethyl ester to measure intracellular pH in the presence and absence of Zn salts. While we found that HVCN1 is not functional in Odora cells, we found that olfactory neurons in vitro maintain their intracellular pH through a sodium/proton exchanger, specifically the sodium proton antiporter 1. ZnSO4, at nontoxic levels, had no impact on intracellular pH after acute exposure or after 24 h of incubation with the cells. In conclusion, Zn toxicity is not mediated through an acidification of intracellular pH in olfactory neurons in vitro. © The Author(s) 2015.

  20. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis.

    PubMed

    Regalia, Giulia; Coelli, Stefania; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting "building blocks" into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis.

  1. A Framework for the Comparative Assessment of Neuronal Spike Sorting Algorithms towards More Accurate Off-Line and On-Line Microelectrode Arrays Data Analysis

    PubMed Central

    Pedrocchi, Alessandra

    2016-01-01

    Neuronal spike sorting algorithms are designed to retrieve neuronal network activity on a single-cell level from extracellular multiunit recordings with Microelectrode Arrays (MEAs). In typical analysis of MEA data, one spike sorting algorithm is applied indiscriminately to all electrode signals. However, this approach neglects the dependency of algorithms' performances on the neuronal signals properties at each channel, which require data-centric methods. Moreover, sorting is commonly performed off-line, which is time and memory consuming and prevents researchers from having an immediate glance at ongoing experiments. The aim of this work is to provide a versatile framework to support the evaluation and comparison of different spike classification algorithms suitable for both off-line and on-line analysis. We incorporated different spike sorting “building blocks” into a Matlab-based software, including 4 feature extraction methods, 3 feature clustering methods, and 1 template matching classifier. The framework was validated by applying different algorithms on simulated and real signals from neuronal cultures coupled to MEAs. Moreover, the system has been proven effective in running on-line analysis on a standard desktop computer, after the selection of the most suitable sorting methods. This work provides a useful and versatile instrument for a supported comparison of different options for spike sorting towards more accurate off-line and on-line MEA data analysis. PMID:27239191

  2. Generation of human cortical neurons from a new immortal fetal neural stem cell line

    SciTech Connect

    Cacci, E.; Villa, A.; Parmar, M.; Cavallaro, M.; Mandahl, N.; Lindvall, O.; Martinez-Serrano, A.; Kokaia, Z. . E-mail: Zaal.Kokaia@med.lu.se

    2007-02-01

    Isolation and expansion of neural stem cells (NSCs) of human origin are crucial for successful development of cell therapy approaches in neurodegenerative diseases. Different epigenetic and genetic immortalization strategies have been established for long-term maintenance and expansion of these cells in vitro. Here we report the generation of a new, clonal NSC (hc-NSC) line, derived from human fetal cortical tissue, based on v-myc immortalization. Using immunocytochemistry, we show that these cells retain the characteristics of NSCs after more than 50 passages. Under proliferation conditions, when supplemented with epidermal and basic fibroblast growth factors, the hc-NSCs expressed neural stem/progenitor cell markers like nestin, vimentin and Sox2. When growth factors were withdrawn, proliferation and expression of v-myc and telomerase were dramatically reduced, and the hc-NSCs differentiated into glia and neurons (mostly glutamatergic and GABAergic, as well as tyrosine hydroxylase-positive, presumably dopaminergic neurons). RT-PCR analysis showed that the hc-NSCs retained expression of Pax6, Emx2 and Neurogenin2, which are genes associated with regionalization and cell commitment in cortical precursors during brain development. Our data indicate that this hc-NSC line could be useful for exploring the potential of human NSCs to replace dead or damaged cortical cells in animal models of acute and chronic neurodegenerative diseases. Taking advantage of its clonality and homogeneity, this cell line will also be a valuable experimental tool to study the regulatory role of intrinsic and extrinsic factors in human NSC biology.

  3. Bispyridinium Compounds Inhibit Both Muscle and Neuronal Nicotinic Acetylcholine Receptors in Human Cell Lines

    PubMed Central

    Ring, Avi; Strom, Bjorn Oddvar; Turner, Simon R.; Timperley, Christopher M.; Bird, Michael; Green, A. Christopher; Chad, John E.; Worek, Franz; Tattersall, John E. H.

    2015-01-01

    Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning. PMID:26274808

  4. Projection neurons of the mormyrid electrosensory lateral line lobe: morphology, immunohistochemistry, and synaptology.

    PubMed

    Grant, K; Meek, J; Sugawara, Y; Veron, M; Denizot, J P; Hafmans, T G; Serrier, J; Szabo, T

    1996-11-04

    This paper describes the morphological, immunohistochemical, and synaptic properties of projection neurons in the highly laminated medial and dorsolateral zones of the mormyrid electrosensory lateral line lobe (ELL). These structures are involved in active electrolocation, i.e., the detection and localization of objects in the nearby environment of the fish on the basis of changes in the reafferent electrosensory signal generated by the animal's own electric organ discharge. Electrosensory, corollary electromotor command-associated signals (corollary discharges), and a variety of other inputs are integrated within the ELL microcircuit. The organization of ELL projection neurons is analyzed at the light and electron microscopic levels based on Golgi impregnations, intracellular labeling, neuroanatomical tracer techniques, and gamma-aminobutyric acid (GABA), gamma-aminobutyric acid decarboxylase (GAD), and glutamate immunohistochemistry. Two main types of ELL projection neurons have been distinguished in mormyrids: large ganglionic (LG) and large fusiform (LF) cells. LG cells have a multipolar cell body (average diameter 13 microns) in the ganglionic layer, whereas LF cells have a fusiform cell body (on average, about 10 x 20 microns) in the granular layer. Apart from the location and shape of their soma, the morphological properties of these cell types are largely similar. They are glutamaterigic and project to the midbrain torus semicircularis, where their axon terminals make axodendritic synaptic contacts in the lateral nucleus. They have 6-12 apical dendrites in the molecular layer, with about 10,000 spines contacted by GABA-negative terminals and about 3,000 GABA-positive contacts on the smooth dendritic surface between the spines. Their somata and short, smooth basal dendrites, which arborize in the plexiform layer (LG cells) or in the granular layer (LF cells), are densely covered with GABA-positive, inhibitory terminals. Correlation with physiological data

  5. Multiscale Embedded Gene Co-expression Network Analysis

    PubMed Central

    Song, Won-Min; Zhang, Bin

    2015-01-01

    Gene co-expression network analysis has been shown effective in identifying functional co-expressed gene modules associated with complex human diseases. However, existing techniques to construct co-expression networks require some critical prior information such as predefined number of clusters, numerical thresholds for defining co-expression/interaction, or do not naturally reproduce the hallmarks of complex systems such as the scale-free degree distribution of small-worldness. Previously, a graph filtering technique called Planar Maximally Filtered Graph (PMFG) has been applied to many real-world data sets such as financial stock prices and gene expression to extract meaningful and relevant interactions. However, PMFG is not suitable for large-scale genomic data due to several drawbacks, such as the high computation complexity O(|V|3), the presence of false-positives due to the maximal planarity constraint, and the inadequacy of the clustering framework. Here, we developed a new co-expression network analysis framework called Multiscale Embedded Gene Co-expression Network Analysis (MEGENA) by: i) introducing quality control of co-expression similarities, ii) parallelizing embedded network construction, and iii) developing a novel clustering technique to identify multi-scale clustering structures in Planar Filtered Networks (PFNs). We applied MEGENA to a series of simulated data and the gene expression data in breast carcinoma and lung adenocarcinoma from The Cancer Genome Atlas (TCGA). MEGENA showed improved performance over well-established clustering methods and co-expression network construction approaches. MEGENA revealed not only meaningful multi-scale organizations of co-expressed gene clusters but also novel targets in breast carcinoma and lung adenocarcinoma. PMID:26618778

  6. The adult CNS retains the potential to direct region-specific differentiation of a transplanted neuronal precursor cell line.

    PubMed

    Shihabuddin, L S; Hertz, J A; Holets, V R; Whittemore, S R

    1995-10-01

    The chronic survival and differentiation of the conditionally immortalized neuronal cell line, RN33B, was examined following transplantation into the adult and neonatal rat hippocampus and cerebral cortex. In clonal culture, differentiated RN33B cells express p75NTR and trkB mRNA and protein, and respond to brain-derived neurotrophic factor treatment by inducing c-fos mRNA. Transplanted cells, identified using immunohistochemistry to detect beta-galactosidase expression, were seen in most animals up to 24 weeks posttransplantation (the latest time point examined). Stably integrated cells with various morphologies consistent with their transplantation site were observed. In the cerebral cortex, many RN33B cells differentiated with morphologies similar to pyramidal neurons and stellate cells. In the hippocampal formation, many RN33B cells assumed morphologies similar to pyramidal neurons characteristic of CA1 and CA3 regions, granular cell layer neurons of the dentate gyrus, and polymorphic neurons of the hilar region. Identical morphologies were observed in both adult and neonatal hosts, although a greater percentage of beta-galactosidase immunoreactive cells had differentiated in the neonatal brains. These results suggest that RN33B cells have the developmental plasticity to respond to local microenvironmental signals and that the adult brain retains the capacity to direct the differentiation of neuronal precursor cells in a direction that is consistent with that of endogenous neurons.

  7. Transgenic Mouse Lines Subdivide External Segment of the Globus Pallidus (GPe) Neurons and Reveal Distinct GPe Output Pathways

    PubMed Central

    Mastro, Kevin J.; Bouchard, Rachel S.; Holt, Hiromi A. K.

    2014-01-01

    Cell-type diversity in the brain enables the assembly of complex neural circuits, whose organization and patterns of activity give rise to brain function. However, the identification of distinct neuronal populations within a given brain region is often complicated by a lack of objective criteria to distinguish one neuronal population from another. In the external segment of the globus pallidus (GPe), neuronal populations have been defined using molecular, anatomical, and electrophysiological criteria, but these classification schemes are often not generalizable across preparations and lack consistency even within the same preparation. Here, we present a novel use of existing transgenic mouse lines, Lim homeobox 6 (Lhx6)–Cre and parvalbumin (PV)–Cre, to define genetically distinct cell populations in the GPe that differ molecularly, anatomically, and electrophysiologically. Lhx6–GPe neurons, which do not express PV, are concentrated in the medial portion of the GPe. They have lower spontaneous firing rates, narrower dynamic ranges, and make stronger projections to the striatum and substantia nigra pars compacta compared with PV–GPe neurons. In contrast, PV–GPe neurons are more concentrated in the lateral portions of the GPe. They have narrower action potentials, deeper afterhyperpolarizations, and make stronger projections to the subthalamic nucleus and parafascicular nucleus of the thalamus. These electrophysiological and anatomical differences suggest that Lhx6–GPe and PV–GPe neurons participate in different circuits with the potential to contribute to different aspects of motor function and dysfunction in disease. PMID:24501350

  8. Non-classical nuclear localization signal peptides for high efficiency lipofection of primary neurons and neuronal cell lines.

    PubMed

    Ma, H; Zhu, J; Maronski, M; Kotzbauer, P T; Lee, V M-Y; Dichter, M A; Diamond, S L

    2002-01-01

    Gene transfer into CNS is critical for potential therapeutic applications as well as for the study of the genetic basis of neural development and nerve function. Unfortunately, lipid-based gene transfer to CNS cells is extremely inefficient since the nucleus of these post-mitotic cells presents a significant barrier to transfection. We report the development of a simple and highly efficient lipofection method for primary embryonic rat hippocampal neurons (up to 25% transfection) that exploits the M9 sequence of the non-classical nuclear localization signal of heterogeneous nuclear ribonucleoprotein A1 for targeting beta(2)-karyopherin (transportin-1). M9-assistant lipofection resulted in 20-100-fold enhancement of transfection over lipofection alone for embryonic-derived retinal ganglion cells, rat pheochromocytoma (PC12) cells, embryonic rat ventral mesencephalon neurons, as well as the clinically relevant human NT2 cells or retinoic acid-differentiated NT2 neurons. This technique can facilitate the implementation of promoter construct experiments in post-mitotic cells, stable transformant generation, and dominant-negative mutant expression techniques in CNS cells.

  9. Seeing a straight line on a curved surface: decoupling of patterns from surfaces by single IT neurons

    PubMed Central

    Ratan Murty, N. Apurva

    2016-01-01

    We have no difficulty seeing a straight line drawn on a paper even when the paper is bent, but this inference is in fact nontrivial. Doing so requires either matching local features or representing the pattern after factoring out the surface shape. Here we show that single neurons in the monkey inferior temporal (IT) cortex show invariant responses to patterns across rigid and nonrigid changes of surfaces. We recorded neuronal responses to stimuli in which the pattern and the surrounding surface were varied independently. In a subset of neurons, we found pattern-surface interactions that produced similar responses to stimuli across congruent pattern and surface transformations. These interactions produced systematic shifts in curvature tuning of patterns when overlaid on convex and flat surfaces. Our results show that surfaces are factored out of patterns by single neurons, thereby enabling complex perceptual inferences. NEW & NOTEWORTHY We have no difficulty seeing a straight line on a curved piece of paper, but in fact, doing so requires decoupling the shape of the surface from the pattern itself. Here we report a novel form of invariance in the visual cortex: single neurons in monkey inferior temporal cortex respond similarly to congruent transformations of patterns and surfaces, in effect decoupling patterns from the surface on which they are overlaid. PMID:27733595

  10. The possible consequences for cognitive functions of external electric fields at power line frequency on hippocampal CA1 pyramidal neurons.

    PubMed

    Migliore, Rosanna; De Simone, Giada; Leinekugel, Xavier; Migliore, Michele

    2017-04-01

    The possible effects on cognitive processes of external electric fields, such as those generated by power line pillars and household appliances are of increasing public concern. They are difficult to study experimentally, and the relatively scarce and contradictory evidence make it difficult to clearly assess these effects. In this study, we investigate how, why and to what extent external perturbations of the intrinsic neuronal activity, such as those that can be caused by generation, transmission and use of electrical energy can affect neuronal activity during cognitive processes. For this purpose, we used a morphologically and biophysically realistic three-dimensional model of CA1 pyramidal neurons. The simulation findings suggest that an electric field oscillating at power lines frequency, and environmentally measured strength, can significantly alter both the average firing rate and temporal spike distribution properties of a hippocampal CA1 pyramidal neuron. This effect strongly depends on the specific and instantaneous relative spatial location of the neuron with respect to the field, and on the synaptic input properties. The model makes experimentally testable predictions on the possible functional consequences for normal hippocampal functions such as object recognition and spatial navigation. The results suggest that, although EF effects on cognitive processes may be difficult to occur in everyday life, their functional consequences deserve some consideration, especially when they constitute a systematic presence in living environments. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. The effects of diazinon and cypermethrin on the differentiation of neuronal and glial cell lines

    SciTech Connect

    Flaskos, J.; Harris, W.; Sachana, M.; Munoz, D.; Tack, J.; Hargreaves, A.J. . E-mail: alan.hargreaves@ntu.ac.uk

    2007-03-15

    Diazinon and cypermethrin are pesticides extensively used in sheep dipping. Diazinon is a known anti-cholinesterase, but there is limited information regarding its molecular mechanism of action. This paper describes the effects of diazinon and cypermethrin at a morphological and molecular level on differentiating mouse N2a neuroblastoma and rat C6 glioma cell lines. Concentrations up to 10 {mu}M of both compounds and their mixture had no effect on the viability of either cell line, as determined by methyl blue tetrazolium reduction and total protein assays. Microscopic analysis revealed that 1 {mu}M and 10 {mu}M diazinon but not cypermethrin inhibited the outgrowth of axon-like processes in N2a cells after a 24-h exposure but neither compound affected process outgrowth by differentiating C6 cells at these concentrations. Under these conditions, 10 {mu}M diazinon inhibited AChE slightly compared to the control after a 4-h exposure but not after 24 h. Western blotting analysis showed that morphological changes were associated with reduced cross-reactivity with antibodies that recognize the neurofilament heavy chain (NFH), microtubule associated protein MAP 1B and HSP-70 compared to control cell extracts, whereas reactivity with anti-{alpha}-tubulin antibodies was unchanged. Aggregation of NFH was observed in cell bodies of diazinon-treated N2a cells, as determined by indirect immunofluorescence staining. These data demonstrate that diazinon specifically targets neurite outgrowth in neuronal cells and that this effect is associated with disruption of axonal cytoskeleton proteins, whereas cypermethrin has no effect on the same parameters.

  12. Cytotoxic Effects of Tropodithietic Acid on Mammalian Clonal Cell Lines of Neuronal and Glial Origin

    PubMed Central

    Wichmann, Heidi; Vocke, Farina; Brinkhoff, Thorsten; Simon, Meinhard; Richter-Landsberg, Christiane

    2015-01-01

    The marine metabolite tropodithietic acid (TDA), produced by several Roseobacter clade bacteria, is known for its broad antimicrobial activity. TDA is of interest not only as a probiotic in aquaculture, but also because it might be of use as an antibacterial agent in non-marine or non-aquatic environments, and thus the potentially cytotoxic influences on eukaryotic cells need to be evaluated. The present study was undertaken to investigate its effects on cells of the mammalian nervous system, i.e., neuronal N2a cells and OLN-93 cells as model systems for nerve cells and glia. The data show that in both cell lines TDA exerted morphological changes and cytotoxic effects at a concentration of 0.3–0.5 µg/mL (1.4–2.4 µM). Furthermore, TDA caused a breakdown of the mitochondrial membrane potential, the activation of extracellular signal-regulated kinases ERK1/2, and the induction of the small heat shock protein HSP32/HO-1, which is considered as a sensor of oxidative stress. The cytotoxic effects were accompanied by an increase in intracellular Ca2+-levels, the disturbance of the microtubule network, and the reorganization of the microfilament system. Hence, mammalian cells are a sensitive target for the action of TDA and react by the activation of a stress response resulting in cell death. PMID:26633426

  13. Axon Guidance of Sympathetic Neurons to Cardiomyocytes by Glial Cell Line-Derived Neurotrophic Factor (GDNF)

    PubMed Central

    Takagishi, Yoshiko; Opthof, Tobias; Fu, Xianming; Hirabayashi, Masumi; Watabe, Kazuhiko; Jimbo, Yasuhiko; Kodama, Itsuo; Komuro, Issei

    2013-01-01

    Molecular signaling of cardiac autonomic innervation is an unresolved issue. Here, we show that glial cell line-derived neurotrophic factor (GDNF) promotes cardiac sympathetic innervation in vitro and in vivo. In vitro, ventricular myocytes (VMs) and sympathetic neurons (SNs) isolated from neonatal rat ventricles and superior cervical ganglia were cultured at a close distance. Then, morphological and functional coupling between SNs and VMs was assessed in response to GDNF (10 ng/ml) or nerve growth factor (50 ng/ml). As a result, fractions of neurofilament-M-positive axons and synapsin-I-positive area over the surface of VMs were markedly increased with GDNF by 9-fold and 25-fold, respectively, compared to control without neurotrophic factors. Pre- and post-synaptic stimulation of β1-adrenergic receptors (BAR) with nicotine and noradrenaline, respectively, resulted in an increase of the spontaneous beating rate of VMs co-cultured with SNs in the presence of GDNF. GDNF overexpressing VMs by adenovirus vector (AdGDNF-VMs) attracted more axons from SNs compared with mock-transfected VMs. In vivo, axon outgrowth toward the denervated myocardium in adult rat hearts after cryoinjury was also enhanced significantly by adenovirus-mediated GDNF overexpression. GDNF acts as a potent chemoattractant for sympathetic innervation of ventricular myocytes, and is a promising molecular target for regulation of cardiac function in diseased hearts. PMID:23843937

  14. Nerve growth factor amplifies cyclic AMP production in the HT4 neuronal cell line.

    PubMed

    Berg, K A; Maayani, S; McKay, R; Clarke, W P

    1995-01-01

    There has been considerable interest and controversy in the relationship between nerve growth factor (NGF) and the cyclic AMP (cAMP) second messenger system. We have used a novel, neuronal cell line (HT4) to investigate the effect of NGF on the adenylyl cyclase signaling system. Treatment of cells with NGF (100 ng/ml, 15 min) amplified cAMP accumulation (approximately 75%) in response to activation of adenosine A2 receptors (5 min) with 5'-N-ethylcarboxamidoadenosine or activation of adenylyl cyclase directly with forskolin. Basal cAMP accumulation was not altered by NGF. This amplification appears to be mediated by activation of protein kinase C (PKC) because (1) it was mimicked by activators (phorbol esters and a diacylglycerol analogue) of PKC, (2) the effects of NGF and phorbol ester on cAMP accumulation were not additive, (3) NGF amplification of cAMP accumulation was abolished by down-regulation of PKC, (4) NGF increased cytosolic PKC activity, and (5) inhibitors of PKC blocked the NGF-induced amplification of cAMP accumulation. Although NGF-induced amplification of cAMP accumulation was dependent upon PKC, mechanisms other than the classic activation pathway (i.e., hydrolysis of inositol phospholipids or the production of diacylglycerol) appeared to mediate PKC activation by NGF. The tyrosine kinase inhibitor, lavendustin A, blocked NGF-mediated amplification of cAMP accumulation, suggesting a novel interaction between a tyrosine kinase and protein kinase C.

  15. Learning from Co-expression Networks: Possibilities and Challenges

    PubMed Central

    Serin, Elise A. R.; Nijveen, Harm; Hilhorst, Henk W. M.; Ligterink, Wilco

    2016-01-01

    Plants are fascinating and complex organisms. A comprehensive understanding of the organization, function and evolution of plant genes is essential to disentangle important biological processes and to advance crop engineering and breeding strategies. The ultimate aim in deciphering complex biological processes is the discovery of causal genes and regulatory mechanisms controlling these processes. The recent surge of omics data has opened the door to a system-wide understanding of the flow of biological information underlying complex traits. However, dealing with the corresponding large data sets represents a challenging endeavor that calls for the development of powerful bioinformatics methods. A popular approach is the construction and analysis of gene networks. Such networks are often used for genome-wide representation of the complex functional organization of biological systems. Network based on similarity in gene expression are called (gene) co-expression networks. One of the major application of gene co-expression networks is the functional annotation of unknown genes. Constructing co-expression networks is generally straightforward. In contrast, the resulting network of connected genes can become very complex, which limits its biological interpretation. Several strategies can be employed to enhance the interpretation of the networks. A strategy in coherence with the biological question addressed needs to be established to infer reliable networks. Additional benefits can be gained from network-based strategies using prior knowledge and data integration to further enhance the elucidation of gene regulatory relationships. As a result, biological networks provide many more applications beyond the simple visualization of co-expressed genes. In this study we review the different approaches for co-expression network inference in plants. We analyse integrative genomics strategies used in recent studies that successfully identified candidate genes taking advantage of

  16. Co-Expression of GRK2 Reveals a Novel Conformational State of the µ-Opioid Receptor

    PubMed Central

    Nickolls, Sarah A.; Humphreys, Sian; Clark, Mellissa; McMurray, Gordon

    2013-01-01

    Agonists at the µ-opioid receptor are known to produce potent analgesic responses in the clinical setting, therefore, an increased understanding of the molecular interactions of ligands at this receptor could lead to improved analgesics. As historically morphine has been shown to be a poor recruiter of β-arrestin in recombinant cell systems and this can be overcome by the co-expression of GRK2, we investigated the effects of GRK2 co-expression, in a recombinant µ-opioid receptor cell line, on ligand affinity and intrinsic activity in both β-arrestin recruitment and [35S]GTPγS binding assays. We also investigated the effect of receptor depletion in the β-arrestin assay. GRK2 co-expression increased both agonist Emax and potency in the β-arrestin assay. The increase in agonist potency could not be reversed using receptor depletion, supporting that the effects were due to a novel receptor conformation not system amplification. We also observed a small but significant effect on agonist KL values. Potency values in the [35S]GTPγS assay were unchanged; however, inverse agonist activity became evident with GRK2 co-expression. We conclude that this is direct evidence that the µ-opioid receptor is an allosteric protein and the co-expression of signalling molecules elicits changes in its conformation and thus ligand affinity. This has implications when describing how ligands interact with the receptor and how efficacy is determined. PMID:24376730

  17. Glutamate transporter type 3 attenuates the activation of N-methyl-D-aspartate receptors co-expressed in Xenopus oocytes.

    PubMed

    Zuo, Zhiyi; Fang, Hongyu

    2005-06-01

    We studied the regulation of N-methy-D-aspartate receptor (NMDAR) current/activation by glutamate transporter type 3 (EAAT3), a neuronal EAAT in vivo, in the restricted extracellular space of a biological model. This model involved co-expressing EAAT3 and NMDAR (composed of NMDAR1-1a and NMDAR2A) in Xenopus oocytes. The NMDAR current was reduced in the co-expression oocytes but not in oocytes expressing NMDAR only when the flow of glutamate-containing superfusate was stopped. The degree of this current reduction was glutamate concentration-dependent. No reduction of NMDAR current was observed in Na+-free solution or when NMDA, a non-substrate for EAATs, was used as the agonist for NMDAR. In the continuous flow experiments, the dose-response curve of glutamate-induced current was shifted to the right-hand side in co-expression oocytes compared with oocytes expressing NMDAR alone. The degree of this shift depended on the abundance of EAAT3 in the co-expression oocytes. Thus, the glutamate concentrations sensed by NMDAR locally were lower than those in the superfusates. These results suggest that EAAT3 regulates the amplitude of NMDAR currents at pre-saturated concentrations of glutamate to EAAT3. Thus, EAATs, by rapidly regulating glutamate concentrations near NMDAR, modulate NMDAR current/activation.

  18. Cholinergic neurons regulate secretion of glial cell line-derived neurotrophic factor by skeletal muscle cells in culture.

    PubMed

    Vianney, John-Mary; Spitsbergen, John M

    2011-05-16

    Glial cell line-derived neurotrophic factor (GDNF) has been identified as a potent survival factor for both central and peripheral neurons. GDNF has been shown to be a potent survival factor for motor neurons during programmed cell death and continuous treatment with GDNF maintains hyperinnervation of skeletal muscle in adulthood. However, little is known about factors regulating normal production of endogenous GDNF in skeletal muscle. This study aimed to examine the role that motor neurons play in regulating GDNF secretion by skeletal muscle. A co-culture of skeletal muscle cells (C2C12) and cholinergic neurons, glioma×neuroblastoma hybrid cells (NG108-15) were used to create nerve-muscle interactions in vitro. Acetylcholine receptors (AChRs) on nerve-myotube co-cultures were blocked with alpha-bungarotoxin (α-BTX). GDNF protein content in cells and in culture medium was analyzed by enzyme-linked immunosorbant assay (ELISA) and western blotting. GDNF localization was examined by immunocytochemistry. The nerve-muscle co-culture study indicated that the addition of motor neurons to skeletal muscle cells reduced the secretion of GDNF by skeletal muscle. The results also showed that blocking AChRs with α-BTX reversed the action of neural cells on GDNF secretion by skeletal muscle. Although ELISA results showed no GDNF in differentiated NG108-15 cells grown alone, immunocytochemical analysis showed that GDNF was localized in NG108-15 cells co-cultured with C2C12 myotubes. These results suggest that motor neurons may be regulating their own supply of GDNF secreted by skeletal muscle and that activation of AChRs may be involved in this process.

  19. Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: implications for power line emissions

    PubMed Central

    Cavarretta, Francesco; Carnevale, Nicholas T.; Tegolo, Domenico; Migliore, Michele

    2014-01-01

    The possible cognitive effects of low frequency external electric fields (EFs), such as those generated by power lines, are poorly understood. Their functional consequences for mechanisms at the single neuron level are very difficult to study and identify experimentally, especially in vivo. The major open problem is that experimental investigations on humans have given inconsistent or contradictory results, making it difficult to estimate the possible effects of external low frequency electric fields on cognitive functions. Here we investigate this issue with realistic models of hippocampal CA1 pyramidal neurons. Our findings suggest how and why EFs, with environmentally observed frequencies and intensities far lower than what is required for direct neural activation, can perturb dendritic signal processing and somatic firing of neurons that are crucially involved in cognitive tasks such as learning and memory. These results show that individual neuronal morphology, ion channel dendritic distribution, and alignment with the electric field are major determinants of overall effects, and provide a physiologically plausible explanation of why experimental findings can appear to be small and difficult to reproduce, yet deserve serious consideration. PMID:25346660

  20. Distinction of two different classes of small-cell lung cancer cell lines by enzymatically inactive neuron-specific enolase.

    PubMed Central

    Splinter, T. A.; Verkoelen, C. F.; Vlastuin, M.; Kok, T. C.; Rijksen, G.; Haglid, K. G.; Boomsma, F.; van de Gaast, A.

    1992-01-01

    Neuron specific enolase (NSE) is widely used as a neuro-endocrine marker. However the presence of NSE in many non-neuroendocrine tissues has raised questions on the specificity of NSE. We have investigated NSE immunoreactivity (NSA-ag), gamma-enolase activity and total enolase activity in small cell lung cancer (SCLC) cell lines. During well-controlled exponential growth comparison of NSE-ag content and gamma-enolase activity with the doubling-time (Td) and NSE-ag content with gamma-enolase and total enolase activity led to a clear distinction of two types of cell line: variant cell lines plus part of the classic cell lines (type I) and the remaining classic cell lines (type II). The distinction was based upon both an abrupt 6-fold increase of gamma-enolase activity and an 18-fold increase of NSE-ag, which for the larger part was enzymatically inactive. Within each group the increase of NSE-ag content was significantly correlated with the increase of gamma-enolase activity and both NSE-ag content and gamma-enolase activity increased linearly with Td. It is concluded that gamma-enolase seems to be associated with the regulation of growth rate and that a compound with the gamma-enolase antigen but without enzyme activity can distinguish two different classes of SCLC cell lines. Furthermore the demonstration that NSE-ag can represent the active enzyme as well as an enzymatically inactive compound may explain why a controversy about neuron- or non-specificity of NSE exists. PMID:1333786

  1. GFR alpha-1 is expressed in parvalbumin GABAergic neurons in the hippocampus.

    PubMed

    Sarabi, A; Hoffer, B J; Olson, L; Morales, M

    2000-09-22

    Glial cell line derived neurotrophic factor (GDNF) is a potent survival factor for several types of neurons. GDNF binds with high affinity to GDNF-family receptor alpha-1 (GFR alpha-1). This receptor is expressed in different areas of the brain, including the hippocampus and dentate gyrus. By using in situ hybridization and immunohistochemistry, we found that 19% to 37% of glutamic acid decarboxylase (GAD) expressing neurons co-expressed GFR alpha-1 in the hippocampus. GFR alpha-1/GAD co-expression was found mainly in the stratum (s) pyramidale (29-37%) and s. oriens (20-25%). Further characterization of GFR alpha-1 expressing interneurons, based on their calcium-binding protein immunoreactivity, demonstrated that many parvalbumin (PV) immunoreactive neurons express GFR alpha-1 in the s. pyramidale of CA1 (72%), CA2 (70%) and CA3 (70%) subfields of the hippocampus. GFR alpha-1/PV double labeled neurons were also detected in the s. oriens of CA1 (52%), CA2 (27%) and CA3 (36%) subfields. The expression of GFR alpha-1 in principal neurons and in a specific sub-population of GABAergic neurons (PV-containing neurons) suggest that GDNF might modulate, in a selective manner, functions of the entire adult hippocampus.

  2. Co-expression patterns of cocaine- and amphetamine-regulated transcript (CART) with neuropeptides in dorsal root ganglia of the pig.

    PubMed

    Zacharko-Siembida, Anna; Kulik, Paweł; Szalak, Radosław; Lalak, Roman; Arciszewski, Marcin Bartłomiej

    2014-03-01

    In the present study the neuronal distribution of CART was evaluated immunohistochemically in porcine dorsal root ganglia (DRGs). In co-localization studies the co-expression patterns of CART with SP, CGRP, galanin, CALB and LENK were investigated by means of triple immunohistochemical stainings. In porcine DRGs, the expression of CART was found in approximately 5% of primary sensory neurons. The vast majority (ca. 95%) of CART-immunoreactive (IR) neurons were small and middle sized, and only 5% were categorized as large. CART-IR neurons additionally exhibiting the presence of SP/CGRP (ca. 12%), SP/CALB (ca. 12%), SP/LENK (ca. 5%) were found. The vast majority of CART-IR/CGRP-IR neurons did not display immunoreaction to SP (ca. 60%). Subclasses of CART-IR/LENK-IR/SP-negative (ca. 5%), as well as CART-IR/CALB-IR/SP-negative neurons (ca. 10%), were also visualized. In addition, CART-IR neurons with no immunoreactivities to any of the neuropeptides studied were also shown. In porcine DRGs none of the CART-IR neurons exhibited the presence of galanin. The results obtained in the study suggest that CART may functionally modulate the activity of the porcine primary sensory neurons. It is concluded that co-expression of CART with CGRP, SP, LENK and CALB in subsets of the pig L1-L6 DRGs neurons provide anatomical evidence for a CART role in pain processing. Copyright © 2013 Elsevier GmbH. All rights reserved.

  3. The novel neuropeptide phoenixin is highly co-expressed with nesfatin-1 in the rat hypothalamus, an immunohistochemical study.

    PubMed

    Pałasz, Artur; Rojczyk, Ewa; Bogus, Katarzyna; Worthington, John J; Wiaderkiewicz, Ryszard

    2015-04-10

    The hypothalamus regulates a number of autonomic functions essential for homeostasis; therefore, investigations concerning hypothalamic neuropeptides and their functions and distribution are of great importance in contemporary neuroscience. Recently, novel regulatory factors expressed in the hypothalamus have been discovered, of which nesfatin-1 and phoenixin (PNX), show intriguing similarities in their brain distributions. There are currently few studies characterizing PNX expression, so it is imperative to accurately trace its localization, with particular attention to the hypothalamic nuclei and nesfatin-1 co-expression. Using fluorescence and classical immunohistochemical stainings on adult rat brain, we visualized the potential co-expression of nesfatin-1 and PNX immunoreactive cells. We have demonstrated a distinct PNX-immunoreactivity in 21-32% of cells in the arcuate nucleus, paraventricular nucleus, ventromedial and lateral hypothalamus. Nesfatin-1 expression reached 45-68% of all neurons in the same sites, while co-expression was strikingly seen in the vast majority (70-86%) of PNX-immunoreactive neurons in the rat hypothalamic nuclei. Our results demonstrate for the first time, a wide distribution of PNX in the hypothalamus which could implicate a potential functional relationship with nesfatin-1, possibly in the regulation of the hypothalamic-pituitary-gonadal axis or other autonomic functions, which require further study. Copyright © 2015. Published by Elsevier Ireland Ltd.

  4. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    NASA Astrophysics Data System (ADS)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  5. Meta-Analysis of Differential Connectivity in Gene Co-Expression Networks in Multiple Sclerosis

    PubMed Central

    Creanza, Teresa Maria; Liguori, Maria; Liuni, Sabino; Nuzziello, Nicoletta; Ancona, Nicola

    2016-01-01

    Differential gene expression analyses to investigate multiple sclerosis (MS) molecular pathogenesis cannot detect genes harboring genetic and/or epigenetic modifications that change the gene functions without affecting their expression. Differential co-expression network approaches may capture changes in functional interactions resulting from these alterations. We re-analyzed 595 mRNA arrays from publicly available datasets by studying changes in gene co-expression networks in MS and in response to interferon (IFN)-β treatment. Interestingly, MS networks show a reduced connectivity relative to the healthy condition, and the treatment activates the transcription of genes and increases their connectivity in MS patients. Importantly, the analysis of changes in gene connectivity in MS patients provides new evidence of association for genes already implicated in MS by single-nucleotide polymorphism studies and that do not show differential expression. This is the case of amiloride-sensitive cation channel 1 neuronal (ACCN1) that shows a reduced number of interacting partners in MS networks, and it is known for its role in synaptic transmission and central nervous system (CNS) development. Furthermore, our study confirms a deregulation of the vitamin D system: among the transcription factors that potentially regulate the deregulated genes, we find TCF3 and SP1 that are both involved in vitamin D3-induced p27Kip1 expression. Unveiling differential network properties allows us to gain systems-level insights into disease mechanisms and may suggest putative targets for the treatment. PMID:27314336

  6. Synthesis of acetylcholine from choline derived from phosphatidylcholine in a human neuronal cell line

    SciTech Connect

    Blusztajn, J.K.; Liscovitch, M.; Richardson, U.I.

    1987-08-01

    Cholinergic neurons are unique among cells since they alone utilize choline not only as a component of major membrane phospholipids, such as phosphatidylcholine (Ptd-Cho), but also as a precursor of their neurotransmitter acetylcholine (AcCho). It has been hypothesized that choline-phospholipids might serve as a storage pool of choline for AcCho synthesis. The selective vulnerability of cholinergic neurons in certain neurodegenerative diseases (e.g., Alzheimer disease, motor neuron disorders) might result from the abnormally accelerated liberation of choline (to be used a precursor of AcCho) from membrane phospholipids, resulting in altered membrane composition and function and compromised neuronal viability. However, the proposed metabolic link between membrane turnover and AcCho synthesis has been difficult to demonstrate because of the heterogeneity of the preparations used. Here the authors used a population of purely cholinergic cells (human neuroblastomas, LA-N-2), incubated in the presence of (methyl-/sup 3/H)methionine to selectively label PtdCho synthesized by methylation of phosphatidylethanolamine, the only pathway of de novo choline synthesis. Three peaks of radioactive material that cochromatographed with authentic AcCho, choline, and phosphocholine were observed when the water-soluble metabolites of the (/sup 3/H)PtdCho were purified by high-performance liquid chromatography. The results demonstrate that AcCho can be synthesized from choline derived from the degradation of endogenous PtdCho formed de novo by methylation of phosphatidylethanolamine.

  7. Protein Co-Expression Network Analysis (ProCoNA)

    SciTech Connect

    Gibbs, David L.; Baratt, Arie; Baric, Ralph; Kawaoka, Yoshihiro; Smith, Richard D.; Orwoll, Eric S.; Katze, Michael G.; Mcweeney, Shannon K.

    2013-06-01

    Biological networks are important for elucidating disease etiology due to their ability to model complex high dimensional data and biological systems. Proteomics provides a critical data source for such models, but currently lacks robust de novo methods for network construction, which could bring important insights in systems biology. We have evaluated the construction of network models using methods derived from weighted gene co-expression network analysis (WGCNA). We show that approximately scale-free peptide networks, composed of statistically significant modules, are feasible and biologically meaningful using two mouse lung experiments and one human plasma experiment. Within each network, peptides derived from the same protein are shown to have a statistically higher topological overlap and concordance in abundance, which is potentially important for inferring protein abundance. The module representatives, called eigenpeptides, correlate significantly with biological phenotypes. Furthermore, within modules, we find significant enrichment for biological function and known interactions (gene ontology and protein-protein interactions). Biological networks are important tools in the analysis of complex systems. In this paper we evaluate the application of weighted co-expression network analysis to quantitative proteomics data. Protein co-expression networks allow novel approaches for biological interpretation, quality control, inference of protein abundance, a framework for potentially resolving degenerate peptide-protein mappings, and a biomarker signature discovery.

  8. Functional interaction between co-expressed MAGE-A proteins

    PubMed Central

    Laiseca, Julieta E.; Ladelfa, María F.; Cotignola, Javier; Peche, Leticia Y.; Pascucci, Franco A.; Castaño, Bryan A.; Galigniana, Mario D.; Schneider, Claudio

    2017-01-01

    MAGE-A (Melanoma Antigen Genes-A) are tumor-associated proteins with expression in a broad spectrum of human tumors and normal germ cells. MAGE-A gene expression and function are being increasingly investigated to better understand the mechanisms by which MAGE proteins collaborate in tumorigenesis and whether their detection could be useful for disease prognosis purposes. Alterations in epigenetic mechanisms involved in MAGE gene silencing cause their frequent co-expression in tumor cells. Here, we have analyzed the effect of MAGE-A gene co-expression and our results suggest that MageA6 can potentiate the androgen receptor (AR) co-activation function of MageA11. Database search confirmed that MageA11 and MageA6 are co-expressed in human prostate cancer samples. We demonstrate that MageA6 and MageA11 form a protein complex resulting in the stabilization of MageA11 and consequently the enhancement of AR activity. The mechanism involves association of the Mage A6-MHD domain to MageA11, prevention of MageA11 ubiquitinylation on lysines 240 and 245 and decreased proteasome-dependent degradation. We experimentally demonstrate here for the first time that two MAGE-A proteins can act together in a non-redundant way to potentiate a specific oncogenic function. Overall, our results highlight the complexity of the MAGE gene networking in regulating cancer cell behavior. PMID:28542476

  9. Functional interaction between co-expressed MAGE-A proteins.

    PubMed

    Laiseca, Julieta E; Ladelfa, María F; Cotignola, Javier; Peche, Leticia Y; Pascucci, Franco A; Castaño, Bryan A; Galigniana, Mario D; Schneider, Claudio; Monte, Martin

    2017-01-01

    MAGE-A (Melanoma Antigen Genes-A) are tumor-associated proteins with expression in a broad spectrum of human tumors and normal germ cells. MAGE-A gene expression and function are being increasingly investigated to better understand the mechanisms by which MAGE proteins collaborate in tumorigenesis and whether their detection could be useful for disease prognosis purposes. Alterations in epigenetic mechanisms involved in MAGE gene silencing cause their frequent co-expression in tumor cells. Here, we have analyzed the effect of MAGE-A gene co-expression and our results suggest that MageA6 can potentiate the androgen receptor (AR) co-activation function of MageA11. Database search confirmed that MageA11 and MageA6 are co-expressed in human prostate cancer samples. We demonstrate that MageA6 and MageA11 form a protein complex resulting in the stabilization of MageA11 and consequently the enhancement of AR activity. The mechanism involves association of the Mage A6-MHD domain to MageA11, prevention of MageA11 ubiquitinylation on lysines 240 and 245 and decreased proteasome-dependent degradation. We experimentally demonstrate here for the first time that two MAGE-A proteins can act together in a non-redundant way to potentiate a specific oncogenic function. Overall, our results highlight the complexity of the MAGE gene networking in regulating cancer cell behavior.

  10. Dynamic Visualization of Co-expression in Systems Genetics Data

    SciTech Connect

    New, Joshua Ryan; Huang, Jian; Chesler, Elissa J

    2008-01-01

    Biologists hope to address grand scientific challenges by exploring the abundance of data made available through modern microarray technology and other high-throughput techniques. The impact of this data, however, is limited unless researchers can effectively assimilate such complex information and integrate it into their daily research; interactive visualization tools are called for to support the effort. Specifically, typical studies of gene co-expression require novel visualization tools that enable the dynamic formulation and fine-tuning of hypotheses to aid the process of evaluating sensitivity of key parameters. These tools should allow biologists to develop an intuitive understanding of the structure of biological networks and discover genes which reside in critical positions in networks and pathways. By using a graph as a universal data representation of correlation in gene expression data, our novel visualization tool employs several techniques that when used in an integrated manner provide innovative analytical capabilities. Our tool for interacting with gene co-expression data integrates techniques such as: graph layout, qualitative subgraph extraction through a novel 2D user interface, quantitative subgraph extraction using graph-theoretic algorithms or by querying an optimized b-tree, dynamic level-of-detail graph abstraction, and template-based fuzzy classification using neural networks. We demonstrate our system using a real-world workflow from a large-scale, systems genetics study of mammalian gene co-expression.

  11. Electrophysiology Alterations in Primary Visual Cortex Neurons of Retinal Degeneration (S334ter-line-3) Rats

    PubMed Central

    Chen, Ke; Wang, Yi; Liang, Xiaohua; Zhang, Yihuai; Ng, Tsz Kin; Chan, Leanne Lai Hang

    2016-01-01

    The dynamic nature of the brain is critical for the success of treatments aimed at restoring vision at the retinal level. The success of these treatments relies highly on the functionality of the surviving neurons along the entire visual pathway. Electrophysiological properties at the retina level have been investigated during the progression of retinal degeneration; however, little is known about the changes in electrophysiological properties that occur in the primary visual cortex (V1) during the course of retinal degeneration. By conducting extracellular recording, we examined the electrophysiological properties of V1 in S334ter-line-3 rats (a transgenic model of retinal degeneration developed to express a rhodopsin mutation similar to that found in human retinitis pigmentosa patients). We measured the orientation tuning, spatial and temporal frequency tunings and the receptive field (RF) size for 127 V1 neurons from 11 S334ter-3 rats and 10 Long-Evans (LE) rats. V1 neurons in the S334ter-3 rats showed weaker orientation selectivity, lower optimal spatial and temporal frequency values and a smaller receptive field size compared to the LE rats. These results suggest that the visual cognitive ability significantly changes during retinal degeneration. PMID:27225415

  12. Functional consequences of co-expressing connexin40 or connexin45 with connexin43 on intercellular electrical coupling.

    PubMed

    Thomas, Neil M; Gray, Rosaire; Fry, Christopher H; Desplantez, Thomas; Peters, Nicholas S; Severs, Nicholas J; Macleod, Kenneth T; Dupont, Emmanuel

    2017-01-29

    The functional characteristics of the co-expression of connexin43, connexin40, and connexin45 proteins in human myocardium are thought to play an important role in governing normal propagation of the cardiac electrical impulse and in generating the myocardial substrate for some arrhythmias and conduction disturbances. A rat liver epithelial cell line, that endogenously expresses connexin43, was used to induce also expression of connexin40 or connexin45 after stable transfection using an inducible ecdysone system. Electrical coupling was estimated from measurement of the input resistance of transfected cells using an intracellular microelectrode to inject current and record changes to membrane potential. However, varied expression of the transfected connexin40 or connexin45 did not change electrical coupling, although connexin43/40 co-expression led to better coupling than connexin43/45 co-expression. Quantification of endogenous connexin43 expression, at both mRNA and protein levels, showed that it was altered in a manner dependent on the transfected connexin isotype. The data using rat liver epithelial cells indicate an increased electrical coupling upon expression of connexin40 and connexin43 but decreased coupling with connexin45 and connexin43 co-expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. A Preliminary Investigation into the Impact of a Pesticide Combination on Human Neuronal and Glial Cell Lines In Vitro

    PubMed Central

    Coleman, Michael D.; O'Neil, John D.; Woehrling, Elizabeth K.; Ndunge, Oscar Bate Akide; Hill, Eric J.; Menache, Andre; Reiss, Claude J.

    2012-01-01

    Many pesticides are used increasingly in combinations during crop protection and their stability ensures the presence of such combinations in foodstuffs. The effects of three fungicides, pyrimethanil, cyprodinil and fludioxonil, were investigated together and separately on U251 and SH-SY5Y cells, which can be representative of human CNS glial and neuronal cells respectively. Over 48h, all three agents showed significant reductions in cellular ATP, at concentrations that were more than tenfold lower than those which significantly impaired cellular viability. The effects on energy metabolism were reflected in their marked toxic effects on mitochondrial membrane potential. In addition, evidence of oxidative stress was seen in terms of a fall in cellular thiols coupled with increases in the expression of enzymes associated with reactive species formation, such as GSH peroxidase and superoxide dismutase. The glial cell line showed significant responsiveness to the toxin challenge in terms of changes in antioxidant gene expression, although the neuronal SH-SY5Y line exhibited greater vulnerability to toxicity, which was reflected in significant increases in caspase-3 expression, which is indicative of the initiation of apoptosis. Cyprodinil was the most toxic agent individually, although oxidative stress-related enzyme gene expression increases appeared to demonstrate some degree of synergy in the presence of the combination of agents. This report suggests that the impact of some pesticides, both individually and in combinations, merits further study in terms of their impact on human cellular health. PMID:22880100

  14. Expression, sorting and transport studies for the orphan carrier SLC10A4 in neuronal and non-neuronal cell lines and in Xenopus laevis oocytes.

    PubMed

    Schmidt, Stephanie; Moncada, Marcela; Burger, Simone; Geyer, Joachim

    2015-06-19

    SLC10A4 belongs to the solute carrier family SLC10 whose founding members are the Na(+)/taurocholate co-transporting polypeptide (NTCP, SLC10A1) and the apical sodium-dependent bile acid transporter (ASBT, SLC10A2). These carriers maintain the enterohepatic circulation of bile acids between the liver and the gut. SLC10A4 was identified as a novel member of the SLC10 carrier family with the highest phylogenetic relationship to NTCP. The SLC10A4 protein was detected in synaptic vesicles of cholinergic and monoaminergic neurons of the peripheral and central nervous system, suggesting a transport function for any kind of neurotransmitter. Therefore, in the present study, we performed systematic transport screenings for SLC10A4 and also aimed to identify the vesicular sorting domain of the SLC10A4 protein. We detected a vesicle-like expression pattern of the SLC10A4 protein in the neuronal cell lines SH-SY5Y and CAD. Differentiation of these cells to the neuronal phenotype altered neither SLC10A4 gene expression nor its vesicular expression pattern. Functional transport studies with different neurotransmitters, bile acids and steroid sulfates were performed in SLC10A4-transfected HEK293 cells, SLC10A4-transfected CAD cells and in Xenopus laevis oocytes. For these studies, transport by the dopamine transporter DAT, the serotonin transporter SERT, the choline transporter CHT1, the vesicular monoamine transporter VMAT2, the organic cation transporter Oct1, and NTCP were used as positive control. SLC10A4 failed to show transport activity for dopamine, serotonin, norepinephrine, histamine, acetylcholine, choline, acetate, aspartate, glutamate, gamma-aminobutyric acid, pregnenolone sulfate, dehydroepiandrosterone sulfate, estrone-3-sulfate, and adenosine triphosphate, at least in the transport assays used. When the C-terminus of SLC10A4 was replaced by the homologous sequence of NTCP, the SLC10A4-NTCP chimeric protein revealed clear plasma membrane expression in CAD and HEK

  15. Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    PubMed Central

    2011-01-01

    Background Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1α (HIF-1α) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently

  16. Neuronal T-type alpha 1H calcium channels induce neuritogenesis and expression of high-voltage-activated calcium channels in the NG108-15 cell line.

    PubMed

    Chemin, Jean; Nargeot, Joël; Lory, Philippe

    2002-08-15

    Neuronal differentiation involves both morphological and electrophysiological changes, which depend on calcium influx. Voltage-gated calcium channels (VGCCs) represent a major route for calcium entry into neurons. The recently cloned low-voltage-activated T-type calcium channels (T-channels) are the first class of VGCCs functionally expressed in most developing neurons, as well as in neuroblastoma cell lines, but their roles in neuronal development are yet unknown. Here, we document the part played by T-channels in neuronal differentiation. Using NG108-15, a cell line that recapitulates early steps of neuronal differentiation, we demonstrate that blocking T-currents by nickel, mibefradil, or the endogenous cannabinoid anandamide prevents neuritogenesis without affecting neurite outgrowth. Similar results were obtained using antisense oligodeoxynucleotides directed against the alpha1H T-channel subunit. Furthermore, we describe that inhibition of alpha1H T-channel activity impairs concomitantly, but independently, both high-voltage-activated calcium channel expression and neuritogenesis, providing strong evidence for a dual role of T-channels in both morphological and electrical changes at early stages of neuronal differentiation.

  17. Co-expressed miRNAs in gastric adenocarcinoma.

    PubMed

    Yepes, Sally; López, Rocío; Andrade, Rafael E; Rodriguez-Urrego, Paula A; López-Kleine, Liliana; Torres, Maria Mercedes

    2016-08-01

    Co-expression networks may provide insights into the patterns of molecular interactions that underlie cellular processes. To obtain a better understanding of miRNA expression patterns in gastric adenocarcinoma and to provide markers that can be associated with histopathological findings, we performed weighted gene correlation network analysis (WGCNA) and compare it with a supervised analysis. Integrative analysis of target predictions and miRNA expression profiles in gastric cancer samples was also performed. WGCNA identified a module of co-expressed miRNAs that were associated with histological traits and tumor condition. Hub genes were identified based on statistical analysis and network centrality. The miRNAs 100, let-7c, 125b and 99a stood out for their association with the diffuse histological subtype. The 181 miRNA family and miRNA 21 highlighted for their association with the tumoral phenotype. The integrated analysis of miRNA and gene expression profiles showed the let-7 miRNA family playing a central role in the regulatory relationships.

  18. Diversity of Reporter Expression Patterns in Transgenic Mouse Lines Targeting Corticotropin-Releasing Hormone-Expressing Neurons

    PubMed Central

    Molet, Jenny; Gunn, Benjamin G.; Ressler, Kerry

    2015-01-01

    Transgenic mice, including lines targeting corticotropin-releasing factor (CRF or CRH), have been extensively employed to study stress neurobiology. These powerful tools are poised to revolutionize our understanding of the localization and connectivity of CRH-expressing neurons, and the crucial roles of CRH in normal and pathological conditions. Accurate interpretation of studies using cell type-specific transgenic mice vitally depends on congruence between expression of the endogenous peptide and reporter. If reporter expression does not faithfully reproduce native gene expression, then effects of manipulating unintentionally targeted cells may be misattributed. Here, we studied CRH and reporter expression patterns in 3 adult transgenic mice: Crh-IRES-Cre;Ai14 (tdTomato mouse), Crfp3.0CreGFP, and Crh-GFP BAC. We employed the CRH antiserum generated by Vale after validating its specificity using CRH-null mice. We focused the analyses on stress-salient regions, including hypothalamus, amygdala, bed nucleus of the stria terminalis, and hippocampus. Expression patterns of endogenous CRH were consistent among wild-type and transgenic mice. In tdTomato mice, most CRH-expressing neurons coexpressed the reporter, yet the reporter identified a few non-CRH-expressing pyramidal-like cells in hippocampal CA1 and CA3. In Crfp3.0CreGFP mice, coexpression of CRH and the reporter was found in central amygdala and, less commonly, in other evaluated regions. In Crh-GFP BAC mice, the large majority of neurons expressed either CRH or reporter, with little overlap. These data highlight significant diversity in concordant expression of reporter and endogenous CRH among 3 available transgenic mice. These findings should be instrumental in interpreting important scientific findings emerging from the use of these potent neurobiological tools. PMID:26402844

  19. Corticosterone affects the differentiation of a neuronal cerebral cortex-derived cell line through modulation of the nicotinic acetylcholine receptor.

    PubMed

    Baier, C J; Franco, D L; Gallegos, C E; Mongiat, L A; Dionisio, L; Bouzat, C; Caviedes, P; Barrantes, F J

    2014-08-22

    Chronic exposure to stress hormones has an impact on brain structures relevant to cognition. Nicotinic acetylcholine receptors (AChRs) are involved in numerous cognitive processes including learning and memory formation. In order to better understand the molecular mechanisms of chronic stress-triggered mental disease, the effect of corticosterone (CORT) on the biology of AChRs was studied in the neuronal cell line CNh. We found that chronic treatment with CORT reduced the expression levels of the α7-type neuronal AChR and, to a lesser extent, of α4-AChR. CORT also delayed the acquisition of the mature cell phenotype in CNh cells. Chronic nicotine treatment affected the differentiation of CNh cells and exerted a synergistic effect with CORT, suggesting that AChR could participate in signaling pathways that control the cell cycle. Overexpression of α7-AChR-GFP abolished the CORT effects on the cell cycle and the specific α7-AChR inhibitor, methyllycaconitine, mimicked the proliferative action exerted by CORT. Whole-cell voltage-clamp recordings showed a significant decrease in nicotine-evoked currents in CORT-treated cells. Taken together, these observations indicate that AChRs, and the α7-AChR in particular, could act as modulators of the differentiation of CNh cells and that CORT could impair the acquisition of a mature phenotype by affecting the function of this AChR subtype. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Gene co-expression networks shed light into diseases of brain iron accumulation

    PubMed Central

    Bettencourt, Conceição; Forabosco, Paola; Wiethoff, Sarah; Heidari, Moones; Johnstone, Daniel M.; Botía, Juan A.; Collingwood, Joanna F.; Hardy, John; Milward, Elizabeth A.; Ryten, Mina; Houlden, Henry

    2016-01-01

    Aberrant brain iron deposition is observed in both common and rare neurodegenerative disorders, including those categorized as Neurodegeneration with Brain Iron Accumulation (NBIA), which are characterized by focal iron accumulation in the basal ganglia. Two NBIA genes are directly involved in iron metabolism, but whether other NBIA-related genes also regulate iron homeostasis in the human brain, and whether aberrant iron deposition contributes to neurodegenerative processes remains largely unknown. This study aims to expand our understanding of these iron overload diseases and identify relationships between known NBIA genes and their main interacting partners by using a systems biology approach. We used whole-transcriptome gene expression data from human brain samples originating from 101 neuropathologically normal individuals (10 brain regions) to generate weighted gene co-expression networks and cluster the 10 known NBIA genes in an unsupervised manner. We investigated NBIA-enriched networks for relevant cell types and pathways, and whether they are disrupted by iron loading in NBIA diseased tissue and in an in vivo mouse model. We identified two basal ganglia gene co-expression modules significantly enriched for NBIA genes, which resemble neuronal and oligodendrocytic signatures. These NBIA gene networks are enriched for iron-related genes, and implicate synapse and lipid metabolism related pathways. Our data also indicates that these networks are disrupted by excessive brain iron loading. We identified multiple cell types in the origin of NBIA disorders. We also found unforeseen links between NBIA networks and iron-related processes, and demonstrate convergent pathways connecting NBIAs and phenotypically overlapping diseases. Our results are of further relevance for these diseases by providing candidates for new causative genes and possible points for therapeutic intervention. PMID:26707700

  1. Large-scale prediction of long non-coding RNA functions in a coding–non-coding gene co-expression network

    PubMed Central

    Liao, Qi; Liu, Changning; Yuan, Xiongying; Kang, Shuli; Miao, Ruoyu; Xiao, Hui; Zhao, Guoguang; Luo, Haitao; Bu, Dechao; Zhao, Haitao; Skogerbø, Geir; Wu, Zhongdao; Zhao, Yi

    2011-01-01

    Although accumulating evidence has provided insight into the various functions of long-non-coding RNAs (lncRNAs), the exact functions of the majority of such transcripts are still unknown. Here, we report the first computational annotation of lncRNA functions based on public microarray expression profiles. A coding–non-coding gene co-expression (CNC) network was constructed from re-annotated Affymetrix Mouse Genome Array data. Probable functions for altogether 340 lncRNAs were predicted based on topological or other network characteristics, such as module sharing, association with network hubs and combinations of co-expression and genomic adjacency. The functions annotated to the lncRNAs mainly involve organ or tissue development (e.g. neuron, eye and muscle development), cellular transport (e.g. neuronal transport and sodium ion, acid or lipid transport) or metabolic processes (e.g. involving macromolecules, phosphocreatine and tyrosine). PMID:21247874

  2. Morphological analysis of the early development of telencephalic and diencephalic gonadotropin-releasing hormone neuronal systems in enhanced green fluorescent protein-expressing transgenic medaka lines.

    PubMed

    Takahashi, Akiko; Islam, M Sadiqul; Abe, Hideki; Okubo, Kataaki; Akazome, Yasuhisa; Kaneko, Takeshi; Hioki, Hiroyuki; Oka, Yoshitaka

    2016-03-01

    Teleosts possess two or three paralogs of gonadotropin-releasing hormone (GnRH) genes: gnrh1, gnrh2, and gnrh3. Some species have lost the gnrh1 and/or gnrh3 genes, whereas gnrh2 has been completely conserved in the teleost species analyzed to date. In most teleosts that possess gnrh1, GnRH1 peptide is the authentic GnRH that stimulates gonadotropin release, whereas GnRH2 and GnRH3, if present, are neuromodulatory. Progenitors of GnRH1 and GnRH3 neurons originate from olfactory placodes and migrate to their destination during early development. However, because of the relatively low affinity/specificity of generally available antibodies that recognize GnRH1 or GnRH3, labeling of these neurons has only been possible using genetic manipulation. We used a model teleost, medaka, which possesses all three paralogous gnrh genes, to analyze development of forebrain GnRH neurons composed of GnRH1 and GnRH3 neurons. Here, we newly generated transgenic medaka lines that express enhanced green fluorescent protein under the control of promoters for gnrh1 or gnrh3, to detect GnRH neurons and facilitate immunohistochemical analysis of the neuronal morphology. We used a combination of immunohistochemistry and three-dimensional confocal microscopy image reconstructions to improve identification of neurites from GnRH1 or GnRH3 neuronal populations with greater precision. This led us to clearly identify the hypophysiotropic innervation of GnRH1 neurons residing in the ventral preoptic area (vPOA) from as early as 10 days post hatching. Furthermore, these analyses also revealed retinopetal projections of nonhypophysiotropic GnRH1 neurons in vPOA, prominent during early developmental stages, and multiple populations of GnRH3 neurons with different origins and migratory pathways.

  3. Glial cell line-derived neurotrophic factor modulates the excitability of nociceptive trigeminal ganglion neurons via a paracrine mechanism following inflammation.

    PubMed

    Takeda, Mamoru; Takahashi, Masayuki; Hara, Norifumi; Matsumoto, Shigeji

    2013-02-01

    Previous our report indicated that acute application of glial cell line-derived neurotrophic factor (GDNF) enhances the neuronal excitability of adult rat small-diameter trigeminal ganglion (TRG) neurons, which innervate the facial skin in the absence of neuropathic and inflammatory conditions. This study investigated whether under in vivo conditions, GDNF modulates the excitability of nociceptive Aδ-TRG neurons innervating the facial skin via a paracrine mechanism following inflammation. We used extracellular electrophysiological recording with multibarrel-electrodes in this study. Spontaneous Aδ-TRG neuronal activity was induced in control rats after iontophoretic application of GDNF into the trigeminal ganglia (TRGs). Noxious and non-noxious mechanical stimuli evoked Aδ-TRG neuronal firing rate were significantly increased by iontophoretic application of GDNF. The mean mechanical threshold of nociceptive TRG neurons was significantly decreased by GDNF application. The increased discharge frequency and decreased mechanical threshold induced by GDNF were antagonized by application of the protein tyrosine kinase inhibitor, K252b. The number of Aδ-TRG neurons with spontaneous firings and their firing rates in rats with inflammation induced by Complete Freund's Adjuvant were significantly higher than control rats. The firing rates of Aδ-TRG spontaneous neuronal activity were significantly decreased by iontophoretic application of K252b in inflamed rats. K252b also inhibited Aδ-TRG neuron activity evoked by mechanical stimulation in inflamed rats. These results suggest that in vivo GDNF enhances the excitability of nociceptive Aδ-TRG neurons via a paracrine mechanism within TRGs following inflammation. GDNF paracrine mechanism could be important as a therapeutic target for trigeminal inflammatory hyperalgesia.

  4. GABAergic pathway in a rat model of chronic neuropathic pain: modulation after intrathecal transplantation of a human neuronal cell line.

    PubMed

    Vaysse, L; Sol, J C; Lazorthes, Y; Courtade-Saidi, M; Eaton, M J; Jozan, S

    2011-02-01

    Current understanding of chronic pain points a decrease in level of the inhibitory neurotransmitter GABA, in the spinal dorsal horn, leading to an imbalance between excitatory and inhibitory pathways. A subcloned derivative of the human NT2 cell line (hNT2.17) which, after neuronal differentiation, secretes different inhibitory neurotransmitters such as GABA and glycine has been recently isolated. In this study, we have investigated the effect of this new cell line on peripheral nerve injury induced by chronic constriction (CCI) and notably the effect on the cellular GABAergic pathway. Our data show that the decrease in GABA expression in the spinal dorsal horn of injured animals is concomitant with a decline of its synthetic enzyme GAD67-Ir and mRNA but not GAD65. Interestingly, in transplanted animals we observed a strong induction of GAD67 mRNA with one week after graft, which is followed by a recovery of GAD67 and GABA Ir. This effect paralleled a reduction of hindpaw hypersensitivity and thermal hyperalgesia induced by CCI. These results suggest that hNT2.17 GABA cells can modulate neuropathic pain after CCI certainly by minimizing the imbalance and restoring the cellular GABAergic pathway.

  5. Memantine (1-amino-3,5-dimethyladamantane) blocks the serotonin-induced depolarization response in a neuronal cell line.

    PubMed

    Reiser, G; Binmöller, F J; Koch, R

    1988-03-08

    The influence of memantine on several properties of a neuronal cell line was tested. The aim was to get some insight into possible mechanisms of action of this drug which is therapeutically applicable in treatment of spasticity, Parkinson's disease, and cerebral coma. In neuroblastoma X glioma hybrid cells, memantine, at micromolar concentrations, blocked the depolarization induced by iontophoretically applied serotonin (5-hydroxytryptamine, 5-HT). In the hybrid cells, receptors of the 5-HT3 type mediated the depolarization, which was frequently accompanied by a series of action potentials. The inhibition by memantine of the serotonin response occurred fast and was completely reversible, irrespective of whether the cell showed a stable membrane potential or spontaneous action potentials. However, memantine did not alter spontaneous or electrically evoked action potential activity in the hybrid cells, and apparently did not block the underlying ionic conductances. Furthermore memantine did not affect either the cation permeability activated by substance P in the hybrid cells or the K+ channel triggered by bradykinin in a glioma cell line. Thus, memantine appears specifically to suppress the ion channel opened by serotonin in the hybrid cells. The interaction of memantine with serotonin receptors and the associated ion channels reported here, might give an important clue, as to a site of action of memantine in the nervous system.

  6. An MMIC implementation of FitzHugh-Nagumo neurons using a resonant tunneling diode nonlinear transmission line

    NASA Astrophysics Data System (ADS)

    Klofaï, Yerima; Essimbi, B. Z.; Jäger, D.

    2015-02-01

    In this paper the electronic implementation of FitzHugh-Nagumo (F-N) neurons via monolithic microwave integrated circuits (MMIC) based upon a resonant tunneling diode (RTD) nonlinear transmission line (NLTL) using a coplanar waveguide (CPW) is considered. The goals are twofold. In the framework of electrical equivalent circuit emulating nonlinear active wave propagation effects, it is shown, on one hand, how different physical mechanisms are responsible for the time evolution of given input signals. A key result is that this medium supports stable and stationary pulse propagation that is only determined by the parameters of the RTD-NLTL and is independent of the boundary conditions. On the other hand, the influence of specific line elements on the output signal waveform is discussed in a most systematic manner. This leads, for the first time, to a more physical interpretation of the properties of the RTD-NLTL and, furthermore, to interesting technical applications at multi-GHz frequencies and on picosecond time scales. As a result, physically based ways are elucidated regarding how the technical design of those compact neuromorphic electrical circuits can be optimized by numerical simulations and performed using standard MMIC technologies.

  7. Glial cell line-derived neurotrophic factor is a survival factor for isolectin B4-positive, but not vanilloid receptor 1-positive, neurons in the mouse.

    PubMed

    Zwick, Melissa; Davis, Brian M; Woodbury, C Jeffrey; Burkett, John N; Koerber, H Richard; Simpson, James F; Albers, Kathryn M

    2002-05-15

    Most, if not all, nociceptor sensory neurons are dependent on nerve growth factor (NGF) during early embryonic development. A large subpopulation of these sensory neurons loses NGF dependency between embryonic day 16 and postnatal day 14 and become responsive to glial cell line-derived growth factor (GDNF), a member of the transforming growth factor beta (TGF-beta) family. To examine the survival and phenotypic effects of GDNF on sensory neurons in vivo, we generated transgenic mice that overexpress GDNF in the skin. GDNF-overexpresser mice had increased numbers of small unmyelinated sensory neurons that express the tyrosine kinase receptor Ret and bind the plant isolectin B4 (IB4). Surprisingly, in wild-type and transgenic mice, few ( approximately 2%) IB4-positive neurons expressed the vanilloid receptor VR1, a heat-sensitive receptor expressed by many IB4-positive neurons of the rat. Thus, in mouse, GDNF-dependent IB4-positive neurons must use a non-VR1 heat receptor. In addition, the behavior of GDNF-overexpresser animals to noxious heat or mechanical stimuli was indistinguishable from wild-type animals, indicating that, on a behavioral level, peripherally applied GDNF does not alter the sensitivity of the somatosensory system.

  8. Towards on-line adaptation of neuro-prostheses with neuronal evaluation signals.

    PubMed

    Rotermund, David; Ernst, Udo A; Pawelzik, Klaus R

    2006-09-01

    Many experiments have successfully demonstrated that prosthetic devices for restoring lost body functions can in principle be controlled by brain signals. However, stable long-term application of these devices, required for paralyzed patients, may suffer substantially from on-going signal changes for example adapting neural activities or movements of the electrodes recording brain activity. These changes currently require tedious re-learning procedures which are conducted and supervised under laboratory conditions, hampering the everyday use of such devices. As an efficient alternative to current methods we here propose an on-line adaptation scheme that exploits a hypothetical secondary signal source from brain regions reflecting the user's affective evaluation of the current neuro- prosthetic's performance. For demonstrating the feasibility of our idea, we simulate a typical prosthetic setup controlling a virtual robotic arm. Hereby we use the additional, hypothetical evaluation signal to adapt the decoding of the intended arm movement which is subjected to large non-stationarities. Even with weak signals and high noise levels typically encountered in recording brain activities, our simulations show that prosthetic devices can be adapted successfully during everyday usage, requiring no special training procedures. Furthermore, the adaptation is shown to be stable against large changes in neural encoding and/or in the recording itself.

  9. COEXPEDIA: exploring biomedical hypotheses via co-expressions associated with medical subject headings (MeSH).

    PubMed

    Yang, Sunmo; Kim, Chan Yeong; Hwang, Sohyun; Kim, Eiru; Kim, Hyojin; Shim, Hongseok; Lee, Insuk

    2017-01-04

    The use of high-throughput array and sequencing technologies has produced unprecedented amounts of gene expression data in central public depositories, including the Gene Expression Omnibus (GEO). The immense amount of expression data in GEO provides both vast research opportunities and data analysis challenges. Co-expression analysis of high-dimensional expression data has proven effective for the study of gene functions, and several co-expression databases have been developed. Here, we present a new co-expression database, COEXPEDIA (www.coexpedia.org), which is distinctive from other co-expression databases in three aspects: (i) it contains only co-functional co-expressions that passed a rigorous statistical assessment for functional association, (ii) the co-expressions were inferred from individual studies, each of which was designed to investigate gene functions with respect to a particular biomedical context such as a disease and (iii) the co-expressions are associated with medical subject headings (MeSH) that provide biomedical information for anatomical, disease, and chemical relevance. COEXPEDIA currently contains approximately eight million co-expressions inferred from 384 and 248 GEO series for humans and mice, respectively. We describe how these MeSH-associated co-expressions enable the identification of diseases and drugs previously unknown to be related to a gene or a gene group of interest.

  10. COEXPEDIA: exploring biomedical hypotheses via co-expressions associated with medical subject headings (MeSH)

    PubMed Central

    Yang, Sunmo; Kim, Chan Yeong; Hwang, Sohyun; Kim, Eiru; Kim, Hyojin; Shim, Hongseok; Lee, Insuk

    2017-01-01

    The use of high-throughput array and sequencing technologies has produced unprecedented amounts of gene expression data in central public depositories, including the Gene Expression Omnibus (GEO). The immense amount of expression data in GEO provides both vast research opportunities and data analysis challenges. Co-expression analysis of high-dimensional expression data has proven effective for the study of gene functions, and several co-expression databases have been developed. Here, we present a new co-expression database, COEXPEDIA (www.coexpedia.org), which is distinctive from other co-expression databases in three aspects: (i) it contains only co-functional co-expressions that passed a rigorous statistical assessment for functional association, (ii) the co-expressions were inferred from individual studies, each of which was designed to investigate gene functions with respect to a particular biomedical context such as a disease and (iii) the co-expressions are associated with medical subject headings (MeSH) that provide biomedical information for anatomical, disease, and chemical relevance. COEXPEDIA currently contains approximately eight million co-expressions inferred from 384 and 248 GEO series for humans and mice, respectively. We describe how these MeSH-associated co-expressions enable the identification of diseases and drugs previously unknown to be related to a gene or a gene group of interest. PMID:27679477

  11. Comparative neuronal differentiation of self-renewing neural progenitor cell lines obtained from human induced pluripotent stem cells

    PubMed Central

    Verpelli, Chiara; Carlessi, Luigi; Bechi, Giulia; Fusar Poli, Elena; Orellana, Daniel; Heise, Christopher; Franceschetti, Silvana; Mantegazza, Renato; Mantegazza, Massimo; Delia, Domenico; Sala, Carlo

    2013-01-01

    Most human neuronal disorders are associated with genetic alterations that cause defects in neuronal development and induce precocious neurodegeneration. In order to fully characterize the molecular mechanisms underlying the onset of these devastating diseases, it is important to establish in vitro models able to recapitulate the human pathology as closely as possible. Here we compared three different differentiation protocols for obtaining functional neurons from human induced pluripotent stem cells (hiPSCs): human neural progenitors (hNPs) obtained from hiPSCs were differentiated by co-culturing them with rat primary neurons, glial cells or simply by culturing them on matrigel in neuronal differentiation medium, and the differentiation level was compared using immunofluorescence, biochemical and electrophysiological methods. We show that the differentiated neurons displayed distinct maturation properties depending on the protocol used and the faster morphological and functional maturation was obtained when hNPs were co-cultured with rat primary neurons. PMID:24109433

  12. Gene co-expression modules as clinically relevant hallmarks of breast cancer diversity.

    PubMed

    Wolf, Denise M; Lenburg, Marc E; Yau, Christina; Boudreau, Aaron; van 't Veer, Laura J

    2014-01-01

    Co-expression modules are groups of genes with highly correlated expression patterns. In cancer, differences in module activity potentially represent the heterogeneity of phenotypes important in carcinogenesis, progression, or treatment response. To find gene expression modules active in breast cancer subpopulations, we assembled 72 breast cancer-related gene expression datasets containing ∼5,700 samples altogether. Per dataset, we identified genes with bimodal expression and used mixture-model clustering to ultimately define 11 modules of genes that are consistently co-regulated across multiple datasets. Functionally, these modules reflected estrogen signaling, development/differentiation, immune signaling, histone modification, ERBB2 signaling, the extracellular matrix (ECM) and stroma, and cell proliferation. The Tcell/Bcell immune modules appeared tumor-extrinsic, with coherent expression in tumors but not cell lines; whereas most other modules, interferon and ECM included, appeared intrinsic. Only four of the eleven modules were represented in the PAM50 intrinsic subtype classifier and other well-established prognostic signatures; although the immune modules were highly correlated to previously published immune signatures. As expected, the proliferation module was highly associated with decreased recurrence-free survival (RFS). Interestingly, the immune modules appeared associated with RFS even after adjustment for receptor subtype and proliferation; and in a multivariate analysis, the combination of Tcell/Bcell immune module down-regulation and proliferation module upregulation strongly associated with decreased RFS. Immune modules are unusual in that their upregulation is associated with a good prognosis without chemotherapy and a good response to chemotherapy, suggesting the paradox of high immune patients who respond to chemotherapy but would do well without it. Other findings concern the ECM/stromal modules, which despite common themes were associated

  13. Analysis of differentially co-expressed genes based on microarray data of hepatocellular carcinoma.

    PubMed

    Wang, Y; Jiang, T; Li, Z; Lu, L; Zhang, R; Zhang, D; Wang, X; Tan, J

    2017-01-01

    Hepatocellular carcinoma (HCC) is the third leading cause of cancer related death worldwide. Although great progress in diagnosis and management of HCC have been made, the exact molecular mechanisms remain poorly understood. The study aims to identify potential biomarkers for HCC progression, mainly at transcription level. In this study, chip data GSE 29721 was utilized, which contains 10 HCC samples and 10 normal adjacent tissue samples. Differentially expressed genes (DEGs) between two sample types were selected by t-test method. Following, the differentially co-expressed genes (DCGs) and differentially co-expressed Links (DCLs) were identified by DCGL package in R with the threshold of q < 0.25. Afterwards, pathway enrichment analysis of the DCGs was carried out by DAVID. Then, DCLs were mapped to TRANSFAC database to reveal associations between relevant transcriptional factors (TFs) and their target genes. Quantitative real-time RT-PCR was performed for TFs or genes of interest. As a result, a total of 388 DCGs and 35,771 DCLs were obtained. The predominant pathways enriched by these genes were Cytokine-cytokine receptor interaction, ECM-receptor interaction and TGF-β signaling pathway. Three TF-target interactions, LEF1-NCAM1, EGR1-FN1 and FOS-MT2A were predicted. Compared with control, expressions of the TF genes EGR1, FOS and ETS2 were all up-regulated in the HCC cell line, HepG2; while LEF1 was down-regulated. Except NCAM1, all the target genes were up-regulated in HepG2. Our findings suggest these TFs and genes might play important roles in the pathogenesis of HCC and may be used as therapeutic targets for HCC management.

  14. Co-expression of glutaminase K and L isoenzymes in human tumour cells

    PubMed Central

    2004-01-01

    The pattern of expression of glutaminase isoenzymes in tumour cells has been investigated to clarify its role in the malignant transformation and the prospect of its use as a clinically relevant factor. Using leukaemia cells from medullar blood of human patients and several established human cancer cell lines, we have developed a competitive RT (reverse transcriptase)-PCR assay to quantify simultaneously K-type (kidney-type) and L-type (liver-type) glutaminase mRNAs. Co-expression of both transcripts and higher amounts of L-type mRNA were always found in all cancer cell types analysed. However, mature lymphocytes from the medullar blood of a patient suffering aplasia did not express the K-type transcript and showed a 15-fold increase of L-type transcript. Co-expression was also confirmed at the protein level using isoform-specific antibodies; nevertheless, it did not correlate with the relative abundance of glutaminase transcripts and strong K-type protein signals were detected. On the other hand, marked differences were found with regard to glutamate inhibition and phosphate activation of tumour glutaminase activity. Taken together, the protein data suggest that K isoform would account for the majority of glutaminase activity in these human tumour cells. The results confirm that simultaneous expression of both isoenzymes in human cancer cells is a more frequent event than previously thought. Furthermore, the present work and other previous data suggest that K isoform is up-regulated with increased rates of proliferation, whereas prevalence of the L isoform seems to be related with resting or quiescent cell states. PMID:15496140

  15. A sensory labeled-line for cold: TRPM8-expressing sensory neurons define the cellular basis for cold, cold pain, and cooling-mediated analgesia

    PubMed Central

    Knowlton, Wendy M.; Palkar, Radhika; Lippoldt, Erika K.; McCoy, Daniel D.; Baluch, Farhan; Chen, Jessica; McKemy, David D.

    2013-01-01

    Many primary sensory neurons are polymodal, responding to multiple stimulus modalities (chemical, thermal, or mechanical), yet each modality is recognized differently. While polymodality implies that stimulus encoding occurs in higher centers such as the spinal cord or brain, recent sensory neuron ablation studies find that behavioral responses to different modalities require distinct subpopulations, suggesting the existence of modality-specific labeled-lines at the level of the sensory afferent. Here we provide evidence that neurons expressing TRPM8, a cold- and menthol-gated channel required for normal cold responses in mammals, represents a labeled-line solely for cold sensation. We examined the behavioral significance of conditionally ablating TRPM8+ neurons in adult mice, finding that, like animals lacking TRPM8 channels (Trpm8−/−), animals depleted of TRPM8 neurons (ablated) are insensitive to cool to painfully cold temperatures. Ablated animals showed little aversion to noxious cold and did not distinguish between cold and a preferred warm temperature, a phenotype more profound than that of Trpm8−/− mice which exhibit only partial cold avoidance and preference behaviors. In addition to acute responses, cold pain associated with inflammation and nerve injury was significantly attenuated in ablated and Trpm8−/− mice. Moreover, cooling-induced analgesia after nerve injury was abolished in both genotypes. Lastly, heat, mechanical, and proprioceptive behaviors were normal in ablated mice, demonstrating that TRPM8 neurons are dispensable for other somatosensory modalities. Together these data show that while some limited cold sensitivity remains in Trpm8−/− mice, TRPM8 neurons are required for the breadth of behavioral responses evoked by cold temperatures. PMID:23407943

  16. Regulatory Networks:. Inferring Functional Relationships Through Co-Expression

    NASA Astrophysics Data System (ADS)

    Wanke, Dierk; Hahn, Achim; Kilian, Joachim; Harter, Klaus; Berendzen, Kenneth W.

    2010-01-01

    Gene expression data not only provide us insights into discrete transcript abundance of specific genes, but contain cryptic information that can not readily be assessed without interpretation. We again used data of the plant Arabidopsis thaliana as our reference organism, yet the analysis presented herein can be performed with any organism with various data sources. Within the cell, information is transduced via different signaling cascades and results in differential gene expression responses. The incoming signals are perceived from upstream signaling components and handed to downstream messengers that further deliver the signals to effector proteins which can directly influence gene expression. In most cases, we can assume that proteins, which are connected to other signaling components within such a regulatory network, exhibit similar expression trajectories. Thus, we extracted a known functional network from literature and demonstrated that it is possible to superimpose microarray expression data onto the pathways. Thereby, we could follow the information flow through time reflected by gene expression changes. This allowed us to predict, whether the upstream signal was transmitted from known elements contained in the network or relayed from outside components. We next conducted the vice versa approach and used large scale microarray expression data to build a co-expression matrix for all genes present on the array. From this, we computed a regulatory network, which allowed us to deduce known and novel signaling pathways.

  17. Molecular mechanisms for corticotropin-releasing hormone gene repression by glucocorticoid in BE(2)C neuronal cell line.

    PubMed

    Yamamori, Etsuko; Iwasaki, Yasumasa; Taguchi, Takafumi; Nishiyama, Mitsuru; Yoshida, Masanori; Asai, Masato; Oiso, Yutaka; Itoi, Keiichi; Kambayashi, Machiko; Hashimoto, Kozo

    2007-01-29

    The molecular mechanisms for the suppression of corticotropin-releasing hormone (CRH) gene expression by glucocorticoid remain to be clarified albeit the well-known physiological role of the glucocorticoid-induced negative feedback regulation of the gene. In this study, we examined the effect of glucocorticoid on CRH gene transcription using the human BE(2)C neuronal cell line, which expresses the CRH gene and produces CRH peptide intrinsically. Dexamethasone, a specific ligand for the glucocorticoid receptor (GR), potently suppressed human CRH 5'-promoter activity. The effect was GR-dependent, and was completely antagonized by antiglucocorticoid RU38486. Treatment with neither sodium butyrate nor trichostatin A abolished the suppression, thus making the possible involvement of histone deacetylase (HDACs) unlikely. The suppression was not influenced by the deletion or mutation of the proposed negative glucocorticoid-response element (nGRE) but was completely eliminated by that of cAMP-response element. Finally, overexpression of protein kinase A catalytic subunit antagonized the glucocorticoid suppression, whereas overexpression of GR enhanced it. Taken together, our data suggest that: (1) glucocorticoid exerts its negative effect on CRH gene transcription in a GR-dependent manner, but the GR-mediated inhibition appears to be independent of the nGRE; (2) HDACs do not play a significant role in the glucocorticoid repression; (3) some of the inhibitory events may take place through transrepression of protein kinase A by GR.

  18. Co-expression of murine opsins facilitates identifying the site of cone adaptation.

    PubMed

    Ekesten, Björn; Gouras, Peter; Hargitai, Janos

    2002-01-01

    Murine cones contain two opsins in the same cone, one ultraviolet (UV) and the other middle-wavelength sensitive (M). A long-wavelength flash only affecting M-opsin suppresses the cone electroretinogram (ERG) produced by light absorption of UV-cone opsin raising the hypothesis that activation of M-cone opsin suppresses UV-cone opsin responses in the same cone. Here we show that pharmacologic blockade of synaptic transmission in the superfused murine retina, which eliminates interaction from second-order neurons, fails to prevent suppression of the UV-opsin driven pathway by long-wavelength stimuli. This proves that the antagonism must be occurring in the same cone, co-expressing both opsins. Our results show that UV-opsin suppression successively ceases in presence of the M-opsin activating background light, which implies that cone light adaptation is controlled at the opsin stage, before activation of transducin. It also reveals the time course of a transient desensitization of cones due to post-opsin factors in the transduction cascade.

  19. A glial cell line-derived neurotrophic factor-secreting clone of the Schwann cell line SCTM41 enhances survival and fiber outgrowth from embryonic nigral neurons grafted to the striatum and to the lesioned substantia nigra.

    PubMed

    Wilby, M J; Sinclair, S R; Muir, E M; Zietlow, R; Adcock, K H; Horellou, P; Rogers, J H; Dunnett, S B; Fawcett, J W

    1999-03-15

    We have developed a novel Schwann cell line, SCTM41, derived from postnatal sciatic nerve cultures and have stably transfected a clone with a rat glial cell line-derived neurotrophic factor (GDNF) construct. Coculture with this GDNF-secreting clone enhances in vitro survival and fiber growth of embryonic dopaminergic neurons. In the rat unilateral 6-OHDA lesion model of Parkinson's disease, we have therefore made cografts of these cells with embryonic day 14 ventral mesencephalic grafts and assayed for effects on dopaminergic cell survival and process outgrowth. We show that cografts of GDNF-secreting Schwann cell lines improve the survival of intrastriatal embryonic dopaminergic neuronal grafts and improve neurite outgrowth into the host neuropil but have no additional effect on amphetamine-induced rotation. We next looked to see whether bridge grafts of GDNF-secreting SCTM41 cells would promote the growth of axons to their striatal targets from dopaminergic neurons implanted orthotopically into the 6-OHDA-lesioned substantia nigra. We show that such bridge grafts increase the survival of implanted embryonic dopaminergic neurons and promote the growth of axons through the grafts to the striatum.

  20. RNA-Seq Transcriptome Analysis of Direction-Selective T4/T5 Neurons in Drosophila.

    PubMed

    Pankova, Katarina; Borst, Alexander

    Neuronal computation underlying detection of visual motion has been studied for more than a half-century. In Drosophila, direction-selective T4/T5 neurons show supralinear signal amplification in response to stimuli moving in their preferred direction, in agreement with the prediction made by the Hassenstein-Reichardt detector. Nevertheless, the molecular mechanism explaining how the Hassenstein-Reichardt model is implemented in T4/T5 cells has not been identified yet. In the present study, we utilized cell type-specific transcriptome profiling with RNA-seq to obtain a complete gene expression profile of T4/T5 neurons. We analyzed the expression of genes that affect neuronal computational properties and can underlie the molecular implementation of the core features of the Hassenstein-Reichardt model to the dendrites of T4/T5 neurons. Furthermore, we used the acquired RNA-seq data to examine the neurotransmitter system used by T4/T5 neurons. Surprisingly, we observed co-expression of the cholinergic markers and the vesicular GABA transporter in T4/T5 neurons. We verified the previously undetected expression of vesicular GABA transporter in T4/T5 cells using VGAT-LexA knock-in line. The provided gene expression dataset can serve as a useful source for studying the properties of direction-selective T4/T5 neurons on the molecular level.

  1. RNA-Seq Transcriptome Analysis of Direction-Selective T4/T5 Neurons in Drosophila

    PubMed Central

    Pankova, Katarina; Borst, Alexander

    2016-01-01

    Neuronal computation underlying detection of visual motion has been studied for more than a half-century. In Drosophila, direction-selective T4/T5 neurons show supralinear signal amplification in response to stimuli moving in their preferred direction, in agreement with the prediction made by the Hassenstein-Reichardt detector. Nevertheless, the molecular mechanism explaining how the Hassenstein-Reichardt model is implemented in T4/T5 cells has not been identified yet. In the present study, we utilized cell type-specific transcriptome profiling with RNA-seq to obtain a complete gene expression profile of T4/T5 neurons. We analyzed the expression of genes that affect neuronal computational properties and can underlie the molecular implementation of the core features of the Hassenstein-Reichardt model to the dendrites of T4/T5 neurons. Furthermore, we used the acquired RNA-seq data to examine the neurotransmitter system used by T4/T5 neurons. Surprisingly, we observed co-expression of the cholinergic markers and the vesicular GABA transporter in T4/T5 neurons. We verified the previously undetected expression of vesicular GABA transporter in T4/T5 cells using VGAT-LexA knock-in line. The provided gene expression dataset can serve as a useful source for studying the properties of direction-selective T4/T5 neurons on the molecular level. PMID:27684367

  2. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death

    SciTech Connect

    Hemendinger, Richelle A. Armstrong, Edward J.; Brooks, Benjamin Rix

    2011-03-15

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC{sub 50} (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolate (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC{sub 50} (concentration at which 50% of maximal cell death is inhibited) of 0.6 {mu}M and 0.4 {mu}M, respectively. In contrast, MTHF (up to 10 {mu}M) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.

  3. Methyl Vitamin B12 but not methylfolate rescues a motor neuron-like cell line from homocysteine-mediated cell death.

    PubMed

    Hemendinger, Richelle A; Armstrong, Edward J; Brooks, Benjamin Rix

    2011-03-15

    Homocysteine is an excitatory amino acid implicated in multiple diseases including amyotrophic lateral sclerosis (ALS). Information on the toxicity of homocysteine in motor neurons is limited and few studies have examined how this toxicity can be modulated. In NSC-34D cells (a hybrid cell line derived from motor neuron-neuroblastoma), homocysteine induces apoptotic cell death in the millimolar range with a TC₅₀ (toxic concentration at which 50% of maximal cell death is achieved) of 2.2 mM, confirmed by activation of caspase 3/7. Induction of apoptosis was independent of short-term reactive oxygen species (ROS) generation. Methyl Vitamin B12 (MeCbl) and methyl tetrahydrofolate (MTHF), used clinically to treat elevated homocysteine levels, were tested for their ability to reverse homocysteine-mediated motor neuron cell death. MeCbl in the micromolar range was able to provide neuroprotection (2 h pretreatment prior to homocysteine) and neurorescue (simultaneous exposure with homocysteine) against millimolar homocysteine with an IC₅₀ (concentration at which 50% of maximal cell death is inhibited) of 0.6 μM and 0.4 μM, respectively. In contrast, MTHF (up to 10 μM) had no effect on homocysteine-mediated cell death. MeCbl inhibited caspase 3/7 activation by homocysteine in a time- and dose-dependent manner, whereas MTHF had no effect. We conclude that MeCbl is effective against homocysteine-induced cell death in motor neurons in a ROS-independent manner, via a reduction in caspase activation and apoptosis. MeCbl decreases Hcy induced motor neuron death in vitro in a hybrid cell line derived from motor neuron-neuroblastoma and may play a role in the treatment of late stage ALS where HCy levels are increased in animal models of ALS.

  4. Investigating the Combinatory Effects of Biological Networks on Gene Co-expression

    PubMed Central

    Zhang, Cheng; Lee, Sunjae; Mardinoglu, Adil; Hua, Qiang

    2016-01-01

    Co-expressed genes often share similar functions, and gene co-expression networks have been widely used in studying the functionality of gene modules. Previous analysis indicated that genes are more likely to be co-expressed if they are either regulated by the same transcription factors, forming protein complexes or sharing similar topological properties in protein-protein interaction networks. Here, we reconstructed transcriptional regulatory and protein-protein networks for Saccharomyces cerevisiae using well-established databases, and we evaluated their co-expression activities using publically available gene expression data. Based on our network-dependent analysis, we found that genes that were co-regulated in the transcription regulatory networks and shared similar neighbors in the protein-protein networks were more likely to be co-expressed. Moreover, their biological functions were closely related. PMID:27445830

  5. Sciatic nerve injury in adult rats causes distinct changes in the central projections of sensory neurons expressing different glial cell line-derived neurotrophic factor family receptors

    PubMed Central

    Keast, Janet R.; Forrest, Shelley L.; Osborne, Peregrine B.

    2010-01-01

    Most small unmyelinated neurons in adult rat dorsal ganglia (DRG) express one or more of the co-receptors targeted by glial cell line-derived neurotrophic factor (GDNF), neurturin and artemin (GFRα1, GFRα2 and GFRα3 respectively). The function of these GDNF family ligands (GFLs) is not fully elucidated but recent evidence suggests GFLs could function in sensory neuron regeneration after nerve injury and peripheral nociceptor sensitisation. In this study, we used immunohistochemistry to determine if the DRG neurons targeted by each GFL change after sciatic nerve injury. We compared complete sciatic nerve transection and the chronic constriction model and found the pattern of changes incurred by each injury was broadly similar. In lumbar spinal cord, there was a widespread increase in neuronal GFRα1 immunoreactivity (IR) in the L1-6 dorsal horn. GFRα3-IR also increased but in a more restricted area. In contrast, GFRα2-IR decreased in patches of superficial dorsal horn and this loss was more extensive after transection injury. No change in calcitonin gene-related peptide-IR was detected after either injury. Analysis of double-immunolabelled L5 DRG sections suggested the main effect of injury on GFRα1- and GFRα3-IR was to increase expression in both myelinated and unmyelinated neurons. In contrast, no change in basal expression of GFRα2-IR was detected in DRG by analysis of fluorescence intensity and there was a small but significant reduction in GFRα2-IR neurons. Our results suggest the DRG neuronal populations targeted by GDNF, neurturin or artemin, and the effect of exogenous GFLs could change significantly after a peripheral nerve injury. PMID:20533358

  6. Visualizing estrogen receptor-a-expressing neurons using a new ERa-ZsGreen reporter mouse line

    USDA-ARS?s Scientific Manuscript database

    A variety of biological functions of estrogens, including regulation of energy metabolism, are mediated by neurons expressingestrogen receptor-a (ERa) in the brain. However, complex intracellular processes in these ERa-expressing neurons are difficult to unravel, due to the lack of strategy to visua...

  7. Apoptosis Induced by Manganese on Neuronal SK-N-MC Cell Line: Endoplasmic Reticulum (ER) Stress and Mitochondria Dysfunction

    PubMed Central

    Yoon, Hyonok; Kim, Do-Sung; Lee, Geum-Hwa; Kim, Kee-Won; Kim, Hyung-Ryong

    2011-01-01

    Objectives Manganese chloride (MnCl2) is one of heavy metals for causing neurogenerative dysfunction like Manganism. The purpose of this study was to determine the acute toxicity of MnCl2 using different times and various concentrations including whether manganese toxicity may involve in two intrinsic pathways, endoplasmic reticulum (ER) stress and mitochondria dysfunction and lead to neuronal apoptosis mediated by organelle disorders in neuroblastoma cell line SK-N-MC. Methods In the acute toxicity test, five concentrations (200, 400, 600, 800, 1,000 uM) of MnCl2 with 3, 6, 12, 24, 48 hours exposure were selected to analyze cell viability. In addition, to better understand their toxicity, acute toxicity was examined with 1,000 uM MnCl2 for 24 hours exposure via reactive oxygen species (ROS), mitochondria membrane potential, western blotting and mitochondrial complex activities. Results Our results showed that both increments of dose and time prompt the increments in the number of dead cells. Cells treated by 1,000 µM MnCl2 activated 265% (±8.1) caspase-3 compared to control cell. MnCl2 induced intracellular ROS produced 168% (±2.3%) compared to that of the control cells and MnCl2 induced neurotoxicity significantly dissipated 48.9% of mitochondria membrane potential compared to the control cells. Conclusions This study indicated that MnCl2 induced apoptosis via ER stress and mitochondria dysfunction. In addition, MnCl2 affected only complex I except complex II, III or IV activities. PMID:22232721

  8. Mutation of ATF4 mediates resistance of neuronal cell lines against oxidative stress by inducing xCT expression

    PubMed Central

    Lewerenz, J; Sato, H; Albrecht, P; Henke, N; Noack, R; Methner, A; Maher, P

    2012-01-01

    Selecting neuronal cell lines for resistance against oxidative stress might recapitulate some adaptive processes in neurodegenerative diseases where oxidative stress is involved like Parkinson's disease. We recently reported that in hippocampal HT22 cells selected for resistance against oxidative glutamate toxicity, the cystine/glutamate antiporter system xc−, which imports cystine for synthesis of the antioxidant glutathione, and its specific subunit, xCT, are upregulated. (Lewerenz et al., J Neurochem 98(3):916–25). Here, we show that in these glutamate-resistant HT22 cells upregulation of xCT mediates glutamate resistance, and xCT expression is induced by upregulation of the transcription factor ATF4. The mechanism of ATF4 upregulation consists of a 13 bp deletion in the upstream open reading frame (uORF2) overlapping the ATF4 open reading frame. The resulting uORF2–ATF4 fusion protein is efficiently translated even at a low phosphorylation levels of the translation initiation factor eIF2α, a condition under which ATF4 translation is normally suppressed. A similar ATF4 mutation associated with prominent upregulation of xCT expression was identified in PC12 cells selected for resistance against amyloid β-peptide. Our data indicate that ATF4 has a central role in regulating xCT expression and resistance against oxidative stress. ATF4 mutations might have broader significance as upregulation of xCT is found in tumor cells and associated with anticancer drug resistance. PMID:22095285

  9. CXCL13-CXCR5 co-expression regulates epithelial to mesenchymal transition of breast cancer cells during lymph node metastasis.

    PubMed

    Biswas, Subir; Sengupta, Suman; Roy Chowdhury, Sougata; Jana, Samir; Mandal, Gunjan; Mandal, Palash Kumar; Saha, Nipun; Malhotra, Vivek; Gupta, Arnab; Kuprash, Dmitry V; Bhattacharyya, Arindam

    2014-01-01

    We investigated the expression of -CXC chemokine ligand 13 (CXCL13) and its receptor -CXC chemokine receptor 5 (CXCR5) in 98 breast cancer (BC) patients with infiltrating duct carcinoma, out of which 56 were found lymph node metastasis (LNM) positive. Interestingly, co-expression of CXCL13 and CXCR5 showed a significant correlation with LNM. Since, epithelial to mesenchymal transition (EMT) is highly associated with metastasis we investigated EMT-inducing potential of CXCL13 in BC cell lines. In CXCL13-stimulated BC cells, expression of various mesenchymal markers (Vimentin, N-cadherin), EMT regulators (Snail, Slug), and matrix metalloproteinase-9 (MMP9) was increased, whereas the expression of epithelial marker E-cadherin was found to be decreased. In addition, expression of receptor activator of nuclear factor kappa-B ligand (RANKL), which is known to regulate MMP9 expression via Src activation, was also significantly increased after CXCL13 stimulation. Using specific protein kinase inhibitors, we confirmed that CXCL13 stimulated EMT and MMP9 expression via RANKL-Src axis in BC cell lines. To further validate this observation, we examined gene expression patterns in primary breast tumors and detected significantly higher expression of various mesenchymal markers and regulators in CXCL13-CXCR5 co-expressing patients. Therefore, this study showed the EMT-inducing potential of CXCL13 as well as demonstrated the prognostic value of CXCL13-CXCR5 co-expression in primary BC. Moreover, CXCL13-CXCR5-RANKL-Src axis may present a therapeutic target in LNM positive BC patients.

  10. Differentially correlated genes in co-expression networks control phenotype transitions.

    PubMed

    Thomas, Lina D; Vyshenska, Dariia; Shulzhenko, Natalia; Yambartsev, Anatoly; Morgun, Andrey

    2016-01-01

    Co-expression networks are a tool widely used for analysis of "Big Data" in biology that can range from transcriptomes to proteomes, metabolomes and more recently even microbiomes. Several methods were proposed to answer biological questions interrogating these networks. Differential co-expression analysis is a recent approach that measures how gene interactions change when a biological system transitions from one state to another. Although the importance of differentially co-expressed genes to identify dysregulated pathways has been noted, their role in gene regulation is not well studied. Herein we investigated differentially co-expressed genes in a relatively simple mono-causal process (B lymphocyte deficiency) and in a complex multi-causal system (cervical cancer). Co-expression networks of B cell deficiency (Control and BcKO) were reconstructed using Pearson correlation coefficient for two mus musculus datasets: B10.A strain (12 normal, 12 BcKO) and BALB/c strain (10 normal, 10 BcKO). Co-expression networks of cervical cancer (normal and cancer) were reconstructed using local partial correlation method for five datasets (total of 64 normal, 148 cancer). Differentially correlated pairs were identified along with the location of their genes in BcKO and in cancer networks. Minimum Shortest Path and Bi-partite Betweenness Centrality where statistically evaluated for differentially co-expressed genes in corresponding networks.    Results: We show that in B cell deficiency the differentially co-expressed genes are highly enriched with immunoglobulin genes (causal genes). In cancer we found that differentially co-expressed genes act as "bottlenecks" rather than causal drivers with most flows that come from the key driver genes to the peripheral genes passing through differentially co-expressed genes. Using in vitro knockdown experiments for two out of 14 differentially co-expressed genes found in cervical cancer (FGFR2 and CACYBP), we showed that they play

  11. Differentially correlated genes in co-expression networks control phenotype transitions

    PubMed Central

    Thomas, Lina D.; Vyshenska, Dariia; Shulzhenko, Natalia; Yambartsev, Anatoly; Morgun, Andrey

    2016-01-01

    Background: Co-expression networks are a tool widely used for analysis of “Big Data” in biology that can range from transcriptomes to proteomes, metabolomes and more recently even microbiomes. Several methods were proposed to answer biological questions interrogating these networks. Differential co-expression analysis is a recent approach that measures how gene interactions change when a biological system transitions from one state to another. Although the importance of differentially co-expressed genes to identify dysregulated pathways has been noted, their role in gene regulation is not well studied. Herein we investigated differentially co-expressed genes in a relatively simple mono-causal process (B lymphocyte deficiency) and in a complex multi-causal system (cervical cancer). Methods: Co-expression networks of B cell deficiency (Control and BcKO) were reconstructed using Pearson correlation coefficient for two mus musculus datasets: B10.A strain (12 normal, 12 BcKO) and BALB/c strain (10 normal, 10 BcKO). Co-expression networks of cervical cancer (normal and cancer) were reconstructed using local partial correlation method for five datasets (total of 64 normal, 148 cancer). Differentially correlated pairs were identified along with the location of their genes in BcKO and in cancer networks. Minimum Shortest Path and Bi-partite Betweenness Centrality where statistically evaluated for differentially co-expressed genes in corresponding networks.    Results: We show that in B cell deficiency the differentially co-expressed genes are highly enriched with immunoglobulin genes (causal genes). In cancer we found that differentially co-expressed genes act as “bottlenecks” rather than causal drivers with most flows that come from the key driver genes to the peripheral genes passing through differentially co-expressed genes. Using in vitro knockdown experiments for two out of 14 differentially co-expressed genes found in cervical cancer (FGFR2 and CACYBP), we

  12. Co-integration, co-expression and inheritance of unlinked minimal transgene expression cassettes in an apomictic turf and forage grass (Paspalum notatum Flugge).

    PubMed

    Sandhu, Sukhpreet; Altpeter, Fredy

    2008-11-01

    Bahiagrass (Paspalum notatum Flugge) is an important turf and forage grass in the southeastern United States and other subtropical regions. Biolistic co-transfer of two unlinked, minimal, linear transgene expression cassettes (MCs) into the apomictic bahiagrass cv. Argentine was carried out to evaluate co-integration, quantify co-expression and analyze inheritance to apomictic seed progeny. Gold projectiles were coated with minimal unlinked nptII and bar expression cassettes in a 1:2 molar ratio. Complexity of transgene loci correlated with the amount of DNA used during gene transfer. Transgenic plants displayed a simple nptII integration pattern with 1-4 hybridization signals compared to the non-selected bar gene with 2 to more than 5 hybridization signals per transgenic line. Co-expression of unlinked nptII and bar genes occurred in 19 of the 20 co-transformed lines (95% co-expression frequency). Protein quantification revealed that several lines with complex integration patterns displayed a higher transgene expression than lines with simple transgene integration patterns. Several transgenic lines displayed hybridization signals indicative of concatemerization. Concatemers were confirmed following PCR amplification and sequence analysis of transgene loci. The obligate apomictic bahiagrass cv. Argentine produced uniform seed progeny without segregation of simple or complex transgene loci. NPTII- and PAT-ELISA, as well as herbicide application, confirmed stable expression of the nptII and bar gene at levels similar to the primary transformants. These results demonstrate that biolistic transfer of MCs support stable and high level co-expression of transgenes in bahiagrass.

  13. The toxic effect of ketamine on SH-SY5Y neuroblastoma cell line and human neuron.

    PubMed

    Mak, Ying T; Lam, Wai P; Lü, Lanhai; Wong, Yeuk W; Yew, David T

    2010-03-01

    Ketamine used as an injectable anesthetic in human and animal medicine is also a recreational drug used primarily by young adults often at all night dance parties in nightclubs. The percentage of ketamine users has grown very fast in the last 5 years worldwide. However, this leads to the serious question of the long-term adverse effects of ketamine on our nervous system, particularly the brain, because ketamine as an NMDA antagonist could cause neurons to commit apoptosis. Our study therefore aimed to find out the chronic effect of ketamine on neuron using prolonged incubation (48 h) of neuronal cells with ketamine in culture. Our results showed that differentiated neuronal cells were prone to the toxicity of ketamine but probably less susceptible than undifferentiated neuronal cells and fibroblasts. This suggested that the ketamine abuse would be harmful to many other organs as well as the brain. Our results also confirmed that the toxicity of ketamine is related to apoptosis via the Bax/Bcl-2 ratio pathway and caspase-3 in the differentiated neuronal cells. Therefore, long-term ketamine treated cell or animal models should be sought to study this multiorgan effects of ketamine.

  14. Enkephalin co-expression with classic neurotransmitters in the amygdaloid complex of the rat.

    PubMed

    Poulin, Jean-François; Castonguay-Lebel, Zoé; Laforest, Sylvie; Drolet, Guy

    2008-02-20

    This study aimed at characterizing the neurotransmitter phenotype of enkephalin neurons in the rat amygdaloid complex. We first established the detailed distribution of vesicular glutamate transporters 1 and 2 (VGLUT1 and -2) and glutamate decarboxylase 65 (GAD65) in the amygdala by using in situ hybridization. In the amygdaloid complex, GAD65 is strongly expressed in striatal-like divisions, namely, the anterior amygdaloid area, the central nucleus (CEA), the intercalated nuclei, and the dorsal part of the medial nucleus (MEA). VGLUT1 and -2 expression is mostly segregated to specific divisions of the amygdale, with VGLUT2 being expressed only in the MEA, the anterior cortical nucleus (COAa), and the anterior basomedial nucleus (BMAa), whereas VGLUT1 is expressed in all other divisions of the amygdala. Second, we assessed the co-expression of preproenkephalin (ppENK) with GAD65, VGLUT1, or VGLUT2 by using double fluorescent in situ hybridization. We found that ppENK mRNA co-localized exclusively with GAD65 in all striatal-like structures of the amygdaloid complex with the exception of the MEA, where ENK also co-localized with VGLUT2 mRNA. This co-localization is most apparent in the posteroventral part of the MEA, where 70% of ENKergic cells expressed VGLUT2. In addition, ppENK also co-localized with VGLUT1 because more than 95% of ENK cells in the basolateral amygdala expressed VGLUT1. In contrast, less than 25% of ENKergic cells expressed VGLUT1 in the lateral nucleus of the amygdale, with the majority of ENK cells expressing GAD65 mRNA in this nucleus. These results have broad implications for understanding the functional roles of enkephalinergic neurotransmission in the amygdaloid complex.

  15. Co-expression of neuropeptide Y Y1 and Y5 receptors results in heterodimerization and altered functional properties.

    PubMed

    Gehlert, Donald R; Schober, Douglas A; Morin, Michelle; Berglund, Magnus M

    2007-12-03

    Centrally administered neuropeptide Y (NPY) produces anxiolytic and orexigenic effects by interacting with Y1 and Y5 receptors that are colocalized in many brain regions. Therefore, we tested the hypothesis that co-expression of Y1 and Y5 receptors results in heterodimerization, altered pharmacological properties and altered desensitization. To accomplish this, the carboxyl-termini of Y1 and Y5 receptors were fused with Renilla luciferase and green fluorescent protein and the proximity of the tagged receptors assessed using bioluminescent resonance energy transfer. Under basal conditions, cotransfection of tagged Y1 receptor and Y5 produced a substantial dimerization signal that was unaffected by the endogenous, nonselective agonists, NPY and peptide YY (PYY). Selective Y5 agonists produced an increase in the dimerization signal while Y5 antagonists also produced a slight but significant increase. In the absence of agonists, selective antagonists decreased dimerization. In functional studies, Y5 agonists produced a greater inhibition of adenylyl cyclase activity in Y1/Y5 cells than cells expressing Y5 alone while NPY and PYY exhibited no difference. With PYY stimulation, the Y1 antagonist became inactive and the Y5 antagonist exhibited uncompetitive kinetics in the Y1/Y5 cell line. In confocal microscopy studies, Y1/Y5 co-expression resulted in increased Y5 signaling following PYY stimulation. Addition of both Y1 and Y5 receptor antagonists was required to significantly decrease PYY-induced internalization. Therefore, Y1/Y5 co-expression results in heterodimerization, altered agonist and antagonist responses and reduced internalization rate. These results may account for the complex pharmacology observed when assessing the responses to NPY and analogs in vivo.

  16. Gene Co-Expression Modules as Clinically Relevant Hallmarks of Breast Cancer Diversity

    PubMed Central

    Yau, Christina; Boudreau, Aaron; van ‘t Veer, Laura J.

    2014-01-01

    Co-expression modules are groups of genes with highly correlated expression patterns. In cancer, differences in module activity potentially represent the heterogeneity of phenotypes important in carcinogenesis, progression, or treatment response. To find gene expression modules active in breast cancer subpopulations, we assembled 72 breast cancer-related gene expression datasets containing ∼5,700 samples altogether. Per dataset, we identified genes with bimodal expression and used mixture-model clustering to ultimately define 11 modules of genes that are consistently co-regulated across multiple datasets. Functionally, these modules reflected estrogen signaling, development/differentiation, immune signaling, histone modification, ERBB2 signaling, the extracellular matrix (ECM) and stroma, and cell proliferation. The Tcell/Bcell immune modules appeared tumor-extrinsic, with coherent expression in tumors but not cell lines; whereas most other modules, interferon and ECM included, appeared intrinsic. Only four of the eleven modules were represented in the PAM50 intrinsic subtype classifier and other well-established prognostic signatures; although the immune modules were highly correlated to previously published immune signatures. As expected, the proliferation module was highly associated with decreased recurrence-free survival (RFS). Interestingly, the immune modules appeared associated with RFS even after adjustment for receptor subtype and proliferation; and in a multivariate analysis, the combination of Tcell/Bcell immune module down-regulation and proliferation module upregulation strongly associated with decreased RFS. Immune modules are unusual in that their upregulation is associated with a good prognosis without chemotherapy and a good response to chemotherapy, suggesting the paradox of high immune patients who respond to chemotherapy but would do well without it. Other findings concern the ECM/stromal modules, which despite common themes were associated

  17. Glial cell line-derived neurotrophic factor family ligands enhance capsaicin-stimulated release of calcitonin gene-related peptide from sensory neurons.

    PubMed

    Schmutzler, B S; Roy, S; Hingtgen, C M

    2009-06-16

    The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are a group of peptides that have been implicated as important factors in inflammation, since they are released in increased amounts during inflammation and induce thermal hyperalgesia upon injection. Mouse isolated sensory neurons in culture and freshly dissociated spinal cord slices were used to examine the enhancement in stimulated-release of the neuropeptide, calcitonin gene-related peptide (CGRP), as a measure of sensitization. Exposure of isolated sensory neurons in culture to GDNF, neurturin, and artemin enhanced the capsaicin-stimulated release of immunoreactive calcitonin gene-related peptide (iCGRP) two- to threefold, but did not increase potassium-stimulated release of iCGRP. A similar profile of sensitization was observed in freshly dissociated spinal cord slices. Persephin, another member of the GFL family thought to be important in development, was unable to induce an enhancement in the release of iCGRP. These results demonstrate that specific GFLs are important mediators affecting sensory neuronal sensitivity, likely through modulation of the capsaicin receptor. The sensitization of sensory neurons during inflammation, and the pain and neurogenic inflammation resulting from this sensitization, may be due in part to the effects of these selected GFLs.

  18. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  19. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  20. Memantine inhibits serotonin-induced rise of cytosolic Ca2+ activity and of cyclic GMP level in a neuronal cell line.

    PubMed

    Reiser, G; Koch, R

    1989-05-11

    Serotonin (5-HT) evoked a rise of cytosolic Ca2+ activity in neuroblastoma X glioma hybrid cells, most probably due to the entry of extracellular Ca2+; cyclic GMP synthesis was also stimulated. The rise of both cytosolic Ca2+ activity and of cyclic GMP level was blocked by memantine (1-amino-3,5-dimethyladamantane). Memantine inhibited the rise of the cyclic GMP level non-competitively (Ki about 50 microM). Thus, memantine suppresses the effects of 5-HT in the neuronal cell line, most likely by blocking Ca2+-permeable ion channels. This interpretation is in line with the previously reported finding that memantine suppressed the 5-HT-induced depolarizing response in the same cell line.

  1. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    PubMed

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.

  2. Identification of Estrogen Receptor Dimer Selective Ligands Reveals Growth-Inhibitory Effects on Cells That Co-Express ERα and ERβ

    PubMed Central

    Powell, Emily; Shanle, Erin; Brinkman, Ashley; Li, Jun; Keles, Sunduz; Wisinski, Kari B.; Huang, Wei; Xu, Wei

    2012-01-01

    Estrogens play essential roles in the progression of mammary and prostatic diseases. The transcriptional effects of estrogens are transduced by two estrogen receptors, ERα and ERβ, which elicit opposing roles in regulating proliferation: ERα is proliferative while ERβ is anti-proliferative. Exogenous expression of ERβ in ERα-positive cancer cell lines inhibits cell proliferation in response to estrogen and reduces xenografted tumor growth in vivo, suggesting that ERβ might oppose ERα's proliferative effects via formation of ERα/β heterodimers. Despite biochemical and cellular evidence of ERα/β heterodimer formation in cells co-expressing both receptors, the biological roles of the ERα/β heterodimer remain to be elucidated. Here we report the identification of two phytoestrogens that selectively activate ERα/β heterodimers at specific concentrations using a cell-based, two-step high throughput small molecule screen for ER transcriptional activity and ER dimer selectivity. Using ERα/β heterodimer-selective ligands at defined concentrations, we demonstrate that ERα/β heterodimers are growth inhibitory in breast and prostate cells which co-express the two ER isoforms. Furthermore, using Automated Quantitative Analysis (AQUA) to examine nuclear expression of ERα and ERβ in human breast tissue microarrays, we demonstrate that ERα and ERβ are co-expressed in the same cells in breast tumors. The co-expression of ERα and ERβ in the same cells supports the possibility of ERα/β heterodimer formation at physio- and pathological conditions, further suggesting that targeting ERα/β heterodimers might be a novel therapeutic approach to the treatment of cancers which co-express ERα and ERβ. PMID:22347418

  3. ImmuCo: a database of gene co-expression in immune cells

    PubMed Central

    Wang, Pingzhang; Qi, Huiying; Song, Shibin; Li, Shuang; Huang, Ningyu; Han, Wenling; Ma, Dalong

    2015-01-01

    Current gene co-expression databases and correlation networks do not support cell-specific analysis. Gene co-expression and expression correlation are subtly different phenomena, although both are likely to be functionally significant. Here, we report a new database, ImmuCo (http://immuco.bjmu.edu.cn), which is a cell-specific database that contains information about gene co-expression in immune cells, identifying co-expression and correlation between any two genes. The strength of co-expression of queried genes is indicated by signal values and detection calls, whereas expression correlation and strength are reflected by Pearson correlation coefficients. A scatter plot of the signal values is provided to directly illustrate the extent of co-expression and correlation. In addition, the database allows the analysis of cell-specific gene expression profile across multiple experimental conditions and can generate a list of genes that are highly correlated with the queried genes. Currently, the database covers 18 human cell groups and 10 mouse cell groups, including 20 283 human genes and 20 963 mouse genes. More than 8.6 × 108 and 7.4 × 108 probe set combinations are provided for querying each human and mouse cell group, respectively. Sample applications support the distinctive advantages of the database. PMID:25326331

  4. AXL and GAS6 co-expression in lung adenocarcinoma as a prognostic classifier.

    PubMed

    Seike, Masahiro; Kim, Cheol-Hong; Zou, Fenfei; Noro, Rintaro; Chiba, Mika; Ishikawa, Arimi; Κunugi, Shinobu; Kubota, Kaoru; Gemma, Akihiko

    2017-06-01

    AXL, a receptor tyrosine kinase implicated in cell survival, proliferation, and migration, is also associated with acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor therapy. However, its prognostic significance in lung adenocarcinoma (AD) remains unclear. We therefore evaluated the prognostic significance of the expression of AXL and/or its ligand, growth arrest-specific 6 (GAS6), in completely resected lung AD. We evaluated the relationship between AXL, GAS6, and vimentin expression, as determined by immunohistochemistry (IHC) analysis, with overall survival and disease-free survival in 113 patients with stages I-III lung AD. Protein expression was also assayed using western blot analysis in 10 lung AD cell lines. AXL-positive (AXL+), GAS6-positive (GAS6+), or AXL+/GAS6+ staining was significantly associated with vimentin-positive (vimentin+) expression. AXL+/GAS6+ and vimentin+ showed a negative tendency toward an association with EGFR mutation. AXL+, GAS6+, or AXL+/GAS6+ status significantly correlated with poor overall survival. In stage I cases, AXL+/GAS6+ status significantly correlated with poor overall survival and disease-free survival, especially in cases with wild-type EGFR. In multivariate analysis, AXL/GAS6 classifications in stage I as well as in stages I-III lung AD were found to be independent factors for poor patient outcomes. Unlike lung AD cell lines with mutant EGFR, almost all cells with wild-type EGFR showed AXL and vimentin co-expression as determined by western blotting. AXL+ and GAS6+ expression is relevant to a poor prognosis in resected lung AD patients at stage I. AXL/GAS6 might serve as crucial predictive and prognostic biomarkers and targets to identify individuals at high risk of post-operative death.

  5. Ultrastructural characterization of the mesostriatal dopamine innervation in mice, including two mouse lines of conditional VGLUT2 knockout in dopamine neurons.

    PubMed

    Bérubé-Carrière, Noémie; Guay, Ginette; Fortin, Guillaume M; Kullander, Klas; Olson, Lars; Wallén-Mackenzie, Åsa; Trudeau, Louis-Eric; Descarries, Laurent

    2012-02-01

    Despite the increasing use of genetically modified mice to investigate the dopamine (DA) system, little is known about the ultrastructural features of the striatal DA innervation in the mouse. This issue is particularly relevant in view of recent evidence for expression of the vesicular glutamate transporter 2 (VGLUT2) by a subset of mesencephalic DA neurons in mouse as well as rat. We used immuno-electron microscopy to characterize tyrosine hydroxylase (TH)-labeled terminals in the core and shell of nucleus accumbens and the neostriatum of two mouse lines in which the Vglut2 gene was selectively disrupted in DA neurons (cKO), their control littermates, and C57BL/6/J wild-type mice, aged P15 or adult. The three regions were also examined in cKO mice and their controls of both ages after dual TH-VGLUT2 immunolabeling. Irrespective of the region, age and genotype, the TH-immunoreactive varicosities appeared similar in size, vesicular content, percentage with mitochondria, and exceedingly low frequency of synaptic membrane specialization. No dually labeled axon terminals were found at either age in control or in cKO mice. Unless TH and VGLUT2 are segregated in different axon terminals of the same neurons, these results favor the view that the glutamatergic cophenotype of mesencephalic DA neurons is more important during the early development of these neurons than for the establishment of their scarce synaptic connectivity. They also suggest that, in mouse even more than rat, the mesostriatal DA system operates mainly through non-targeted release of DA, diffuse transmission and the maintenance of an ambient DA level.

  6. HLXB9 Gene Expression, and Nuclear Location during In Vitro Neuronal Differentiation in the SK-N-BE Neuroblastoma Cell Line

    PubMed Central

    Leotta, Claudia Giovanna; Federico, Concetta; Brundo, Maria Violetta; Tosi, Sabrina; Saccone, Salvatore

    2014-01-01

    Different parts of the genome occupy specific compartments of the cell nucleus based on the gene content and the transcriptional activity. An example of this is the altered nuclear positioning of the HLXB9 gene in leukaemia cells observed in association with its over-expression. This phenomenon was attributed to the presence of a chromosomal translocation with breakpoint proximal to the HLXB9 gene. Before becoming an interesting gene in cancer biology, HLXB9 was studied as a developmental gene. This homeobox gene is also known as MNX1 (motor neuron and pancreas homeobox 1) and it is relevant for both motor neuronal and pancreatic beta cells development. A spectrum of mutations in this gene are causative of sacral agenesis and more broadly, of what is known as the Currarino Syndrome, a constitutional autosomal dominant disorder. Experimental work on animal models has shown that HLXB9 has an essential role in motor neuronal differentiation. Here we present data to show that, upon treatment with retinoic acid, the HLXB9 gene becomes over-expressed during the early stages of neuronal differentiation and that this corresponds to a reposition of the gene in the nucleus. More precisely, we used the SK-N-BE human neuroblastoma cell line as an in vitro model and we demonstrated a transient transcription of HLXB9 at the 4th and 5th days of differentiation that corresponded to the presence, predominantly in the cell nuclei, of the encoded protein HB9. The nuclear positioning of the HLXB9 gene was monitored at different stages: a peripheral location was noted in the proliferating cells whereas a more internal position was noted during differentiation, that is while HLXB9 was transcriptionally active. Our findings suggest that HLXB9 can be considered a marker of early neuronal differentiation, possibly involving chromatin remodeling pathways. PMID:25136833

  7. HLXB9 gene expression, and nuclear location during in vitro neuronal differentiation in the SK-N-BE neuroblastoma cell line.

    PubMed

    Leotta, Claudia Giovanna; Federico, Concetta; Brundo, Maria Violetta; Tosi, Sabrina; Saccone, Salvatore

    2014-01-01

    Different parts of the genome occupy specific compartments of the cell nucleus based on the gene content and the transcriptional activity. An example of this is the altered nuclear positioning of the HLXB9 gene in leukaemia cells observed in association with its over-expression. This phenomenon was attributed to the presence of a chromosomal translocation with breakpoint proximal to the HLXB9 gene. Before becoming an interesting gene in cancer biology, HLXB9 was studied as a developmental gene. This homeobox gene is also known as MNX1 (motor neuron and pancreas homeobox 1) and it is relevant for both motor neuronal and pancreatic beta cells development. A spectrum of mutations in this gene are causative of sacral agenesis and more broadly, of what is known as the Currarino Syndrome, a constitutional autosomal dominant disorder. Experimental work on animal models has shown that HLXB9 has an essential role in motor neuronal differentiation. Here we present data to show that, upon treatment with retinoic acid, the HLXB9 gene becomes over-expressed during the early stages of neuronal differentiation and that this corresponds to a reposition of the gene in the nucleus. More precisely, we used the SK-N-BE human neuroblastoma cell line as an in vitro model and we demonstrated a transient transcription of HLXB9 at the 4th and 5th days of differentiation that corresponded to the presence, predominantly in the cell nuclei, of the encoded protein HB9. The nuclear positioning of the HLXB9 gene was monitored at different stages: a peripheral location was noted in the proliferating cells whereas a more internal position was noted during differentiation, that is while HLXB9 was transcriptionally active. Our findings suggest that HLXB9 can be considered a marker of early neuronal differentiation, possibly involving chromatin remodeling pathways.

  8. Enhanced production of shikimic acid using a multi-gene co-expression system in Escherichia coli.

    PubMed

    Liu, Xiang-Lei; Lin, Jun; Hu, Hai-Feng; Zhou, Bin; Zhu, Bao-Quan

    2016-04-01

    Shikimic acid (SA) is the key synthetic material for the chemical synthesis of Oseltamivir, which is prescribed as the front-line treatment for serious cases of influenza. Multi-gene expression vector can be used for expressing the plurality of the genes in one plasmid, so it is widely applied to increase the yield of metabolites. In the present study, on the basis of a shikimate kinase genetic defect strain Escherichia coli BL21 (ΔaroL/aroK, DE3), the key enzyme genes aroG, aroB, tktA and aroE of SA pathway were co-expressed and compared systematically by constructing a series of multi-gene expression vectors. The results showed that different gene co-expression combinations (two, three or four genes) or gene orders had different effects on the production of SA. SA production of the recombinant BL21-GBAE reached to 886.38 mg·L(-1), which was 17-fold (P < 0.05) of the parent strain BL21 (ΔaroL/aroK, DE3).

  9. Co-expression network analysis of duplicate genes in maize (Zea mays L.) reveals no subgenome bias.

    PubMed

    Li, Lin; Briskine, Roman; Schaefer, Robert; Schnable, Patrick S; Myers, Chad L; Flagel, Lex E; Springer, Nathan M; Muehlbauer, Gary J

    2016-11-04

    Gene duplication is prevalent in many species and can result in coding and regulatory divergence. Gene duplications can be classified as whole genome duplication (WGD), tandem and inserted (non-syntenic). In maize, WGD resulted in the subgenomes maize1 and maize2, of which maize1 is considered the dominant subgenome. However, the landscape of co-expression network divergence of duplicate genes in maize is still largely uncharacterized. To address the consequence of gene duplication on co-expression network divergence, we developed a gene co-expression network from RNA-seq data derived from 64 different tissues/stages of the maize reference inbred-B73. WGD, tandem and inserted gene duplications exhibited distinct regulatory divergence. Inserted duplicate genes were more likely to be singletons in the co-expression networks, while WGD duplicate genes were likely to be co-expressed with other genes. Tandem duplicate genes were enriched in the co-expression pattern where co-expressed genes were nearly identical for the duplicates in the network. Older gene duplications exhibit more extensive co-expression variation than younger duplications. Overall, non-syntenic genes primarily from inserted duplications show more co-expression divergence. Also, such enlarged co-expression divergence is significantly related to duplication age. Moreover, subgenome dominance was not observed in the co-expression networks - maize1 and maize2 exhibit similar levels of intra subgenome correlations. Intriguingly, the level of inter subgenome co-expression was similar to the level of intra subgenome correlations, and genes from specific subgenomes were not likely to be the enriched in co-expression network modules and the hub genes were not predominantly from any specific subgenomes in maize. Our work provides a comprehensive analysis of maize co-expression network divergence for three different types of gene duplications and identifies potential relationships between duplication types

  10. Transcriptional activation of JC virus by human T-lymphotropic virus type I Tax protein in human neuronal cell lines.

    PubMed

    Okada, Y; Sawa, H; Tanaka, S; Takada, A; Suzuki, S; Hasegawa, H; Umemura, T; Fujisawa, J; Tanaka, Y; Hall, W W; Nagashima, K

    2000-06-02

    Polyomavirus JC (JCV) causes the human demyelinating disease, progressive multifocal leukoencephalopathy (PML). The recent demonstration of cases of PML in association with human T-lymphotropic virus type I (HTLV-I) infection prompted us to examine whether the HTLV-I-encoded regulatory protein Tax activates JCV transcription. By employing a dual luciferase assay, we initially found that the expression of Tax activated the transcriptional potential of both early and late promoters of JCV in human neuronal but not in non-neuronal cells. We subsequently analyzed the mechanism of Tax-induced activation of the JCV promoter in neuronal cells with the following results: 1) the JCV promoter that lacks the NF-kappaB-binding motif could not be activated by Tax; 2) the overexpression of IkappaBalpha abolished Tax-induced transcriptional activation of the JCV promoter; 3) a Tax mutant (M22) lacking the potential for activation via the NF-kappaB pathway did not activate the JCV promoter. Furthermore, Tax enhances the gene expression of JCV T antigen and VP1. We examined mechanisms of the cell-specific activation of the JCV promoter by Tax. Electrophoretic mobility shift assay demonstrated the presence of Tax-bound protein(s) that were specifically present in non-neuronal cells. This study is the first demonstration of the activation of JCV promoter by HTLV-I Tax in an NF-kappaB-dependent manner.

  11. Co-Expression of Two Subtypes of Melatonin Receptor on Rat M1-Type Intrinsically Photosensitive Retinal Ganglion Cells

    PubMed Central

    Sheng, Wen-Long; Chen, Wei-Yi; Yang, Xiong-Li; Zhong, Yong-Mei; Weng, Shi-Jun

    2015-01-01

    Intrinsically photosensitive retinal ganglion cells (ipRGCs) are involved in circadian and other non-image forming visual responses. An open question is whether the activity of these neurons may also be under the regulation mediated by the neurohormone melatonin. In the present work, by double-staining immunohistochemical technique, we studied the expression of MT1 and MT2, two known subtypes of mammalian melatonin receptors, in rat ipRGCs. A single subset of retinal ganglion cells labeled by the specific antibody against melanopsin exhibited the morphology typical of M1-type ipRGCs. Immunoreactivity for both MT1 and MT2 receptors was clearly seen in the cytoplasm of all labeled ipRGCs, indicating that these two receptors were co-expressed in each of these neurons. Furthermore, labeling for both the receptors were found in neonatal M1 cells as early as the day of birth. It is therefore highly plausible that retinal melatonin may directly modulate the activity of ipRGCs, thus regulating non-image forming visual functions. PMID:25714375

  12. Co-expression of GAP-43 and nNOS in avulsed motoneurons and their potential role for motoneuron regeneration.

    PubMed

    Yuan, Qiuju; Hu, Bing; Chu, Tak-Ho; Su, Huanxing; Zhang, Wenming; So, Kwok-Fai; Lin, Zhixiu; Wu, Wutian

    2010-12-15

    Neuronal nitric oxide synthase (nNOS) is induced after axonal injury. The role of induced nNOS in injured neurons is not well established. In the present study, we investigated the co-expression of nNOS with GAP-43 in spinal motoneurons following axonal injury. The role of induced nNOS was discussed and evaluated. In normal rats, spinal motoneurons do not express nNOS or GAP-43. Following spinal root avulsion, expression of nNOS and GAP-43 were induced and colocalized in avulsed motoneurons. Reimplantation of avulsed roots resulted in a remarkable decrease of GAP-43- and nNOS-IR in the soma of the injured motoneurons. A number of GAP-43-IR regenerating motor axons were found in the reimplanted nerve. In contrast, the nNOS-IR was absent in reimplanted nerve. These results suggest that expression of GAP-43 in avulsed motoneurons is related to axonal regeneration whereas nNOS is not.

  13. Interaction and colocalization of HERMES/RBPMS with NonO, PSF, and G3BP1 in neuronal cytoplasmic RNP granules in mouse retinal line cells.

    PubMed

    Furukawa, Mari T; Sakamoto, Hiroshi; Inoue, Kunio

    2015-04-01

    HERMES, also called RBPMS, is a conserved RNA binding protein with a single RNA recognition motif (RRM) that is abundantly expressed in retinal ganglion cells (RGCs) and in the heart in vertebrates. Here, we identified NonO and PSF as the interacting proteins of HERMES only when the neuronal differentiation of the retinal cell line RGC-5 was induced. Although NonO and PSF are nuclear paraspeckle components, these proteins formed cytoplasmic granules with HERMES in the neurites. G3BP1, a component of stress granules, was also colocalized to the granules, interacting with NonO and HERMES even in the absence of cellular stress. Consistent with a previous report that KIF5 interacts with neuronal granules, the localization of KIF5A overlapped with the cytoplasmic granules in differentiated RGC-5 cells. Thus, our study strongly suggests that the cytoplasmic granule containing HERMES, NonO, PSF, and G3BP1 is a neuronal RNA-protein granule that is transported in neurites during retinal differentiation.

  14. Viral delivery of glial cell line-derived neurotrophic factor improves behavior and protects striatal neurons in a mouse model of Huntington’s disease

    PubMed Central

    McBride, Jodi L.; Ramaswamy, Shilpa; Gasmi, Mehdi; Bartus, Raymond T.; Herzog, Christopher D.; Brandon, Eugene P.; Zhou, Lili; Pitzer, Mark R.; Berry-Kravis, Elizabeth M.; Kordower, Jeffrey H.

    2006-01-01

    Huntington’s disease (HD) is a fatal, genetic, neurological disorder resulting from a trinucleotide repeat expansion in the gene that encodes for the protein huntingtin. These excessive repeats confer a toxic gain of function on huntingtin, which leads to the degeneration of striatal and cortical neurons and a devastating motor, cognitive, and psychological disorder. Trophic factor administration has emerged as a compelling potential therapy for a variety of neurodegenerative disorders, including HD. We previously demonstrated that viral delivery of glial cell line-derived neurotrophic factor (GDNF) provides structural and functional neuroprotection in a rat neurotoxin model of HD. In this report we demonstrate that viral delivery of GDNF into the striatum of presymptomatic mice ameliorates behavioral deficits on the accelerating rotorod and hind limb clasping tests in transgenic HD mice. Behavioral neuroprotection was associated with anatomical preservation of the number and size of striatal neurons from cell death and cell atrophy. Additionally, GDNF-treated mice had a lower percentage of neurons containing mutant huntingtin-stained inclusion bodies, a hallmark of HD pathology. These data further support the concept that viral vector delivery of GDNF may be a viable treatment for patients suffering from HD. PMID:16751280

  15. [NEURONAL DIFFERENTIATION OF PC12 CELL LINE AND MURINE NEURAL STEM CELLS ON THE CARBON NANOTUBES FILMS].

    PubMed

    Posypanova, G A; Gaiduchenko, A I; Moskaleva, E Yu; Fedorov, G E

    2016-01-01

    The study of the interaction of nerve cells with specially designed substrates (scaffolds) with different surface characteristics at the nanoscale is a necessary step in the development of methods of stimulation of regeneration of nervous tissues, as well as to create next generation of bioelectronic devices. A promising material for such scaffolds may be carbon nanotubes (CNT) that are flexible films of graphene rolled into nano-sized cylindrical tubes. CNT were produced by chemical deposition from the gas phase. The analysis of the PC12 cells cultivated on quartz glass coated by carbon nanotubes films using electron and light microscopy has shown that CNT stimulate the proliferation and do not inhibit neuronal differentiation of PC12 cells. We have found that it is possible to obtain differentiated neurons from murine neural stem cells on the quartz glasses covered with CNT films. The data obtained indicate that the CNT films produced by chemical deposition from the gas phase onto quartz glass may be used as the electro conductive scaffold to obtain and study the functions of neural cells and possibly of mature neurons.

  16. Rapid purification and mass spectrometric characterization of mitochondrial NADH dehydrogenase (Complex I) from rodent brain and a dopaminergic neuronal cell line.

    PubMed

    Schilling, Birgit; Bharath M M, Srinivas; Row, Richard H; Murray, James; Cusack, Michael P; Capaldi, Roderick A; Freed, Curt R; Prasad, Kedar N; Andersen, Julie K; Gibson, Bradford W

    2005-01-01

    Oxidative stress and mitochondrial dysfunction signify important biochemical events associated with the loss of dopaminergic neurons in Parkinson's disease (PD). Studies using in vitro and in vivo PD models or tissues from diseased patients have demonstrated a selective inhibition of mitochondrial NADH dehydrogenase (Complex I of the OXPHOS electron transport chain) that affects normal mitochondrial physiology leading to neuronal death. In an earlier study, we demonstrated that oxidative stress due to glutathione depletion in dopaminergic cells, a hallmark of PD, leads to Complex I inhibition via cysteine thiol oxidation (Jha et al. (2000) J. Biol. Chem. 275, 26096-26101). Complex I is a approximately 980-kDa multimeric enzyme spanning the inner mitochondrial membrane comprising at least 45 protein subunits. As a prerequisite to investigating modifications to Complex I using a rodent disease model for PD, we developed two independent rapid and mild isolation procedures based on sucrose gradient fractionation and immunoprecipitation to isolate Complex I from mouse brain and a cultured rat mesencephalic dopaminergic neuronal cell line. Both protocols are capable of purifying Complex I from small amounts of rodent tissue and cell cultures. Blue Native gel electrophoresis, one-dimensional and two-dimensional SDS-PAGE were employed to assess the purity and composition of isolated Complex I followed by extensive mass spectrometric characterization. Altogether, 41 of 45 rodent Complex I subunits achieved MS/MS sequence coverage. To our knowledge, this study provides the first detailed mass spectrometric analysis of neuronal Complex I proteins and provides a means to investigate the role of cysteine oxidation and other posttranslational modifications in pathologies associated with mitochondrial dysfunction.

  17. Canonical correlation analysis for RNA-seq co-expression networks

    PubMed Central

    Hong, Shengjun; Chen, Xiangning; Jin, Li; Xiong, Momiao

    2013-01-01

    Digital transcriptome analysis by next-generation sequencing discovers substantial mRNA variants. Variation in gene expression underlies many biological processes and holds a key to unravelling mechanism of common diseases. However, the current methods for construction of co-expression networks using overall gene expression are originally designed for microarray expression data, and they overlook a large number of variations in gene expressions. To use information on exon, genomic positional level and allele-specific expressions, we develop novel component-based methods, single and bivariate canonical correlation analysis, for construction of co-expression networks with RNA-seq data. To evaluate the performance of our methods for co-expression network inference with RNA-seq data, they are applied to lung squamous cell cancer expression data from TCGA database and our bipolar disorder and schizophrenia RNA-seq study. The preliminary results demonstrate that the co-expression networks constructed by canonical correlation analysis and RNA-seq data provide rich genetic and molecular information to gain insight into biological processes and disease mechanism. Our new methods substantially outperform the current statistical methods for co-expression network construction with microarray expression data or RNA-seq data based on overall gene expression levels. PMID:23460206

  18. Hi-C Chromatin Interaction Networks Predict Co-expression in the Mouse Cortex

    PubMed Central

    Hulsman, Marc; Lelieveldt, Boudewijn P. F.; de Ridder, Jeroen; Reinders, Marcel

    2015-01-01

    The three dimensional conformation of the genome in the cell nucleus influences important biological processes such as gene expression regulation. Recent studies have shown a strong correlation between chromatin interactions and gene co-expression. However, predicting gene co-expression from frequent long-range chromatin interactions remains challenging. We address this by characterizing the topology of the cortical chromatin interaction network using scale-aware topological measures. We demonstrate that based on these characterizations it is possible to accurately predict spatial co-expression between genes in the mouse cortex. Consistent with previous findings, we find that the chromatin interaction profile of a gene-pair is a good predictor of their spatial co-expression. However, the accuracy of the prediction can be substantially improved when chromatin interactions are described using scale-aware topological measures of the multi-resolution chromatin interaction network. We conclude that, for co-expression prediction, it is necessary to take into account different levels of chromatin interactions ranging from direct interaction between genes (i.e. small-scale) to chromatin compartment interactions (i.e. large-scale). PMID:25965262

  19. Analysis of bHLH coding genes using gene co-expression network approach.

    PubMed

    Srivastava, Swati; Sanchita; Singh, Garima; Singh, Noopur; Srivastava, Gaurava; Sharma, Ashok

    2016-07-01

    Network analysis provides a powerful framework for the interpretation of data. It uses novel reference network-based metrices for module evolution. These could be used to identify module of highly connected genes showing variation in co-expression network. In this study, a co-expression network-based approach was used for analyzing the genes from microarray data. Our approach consists of a simple but robust rank-based network construction. The publicly available gene expression data of Solanum tuberosum under cold and heat stresses were considered to create and analyze a gene co-expression network. The analysis provide highly co-expressed module of bHLH coding genes based on correlation values. Our approach was to analyze the variation of genes expression, according to the time period of stress through co-expression network approach. As the result, the seed genes were identified showing multiple connections with other genes in the same cluster. Seed genes were found to be vary in different time periods of stress. These analyzed seed genes may be utilized further as marker genes for developing the stress tolerant plant species.

  20. Mct8 and trh co-expression throughout the hypothalamic paraventricular nucleus is modified by dehydration-induced anorexia in rats.

    PubMed

    Alvarez-Salas, Elena; Mengod, Guadalupe; García-Luna, Cinthia; Soberanes-Chávez, Paulina; Matamoros-Trejo, Gilberto; de Gortari, Patricia

    2016-04-01

    Thyrotropin-releasing hormone (TRH) is a neuropeptide with endocrine and neuromodulatory effects. TRH from the paraventricular hypothalamic nucleus (PVN) participates in the control of energy homeostasis; as a neuromodulator TRH has anorexigenic effects. Negative energy balance decreases PVN TRH expression and TSH concentration; in contrast, a particular model of anorexia (dehydration) induces in rats a paradoxical increase in TRH expression in hypophysiotropic cells from caudal PVN and high TSH serum levels, despite their apparent hypothalamic hyperthyroidism and low body weight. We compared here the mRNA co-expression pattern of one of the brain thyroid hormones' transporters, the monocarboxylate transporter-8 (MCT8) with that of TRH in PVN subdivisions of dehydration-induced anorexic (DIA) and control rats. Our aim was to identify whether a low MCT8 expression in anorexic rats could contribute to their high TRH mRNA content.We registered daily food intake and body weight of 7-day DIA and control rats and analyzed TRH and MCT8 mRNA co-expression throughout the PVN by double in situ hybridization assays. We found that DIA rats showed increased number of TRHergic cells in caudal PVN, as well as a decreased percentage of TRH-expressing neurons that co-expressed MCT8 mRNA signal. Results suggest that the reduced proportion of double TRH/MCT8 expressing cells may be limiting the entry of hypothalamic triiodothyronine to the greater number of TRH-expressing neurons from caudal PVN and be in part responsible for the high TRH expression in anorexia rats and for the lack of adaptation of their hypothalamic-pituitary-thyroid axis to their low food intake.

  1. Distribution of corticotropin-releasing factor neurons in the mouse brain: a study using corticotropin-releasing factor-modified yellow fluorescent protein knock-in mouse.

    PubMed

    Kono, Junko; Konno, Kohtarou; Talukder, Ashraf Hossain; Fuse, Toshimitsu; Abe, Manabu; Uchida, Katsuya; Horio, Shuhei; Sakimura, Kenji; Watanabe, Masahiko; Itoi, Keiichi

    2017-05-01

    We examined the morphological features of corticotropin-releasing factor (CRF) neurons in a mouse line in which modified yellow fluorescent protein (Venus) was expressed under the CRF promoter. We previously generated the CRF-Venus knock-in mouse, in which Venus is inserted into the CRF gene locus by homologous recombination. In the present study, the neomycin phosphotransferase gene (Neo), driven by the pgk-1 promoter, was deleted from the CRF-Venus mouse genome, and a CRF-Venus∆Neo mouse was generated. Venus expression is much more prominent in the CRF-Venus∆Neo mouse when compared to the CRF-Venus mouse. In addition, most Venus-expressing neurons co-express CRF mRNA. Venus-expressing neurons constitute a discrete population of neuroendocrine neurons in the paraventricular nucleus of the hypothalamus (PVH) that project to the median eminence. Venus-expressing neurons were also found in brain regions outside the neuroendocrine PVH, including the olfactory bulb, the piriform cortex (Pir), the extended amygdala, the hippocampus, the neocortices, Barrington's nucleus, the midbrain/pontine dorsal tegmentum, the periaqueductal gray, and the inferior olivary nucleus (IO). Venus-expressing perikarya co-expressing CRF mRNA could be observed clearly even in regions where CRF-immunoreactive perikarya could hardly be identified. We demonstrated that the CRF neurons contain glutamate in the Pir and IO, while they contain gamma-aminobutyric acid in the neocortex, the bed nucleus of the stria terminalis, the hippocampus, and the amygdala. A population of CRF neurons was demonstrated to be cholinergic in the midbrain tegmentum. The CRF-Venus∆Neo mouse may be useful for studying the structural and functional properties of CRF neurons in the mouse brain.

  2. Co-Expression of VAL- and TMT-Opsins Uncovers Ancient Photosensory Interneurons and Motorneurons in the Vertebrate Brain

    PubMed Central

    Fischer, Ruth M.; Fontinha, Bruno M.; Kirchmaier, Stephan; Steger, Julia; Bloch, Susanne; Inoue, Daigo; Panda, Satchidananda; Rumpel, Simon; Tessmar-Raible, Kristin

    2013-01-01

    The functional principle of the vertebrate brain is often paralleled to a computer: information collected by dedicated devices is processed and integrated by interneuron circuits and leads to output. However, inter- and motorneurons present in today's vertebrate brains are thought to derive from neurons that combined sensory, integration, and motor function. Consistently, sensory inter­motorneurons have been found in the simple nerve nets of cnidarians, animals at the base of the evolutionary lineage. We show that light-sensory motorneurons and light-sensory interneurons are also present in the brains of vertebrates, challenging the paradigm that information processing and output circuitry in the central brain is shielded from direct environmental influences. We investigated two groups of nonvisual photopigments, VAL- and TMT-Opsins, in zebrafish and medaka fish; two teleost species from distinct habitats separated by over 300 million years of evolution. TMT-Opsin subclasses are specifically expressed not only in hypothalamic and thalamic deep brain photoreceptors, but also in interneurons and motorneurons with no known photoreceptive function, such as the typeXIV interneurons of the fish optic tectum. We further show that TMT-Opsins and Encephalopsin render neuronal cells light-sensitive. TMT-Opsins preferentially respond to blue light relative to rhodopsin, with subclass-specific response kinetics. We discovered that tmt-opsins co-express with val-opsins, known green light receptors, in distinct inter- and motorneurons. Finally, we show by electrophysiological recordings on isolated adult tectal slices that interneurons in the position of typeXIV neurons respond to light. Our work supports “sensory-inter-motorneurons” as ancient units for brain evolution. It also reveals that vertebrate inter- and motorneurons are endowed with an evolutionarily ancient, complex light-sensory ability that could be used to detect changes in ambient light spectra, possibly

  3. Co-expression of VAL- and TMT-opsins uncovers ancient photosensory interneurons and motorneurons in the vertebrate brain.

    PubMed

    Fischer, Ruth M; Fontinha, Bruno M; Kirchmaier, Stephan; Steger, Julia; Bloch, Susanne; Inoue, Daigo; Panda, Satchidananda; Rumpel, Simon; Tessmar-Raible, Kristin

    2013-01-01

    The functional principle of the vertebrate brain is often paralleled to a computer: information collected by dedicated devices is processed and integrated by interneuron circuits and leads to output. However, inter- and motorneurons present in today's vertebrate brains are thought to derive from neurons that combined sensory, integration, and motor function. Consistently, sensory inter-motorneurons have been found in the simple nerve nets of cnidarians, animals at the base of the evolutionary lineage. We show that light-sensory motorneurons and light-sensory interneurons are also present in the brains of vertebrates, challenging the paradigm that information processing and output circuitry in the central brain is shielded from direct environmental influences. We investigated two groups of nonvisual photopigments, VAL- and TMT-Opsins, in zebrafish and medaka fish; two teleost species from distinct habitats separated by over 300 million years of evolution. TMT-Opsin subclasses are specifically expressed not only in hypothalamic and thalamic deep brain photoreceptors, but also in interneurons and motorneurons with no known photoreceptive function, such as the typeXIV interneurons of the fish optic tectum. We further show that TMT-Opsins and Encephalopsin render neuronal cells light-sensitive. TMT-Opsins preferentially respond to blue light relative to rhodopsin, with subclass-specific response kinetics. We discovered that tmt-opsins co-express with val-opsins, known green light receptors, in distinct inter- and motorneurons. Finally, we show by electrophysiological recordings on isolated adult tectal slices that interneurons in the position of typeXIV neurons respond to light. Our work supports "sensory-inter-motorneurons" as ancient units for brain evolution. It also reveals that vertebrate inter- and motorneurons are endowed with an evolutionarily ancient, complex light-sensory ability that could be used to detect changes in ambient light spectra, possibly providing

  4. Constitutive and inducible co-expression systems for non-viral osteoinductive gene therapy.

    PubMed

    Feichtinger, G A; Hacobian, A; Hofmann, A T; Wassermann, K; Zimmermann, A; van Griensven, M; Redl, H

    2014-02-19

    Tissue regenerative gene therapy requires expression strategies that deliver therapeutic effective amounts of transgenes. As physiological expression patterns are more complex than high-level expression of a singular therapeutic gene, we aimed at constitutive or inducible co-expression of 2 transgenes simultaneously. Co-expression of human bone morphogenetic protein 2 and 7 (BMP2/7) from constitutively expressing and doxycycline inducible plasmids was evaluated in vitro in C2C12 cells with osteocalcin reporter gene assays and standard assays for osteogenic differentiation. The constitutive systems were additionally tested in an in vivo pilot for ectopic bone formation after repeated naked DNA injection to murine muscle tissue. Inductor controlled differentiation was demonstrated in vitro for inducible co-expression. Both co-expression systems, inducible and constitutive, achieved significantly better osteogenic differentiation than single factor expression. The potency of the constitutive co-expression systems was dependent on relative expression cassette topology. In vivo, ectopic bone formation was demonstrated in 6/13 animals (46% bone formation efficacy) at days 14 and 28 in hind limb muscles as proven by in vivo µCT and histological evaluation. In vitro findings demonstrated that the devised single vector BMP2/7 co-expression strategy mediates superior osteoinduction, can be applied in an inductor controlled fashion and that its efficiency is dependent on expression cassette topology. In vivo results indicatethatco-expression of BMP2/7 applied by non-viral naked DNA gene transfer effectively mediates bone formation without the application of biomaterials, cells or recombinant growth factors, offering a promising alternative to current treatment strategies with potential for clinical translation in the future.

  5. CLIC, a tool for expanding biological pathways based on co-expression across thousands of datasets

    PubMed Central

    Li, Yang; Liu, Jun S.; Mootha, Vamsi K.

    2017-01-01

    In recent years, there has been a huge rise in the number of publicly available transcriptional profiling datasets. These massive compendia comprise billions of measurements and provide a special opportunity to predict the function of unstudied genes based on co-expression to well-studied pathways. Such analyses can be very challenging, however, since biological pathways are modular and may exhibit co-expression only in specific contexts. To overcome these challenges we introduce CLIC, CLustering by Inferred Co-expression. CLIC accepts as input a pathway consisting of two or more genes. It then uses a Bayesian partition model to simultaneously partition the input gene set into coherent co-expressed modules (CEMs), while assigning the posterior probability for each dataset in support of each CEM. CLIC then expands each CEM by scanning the transcriptome for additional co-expressed genes, quantified by an integrated log-likelihood ratio (LLR) score weighted for each dataset. As a byproduct, CLIC automatically learns the conditions (datasets) within which a CEM is operative. We implemented CLIC using a compendium of 1774 mouse microarray datasets (28628 microarrays) or 1887 human microarray datasets (45158 microarrays). CLIC analysis reveals that of 910 canonical biological pathways, 30% consist of strongly co-expressed gene modules for which new members are predicted. For example, CLIC predicts a functional connection between protein C7orf55 (FMC1) and the mitochondrial ATP synthase complex that we have experimentally validated. CLIC is freely available at www.gene-clic.org. We anticipate that CLIC will be valuable both for revealing new components of biological pathways as well as the conditions in which they are active. PMID:28719601

  6. Identification of hub genes and pathways associated with retinoblastoma based on co-expression network analysis.

    PubMed

    Wang, Q L; Chen, X; Zhang, M H; Shen, Q H; Qin, Z M

    2015-12-08

    The objective of this paper was to identify hub genes and pathways associated with retinoblastoma using centrality analysis of the co-expression network and pathway-enrichment analysis. The co-expression network of retinoblastoma was constructed by weighted gene co-expression network analysis (WGCNA) based on differentially expressed (DE) genes, and clusters were obtained through the molecular complex detection (MCODE) algorithm. Degree centrality analysis of the co-expression network was performed to explore hub genes present in retinoblastoma. Pathway-enrichment analysis was performed using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Validation of hub gene expression in retinoblastoma was performed by reverse transcription-polymerase chain reaction (RT-PCR) analysis. The co-expression network based on 221 DE genes between retinoblastoma and normal controls consisted of 210 nodes and 3965 edges, and 5 clusters of the network were evaluated. By assessing the centrality analysis of the co-expression network, 21 hub genes were identified, such as SNORD115-41, RASSF2, and SNORD115-44. According to RT-PCR analysis, 16 of the 21 hub genes were differently expressed, including RASSF2 and CDCA7, and 5 were not differently expressed in retinoblastoma compared to normal controls. Pathway analysis showed that genes in 2 clusters were enriched in 3 pathways: purine metabolism, p53 signaling pathway, and melanogenesis. In this study, we successfully identified 16 hub genes and 3 pathways associated with retinoblastoma, which may be potential biomarkers for early detection and therapy for retinoblastoma.

  7. Bioinformatics and co-expression network analysis of differentially expressed lncRNAs and mRNAs in hippocampus of APP/PS1 transgenic mice with Alzheimer disease

    PubMed Central

    Fang, Min; Zhang, Pei; Zhao, Yanxin; Liu, Xueyuan

    2017-01-01

    APP/PS1 transgenic mice with Alzheimer disease (AD) are widely used as a reliable animal model in studies about behaviors, physiology, biochemistry and histomorphology of AD, but few studies have been conducted to investigate the role of lncRNAs in this model. In this study, lncRNA microarray was employed to detect the gene expression profile and lncRNA expression profile in the mouse brain. Then, bioinformatics was used to predict the differentially expressed genes related to AD (n=20). Among different lncRNAs (n=249), 99 were downregulated and 150 upregulated. Co-expression network was applied to analyze the co-expression of differential lncRNAs and different genes. In network, lncRNA Gm13498 and lncRNA 1700030L20Rik correlated with the most genes and their degrees were 6 and 5, respectively. Then, the function and signal transduction pathways related to the differentially co-expressed lncRNAs were analyzed with bioinformatics, and results showed that these lncRNAs were involved in the systemic development of neurons, intercellular communication, regulation of action potential of neurons, development and differentiation of oligodendrocytes, neurotransmitters transmission, and neuronal regeneration. Realtime PCR was employed to detect the expression of relevant lncRNAs and differentially expressed RNAs in 10 samples, and results were consistent with above findings from microarray. PMID:28386363

  8. Co-expression of tonoplast Cation/H(+) antiporter and H(+)-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions.

    PubMed

    Bao, Ai-Ke; Du, Bao-Qiang; Touil, Leila; Kang, Peng; Wang, Qiang-Long; Wang, Suo-Min

    2016-03-01

    Salinity and drought are major environmental factors limiting the growth and productivity of alfalfa worldwide as this economically important legume forage is sensitive to these kinds of abiotic stress. In this study, transgenic alfalfa lines expressing both tonoplast NXH and H(+)-PPase genes, ZxNHX and ZxVP1-1 from the xerophyte Zygophyllum xanthoxylum L., were produced via Agrobacterium tumefaciens-mediated transformation. Compared with wild-type (WT) plants, transgenic alfalfa plants co-expressing ZxNHX and ZxVP1-1 grew better with greater plant height and dry mass under normal or stress conditions (NaCl or water-deficit) in the greenhouse. The growth performance of transgenic alfalfa plants was associated with more Na(+), K(+) and Ca(2+) accumulation in leaves and roots, as a result of co-expression of ZxNHX and ZxVP1-1. Cation accumulation contributed to maintaining intracellular ions homoeostasis and osmoregulation of plants and thus conferred higher leaf relative water content and greater photosynthesis capacity in transgenic plants compared to WT when subjected to NaCl or water-deficit stress. Furthermore, the transgenic alfalfa co-expressing ZxNHX and ZxVP1-1 also grew faster than WT plants under field conditions, and most importantly, exhibited enhanced photosynthesis capacity by maintaining higher net photosynthetic rate, stomatal conductance, and water-use efficiency than WT plants. Our results indicate that co-expression of tonoplast NHX and H(+)-PPase genes from a xerophyte significantly improved the growth of alfalfa, and enhanced its tolerance to high salinity and drought. This study laid a solid basis for reclaiming and restoring saline and arid marginal lands as well as improving forage yield in northern China.

  9. Human neuroblastoma cell lines as models for the in vitro study of neoplastic and neuronal cell differentiation.

    PubMed Central

    Abemayor, E; Sidell, N

    1989-01-01

    Neuroblastoma is a childhood solid tumor composed of primitive cells derived from precursors of the autonomic nervous system. This neoplasm has the highest rate of spontaneous regression of all cancer types and has been noted to undergo spontaneous and chemically induced differentiation into elements resembling mature nervous tissue. As such, neuroblastoma has been a prime model system for the study of neuronal differentiation and the process of cancer cell maturation. In this paper we review those agents that have been described to induce the differentiation of neuroblastoma, with an emphasis on the effects and possible mechanisms of action of a group of related compounds, the retinoids. With this model system and the availability of subclones that are both responsive and resistant to chemically induced differentiation, fundamental questions regarding the mechanisms and processes underlying cell maturation have become more amenable to in vitro study. Images FIGURE 1. A FIGURE 1. B FIGURE 1. C FIGURE 2. A FIGURE 2. B PMID:2538324

  10. Neuroprotective effects of α-iso-cubebene against glutamate-induced damage in the HT22 hippocampal neuronal cell line.

    PubMed

    Park, Sun Young; Jung, Won Jung; Kang, Jum Soon; Kim, Cheol-Min; Park, Geuntae; Choi, Young-Whan

    2015-02-01

    Since oxidative stress is critically involved in excitotoxic damage, we sought to determine whether the activation of the transcription factors, cAMP-responsive element binding protein (CREB) and nuclear factor (erythroid-derived 2)-like 2 (Nrf2, also known as NFE2L2), by α-iso-cubebene is involved in its protective effects against glutamate-induced neuronal cell death. Pre-treatment with α-iso-cubebene significantly attenuated glutamate-induced cytotoxicity in mouse hippocampus-derived neuronal cells. α-iso-cubebene also reduced the glutamate-induced generation of reactive oxygen species and calcium influx, thus preventing apoptotic cell death. α-iso-cubebene inhibited glutamate-induced mitochondrial membrane depolarization and, consequently, inhibited the release of the apoptosis-inducing factor from the mitochondria. Immunoblot anlaysis revealed that the phosphorylation of extracellular signal-regulated kinase (ERK) by glutamate was reduced in the presence of α-iso-cubebene. α-iso-cubebene activated protein kinase A (PKA), CREB and Nrf2, which mediate the expression of the antioxidant enzymes, heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1), involved in neuroprotection. In addition, α-iso-cubebene induced the expression of antioxidant responsive element and CRE transcriptional activity, thus conferring neuroprotection against glutamate-induced oxidative injury. α-iso-cubebene also induced the expression of Nrf2-dependent genes encoding HO-1 and NQO1. Furthermore, the knockdown of CREB and Nrf2 by small interfering RNA attenuated the neuroprotective effects of α-iso-cubebene. Taken together, our results indicate that α-iso-cubebene protects HT22 cells from glutamate-induced oxidative damage through the activation of Nrf2/HO-1/NQO-1, as well as through the PKA and CREB signaling pathways.

  11. Human pluripotent stem cell differentiation into authentic striatal projection neurons.

    PubMed

    Delli Carri, Alessia; Onorati, Marco; Castiglioni, Valentina; Faedo, Andrea; Camnasio, Stefano; Toselli, Mauro; Biella, Gerardo; Cattaneo, Elena

    2013-08-01

    Here we present the principles and steps of a protocol that we have recently developed for the differentiation of hES/iPS cells into the authentic human striatal projection medium spiny neurons (MSNs) that die in Huntington's Disease (HD). Authenticity is judged by the convergence of multiple features within individual cells. Our procedure lasts 80 days and couples neural induction via BMP/TGF-β inhibition with exposure to the developmental factors sonic hedgehog (SHH) and dickkopf1 (DKK-1) to drive ventral telencephalic specification, followed by terminal differentiation [1]. Authenticity of the resulting neuronal population is monitored by the appearance of FOXG1(+)/GSX2(+) progenitor cells of the lateral ganglionic eminence (LGE) at day 15-25 of differentiation, followed by appearance of CTIP2-, FOXP1- and FOXP2-positive cells at day 45. These precursor cells then mature into MAP2(+)/GABA(+) neurons with 20 % of them ultimately co-expressing the DARPP-32 and CTIP2 diagnostic markers and carrying electrophysiological properties expected for fully functional MSNs.The protocol is characterized by its replicability in at least three human pluripotent cell lines. Altogether this protocol defines a useful platform for in vitro developmental neurobiology studies, drug screening, and regenerative medicine approaches.

  12. Subarachnoid Transplant of the Human Neuronal hNT2.19 Serotonergic Cell Line Attenuates Behavioral Hypersensitivity without Affecting Motor Dysfunction after Severe Contusive Spinal Cord Injury

    PubMed Central

    Eaton, Mary J.; Widerström-Noga, Eva; Wolfe, Stacey Quintero

    2011-01-01

    Transplant of cells which make biologic agents that can modulate the sensory and motor responses after spinal cord injury (SCI) would be useful to treat pain and paralysis. To address this need for clinically useful human cells, a unique neuronal cell line that synthesizes and secretes/releases the neurotransmitter serotonin (5HT) was isolated. Hind paw tactile allodynia and thermal hyperalgesia induced by severe contusive SCI were potently reversed after lumbar subarachnoid transplant of differentiated cells, but had no effect on open field motor scores, stride length, foot rotation, base of support, or gridwalk footfall errors associated with the SCI. The sensory effects appeared 1 week after transplant and did not diminish during the 8-week course of the experiment when grafts were placed 2 weeks after SCI. Many grafted cells were still present and synthesizing 5HT at the end of the study. These data suggest that the human neuronal serotonergic hNT2.19 cells can be used as a biologic minipump for receiving SCI-related neuropathic pain, but likely requires intraspinal grafts for motor recovery. PMID:21799949

  13. Glial Cell Line-Derived Neurotrophic Factor Partially Ameliorates Motor Symptoms Without Slowing Neurodegeneration in Mice With Respiratory Chain-Deficient Dopamine Neurons

    PubMed Central

    Sterky, Fredrik H.; Pernold, Karin; Harvey, Brandon K.; Lindqvist, Eva; Hoffer, Barry J.; Olson, Lars

    2013-01-01

    Degeneration of midbrain dopamine neurons causes the striatal dopamine deficiency responsible for the hallmark motor symptoms of Parkinson’s disease (PD). Intraparenchymal delivery of neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF), is a possible future therapeutic approach. In animal PD models, GDNF can both ameliorate neurodegeneration and promote recovery of the dopamine system following a toxic insult. However, clinical studies have generated mixed results, and GDNF has not been efficacious in genetic animal models based on α-synuclein overexpression. We have tested the response to GDNF in a genetic mouse PD model with progressive degeneration of dopamine neurons caused by mitochondrial impairment. We find that GDNF, delivered to the striatum by either an adeno-associated virus or via miniosmotic pumps, partially alleviates the progressive motor symptoms without modifying the rate of neurodegeneration. These behavioral changes are accompanied by increased levels of dopamine in the midbrain, but not in striatum. At high levels, GDNF may instead reduce striatal dopamine levels. These results demonstrate the therapeutic potential of GDNF in a progressively impaired dopamine system. PMID:23051605

  14. Lentiviral vector system for coordinated constitutive and drug controlled tetracycline-regulated gene co-expression.

    PubMed

    Stahlhut, Maike; Schwarzer, Adrian; Eder, Matthias; Yang, Min; Li, Zhixiong; Morgan, Michael; Schambach, Axel; Kustikova, Olga S

    2015-09-01

    Constitutive co-expression of cooperating transgenes using retroviral integrating vectors is frequently used for genetic modification of different cell types to establish therapeutic or cancer models. However, such approaches are unable to dissect the influence of dose, order and reversibility of transgene expression on the fate of newly developed therapeutic/malignant phenotypes. We present a modular lentiviral vector system, which provides expression of constitutive and inducible components. To demonstrate its functionality, we constitutively expressed the well-described transcription factor Meis1 followed by inducible co-expression of collaborating partner Hoxa9 under the control of tetracycline responsive promoters in murine fibroblasts and primary hematopoietic progenitor cells (HPCs). Fluorescent markers to track transgene co-expression revealed tightly controlled, efficiently inducible and reversible but cell type dependent gene transfer over time. We demonstrated dose-dependent blockade of myeloid differentiation when both Meis1/Hoxa9 were concomitantly overexpressed in primary HPCs in vitro, but the absence of the transformed phenotype in non-induced samples or when Hoxa9 expression was down-regulated. This system combines the advantages of lentiviral gene transfer and the opportunity for drug-controlled co-expression of multiple transgenes to dissect, among others, gene networks governing complex cell behavior, such as proto-oncogene dose-dependent leukemogenic pathways or collaborating mechanisms of genes enhancing competitive fitness of hematopoietic cells.

  15. Construction of a promoter collection for genes co-expression in filamentous fungus Trichoderma reesei.

    PubMed

    Wang, Wei; Meng, Fanju; Liu, Pei; Yang, Shengli; Wei, Dongzhi

    2014-11-01

    Trichoderma reesei is the preferred organism for producing industrial cellulases. However, cellulases derived from T. reesei have their highest activity at acidic pH. When the pH value increased above 7, the enzyme activities almost disappeared, thereby limiting the application of fungal cellulases under neutral or alkaline conditions. A lot of heterologous alkaline cellulases have been successfully expressed in T. reesei to improve its cellulolytic profile. To our knowledge, there are few reports describing the co-expression of two or more heterologous cellulases in T. reesei. We designed and constructed a promoter collection for gene expression and co-expression in T. reesei. Taking alkaline cellulase as a reporter gene, we assessed our promoters with strengths ranging from 4 to 106 % as compared to the pWEF31 expression vector (Lv D, Wang W, Wei D (2012) Construction of two vectors for gene expression in Trichoderma reesei. Plasmid 67(1):67-71). The promoter collection was used in a proof-of-principle approach to achieve the co-expression of an alkaline endoglucanase and an alkaline cellobiohydrolase. We observed higher activities of both cellulose degradation and biostoning by the co-expression of an endoglucanase and a cellobiohydrolase than the activities obtained by the expression of only endoglucanase or cellobiohydrolase. This study makes the process of engineering expression of multiple genes easier in T. reesei.

  16. Discovering Functional Modules across Diverse Maize Transcriptomes Using COB, the Co-Expression Browser

    PubMed Central

    Schaefer, Robert J.; Briskine, Roman; Springer, Nathan M.; Myers, Chad L.

    2014-01-01

    Tools that provide improved ability to relate genotype to phenotype have the potential to accelerate breeding for desired traits and to improve our understanding of the molecular variants that underlie phenotypes. The availability of large-scale gene expression profiles in maize provides an opportunity to advance our understanding of complex traits in this agronomically important species. We built co-expression networks based on genome-wide expression data from a variety of maize accessions as well as an atlas of different tissues and developmental stages. We demonstrate that these networks reveal clusters of genes that are enriched for known biological function and contain extensive structure which has yet to be characterized. Furthermore, we found that co-expression networks derived from developmental or tissue atlases as compared to expression variation across diverse accessions capture unique functions. To provide convenient access to these networks, we developed a public, web-based Co-expression Browser (COB), which enables interactive queries of the genome-wide networks. We illustrate the utility of this system through two specific use cases: one in which gene-centric queries are used to provide functional context for previously characterized metabolic pathways, and a second where lists of genes produced by mapping studies are further resolved and validated using co-expression networks. PMID:24922320

  17. Resolving stem and progenitor cells in the adult mouse incisor through gene co-expression analysis

    PubMed Central

    Seidel, Kerstin; Marangoni, Pauline; Tang, Cynthia; Houshmand, Bahar; Du, Wen; Maas, Richard L; Murray, Steven; Oldham, Michael C; Klein, Ophir D

    2017-01-01

    Investigations into stem cell-fueled renewal of an organ benefit from an inventory of cell type-specific markers and a deep understanding of the cellular diversity within stem cell niches. Using the adult mouse incisor as a model for a continuously renewing organ, we performed an unbiased analysis of gene co-expression relationships to identify modules of co-expressed genes that represent differentiated cells, transit-amplifying cells, and residents of stem cell niches. Through in vivo lineage tracing, we demonstrated the power of this approach by showing that co-expression module members Lrig1 and Igfbp5 define populations of incisor epithelial and mesenchymal stem cells. We further discovered that two adjacent mesenchymal tissues, the periodontium and dental pulp, are maintained by distinct pools of stem cells. These findings reveal novel mechanisms of incisor renewal and illustrate how gene co-expression analysis of intact biological systems can provide insights into the transcriptional basis of cellular identity. DOI: http://dx.doi.org/10.7554/eLife.24712.001 PMID:28475038

  18. Uncovering robust patterns of microRNA co-expression across cancers using Bayesian Relevance Networks

    PubMed Central

    2017-01-01

    Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing—with its unique statistical properties—became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca. PMID:28817636

  19. Uncovering robust patterns of microRNA co-expression across cancers using Bayesian Relevance Networks.

    PubMed

    Ramachandran, Parameswaran; Sánchez-Taltavull, Daniel; Perkins, Theodore J

    2017-01-01

    Co-expression networks have long been used as a tool for investigating the molecular circuitry governing biological systems. However, most algorithms for constructing co-expression networks were developed in the microarray era, before high-throughput sequencing-with its unique statistical properties-became the norm for expression measurement. Here we develop Bayesian Relevance Networks, an algorithm that uses Bayesian reasoning about expression levels to account for the differing levels of uncertainty in expression measurements between highly- and lowly-expressed entities, and between samples with different sequencing depths. It combines data from groups of samples (e.g., replicates) to estimate group expression levels and confidence ranges. It then computes uncertainty-moderated estimates of cross-group correlations between entities, and uses permutation testing to assess their statistical significance. Using large scale miRNA data from The Cancer Genome Atlas, we show that our Bayesian update of the classical Relevance Networks algorithm provides improved reproducibility in co-expression estimates and lower false discovery rates in the resulting co-expression networks. Software is available at www.perkinslab.ca.

  20. Transcriptome-wide co-expression analysis identifies LRRC2 as a novel mediator of mitochondrial and cardiac function

    PubMed Central

    Leleu, Marion; Rowe, Glenn C.; Palygin, Oleg; Bukowy, John D.; Kuo, Judy; Rech, Monika; Hermans-Beijnsberger, Steffie; Schaefer, Sebastian; Adami, Eleonora; Creemers, Esther E.; Heinig, Matthias; Schroen, Blanche; Arany, Zoltan; Petretto, Enrico; Geurts, Aron M.

    2017-01-01

    Mitochondrial dysfunction contributes to myriad monogenic and complex pathologies. To understand the underlying mechanisms, it is essential to define the full complement of proteins that modulate mitochondrial function. To identify such proteins, we performed a meta-analysis of publicly available gene expression data. Gene co-expression analysis of a large and heterogeneous compendium of microarray data nominated a sub-population of transcripts that whilst highly correlated with known mitochondrial protein-encoding transcripts (MPETs), are not themselves recognized as generating proteins either localized to the mitochondrion or pertinent to functions therein. To focus the analysis on a medically-important condition with a strong yet incompletely understood mitochondrial component, candidates were cross-referenced with an MPET-enriched module independently generated via genome-wide co-expression network analysis of a human heart failure gene expression dataset. The strongest uncharacterized candidate in the analysis was Leucine Rich Repeat Containing 2 (LRRC2). LRRC2 was found to be localized to the mitochondria in human cells and transcriptionally-regulated by the mitochondrial master regulator Pgc-1α. We report that Lrrc2 transcript abundance correlates with that of β-MHC, a canonical marker of cardiac hypertrophy in humans and experimentally demonstrated an elevation in Lrrc2 transcript in in vitro and in vivo rodent models of cardiac hypertrophy as well as in patients with dilated cardiomyopathy. RNAi-mediated Lrrc2 knockdown in a rat-derived cardiomyocyte cell line resulted in enhanced expression of canonical hypertrophic biomarkers as well as increased mitochondrial mass in the context of increased Pgc-1α expression. In conclusion, our meta-analysis represents a simple yet powerful springboard for the nomination of putative mitochondrially-pertinent proteins relevant to cardiac function and enabled the identification of LRRC2 as a novel mitochondrially

  1. Genome-Wide Tissue-Specific Gene Expression, Co-expression and Regulation of Co-expressed Genes in Adult Nematode Ascaris suum

    PubMed Central

    Rosa, Bruce A.; Jasmer, Douglas P.; Mitreva, Makedonka

    2014-01-01

    Background Caenorhabditis elegans has traditionally been used as a model for studying nematode biology, but its small size limits the ability for researchers to perform some experiments such as high-throughput tissue-specific gene expression studies. However, the dissection of individual tissues is possible in the parasitic nematode Ascaris suum due to its relatively large size. Here, we take advantage of the recent genome sequencing of Ascaris suum and the ability to physically dissect its separate tissues to produce a wide-scale tissue-specific nematode RNA-seq datasets, including data on three non-reproductive tissues (head, pharynx, and intestine) in both male and female worms, as well as four reproductive tissues (testis, seminal vesicle, ovary, and uterus). We obtained fundamental information about the biology of diverse cell types and potential interactions among tissues within this multicellular organism. Methodology/Principal Findings Overexpression and functional enrichment analyses identified many putative biological functions enriched in each tissue studied, including functions which have not been previously studied in detail in nematodes. Putative tissue-specific transcriptional factors and corresponding binding motifs that regulate expression in each tissue were identified, including the intestine-enriched ELT-2 motif/transcription factor previously described in nematode intestines. Constitutively expressed and novel genes were also characterized, with the largest number of novel genes found to be overexpressed in the testis. Finally, a putative acetylcholine-mediated transcriptional network connecting biological activity in the head to the male reproductive system is described using co-expression networks, along with a similar ecdysone-mediated system in the female. Conclusions/Significance The expression profiles, co-expression networks and co-expression regulation of the 10 tissues studied and the tissue-specific analysis presented here are a

  2. EPIG-Seq: extracting patterns and identifying co-expressed genes from RNA-Seq data.

    PubMed

    Li, Jianying; Bushel, Pierre R

    2016-03-22

    RNA sequencing (RNA-Seq) measures genome-wide gene expression. RNA-Seq data is count-based rendering normal distribution models for analysis inappropriate. Normalization of RNA-Seq data to transform the data has limitations which can adversely impact the analysis. Furthermore, there are a few count-based methods for analysis of RNA-Seq data but they are essentially for pairwise analysis of treatment groups or multiclasses but not pattern-based to identify co-expressed genes. We adapted our extracting patterns and identifying genes methodology for RNA-Seq (EPIG-Seq) count data. The software uses count-based correlation to measure similarity between genes, quasi-Poisson modelling to estimate dispersion in the data and a location parameter to indicate magnitude of differential expression. EPIG-Seq is different than any other software currently available for pattern analysis of RNA-Seq data in that EPIG-Seq 1) uses count level data and supports cases of inflated zeros, 2) identifies statistically significant clusters of genes that are co-expressed across experimental conditions, 3) takes into account dispersion in the replicate data and 4) provides reliable results even with small sample sizes. EPIG-Seq operates in two steps: 1) extract the pattern profiles from data as seeds for clustering co-expressed genes and 2) cluster the genes to the pattern seeds and compute statistical significance of the pattern of co-expressed genes. EPIG-Seq provides a table of the genes with bootstrapped p-values and profile plots of the patterns of co-expressed genes. In addition, EPIG-Seq provides a heat map and principal component dimension reduction plot of the clustered genes as visual aids. We demonstrate the utility of EPIG-Seq through the analysis of toxicogenomics and cancer data sets to identify biologically relevant co-expressed genes. EPIG-Seq is available at: sourceforge.net/projects/epig-seq. EPIG-Seq is unlike any other software currently available for pattern analysis of

  3. Constructing gene co-expression networks and predicting functions of unknown genes by random matrix theory

    PubMed Central

    Luo, Feng; Yang, Yunfeng; Zhong, Jianxin; Gao, Haichun; Khan, Latifur; Thompson, Dorothea K; Zhou, Jizhong

    2007-01-01

    Background Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT), which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Results Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD) of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under-sampled expressions do not affect the

  4. Co-expression of p16 and p53 characterizes aggressive subtypes of ductal intraepithelial neoplasia.

    PubMed

    Bechert, Charles; Kim, Jee-Yeon; Tramm, Trine; Tavassoli, Fattaneh A

    2016-12-01

    In the USA alone, approximately 61,000 new diagnoses of ductal intraepithelial neoplasia 1c-3 (DIN) are made each year. Around 10-20 % of the patients develop a recurrence, about 50 % of which are invasive. Prior studies have shown that invasive breast carcinomas positive for p16 or p53 have a higher frequency of recurrence and a more aggressive course; however, the co-expression of these markers across the entire spectrum of DIN and its potential correlation with grade of the lesions has not been studied previously. Immunohistochemical staining for p16 and p53 was evaluated on 262 DIN lesions from 211 cases diagnosed between 1991 and 2008. The lesions ranged from DIN1b (atypical intraductal hyperplasia) to DIN3 (DCIS, grade 3) and included 45 cases with associated invasive carcinoma. Frequency of staining for both p16 and p53 increased with increasing grade of DIN. Strong co-expression was found exclusively in higher grade DIN lesions (DIN2 and DIN3) particularly those associated with periductal stromal fibrosis and lymphocytic infiltrate. Strong co-expression was seen in 8 of 12 DIN3 lesions (67 %) associated with invasive carcinoma. In conclusion, co-expression of p16 and p53 increases with advancing grade of DIN and is maximal in high grade DIN lesions associated with invasive carcinoma, indicating a more aggressive phenotype. A distinctive variant of DIN with periductal fibrosis and lymphocytic infiltrate invariably falls into the high-grade category, based on either morphology or marker expression. Co-expression of p16/p53 may be of help in distinguishing between high-grade and low-grade DIN lesions.

  5. CoExpNetViz: Comparative Co-Expression Networks Construction and Visualization Tool.

    PubMed

    Tzfadia, Oren; Diels, Tim; De Meyer, Sam; Vandepoele, Klaas; Aharoni, Asaph; Van de Peer, Yves

    2015-01-01

    Comparative transcriptomics is a common approach in functional gene discovery efforts. It allows for finding conserved co-expression patterns between orthologous genes in closely related plant species, suggesting that these genes potentially share similar function and regulation. Several efficient co-expression-based tools have been commonly used in plant research but most of these pipelines are limited to data from model systems, which greatly limit their utility. Moreover, in addition, none of the existing pipelines allow plant researchers to make use of their own unpublished gene expression data for performing a comparative co-expression analysis and generate multi-species co-expression networks. We introduce CoExpNetViz, a computational tool that uses a set of query or "bait" genes as an input (chosen by the user) and a minimum of one pre-processed gene expression dataset. The CoExpNetViz algorithm proceeds in three main steps; (i) for every bait gene submitted, co-expression values are calculated using mutual information and Pearson correlation coefficients, (ii) non-bait (or target) genes are grouped based on cross-species orthology, and (iii) output files are generated and results can be visualized as network graphs in Cytoscape. The CoExpNetViz tool is freely available both as a PHP web server (link: http://bioinformatics.psb.ugent.be/webtools/coexpr/) (implemented in C++) and as a Cytoscape plugin (implemented in Java). Both versions of the CoExpNetViz tool support LINUX and Windows platforms.

  6. Causal co-expression method with module analysis to screen drugs with specific target.

    PubMed

    Yu, Shuhao; Zheng, Lulu; Li, Yixue; Li, Chunyan; Ma, Chenchen; Yu, Yang; Li, Xuan; Hao, Pei

    2013-04-10

    The considerable increase of investment in research and development by the pharmaceutical industry over the past three decades has not added the number of approved new drugs. An important issue ignored by drug discovery practice is the multi-dimensional interaction network between drugs and their targets. Thus, it is essential to view drug actions through the lens of network biology. In the current study, based on the co-expression network of transcription factors and their downstream genes, we proposed a novel approach, called causal co-expression method with module analysis, to screen drugs with specific target and fewer side effects. We presented a causal co-expression method with module analysis and it could be used in analyzing the microarray data of different drug candidates. At first, the differential wiring value (DW) was calculated to find some causal transcription factors (TFs) by combining with differential expression genes in the regulated networks. After the discovery of the causal TFs, co-expression module analysis method was applied to mine molecular pharmacology pathways around these causal TFs at molecular level. We applied our methods to two drug candidates, Argyrin A and Bortezomib, both with anti-cancer activities. We first obtained some differentially expressed transcription factors of cells treated with Argyrin A or Bortezomib. Nearly all these transcription factors are associated with the tumor suppressor protein p27kip1. Furthermore, module analysis showed that Bortezomib inhibited tumor growth not specifically by cell cycle and cell proliferation pathway, but through many basic metabolic processes which result in cell toxicity. In contrast, Argyrin A had influence on cell cycle, and was involved in DNA damage repair at the same time, showing that Argyrin A was a more suitable drug for anti-cancer treatment. Our study revealed that the causal co-expression method with module analysis was effective and can be used as a tool to evaluate drug

  7. CO-EXPRESSION OF ALPHA-2A-ADRENERGIC AND DELTA-OPIOID RECEPTORS IN SUBSTANCE P TERMINALS IN RAT DORSAL HORN

    PubMed Central

    Riedl, Maureen S.; Schnell, Stephen A.; Overland, Aaron C.; Chabot-Doré, Anne-Julie; Taylor, Anna M.; Ribeiro-Da-Silva, Alfredo; Elde, Robert P.; Wilcox, George L.; Stone, Laura S.

    2009-01-01

    Agonists acting at α2-adrenergic and opioid receptors (α2ARs and ORs, respectively) inhibit pain transmission in the spinal cord. When co-administered, agonists activating these receptors interact in a synergistic manner. Although the existence of α2AR/OR synergy has been well characterized, its mechanism remains poorly understood. The formation of hetero-oligomers has been proposed as a molecular basis for interactions between neuronal G-protein-coupled receptors. The relevance of hetero-oligomer formation to spinal analgesic synergy requires demonstration of the expression of both receptors within the same neuron as well as the localization of both receptors in the same neuronal compartment. We used immunohistochemistry to investigate the spatial relationship between α2ARs and ORs in the rat spinal cord to determine if co-expression could be demonstrated between these receptors. We observed extensive co-localization between α2A-adrenergic and delta-opioid receptors (DOP) on substance P (SP)-immunoreactive (ir) varicosities in the superficial dorsal horn of the spinal cord and in peripheral nerve terminals in the skin. α2AAR- and DOP-ir elements were co-localized in subcellular structures of 0.5 μm or less in diameter in isolated nerve terminals. Furthermore, co-incubation of isolated synaptosomes with α2AR and DOP agonists resulted in a greater-than-additive increase in the inhibition of K+-stimulated neuropeptide release. These findings suggest that co-expression of the synergistic receptor pair α2AAR-DOP on primary afferent nociceptive fibers may represent an anatomical substrate for analgesic synergy, perhaps due to protein-protein interactions such as hetero-oligomerization. PMID:19180644

  8. Genetically modified Schwann cells producing glial cell line-derived neurotrophic factor inhibit neuronal apoptosis in rat spinal cord injury.

    PubMed

    Liu, Guomin; Wang, Xukai; Shao, Guoxi; Liu, Qinyi

    2014-04-01

    Schwann cells (SCs) are the major cells constituting the peripheral nerve structure and function, and also secret a variety of neurotrophic factors. Schwann cell (SC) transplantation has recently emerged as a promising therapeutic strategy for spinal cord injury (SCI). In the present study, the ability of genetically modified SCs producing high levels of glial cell line‑derived neurotrophic factor (GDNF) to promote spinal cord repair was assessed. The GDNF gene was transduced into SCs. The engineered SCs were characterized by their ability to express and secrete biologically active GDNF, which was shown to inhibit apoptosis of primary rat neurons induced by radiation, and upregulate the expression of B‑cell lymphoma 2 (Bcl‑2) and downregulate the expression of Bcl‑2 associated X protein (Bax) in vitro. Following SC implantation into the spinal cord of adult rats with SCI induced by weight‑drop impact, the survival of rats with transplanted SCs, histology of the spinal cord and expression levels of Bcl‑2 and Bax were examined. Transplantation of unmodified and genetically modified SCs producing GDNF attenuated SCI by inhibiting apoptosis via the Bcl‑2/Bax pathways. The genetically modified SCs demonstrated markedly improved recovery of SCI as compared with unmodified SCs. The present study combined the outgrowth‑promoting property of SCs with the neuroprotective effects of overexpressed GDNF and identified this as a potential novel therapeutic strategy for SCI.

  9. Kisspeptin neurones do not directly signal to RFRP-3 neurones but RFRP-3 may directly modulate a subset of hypothalamic kisspeptin cells in mice.

    PubMed

    Poling, M C; Quennell, J H; Anderson, G M; Kauffman, A S

    2013-10-01

    The neuropeptides kisspeptin (encoded by Kiss1) and RFamide-related peptide-3 (also known as GnIH; encoded by Rfrp) are potent stimulators and inhibitors, respectively, of reproduction. Whether kisspeptin or RFRP-3 might act directly on each other's neuronal populations to indirectly modulate reproductive status is unknown. To examine possible interconnectivity of the kisspeptin and RFRP-3 systems, we performed double-label in situ hybridisation (ISH) for the RFRP-3 receptors, Gpr147 and Gpr74, in hypothalamic Kiss1 neurones of adult male and female mice, as well as double-label ISH for the kisspeptin receptor, Kiss1r, in Rfrp-expressing neurones of the hypothalamic dorsal-medial nucleus (DMN). Only a very small proportion (5-10%) of Kiss1 neurones of the anteroventral periventricular region expressed Gpr147 or Gpr74 in either sex, whereas higher co-expression (approximately 25%) existed in Kiss1 neurones in the arcuate nucleus. Thus, RFRP-3 could signal to a small, primarily arcuate, subset of Kiss1 neurones, a conclusion supported by the finding of approximately 35% of arcuate kisspeptin cells receiving RFRP-3-immunoreactive fibre contacts. By contrast to the former situation, no Rfrp neurones co-expressed Kiss1r in either sex, and Tacr3, the receptor for neurokinin B (NKB; a neuropeptide co-expressed with arcuate kisspeptin neurones) was found in <10% of Rfrp neurones. Moreover, kisspeptin-immunoreactive fibres did not readily appose RFRP-3 cells in either sex, further excluding the likelihood that kisspeptin neurones directly communicate to RFRP-3 neurones. Lastly, despite abundant NKB in the DMN region where RFRP-3 soma reside, NKB was not co-expressed in the majority of Rfrp neurones. Our results suggest that RFRP-3 may modulate a small proportion of kisspeptin-producing neurones in mice, particularly in the arcuate nucleus, whereas kisspeptin neurones are unlikely to have any direct reciprocal actions on RFRP-3 neurones. © 2013 British Society for

  10. Intrinsic Cholinergic Neurons in the Hippocampus: Fact or Artifact?

    PubMed Central

    Blusztajn, Jan Krzysztof; Rinnofner, Jasmine

    2016-01-01

    It is generally agreed that hippocampal acetylcholine (ACh) is synthesized and released exclusively from the terminals of the long-axon afferents whose cell bodies reside in the medial septum and diagonal band. The search for intrinsic cholinergic neurons in the hippocampus has a long history; however evidence for the existence of these neurons has been inconsistent, with most investigators failing to detect them using in situ hybridization or immunohistochemical staining of the cholinergic markers, choline acetyltransferase (ChAT) or vesicular acetylcholine transporter (VAChT). Advances in the use of bacterial artificial chromosome (BAC) transgenic mice expressing a reporter protein under the control of the genomic elements of the Chat gene (Chat-BAC mice) have facilitated studies of cholinergic neurons. Such mice show robust and faithful expression of the reporter proteins in all known cholinergic cell populations. The availability of the Chat-BAC mice re-ignited interest in hippocampal cholinergic interneurons, because a small number of such reporter-expressing cells is frequently observed in the hippocampus of these mice. However, to date, attempts to confirm that these neurons co-express the endogenous cholinergic marker ChAT, or release ACh, have been unsuccessful. Without such confirmatory evidence it is best to conclude that there are no cholinergic neurons in the hippocampus. Similar considerations apply to other BAC transgenic lines, whose utility as a discovery tool for cell populations heretofore not known to express the genes of interest encoded by the BACs, must be validated by methods that detect expression of the endogenous genes. PMID:27014052

  11. First human hNT neurons patterned on parylene-C/silicon dioxide substrates: Combining an accessible cell line and robust patterning technology for the study of the pathological adult human brain.

    PubMed

    Unsworth, C P; Graham, E S; Delivopoulos, E; Dragunow, M; Murray, A F

    2010-12-15

    In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Co-expression network-based analysis of hippocampal expression data associated with Alzheimer's disease using a novel algorithm

    PubMed Central

    YUE, HONG; YANG, BO; YANG, FANG; HU, XIAO-LI; KONG, FAN-BIN

    2016-01-01

    Recent progress in bioinformatics has facilitated the clarification of biological processes associated with complex diseases. Numerous methods of co-expression analysis have been proposed for use in the study of pairwise relationships among genes. In the present study, a combined network based on gene pairs was constructed following the conversion and combination of gene pair score values using a novel algorithm across multiple approaches. Three hippocampal expression profiles of patients with Alzheimer's disease (AD) and normal controls were extracted from the ArrayExpress database, and a total of 144 differentially expressed (DE) genes across multiple studies were identified by a rank product (RP) method. Five groups of co-expression gene pairs and five networks were identified and constructed using four existing methods [weighted gene co-expression network analysis (WGCNA), empirical Bayesian (EB), differentially co-expressed genes and links (DCGL), search tool for the retrieval of interacting genes/proteins database (STRING)] and a novel rank-based algorithm with combined score, respectively. Topological analysis indicated that the co-expression network constructed by the WGCNA method had the tendency to exhibit small-world characteristics, and the combined co-expression network was confirmed to be a scale-free network. Functional analysis of the co-expression gene pairs was conducted by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The co-expression gene pairs were mostly enriched in five pathways, namely proteasome, oxidative phosphorylation, Parkinson's disease, Huntington's disease and AD. This study provides a new perspective to co-expression analysis. Since different methods of analysis often present varying abilities, the novel combination algorithm may provide a more credible and robust outcome, and could be used to complement to traditional co-expression analysis. PMID:27168792

  13. Brief Report: Isogenic Induced Pluripotent Stem Cell Lines From an Adult With Mosaic Down Syndrome Model Accelerated Neuronal Ageing and Neurodegeneration

    PubMed Central

    Murray, Aoife; Letourneau, Audrey; Canzonetta, Claudia; Stathaki, Elisavet; Gimelli, Stefania; Sloan‐Bena, Frederique; Abrehart, Robert; Goh, Pollyanna; Lim, Shuhui; Baldo, Chiara; Dagna‐Bricarelli, Franca; Hannan, Saad; Mortensen, Martin; Ballard, David; Syndercombe Court, Denise; Fusaki, Noemi; Hasegawa, Mamoru; Smart, Trevor G.; Bishop, Cleo; Antonarakis, Stylianos E.

    2015-01-01

    Abstract Trisomy 21 (T21), Down Syndrome (DS) is the most common genetic cause of dementia and intellectual disability. Modeling DS is beginning to yield pharmaceutical therapeutic interventions for amelioration of intellectual disability, which are currently being tested in clinical trials. DS is also a unique genetic system for investigation of pathological and protective mechanisms for accelerated ageing, neurodegeneration, dementia, cancer, and other important common diseases. New drugs could be identified and disease mechanisms better understood by establishment of well‐controlled cell model systems. We have developed a first nonintegration‐reprogrammed isogenic human induced pluripotent stem cell (iPSC) model of DS by reprogramming the skin fibroblasts from an adult individual with constitutional mosaicism for DS and separately cloning multiple isogenic T21 and euploid (D21) iPSC lines. Our model shows a very low number of reprogramming rearrangements as assessed by a high‐resolution whole genome CGH‐array hybridization, and it reproduces several cellular pathologies seen in primary human DS cells, as assessed by automated high‐content microscopic analysis. Early differentiation shows an imbalance of the lineage‐specific stem/progenitor cell compartments: T21 causes slower proliferation of neural and faster expansion of hematopoietic lineage. T21 iPSC‐derived neurons show increased production of amyloid peptide‐containing material, a decrease in mitochondrial membrane potential, and an increased number and abnormal appearance of mitochondria. Finally, T21‐derived neurons show significantly higher number of DNA double‐strand breaks than isogenic D21 controls. Our fully isogenic system therefore opens possibilities for modeling mechanisms of developmental, accelerated ageing, and neurodegenerative pathologies caused by T21. Stem Cells 2015;33:2077–2084 PMID:25694335

  14. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents

    PubMed Central

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-01-01

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil. To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. PMID:27036033

  15. Enhanced resistance to Sclerotinia sclerotiorum in Brassica napus by co-expression of defensin and chimeric chitinase genes.

    PubMed

    Zarinpanjeh, Nasim; Motallebi, Mostafa; Zamani, Mohammad Reza; Ziaei, Mahboobeh

    2016-11-01

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the major fungal diseases of Brassica napus L. To develop resistance against this fungal disease, the defensin gene from Raphanus sativus and chimeric chit42 from Trichoderma atroviride with a C-terminal fused chitin-binding domain from Serratia marcescens were co-expressed in canola via Agrobacterium-mediated transformation. Twenty transformants were confirmed to carry the two transgenes as detected by polymerase chain reaction (PCR), with 4.8 % transformation efficiency. The chitinase activity of PCR-positive transgenic plants were measured in the presence of colloidal chitin, and five transgenic lines showing the highest chitinase activity were selected for checking the copy number of the transgenes through Southern blot hybridisation. Two plants carried a single copy of the transgenes, while the remainder carried either two or three copies of the transgenes. The antifungal activity of two transgenic lines that carried a single copy of the transgenes (T4 and T10) was studied by a radial diffusion assay. It was observed that the constitutive expression of these transgenes in the T4 and T10 transgenic lines suppressed the growth of S. sclerotiorum by 49 % and 47 %, respectively. The two transgenic lines were then let to self-pollinate to produce the T2 generation. Greenhouse bioassays were performed on the transgenic T2 young leaves by challenging with S. sclerotiorum and the results revealed that the expression of defensin and chimeric chitinase from a heterologous source in canola demonstrated enhanced resistance against sclerotinia stem rot disease.

  16. Inter-Tissue Gene Co-Expression Networks between Metabolically Healthy and Unhealthy Obese Individuals.

    PubMed

    Kogelman, Lisette J A; Fu, Jingyuan; Franke, Lude; Greve, Jan Willem; Hofker, Marten; Rensen, Sander S; Kadarmideen, Haja N

    2016-01-01

    Obesity is associated with severe co-morbidities such as type 2 diabetes and nonalcoholic steatohepatitis. However, studies have shown that 10-25 percent of the severely obese individuals are metabolically healthy. To date, the identification of genetic factors underlying the metabolically healthy obese (MHO) state is limited. Systems genetics approaches have led to the identification of genes and pathways in complex diseases. Here, we have used such approaches across tissues to detect genes and pathways involved in obesity-induced disease development. Expression data of 60 severely obese individuals was accessible, of which 28 individuals were MHO and 32 were metabolically unhealthy obese (MUO). A whole genome expression profile of four tissues was available: liver, muscle, subcutaneous adipose tissue and visceral adipose tissue. Using insulin-related genes, we used the weighted gene co-expression network analysis (WGCNA) method to build within- and inter-tissue gene networks. We identified genes that were differentially connected between MHO and MUO individuals, which were further investigated by homing in on the modules they were active in. To identify potentially causal genes, we integrated genomic and transcriptomic data using an eQTL mapping approach. Both IL-6 and IL1B were identified as highly differentially co-expressed genes across tissues between MHO and MUO individuals, showing their potential role in obesity-induced disease development. WGCNA showed that those genes were clustering together within tissues, and further analysis showed different co-expression patterns between MHO and MUO subnetworks. A potential causal role for metabolic differences under similar obesity state was detected for PTPRE, IL-6R and SLC6A5. We used a novel integrative approach by integration of co-expression networks across tissues to elucidate genetic factors related to obesity-induced metabolic disease development. The identified genes and their interactions give more

  17. [Co-expression of beta-subunit with other subunits of Qbeta replicase].

    PubMed

    Wang, Dong

    2004-12-01

    In researches involving in vitro protein synthesis and self-replication system, Qbeta replicase is one of the key enzymes, which are demanded for the high availability. Qbeta replicase is a RNA-dependent RNA polymerase of Qbeta coliphage. It consists of four subunits (alpha, beta, gamma, and delta subunit), where the beta-subunit is encoded by the viral genome, while the other three subunits are host proteins normally involved in protein synthesis, namely, ribosomal protein S1 (alpha), elongation factors EF-Tu (gamma) and EF-Ts (delta). To increase the production of the Qbeta replicase holoenzyme, several types of expression vectors, including pKK, pET and others, were employed to produce Qbeta replicase. However, the beta-subunit was almost in the precipitate fraction. Considering that the four subunits of Qbeta replicase holoenzyme are in equivalent molar ratio and the amount of the subunits, ribosomal S1 and EF-Ts, being produced by the host cells is relatively low, co-expression of beta-subunit with the other three subunits was performed to know whether the availability of the host subunits is the contributing factor for the solubility of the Qbeta replicase. pBAD33-rep was constructed by cloning the beta-subunit gene into pBAD 33, a pACYC derivative, and pET21a(+) was employed as expression vector for the three other subunits. Among the different combinations of co-expression experiments, solubility was found to slightly increase by SDS-PAGE analysis when the beta-subunit was co-expressed with EF-Tu-Ts. And the replicase activity assay showed this soluble enzyme is in active form. The expression of beta-subunit was enhanced by decreasing the level of inducer IPTG in co-expression, and more soluble enzyme were obtained.

  18. Functional annotation of novel lineage-specific genes using co-expression and promoter analysis

    PubMed Central

    2010-01-01

    Background The diversity of placental architectures within and among mammalian orders is believed to be the result of adaptive evolution. Although, the genetic basis for these differences is unknown, some may arise from rapidly diverging and lineage-specific genes. Previously, we identified 91 novel lineage-specific transcripts (LSTs) from a cow term-placenta cDNA library, which are excellent candidates for adaptive placental functions acquired by the ruminant lineage. The aim of the present study was to infer functions of previously uncharacterized lineage-specific genes (LSGs) using co-expression, promoter, pathway and network analysis. Results Clusters of co-expressed genes preferentially expressed in liver, placenta and thymus were found using 49 previously uncharacterized LSTs as seeds. Over-represented composite transcription factor binding sites (TFBS) in promoters of clustered LSGs and known genes were then identified computationally. Functions were inferred for nine previously uncharacterized LSGs using co-expression analysis and pathway analysis tools. Our results predict that these LSGs may function in cell signaling, glycerophospholipid/fatty acid metabolism, protein trafficking, regulatory processes in the nucleus, and processes that initiate parturition and immune system development. Conclusions The placenta is a rich source of lineage-specific genes that function in the adaptive evolution of placental architecture and functions. We have shown that co-expression, promoter, and gene network analyses are useful methods to infer functions of LSGs with heretofore unknown functions. Our results indicate that many LSGs are involved in cellular recognition and developmental processes. Furthermore, they provide guidance for experimental approaches to validate the functions of LSGs and to study their evolution. PMID:20214810

  19. Functional annotation of novel lineage-specific genes using co-expression and promoter analysis.

    PubMed

    Kumar, Charu G; Everts, Robin E; Loor, Juan J; Lewin, Harris A

    2010-03-09

    The diversity of placental architectures within and among mammalian orders is believed to be the result of adaptive evolution. Although, the genetic basis for these differences is unknown, some may arise from rapidly diverging and lineage-specific genes. Previously, we identified 91 novel lineage-specific transcripts (LSTs) from a cow term-placenta cDNA library, which are excellent candidates for adaptive placental functions acquired by the ruminant lineage. The aim of the present study was to infer functions of previously uncharacterized lineage-specific genes (LSGs) using co-expression, promoter, pathway and network analysis. Clusters of co-expressed genes preferentially expressed in liver, placenta and thymus were found using 49 previously uncharacterized LSTs as seeds. Over-represented composite transcription factor binding sites (TFBS) in promoters of clustered LSGs and known genes were then identified computationally. Functions were inferred for nine previously uncharacterized LSGs using co-expression analysis and pathway analysis tools. Our results predict that these LSGs may function in cell signaling, glycerophospholipid/fatty acid metabolism, protein trafficking, regulatory processes in the nucleus, and processes that initiate parturition and immune system development. The placenta is a rich source of lineage-specific genes that function in the adaptive evolution of placental architecture and functions. We have shown that co-expression, promoter, and gene network analyses are useful methods to infer functions of LSGs with heretofore unknown functions. Our results indicate that many LSGs are involved in cellular recognition and developmental processes. Furthermore, they provide guidance for experimental approaches to validate the functions of LSGs and to study their evolution.

  20. Co-expression of midkine and pleiotrophin predicts poor survival in human glioma.

    PubMed

    Ma, Jinyang; Lang, Bojuan; Wang, Xiongwei; Wang, Lei; Dong, Yuanxun; Hu, Huojun

    2014-11-01

    The aim of this study was to investigate whether co-expression of midkine (MK) and pleiotrophin (PTN) has prognostic relevance in human gliomas. Immunohistochemistry was used to investigate the expression of MK and PTN proteins in 168 patients with gliomas. The levels of MK and PTN mRNA in glioma tissues and paratumor tissues were evaluated in 45 paired cases by quantitative real-time polymerase chain reaction (qRT-PCR). Kaplan-Meier survival analysis was performed to assess prognostic significance. The expression levels of MK and PTN proteins in glioma tissue were both significantly higher (both p<0.001) than those in paratumor tissues on immunohistochemistry analysis, which was confirmed by qRT-PCR analysis. Additionally, the overexpression of either MK or PTN was significantly associated with the World Health Organization Grade (p=0.001 and 0.034, respectively), low Karnofsky Performance Status (KPS) score (p=0.022 and 0.001, respectively), time to recurrence (p=0.043 and 0.011, respectively) and poor overall survival (p=0.018 and 0.001, respectively). Multivariate Cox proportional-hazards regression analysis revealed that increased expressions of MK and PTN were both independent prognostic factors for poor overall survival (p=0.030 and 0.022, respectively). Furthermore, the co-expression of MK and PTN was more significantly (p=0.003) associated with adverse prognosis in patients with gliomas than the respective expression of MK or PTN alone. To our knowledge, these findings are the first to indicate that the co-expression of MK and PTN is significantly correlated with prognosis in glioma patients, suggesting that the co-expression of these proteins may be used as both an early diagnostic and independent prognostic marker. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Characterization of Chemically Induced Liver Injuries Using Gene Co-Expression Modules

    PubMed Central

    Tawa, Gregory J.; AbdulHameed, Mohamed Diwan M.; Yu, Xueping; Kumar, Kamal; Ippolito, Danielle L.; Lewis, John A.; Stallings, Jonathan D.; Wallqvist, Anders

    2014-01-01

    Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules) specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1) known biochemical pathways associated with liver injuries and 2) clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20%) genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects. PMID:25226513

  2. A massive human co-expression-network and its medical applications

    PubMed Central

    Feng, Yaping; Hurst, Jonathan; Almeida-De-Macedo, Marcia; Chen, Xi; Li, Ling; Ransom, Nick

    2012-01-01

    Network-based analysis is indispensable in analyzing high throughput biological data. Based on the assumption that the variation of gene interactions under given biological conditions could be better interpreted in the context of a large-scale and wide variety of developmental, tissue, and disease, we leverage the large quantity of publicly-available transcriptomic data > 40,000 HG U133A Affymetrix microarray chips stored in ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) using MetaOmGraph (http://metnet.vrac.iastate.edu/MetNet_MetaOmGraph.htm). From this data, 18,637 chips encompassing over 500 experiments containing high quality data (18637Hu-dataset) were used to create a globally stable gene co-expression network (18637Hu-co-expression-network). Regulons, groups of highly and consistently co-expressed genes, were obtained by partitioning the 18637Hu-co-expression-network using an MCL clustering algorithm. The regulon were demonstrated to be statistically significant using a gene ontology (GO) term overrepresentation test combined with evaluation of the effects of gene permutations. The regulons include approximately 12% of human genes, interconnected by 31,471 correlations. All network data and metadata is publically available (http://metnet.vrac.iastate.edu/MetNet_MetaOmGraph.htm). Text mining of these metadata, GO term overrepresentation analysis, and statistical analysis of transcriptomic experiments across multiple environmental, tissue, and disease conditions, has revealed novel fingerprints distinguishing central nervous system (CNS)-related conditions. This study demonstrates the value of mega-scale network-based analysis for biologists to further refine transcriptomic data derived from a particular condition, to study the global relationships between genes and diseases, and to develop hypotheses that can inform future research. PMID:22589089

  3. FastGCN: a GPU accelerated tool for fast gene co-expression networks.

    PubMed

    Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun

    2015-01-01

    Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out.

  4. Gene co-expression analyses: an overview from microarray collections in Arabidopsis thaliana.

    PubMed

    Di Salle, Pasquale; Incerti, Guido; Colantuono, Chiara; Chiusano, Maria Luisa

    2017-03-01

    Bioinformatics web-based resources and databases are precious references for most biological laboratories worldwide. However, the quality and reliability of the information they provide depends on them being used in an appropriate way that takes into account their specific features. Huge collections of gene expression data are currently publicly available, ready to support the understanding of gene and genome functionalities. In this context, tools and resources for gene co-expression analyses have flourished to exploit the 'guilty by association' principle, which assumes that genes with correlated expression profiles are functionally related. In the case of Arabidopsis thaliana, the reference species in plant biology, the resources available mainly consist of microarray results. After a general overview of such resources, we tested and compared the results they offer for gene co-expression analysis. We also discuss the effect on the results when using different data sets, as well as different data normalization approaches and parameter settings, which often consider different metrics for establishing co-expression. A dedicated example analysis of different gene pools, implemented by including/excluding mutant samples in a reference data set, showed significant variation of gene co-expression occurrence, magnitude and direction. We conclude that, as the heterogeneity of the resources and methods may produce different results for the same query genes, the exploration of more than one of the available resources is strongly recommended. The aim of this article is to show how best to integrate data sources and/or merge outputs to achieve robust analyses and reliable interpretations, thereby making use of diverse data resources an opportunity for added value. © The Author 2016. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  5. Inter-Tissue Gene Co-Expression Networks between Metabolically Healthy and Unhealthy Obese Individuals

    PubMed Central

    Kogelman, Lisette J. A.; Fu, Jingyuan; Franke, Lude; Greve, Jan Willem; Hofker, Marten; Rensen, Sander S.; Kadarmideen, Haja N.

    2016-01-01

    Background Obesity is associated with severe co-morbidities such as type 2 diabetes and nonalcoholic steatohepatitis. However, studies have shown that 10–25 percent of the severely obese individuals are metabolically healthy. To date, the identification of genetic factors underlying the metabolically healthy obese (MHO) state is limited. Systems genetics approaches have led to the identification of genes and pathways in complex diseases. Here, we have used such approaches across tissues to detect genes and pathways involved in obesity-induced disease development. Methods Expression data of 60 severely obese individuals was accessible, of which 28 individuals were MHO and 32 were metabolically unhealthy obese (MUO). A whole genome expression profile of four tissues was available: liver, muscle, subcutaneous adipose tissue and visceral adipose tissue. Using insulin-related genes, we used the weighted gene co-expression network analysis (WGCNA) method to build within- and inter-tissue gene networks. We identified genes that were differentially connected between MHO and MUO individuals, which were further investigated by homing in on the modules they were active in. To identify potentially causal genes, we integrated genomic and transcriptomic data using an eQTL mapping approach. Results Both IL-6 and IL1B were identified as highly differentially co-expressed genes across tissues between MHO and MUO individuals, showing their potential role in obesity-induced disease development. WGCNA showed that those genes were clustering together within tissues, and further analysis showed different co-expression patterns between MHO and MUO subnetworks. A potential causal role for metabolic differences under similar obesity state was detected for PTPRE, IL-6R and SLC6A5. Conclusions We used a novel integrative approach by integration of co-expression networks across tissues to elucidate genetic factors related to obesity-induced metabolic disease development. The identified

  6. Module discovery by exhaustive search for densely connected, co-expressed regions in biomolecular interaction networks.

    PubMed

    Colak, Recep; Moser, Flavia; Chu, Jeffrey Shih-Chieh; Schönhuth, Alexander; Chen, Nansheng; Ester, Martin

    2010-10-25

    Computational prediction of functionally related groups of genes (functional modules) from large-scale data is an important issue in computational biology. Gene expression experiments and interaction networks are well studied large-scale data sources, available for many not yet exhaustively annotated organisms. It has been well established, when analyzing these two data sources jointly, modules are often reflected by highly interconnected (dense) regions in the interaction networks whose participating genes are co-expressed. However, the tractability of the problem had remained unclear and methods by which to exhaustively search for such constellations had not been presented. We provide an algorithmic framework, referred to as Densely Connected Biclustering (DECOB), by which the aforementioned search problem becomes tractable. To benchmark the predictive power inherent to the approach, we computed all co-expressed, dense regions in physical protein and genetic interaction networks from human and yeast. An automatized filtering procedure reduces our output which results in smaller collections of modules, comparable to state-of-the-art approaches. Our results performed favorably in a fair benchmarking competition which adheres to standard criteria. We demonstrate the usefulness of an exhaustive module search, by using the unreduced output to more quickly perform GO term related function prediction tasks. We point out the advantages of our exhaustive output by predicting functional relationships using two examples. We demonstrate that the computation of all densely connected and co-expressed regions in interaction networks is an approach to module discovery of considerable value. Beyond confirming the well settled hypothesis that such co-expressed, densely connected interaction network regions reflect functional modules, we open up novel computational ways to comprehensively analyze the modular organization of an organism based on prevalent and largely available large

  7. An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana

    PubMed Central

    Ehlting, Jürgen; Sauveplane, Vincent; Olry, Alexandre; Ginglinger, Jean-François; Provart, Nicholas J; Werck-Reichhart, Danièle

    2008-01-01

    Background Sequencing of the first plant genomes has revealed that cytochromes P450 have evolved to become the largest family of enzymes in secondary metabolism. The proportion of P450 enzymes with characterized biochemical function(s) is however very small. If P450 diversification mirrors evolution of chemical diversity, this points to an unexpectedly poor understanding of plant metabolism. We assumed that extensive analysis of gene expression might guide towards the function of P450 enzymes, and highlight overlooked aspects of plant metabolism. Results We have created a comprehensive database, 'CYPedia', describing P450 gene expression in four data sets: organs and tissues, stress response, hormone response, and mutants of Arabidopsis thaliana, based on public Affymetrix ATH1 microarray expression data. P450 expression was then combined with the expression of 4,130 re-annotated genes, predicted to act in plant metabolism, for co-expression analyses. Based on the annotation of co-expressed genes from diverse pathway annotation databases, co-expressed pathways were identified. Predictions were validated for most P450s with known functions. As examples, co-expression results for P450s related to plastidial functions/photosynthesis, and to phenylpropanoid, triterpenoid and jasmonate metabolism are highlighted here. Conclusion The large scale hypothesis generation tools presented here provide leads to new pathways, unexpected functions, and regulatory networks for many P450s in plant metabolism. These can now be exploited by the community to validate the proposed functions experimentally using reverse genetics, biochemistry, and metabolic profiling. PMID:18433503

  8. FastGCN: A GPU Accelerated Tool for Fast Gene Co-Expression Networks

    PubMed Central

    Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun

    2015-01-01

    Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out. PMID:25602758

  9. Inferring pathway crosstalk networks using gene set co-expression signatures.

    PubMed

    Wang, Ting; Gu, Jin; Yuan, Jun; Tao, Ran; Li, Yanda; Li, Shao

    2013-07-01

    Constructing molecular interaction networks in cells is important for understanding the underlying mechanisms of biological processes. Except for single gene analysis, several gene set-based methods have been proposed to infer pathway crosstalk by analyzing large-scale gene expression data. But most of them take all pathway genes as a whole to infer the crosstalk. Biological evidence suggests that the pathway crosstalk usually occurs between some subsets rather than the whole sets of pathway genes. In this study, we propose a novel method, sGSCA (signature-based gene set co-expression analysis) which can use the co-expression correlations between subsets of pathway genes to infer the pathway crosstalk networks. The method applies sparse canonical correlation analysis (sCCA) to measure the pathway level co-expression and simultaneously obtain the subsets or signature genes that contribute to the co-expression of pathways. On simulated datasets, sGSCA can efficiently detect pathway crosstalk and the corresponding highly correlated signature genes. We applied sGSCA to two cancer gene expression datasets (one for hepatocellular cancer and the other for lung cancer). In the inferred networks, we found several important pathway crosstalks related to the cancers. The identified signature genes also show high enrichment for the cancer related genes. sGSCA can infer pathway crosstalk networks using large-scale gene expression data, and should be a useful tool for systematically studying the molecular mechanisms of complex diseases on both pathway and gene levels at the same time.

  10. Key regulators in prostate cancer identified by co-expression module analysis.

    PubMed

    Jiang, Junfeng; Jia, Peilin; Zhao, Zhongming; Shen, Bairong

    2014-11-24

    Prostate cancer (PrCa) is the most commonly diagnosed cancer in men in the world. Despite the fact that a large number of its genes have been investigated, its etiology remains poorly understood. Furthermore, most PrCa candidate genes have not been rigorously replicated, and the methods by which they biologically function in PrCa remain largely unknown. Aiming to identify key players in the complex prostate cancer system, we reconstructed PrCa co-expressed modules within functional gene sets defined by the Gene Ontology (GO) annotation (biological process, GO_BP). We primarily identified 118 GO_BP terms that were well-preserved between two independent gene expression datasets and a consequent 55 conserved co-expression modules within them. Five modules were then found to be significantly enriched with PrCa candidate genes collected from expression Quantitative Trait Loci (eQTL), somatic copy number alteration (SCNA), somatic mutation data, or prognostic analyses. Specifically, two transcription factors (TFs) (NFAT and SP1) and three microRNAs (hsa-miR-19a, hsa-miR-15a, and hsa-miR-200b) regulating these five candidate modules were found to be critical to the development of PrCa. Collectively, our results indicated that genes with similar functions may play important roles in disease through co-expression, and modules with different functions could be regulated by similar genetic components, such as TFs and microRNAs, in a synergistic manner.

  11. WeGET: predicting new genes for molecular systems by weighted co-expression

    PubMed Central

    Szklarczyk, Radek; Megchelenbrink, Wout; Cizek, Pavel; Ledent, Marie; Velemans, Gonny; Szklarczyk, Damian; Huynen, Martijn A.

    2016-01-01

    We have developed the Weighted Gene Expression Tool and database (WeGET, http://weget.cmbi.umcn.nl) for the prediction of new genes of a molecular system by correlated gene expression. WeGET utilizes a compendium of 465 human and 560 murine gene expression datasets that have been collected from multiple tissues under a wide range of experimental conditions. It exploits this abundance of expression data by assigning a high weight to datasets in which the known genes of a molecular system are harmoniously up- and down-regulated. WeGET ranks new candidate genes by calculating their weighted co-expression with that system. A weighted rank is calculated for human genes and their mouse orthologs. Then, an integrated gene rank and p-value is computed using a rank-order statistic. We applied our method to predict novel genes that have a high degree of co-expression with Gene Ontology terms and pathways from KEGG and Reactome. For each query set we provide a list of predicted novel genes, computed weights for transcription datasets used and cell and tissue types that contributed to the final predictions. The performance for each query set is assessed by 10-fold cross-validation. Finally, users can use the WeGET to predict novel genes that co-express with a custom query set. PMID:26582928

  12. Massive-Scale Gene Co-Expression Network Construction and Robustness Testing Using Random Matrix Theory

    PubMed Central

    Isaacson, Sven; Luo, Feng; Feltus, Frank A.; Smith, Melissa C.

    2013-01-01

    The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust. PMID:23409071

  13. Co-expression analysis identifies CRC and AP1 the regulator of Arabidopsis fatty acid biosynthesis.

    PubMed

    Han, Xinxin; Yin, Linlin; Xue, Hongwei

    2012-07-01

    Fatty acids (FAs) play crucial rules in signal transduction and plant development, however, the regulation of FA metabolism is still poorly understood. To study the relevant regulatory network, fifty-eight FA biosynthesis genes including de novo synthases, desaturases and elongases were selected as "guide genes" to construct the co-expression network. Calculation of the correlation between all Arabidopsis thaliana (L.) genes with each guide gene by Arabidopsis co-expression dating mining tools (ACT) identifies 797 candidate FA-correlated genes. Gene ontology (GO) analysis of these co-expressed genes showed they are tightly correlated to photosynthesis and carbohydrate metabolism, and function in many processes. Interestingly, 63 transcription factors (TFs) were identified as candidate FA biosynthesis regulators and 8 TF families are enriched. Two TF genes, CRC and AP1, both correlating with 8 FA guide genes, were further characterized. Analyses of the ap1 and crc mutant showed the altered total FA composition of mature seeds. The contents of palmitoleic acid, stearic acid, arachidic acid and eicosadienoic acid are decreased, whereas that of oleic acid is increased in ap1 and crc seeds, which is consistent with the qRT-PCR analysis revealing the suppressed expression of the corresponding guide genes. In addition, yeast one-hybrid analysis and electrophoretic mobility shift assay (EMSA) revealed that CRC can bind to the promoter regions of KCS7 and KCS15, indicating that CRC may directly regulate FA biosynthesis. © 2012 Institute of Botany, Chinese Academy of Sciences.

  14. Context Specific and Differential Gene Co-expression Networks via Bayesian Biclustering

    PubMed Central

    McDowell, Ian C.; Zhao, Shiwen; Brown, Christopher D.; Engelhardt, Barbara E.

    2016-01-01

    Identifying latent structure in high-dimensional genomic data is essential for exploring biological processes. Here, we consider recovering gene co-expression networks from gene expression data, where each network encodes relationships between genes that are co-regulated by shared biological mechanisms. To do this, we develop a Bayesian statistical model for biclustering to infer subsets of co-regulated genes that covary in all of the samples or in only a subset of the samples. Our biclustering method, BicMix, allows overcomplete representations of the data, computational tractability, and joint modeling of unknown confounders and biological signals. Compared with related biclustering methods, BicMix recovers latent structure with higher precision across diverse simulation scenarios as compared to state-of-the-art biclustering methods. Further, we develop a principled method to recover context specific gene co-expression networks from the estimated sparse biclustering matrices. We apply BicMix to breast cancer gene expression data and to gene expression data from a cardiovascular study cohort, and we recover gene co-expression networks that are differential across ER+ and ER- samples and across male and female samples. We apply BicMix to the Genotype-Tissue Expression (GTEx) pilot data, and we find tissue specific gene networks. We validate these findings by using our tissue specific networks to identify trans-eQTLs specific to one of four primary tissues. PMID:27467526

  15. Co-expression analysis as tool for the discovery of transport proteins in photorespiration.

    PubMed

    Bordych, C; Eisenhut, M; Pick, T R; Kuelahoglu, C; Weber, A P M

    2013-07-01

    Shedding light on yet uncharacterised components of photorespiration, such as transport processes required for the function of this pathway, is a prerequisite for manipulating photorespiratory fluxes and hence for decreasing photorespiratory energy loss. The ability of forward genetic screens to identify missing links is apparently limited, as indicated by the fact that little progress has been made with this approach during the past decade. The availability of large amounts of gene expression data and the growing power of bioinformatics, paired with availability of computational resources, opens new avenues to discover proteins involved in transport of photorespiratory intermediates. Co-expression analysis is a tool that compares gene expression data under hundreds of different conditions, trying to find groups of genes that show similar expression patterns across many different conditions. Genes encoding proteins that are involved in the same process are expected to be simultaneously expressed in time and space. Thus, co-expression data can aid in the discovery of novel players in a pathway, such as the transport proteins required for facilitating the transfer of intermediates between compartments during photorespiration. We here review the principles of co-expression analysis and show how this tool can be used for identification of candidate genes encoding photorespiratory transporters.

  16. Discovering missing reactions of metabolic networks by using gene co-expression data

    PubMed Central

    Hosseini, Zhaleh; Marashi, Sayed-Amir

    2017-01-01

    Flux coupling analysis is a computational method which is able to explain co-expression of metabolic genes by analyzing the topological structure of a metabolic network. It has been suggested that if genes in two seemingly fully-coupled reactions are not highly co-expressed, then these two reactions are not fully coupled in reality, and hence, there is a gap or missing reaction in the network. Here, we present GAUGE as a novel approach for gap filling of metabolic networks, which is a two-step algorithm based on a mixed integer linear programming formulation. In GAUGE, the discrepancies between experimental co-expression data and predicted flux coupling relations is minimized by adding a minimum number of reactions to the network. We show that GAUGE is able to predict missing reactions of E. coli metabolism that are not detectable by other popular gap filling approaches. We propose that our algorithm may be used as a complementary strategy for the gap filling problem of metabolic networks. Since GAUGE relies only on gene expression data, it can be potentially useful for exploring missing reactions in the metabolism of non-model organisms, which are often poorly characterized, cannot grow in the laboratory, and lack genetic tools for generating knockouts. PMID:28150713

  17. Massive-scale gene co-expression network construction and robustness testing using random matrix theory.

    PubMed

    Gibson, Scott M; Ficklin, Stephen P; Isaacson, Sven; Luo, Feng; Feltus, Frank A; Smith, Melissa C

    2013-01-01

    The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust.

  18. Enzymatic synthesis of nucleosides by nucleoside phosphorylase co-expressed in Escherichia coli.

    PubMed

    Ding, Qing-bao; Ou, Ling; Wei, Dong-zhi; Wei, Xiao-kun; Xu, Yan-mei; Zhang, Chun-yan

    2010-11-01

    Nucleoside phosphorylase is an important enzyme involved in the biosynthesis of nucleosides. In this study, purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase were co-expressed in Escherichia coli and the intact cells were used as a catalyst for the biosynthesis of nucleosides. For protein induction, lactose was used in place of isopropyl β-D-1-thiogalactopyranoside (IPTG). When the concentration of lactose was above 0.5 mmol/L, the ability to induce protein expression was similar to that of IPTG. We determined that the reaction conditions of four bacterial strains co-expressing these genes (TUD, TAD, DUD, and DAD) were similar for the biosyntheses of 2,6-diaminopurine nucleoside and 2,6-diaminopurine deoxynucleoside. When the substrate concentration was 30 mmol/L and 0.5% of the recombinant bacterial cell volume was used as the catalyst (pH 7.5), a greater than 90% conversion yield was reached after a 2-h incubation at 50 °C. In addition, several other nucleosides and nucleoside derivatives were efficiently synthesized using bacterial strains co-expressing these recombinant enzymes.

  19. Enzymatic synthesis of nucleosides by nucleoside phosphorylase co-expressed in Escherichia coli

    PubMed Central

    Ding, Qing-bao; Ou, Ling; Wei, Dong-zhi; Wei, Xiao-kun; Xu, Yan-mei; Zhang, Chun-yan

    2010-01-01

    Nucleoside phosphorylase is an important enzyme involved in the biosynthesis of nucleosides. In this study, purine nucleoside phosphorylase and pyrimidine nucleoside phosphorylase were co-expressed in Escherichia coli and the intact cells were used as a catalyst for the biosynthesis of nucleosides. For protein induction, lactose was used in place of isopropyl β-D-1-thiogalactopyranoside (IPTG). When the concentration of lactose was above 0.5 mmol/L, the ability to induce protein expression was similar to that of IPTG. We determined that the reaction conditions of four bacterial strains co-expressing these genes (TUD, TAD, DUD, and DAD) were similar for the biosyntheses of 2,6-diaminopurine nucleoside and 2,6-diaminopurine deoxynucleoside. When the substrate concentration was 30 mmol/L and 0.5% of the recombinant bacterial cell volume was used as the catalyst (pH 7.5), a greater than 90% conversion yield was reached after a 2-h incubation at 50 °C. In addition, several other nucleosides and nucleoside derivatives were efficiently synthesized using bacterial strains co-expressing these recombinant enzymes. PMID:21043057

  20. Differential co-expression analysis reveals a novel prognostic gene module in ovarian cancer.

    PubMed

    Gov, Esra; Arga, Kazim Yalcin

    2017-07-10

    Ovarian cancer is one of the most significant disease among gynecological disorders that women suffered from over the centuries. However, disease-specific and effective biomarkers were still not available, since studies have focused on individual genes associated with ovarian cancer, ignoring the interactions and associations among the gene products. Here, ovarian cancer differential co-expression networks were reconstructed via meta-analysis of gene expression data and co-expressed gene modules were identified in epithelial cells from ovarian tumor and healthy ovarian surface epithelial samples to propose ovarian cancer associated genes and their interactions. We propose a novel, highly interconnected, differentially co-expressed, and co-regulated gene module in ovarian cancer consisting of 84 prognostic genes. Furthermore, the specificity of the module to ovarian cancer was shown through analyses of datasets in nine other cancers. These observations underscore the importance of transcriptome based systems biomarkers research in deciphering the elusive pathophysiology of ovarian cancer, and here, we present reciprocal interplay between candidate ovarian cancer genes and their transcriptional regulatory dynamics. The corresponding gene module might provide new insights on ovarian cancer prognosis and treatment strategies that continue to place a significant burden on global health.

  1. Discovering missing reactions of metabolic networks by using gene co-expression data

    NASA Astrophysics Data System (ADS)

    Hosseini, Zhaleh; Marashi, Sayed-Amir

    2017-02-01

    Flux coupling analysis is a computational method which is able to explain co-expression of metabolic genes by analyzing the topological structure of a metabolic network. It has been suggested that if genes in two seemingly fully-coupled reactions are not highly co-expressed, then these two reactions are not fully coupled in reality, and hence, there is a gap or missing reaction in the network. Here, we present GAUGE as a novel approach for gap filling of metabolic networks, which is a two-step algorithm based on a mixed integer linear programming formulation. In GAUGE, the discrepancies between experimental co-expression data and predicted flux coupling relations is minimized by adding a minimum number of reactions to the network. We show that GAUGE is able to predict missing reactions of E. coli metabolism that are not detectable by other popular gap filling approaches. We propose that our algorithm may be used as a complementary strategy for the gap filling problem of metabolic networks. Since GAUGE relies only on gene expression data, it can be potentially useful for exploring missing reactions in the metabolism of non-model organisms, which are often poorly characterized, cannot grow in the laboratory, and lack genetic tools for generating knockouts.

  2. Co-expressed Pathways DataBase for Tomato: a database to predict pathways relevant to a query gene.

    PubMed

    Narise, Takafumi; Sakurai, Nozomu; Obayashi, Takeshi; Ohta, Hiroyuki; Shibata, Daisuke

    2017-06-05

    Gene co-expression, the similarity of gene expression profiles under various experimental conditions, has been used as an indicator of functional relationships between genes, and many co-expression databases have been developed for predicting gene functions. These databases usually provide users with a co-expression network and a list of strongly co-expressed genes for a query gene. Several of these databases also provide functional information on a set of strongly co-expressed genes (i.e., provide biological processes and pathways that are enriched in these strongly co-expressed genes), which is generally analyzed via over-representation analysis (ORA). A limitation of this approach may be that users can predict gene functions only based on the strongly co-expressed genes. In this study, we developed a new co-expression database that enables users to predict the function of tomato genes from the results of functional enrichment analyses of co-expressed genes while considering the genes that are not strongly co-expressed. To achieve this, we used the ORA approach with several thresholds to select co-expressed genes, and performed gene set enrichment analysis (GSEA) applied to a ranked list of genes ordered by the co-expression degree. We found that internal correlation in pathways affected the significance levels of the enrichment analyses. Therefore, we introduced a new measure for evaluating the relationship between the gene and pathway, termed the percentile (p)-score, which enables users to predict functionally relevant pathways without being affected by the internal correlation in pathways. In addition, we evaluated our approaches using receiver operating characteristic curves, which concluded that the p-score could improve the performance of the ORA. We developed a new database, named Co-expressed Pathways DataBase for Tomato, which is available at http://cox-path-db.kazusa.or.jp/tomato . The database allows users to predict pathways that are relevant to a

  3. Cigarette smoke alters non-neuronal cholinergic system components inducing MUC5AC production in the H292 cell line.

    PubMed

    Montalbano, Angela Marina; Albano, Giusy Daniela; Anzalone, Giulia; Bonanno, Anna; Riccobono, Loredana; Di Sano, Caterina; Gagliardo, Rosalia; Siena, Liboria; Pieper, Michael Paul; Gjomarkaj, Mark; Profita, Mirella

    2014-08-05

    Cigarette smoke extract (CSE) affects the expression of Choline Acetyl-Transferase (ChAT), muscarinic acetylcholine receptors, and mucin production in bronchial epithelial cells. Mucin 5AC (MUC5AC), muscarinic acetylcholine receptor M3, ChAT expression, acetylcholine levels and acetylcholine binding were measured in a human pulmonary mucoepidermoid carcinoma cell line (H292) stimulated with CSE. We performed ChAT/RNA interference experiments in H292 cells stimulated with CSE to study the role of ChAT/acetylcholine in MUC5AC production. The effects of Hemicholinium-3 (HCh-3) (50 μM) (a potent and selective choline uptake blocker) and Tiotropium bromide (Spiriva(®)) (100 nM), alone or in combination with Salmeterol (SL) and Fluticasone propionate (FP), were tested in this model. MUC5AC, muscarinic acetylcholine receptor M3, ChAT, acetylcholine expression and acetylcholine binding significantly increased in H292 cells stimulated with CSE (5%) compared to untreated cells. HCh-3 reduced acetylcholine binding and MUC5AC production in H292 cells stimulated with CSE. ChAT/RNA interference eliminated the effect of CSE on MUC5AC production. FP reduced ChAT and acetylcholine binding in unstimulated cells, while showing a partial effect in CSE stimulated cells. SL increased the ChAT expression and acetylcholine binding in H292 cells stimulated with or without CSE. Tiotropium, alone or together with FP and SL, reduced acetylcholine binding and MUC5AC production in H292 cells stimulated with CSE. CSE affects the ChAT/acetylcholine expression, increasing MUC5AC production in H292 cells. Pharmacological treatment with anticholinergic drugs reduces the secretion of MUC5AC generated by autocrine acetylcholine activity in airway epithelial cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Annotation of gene function in citrus using gene expression information and co-expression networks

    PubMed Central

    2014-01-01

    Background The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world’s most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a “guilt-by-association” principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. Results We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Conclusions Integration of citrus gene co-expression networks

  5. Annotation of gene function in citrus using gene expression information and co-expression networks.

    PubMed

    Wong, Darren C J; Sweetman, Crystal; Ford, Christopher M

    2014-07-15

    The genus Citrus encompasses major cultivated plants such as sweet orange, mandarin, lemon and grapefruit, among the world's most economically important fruit crops. With increasing volumes of transcriptomics data available for these species, Gene Co-expression Network (GCN) analysis is a viable option for predicting gene function at a genome-wide scale. GCN analysis is based on a "guilt-by-association" principle whereby genes encoding proteins involved in similar and/or related biological processes may exhibit similar expression patterns across diverse sets of experimental conditions. While bioinformatics resources such as GCN analysis are widely available for efficient gene function prediction in model plant species including Arabidopsis, soybean and rice, in citrus these tools are not yet developed. We have constructed a comprehensive GCN for citrus inferred from 297 publicly available Affymetrix Genechip Citrus Genome microarray datasets, providing gene co-expression relationships at a genome-wide scale (33,000 transcripts). The comprehensive citrus GCN consists of a global GCN (condition-independent) and four condition-dependent GCNs that survey the sweet orange species only, all citrus fruit tissues, all citrus leaf tissues, or stress-exposed plants. All of these GCNs are clustered using genome-wide, gene-centric (guide) and graph clustering algorithms for flexibility of gene function prediction. For each putative cluster, gene ontology (GO) enrichment and gene expression specificity analyses were performed to enhance gene function, expression and regulation pattern prediction. The guide-gene approach was used to infer novel roles of genes involved in disease susceptibility and vitamin C metabolism, and graph-clustering approaches were used to investigate isoprenoid/phenylpropanoid metabolism in citrus peel, and citric acid catabolism via the GABA shunt in citrus fruit. Integration of citrus gene co-expression networks, functional enrichment analysis and gene

  6. A small potassium current in AgRP/NPY neurons regulates feeding behavior and enery metabolism

    USDA-ARS?s Scientific Manuscript database

    Neurons that co-express agouti-related peptide (AgRP) and neuropeptide Y (NPY) are indispensable for normal feeding behavior. Firing activities of AgRP/NPY neurons are dynamically regulated by energy status and coordinate appropriate feeding behavior to meet nutritional demands. However, intrinsic m...

  7. Galanin is Co-Expressed with Substance P, Calbindin and Corticotropin-Releasing Factor (CRF) in The Enteric Nervous System of the Wild Boar (Sus scrofa) Small Intestine.

    PubMed

    Czujkowska, A; Arciszewski, M B

    2016-04-01

    Galanin is a neuropeptide widely present in the enteric nervous system of numerous animal species and exhibiting neurotransmittery/neuromodulatory roles. Colocalization patterns of galanin with substance P (SP), corticotropin-releasing factor (CRF) and calbindin were studied in the small intestine of the wild boar using immunofluorescence technique. We demonstrated the presence of SP in substantial populations of galanin-immunoreactive (IR) submucous neurons. Additionally, different amounts of nerve fibres exhibiting simultaneous presence of galanin and SP were noted in the small intestinal smooth musculature, submucous ganglia, lamina muscularis mucosae and mucosa. In the wild boar duodenum, jejunum and ileum, the co-expression of galanin and calbindin was limited to minor populations of submucous neurons only. Single galanin-/CRF-IR nerve fibres were exclusively present in the duodenal and jejunal (but not ileal) mucosa. These results strongly suggest that galanin participates in neuronal control of the wild boar small intestine also by functional co-operation with other biologically active neuropeptides.

  8. Assessing translational efficiency by a reporter protein co-expressed in a cell-free synthesis system.

    PubMed

    Park, Yu Jin; Lee, Kyung-Ho; Kim, Dong-Myung

    2017-02-01

    We demonstrate the use of a cell-free protein synthesis system as a convenient tool for assessing the relative translational efficiencies of genes. When sfGFP was used as a common reporter gene and co-expressed with a series of target genes, the intensities of sfGFP fluorescence from the co-expression reactions were highly correlated with the individual expression levels of the co-expressed genes. The relative translational efficiencies of genes estimated by this method were reproducible when the same genes were expressed in transformed Escherichia coli, suggesting that this method could be used as a universal tool for prognostic assessment of translational efficiency.

  9. Flavonoids, flavonoid metabolites, and phenolic acids inhibit oxidative stress in the neuronal cell line HT-22 monitored by ECIS and MTT assay: a comparative study.

    PubMed

    Kling, Beata; Bücherl, Daniel; Palatzky, Peter; Matysik, Frank-Michael; Decker, Michael; Wegener, Joachim; Heilmann, Jörg

    2014-03-28

    A real-time and label-free in vitro assay based on electric cell-substrate impedance sensing (ECIS) was established, validated, and compared to an end-point MTT assay within an experimental trial addressing the cytoprotective effects of 19 different flavonoids, flavonoid metabolites, and phenolic acids and their methyl esters on the HT-22 neuronal cell line, after induction of oxidative stress with tert-butyl hydroperoxide. Among the flavonoids under study, only those with a catechol unit and an additional 4-keto group provided cytoprotection. The presence of a 2,3-double bond was not a structural prerequisite for a neuroprotective effect. In the case of the phenolics, catechol substitution was the only structural requirement for activity. The flavonoids and other phenolics with a ferulic acid substitution or a single hydroxy group showed no activity. Electrochemical characterization of all compounds via square-wave voltammetry provided a rather specific correlation between cytoprotective activity and redox potential for the active flavonoids, but not for the active phenolics with a low molecular weight. Moreover this study was used to compare label-free ECIS recordings with results of the established MTT assay. Whereas the former provides time-resolved and thus entirely unbiased information on changes of cell morphology that are unequivocally associated with cell death, the latter requires predefined exposure times and a strict causality between metabolic activity and cell death. However, MTT assays are based on standard lab equipment and provide a more economic way to higher throughput.

  10. Study of orexins signal transduction pathways in rat olfactory mucosa and in olfactory sensory neurons-derived cell line Odora: multiple orexin signalling pathways.

    PubMed

    Gorojankina, Tatiana; Grébert, Denise; Salesse, Roland; Tanfin, Zahra; Caillol, Monique

    2007-06-07

    Orexins A and B (OxA and OxB) are multifunctional neuropeptides implicated in the regulation of energy metabolism, wakefulness but also in a broad range of motivated behaviours. They signal through two G-protein-coupled receptors: orexin receptor 1 and 2 (Ox1R and Ox2R). The orexins and their receptors are present at all levels of the rat olfactory system: epithelium, bulb, piriform cortex but their signalling mechanisms remain unknown. We have studied orexins signal transduction pathways in the rat olfactory mucosa (OM) and in the Odora cell line derived from olfactory sensory neurons and heterologously expressing Ox1R or Ox2R. We have demonstrated by western blot and RT-PCR that multiple components of adenylyl cyclase (AC) and phospholipase C (PLC) signalling pathways were identical in OM and Odora cells. OxA and OxB induced a weak increase in IP3 in OM; they induced a significant rise in cAMP and IP3 in Odora transfected cells, suggesting the activation of AC and PLC pathways. Both OxA and OxB induced intracellular calcium elevation and transient activation of MAP kinases (ERK42/44) in Odora/Ox1R and Odora/Ox2R cells. These results suggest the existence of multiple orexins signalling pathways in Odora cells and probably in OM, corresponding to different possible roles of these peptides.

  11. Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood–brain barrier in rats

    PubMed Central

    Valiante, Salvatore; Falanga, Annarita; Cigliano, Luisa; Iachetta, Giuseppina; Busiello, Rosa Anna; La Marca, Valeria; Galdiero, Massimiliano; Lombardi, Assunta; Galdiero, Stefania

    2015-01-01

    Peptide gH625, derived from glycoprotein H of herpes simplex virus type 1, can enter cells efficiently and deliver a cargo. Nanoparticles armed with gH625 are able to cross an in vitro model of the blood–brain barrier (BBB). In the present study, in vitro experiments were performed to investigate whether gH625 can enter and accumulate in neuron and astrocyte cell lines. The ability of gH625 to cross the BBB in vivo was also evaluated. gH625 was administered in vivo to rats and its presence in the liver and in the brain was detected. Within 3.5 hours of intravenous administration, gH625 can be found beyond the BBB in proximity to cell neurites. gH625 has no toxic effects in vivo, since it does not affect the maximal oxidative capacity of the brain or the mitochondrial respiration rate. Our data suggest that gH625, with its ability to cross the BBB, represents a novel nanocarrier system for drug delivery to the central nervous system. These results open up new possibilities for direct delivery of drugs into patients in the field of theranostics and might address the treatment of several human diseases. PMID:25792823

  12. Effect of trehalose on the properties of mutant {gamma}PKC, which causes spinocerebellar ataxia type 14, in neuronal cell lines and cultured Purkinje cells.

    PubMed

    Seki, Takahiro; Abe-Seki, Nana; Kikawada, Takahiro; Takahashi, Hideyuki; Yamamoto, Kazuhiro; Adachi, Naoko; Tanaka, Shigeru; Hide, Izumi; Saito, Naoaki; Sakai, Norio

    2010-10-22

    Several missense mutations in the protein kinase Cγ (γPKC) gene have been found to cause spinocerebellar ataxia type 14 (SCA14), an autosomal dominant neurodegenerative disease. We previously demonstrated that the mutant γPKC found in SCA14 is susceptible to aggregation, which induces apoptotic cell death. The disaccharide trehalose has been reported to inhibit aggregate formation and to alleviate symptoms in cellular and animal models of Huntington disease, Alzheimer disease, and prion disease. Here, we show that trehalose can be incorporated into SH-SY5Y cells and reduces the aggregation of mutant γPKC-GFP, thereby inhibiting apoptotic cell death in SH-SY5Y cells and primary cultured Purkinje cells (PCs). Trehalose acts by directly stabilizing the conformation of mutant γPKC without affecting protein turnover. Trehalose was also found to alleviate the improper development of dendrites in PCs expressing mutant γPKC-GFP without aggregates but not in PCs with aggregates. In PCs without aggregates, trehalose improves the mobility and translocation of mutant γPKC-GFP, probably by inhibiting oligomerization and thereby alleviating the improper development of dendrites. These results suggest that trehalose counteracts various cellular dysfunctions that are triggered by mutant γPKC in both neuronal cell lines and primary cultured PCs by inhibiting oligomerization and aggregation of mutant γPKC.

  13. Peptide gH625 enters into neuron and astrocyte cell lines and crosses the blood-brain barrier in rats.

    PubMed

    Valiante, Salvatore; Falanga, Annarita; Cigliano, Luisa; Iachetta, Giuseppina; Busiello, Rosa Anna; La Marca, Valeria; Galdiero, Massimiliano; Lombardi, Assunta; Galdiero, Stefania

    2015-01-01

    Peptide gH625, derived from glycoprotein H of herpes simplex virus type 1, can enter cells efficiently and deliver a cargo. Nanoparticles armed with gH625 are able to cross an in vitro model of the blood-brain barrier (BBB). In the present study, in vitro experiments were performed to investigate whether gH625 can enter and accumulate in neuron and astrocyte cell lines. The ability of gH625 to cross the BBB in vivo was also evaluated. gH625 was administered in vivo to rats and its presence in the liver and in the brain was detected. Within 3.5 hours of intravenous administration, gH625 can be found beyond the BBB in proximity to cell neurites. gH625 has no toxic effects in vivo, since it does not affect the maximal oxidative capacity of the brain or the mitochondrial respiration rate. Our data suggest that gH625, with its ability to cross the BBB, represents a novel nanocarrier system for drug delivery to the central nervous system. These results open up new possibilities for direct delivery of drugs into patients in the field of theranostics and might address the treatment of several human diseases.

  14. Cellular Prion Protein and Caveolin-1 Interaction in a Neuronal Cell Line Precedes Fyn/Erk 1/2 Signal Transduction

    PubMed Central

    Toni, Mattia; Spisni, Enzo; Griffoni, Cristiana; Santi, Spartaco; Riccio, Massimo; Lenaz, Patrizia; Tomasi, Vittorio

    2006-01-01

    It has been reported that cellular prion protein (PrPc) is enriched in caveolae or caveolae-like domains with caveolin-1 (Cav-1) participating to signal transduction events by Fyn kinase recruitment. By using the Glutathione-S-transferase (GST)-fusion proteins assay, we observed that PrPc strongly interacts in vitro with Cav-1. Thus, we ascertained the PrPc caveolar localization in a hypothalamic neuronal cell line (GN11), by confocal microscopy analysis, flotation on density gradient, and coimmunoprecipitation experiments. Following the anti-PrPc antibody-mediated stimulation of live GN11 cells, we observed that PrPc clustered on plasma membrane domains rich in Cav-1 in which Fyn kinase converged to be activated. After these events, a signaling cascade through p42/44 MAP kinase (Erk 1/2) was triggered, suggesting that following translocations from rafts to caveolae or caveolaelike domains PrPc could interact with Cav-1 and induce signal transduction events. PMID:17489019

  15. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean

    PubMed Central

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR, and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at fourfold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops. PMID:26528311

  16. Co-expression of G2-EPSPS and glyphosate acetyltransferase GAT genes conferring high tolerance to glyphosate in soybean.

    PubMed

    Guo, Bingfu; Guo, Yong; Hong, Huilong; Jin, Longguo; Zhang, Lijuan; Chang, Ru-Zhen; Lu, Wei; Lin, Min; Qiu, Li-Juan

    2015-01-01

    Glyphosate is a widely used non-selective herbicide with broad spectrum of weed control around the world. At present, most of the commercial glyphosate tolerant soybeans utilize glyphosate tolerant gene CP4-EPSPS or glyphosate acetyltransferase gene GAT separately. In this study, both glyphosate tolerant gene G2-EPSPS and glyphosate degraded gene GAT were co-transferred into soybean and transgenic plants showed high tolerance to glyphosate. Molecular analysis including PCR, Sothern blot, qRT-PCR, and Western blot revealed that target genes have been integrated into genome and expressed effectively at both mRNA and protein levels. Furthermore, the glyphosate tolerance analysis showed that no typical symptom was observed when compared with a glyphosate tolerant line HJ06-698 derived from GR1 transgenic soybean even at fourfold labeled rate of Roundup. Chlorophyll and shikimic acid content analysis of transgenic plant also revealed that these two indexes were not significantly altered after glyphosate application. These results indicated that co-expression of G2-EPSPS and GAT conferred high tolerance to the herbicide glyphosate in soybean. Therefore, combination of tolerant and degraded genes provides a new strategy for developing glyphosate tolerant transgenic crops.

  17. Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma.

    PubMed

    Li, Xian-Peng; Yang, Xiao-Yu; Biskup, Ewelina; Zhou, Jiang; Li, Hong-Liang; Wu, Yi-Feng; Chen, Ming-Liang; Xu, Feng

    2015-09-08

    Hypoxia inducible factor-1α (HIF-1α), induces cytokines such as CXCL8 and tumor dissemination, chemo- and radio-resistance. We analyzed correlation between HIF-1α and CXCL8 levels, tumor characteristics and overall survival in 102 hepatocellular carcinoma (HCC) patients. Levels of HIF-1α and CXCL8 were increased in HCC tissues and cell lines. Patients with high levels of HIF-1α and CXCL8 had worse outcome and poorer prognosis than those with lower levels. Co-overexpression of HIF-1α and CXCL8 was an independent negative prognostic factor for overall and disease-free survival. HIF-1α silencing and CXCL8 siRNA decreased migration under hypoxic conditions in vitro. Hypoxia-induced activation of AKT/mTOR/STAT3 pathways was reversed by depletion of CXCL8. We conclude that HIF-1α and CXCL8 induce HCC progression and metastasis, associated with activation of AKT/mTOR/STAT3. Co-expression of HIF-1α and CXCL8 is a prognostic marker and a potential therapeutic target in HCC.

  18. Co-expression of CXCL8 and HIF-1α is associated with metastasis and poor prognosis in hepatocellular carcinoma

    PubMed Central

    Li, Xian-Peng; Yang, Xiao-Yu; Biskup, Ewelina; Zhou, Jiang; Li, Hong-Liang; Wu, Yi-Feng; Chen, Ming-Liang; Xu, Feng

    2015-01-01

    Hypoxia inducible factor-1α (HIF-1α), induces cytokines such as CXCL8 and tumor dissemination, chemo- and radio-resistance. We analyzed correlation between HIF-1α and CXCL8 levels, tumor characteristics and overall survival in 102 hepatocellular carcinoma (HCC) patients. Levels of HIF-1α and CXCL8 were increased in HCC tissues and cell lines. Patients with high levels of HIF-1α and CXCL8 had worse outcome and poorer prognosis than those with lower levels. Co-overexpression of HIF-1α and CXCL8 was an independent negative prognostic factor for overall and disease-free survival. HIF-1α silencing and CXCL8 siRNA decreased migration under hypoxic conditions in vitro. Hypoxia-induced activation of AKT/mTOR/STAT3 pathways was reversed by depletion of CXCL8. We conclude that HIF-1α and CXCL8 induce HCC progression and metastasis, associated with activation of AKT/mTOR/STAT3. Co-expression of HIF-1α and CXCL8 is a prognostic marker and a potential therapeutic target in HCC. PMID:26078356

  19. Apolipoprotein A-IV inhibits AgRP/NPY neurons and activates POMC neurons in the arcuate nucleus

    USDA-ARS?s Scientific Manuscript database

    Apolipoprotein A-IV (apoA-IV) in the brain potently suppresses food intake. However the mechanisms underlying its anorexigenic effects remain to be identified. We first examined the effects of apoA-IV on cellular activities in hypothalamic neurons that co-express agouti-related peptide (AgRP) and ne...

  20. Co-expression network analysis and genetic algorithms for gene prioritization in preeclampsia.

    PubMed

    Tejera, Eduardo; Bernardes, João; Rebelo, Irene

    2013-11-12

    In this study, we explored the gene prioritization in preeclampsia, combining co-expression network analysis and genetic algorithms optimization approaches. We analysed five public projects obtaining 1,146 significant genes after cross-platform and processing of 81 and 149 microarrays in preeclamptic and normal conditions, respectively. After co-expression network construction, modular and node analysis were performed using several approaches. Moreover, genetic algorithms were also applied in combination with the nearest neighbour and discriminant analysis classification methods. Significant differences were found in the genes connectivity distribution, both in normal and preeclampsia conditions pointing to the need and importance of examining connectivity alongside expression for prioritization. We discuss the global as well as intra-modular connectivity for hubs detection and also the utility of genetic algorithms in combination with the network information. FLT1, LEP, INHA and ENG genes were identified according to the literature, however, we also found other genes as FLNB, INHBA, NDRG1 and LYN highly significant but underexplored during normal pregnancy or preeclampsia. Weighted genes co-expression network analysis reveals a similar distribution along the modules detected both in normal and preeclampsia conditions. However, major differences were obtained by analysing the nodes connectivity. All models obtained by genetic algorithm procedures were consistent with a correct classification, higher than 90%, restricting to 30 variables in both classification methods applied.Combining the two methods we identified well known genes related to preeclampsia, but also lead us to propose new candidates poorly explored or completely unknown in the pathogenesis of preeclampsia, which may have to be validated experimentally.

  1. Reconstructing differentially co-expressed gene modules and regulatory networks of soybean cells

    PubMed Central

    2012-01-01

    Background Current experimental evidence indicates that functionally related genes show coordinated expression in order to perform their cellular functions. In this way, the cell transcriptional machinery can respond optimally to internal or external stimuli. This provides a research opportunity to identify and study co-expressed gene modules whose transcription is controlled by shared gene regulatory networks. Results We developed and integrated a set of computational methods of differential gene expression analysis, gene clustering, gene network inference, gene function prediction, and DNA motif identification to automatically identify differentially co-expressed gene modules, reconstruct their regulatory networks, and validate their correctness. We tested the methods using microarray data derived from soybean cells grown under various stress conditions. Our methods were able to identify 42 coherent gene modules within which average gene expression correlation coefficients are greater than 0.8 and reconstruct their putative regulatory networks. A total of 32 modules and their regulatory networks were further validated by the coherence of predicted gene functions and the consistency of putative transcription factor binding motifs. Approximately half of the 32 modules were partially supported by the literature, which demonstrates that the bioinformatic methods used can help elucidate the molecular responses of soybean cells upon various environmental stresses. Conclusions The bioinformatics methods and genome-wide data sources for gene expression, clustering, regulation, and function analysis were integrated seamlessly into one modular protocol to systematically analyze and infer modules and networks from only differential expression genes in soybean cells grown under stress conditions. Our approach appears to effectively reduce the complexity of the problem, and is sufficiently robust and accurate to generate a rather complete and detailed view of putative soybean

  2. Effects of threshold on the topology of gene co-expression networks.

    PubMed

    Couto, Cynthia Martins Villar; Comin, César Henrique; Costa, Luciano da Fontoura

    2017-09-26

    Several developments regarding the analysis of gene co-expression profiles using complex network theory have been reported recently. Such approaches usually start with the construction of an unweighted gene co-expression network, therefore requiring the selection of a suitable threshold defining which pairs of vertices will be connected. We aimed at addressing such an important problem by suggesting and comparing five different approaches for threshold selection. Each of the methods considers a respective biologically-motivated criterion for electing a potentially suitable threshold. A set of 21 microarray experiments from different biological groups was used to investigate the effect of applying the five proposed criteria to several biological situations. For each experiment, we used the Pearson correlation coefficient to measure the relationship between each gene pair, and the resulting weight matrices were thresholded considering several values, generating respective adjacency matrices (co-expression networks). Each of the five proposed criteria was then applied in order to select the respective threshold value. The effects of these thresholding approaches on the topology of the resulting networks were compared by using several measurements, and we verified that, depending on the database, the impact on the topological properties can be large. However, a group of databases was verified to be similarly affected by most of the considered criteria. Based on such results, it can be suggested that when the generated networks present similar measurements, the thresholding method can be chosen with greater freedom. If the generated networks are markedly different, the thresholding method that better suits the interests of each specific research study represents a reasonable choice.

  3. Mining differential top-k co-expression patterns from time course comparative gene expression datasets

    PubMed Central

    2013-01-01

    Background Frequent pattern mining analysis applied on microarray dataset appears to be a promising strategy for identifying relationships between gene expression levels. Unfortunately, too many itemsets (co-expressed genes) are identified by this analysis method since it does not consider the importance of each gene within biological processes to a cellular response and does not take into account temporal properties under biological treatment-control matched conditions in a microarray dataset. Results We propose a method termed TIIM (Top-k Impactful Itemsets Miner), which only requires specifying a user-defined number k to explore the top k itemsets with the most significantly differentially co-expressed genes between 2 conditions in a time course. To give genes different weights, a table with impact degrees for each gene was constructed based on the number of neighboring genes that are differently expressed in the dataset within gene regulatory networks. Finally, the resulting top-k impactful itemsets were manually evaluated using previous literature and analyzed by a Gene Ontology enrichment method. Conclusions In this study, the proposed method was evaluated in 2 publicly available time course microarray datasets with 2 different experimental conditions. Both datasets identified potential itemsets with co-expressed genes evaluated from the literature and showed higher accuracies compared to the 2 corresponding control methods: i) performing TIIM without considering the gene expression differentiation between 2 different experimental conditions and impact degrees, and ii) performing TIIM with a constant impact degree for each gene. Our proposed method found that several new gene regulations involved in these itemsets were useful for biologists and provided further insights into the mechanisms underpinning biological processes. The Java source code and other related materials used in this study are available at

  4. Predicting glioblastoma prognosis networks using weighted gene co-expression network analysis on TCGA data

    PubMed Central

    2012-01-01

    Background Using gene co-expression analysis, researchers were able to predict clusters of genes with consistent functions that are relevant to cancer development and prognosis. We applied a weighted gene co-expression network (WGCN) analysis algorithm on glioblastoma multiforme (GBM) data obtained from the TCGA project and predicted a set of gene co-expression networks which are related to GBM prognosis. Methods We modified the Quasi-Clique Merger algorithm (QCM algorithm) into edge-covering Quasi-Clique Merger algorithm (eQCM) for mining weighted sub-network in WGCN. Each sub-network is considered a set of features to separate patients into two groups using K-means algorithm. Survival times of the two groups are compared using log-rank test and Kaplan-Meier curves. Simulations using random sets of genes are carried out to determine the thresholds for log-rank test p-values for network selection. Sub-networks with p-values less than their corresponding thresholds were further merged into clusters based on overlap ratios (>50%). The functions for each cluster are analyzed using gene ontology enrichment analysis. Results Using the eQCM algorithm, we identified 8,124 sub-networks in the WGCN, out of which 170 sub-networks show p-values less than their corresponding thresholds. They were then merged into 16 clusters. Conclusions We identified 16 gene clusters associated with GBM prognosis using the eQCM algorithm. Our results not only confirmed previous findings including the importance of cell cycle and immune response in GBM, but also suggested important epigenetic events in GBM development and prognosis. PMID:22536863

  5. Enhanced Transgene Expression in Sugarcane by Co-Expression of Virus-Encoded RNA Silencing Suppressors

    PubMed Central

    Park, Jong-Won; Beyene, Getu; Buenrostro-Nava, Marco T.; Molina, Joe; Wang, Xiaofeng; Ciomperlik, Jessica J.; Manabayeva, Shuga A.; Alvarado, Veria Y.; Rathore, Keerti S.; Scholthof, Herman B.; Mirkov, T. Erik

    2013-01-01

    Post-transcriptional gene silencing is commonly observed in polyploid species and often poses a major limitation to plant improvement via biotechnology. Five plant viral suppressors of RNA silencing were evaluated for their ability to counteract gene silencing and enhance the expression of the Enhanced Yellow Fluorescent Protein (EYFP) or the β-glucuronidase (GUS) reporter gene in sugarcane, a major sugar and biomass producing polyploid. Functionality of these suppressors was first verified in Nicotiana benthamiana and onion epidermal cells, and later tested by transient expression in sugarcane young leaf segments and protoplasts. In young leaf segments co-expressing a suppressor, EYFP reached its maximum expression at 48–96 h post-DNA introduction and maintained its peak expression for a longer time compared with that in the absence of a suppressor. Among the five suppressors, Tomato bushy stunt virus-encoded P19 and Barley stripe mosaic virus-encoded γb were the most efficient. Co-expression with P19 and γb enhanced EYFP expression 4.6-fold and 3.6-fold in young leaf segments, and GUS activity 2.3-fold and 2.4-fold in protoplasts compared with those in the absence of a suppressor, respectively. In transgenic sugarcane, co-expression of GUS and P19 suppressor showed the highest accumulation of GUS levels with an average of 2.7-fold more than when GUS was expressed alone, with no detrimental phenotypic effects. The two established transient expression assays, based on young leaf segments and protoplasts, and confirmed by stable transgene expression, offer a rapid versatile system to verify the efficiency of RNA silencing suppressors that proved to be valuable in enhancing and stabilizing transgene expression in sugarcane. PMID:23799071

  6. Quantitative co-expression of proteins at the single cell level--application to a multimeric FRET sensor.

    PubMed

    Goedhart, Joachim; van Weeren, Laura; Adjobo-Hermans, Merel J W; Elzenaar, Ies; Hink, Mark A; Gadella, Theodorus W J

    2011-01-01

    Co-expression of proteins is generally achieved by introducing two (or more) independent plasmids into cells, each driving the expression of a different protein of interest. However, the relative expression levels may vary strongly between individual cells and cannot be controlled. Ideally, co-expression occurs at a defined ratio, which is constant among cells. This feature is of particular importance for quantitative single cell studies, especially those employing bimolecular Förster Resonance Energy Transfer (FRET) sensors. Four co-expression strategies based on co-transfection, a dual promotor plasmid, an internal ribosome entry site (IRES) and a viral 2A peptide were selected. Co-expression of two spectrally separable fluorescent proteins in single living cells was quantified. It is demonstrated that the 2A peptide strategy can be used for robust equimolar co-expression, while the IRES sequence allows expression of two proteins at a ratio of approximately 3:1. Combined 2A and IRES elements were used for the construction of a single plasmid that drives expression of three individual proteins, which generates a FRET sensor for measuring heterotrimeric G-protein activation. The plasmid drives co-expression of donor and acceptor tagged subunits, with reduced heterogeneity, and can be used to measure G-protein activation in single living cells. Quantitative co-expression of two or more proteins can be achieved with little cell-to-cell variability. This finding enables reliable co-expression of donor and acceptor tagged proteins for FRET studies, which is of particular importance for the development of novel bimolecular sensors that can be expressed from single plasmid.

  7. Co-expression analysis reveals a group of genes potentially involved in regulation of plant response to iron-deficiency.

    PubMed

    Li, Hua; Wang, Lei; Yang, Zhi Min

    2015-01-01

    Iron (Fe) is an essential element for plant growth and development. Iron deficiency results in abnormal metabolisms from respiration to photosynthesis. Exploration of Fe-deficient responsive genes and their networks is critically important to understand molecular mechanisms leading to the plant adaptation to soil Fe-limitation. Co-expression genes are a cluster of genes that have a similar expression pattern to execute relatively biological functions at a stage of development or under a certain environmental condition. They may share a common regulatory mechanism. In this study, we investigated Fe-starved-related co-expression genes from Arabidopsis. From the biological process GO annotation of TAIR (The Arabidopsis Information Resource), 180 iron-deficient responsive genes were detected. Using ATTED-II database, we generated six gene co-expression networks. Among these, two modules of PYE and IRT1 were successfully constructed. There are 30 co-expression genes that are incorporated in the two modules (12 in PYE-module and 18 in IRT1-module). Sixteen of the co-expression genes were well characterized. The remaining genes (14) are poorly or not functionally identified with iron stress. Validation of the 14 genes using real-time PCR showed differential expression under iron-deficiency. Most of the co-expression genes (23/30) could be validated in pye and fit mutant plants with iron-deficiency. We further identified iron-responsive cis-elements upstream of the co-expression genes and found that 22 out of 30 genes contain the iron-responsive motif IDE1. Furthermore, some auxin and ethylene-responsive elements were detected in the promoters of the co-expression genes. These results suggest that some of the genes can be also involved in iron stress response through the phytohormone-responsive pathways.

  8. Tissue and cell-type co-expression networks of transcription factors and wood component genes in Populus trichocarpa.

    PubMed

    Shi, Rui; Wang, Jack P; Lin, Ying-Chung; Li, Quanzi; Sun, Ying-Hsuan; Chen, Hao; Sederoff, Ronald R; Chiang, Vincent L

    2017-05-01

    Co-expression networks based on transcriptomes of Populus trichocarpa major tissues and specific cell types suggest redundant control of cell wall component biosynthetic genes by transcription factors in wood formation. We analyzed the transcriptomes of five tissues (xylem, phloem, shoot, leaf, and root) and two wood forming cell types (fiber and vessel) of Populus trichocarpa to assemble gene co-expression subnetworks associated with wood formation. We identified 165 transcription factors (TFs) that showed xylem-, fiber-, and vessel-specific expression. Of these 165 TFs, 101 co-expressed (correlation coefficient, r > 0.7) with the 45 secondary cell wall cellulose, hemicellulose, and lignin biosynthetic genes. Each cell wall component gene co-expressed on average with 34 TFs, suggesting redundant control of the cell wall component gene expression. Co-expression analysis showed that the 101 TFs and the 45 cell wall component genes each has two distinct groups (groups 1 and 2), based on their co-expression patterns. The group 1 TFs (44 members) are predominantly xylem and fiber specific, and are all highly positively co-expressed with the group 1 cell wall component genes (30 members), suggesting their roles as major wood formation regulators. Group 1 TFs include a lateral organ boundary domain gene (LBD) that has the highest number of positively correlated cell wall component genes (36) and TFs (47). The group 2 TFs have 57 members, including 14 vessel-specific TFs, and are generally less correlated with the cell wall component genes. An exception is a vessel-specific basic helix-loop-helix (bHLH) gene that negatively correlates with 20 cell wall component genes, and may function as a key transcriptional suppressor. The co-expression networks revealed here suggest a well-structured transcriptional homeostasis for cell wall component biosynthesis during wood formation.

  9. Novel structural co-expression analysis linking the NPM1-associated ribosomal biogenesis network to chronic myelogenous leukemia

    PubMed Central

    Chan, Lawrence WC; Lin, Xihong; Yung, Godwin; Lui, Thomas; Chiu, Ya Ming; Wang, Fengfeng; Tsui, Nancy BY; Cho, William CS; Yip, SP; Siu, Parco M.; Wong, SC Cesar; Yung, Benjamin YM

    2015-01-01

    Co-expression analysis reveals useful dysregulation patterns of gene cooperativeness for understanding cancer biology and identifying new targets for treatment. We developed a structural strategy to identify co-expressed gene networks that are important for chronic myelogenous leukemia (CML). This strategy compared the distributions of expressional correlations between CML and normal states, and it identified a data-driven threshold to classify strongly co-expressed networks that had the best coherence with CML. Using this strategy, we found a transcriptome-wide reduction of co-expression connectivity in CML, reflecting potentially loosened molecular regulation. Conversely, when we focused on nucleophosmin 1 (NPM1) associated networks, NPM1 established more co-expression linkages with BCR-ABL pathways and ribosomal protein networks in CML than normal. This finding implicates a new role of NPM1 in conveying tumorigenic signals from the BCR-ABL oncoprotein to ribosome biogenesis, affecting cellular growth. Transcription factors may be regulators of the differential co-expression patterns between CML and normal. PMID:26205693

  10. Sulfation of the FLAG epitope is affected by co-expression of G protein-coupled receptors in a mammalian cell model

    PubMed Central

    Hunter, Morag Rose; Grimsey, Natasha Lillia; Glass, Michelle

    2016-01-01

    G protein-coupled receptors (GPCRs) are important therapeutic targets and therefore extensively studied. Like most transmembrane proteins, there has been considerable difficulty in developing reliable specific antibodies for them. To overcome this, epitope tags are often used to facilitate antibody recognition in studies on fundamental receptor signalling and trafficking. In our study of cannabinoid CB1/dopamine D2 interactions we sought to generate HEK293 cells expressing FLAG-tagged D2 for use in antibody-based assays of GPCR localisation and trafficking activity, however observed that stable FLAG-hD2 expression was particularly challenging to maintain. In contrast, when expressed in cell lines expressing hCB1 robust and stable FLAG-hD2 expression was observed. We hypothesised that co-expression of CB1 might stabilise surface FLAG-hD2 expression, and therefore investigated this further. Here, we describe the observation that co-expression of either cannabinoid CB1 or CB2 receptors in HEK293 decreases the sulfation of a FLAG epitope appended at the N-terminus of the dopamine D2 receptor. Sulfation alters epitope recognition by some anti-FLAG antibodies, leading to the detection of fewer receptors, even though expression is maintained. This demonstrates that cannabinoid receptor expression modifies posttranslational processing of the FLAG-hD2 receptor, and importantly, has wider implications for the utilisation and interpretation of receptor studies involving epitope tags. PMID:27273047

  11. Disease association and inter-connectivity analysis of human brain specific co-expressed functional modules.

    PubMed

    Oh, Kimin; Hwang, Taeho; Cha, Kihoon; Yi, Gwan-Su

    2015-12-16

    In the recent studies, it is suggested that the analysis of transcriptomic change of functional modules instead of individual genes would be more effective for system-wide identification of cellular functions. This could also provide a new possibility for the better understanding of difference between human and chimpanzee. In this study, we analyzed to find molecular characteristics of human brain functions from the difference of transcriptome between human and chimpanzee's brain using the functional module-centric co-expression analysis. We performed analysis of brain disease association and systems-level connectivity of species-specific co-expressed functional modules. Throughout the analyses, we found human-specific functional modules and significant overlap between their genes in known brain disease genes, suggesting that human brain disorder could be mediated by the perturbation of modular activities emerged in human brain specialization. In addition, the human-specific modules having neurobiological functions exhibited higher networking than other functional modules. This finding suggests that the expression of neural functions are more connected than other functions, and the resulting high-order brain functions could be identified as a result of consolidated inter-modular gene activities. Our result also showed that the functional module based transcriptome analysis has a potential to expand molecular understanding of high-order complex functions like cognitive abilities and brain disorders.

  12. Opsin co-expression in Limulus photoreceptors: differential regulation by light and a circadian clock

    PubMed Central

    Katti, C.; Kempler, K.; Porter, M. L.; Legg, A.; Gonzalez, R.; Garcia-Rivera, E.; Dugger, D.; Battelle, B.-A.

    2010-01-01

    A long-standing concept in vision science has held that a single photoreceptor expresses a single type of opsin, the protein component of visual pigment. However, the number of examples in the literature of photoreceptors from vertebrates and invertebrates that break this rule is increasing. Here, we describe a newly discovered Limulus opsin, Limulus opsin5, which is significantly different from previously characterized Limulus opsins, opsins1 and 2. We show that opsin5 is co-expressed with opsins1 and 2 in Limulus lateral and ventral eye photoreceptors and provide the first evidence that the expression of co-expressed opsins can be differentially regulated. We show that the relative levels of opsin5 and opsin1 and 2 in the rhabdom change with a diurnal rhythm and that their relative levels are also influenced by the animal's central circadian clock. An analysis of the sequence of opsin5 suggests it is sensitive to visible light (400–700 nm) but that its spectral properties may be different from that of opsins1 and 2. Changes in the relative levels of these opsins may underlie some of the dramatic day–night changes in Limulus photoreceptor function and may produce a diurnal change in their spectral sensitivity. PMID:20639420

  13. A contribution to the study of plant development evolution based on gene co-expression networks

    PubMed Central

    Romero-Campero, Francisco J.; Lucas-Reina, Eva; Said, Fatima E.; Romero, José M.; Valverde, Federico

    2013-01-01

    Phototrophic eukaryotes are among the most successful organisms on Earth due to their unparalleled efficiency at capturing light energy and fixing carbon dioxide to produce organic molecules. A conserved and efficient network of light-dependent regulatory modules could be at the bases of this success. This regulatory system conferred early advantages to phototrophic eukaryotes that allowed for specialization, complex developmental processes and modern plant characteristics. We have studied light-dependent gene regulatory modules from algae to plants employing integrative-omics approaches based on gene co-expression networks. Our study reveals some remarkably conserved ways in which eukaryotic phototrophs deal with day length and light signaling. Here we describe how a family of Arabidopsis transcription factors involved in photoperiod response has evolved from a single algal gene according to the innovation, amplification and divergence theory of gene evolution by duplication. These modifications of the gene co-expression networks from the ancient unicellular green algae Chlamydomonas reinhardtii to the modern brassica Arabidopsis thaliana may hint on the evolution and specialization of plants and other organisms. PMID:23935602

  14. Dynamic functional modules in co-expressed protein interaction networks of dilated cardiomyopathy

    PubMed Central

    2010-01-01

    Background Molecular networks represent the backbone of molecular activity within cells and provide opportunities for understanding the mechanism of diseases. While protein-protein interaction data constitute static network maps, integration of condition-specific co-expression information provides clues to the dynamic features of these networks. Dilated cardiomyopathy is a leading cause of heart failure. Although previous studies have identified putative biomarkers or therapeutic targets for heart failure, the underlying molecular mechanism of dilated cardiomyopathy remains unclear. Results We developed a network-based comparative analysis approach that integrates protein-protein interactions with gene expression profiles and biological function annotations to reveal dynamic functional modules under different biological states. We found that hub proteins in condition-specific co-expressed protein interaction networks tended to be differentially expressed between biological states. Applying this method to a cohort of heart failure patients, we identified two functional modules that significantly emerged from the interaction networks. The dynamics of these modules between normal and disease states further suggest a potential molecular model of dilated cardiomyopathy. Conclusions We propose a novel framework to analyze the interaction networks in different biological states. It successfully reveals network modules closely related to heart failure; more importantly, these network dynamics provide new insights into the cause of dilated cardiomyopathy. The revealed molecular modules might be used as potential drug targets and provide new directions for heart failure therapy. PMID:20950417

  15. Mimosa: Mixture Model of Co-expression to Detect Modulators of Regulatory Interaction

    NASA Astrophysics Data System (ADS)

    Hansen, Matthew; Everett, Logan; Singh, Larry; Hannenhalli, Sridhar

    Functionally related genes tend to be correlated in their expression patterns across multiple conditions and/or tissue-types. Thus co-expression networks are often used to investigate functional groups of genes. In particular, when one of the genes is a transcription factor (TF), the co-expression-based interaction is interpreted, with caution, as a direct regulatory interaction. However, any particular TF, and more importantly, any particular regulatory interaction, is likely to be active only in a subset of experimental conditions. Moreover, the subset of expression samples where the regulatory interaction holds may be marked by presence or absence of a modifier gene, such as an enzyme that post-translationally modifies the TF. Such subtlety of regulatory interactions is overlooked when one computes an overall expression correlation. Here we present a novel mixture modeling approach where a TF-Gene pair is presumed to be significantly correlated (with unknown coefficient) in a (unknown) subset of expression samples. The parameters of the model are estimated using a Maximum Likelihood approach. The estimated mixture of expression samples is then mined to identify genes potentially modulating the TF-Gene interaction. We have validated our approach using synthetic data and on three biological cases in cow and in yeast. While limited in some ways, as discussed, the work represents a novel approach to mine expression data and detect potential modulators of regulatory interactions.

  16. Co-expression networks in generation of induced pluripotent stem cells

    PubMed Central

    Paul, Sharan; Pflieger, Lance; Dansithong, Warunee; Figueroa, Karla P.; Gao, Fuying; Coppola, Giovanni; Pulst, Stefan M.

    2016-01-01

    ABSTRACT We developed an adenoviral vector, in which Yamanaka's four reprogramming factors (RFs) were controlled by individual CMV promoters in a single cassette (Ad-SOcMK). This permitted coordinated expression of RFs (SOX2, OCT3/4, c-MYC and KLF4) in a cell for a transient period of time, synchronizing the reprogramming process with the majority of transduced cells assuming induced pluripotent stem cell (iPSC)-like characteristics as early as three days post-transduction. These reprogrammed cells resembled human embryonic stem cells (ESCs) with regard to morphology, biomarker expression, and could be differentiated into cells of the germ layers in vitro and in vivo. These iPSC-like cells, however, failed to expand into larger iPSC colonies. The short and synchronized reprogramming process allowed us to study global transcription changes within short time intervals. Weighted gene co-expression network analysis (WGCNA) identified sixteen large gene co-expression modules, each including members of gene ontology categories involved in cell differentiation and development. In particular, the brown module contained a significant number of ESC marker genes, whereas the turquoise module contained cell-cycle-related genes that were downregulated in contrast to upregulation in human ESCs. Strong coordinated expression of all four RFs via adenoviral transduction may constrain stochastic processes and lead to silencing of genes important for cellular proliferation. PMID:26892236

  17. Weighted gene co-expression network analysis in identification of endometrial cancer prognosis markers.

    PubMed

    Zhu, Xiao-Lu; Ai, Zhi-Hong; Wang, Juan; Xu, Yan-Li; Teng, Yin-Cheng

    2012-01-01

    Endometrial cancer (EC) is the most common gynecologic malignancy. Identification of potential biomarkers of EC would be helpful for the detection and monitoring of malignancy, improving clinical outcomes. The Weighted Gene Co-expression Network Analysis method was used to identify prognostic markers for EC in this study. Moreover, underlying molecular mechanisms were characterized by KEGG pathway enrichment and transcriptional regulation analyses. Seven gene co-expression modules were obtained, but only the turquoise module was positively related with EC stage. Among the genes in the turquoise module, COL5A2 (collagen, type V, alpha 2) could be regulated by PBX (pre-B-cell leukemia homeobox 1)1/2 and HOXB1(homeobox B1) transcription factors to be involved in the focal adhesion pathway; CENP-E (centromere protein E, 312kDa) by E2F4 (E2F transcription factor 4, p107/p130-binding); MYCN (v-myc myelocytomatosis viral related oncogene, neuroblastoma derived [avian]) by PAX5 (paired box 5); and BCL-2 (B-cell CLL/ lymphoma 2) and IGFBP-6 (insulin-like growth factor binding protein 6) by GLI1. They were predicted to be associated with EC progression via Hedgehog signaling and other cancer related-pathways. These data on transcriptional regulation may provide a better understanding of molecular mechanisms and clues to potential therapeutic targets in the treatment of EC.

  18. Construction and application of a co-expression network in Mycobacterium tuberculosis

    PubMed Central

    Jiang, Jun; Sun, Xian; Wu, Wei; Li, Li; Wu, Hai; Zhang, Lu; Yu, Guohua; Li, Yao

    2016-01-01

    Because of its high pathogenicity and infectivity, tuberculosis is a serious threat to human health. Some information about the functions of the genes in Mycobacterium tuberculosis genome was currently available, but it was not enough to explore transcriptional regulatory mechanisms. Here, we applied the WGCNA (Weighted Gene Correlation Network Analysis) algorithm to mine pooled microarray datasets for the M. tuberculosis H37Rv strain. We constructed a co-expression network that was subdivided into 78 co-expression gene modules. The different response to two kinds of vitro models (a constant 0.2% oxygen hypoxia model and a Wayne model) were explained based on these modules. We identified potential transcription factors based on high Pearson’s correlation coefficients between the modules and genes. Three modules that may be associated with hypoxic stimulation were identified, and their potential transcription factors were predicted. In the validation experiment, we determined the expression levels of genes in the modules under hypoxic condition and under overexpression of potential transcription factors (Rv0081, furA (Rv1909c), Rv0324, Rv3334, and Rv3833). The experimental results showed that the three identified modules related to hypoxia and that the overexpression of transcription factors could significantly change the expression levels of genes in the corresponding modules. PMID:27328747

  19. AuPairWise: A Method to Estimate RNA-Seq Replicability through Co-expression

    PubMed Central

    Ballouz, Sara; Gillis, Jesse

    2016-01-01

    In addition to detecting novel transcripts and higher dynamic range, a principal claim for RNA-sequencing has been greater replicability, typically measured in sample-sample correlations of gene expression levels. Through a re-analysis of ENCODE data, we show that replicability of transcript abundances will provide misleading estimates of the replicability of conditional variation in transcript abundances (i.e., most expression experiments). Heuristics which implicitly address this problem have emerged in quality control measures to obtain ‘good’ differential expression results. However, these methods involve strict filters such as discarding low expressing genes or using technical replicates to remove discordant transcripts, and are costly or simply ad hoc. As an alternative, we model gene-level replicability of differential activity using co-expressing genes. We find that sets of housekeeping interactions provide a sensitive means of estimating the replicability of expression changes, where the co-expressing pair can be regarded as pseudo-replicates of one another. We model the effects of noise that perturbs a gene’s expression within its usual distribution of values and show that perturbing expression by only 5% within that range is readily detectable (AUROC~0.73). We have made our method available as a set of easily implemented R scripts. PMID:27082953

  20. Genomic positions of co-expressed genes: echoes of chromosome organisation in gene expression data.

    PubMed

    Szczepińska, Teresa; Pawłowski, Krzysztof

    2013-06-13

    The relationships between gene expression and nuclear structure, chromosome territories in particular, are currently being elucidated experimentally. Each chromosome occupies an individual, spatially-limited space with a preferential position relative to the nuclear centre that may be specific to the cell and tissue type. We sought to discover whether patterns in gene expression databases might exist that would mirror prevailing or recurring nuclear structure patterns, chromosome territory interactions in particular. We used human gene expression datasets, both from a tissue expression atlas and from a large set including diverse types of perturbations. We identified groups of positional gene clusters over-represented in gene expression clusters. We show that some pairs of chromosomes and pairs of 10 Mbp long chromosome regions are significantly enriched in the expression clusters. The functions of genes involved in inter-chromosome co-expression relationships are non-random and predominantly related to cell-cell communication and reaction to external stimuli. We suggest that inter-chromosomal gene co-expression can be interpreted in the context of nuclear structure, and that even expression datasets that include very diverse conditions and cell types show consistent relationships.

  1. Co-expression networks in generation of induced pluripotent stem cells.

    PubMed

    Paul, Sharan; Pflieger, Lance; Dansithong, Warunee; Figueroa, Karla P; Gao, Fuying; Coppola, Giovanni; Pulst, Stefan M

    2016-02-18

    We developed an adenoviral vector, in which Yamanaka's four reprogramming factors (RFs) were controlled by individual CMV promoters in a single cassette (Ad-SOcMK). This permitted coordinated expression of RFs (SOX2, OCT3/4, c-MYC and KLF4) in a cell for a transient period of time, synchronizing the reprogramming process with the majority of transduced cells assuming induced pluripotent stem cell (iPSC)-like characteristics as early as three days post-transduction. These reprogrammed cells resembled human embryonic stem cells (ESCs) with regard to morphology, biomarker expression, and could be differentiated into cells of the germ layers in vitro and in vivo. These iPSC-like cells, however, failed to expand into larger iPSC colonies. The short and synchronized reprogramming process allowed us to study global transcription changes within short time intervals. Weighted gene co-expression network analysis (WGCNA) identified sixteen large gene co-expression modules, each including members of gene ontology categories involved in cell differentiation and development. In particular, the brown module contained a significant number of ESC marker genes, whereas the turquoise module contained cell-cycle-related genes that were downregulated in contrast to upregulation in human ESCs. Strong coordinated expression of all four RFs via adenoviral transduction may constrain stochastic processes and lead to silencing of genes important for cellular proliferation.

  2. Potential for Cell-Transplant Therapy with Human Neuronal Precursors to Treat Neuropathic Pain in Models of PNS and CNS Injury: Comparison of hNT2.17 and hNT2.19 Cell Lines

    PubMed Central

    Eaton, Mary J.; Berrocal, Yerko; Wolfe, Stacey Q.

    2012-01-01

    Effective treatment of sensory neuropathies in peripheral neuropathies and spinal cord injury (SCI) is one of the most difficult problems in modern clinical practice. Cell therapy to release antinociceptive agents near the injured spinal cord is a logical next step in the development of treatment modalities. But few clinical trials, especially for chronic pain, have tested the potential of transplant of cells to treat chronic pain. Cell lines derived from the human neuronal NT2 cell line parentage, the hNT2.17 and hNT2.19 lines, which synthesize and release the neurotransmitters gamma-aminobutyric acid (GABA) and serotonin (5HT), respectively, have been used to evaluate the potential of cell-based release of antinociceptive agents near the lumbar dorsal (horn) spinal sensory cell centers to relieve neuropathic pain after PNS (partial nerve and diabetes-related injury) and CNS (spinal cord injury) damage in rat models. Both cell lines transplants potently and permanently reverse behavioral hypersensitivity without inducing tumors or other complications after grafting. Functioning as cellular minipumps for antinociception, human neuronal precursors, like these NT2-derived cell lines, would likely provide a useful adjuvant or replacement for current pharmacological treatments for neuropathic pain. PMID:22619713

  3. Metabolic and co-expression network-based analyses associated with nitrate response in rice.

    PubMed

    Coneva, Viktoriya; Simopoulos, Caitlin; Casaretto, José A; El-Kereamy, Ashraf; Guevara, David R; Cohn, Jonathan; Zhu, Tong; Guo, Lining; Alexander, Danny C; Bi, Yong-Mei; McNicholas, Paul D; Rothstein, Steven J

    2014-12-03

    Understanding gene expression and metabolic re-programming that occur in response to limiting nitrogen (N) conditions in crop plants is crucial for the ongoing progress towards the development of varieties with improved nitrogen use efficiency (NUE). To unravel new details on the molecular and metabolic responses to N availability in a major food crop, we conducted analyses on a weighted gene co-expression network and metabolic profile data obtained from leaves and roots of rice plants adapted to sufficient and limiting N as well as after shifting them to limiting (reduction) and sufficient (induction) N conditions. A gene co-expression network representing clusters of rice genes with similar expression patterns across four nitrogen conditions and two tissue types was generated. The resulting 18 clusters were analyzed for enrichment of significant gene ontology (GO) terms. Four clusters exhibited significant correlation with limiting and reducing nitrate treatments. Among the identified enriched GO terms, those related to nucleoside/nucleotide, purine and ATP binding, defense response, sugar/carbohydrate binding, protein kinase activities, cell-death and cell wall enzymatic activity are enriched. Although a subset of functional categories are more broadly associated with the response of rice organs to limiting N and N reduction, our analyses suggest that N reduction elicits a response distinguishable from that to adaptation to limiting N, particularly in leaves. This observation is further supported by metabolic profiling which shows that several compounds in leaves change proportionally to the nitrate level (i.e. higher in sufficient N vs. limiting N) and respond with even higher levels when the nitrate level is reduced. Notably, these compounds are directly involved in N assimilation, transport, and storage (glutamine, asparagine, glutamate and allantoin) and extend to most amino acids. Based on these data, we hypothesize that plants respond by rapidly mobilizing

  4. Identification of Common Regulators of Genes in Co-Expression Networks Affecting Muscle and Meat Properties

    PubMed Central

    Ponsuksili, Siriluck; Siengdee, Puntita; Du, Yang; Trakooljul, Nares; Murani, Eduard; Schwerin, Manfred; Wimmers, Klaus

    2015-01-01

    Understanding the genetic contributions behind skeletal muscle composition and metabolism is of great interest in medicine and agriculture. Attempts to dissect these complex traits combine genome-wide genotyping, expression data analyses and network analyses. Weighted gene co-expression network analysis (WGCNA) groups genes into modules based on patterns of co-expression, which can be linked to phenotypes by correlation analysis of trait values and the module eigengenes, i.e. the first principal component of a given module. Network hub genes and regulators of the genes in the modules are likely to play an important role in the emergence of respective traits. In order to detect common regulators of genes in modules showing association with meat quality traits, we identified eQTL for each of these genes, including the highly connected hub genes. Additionally, the module eigengene values were used for association analyses in order to derive a joint eQTL for the respective module. Thereby major sites of orchestrated regulation of genes within trait-associated modules were detected as hotspots of eQTL of many genes of a module and of its eigengene. These sites harbor likely common regulators of genes in the modules. We exemplarily showed the consistent impact of candidate common regulators on the expression of members of respective modules by RNAi knockdown experiments. In fact, Cxcr7 was identified and validated as a regulator of genes in a module, which is involved in the function of defense response in muscle cells. Zfp36l2 was confirmed as a regulator of genes of a module related to cell death or apoptosis pathways. The integration of eQTL in module networks enabled to interpret the differentially-regulated genes from a systems perspective. By integrating genome-wide genomic and transcriptomic data, employing co-expression and eQTL analyses, the study revealed likely regulators that are involved in the fine-tuning and synchronization of genes with trait

  5. First co-expression of a lipase and its specific foldase obtained by metagenomics.

    PubMed

    Martini, Viviane Paula; Glogauer, Arnaldo; Müller-Santos, Marcelo; Iulek, Jorge; de Souza, Emanuel Maltempi; Mitchell, David Alexander; Pedrosa, Fabio Oliveira; Krieger, Nadia

    2014-12-16

    Metagenomics is a useful tool in the search for new lipases that might have characteristics that make them suitable for application in biocatalysis. This paper reports the cloning, co-expression, purification and characterization of a new lipase, denominated LipG9, and its specific foldase, LifG9, from a metagenomic library derived from a fat-contaminated soil. Within the metagenomic library, the gene lipg9 was cloned jointly with the gene of the foldase, lifg9. LipG9 and LifG9 have 96% and 84% identity, respectively, with the corresponding proteins of Aeromonas veronii B565. LipG9 and LifG9 were co-expressed, both in N-truncated form, in Escherichia coli BL21(DE3), using the vectors pET28a(+) and pT7-7, respectively, and then purified by affinity chromatography using a Ni(2+) column (HiTrap Chelating HP). The purified enzyme eluted from the column complexed with its foldase. The molecular masses of the N-truncated proteins were 32 kDa for LipG9, including the N-terminal His-tag with 6 residues, and 23 kDa for LifG9, which did not have a His-tag. The biochemical and kinetic characteristics of the purified lipase-foldase preparation were investigated. This preparation was active and stable over a wide range of pH values (6.5-9.5) and temperatures (10-40°C), with the highest specific activity, of 1500 U mg(-1), being obtained at pH 7.5 at 30°C. It also had high specific activities against tributyrin, tricaprylin and triolein, with values of 1852, 1566 and 817 U mg(-1), respectively. A phylogenetic analysis placed LipG9 in the lipase subfamily I.1. A comparison of the sequence of LipG9 with those of other bacterial lipases in the Protein Data Bank showed that LipG9 contains not only the classic catalytic triad (Ser(103), Asp(250), His(272)), with the catalytic Ser occurring within a conserved pentapeptide, Gly-His-Ser-His-Gly, but also a conserved disulfide bridge and a conserved calcium binding site. The homology-modeled structure presents a canonical

  6. Weighted gene co-expression network analysis reveals key genes involved in pancreatic ductal adenocarcinoma development.

    PubMed

    Giulietti, Matteo; Occhipinti, Giulia; Principato, Giovanni; Piva, Francesco

    2016-08-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive malignancy. Up till now, the patient's prognosis remains poor which, among others, is due to the paucity of reliable early diagnostic biomarkers. In the past, candidate diagnostic biomarkers and therapeutic targets have been delineated from genes that were found to be differentially expressed in normal versus tumour samples. Recently, new systems biology approaches have been developed to analyse gene expression data, which may yield new biomarkers. As of yet, the weighted gene co-expression network analysis (WGCNA) tool has not been applied to PDAC microarray-based gene expression data. PDAC microarray-based gene expression datasets, listed in the Gene Expression Omnibus (GEO) database, were analysed. After pre-processing of the data, we built two final datasets, Normal and PDAC, encompassing 104 and 129 patient samples, respectively. Next, we constructed a weighted gene co-expression network and identified modules of co-expressed genes distinguishing normal from disease conditions. Functional annotations of the genes in these modules were carried out to highlight PDAC-associated molecular pathways and common regulatory mechanisms. Finally, overall survival analyses were carried out to assess the suitability of the genes identified as prognostic biomarkers. Using WGCNA, we identified several key genes that may play important roles in PDAC. These genes are mainly related to either endoplasmic reticulum, mitochondrion or membrane functions, exhibit transferase or hydrolase activities and are involved in biological processes such as lipid metabolism or transmembrane transport. As a validation of the applied method, we found that some of the identified key genes (CEACAM1, MCU, VDAC1, CYCS, C15ORF52, TMEM51, LARP1 and ERLIN2) have previously been reported by others as potential PDAC biomarkers. Using overall survival analyses, we found that several of the newly identified genes may serve as biomarkers to

  7. Frontotemporal dementia: insights into the biological underpinnings of disease through gene co-expression network analysis.

    PubMed

    Ferrari, Raffaele; Forabosco, Paola; Vandrovcova, Jana; Botía, Juan A; Guelfi, Sebastian; Warren, Jason D; Momeni, Parastoo; Weale, Michael E; Ryten, Mina; Hardy, John

    2016-02-24

    In frontotemporal dementia (FTD) there is a critical lack in the understanding of biological and molecular mechanisms involved in disease pathogenesis. The heterogeneous genetic features associated with FTD suggest that multiple disease-mechanisms are likely to contribute to the development of this neurodegenerative condition. We here present a systems biology approach with the scope of i) shedding light on the biological processes potentially implicated in the pathogenesis of FTD and ii) identifying novel potential risk factors for FTD. We performed a gene co-expression network analysis of microarray expression data from 101 individuals without neurodegenerative diseases to explore regional-specific co-expression patterns in the frontal and temporal cortices for 12 genes (MAPT, GRN, CHMP2B, CTSC, HLA-DRA, TMEM106B, C9orf72, VCP, UBQLN2, OPTN, TARDBP and FUS) associated with FTD and we then carried out gene set enrichment and pathway analyses, and investigated known protein-protein interactors (PPIs) of FTD-genes products. Gene co-expression networks revealed that several FTD-genes (such as MAPT and GRN, CTSC and HLA-DRA, TMEM106B, and C9orf72, VCP, UBQLN2 and OPTN) were clustering in modules of relevance in the frontal and temporal cortices. Functional annotation and pathway analyses of such modules indicated enrichment for: i) DNA metabolism, i.e. transcription regulation, DNA protection and chromatin remodelling (MAPT and GRN modules); ii) immune and lysosomal processes (CTSC and HLA-DRA modules), and; iii) protein meta/catabolism (C9orf72, VCP, UBQLN2 and OPTN, and TMEM106B modules). PPI analysis supported the results of the functional annotation and pathway analyses. This work further characterizes known FTD-genes and elaborates on their biological relevance to disease: not only do we indicate likely impacted regional-specific biological processes driven by FTD-genes containing modules, but also do we suggest novel potential risk factors among the FTD

  8. A 3D Searchable Database of Transgenic Zebrafish Gal4 and Cre Lines for Functional Neuroanatomy Studies

    PubMed Central

    Marquart, Gregory D.; Tabor, Kathryn M.; Brown, Mary; Strykowski, Jennifer L.; Varshney, Gaurav K.; LaFave, Matthew C.; Mueller, Thomas; Burgess, Shawn M.; Higashijima, Shin-ichi; Burgess, Harold A.

    2015-01-01

    Transgenic methods enable the selective manipulation of neurons for functional mapping of neuronal circuits. Using confocal microscopy, we have imaged the cellular-level expression of 109 transgenic lines in live 6 day post fertilization larvae, including 80 Gal4 enhancer trap lines, 9 Cre enhancer trap lines and 20 transgenic lines that express fluorescent proteins in defined gene-specific patterns. Image stacks were acquired at single micron resolution, together with a broadly expressed neural marker, which we used to align enhancer trap reporter patterns into a common 3-dimensional reference space. To facilitate use of this resource, we have written software that enables searching for transgenic lines that label cells within a selectable 3-dimensional region of interest (ROI) or neuroanatomical area. This software also enables the intersectional expression of transgenes to be predicted, a feature which we validated by detecting cells with co-expression of Cre and Gal4. Many of the imaged enhancer trap lines show intrinsic brain-specific expression. However, to increase the utility of lines that also drive expression in non-neuronal tissue we have designed a novel UAS reporter, that suppresses expression in heart, muscle, and skin through the incorporation of microRNA binding sites in a synthetic 3′ untranslated region. Finally, we mapped the site of transgene integration, thus providing molecular identification of the expression pattern for most lines. Cumulatively, this library of enhancer trap lines provides genetic access to 70% of the larval brain and is therefore a powerful and broadly accessible tool for the dissection of neural circuits in larval zebrafish. PMID:26635538

  9. A 3D Searchable Database of Transgenic Zebrafish Gal4 and Cre Lines for Functional Neuroanatomy Studies.

    PubMed

    Marquart, Gregory D; Tabor, Kathryn M; Brown, Mary; Strykowski, Jennifer L; Varshney, Gaurav K; LaFave, Matthew C; Mueller, Thomas; Burgess, Shawn M; Higashijima, Shin-Ichi; Burgess, Harold A

    2015-01-01

    Transgenic methods enable the selective manipulation of neurons for functional mapping of neuronal circuits. Using confocal microscopy, we have imaged the cellular-level expression of 109 transgenic lines in live 6 day post fertilization larvae, including 80 Gal4 enhancer trap lines, 9 Cre enhancer trap lines and 20 transgenic lines that express fluorescent proteins in defined gene-specific patterns. Image stacks were acquired at single micron resolution, together with a broadly expressed neural marker, which we used to align enhancer trap reporter patterns into a common 3-dimensional reference space. To facilitate use of this resource, we have written software that enables searching for transgenic lines that label cells within a selectable 3-dimensional region of interest (ROI) or neuroanatomical area. This software also enables the intersectional expression of transgenes to be predicted, a feature which we validated by detecting cells with co-expression of Cre and Gal4. Many of the imaged enhancer trap lines show intrinsic brain-specific expression. However, to increase the utility of lines that also drive expression in non-neuronal tissue we have designed a novel UAS reporter, that suppresses expression in heart, muscle, and skin through the incorporation of microRNA binding sites in a synthetic 3' untranslated region. Finally, we mapped the site of transgene integration, thus providing molecular identification of the expression pattern for most lines. Cumulatively, this library of enhancer trap lines provides genetic access to 70% of the larval brain and is therefore a powerful and broadly accessible tool for the dissection of neural circuits in larval zebrafish.

  10. HER2 isoforms co-expression differently tunes mammary tumor phenotypes affecting onset, vasculature and therapeutic response

    PubMed Central

    Balboni, Tania; Ianzano, Marianna L.; Laranga, Roberta; Landuzzi, Lorena; Giusti, Veronica; Ceccarelli, Claudio; Santini, Donatella; Taffurelli, Mario; Di Oto, Enrico; Asioli, Sofia; Amici, Augusto; Pupa, Serenella M.; De Giovanni, Carla; Tagliabue, Elda; Iezzi, Manuela; Nanni, Patrizia; Lollini, Pier-Luigi

    2017-01-01

    Full-length HER2 oncoprotein and splice variant Delta16 are co-expressed in human breast cancer. We studied their interaction in hybrid transgenic mice bearing human full-length HER2 and Delta16 (F1 HER2/Delta16) in comparison to parental HER2 and Delta16 transgenic mice. Mammary carcinomas onset was faster in F1 HER2/Delta16 and Delta16 than in HER2 mice, however tumor growth was slower, and metastatic spread was comparable in all transgenic mice. Full-length HER2 tumors contained few large vessels or vascular lacunae, whereas Delta16 tumors presented a more regular vascularization with numerous endothelium-lined small vessels. Delta16-expressing tumors showed a higher accumulation of i.v. injected doxorubicin than tumors expressing full-length HER2. F1 HER2/Delta16 tumors with high full-length HER2 expression made few large vessels, whereas tumors with low full-length HER2 and high Delta16 contained numerous small vessels and expressed higher levels of VEGF and VEGFR2. Trastuzumab strongly inhibited tumor onset in F1 HER2/Delta16 and Delta16 mice, but not in full-length HER2 mice. Addiction of F1 tumors to Delta16 was also shown by long-term stability of Delta16 levels during serial transplants, in contrast full-length HER2 levels underwent wide fluctuations. In conclusion, full-length HER2 leads to a faster tumor growth and to an irregular vascularization, whereas Delta16 leads to a faster tumor onset, with more regular vessels, which in turn could better transport cytotoxic drugs within the tumor, and to a higher sensitivity to targeted therapeutic agents. F1 HER2/Delta16 mice are a new immunocompetent mouse model, complementary to patient-derived xenografts, for studies of mammary carcinoma onset, prevention and therapy. PMID:28903354

  11. Enhanced potency of replicon vaccine using one vector to simultaneously co-express antigen and interleukin-4 molecular adjuvant

    PubMed Central

    Ma, Yao; An, Huai-Jie; Wei, Xiao-Qi; Xu, Qing; Yu, Yun-Zhou; Sun, Zhi-Wei

    2013-01-01

    We evaluated the utility of interleukin-4 (IL-4) as molecular adjuvant of replicon vaccines for botulinum neurotoxin serotype A (BoNT/A) in mouse model. In both Balb/c and C57/BL6 mice that received the plasmid DNA replicon vaccines derived from Semliki Forest virus (SFV) encoding the Hc gene of BoNT/A (AHc), the immunogenicity was significantly modulated and enhanced by co-delivery or co-express of the IL-4 molecular adjuvant. The enhanced potencies were also produced by co-delivery or co-expression of the IL-4 molecular adjuvant in mice immunized with the recombinant SFV replicon particles (VRP) vaccines. In particular, when AHc and IL-4 were co-expressed within the same replicon vaccine vector using dual-expression or bicistronic IRES, the anti-AHc antibody titers, serum neutralization titers and survival rates of immunized mice after challenged with BoNT/A were significantly increased. These results indicate IL-4 is an effective Th2-type adjuvant for the replicon vaccines in both strain mice, and the co-expression replicon vaccines described here may be an excellent candidate for further vaccine development in other animals or humans. Thus, we described a strategy to design and develop efficient vaccines against BoNT/A or other pathogens using one replicon vector to simultaneously co-express antigen and molecular adjuvant. PMID:23291932

  12. A dual-intein autoprocessing domain that directs synchronized protein co-expression in both prokaryotes and eukaryotes.

    PubMed

    Zhang, Bei; Rapolu, Madhusudhan; Liang, Zhibin; Han, Zhenlin; Williams, Philip G; Su, Wei Wen

    2015-02-25

    Being able to coordinate co-expression of multiple proteins is necessary for a variety of important applications such as assembly of protein complexes, trait stacking, and metabolic engineering. Currently only few options are available for multiple recombinant protein co-expression, and most of them are not applicable to both prokaryotic and eukaryotic hosts. Here, we report a new polyprotein vector system that is based on a pair of self-excising mini-inteins fused in tandem, termed the dual-intein (DI) domain, to achieve synchronized co-expression of multiple proteins. The DI domain comprises an Ssp DnaE mini-intein N159A mutant and an Ssp DnaB mini-intein C1A mutant connected in tandem by a peptide linker to mediate efficient release of the flanking proteins via autocatalytic cleavage. Essentially complete release of constituent proteins, GFP and RFP (mCherry), from a polyprotein precursor, in bacterial, mammalian, and plant hosts was demonstrated. In addition, successful co-expression of GFP with chloramphenicol acetyltransferase, and thioredoxin with RFP, respectively, further substantiates the general applicability of the DI polyprotein system. Collectively, our results demonstrate the DI-based polyprotein technology as a highly valuable addition to the molecular toolbox for multi-protein co-expression which finds vast applications in biotechnology, biosciences, and biomedicine.

  13. Protein-protein interaction and gene co-expression maps of ARFs and Aux/IAAs in Arabidopsis

    PubMed Central

    Piya, Sarbottam; Shrestha, Sandesh K.; Binder, Brad; Stewart, C. Neal; Hewezi, Tarek

    2014-01-01

    The phytohormone auxin regulates nearly all aspects of plant growth and development. Based on the current model in Arabidopsis thaliana, Auxin/indole-3-acetic acid (Aux/IAA) proteins repress auxin-inducible genes by inhibiting auxin response transcription factors (ARFs). Experimental evidence suggests that heterodimerization between Aux/IAA and ARF proteins are related to their unique biological functions. The objective of this study was to generate the Aux/IAA-ARF protein-protein interaction map using full length sequences and locate the interacting protein pairs to specific gene co-expression networks in order to define tissue-specific responses of the Aux/IAA-ARF interactome. Pairwise interactions between 19 ARFs and 29 Aux/IAAs resulted in the identification of 213 specific interactions of which 79 interactions were previously unknown. The incorporation of co-expression profiles with protein-protein interaction data revealed a strong correlation of gene co-expression for 70% of the ARF-Aux/IAA interacting pairs in at least one tissue/organ, indicative of the biological significance of these interactions. Importantly, ARF4-8 and 19, which were found to interact with almost all Aux-Aux/IAA showed broad co-expression relationships with Aux/IAA genes, thus, formed the central hubs of the co-expression network. Our analyses provide new insights into the biological significance of ARF-Aux/IAA associations in the morphogenesis and development of various plant tissues and organs. PMID:25566309

  14. Ferulic Acid Regulates the Nrf2/Heme Oxygenase-1 System and Counteracts Trimethyltin-Induced Neuronal Damage in the Human Neuroblastoma Cell Line SH-SY5Y

    PubMed Central

    Catino, Stefania; Paciello, Fabiola; Miceli, Fiorella; Rolesi, Rolando; Troiani, Diana; Calabrese, Vittorio; Santangelo, Rosaria; Mancuso, Cesare

    2016-01-01

    Over the past years, several lines of evidence have pointed out the efficacy of ferulic acid (FA) in counteracting oxidative stress elicited by β-amyloid or free radical initiators, based on the ability of this natural antioxidant to up-regulate the heme oxygenase-1 (HO-1) and biliverdin reductase (BVR) system. However, scarce results can be found in literature regarding the cytoprotective effects of FA in case of damage caused by neurotoxicants. The aim of this work is to investigate the mechanisms through which FA exerts neuroprotection in SH-SY5Y neuroblastoma cells exposed to the neurotoxin trimethyltin (TMT). FA (1–10 μM for 6 h) dose-dependently increased both basal and TMT (10 μM for 24 h)-induced HO-1 expression in SH-SY5Y cells by fostering the nuclear translocation of the transcriptional activator Nrf2. In particular, the co-treatment of FA (10 μM) with TMT was also responsible for the nuclear translocation of HO-1 in an attempt to further increase cell stress response in SH-SY5Y cells. In addition to HO-1, FA (1–10 μM for 6 h) dose-dependently increased the basal expression of BVR. The antioxidant and neuroprotective features of FA, through the increase of HO activity, were supported by the evidence that FA inhibited TMT (10 μM)-induced lipid peroxidation (evaluated by detecting 4-hydroxy-nonenal) and DNA fragmentation in SH-SY5Y cells and that this antioxidant effect was reversed by the HO inhibitor Zinc-protoporphyrin-IX (5 μM). Among the by-products of the HO/BVR system, carbon monoxide (CORM-2, 50 nM) and bilirubin (BR, 50 nM) significantly inhibited TMT-induced superoxide anion formation in SH-SY5Y cells. All together, these results corroborate the neuroprotective effect of FA through the up-regulation of the HO-1/BVR system, via carbon monoxide and BR formation, and provide the first evidence on the role of HO-1/Nrf2 axis in FA-related enhancement of cell stress response in human neurons. PMID:26779023

  15. The Structure of a Gene Co-Expression Network Reveals Biological Functions Underlying eQTLs

    PubMed Central

    Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali

    2013-01-01

    What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology. PMID:23577081

  16. The structure of a gene co-expression network reveals biological functions underlying eQTLs.

    PubMed

    Villa-Vialaneix, Nathalie; Liaubet, Laurence; Laurent, Thibault; Cherel, Pierre; Gamot, Adrien; SanCristobal, Magali

    2013-01-01

    What are the commonalities between genes, whose expression level is partially controlled by eQTL, especially with regard to biological functions? Moreover, how are these genes related to a phenotype of interest? These issues are particularly difficult to address when the genome annotation is incomplete, as is the case for mammalian species. Moreover, the direct link between gene expression and a phenotype of interest may be weak, and thus difficult to handle. In this framework, the use of a co-expression network has proven useful: it is a robust approach for modeling a complex system of genetic regulations, and to infer knowledge for yet unknown genes. In this article, a case study was conducted with a mammalian species. It showed that the use of a co-expression network based on partial correlation, combined with a relevant clustering of nodes, leads to an enrichment of biological functions of around 83%. Moreover, the use of a spatial statistics approach allowed us to superimpose additional information related to a phenotype; this lead to highlighting specific genes or gene clusters that are related to the network structure and the phenotype. Three main results are worth noting: first, key genes were highlighted as a potential focus for forthcoming biological experiments; second, a set of biological functions, which support a list of genes under partial eQTL control, was set up by an overview of the global structure of the gene expression network; third, pH was found correlated with gene clusters, and then with related biological functions, as a result of a spatial analysis of the network topology.

  17. Co-expression network analysis of Down's syndrome based on microarray data

    PubMed Central

    Zhao, Jianping; Zhang, Zhengguo; Ren, Shumin; Zong, Yanan; Kong, Xiangdong

    2016-01-01

    Down's syndrome (DS) is a type of chromosome disease. The present study aimed to explore the underlying molecular mechanisms of DS. GSE5390 microarray data downloaded from the gene expression omnibus database was used to identify differentially expressed genes (DEGs) in DS. Pathway enrichment analysis of the DEGs was performed, followed by co-expression network construction. Significant differential modules were mined by mutual information, followed by functional analysis. The accuracy of sample classification for the significant differential modules of DEGs was evaluated by leave-one-out cross-validation. A total of 997 DEGs, including 638 upregulated and 359 downregulated genes, were identified. Upregulated DEGs were enriched in 15 pathways, such as cell adhesion molecules, whereas downregulated DEGs were enriched in maturity onset diabetes of the young. Three significant differential modules with the highest discriminative scores (mutual information>0.35) were selected from a co-expression network. The classification accuracy of GSE16677 expression profile samples was 54.55% and 72.73% when characterized by 12 DEGs and 3 significant differential modules, respectively. Genes in significant differential modules were significantly enriched in 5 functions, including the endoplasmic reticulum (P=0.018) and regulation of apoptosis (P=0.061). The identified DEGs, in particular the 12 DEGs in the significant differential modules, such as B-cell lymphoma 2-associated transcription factor 1, heat shock protein 90 kDa beta member 1, UBX domain-containing protein 2 and transmembrane protein 50B, may serve important roles in the pathogenesis of DS. PMID:27588071

  18. Energy transfer between fusion biliproteins co-expressed with phycobiliprotein in Escherichia coli.

    PubMed

    Ma, Qiong; Zhou, Nan; Zhou, Ming

    2016-10-01

    In cyanobacteria, phycobiliproteins (PBS) show excellent energy transfer among the chromophores absorbing over most of the visible. The energy transfers are used to study phycobilisome assembly and bioimaging. Using All4261GAF2(C81L) as energy donor, ApcE(1-240/Δ87-130) as energy acceptor, we co-expressed fusion protein ApcE(1-240/Δ87-130)::All4261GAF2(C81L) with phycobiliprotein in Escherichia Coli and studied the energy transfer between two protein domains. With N-terminal His6 tag, ApcE(1-240/Δ87-130)::All4261GAF2(C81L) cannot be purified by nickel-affinity column. We added six histidines in the C-terminal of ApcE(1-240/Δ87-130)::All4261GAF2(C81L) and co-expressed it with phycobiliprotein. ApcE(1-240/Δ87-130)::PCB-All4261GAF2(C81L)His6 was purified successfully and only singly chromophorylated at All4261GAF2(C81L)His6 domain. The singly chromophorylate ApcE(1-240/Δ87-130)::PCB-All4261GAF2(C81L)His6 was incubated with fresh PCB and the doubly chromophorylated PCB-ApcE(1-240/Δ87-130)::PCB-All4261GAF2(C81L)His6 was obtained. The double chromophored fusion protein absorbed light in the range of 615-660 nm, and fluoresced only at 668 nm. Photochemistry analysis showed that excitation energy transfer from the short-wavelength absorbing at All4261GAF2(C81L) domain was achieved successfully to the long-wavelength absorbing at the ApcE(1-240/Δ87-130) domain. Copyright © 2016. Published by Elsevier Inc.

  19. Identification of Drosophila Mitotic Genes by Combining Co-Expression Analysis and RNA Interference

    PubMed Central

    Somma, Maria Patrizia; Ceprani, Francesca; Bucciarelli, Elisabetta; Naim, Valeria; De Arcangelis, Valeria; Piergentili, Roberto; Palena, Antonella; Ciapponi, Laura; Giansanti, Maria Grazia; Pellacani, Claudia; Petrucci, Romano; Cenci, Giovanni; Vernì, Fiammetta; Fasulo, Barbara; Goldberg, Michael L.; Di Cunto, Ferdinando; Gatti, Maurizio

    2008-01-01

    RNAi screens have, to date, identified many genes required for mitotic divisions of Drosophila tissue culture cells. However, the inventory of such genes remains incomplete. We have combined the powers of bioinformatics and RNAi technology to detect novel mitotic genes. We found that Drosophila genes involved in mitosis tend to be transcriptionally co-expressed. We thus constructed a co-expression–based list of 1,000 genes that are highly enriched in mitotic functions, and we performed RNAi for each of these genes. By limiting the number of genes to be examined, we were able to perform a very detailed phenotypic analysis of RNAi cells. We examined dsRNA-treated cells for possible abnormalities in both chromosome structure and spindle organization. This analysis allowed the identification of 142 mitotic genes, which were subdivided into 18 phenoclusters. Seventy of these genes have not previously been associated with mitotic defects; 30 of them are required for spindle assembly and/or chromosome segregation, and 40 are required to prevent spontaneous chromosome breakage. We note that the latter type of genes has never been detected in previous RNAi screens in any system. Finally, we found that RNAi against genes encoding kinetochore components or highly conserved splicing factors results in identical defects in chromosome segregation, highlighting an unanticipated role of splicing factors in centromere function. These findings indicate that our co-expression–based method for the detection of mitotic functions works remarkably well. We can foresee that elaboration of co-expression lists using genes in the same phenocluster will provide many candidate genes for small-scale RNAi screens aimed at completing the inventory of mitotic proteins. PMID:18797514

  20. Dissecting nutrient-related co-expression networks in phosphate starved poplars

    PubMed Central

    Kavka, Mareike; Polle, Andrea

    2017-01-01

    Phosphorus (P) is an essential plant nutrient, but its availability is often limited in soil. Here, we studied changes in the transcriptome and in nutrient element concentrations in leaves and roots of poplars (Populus × canescens) in response to P deficiency. P starvation resulted in decreased concentrations of S and major cations (K, Mg, Ca), in increased concentrations of N, Zn and Al, while C, Fe and Mn were only little affected. In roots and leaves >4,000 and >9,000 genes were differently expressed upon P starvation. These genes clustered in eleven co-expression modules of which seven were correlated with distinct elements in the plant tissues. One module (4.7% of all differentially expressed genes) was strongly correlated with changes in the P concentration in the plant. In this module the GO term “response to P starvation” was enriched with phosphoenolpyruvate carboxylase kinases, phosphatases and pyrophosphatases as well as regulatory domains such as SPX, but no phosphate transporters. The P-related module was also enriched in genes of the functional category “galactolipid synthesis”. Galactolipids substitute phospholipids in membranes under P limitation. Two modules, one correlated with C and N and the other with biomass, S and Mg, were connected with the P-related module by co-expression. In these modules GO terms indicating “DNA modification” and “cell division” as well as “defense” and “RNA modification” and “signaling” were enriched; they contained phosphate transporters. Bark storage proteins were among the most strongly upregulated genes in the growth-related module suggesting that N, which could not be used for growth, accumulated in typical storage compounds. In conclusion, weighted gene coexpression network analysis revealed a hierarchical structure of gene clusters, which separated phosphate starvation responses correlated with P tissue concentrations from other gene modules, which most likely represented

  1. Differential co-expression analysis of rheumatoid arthritis with microarray data.

    PubMed

    Wang, Kunpeng; Zhao, Liqiang; Liu, Xuefeng; Hao, Zhenyong; Zhou, Yong; Yang, Chuandong; Li, Hongqiang

    2014-11-01

    The aim of the present study was to investigate the underlying molecular mechanisms of rheumatoid arthritis (RA) using microarray expression profiles from osteoarthritis and RA patients, to improve diagnosis and treatment strategies for the condition. The gene expression profile of GSE27390 was downloaded from Gene Expression Omnibus, including 19 samples from patients with RA (n=9) or osteoarthritis (n=10). Firstly, the differentially expressed genes (DEGs) were obtained with the thresholds of |logFC|>1.0 and P<0.05, using the t‑test method in LIMMA package. Then, differentially co-expressed genes (DCGs) and differentially co-expressed links (DCLs) were screened with q<0.25 by the differential coexpression analysis and differential regulation analysis of gene expression microarray data package. Secondly, pathway enrichment analysis for DCGs was performed by the Database for Annotation, Visualization and Integrated Discovery and the DCLs associated with RA were selected by comparing the obtained DCLs with known transcription factor (TF)-targets in the TRANSFAC database. Finally, the obtained TFs were mapped to the known TF-targets to construct the network using cytoscape software. A total of 1755 DEGs, 457 DCGs and 101988 DCLs were achieved and there were 20 TFs in the obtained six TF-target relations (STAT3-TNF, PBX1‑PLAU, SOCS3-STAT3, GATA1-ETS2, ETS1-ICAM4 and CEBPE‑GATA1) and 457 DCGs. A number of TF-target relations in the constructed network were not within DCLs when the TF and target gene were DCGs. The identified TFs may have an important role in the pathogenesis of RA and have the potential to be used as biomarkers for the development of novel diagnostic and therapeutic strategies for RA.

  2. Identifying key genes in rheumatoid arthritis by weighted gene co-expression network analysis.

    PubMed

    Ma, Chunhui; Lv, Qi; Teng, Songsong; Yu, Yinxian; Niu, Kerun; Yi, Chengqin

    2017-08-01

    This study aimed to identify rheumatoid arthritis (RA) related genes based on microarray data using the WGCNA (weighted gene co-expression network analysis) method. Two gene expression profile datasets GSE55235 (10 RA samples and 10 healthy controls) and GSE77298 (16 RA samples and seven healthy controls) were downloaded from Gene Expression Omnibus database. Characteristic genes were identified using metaDE package. WGCNA was used to find disease-related networks based on gene expression correlation coefficients, and module significance was defined as the average gene significance of all genes used to assess the correlation between the module and RA status. Genes in the disease-related gene co-expression network were subject to functional annotation and pathway enrichment analysis using Database for Annotation Visualization and Integrated Discovery. Characteristic genes were also mapped to the Connectivity Map to screen small molecules. A total of 599 characteristic genes were identified. For each dataset, characteristic genes in the green, red and turquoise modules were most closely associated with RA, with gene numbers of 54, 43 and 79, respectively. These genes were enriched in totally enriched in 17 Gene Ontology terms, mainly related to immune response (CD97, FYB, CXCL1, IKBKE, CCR1, etc.), inflammatory response (CD97, CXCL1, C3AR1, CCR1, LYZ, etc.) and homeostasis (C3AR1, CCR1, PLN, CCL19, PPT1, etc.). Two small-molecule drugs sanguinarine and papaverine were predicted to have a therapeutic effect against RA. Genes related to immune response, inflammatory response and homeostasis presumably have critical roles in RA pathogenesis. Sanguinarine and papaverine have a potential therapeutic effect against RA. © 2017 Asia Pacific League of Associations for Rheumatology and John Wiley & Sons Australia, Ltd.

  3. Production of germline transgenic pigs co-expressing double fluorescent proteins by lentiviral vector.

    PubMed

    Chen, Xiao-Yu; Zhu, Zhi-Wei; Yu, Fu-Xian; Huang, Jing; Hu, Xiao-Rui; Pan, Jian-Zhi

    2016-11-01

    Genomic integration of transgene by lentiviral vector has been proved an efficient method to produce single-transgenic animals. But it failed to create multi-gene transgenic offspring. Here, we have exploited lentivirus to generate the double-transgenic piglets through the female germline. The recombinant lentivirus containing fluorescent proteins genes (DsRed1 and Venus) were injected into the perivitelline space of 2-cell stage in vitro porcine embryos. Compared to control group, there was no significantly decreased in the proportion of blastocysts, and the two fluorescent protein genes were co-expressed in almost all the injected embryos. Total of 32 injected in vitro embryos were transferred to 2 recipients. One recipient gave birth of three live offspring, and one female piglet was identified as genomic transgene integration by PCR analysis. Subsequently, the female transgenic founder was mated naturally with a wild-type boar and gave birth of two litters of total 23 F(1) generation piglets, among which Venus and DsRed1 genes were detected in 11 piglets and 10 kinds of organs by PCR and RT-PCR respectively. The co-expression of two fluorescent proteins was visible in four different frozen tissue sections from the RT-PCR positive piglets, and 3 to 5 copies of the transgenes were detected to be integrated into the second generation genome by southern blotting analysis. The transgenes were heritable and stably integrated in the F(1) generation. The results indicated for the first time that lentiviral vector combined with natural mating has the potential to become a simple and practical technology to create germline double-transgenic livestock or biomedical animals.

  4. Neurochemical phenotype of cytoglobin-expressing neurons in the rat hippocampus

    PubMed Central

    HUNDAHL, CHRISTIAN ANSGAR; FAHRENKRUG, JAN; HANNIBAL, JENS

    2014-01-01

    Cytoglobin (Cygb), a novel oxygen-binding protein, is expressed in the majority of tissues and has been proposed to function in nitric oxide (NO) metabolism in the vasculature and to have cytoprotective properties. However, the overall functions of Cygb remain elusive. Cygb is also expressed in a subpopulation of brain neurons. Recently, it has been shown that stress upregulates Cygb expression in the brain and the majority of neuronal nitric oxide synthase (nNOS)-positive neurons, an enzyme that produces NO, co-express Cygb. However, there are more neurons expressing Cygb than nNOS, thus a large number of Cygb neurons remain uncharacterized by the neurochemical content. The aim of the present study was to provide an additional and more detailed neurochemical phenotype of Cygb-expressing neurons in the rat hippocampus. The rat hippocampus was chosen due to the abundance of Cygb, as well as this limbic structure being an important target in a number of neurodegenerative diseases. Using triple immunohistochemistry, it was demonstrated that nearly all the parvalbumin- and heme oxygenase 1-positive neurons co-express Cygb and to a large extent, these neuron populations are distinct from the population of Cygb neurons co-expressing nNOS. Furthermore, it was shown that the majority of neurons expressing somastostatin and vasoactive intestinal peptide also co-express Cygb and nNOS. Detailed information regarding the neurochemical phenotype of Cygb neurons in the hippocampus can be a valuable tool in determining the function of Cygb in the brain. PMID:25054000

  5. A gene co-expression network predicts functional genes controlling the re-establishment of desiccation tolerance in germinated Arabidopsis thaliana seeds.

    PubMed

    Costa, Maria Cecília D; Righetti, Karima; Nijveen, Harm; Yazdanpanah, Farzaneh; Ligterink, Wilco; Buitink, Julia; Hilhorst, Henk W M

    2015-08-01

    During re-establishment of desiccation tolerance (DT), early events promote initial protection and growth arrest, while late events promote stress adaptation and contribute to survival in the dry state. Mature seeds of Arabidopsis thaliana are desiccation tolerant, but they lose desiccation tolerance (DT) while progressing to germination. Yet, there is a small developmental window during which DT can be rescued by treatment with abscisic acid (ABA). To gain temporal resolution and identify relevant genes in this process, data from a time series of microarrays were used to build a gene co-expression network. The network has two regions, namely early response (ER) and late response (LR). Genes in the ER region are related to biological processes, such as dormancy, acquisition of DT and drought, amplification of signals, growth arrest and induction of protection mechanisms (such as LEA proteins). Genes in the LR region lead to inhibition of photosynthesis and primary metabolism, promote adaptation to stress conditions and contribute to seed longevity. Phenotyping of 12 hubs in relation to re-establishment of DT with T-DNA insertion lines indicated a significant increase in the ability to re-establish DT compared with the wild-type in the lines cbsx4, at3g53040 and at4g25580, suggesting the operation of redundant and compensatory mechanisms. Moreover, we show that re-establishment of DT by polyethylene glycol and ABA occurs through partially overlapping mechanisms. Our data confirm that co-expression network analysis is a valid approach to examine data from time series of transcriptome analysis, as it provides promising insights into biologically relevant relations that help to generate new information about the roles of certain genes for DT.

  6. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons.

    PubMed

    Jensen, P; Ducray, A D; Widmer, H R; Meyer, M

    2015-12-03

    Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be

  7. Co-expression and co-localization of hub proteins and their partners are encoded in protein sequence.

    PubMed

    Feiglin, Ariel; Ashkenazi, Shaul; Schlessinger, Avner; Rost, Burkhard; Ofran, Yanay

    2014-04-01

    Spatiotemporal coordination is a critical factor in biological processes. Some hubs in protein-protein interaction networks tend to be co-expressed and co-localized with their partners more strongly than others, a difference which is arguably related to functional differences between the hubs. Based on numerous analyses of yeast hubs, it has been suggested that differences in co-expression and co-localization are reflected in the structural and molecular characteristics of the hubs. We hypothesized that if indeed differences in co-expression and co-localization are encoded in the molecular characteristics of the protein, it may be possible to predict the tendency for co-expression and co-localization of human hubs based on features learned from systematically characterized yeast hubs. Thus, we trained a prediction algorithm on hubs from yeast that were classified as either strongly or weakly co-expressed and co-localized with their partners, and applied the trained model to 800 human hub proteins. We found that the algorithm significantly distinguishes between human hubs that are co-expressed and co-localized with their partners and hubs that are not. The prediction is based on sequence derived features such as "stickiness", i.e. the existence of multiple putative binding sites that enable multiple simultaneous interactions, "plasticity", i.e. the existence of predicted structural disorder which conjecturally allows for multiple consecutive interactions with the same binding site and predicted subcellular localization. These results suggest that spatiotemporal dynamics is encoded, at least in part, in the amino acid sequence of the protein and that this encoding is similar in yeast and in human.

  8. Global Landscape of a Co-Expressed Gene Network in Barley and its Application to Gene Discovery in Triticeae Crops

    PubMed Central

    Mochida, Keiichi; Uehara-Yamaguchi, Yukiko; Yoshida, Takuhiro; Sakurai, Tetsuya; Shinozaki, Kazuo

    2011-01-01

    Accumulated transcriptome data can be used to investigate regulatory networks of genes involved in various biological systems. Co-expression analysis data sets generated from comprehensively collected transcriptome data sets now represent efficient resources that are capable of facilitating the discovery of genes with closely correlated expression patterns. In order to construct a co-expression network for barley, we analyzed 45 publicly available experimental series, which are composed of 1,347 sets of GeneChip data for barley. On the basis of a gene-to-gene weighted correlation coefficient, we constructed a global barley co-expression network and classified it into clusters of subnetwork modules. The resulting clusters are candidates for functional regulatory modules in the barley transcriptome. To annotate each of the modules, we performed comparative annotation using genes in Arabidopsis and Brachypodium distachyon. On the basis of a comparative analysis between barley and two model species, we investigated functional properties from the representative distributions of the gene ontology (GO) terms. Modules putatively involved in drought stress response and cellulose biogenesis have been identified. These modules are discussed to demonstrate the effectiveness of the co-expression analysis. Furthermore, we applied the data set of co-expressed genes coupled with comparative analysis in attempts to discover potentially Triticeae-specific network modules. These results demonstrate that analysis of the co-expression network of the barley transcriptome together with comparative analysis should promote the process of gene discovery in barley. Furthermore, the insights obtained should be transferable to investigations of Triticeae plants. The associated data set generated in this analysis is publicly accessible at http://coexpression.psc.riken.jp/barley/. PMID:21441235

  9. Evolutionary conserved gene co-expression drives generation of self-antigen diversity in medullary thymic epithelial cells.

    PubMed

    Rattay, Kristin; Meyer, Hannah Verena; Herrmann, Carl; Brors, Benedikt; Kyewski, Bruno

    2016-02-01

    Promiscuous expression of a plethora of tissue-restricted antigens (TRAs) in medullary thymic epithelial cells (mTECs) is essential for central tolerance. This promiscuous gene expression (pGE) is characterized by inclusion of a broad range of TRAs and by its mosaic expression patterns, i.e. each antigen is only expressed in 1-3% of mTECs. It is currently unclear to which extent random and/or deterministic mechanisms are involved in the regulation of pGE. In order to address this issue, we deconstructed the transcriptional heterogeneity in mTEC to minor subsets expressing a particular TRA. We identified six delineable co-expression groups in mouse mTECs. These co-expression groups displayed a variable degree of mutual overlap and mapped to different stages of mTEC development. Co-expressed genes showed chromosomal preference and clustered within delimited genomic regions. Moreover, co-expression groups in mice and humans selected by a pair of orthologous genes preferentially co-expressed sets of orthologous genes attesting to the species conservation of pGE between mouse and human. Furthermore, co-expressed genes were enriched for specific transcription factor binding motifs concomitant with up-regulation of the corresponding transcription factors, implicating additional factors in the regulation of pGE besides the Autoimmune Regulator (Aire). Thus promiscuous transcription of self-antigens in mTECs entails a highly coordinated process, which is evolutionary strictly conserved between species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Integrating mRNA and miRNA Weighted Gene Co-Expression Networks with eQTLs in the Nucleus Accumbens of Subjects with Alcohol Dependence

    PubMed Central

    Blevins, Tana; Aliev, Fazil; Adkins, Amy; Hack, Laura; Bigdeli, Tim; D. van der Vaart, Andrew; Web, Bradley Todd; Bacanu, Silviu-Alin; Kalsi, Gursharan; Kendler, Kenneth S.; Miles, Michael F.; Dick, Danielle; Riley, Brien P.; Dumur, Catherine; Vladimirov, Vladimir I.

    2015-01-01

    Alcohol consumption is known to lead to gene expression changes in the brain. After performing weighted gene co-expression network analyses (WGCNA) on genome-wide mRNA and microRNA (miRNA) expression in Nucleus Accumbens (NAc) of subjects with alcohol dependence (AD; N = 18) and of matched controls (N = 18), six mRNA and three miRNA modules significantly correlated with AD were identified (Bonferoni-adj. p≤ 0.05). Cell-type-specific transcriptome analyses revealed two of the mRNA modules to be enriched for neuronal specific marker genes and downregulated in AD, whereas the remaining four mRNA modules were enriched for astrocyte and microglial specific marker genes and upregulated in AD. Gene set enrichment analysis demonstrated that neuronal specific modules were enriched for genes involved in oxidative phosphorylation, mitochondrial dysfunction and MAPK signaling. Glial-specific modules were predominantly enriched for genes involved in processes related to immune functions, i.e. cytokine signaling (all adj. p≤ 0.05). In mRNA and miRNA modules, 461 and 25 candidate hub genes were identified, respectively. In contrast to the expected biological functions of miRNAs, correlation analyses between mRNA and miRNA hub genes revealed a higher number of positive than negative correlations (χ2 test p≤ 0.0001). Integration of hub gene expression with genome-wide genotypic data resulted in 591 mRNA cis-eQTLs and 62 miRNA cis-eQTLs. mRNA cis-eQTLs were significantly enriched for AD diagnosis and AD symptom counts (adj. p = 0.014 and p = 0.024, respectively) in AD GWAS signals in a large, independent genetic sample from the Collaborative Study on Genetics of Alcohol (COGA). In conclusion, our study identified putative gene network hubs coordinating mRNA and miRNA co-expression changes in the NAc of AD subjects, and our genetic (cis-eQTL) analysis provides novel insights into the etiological mechanisms of AD. PMID:26381263

  11. Silicon Neuron.

    DTIC Science & Technology

    Many researchers have developed neural architectures based on extremely simplified models of neurons . Recently, researchers have developed an analog...electronic model of a neuron that more accurately reproduces its biological counterpart. This electronic neuron was designed to emulate the ionic...currents present in biological neurons . Based on this neural model, we designed and fabricated an eight input neuron on a 2mm by 2mm 40 pin VLSI (very

  12. A distinct group of non-cholinergic neurons along the mid-line of the septum and within the rat medial septal nucleus.

    PubMed

    Tsurusaki, Massashi; Gallagher, Joel P

    2006-12-13

    The septum is a critical and integral component of the limbic brain that serves as a link between diverse brain structures while being necessary for human cognition and emotionality. A major anatomical component of the septum is designated as the medial septum/diagonal band of Broca complex (MS/DB). A primary focus of much research has been to investigate cholinergic neurons within the MS/DB, as these are the rodent brain's main source of acetylcholine to the cortex and hippocampus. On the other hand, we have chosen to investigate a specific group of neurons that lie on the midline of the MS/DB in an area distinguished anatomically as the medial septal nucleus (MSN). Based on somatic morphology and electrophysiological characteristics we conclude that these neurons, characterized into three different types, are non-cholinergic.

  13. Defining Subpopulations of Arcuate Nucleus GABA Neurons in Male, Female, and Prenatally Androgenized Female Mice.

    PubMed

    Marshall, Christopher J; Desroziers, Elodie; McLennan, Timothy; Campbell, Rebecca E

    2017-01-01

    Arcuate nucleus (ARN) γ-aminobutyric acid (GABA) neurons are implicated in many critical homeostatic mechanisms, from food intake to fertility. To determine the functional relevance of ARN GABA neurons, it is essential to define the neurotransmitters co-expressed with and potentially co-released from ARN GABA neurons. The present study investigated the expression of markers of specific signaling molecules by ARN GABA neurons in brain sections from male, female, and, in some cases, prenatally androgen-treated (PNA) female, vesicular GABA transporter (VGaT)-ires-Cre/tdTomato reporter mice. Immunofluorescence for kisspeptin, β-endorphin, neuropeptide Y (NPY), tyrosine hydroxylase (TH) and neuronal nitric oxide synthase (nNOS) was detected by confocal microscopy, and co-localization with tdTomato VGaT reporter expression throughout the ARN was quantified. GABA neurons rarely co-localized with kisspeptin (<2%) or β-endorphin (<1%), and only a small proportion of kisspeptin (∼10%) or β-endorphin (∼3%) neurons co-localized with VGaT in male and female mice. In contrast, one-third of ARN GABA neurons co-localized with NPY, and nearly all NPY neurons (>95%) co-localized with VGaT across groups. Both TH and nNOS labeling was co-localized with ∼10% of ARN GABA neurons. The proportion of TH neurons co-localized with VGaT was significantly greater in males than either control or PNA females, and the proportion of nNOS neurons co-localizing VGaT was higher in control and PNA females compared with males. These data highlight NPY as a significant subpopulation of ARN GABA neurons, demonstrate no significant impact of PNA on signal co-expression, and, for the first time, show sexually dimorphic co-expression patterns of TH and nNOS with ARN GABA neurons. © 2016 S. Karger AG, Basel.

  14. Co-expression of putative stemness and epithelial-to-mesenchymal transition markers on single circulating tumour cells from patients with early and metastatic breast cancer.

    PubMed

    Papadaki, Maria A; Kallergi, Galatea; Zafeiriou, Zafeiris; Manouras, Lefteris; Theodoropoulos, Panayiotis A; Mavroudis, Dimitris; Georgoulias, Vassilis; Agelaki, Sofia

    2014-09-03

    The detection of circulating tumor cells (CTCs) in peripheral blood (PB) of patients with breast cancer predicts poor clinical outcome. Cancer cells with stemness and epithelial-to-mesenchymal transition (EMT) features display enhanced malignant and metastatic potential. A new methodology was developed in order to investigate the co-expression of a stemness and an EMT marker (ALDH1 and TWIST, respectively) on single CTCs of patients with early and metastatic breast cancer. Triple immunofluorescence using anti-pancytokeratin (A45-B/B3), anti-ALDH1 and anti-TWIST antibodies was performed in cytospins prepared from hepatocellular carcinoma HepG2 cells and SKBR-3, MCF-7 and MDA.MB.231 breast cancer cell lines. Evaluation of ALDH1 expression levels (high, low or absent) and TWIST subcellular localization (nuclear, cytoplasmic or absent) was performed using the ARIOL system. Cytospins prepared from peripheral blood of patients with early (n = 80) and metastatic (n = 50) breast cancer were analyzed for CTC detection (based on pan-cytokeratin expression and cytomorphological criteria) and characterized according to ALDH1 and TWIST. CTCs were detected in 13 (16%) and 25 (50%) patients with early and metastatic disease, respectively. High ALDH1 expression (ALDH1high) and nuclear TWIST localization (TWISTnuc) on CTCs was confirmed in more patients with metastatic than early breast cancer (80% vs. 30.8%, respectively; p = 0.009). In early disease, ALDH1low/neg CTCs (p = 0.006) and TWISTcyt/neg CTCs (p = 0.040) were mainly observed. Regarding co-expression of these markers, ALDH1high/TWISTnuc CTCs were more frequently evident in the metastatic setting (76% vs. 15.4% of patients, p = 0.001; 61.5% vs. 12.9% of total CTCs), whereas in early disease ALDH1low/neg/TWISTcyt/neg CTCs were mainly detected (61.5% vs. 20% of patients, p = 0.078; 41.9% vs. 7.7% of total CTCs). A new assay is provided for the evaluation of ALDH1 and TWIST co-expression at the

  15. Uncovering co-expression gene network modules regulating fruit acidity in diverse apples.

    PubMed

    Bai, Yang; Dougherty, Laura; Cheng, Lailiang; Zhong, Gan-Yuan; Xu, Kenong

    2015-08-16

    Acidity is a major contributor to fruit quality. Several organic acids are present in apple fruit, but malic acid is predominant and determines fruit acidity. The trait is largely controlled by the Malic acid (Ma) locus, underpinning which Ma1 that putatively encodes a vacuolar aluminum-activated malate transporter1 (ALMT1)-like protein is a strong candidate gene. We hypothesize that fruit acidity is governed by a gene network in which Ma1 is key member. The goal of this study is to identify the gene network and the potential mechanisms through which the network operates. Guided by Ma1, we analyzed the transcriptomes of mature fruit of contrasting acidity from six apple accessions of genotype Ma_ (MaMa or Mama) and four of mama using RNA-seq and identified 1301 fruit acidity associated genes, among which 18 were most significant acidity genes (MSAGs). Network inferring using weighted gene co-expression network analysis (WGCNA) revealed five co-expression gene network modules of significant (P < 0.001) correlation with malate. Of these, the Ma1 containing module (Turquoise) of 336 genes showed the highest correlation (0.79). We also identified 12 intramodular hub genes from each of the five modules and 18 enriched gene ontology (GO) terms and MapMan sub-bines, including two GO terms (GO:0015979 and GO:0009765) and two MapMap sub-bins (1.3.4 and 1.1.1.1) related to photosynthesis in module Turquoise. Using Lemon-Tree algorithms, we identified 12 regulator genes of probabilistic scores 35.5-81.0, including MDP0000525602 (a LLR receptor kinase), MDP0000319170 (an IQD2-like CaM binding protein) and MDP0000190273 (an EIN3-like transcription factor) of greater interest for being one of the 18 MSAGs or one of the 12 intramodular hub genes in Turquoise, and/or a regulator to the cluster containing Ma1. The most relevant finding of this study is the identification of the MSAGs, intramodular hub genes, enriched photosynthesis related processes, and regulator genes in a

  16. Chemokine receptor co-expression reveals aberrantly distributed TH effector memory cells in GPA patients.

    PubMed

    Lintermans, Lucas L; Rutgers, Abraham; Stegeman, Coen A; Heeringa, Peter; Abdulahad, Wayel H

    2017-06-14

    Persistent expansion of circulating CD4(+) effector memory T cells (TEM) in patients with granulomatosis with polyangiitis (GPA) suggests their fundamental role in disease pathogenesis. Recent studies have shown that distinct functional CD4(+) TEM cell subsets can be identified based on expression patterns of chemokine receptors. The current study aimed to determine different CD4(+) TEM cell subsets based on chemokine receptor expression in peripheral blood of GPA patients. Identification of particular circulating CD4(+) TEM cells subsets may reveal distinct contributions of specific CD4(+) TEM subsets to the disease pathogenesis in GPA. Peripheral blood of 63 GPA patients in remission and 42 age- and sex-matched healthy controls was stained immediately after blood withdrawal with fluorochrome-conjugated antibodies for cell surface markers (CD3, CD4, CD45RO) and chemokine receptors (CCR4, CCR6, CCR7, CRTh2, CXCR3) followed by flow cytometry analysis. CD4(+) TEM memory cells (CD3(+)CD4(+)CD45RO(+)CCR7(-)) were gated, and the expression patterns of chemokine receptors CXCR3(+)CCR4(-)CCR6(-)CRTh2(-), CXCR3(-)CCR4(+)CCR6(-)CRTh2(+), CXCR3(-)CCR4(+)CCR6(+)CRTh2(-), and CXCR3(+)CCR4(-)CCR6(+)CRTh2(-) were used to distinguish TEM1, TEM2, TEM17, and TEM17.1 cells, respectively. The percentage of CD4(+) TEM cells was significantly increased in GPA patients in remission compared to HCs. Chemokine receptor co-expression analysis within the CD4(+) TEM cell population demonstrated a significant increase in the proportion of TEM17 cells with a concomitant significant decrease in the TEM1 cells in GPA patients compared to HC. The percentage of TEM17 cells correlated negatively with TEM1 cells in GPA patients. Moreover, the circulating proportion of TEM17 cells showed a positive correlation with the number of organs involved and an association with the tendency to relapse in GPA patients. Interestingly, the aberrant distribution of TEM1 and TEM17 cells is modulated in CMV

  17. Co-expression of cystatin inhibitors OCI and OCII in transgenic potato plants alters Colorado potato beetle development

    USDA-ARS?s Scientific Manuscript database

    Oryzacystatins I and II (OCI and OCII) show potential for controlling pests that utilize cysteine proteinases for protein digestion. To strengthen individual inhibitory range and achieve an additive effect in the overall efficiency of these proteins against pests, both cystatin genes were co-express...

  18. Co-expression as a convenient method for the production and purification of core histones in bacteria.

    PubMed

    Anderson, Megan; Huh, Joon H; Ngo, Thien; Lee, Alice; Hernandez, Genaro; Pang, Joy; Perkins, Jennifer; Dutnall, Robert N

    2010-08-01

    Co-expression offers an important strategy for producing multiprotein complexes for biochemical and biophysical studies. We have found that co-expression of histones H2A and H2B (from yeast, chicken or Drosophila) leads to production of soluble heterodimeric H2AH2B complexes. Drosophila histones H3 and H4 can also be produced as a soluble (H3H4)(2) heterotetrameric complex if they are co-expressed with the histone chaperone Asf1. The soluble H2AH2B and (H3H4)(2) can be purified by simple chromatographic techniques and have similar properties to endogenous histones. Our methods should facilitate histone production for studies of chromatin structure and regulatory proteins that interact with histones. We describe a simple strategy for constructing co-expression plasmids, based on the T7 RNA polymerase system, which is applicable to other systems. It offers several advantages for quickly creating plasmids to express two or more proteins and for testing different combinations of proteins for optimal complex production, solubility or activity. Copyright 2010 Elsevier Inc. All rights reserved.

  19. Frequent co-expression of EGFR and NeuGcGM3 ganglioside in cancer: it's potential therapeutic implications.

    PubMed

    Palomo, Addys González; Santana, Rancés Blanco; Pérez, Xiomara Escobar; Santana, Damián Blanco; Gabri, Mariano Rolando; Monzon, Kalet León; Pérez, Adriana Carr

    2016-10-01

    Interaction between epidermal growth factor receptor (EGFR) signaling with GM3 ganglioside expression has been previously described. However, little is known about EGFR and NeuGcGM3 co-expression in cancer patients and their therapeutic implications. In this paper, we evaluate the co-expression of EGFR and NeuGcGM3 ganglioside in tumors from 92 patients and in two spontaneous lung metastasis models of mice (Lewis lung carcinoma (3LL-D122) in C57BL/6 and mammary carcinoma (4T1) in BALB/c). As results, co-expression of EGFR and NeuGcGM3 ganglioside was frequently observed in 63 of 92 patients (68 %), independently of histological subtype. Moreover, EGFR is co-expressed with NeuGcGM3 ganglioside in the metastasis of 3LL-D122 and 4T1 murine models. Such dual expression appears to be therapeutically relevant, since combined therapy with mAbs against these two molecules synergistically increase the survival of mice treated. Overall, our results suggest that NeuGcGM3 and EGFR may coordinately contribute to the tumor cell biology and that therapeutic combinations against these two targets might be a valid strategy to explore.

  20. G-NEST: A gene neighborhood scoring tool to identify co-conserved, co-expressed genes

    USDA-ARS?s Scientific Manuscript database

    In previous studies, gene neighborhoods--spatial clusters of co-expressed genes in the genome--have been defined using arbitrary rules such as requiring adjacency, a minimum number of genes, a fixed window size, or a minimum expression level. In the current study, we developed a Gene Neighborhood Sc...

  1. Immunogenicity and protective efficacy of a tuberculosis DNA vaccine co-expressing pro-apoptotic caspase-3.

    PubMed

    Gartner, Tatiana; Romano, Marta; Suin, Vanessa; Kalai, Michaël; Korf, Hannelie; De Baetselier, Patrick; Huygen, Kris

    2008-03-10

    DNA vaccination is a potent means for inducing strong cell-mediated immune responses and protective immunity against viral, bacterial and parasite pathogens in rodents. In an attempt to increase cross-presentation through apoptosis, the DNA-encoding caspase-2 prodomain followed by wild-type or catalytically inactive mutated caspase-3 was inserted into a plasmid encoding the 32 kDa mycolyl transferase (Ag85A) from Mycobacterium tuberculosis. Transient transfection showed that the mutated caspase induced slow apoptosis, normal protein expression and NF-kappaB activation while wild-type caspase induced rapid apoptosis, lower protein expression and no NF-kappaB activation. Ag85A specific antibody production was increased by co-expressing the mutated and decreased by co-expressing the wild-type caspase. Vaccination with pro-apoptotic plasmids triggered more Ag85A specific IFN-gamma producing spleen cells, and more efficient IL-2 and IFN-gamma producing memory cells in spleen and lungs after M. tuberculosis challenge. Compared to DNA-encoding secreted Ag85A, vaccination with DNA co-expressing wild-type caspase increased protection after infection with M. tuberculosis, while vaccination with plasmid co-expressing mutated caspase was not protective, possibly due to the stimulation of IL-6, IL-10 and IL-17A production.

  2. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks.

    PubMed

    Sokolenko, Stanislav; George, Steve; Wagner, Andreas; Tuladhar, Anup; Andrich, Jonas M S; Aucoin, Marc G

    2012-01-01

    The baculovirus expression vector system (BEVS) is a versatile and powerful platform for protein expression in insect cells. With the ability to approach similar post-translational modifications as in mammalian cells, the BEVS offers a number of advantages including high levels of expression as well as an inherent safety during manufacture and of the final product. Many BEVS products include proteins and protein complexes that require expression from more than one gene. This review examines the expression strategies that have been used to this end and focuses on the distinguishing features between those that make use of single polycistronic baculovirus (co-expression) and those that use multiple monocistronic baculoviruses (co-infection). Three major areas in which researchers have been able to take advantage of co-expression/co-infection are addressed, including compound structure-function studies, insect cell functionality augmentation, and VLP production. The core of the review discusses the parameters of interest for co-infection and co-expression with time of infection (TOI) and multiplicity of infection (MOI) highlighted for the former and the choice of promoter for the latter. In addition, an overview of modeling approaches is presented, with a suggested trajectory for future exploration. The review concludes with an examination of the gaps that still remain in co-expression/co-infection knowledge and practice.

  3. Analysis of functional and pathway association of differential co-expressed genes: a case study in drug addiction.

    PubMed

    Li, Zi-hui; Liu, Yu-feng; Li, Ke-ning; Duanmu, Hui-zi; Chang, Zhi-qiang; Li, Zhen-qi; Zhang, Shan-zhen; Xu, Yan

    2012-02-01

    Drug addiction has been considered as a kind of chronic relapsing brain disease influenced by both genetic and environmental factors. At present, many causative genes and pathways related to diverse kinds of drug addiction have been discovered, while less attention has been paid to common mechanisms shared by different drugs underlying addiction. By applying a co-expression meta-analysis method to mRNA expression profiles of alcohol, cocaine, heroin addicted and normal samples, we identified significant gene co-expression pairs. As co-expression networks of drug group and control group constructed, associated function term pairs and pathway pairs reflected by co-expression pattern changes were discovered by integrating functional and pathway information respectively. The results indicated that respiratory electron transport chain, synaptic transmission, mitochondrial electron transport, signal transduction, locomotory behavior, response to amphetamine, negative regulation of cell migration, glucose regulation of insulin secretion, signaling by NGF, diabetes pathways, integration of energy metabolism, dopamine receptors may play an important role in drug addiction. In addition, the results can provide theory support for studies of addiction mechanisms.

  4. Modeling the effects of HER/ErbB1-3 co-expression on receptor dimerization and biological response

    SciTech Connect

    Shankaran, Harish; Wiley, H. S.; Resat, Haluk

    2006-06-01

    The human epidermal growth factor receptor (HER/ErbB) system comprises the epidermal growth factor receptor (EGFR/HER1) and three other homologues viz. HER2-4. This receptor system plays a critical role in cell proliferation and differentiation and receptor over-expression can be associated with poor prognosis in cancers of the epithelium. Here, we examine the effect of co-expressing varying levels of HER1-3 on the receptor dimerization patterns using a detailed kinetic model for ErbB heterodimerization and trafficking. Our results indicate that co-expression of EGFR with HER2 or HER3 biases signaling to the cell surface and retards signal down-regulation. In addition, simultaneous co-expression of HER1-3 leads to preferential formation of HER2-HER3 heterodimers, which are known to be potent inducers of cell growth and transformation. Analysis of the parameter dependencies in the model reveals that measurements of HER3 phosphorylation and HER2 internalization ratio may prove to be especially useful for the estimation of critical model parameters. Further, we examined the effect of receptor dimerization patterns on cell phenotype using a simple phenomenological model. Results indicate that co-expression of EGFR with HER2 and HER3 at low to moderate levels may enable cells to match the phenotype of a high HER2 expresser.

  5. CoGA: An R Package to Identify Differentially Co-Expressed Gene Sets by Analyzing the Graph Spectra.

    PubMed

    Santos, Suzana de Siqueira; Galatro, Thais Fernanda de Almeida; Watanabe, Rodrigo Akira; Oba-Shinjo, Sueli Mieko; Nagahashi Marie, Suely Kazue; Fujita, André

    2015-01-01

    Gene set analysis aims to identify predefined sets of functionally related genes that are differentially expressed between two conditions. Although gene set analysis has been very successful, by incorporating biological knowledge about the gene sets and enhancing statistical power over gene-by-gene analyses, it does not take into account the correlation (association) structure among the genes. In this work, we present CoGA (Co-expression Graph Analyzer), an R package for the identification of groups of differentially associated genes between two phenotypes. The analysis is based on concepts of Information Theory applied to the spectral distributions of the gene co-expression graphs, such as the spectral entropy to measure the randomness of a graph structure and the Jensen-Shannon divergence to discriminate classes of graphs. The package also includes common measures to compare gene co-expression networks in terms of their structural properties, such as centrality, degree distribution, shortest path length, and clustering coefficient. Besides the structural analyses, CoGA also includes graphical interfaces for visual inspection of the networks, ranking of genes according to their "importance" in the network, and the standard differential expression analysis. We show by both simulation experiments and analyses of real data that the statistical tests performed by CoGA indeed control the rate of false positives and is able to identify differentially co-expressed genes that other methods failed.

  6. Complex Reconstitution and Characterization by Combining Co-expression Techniques in Escherichia coli with High-Throughput.

    PubMed

    Vincentelli, Renaud; Romier, Christophe

    2016-01-01

    Single protein expression technologies have strongly benefited from the Structural Genomics initiatives that have introduced parallelization at the laboratory level. Specifically, the developments made in the wake of these initiatives have revitalized the use of Escherichia coli as major host for heterologous protein expression. In parallel to these improvements for single expression, technologies for complex reconstitution by co-expression in E. coli have been developed. Assessments of these co-expression technologies have highlighted the need for combinatorial experiments requiring automated protocols. These requirements can be fulfilled by adapting the high-throughput approaches that have been developed for single expression to the co-expression technologies. Yet, challenges are laying ahead that further need to be addressed and that are only starting to be taken into account in the case of single expression. These notably include the biophysical characterization of the samples at the small-scale level. Specifically, these approaches aim at discriminating the samples at an early stage of their production based on various biophysical criteria leading to cost-effectiveness and time-saving. This chapter addresses these various issues to provide the reader with a broad and comprehensive overview of complex reconstitution and characterization by co-expression in E. coli.

  7. Novel role of ZmaNAC36 in co-expression of starch synthetic genes in maize endosperm.

    PubMed

    Zhang, Junjie; Chen, Jiang; Yi, Qiang; Hu, Yufeng; Liu, Hanmei; Liu, Yinghong; Huang, Yubi

    2014-02-01

    Starch is an essential commodity that is widely used as food, feed, fuel and in industry. However, its mechanism of synthesis is not fully understood, especially in terms of the expression and regulation of the starch synthetic genes. It was reported that the starch synthetic genes were co-expressed during maize endosperm development; however, the mechanism of the co-expression was not reported. In this paper, the ZmaNAC36 gene was amplified by homology-based cloning, and its expression vector was constructed for transient expression. The nuclear localization, transcriptional activation and target sites of the ZmaNAC36 protein were identified. The expression profile of ZmaNAC36 showed that it was strongly expressed in the maize endosperm and was co-expressed with most of the starch synthetic genes. Moreover, the expressions of many starch synthesis genes in the endosperm were upregulated when ZmaNAC36 was transiently overexpressed. All our results indicated that NAC36 might be a transcription factor and play a potential role in the co-expression of starch synthetic genes in the maize endosperm.

  8. Co-Expression Analysis of Blood Cell Genome Expression to Preliminary Investigation of Regulatory Mechanisms in Uremia

    PubMed Central

    Cheng, Liu; Yonggui, Wu

    2017-01-01

    Background Uremia involves a series of clinical manifestations and is a common syndrome that occurs in nearly all end-stage kidney diseases. However, the exact genetic and/or molecular mechanisms that underlie uremia remain poorly understood. Material/Methods In this case-control study, we analyzed whole-genome microarray of 75 uremia patients and 20 healthy controls to investigate changes in gene expression and cellular mechanisms relevant to uremia. Gene co-expression network analysis was performed to construct co-expression networks using differentially expressed genes (DEGs) in uremia. We then determined hub models of co-expressed gene networks by MCODE, and we used miRNA enrichment analysis to detect key miRNAs in each hub module. Results We found nine co-expressed hub modules implicated in uremia. These modules were enriched in specific biological functions, including “proteolysis”, “membrane-enclosed lumen”, and “apoptosis”. Finally, miRNA enrichment analysis to detect key miRNAs in each hub module found 15 miRNAs that were specifically targeted to uremia-related hub modules. Of these, miRNA-21-3p and miRNA-210-3p have been identified in other studies as being important for uremia. Conclusions In summary, our study connected biological functions, genes, and miRNAs that underpin the network modules that can be used to elucidate the molecular mechanisms involved in uremia. PMID:28050009

  9. Genetic architecture of wood properties based on association analysis and co-expression networks in white spruce.

    PubMed

    Lamara, Mebarek; Raherison, Elie; Lenz, Patrick; Beaulieu, Jean; Bousquet, Jean; MacKay, John

    2016-04-01

    Association studies are widely utilized to analyze complex traits but their ability to disclose genetic architectures is often limited by statistical constraints, and functional insights are usually minimal in nonmodel organisms like forest trees. We developed an approach to integrate association mapping results with co-expression networks. We tested single nucleotide polymorphisms (SNPs) in 2652 candidate genes for statistical associations with wood density, stiffness, microfibril angle and ring width in a population of 1694 white spruce trees (Picea glauca). Associations mapping identified 229-292 genes per wood trait using a statistical significance level of P < 0.05 to maximize discovery. Over-representation of genes associated for nearly all traits was found in a xylem preferential co-expression group developed in independent experiments. A xylem co-expression network was reconstructed with 180 wood associated genes and several known MYB and NAC regulators were identified as network hubs. The network revealed a link between the gene PgNAC8, wood stiffness and microfibril angle, as well as considerable within-season variation for both genetic control of wood traits and gene expression. Trait associations were distributed throughout the network suggesting complex interactions and pleiotropic effects. Our findings indicate that integration of association mapping and co-expression networks enhances our understanding of complex wood traits. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  10. Prognostic values of ETS-1, MMP-2 and MMP-9 expression and co-expression in breast cancer patients.

    PubMed

    Puzovic, V; Brcic, I; Ranogajec, I; Jakic-Razumovic, J

    2014-01-01

    The aim of this study was to analyse expression of ETS-1 protein and two gelatinases (MMP-2 and MMP-9) and their possible prognostic value in breast carcinoma patients, as well as correlation of their expression with other known prognostic factors such as tumor size, grade, vascular invasion, steroid receptor values, HER2 values and proliferative index. The expression of MMP-2, MMP-9 and ETS-1 was immunohistochemicaly analysed in 121 consecutive primary breast carcinoma patients who underwent surgery at the Clinical Hospital Centre Zagreb during 2002. Three representative areas from each tumor paraffin blocks were taken and arranged on a recipient paraffin block with predefined coordinates for simultaneous analyses of multiple tissue samples (TMA). ETS-1, MMP-2 and MMP-9 expression and co-expression were correlated with other clinico-pathological parameters and based on the available clinical follow up data survival analysis was performed. The ETS-1 protein is found to be expressed in tumor cell nuclei and cytoplasm as well as in stromal lymphocytes, fibroblasts and endothelial cells. MMP-2 and MMP-9 were found to be expressed in cytoplasm of both, tumor and stromal cells. For our analysis only tumor cell expression was used for statistical analysis. We found 56,2% ETS-1 positive tumors, 77,7% were MMP-2 positive, and MMP-9 was expressed in 90% of primary breast carcinomas. There were no significant correlations between MMP-s expression and other patohistological prognostic factors, but expression of ETS-1 was significantly correlated with higher tumor size and grade, as well as with negative steroid receptors. Co-expression of MMP-2, MMP-9 and ETS-1 was found in 40,5 % of tumors, and more commonly was found in tumors larger than 2 cm, high grade tumors, and steroid receptor negative tumors. In univariate analysis, statistically significant negative impact on overall survival (OS) had tumor size, nuclear and tumor grade, ETS-1 expression in tumor cells, co-expression

  11. Three TF Co-expression Modules Regulate Pressure-Overload Cardiac Hypertrophy in Male Mice.

    PubMed

    Chang, Yao-Ming; Ling, Li; Chang, Ya-Ting; Chang, Yu-Wang; Li, Wen-Hsiung; Shih, Arthur Chun-Chieh; Chen, Chien-Chang

    2017-08-08

    Pathological cardiac hypertrophy, a dynamic remodeling process, is a major risk factor for heart failure. Although a number of key regulators and related genes have been identified, how the transcription factors (TFs) dynamically regulate the associated genes and control the morphological and electrophysiological changes during the hypertrophic process are still largely unknown. In this study, we obtained the time-course transcriptomes at five time points in four weeks from male murine hearts subjected to transverse aorta banding surgery. From a series of computational analyses, we identified three major co-expression modules of TF genes that may regulate the gene expression changes during the development of cardiac hypertrophy in mice. After pressure overload, the TF genes in Module 1 were up-regulated before the occurrence of significant morphological changes and one week later were down-regulated gradually, while those in Modules 2 and 3 took over the regulation as the heart size increased. Our analyses revealed that the TF genes up-regulated at the early stages likely initiated the cascading regulation and most of the well-known cardiac miRNAs were up-regulated at later stages for suppression. In addition, the constructed time-dependent regulatory network reveals some TFs including Egr2 as new candidate key regulators of cardiovascular-associated (CV) genes.

  12. Co-expression and interaction of cubilin and megalin in the adult male rat reproductive system.

    PubMed

    Van Praet, Oliver; Argraves, W Scott; Morales, Carlos R

    2003-02-01

    Cubilin is a peripheral membrane protein that cooperates with the endocytic receptor megalin to mediate endocytosis of ligands in various polarized epithelia. Megalin is expressed in the male reproductive tract where it has been implicated in the process of sperm membrane remodeling. A potential role for cubilin in the male reproductive tract has not been explored. Using RT-PCR, we found that cubilin and megalin mRNAs are expressed in the efferent ducts, corpus and cauda epididymis, and proximal and distal vas deferens. Immunohistological analysis revealed that cubilin was expressed in nonciliated cells of the efferent ducts, principal cells of the corpus and cauda epididymis and vas deferens. Immunogold EM showed cubilin in endocytic pits, endocytic vesicles, and endosomes of these cells. The expression profile of cubilin in the male reproductive tract was coincident with that of megalin except in principal cells of the caput epididymis. Double immunogold labeling showed that cubilin and megalin co-localized within the endocytic apparatus and recycling vesicles of efferent duct cells. Neither protein was found in lysosomes. Injection of RAP, an antagonist of megalin interaction with cubilin, reduced the level of intracellular cubilin in cells of the efferent ducts and vas deferens. In conclusion, cubilin and megalin are co-expressed in cells of the epididymis and vas deferens and the endocytosis of cubilin in these tissues is dependent on megalin. Together, these findings highlight the potential for a joint endocytic role for cubilin and megalin in the male reproductive tract.

  13. Understanding developmental and adaptive cues in pine through metabolite profiling and co-expression network analysis

    PubMed Central

    Cañas, Rafael A.; Canales, Javier; Muñoz-Hernández, Carmen; Granados, Jose M.; Ávila, Concepción; García-Martín, María L.; Cánovas, Francisco M.

    2015-01-01

    Conifers include long-lived evergreen trees of great economic and ecological importance, including pines and spruces. During their long lives conifers must respond to seasonal environmental changes, adapt to unpredictable environmental stresses, and co-ordinate their adaptive adjustments with internal developmental programmes. To gain insights into these responses, we examined metabolite and transcriptomic profiles of needles from naturally growing 25-year-old maritime pine (Pinus pinaster L. Aiton) trees over a year. The effect of environmental parameters such as temperature and rain on needle development were studied. Our results show that seasonal changes in the metabolite profiles were mainly affected by the needles’ age and acclimation for winter, but changes in transcript profiles were mainly dependent on climatic factors. The relative abundance of most transcripts correlated well with temperature, particularly for genes involved in photosynthesis or winter acclimation. Gene network analysis revealed relationships between 14 co-expressed gene modules and development and adaptation to environmental stimuli. Novel Myb transcription factors were identified as candidate regulators during needle development. Our systems-based analysis provides integrated data of the seasonal regulation of maritime pine growth, opening new perspectives for understanding the complex regulatory mechanisms underlying conifers’ adaptive responses. Taken together, our results suggest that the environment regulates the transcriptome for fine tuning of the metabolome during development. PMID:25873654

  14. Weighted gene co-expression based biomarker discovery for psoriasis detection.

    PubMed

    Sundarrajan, Sudharsana; Arumugam, Mohanapriya

    2016-11-15

    Psoriasis is a chronic inflammatory disease of the skin with an unknown aetiology. The disease manifests itself as red and silvery scaly plaques distributed over the scalp, lower back and extensor aspects of the limbs. After receiving scant consideration for quite a few years, psoriasis has now become a prominent focus for new drug development. A group of closely connected and differentially co-expressed genes may act in a network and may serve as molecular signatures for an underlying phenotype. A weighted gene coexpression network analysis (WGCNA), a system biology approach has been utilized for identification of new molecular targets for psoriasis. Gene coexpression relationships were investigated in 58 psoriatic lesional samples resulting in five gene modules, clustered based on the gene coexpression patterns. The coexpression pattern was validated using three psoriatic datasets. 10 highly connected and informative genes from each module was selected and termed as psoriasis specific hub signatures. A random forest based binary classifier built using the expression profiles of signature genes robustly distinguished psoriatic samples from the normal samples in the validation set with an accuracy of 0.95 to 1. These signature genes may serve as potential candidates for biomarker discovery leading to new therapeutic targets. WGCNA, the network based approach has provided an alternative path to mine out key controllers and drivers of psoriasis. The study principle from the current work can be extended to other pathological conditions.

  15. Genetic Network Inference: From Co-Expression Clustering to Reverse Engineering

    NASA Technical Reports Server (NTRS)

    Dhaeseleer, Patrik; Liang, Shoudan; Somogyi, Roland

    2000-01-01

    Advances in molecular biological, analytical, and computational technologies are enabling us to systematically investigate the complex molecular processes underlying biological systems. In particular, using high-throughput gene expression assays, we are able to measure the output of the gene regulatory network. We aim here to review datamining and modeling approaches for conceptualizing and unraveling the functional relationships implicit in these datasets. Clustering of co-expression profiles allows us to infer shared regulatory inputs and functional pathways. We discuss various aspects of clustering, ranging from distance measures to clustering algorithms and multiple-duster memberships. More advanced analysis aims to infer causal connections between genes directly, i.e., who is regulating whom and how. We discuss several approaches to the problem of reverse engineering of genetic networks, from discrete Boolean networks, to continuous linear and non-linear models. We conclude that the combination of predictive modeling with systematic experimental verification will be required to gain a deeper insight into living organisms, therapeutic targeting, and bioengineering.

  16. Analysis of the dynamic co-expression network of heart regeneration in the zebrafish

    NASA Astrophysics Data System (ADS)

    Rodius, Sophie; Androsova, Ganna; Götz, Lou; Liechti, Robin; Crespo, Isaac; Merz, Susanne; Nazarov, Petr V.; de Klein, Niek; Jeanty, Céline; González-Rosa, Juan M.; Muller, Arnaud; Bernardin, Francois; Niclou, Simone P.; Vallar, Laurent; Mercader, Nadia; Ibberson, Mark; Xenarios, Ioannis; Azuaje, Francisco

    2016-05-01

    The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration.

  17. Analysis of the dynamic co-expression network of heart regeneration in the zebrafish

    PubMed Central

    Rodius, Sophie; Androsova, Ganna; Götz, Lou; Liechti, Robin; Crespo, Isaac; Merz, Susanne; Nazarov, Petr V.; de Klein, Niek; Jeanty, Céline; González-Rosa, Juan M.; Muller, Arnaud; Bernardin, Francois; Niclou, Simone P.; Vallar, Laurent; Mercader, Nadia; Ibberson, Mark; Xenarios, Ioannis; Azuaje, Francisco

    2016-01-01

    The zebrafish has the capacity to regenerate its heart after severe injury. While the function of a few genes during this process has been studied, we are far from fully understanding how genes interact to coordinate heart regeneration. To enable systematic insights into this phenomenon, we generated and integrated a dynamic co-expression network of heart regeneration in the zebrafish and linked systems-level properties to the underlying molecular events. Across multiple post-injury time points, the network displays topological attributes of biological relevance. We show that regeneration steps are mediated by modules of transcriptionally coordinated genes, and by genes acting as network hubs. We also established direct associations between hubs and validated drivers of heart regeneration with murine and human orthologs. The resulting models and interactive analysis tools are available at http://infused.vital-it.ch. Using a worked example, we demonstrate the usefulness of this unique open resource for hypothesis generation and in silico screening for genes involved in heart regeneration. PMID:27241320

  18. Exploring timing activation of functional pathway based on differential co-expression analysis in preimplantation embryogenesis

    PubMed Central

    Wang, Shanshan; Yang, Lei; Liao, Mingzhi; Wei, Zhuying; Bai, Chunling; Li, Guangpeng

    2016-01-01

    Recent genome-wide omics studies have confirmed the early embryogenesis strictly dependent on the rigorous spatiotemporal activation and multilevel regulation. However, the full effect of functional pathway was not considered. To obtain complete understanding of the gene activation during early development, we performed systematic comparisons based on differential co-expression analysis for bovine preimplantation embryo development (PED). The results confirmed that the functional pathways actively transcribes as early as the 2-cell and 4-cell waves, which Basal transcription factor, Endocytosis and Spliceosome pathway can represent first signs of embryonic activity. Endocytosis act as one of master activators for uncovering a series of successive waves of maternal pioneer signal regulator with the help of Spliceosome complex. Furthermore, the results showed that pattern recognition receptors began to perform its essential function at 4-cell stage, which might be needed to coordinate the later major activation. And finally, our work presented a probable dynamic landscape of key functional pathways for embryogenesis. A clearer understanding of early embryo development will be helpful for Assisted Reproductive Technology (ART) and Regenerative Medicine (RM). PMID:27705919

  19. Different substrate regimes determine transcriptional profiles and gene co-expression in Methanosarcina barkeri (DSM 800).

    PubMed

    Lin, Qiang; Fang, Xiaoyu; Ho, Adrian; Li, Jiaying; Yan, Xuefeng; Tu, Bo; Li, Chaonan; Li, Jiabao; Yao, Minjie; Li, Xiangzhen

    2017-08-21

    Methanosarcina barkeri (DSM 800) is a metabolically versatile methanogen and shows distinct metabolic status under different substrate regimes. However, the mechanisms underlying distinct transcriptional profiles under different substrate regimes remain elusive. In this study, based on transcriptional analysis, the growth performances and gene expressions of M. barkeri fed on acetate, H2 + CO2, and methanol, respectively, were investigated. M. barkeri showed higher growth performances under methanol, followed by H2 + CO2 and acetate, which corresponded well with the variations of gene expressions. The α diversity (evenness) of gene expressions was highest under the acetate regime, followed by H2 + CO2 and methanol, and significantly and negatively correlated with growth performances. The gene co-expression analysis showed that "Energy production and conversion," "Coenzyme transport and metabolism," and "Translation, ribosomal structure, and biogenesis" showed deterministic cooperation patterns of intra- and inter-functional classes. However, "Posttranslational modification, protein turnover, chaperones" showed exclusion with other functional classes. The gene expressions and especially the relationships among them potentially drove the shifts of metabolic status under different substrate regimes. Consequently, this study revealed the diversity-related ecological strategies that a high α diversity probably provided more fitness and tolerance under natural environments and oppositely a low α diversity strengthened some specific physiological functions, as well as the co-responses of gene expressions to different substrate regimes.

  20. Ligand Similarity Complements Sequence, Physical Interaction, and Co-Expression for Gene Function Prediction

    PubMed Central

    Shoichet, Brian K.; Gillis, Jesse

    2016-01-01

    The expansion of protein-ligand annotation databases has enabled large-scale networking of proteins by ligand similarity. These ligand-based protein networks, which implicitly predict the ability of neighboring proteins to bind related ligands, may complement biologically-oriented gene networks, which are used to predict functional or disease relevance. To quantify the degree to which such ligand-based protein associations might complement functional genomic associations, including sequence similarity, physical protein-protein interactions, co-expression, and disease gene annotations, we calculated a network based on the Similarity Ensemble Approach (SEA: sea.docking.org), where protein neighbors reflect the similarity of their ligands. We also measured the similarity with functional genomic networks over a common set of 1,131 genes, and found that the networks had only small overlaps, which were significant only due to the large scale of the data. Consistent with the view that the networks contain different information, combining them substantially improved Molecular Function prediction within GO (from AUROC~0.63–0.75 for the individual data modalities to AUROC~0.8 in the aggregate). We investigated the boost in guilt-by-association gene function prediction when the networks are combined and describe underlying properties that can be further exploited. PMID:27467773

  1. DynOmics to identify delays and co-expression patterns across time course experiments

    PubMed Central

    Straube, Jasmin; Huang, Bevan Emma; Cao, Kim-Anh Lê

    2017-01-01

    Dynamic changes in biological systems can be captured by measuring molecular expression from different levels (e.g., genes and proteins) across time. Integration of such data aims to identify molecules that show similar expression changes over time; such molecules may be co-regulated and thus involved in similar biological processes. Combining data sources presents a systematic approach to study molecular behaviour. It can compensate for missing data in one source, and can reduce false positives when multiple sources highlight the same pathways. However, integrative approaches must accommodate the challenges inherent in ‘omics’ data, including high-dimensionality, noise, and timing differences in expression. As current methods for identification of co-expression cannot cope with this level of complexity, we developed a novel algorithm called DynOmics. DynOmics is based on the fast Fourier transform, from which the difference in expression initiation between trajectories can be estimated. This delay can then be used to realign the trajectories and identify those which show a high degree of correlation. Through extensive simulations, we demonstrate that DynOmics is efficient and accurate compared to existing approaches. We consider two case studies highlighting its application, identifying regulatory relationships across ‘omics’ data within an organism and for comparative gene expression analysis across organisms. PMID:28065937

  2. Nearest hyperplane distance neighbor clustering algorithm applied to gene co-expression analysis in Alzheimer's disease.

    PubMed

    Pasluosta, Cristian F; Dua, Prerna; Lukiw, Walter J

    2011-01-01

    Microarray analysis can contribute considerably to the understanding of biologically significant cellular mechanisms that yield novel information regarding co-regulated sets of gene patterns. Clustering is one of the most popular tools for analyzing DNA microarray data. In this paper, we present an unsupervised clustering algorithm based on the K-local hyperplane distance nearest-neighbor classifier (HKNN). We adapted the well-known nearest neighbor clustering algorithm for use with hyperplane distance. The result is a simple and computationally inexpensive unsupervised clustering algorithm that can be applied to high-dimensional data. It has been reported that the NFkB1 gene is progressively over-expressed in moderate-to-severe Alzheimer's disease (AD) cases, and that the NF-kB complex plays a key role in neuroinflammatory responses in AD pathogenesis. In this study, we apply the proposed clustering algorithm to identify co-expression patterns with the NFkB1 in gene expression data from hippocampal tissue samples. Finally, we validate our experiments with biomedical literature search.

  3. Co-expression of a heat shock transcription factor to improve conformational quality of recombinant protein in Escherichia coli.

    PubMed

    Hsu, Shao-Yen; Lin, Yu-Sheng; Li, Shu-Jyuan; Lee, Wen-Chien

    2014-09-01

    A co-expression system was established in Escherichia coli for enhancing the cellular expression of heat shock transcription factor, sigma 32 (σ(32)). A Shine-Dalgarno sequence and the rpoH gene of E. coli, which encodes σ(32), were cloned into a bacterial plasmid containing a gene fusion encoding a doubly tagged N-acetyl-d-neuraminic acid aldolase (GST-Neu5Ac aldolase-5R). After the IPTG induction, a substantially higher level of sigma 32 was observed up to 3 h in the co-expression cells, but an enhancement in the solubility of target protein was manifest only in the first hour. Nevertheless, the co-expression of sigma 32 led to higher level of Neu5Ac aldolase enzymatic activity in both the soluble and insoluble (inclusion body) fractions. The Neu5Ac aldolase activity of the supernatant from the lysate of cells co-expressing GST-Neu5Ac aldolase-5R and recombinant σ(32) was 3.4-fold higher at 3 h postinduction than that in cells overexpressing GST-Neu5Ac aldolase-5R in the absence of recombinantly expressed σ(32). The results of acrylamide quenching indicated that the conformational quality of the fusion protein was improved by the co-expression of recombinant σ(32). Thus, the increased level of intracellular σ(32) might have created favorable conditions for the proper folding of recombinant proteins through the cooperative effects of chaperones/heat shock proteins expressed by the E. coli host, which resulted in smaller inclusion bodies, improved conformational quality and a higher specific activity of the overexpressed GST-Neu5Ac aldolase-5R protein. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Severe atrophy of slow myofibers in aging muscle is concealed by myosin heavy chain co-expression.

    PubMed

    Purves-Smith, Fennigje M; Solbak, Nathan M; Rowan, Sharon L; Hepple, Russell T

    2012-12-01

    Although slow myofibers are considered less susceptible to atrophy with aging, slow fiber atrophy may have been underestimated previously. First, the marked atrophy of the aging rat soleus (Sol) muscle cannot be explained by the atrophy of only the fast fibers, due to their low abundance. Second, the increase in small fibers co-expressing both fast and slow myosin heavy chains (MHC) in the aging rat Sol is proportional to a decline in pure MHC slow fibers (Snow et al., 2005), suggesting that these MHC co-expressing fibers represent formerly pure slow fibers. Thus, we examined the size and proportion of MHC slow, MHC fast, and MHC fast-slow co-expressing fibers in the Sol and mixed region of the gastrocnemius (Gas) muscle in young adult (YA) and senescent (SEN) rats. Our results suggest that formerly pure MHC slow fibers are the source of MHC co-expressing fibers with aging in both muscle regions. Accounting for the atrophy of these fibers in calculating MHC slow fiber atrophy with aging revealed that MHC slow fibers atrophy on average by 40% in the Sol and by 38% in the mixed Gas, values which are similar to the 60% and 31% atrophy of pure MHC fast fibers in the Sol and mixed Gas, respectively. Probing for the atrophy-dependent ubiquitin ligase, MAFbx (atrogin 1), it was suggested that former slow fibers acquire atrophy potential via the up-regulation of MAFbx coincident with the co-expression of fast MHC. These results redefine the impact of aging on slow fiber atrophy, and emphasize the necessity of addressing the atrophy of fast and slow fibers in seeking treatments for aging muscle atrophy.

  5. Effects of co-expression of molecular chaperones on heterologous soluble expression of the cold-active lipase Lip-948.

    PubMed

    Shuo-shuo, Cui; Xue-zheng, Lin; Ji-hong, Shen

    2011-06-01

    The cold-active lipase gene Lip-948, cloned from Antarctic psychrotrophic bacterium Psychrobacter sp. G, was ligated into plasmid pColdI. The recombinant plasmid pColdI+Lip-948 was then transformed into Escherichia coli BL21. SDS-PAGE analysis showed that there was substantive expression of lipase LIP-948 in E. coli with a yield of about 39% of total protein, most of which was present in the inclusion body. The soluble protein LIP-948 only consisted of 1.7% of total LIP-948 with a specific activity of 66.51U/mg. Co-expression of molecular chaperones with the pColdI+Lip-948 were also carried out. The results showed that co-expression of different chaperones led to an increase or decrease in the formation of soluble LIP-948 in varying degrees. Co-expression of pColdI+Lip-948 with chaperone pTf16 and pGro7 decreased the amount of soluble LIP-948, while the soluble expression was enhanced when pColdI+Lip-948 was co-expressed with "chaperone team" plasmids (pKJE7, pG-Tf2, pG-KJE8), respectively. LIP-948 was most efficiently expressed in soluble form when it was co-expressed with pG-KJE8, which was up to 19.8% of intracellular soluble proteins and with a specific activity of 108.77U/mg. The soluble LIP-948 was purified with amylase affinity chromatography and its enzymatic characters were studied. The optimal temperature and pH of LIP-948 was 35°C and 8, respectively. The activity of LIP-948 dropped dramatically after incubation at 50°C for 15min and was enhanced by Sr(2+), Ca(2+). It preferentially hydrolyzed 4-nitrophenyl esters with the shorter carbon chain. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Co-expression of wild-type and mutant olfactory cyclic nucleotide-gated channels: restoration of the native sensitivity to Ca(2+) and Mg(2+) blockage.

    PubMed

    Picco, C; Gavazzo, P; Menini, A

    2001-08-08

    In the pore of homomeric cyclic nucleotide-gated (CNG) channels, Ca(2+) and Mg(2+) bind to a set of glutamate residues, which in the bovine olfactory CNG channel are located at position 340. However, native CNG channels from olfactory sensory neurons are composed by the assembly of three different types of subunits, each having a different residue -- glutamate, aspartate or glycine -- at the position corresponding to the binding site for external Ca(2+) and Mg(2+). We co-expressed the wild-type principal alpha subunit with its mutants E340G and E340D in different combinations in Xenopus laevis oocytes, and measured Ca(2+) and Mg(2+) blockage in excised outside-out membrane patches. The comparison between our results and data from native olfactory CNG channels indicates that the presence of all three residues -- glutamate, aspartate and glycine -- in the different subunits, is necessary to restore the sensitivity to external Ca(2+) and Mg(2+) measured in native channels.

  7. Assessing the utility of gene co-expression stability in combination with correlation in the analysis of protein-protein interaction networks

    PubMed Central

    2011-01-01

    Background Gene co-expression, in the form of a correlation coefficient, has been valuable in the analysis, classification and prediction of protein-protein interactions. However, it is susceptible to bias from a few samples having a large effect on the correlation coefficient. Gene co-expression stability is a means of quantifying this bias, with high stability indicating robust, unbiased co-expression correlation coefficients. We assess the utility of gene co-expression stability as an additional measure to support the co-expression correlation in the analysis of protein-protein interaction networks. Results We studied the patterns of co-expression correlation and stability in interacting proteins with respect to their interaction promiscuity, levels of intrinsic disorder, and essentiality or disease-relatedness. Co-expression stability, along with co-expression correlation, acts as a better classifier of hub proteins in interaction networks, than co-expression correlation alone, enabling the identification of a class of hubs that are functionally distinct from the widely accepted transient (date) and obligate (party) hubs. Proteins with high levels of intrinsic disorder have low co-expression correlation and high stability with their interaction partners suggesting their involvement in transient interactions, except for a small group that have high co-expression correlation and are typically subunits of stable complexes. Similar behavior was seen for disease-related and essential genes. Interacting proteins that are both disordered have higher co-expression stability than ordered protein pairs. Using co-expression correlation and stability, we found that transient interactions are more likely to occur between an ordered and a disordered protein while obligate interactions primarily occur between proteins that are either both ordered, or disordered. Conclusions We observe that co-expression stability shows distinct patterns in structurally and functionally

  8. Retinol (Vitamin A) Increases α-Synuclein, β-Amyloid Peptide, Tau Phosphorylation and RAGE Content in Human SH-SY5Y Neuronal Cell Line.

    PubMed

    Kunzler, Alice; Kolling, Eduardo Antônio; da Silva-Jr, Jeferson Delgado; Gasparotto, Juciano; de Bittencourt Pasquali, Matheus Augusto; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens

    2017-05-11

    Retinoids (vitamin A and derivatives) are recognized as essential factors for central nervous system (CNS) development. Retinol (vitamin A) also was postulated to be a major antioxidant component of diet as it modulates reactive species (RS) production and oxidative stress in biological systems. Oxidative stress plays a major role either in pathogenesis or development of neurodegenerative diseases, or even in both. Here we investigate the role of retinol supplementation to human neuron-derived SH-SY5Y cells over RS production and biochemical markers associated to neurodegenerative diseases expressed at neuronal level in Parkinson's disease and Alzheimer's disease: α-synuclein, β-amyloid peptide, tau phosphorylation and RAGE. Retinol treatment (24 h) impaired cell viability and increased intracellular RS production at the highest concentrations (7 up to 20 µM). Antioxidant co-treatment (Trolox 100 µM) rescued cell viability and inhibited RS production. Furthermore, retinol (10 µM) increased the levels of α-synuclein, tau phosphorylation at Ser396, β-amyloid peptide and RAGE. Co-treatment with antioxidant Trolox inhibited the increased in RAGE, but not the effect of retinol on α-synuclein, tau phosphorylation and β-amyloid peptide accumulation. These data indicate that increased availability of retinol to neurons at levels above the cellular physiological concentrations may induce deleterious effects through diverse mechanisms, which include oxidative stress but also include RS-independent modulation of proteins associated to progression of neuronal cell death during the course of neurodegenerative diseases.

  9. NLRP3 inflammasome activation in macrophage cell lines by prion protein fibrils as the source of IL-1β and neuronal toxicity

    PubMed Central

    Hafner-Bratkovič, Iva; Benčina, Mojca; Fitzgerald, Katherine A.; Golenbock, Douglas; Jerala, Roman

    2012-01-01

    Prion diseases are fatal transmissible neurodegenerative diseases, characterized by aggregation of the pathological form of prion protein, spongiform degeneration, neuronal loss and activation of astrocytes and microglia. Microglia can clear prion plaques but on the other hand cause neuronal death via release of neurotoxic species. Elevated expression of the proinflammatory cytokine IL-1β has been observed in brains affected by several prion diseases and IL-1R-deficiency significantly prolonged the onset of the neurodegeneration in mice. We show that microglial cells stimulated by prion protein (PrP) fibrils induced neuronal toxicity. Microglia and macrophages release IL-1β upon stimulation by PrP fibrils, which depends on the NLRP3 inflammasome. Activation of NLRP3 inflammasome by PrP fibrils requires depletion of intracellular K+ and requires phagocytosis of PrP fibrils and consecutive lysosome destabilization. Among the well-defined molecular forms of PrP the strongest NLRP3 activation was observed by fibrils, followed by aggregates, while neither native monomeric nor oligomeric PrP were able to activate the NLRP3 inflammasome. Our results together with previous studies on IL-1R-deficient mice suggest the IL-1 signaling pathway as the perspective target for the therapy of prion disease. PMID:22926439

  10. 17beta-estradiol at physiological concentrations augments Ca(2+) -activated K+ currents via estrogen receptor beta in the gonadotropin-releasing hormone neuronal cell line GT1-7.

    PubMed

    Nishimura, Ichiro; Ui-Tei, Kumiko; Saigo, Kaoru; Ishii, Hirotaka; Sakuma, Yasuo; Kato, Masakatsu

    2008-02-01

    Estrogens play essential roles in the neuroendocrine control of reproduction. In the present study, we focused on the effects of 17beta-estradiol (E2) on the K(+) currents that regulate neuronal cell excitability and carried out perforated patch-clamp experiments with the GnRH-secreting neuronal cell line GT1-7. We revealed that a 3-d incubation with E2 at physiological concentrations (100 pm to 1 nm) augmented Ca(2+)-activated K(+) [K(Ca)] currents without influencing Ca(2+)-insensitive voltage-gated K(+) currents in GT1-7 cells. Acute application of E2 (1 nm) had no effect on the either type of K(+) current. The augmentation was completely blocked by an estrogen receptor (ER) antagonist, ICI-182,780. An ERbeta-selective agonist, 2,3-bis(4-hydroxyphenyl)-propionitrile, augmented the K(Ca) currents, although an ERalpha-selective agonist, 4,4',4''-[4-propyl-(1H)-pyrazole-1,3,5-triyl]tris-phenol, had no effect. Knockdown of ERbeta by means of RNA interference blocked the effect of E2 on the K(Ca) currents. Furthermore, semiquantitative RT-PCR analysis revealed that the levels of BK channel subunit mRNAs for alpha and beta4 were significantly increased by incubating cells with 300 pm E2 for 3 d. In conclusion, E2 at physiological concentrations augments K(Ca) currents through ERbeta in the GT1-7 GnRH neuronal cell line and increases the expression of the BK channel subunit mRNAs, alpha and beta4.

  11. SLC9A9 Co-expression modules in autism-associated brain regions.

    PubMed

    Patak, Jameson; Hess, Jonathan L; Zhang-James, Yanli; Glatt, Stephen J; Faraone, Stephen V

    2016-07-21

    SLC9A9 is a sodium hydrogen exchanger present in the recycling endosome and highly expressed in the brain. It is implicated in neuropsychiatric disorders, including autism spectrum disorders (ASDs). Little research concerning its gene expression patterns and biological pathways has been conducted. We sought to investigate its possible biological roles in autism-associated brain regions throughout development. We conducted a weighted gene co-expression network analysis on RNA-seq data downloaded from Brainspan. We compared prenatal and postnatal gene expression networks for three ASD-associated brain regions known to have high SLC9A9 gene expression. We also performed an ASD-associated single nucleotide polymorphism enrichment analysis and a cell signature enrichment analysis. The modules showed differences in gene constituents (membership), gene number, and connectivity throughout time. SLC9A9 was highly associated with immune system functions, metabolism, apoptosis, endocytosis, and signaling cascades. Gene list comparison with co-immunoprecipitation data was significant for multiple modules. We found a disproportionately high autism risk signal among genes constituting the prenatal hippocampal module. The modules were enriched with astrocyte and oligodendrocyte markers. SLC9A9 is potentially involved in the pathophysiology of ASDs. Our investigation confirmed proposed functions for SLC9A9, such as endocytosis and immune regulation, while also revealing potential roles in mTOR signaling and cell survival.. By providing a concise molecular map and interactions, evidence of cell type and implicated brain regions we hope this will guide future research on SLC9A9. Autism Res 2016. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  12. lncRNA co-expression network model for the prognostic analysis of acute myeloid leukemia

    PubMed Central

    Pan, Jia-Qi; Zhang, Yan-Qing; Wang, Jing-Hua; Xu, Ping; Wang, Wei

    2017-01-01

    Acute myeloid leukemia (AML) is a highly heterogeneous hematologic malignancy with great variability of prognostic behaviors. Previous studies have reported that long non-coding RNAs (lncRNAs) play an important role in AML and may thus be used as potential prognostic biomarkers. However, thus use of lncRNAs as prognostic biomarkers in AML and their detailed mechanisms of action in this disease have not yet been well characterized. For this purpose, in the present study, the expression levels of lncRNAs and mRNAs were calculated using the RNA-seq V2 data for AML, following which a lncRNA-lncRNA co-expression network (LLCN) was constructed. This revealed a total of 8 AML prognosis-related lncRNA modules were identified, which displayed a significant correlation with patient survival (p≤0.05). Subsequently, a prognosis-related lncRNA module pathway network was constructed to interpret the functional mechanism of the prognostic modules in AML. The results indicated that these prognostic modules were involved in the AML pathway, chemokine signaling pathway and WNT signaling pathway, all of which play important roles in AML. Furthermore, the investigation of lncRNAs in these prognostic modules suggested that an lncRNA (ZNF571-AS1) may be involved in AML via the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway by regulating KIT and STAT5. The results of the present study not only provide potential lncRNA modules as prognostic biomarkers, but also provide further insight into the molecular mechanisms of action of lncRNAs. PMID:28204819

  13. Co-Expression of SERCA Isoforms, Phospholamban and Sarcolipin in Human Skeletal Muscle Fibers

    PubMed Central

    Fajardo, Val A.; Bombardier, Eric; Vigna, Chris; Devji, Tahira; Bloemberg, Darin; Gamu, Daniel; Gramolini, Anthony O.; Quadrilatero, Joe; Tupling, A. Russell

    2013-01-01

    Sarcolipin (SLN) and phospholamban (PLN) inhibit the activity of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) by reducing their apparent affinity for Ca2+. A ternary complex between SLN, PLN, and SERCAs results in super-inhibition of SERCA activity. Analysis of skeletal muscle homogenate has limited our current understanding of whether SLN and PLN regulate SERCA1a, SERCA2a, or both in skeletal muscle and whether SLN and PLN are co-expressed in skeletal muscle fibers. Biopsies from human vastus lateralis were analyzed through single fiber Western blotting and immunohisto/fluorescence staining to circumvent this limitation. With a newly generated SLN antibody, we report for the first time that SLN protein is present in human skeletal muscle. Addition of the SLN antibody (50 µg) to vastus lateralis homogenates increased the apparent Ca2+ affinity of SERCA (KCa, pCa units) (-Ab, 5.85 ± 0.02 vs. +Ab, 5.95 ± 0.02) and maximal SERCA activity (μmol/g protein/min) (-Ab, 122 ± 6.4 vs. +Ab, 159 ± 11) demonstrating a functional interaction between SLN and SERCAs in human vastus lateralis. Specifically, our results suggest that although SLN and PLN may preferentially regulate SERCA1a, and SERCA2a, respectively, physiologically they both may regulate either SERCA isoform. Furthermore, we show that SLN and PLN co-immunoprecipitate in human vastus lateralis homogenate and are simultaneously expressed in 81% of the fibers analyzed with Western blotting which implies that super-inhibition of SERCA may exist in human skeletal muscle. Finally, we demonstrate unequivocally that mouse soleus contains PLN protein suggesting that super-inhibition of SERCA may also be important physiologically in rodent skeletal muscle. PMID:24358354

  14. Co-expression of three opsins in cone photoreceptors of the salamander, Ambystoma tigrinum

    PubMed Central

    Isayama, Tomoki; Chen, Ying; Kono, Masahiro; Fabre, Eduard; Slavsky, Michael; DeGrip, Willem J.; Ma, Jian-Xing; Crouch, Rosalie K.; Makino, Clint L.

    2014-01-01

    Whereas more than one type of visual opsin is present in the retina of most vertebrates, it was thought that each type of photoreceptor expressed only one opsin. However, evidence has accumulated that some photoreceptors contain more than one opsin, in many cases as a result of a developmental transition from the expression of one opsin to another. The salamander UV-sensitive (UV) cone is particularly notable because it contains three opsins (Makino and Dodd, 1996; J Gen Physiol 108:27–34). Two opsin types are expressed at levels more than a hundred times lower than that of the primary opsin. Here, immunohistochemical experiments identified the primary component as a UV cone opsin and the two minor components as the short wavelength-sensitive (S) and long wavelength-sensitive (L) cone opsins. Based on single cell recordings of 156 photoreceptors, the presence of three components in UV cones of hatchlings and terrestrial adults ruled out a developmental transition. There was no evidence for multiple opsin types within rods or S cones. But immunohistochemistry and partial bleaching in conjunction with single cell recording revealed that both single and double L cones contained low levels of short wavelength-sensitive pigments in addition to the main L visual pigment. These results raise the possibility that co-expression of multiple opsins in other vertebrates was overlooked because a minor component absorbing at short wavelengths was masked by the main visual pigment or because the expression level of a component absorbing at long wavelengths was exceedingly low. PMID:24374736

  15. Co-expressed Cyclin D variants cooperate to regulate proliferation of germline nuclei in a syncytium.

    PubMed

    Subramaniam, Gunasekaran; Campsteijn, Coen; Thompson, Eric M

    2015-01-01

    The role of the G1-phase Cyclin D-CDK 4/6 regulatory module in linking germline stem cell (GSC) proliferation to nutrition is evolutionarily variable. In invertebrate Drosophila and C. elegans GSC models, G1 is nearly absent and Cyclin E is expressed throughout the cell cycle, whereas vertebrate spermatogonial stem cells have a distinct G1 and Cyclin D1 plays an important role in GSC renewal. In the invertebrate, chordate, Oikopleura, where germline nuclei proliferate asynchronously in a syncytium, we show a distinct G1-phase in which 2 Cyclin D variants are co-expressed. Cyclin Dd, present in both somatic endocycling cells and the germline, localized to germline nuclei during G1 before declining at G1/S. Cyclin Db, restricted to the germline, remained cytoplasmic, co-localizing in foci with the Cyclin-dependent Kinase Inhibitor, CKIa. These foci showed a preferential spatial distribution adjacent to syncytial germline nuclei at G1/S. During nutrient-restricted growth arrest, upregulated CKIa accumulated in arrested somatic endoreduplicative nuclei but did not do so in germline nuclei. In the latter context, Cyclin Dd levels gradually decreased. In contrast, the Cyclin Dbβ splice variant, lacking the Rb-interaction domain and phosphodegron, was specifically upregulated and the number of cytoplasmic foci containing this variant increased. This upregulation was dependent on stress response MAPK p38 signaling. We conclude that under favorable conditions, Cyclin Dbβ-CDK6 sequesters CKIa in the cytoplasm to cooperate with Cyclin Dd-CDK6 in promoting germline nuclear proliferation. Under nutrient-restriction, this sequestration function is enhanced to permit continued, though reduced, cycling of the germline during somatic growth arrest.

  16. Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation

    PubMed Central

    Li, Wenyuan; Liu, Chun-Chi; Zhang, Tong; Li, Haifeng; Waterman, Michael S.; Zhou, Xianghong Jasmine

    2011-01-01

    The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks. PMID:21698123

  17. Co-expression of elastin and collagen leads to highly compliant engineered blood vessels.

    PubMed

    Gao, Jin; Crapo, Peter; Nerem, Robert; Wang, Yadong

    2008-06-15

    Elastin synthesis and physiologic compliance are significant challenges in blood vessel tissue engineering. Here, we report that a biocompatible elastomeric scaffold can support the co-expression of elastin and collagen, which likely yielded the physiologic compliance in the constructs. A biodegradable elastomer, poly(glycerol sebacate), was fabricated into highly porous tubular scaffolds. Primary baboon arterial smooth muscle cells (SMCs) were seeded in the lumen of the scaffolds followed by a 1-week culture under gentle perfusion. Circulating endothelial progenitor cells (EPCs) isolated from baboon peripheral blood was seeded directly on the smooth muscle layer in the lumen on day 8. The constructs were perfused using a pulsatile flow system for another 2 weeks before characterization. In another set of experiments, the SMCs were cultured for 7 weeks and were co-cultured for 1 week with the EPCs. Constructs obtained using either set of culture conditions contained elastin and collagen: Masson's trichrome stain showed a circumferential collagen band in the constructs, and elastin was evident from its characteristic autofluorescence, Verhoff's stain, and amino acid analysis of insoluble remnants after hot alkali digestion. All constructs had a confluent cellular lumen with cells well-dispersed throughout the scaffolds. At physiologic pressures, the compliance of the 8-week construct was comparable to human arteries as observed in pressure-diameter testing. Combination of elastomeric scaffolds, co-culture of EPC and SMC, and mechanical conditioning appears to encourage the expression of a more natural extracellular matrix and lead to physiologically-relevant compliance; both are major challenges in blood vessel tissue engineering.

  18. Co-expression network analysis reveals transcription factors associated to cell wall biosynthesis in sugarcane.

    PubMed

    Ferreira, Savio Siqueira; Hotta, Carlos Takeshi; Poelking, Viviane Guzzo de Carli; Leite, Debora Chaves Coelho; Buckeridge, Marcos Silveira; Loureiro, Marcelo Ehlers; Barbosa, Marcio Henrique Pereira; Carneiro, Monalisa Sampaio; Souza, Glaucia Mendes

    2016-05-01

    Sugarcane is a hybrid of Saccharum officinarum and Saccharum spontaneum, with minor contributions from other species in Saccharum and other genera. Understanding the molecular basis of cell wall metabolism in sugarcane may allow for rational changes in fiber quality and content when designing new energy crops. This work describes a comparative expression profiling of sugarcane ancestral genotypes: S. officinarum, S. spontaneum and S. robustum and a commercial hybrid: RB867515, linking gene expression to phenotypes to identify genes for sugarcane improvement. Oligoarray experiments of leaves, immature and intermediate internodes, detected 12,621 sense and 995 antisense transcripts. Amino acid metabolism was particularly evident among pathways showing natural antisense transcripts expression. For all tissues sampled, expression analysis revealed 831, 674 and 648 differentially expressed genes in S. officinarum, S. robustum and S. spontaneum, respectively, using RB867515 as reference. Expression of sugar transporters might explain sucrose differences among genotypes, but an unexpected differential expression of histones were also identified between high and low Brix° genotypes. Lignin biosynthetic genes and bioenergetics-related genes were up-regulated in the high lignin genotype, suggesting that these genes are important for S. spontaneum to allocate carbon to lignin, while S. officinarum allocates it to sucrose storage. Co-expression network analysis identified 18 transcription factors possibly related to cell wall biosynthesis while in silico analysis detected cis-elements involved in cell wall biosynthesis in their promoters. Our results provide information to elucidate regulatory networks underlying traits of interest that will allow the improvement of sugarcane for biofuel and chemicals production.

  19. Major histocompatibility complex class I expression on neurons in subacute sclerosing panencephalitis and experimental subacute measles encephalitis

    SciTech Connect

    Gogate, N.; Yamabe, Toshio; Verma, L.; Dhib-Jalbut, S.

    1996-04-01

    Lack of major histocompatibility class I antigens on neurons has been implicated as a possible mechanism for viral persistence in the brain since these antigens are required for cytotoxic T-lymphocyte recognition of infected cells. In subacute sclerosing panencephalitis (SSPE), measles virus (MV) persists in neurons, resulting in a fatal chronic infection. MHC class I mRNA expression was examined in formalin-fixed brain tissue from 6 SSPE patients by in situ hybridization. In addition MHC class I protein expression in MV-infected neurons was examined in experimental Subacute Measles Encephalitis (SME) by double immunohistochemistry. MHC class I mRNA expression was found to be upregulated in SSPE tissues studied, and in 5 out of 6 cases the expression was definitively seen on neurons. The percentage of neurons expressing MHC class I mRNA ranged between 20 to 84% in infected areas. There was no correlation between the degree of infection and expression of MHC class I molecules on neurons. Importantly, the number of neurons co-expressing MHC class I and MV antigens was markedly low, varying between 2 to 8%. Similar results were obtained in SME where 20 to 30% of the neurons expressed MHC class I but < 8% co-expressed MHC class I and MV antigens. Perivascular infiltrating cells in the infected regions in SME expressed IFN{gamma} immunoreactivity. The results suggest that MV may not be directly involved in the induction of MHC class I on neurons and that cytokines such as IFN{gamma} may play an important role. Furthermore, the paucity of neurons co-expressing MHC class I and MV antigens in SSPE and SME suggests that such cells are either rapidly cleared by cytotoxic T lymphocytes (CTL), or, alternatively, lack of co-expression of MHC class I on MV infected neurons favors MV persistence in these cells by escaping CTL recognition. 33 refs., 3 figs., 3 tabs.

  20. Co-expression network with protein-protein interaction and transcription regulation in malaria parasite Plasmodium falciparum.

    PubMed

    Yu, Fu-Dong; Yang, Shao-You; Li, Yuan-Yuan; Hu, Wei

    2013-04-10

    Malaria continues to be one of the most severe global infectious diseases, as a major threat to human health and economic development. Network-based biological analysis is a promising approach to uncover key genes and biological processes from a network viewpoint, which could not be recognized from individual gene-based signatures. We integrated gene co-expression profile with protein-protein interaction and transcriptional regulation information to construct a comprehensive gene co-expression network of Plasmodium falciparum. Based on this network, we identified 10 core modules by using ICE (Iterative Clique Enumeration) algorithm, which were essential for malaria parasite development in intraerythrocytic developmental cycle (IDC) stages. In each module, all genes were highly correlated probably due to co-regulation or formation of a protein complex. Some of these genes were recognized to be differentially coexpressed among three close-by IDC stages. The gene of prpf8 (PFD0265w) encoding pre-mRNA processing splicing factor 8 product was identified as DCGs (differentially co-expressed genes) among IDC stages, although this gene function was seldom reported in previous researches. Integrating the species-specific gene prediction and differential co-expression gene detection, we found some modules could perform species-specific functions according to some of genes in these modules were species-specific genes, like the module 10. Furthermore, in order to reveal the underlying mechanisms of the erythrocyte invasion by P. falciparum, Steiner Tree algorithm was employed to identify the invasion subnetwork from our gene co-expression network. The subnetwork-based analysis indicated that some important Plasmodium parasite specific genes could corporate with each other and be co-regulated during the parasite invasion process, which including a head-to-head gene pair of PfRH2a (PF13_0198) and PfRH2b (MAL13P1.176). This study based on gene co-expression network could shed new

  1. Interactions of neurons with topographic nano cues affect branching morphology mimicking neuron-neuron interactions.

    PubMed

    Baranes, Koby; Kollmar, Davida; Chejanovsky, Nathan; Sharoni, Amos; Shefi, Orit

    2012-08-01

    We study the effect of topographic nano-cues on neuronal growth-morphology using invertebrate neurons in culture. We use photolithography to fabricate substrates with repeatable line-pattern ridges of nano-scale heights of 10-150 nm. We plate leech neurons atop the patterned-substrates and compare their growth pattern to neurons plated atop non-patterned substrates. The model system allows us the analysis of single neurite-single ridge interactions. The use of high resolution electron microscopy reveals small filopodia processes that attach to the line-pattern ridges. These fine processes, that cannot be detected in light microscopy, add anchoring sites onto the side of the ridges, thus additional physical support. These interactions of the neuronal process dominantly affect the neuronal growth direction. We analyze the response of the entire neuronal branching tree to the patterned substrates and find significant effect on the growth patterns compared to non-patterned substrates. Moreover, interactions with the nano-cues trigger a growth strategy similarly to interactions with other neuronal cells, as reflected in their morphometric parameters. The number of branches and the number of neurites originating from the soma decrease following the interaction demonstrating a tendency to a more simplified neuronal branching tree. The effect of the nano-cues on the neuronal function deserves further investigation and will strengthen our understanding of the interplay between function and form.

  2. Intracerebroventricular Viral Injection of the Neonatal Mouse Brain for Persistent and Widespread Neuronal Transduction

    PubMed Central

    Levites, Yona; Golde, Todd E.; Jankowsky, Joanna L.

    2014-01-01

    With the pace of scientific advancement accelerating rapidly, new methods are needed for experimental neuroscience to quickly and easily manipulate gene expression in the mouse brain. Here we describe a technique first introduced by Passini and Wolfe for direct intracranial delivery of virally-encoded transgenes into the neonatal mouse brain. In its most basic form, the procedure requires only an ice bucket and a microliter syringe. However, the protocol can also be adapted for use with stereotaxic frames to improve consistency for researchers new to the technique. The method relies on the ability of adeno-associated virus (AAV) to move freely from the cerebral ventricles into the brain parenchyma while the ependymal lining is still immature during the first 12-24 hr after birth. Intraventricular injection of AAV at this age results in widespread transduction of neurons throughout the brain. Expression begins within days of injection and persists for the lifetime of the animal. Viral titer can be adjusted to control the density of transduced neurons, while co-expression of a fluorescent protein provides a vital label of transduced cells. With the rising availability of viral core facilities to provide both off-the-shelf, pre-packaged reagents and custom viral preparation, this approach offers a timely method for manipulating gene expression in the mouse brain that is fast, easy, and far less expensive than traditional germline engineering. PMID:25286085

  3. Bioconjugates of curcumin display improved protection against glutathione depletion mediated oxidative stress in a dopaminergic neuronal cell line: Implications for Parkinson's disease.

    PubMed

    Harish, G; Venkateshappa, C; Mythri, Rajeswara Babu; Dubey, Shiv Kumar; Mishra, Krishna; Singh, Neetu; Vali, Shireen; Bharath, M M Srinivas

    2010-04-01

    Oxidative stress is implicated in mitochondrial dysfunction associated with neurodegeneration in Parkinson's disease (PD). Depletion of the cellular antioxidant glutathione (GSH) resulting in oxidative stress is considered as an early event in neurodegeneration. We previously showed that curcumin, a dietary polyphenol from turmeric induced GSH synthesis in experimental models and protected against oxidative stress. Here we tested the effect of three bioconjugates of curcumin (involving diesters of demethylenated piperic acid, valine and glutamic acid) against GSH depletion mediated oxidative stress in dopaminergic neuronal cells and found that the glutamic acid derivative displayed improved neuroprotection compared to curcumin.

  4. Co-expression of Arabidopsis transcription factor, AtMYB12, and soybean isoflavone synthase, GmIFS1, genes in tobacco leads to enhanced biosynthesis of isoflavones and flavonols resulting in osteoprotective activity.

    PubMed

    Pandey, Ashutosh; Misra, Prashant; Khan, Mohd P; Swarnkar, Gaurav; Tewari, Mahesh C; Bhambhani, Sweta; Trivedi, Ritu; Chattopadhyay, Naibedya; Trivedi, Prabodh K

    2014-01-01

    Isoflavones, a group of flavonoids, restricted almost exclusively to family Leguminosae are known to exhibit anticancerous and anti-osteoporotic activities in animal systems and have been a target for metabolic engineering in commonly consumed food crops. Earlier efforts based on the expression of legume isoflavone synthase (IFS) genes in nonlegume plant species led to the limited success in terms of isoflavone content in transgenic tissue due to the limitation of substrate for IFS enzyme. In this work to overcome this limitation, the activation of multiple genes of flavonoid pathway using Arabidopsis transcription factor AtMYB12 has been carried out. We developed transgenic tobacco lines constitutively co-expressing AtMYB12 and GmIFS1 (soybean IFS) genes or independently and carried out their phytochemical and molecular analyses. The leaves of co-expressing transgenic lines were found to have elevated flavonol content along with the accumulation of substantial amount of genistein glycoconjugates being at the highest levels that could be engineered in tobacco leaves till date. Oestrogen-deficient (ovariectomized, Ovx) mice fed with leaf extract from transgenic plant co-expressing AtMYB12 and GmIFS1 but not wild-type extract exhibited significant conservation of trabecular microarchitecture, reduced osteoclast number and expression of osteoclastogenic genes, higher total serum antioxidant levels and increased uterine oestrogenicity compared with Ovx mice treated with vehicle (control). The skeletal effect of the transgenic extract was comparable to oestrogen-treated Ovx mice. Together, our results establish an efficient strategy for successful pathway engineering of isoflavones and other flavonoids in crop plants and provide a direct evidence of improved osteoprotective effect of transgenic plant extract.

  5. Broad integration of expression maps and co-expression networks compassing novel gene functions in the brain.

    PubMed

    Okamura-Oho, Yuko; Shimokawa, Kazuro; Nishimura, Masaomi; Takemoto, Satoko; Sato, Akira; Furuichi, Teiichi; Yokota, Hideo

    2014-11-10

    Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas.

  6. Evaluation of the role of g protein-coupled receptor kinase 3 in desensitization of mouse odorant receptors in a Mammalian cell line and in olfactory sensory neurons.

    PubMed

    Kato, Aya; Reisert, Johannes; Ihara, Sayoko; Yoshikawa, Keiichi; Touhara, Kazushige

    2014-11-01

    Thousands of odors are sensed and discriminated by G protein-coupled odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). G protein-coupled receptor kinases (GRKs) may have a role in desensitization of ORs. However, whether ORs are susceptible to agonist-dependent desensitization and whether GRKs affect odorant responsiveness of OSNs are currently unknown. Here we show that GRK3 attenuated the agonist responsiveness of a specific mouse odorant receptor for eugenol (mOR-EG) upon agonist pretreatment in HEK293 cells, but GRK3 did not affect the response amplitude or the recovery kinetics upon repeated agonist stimulation. We performed electrophysiological recordings of single OSNs which expressed mOR-EG and green fluorescent protein (GFP) in the presence or absence of GRK3. The kinetics and amplitude of agonist responsiveness of individual GFP-labeled mOR-EG neurons were not significantly affected by the absence of GRK3. These results indicate that the role of GRK3 in attenuating ORs responsiveness in OSNs may have been overestimated.

  7. Evaluation of the Role of G Protein-Coupled Receptor Kinase 3 in Desensitization of Mouse Odorant Receptors in a Mammalian Cell Line and in Olfactory Sensory Neurons

    PubMed Central

    Kato, Aya; Reisert, Johannes; Ihara, Sayoko; Yoshikawa, Keiichi

    2014-01-01

    Thousands of odors are sensed and discriminated by G protein-coupled odorant receptors (ORs) expressed in olfactory sensory neurons (OSNs). G protein-coupled receptor kinases (GRKs) may have a role in desensitization of ORs. However, whether ORs are susceptible to agonist-dependent desensitization and whether GRKs affect odorant responsiveness of OSNs are currently unknown. Here we show that GRK3 attenuated the agonist responsiveness of a specific mouse odorant receptor for eugenol (mOR-EG) upon agonist pretreatment in HEK293 cells, but GRK3 did not affect the response amplitude or the recovery kinetics upon repeated agonist stimulation. We performed electrophysiological recordings of single OSNs which expressed mOR-EG and green fluorescent protein (GFP) in the presence or absence of GRK3. The kinetics and amplitude of agonist responsiveness of individual GFP-labeled mOR-EG neurons were not significantly affected by the absence of GRK3. These results indicate that the role of GRK3 in attenuating ORs responsiveness in OSNs may have been overestimated. PMID:25313015

  8. Enhanced extracellular production of recombinant proteins in Escherichia coli by co-expression with Bacillus cereus phospholipase C.

    PubMed

    Su, Lingqia; Jiang, Qi; Yu, Lingang; Wu, Jing

    2017-02-08

    Our laboratory has reported a strategy for improving the extracellular production of recombinant proteins through co-expression with Thermobifida fusca cutinase, which increases membrane permeability via its phospholipid hydrolysis activity. However, the foam generated by the lysophospholipid product makes the fermentation process difficult to control in a fermentor. Phospholipase C (PLC) catalyzes the hydrolysis of phospholipids to produce sn1,2-diacylglycerides and organic phosphate, which do not induce foam formation. Therefore, co-expression with Bacillus cereus PLC was investigated as a method to improve the extracellular production of recombinant proteins. When B. cereus PLC was expressed in Escherichia coli without its signal peptide, 95.3% of the total PLC activity was detected in the culture supernatant. PLC expression enhanced membrane permeability without obvious cell lysis. Then, six test enzymes, three secretory and three cytosolic, were co-expressed with B. cereus PLC. The enhancement of extracellular production correlated strongly with the molecular mass of the test enzyme. Extracellular production of Streptomyces sp. FA1 xylanase (43 kDa), which had the lowest molecular mass among the secretory enzymes, was 4.0-fold that of its individual expression control. Extracellular production of glutamate decarboxylase (51 kDa), which had the lowest molecular mass among the cytosolic enzymes, reached 26.7 U/mL; 88.3% of the total activity produced. This strategy was effectively scaled up using a 3-L fermentor. No obvious foam was generated during this fermentation process. This is the first study to detail the enhanced extracellular production of recombinant proteins through co-expression with PLC. This new strategy, which is especially appropriate for lower molecular mass proteins, allows large-scale protein production in an easily controlled fermentation process.

  9. Recursive Indirect-Paths Modularity (RIP-M) for Detecting Community Structure in RNA-Seq Co-expression Networks.

    PubMed

    Rahmani, Bahareh; Zimmermann, Michael T; Grill, Diane E; Kennedy, Richard B; Oberg, Ann L; White, Bill C; Poland, Gregory A; McKinney, Brett A

    2016-01-01

    Clusters of genes in co-expression networks are commonly used as functional units for gene set enrichment detection and increasingly as features (attribute construction) for statistical inference and sample classification. One of the practical challenges of clustering for these purposes is to identify an optimal partition of the network where the individual clusters are neither too large, prohibiting interpretation, nor too small, precluding general inference. Newman Modularity is a spectral clustering algorithm that automatically finds the number of clusters, but for many biological networks the cluster sizes are suboptimal. In this work, we generalize Newman Modularity to incorporate information from indirect paths in RNA-Seq co-expression networks. We implement a merge-and-split algorithm that allows the user to constrain the range of cluster sizes: large enough to capture genes in relevant pathways, yet small enough to resolve distinct functions. We investigate the properties of our recursive indirect-pathways modularity (RIP-M) and compare it with other clustering methods using simulated co-expression networks and RNA-seq data from an influenza vaccine response study. RIP-M had higher cluster assignment accuracy than Newman Modularity for finding clusters in simulated co-expression networks for all scenarios, and RIP-M had comparable accuracy to Weighted Gene Correlation Network Analysis (WGCNA). RIP-M was more accurate than WGCNA for modest hard thresholds and comparable for high, while WGCNA was slightly more accurate for soft thresholds. In the vaccine study data, RIP-M and WGCNA enriched for a comparable number of immunologically relevant pathways.

  10. Co-expression of two heterologous lactate dehydrogenases genes in Kluyveromyces marxianus for l-lactic acid production.

    PubMed

    Lee, Jae Won; In, Jung Hoon; Park, Joon-Bum; Shin, Jonghyeok; Park, Jin Hwan; Sung, Bong Hyun; Sohn, Jung-Hoon; Seo, Jin-Ho; Park, Jin-Byoung; Kim, Soo Rin; Kweon, Dae-Hyuk

    2017-01-10

    Lactic acid (LA) is a versatile compound used in the food, pharmaceutical, textile, leather, and chemical industries. Biological production of LA is possible by yeast strains expressing a bacterial gene encoding l-lactate dehydrogenase (LDH). Kluyveromyces marxianus is an emerging non-conventional yeast with various phenotypes of industrial interest. However, it has not been extensively studied for LA production. In this study, K. marxianus was engineered to express and co-express various heterologous LDH enzymes that were reported to have different pH optimums. Specifically, three LDH enzymes originating from Staphylococcus epidermidis (SeLDH; optimal at pH 5.6), Lactobacillus acidophilus (LaLDH; optimal at pH 5.3), and Bos taurus (BtLDH; optimal at pH 9.8) were functionally expressed individually and in combination in K. marxianus, and the resulting strains were compared in terms of LA production. A strain co-expressing SeLDH and LaLDH (KM5 La+SeLDH) produced 16.0g/L LA, whereas the strains expressing those enzymes individually produced only 8.4 and 6.8g/L, respectively. This co-expressing strain produced 24.0g/L LA with a yield of 0.48g/g glucose in the presence of CaCO3. Our results suggest that co-expression of LDH enzymes with different pH optimums provides sufficient LDH activity under dynamic intracellular pH conditions, leading to enhanced production of LA compared to individual expression of the LDH enzymes. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Incorporating Motif Analysis into Gene Co-expression Networks Reveals Novel Modular Expression Pattern and New Signaling Pathways

    PubMed Central

    Ma, Shisong; Shah, Smit; Bohnert, Hans J.; Snyder, Michael; Dinesh-Kumar, Savithramma P.

    2013-01-01

    Understanding of gene regulatory networks requires discovery of expression modules within gene co-expression networks and identification of promoter motifs and corresponding transcription factors that regulate their expression. A commonly used method for this purpose is a top-down approach based on clustering the network into a range of densely connected segments, treating these segments as expression modules, and extracting promoter motifs from these modules. Here, we describe a novel bottom-up approach to identify gene expression modules driven by known cis-regulatory motifs in the gene promoters. For a specific motif, genes in the co-expression network are ranked according to their probability of belonging to an expression module regulated by that motif. The ranking is conducted via motif enrichment or motif position bias analysis. Our results indicate that motif position bias analysis is an effective tool for genome-wide motif analysis. Sub-networks containing the top ranked genes are extracted and analyzed for inherent gene expression modules. This approach identified novel expression modules for the G-box, W-box, site II, and MYB motifs from an Arabidopsis thaliana gene co-expression network based on the graphical Gaussian model. The novel expression modules include those involved in house-keeping functions, primary and secondary metabolism, and abiotic and biotic stress responses. In addition to confirmation of previously described modules, we identified modules that include new signaling pathways. To associate transcription factors that regulate genes in these co-expression modules, we developed a novel reporter system. Using this approach, we evaluated MYB transcription factor-promoter interactions within MYB motif modules. PMID:24098147

  12. Rescue of αB Crystallin (HSPB5) Mutants Associated Protein Aggregation by Co-Expression of HSPB5 Partners.

    PubMed

    Hussein, Rasha M; Benjamin, Ivor J; Kampinga, Harm H

    2015-01-01

    HSPB5 (also called αB-crystallin) is a ubiquitously expressed small heat shock protein. Mutations in HSPB5 have been found to cause cataract, but are also associated with a subgroup of myofibrillar myopathies. Cells expressing each of these HSPB5 mutants are characterized by the appearance of protein aggregates of primarily the mutant HSPB5. Like several members of the HSPB family, HSPB5 can form both homo-oligomeric and hetero-oligomeric complexes. Previous studies showed that co-expression of HSPB1 and HSPB8 can prevent the aggregation associated with the HSPB5 (R120G) mutant in cardiomyocytes and in transgenic mice. In this study, we systematically compared the effect of co-expression of each of the members of the human HSPB family (HSPB1-10) on the aggregation of three different HSPB5 mutants (R120G, 450 Δ A, 464 Δ CT). Of all members, co-expression of HSPB1, HSPB4 and HSPB5 itself, most effectively prevent the aggregation of these 3 HSPB5 mutants. HSPB6 and HSPB8 were also active but less, whilst the other 5 HSPB members were ineffective. Co-expression of Hsp70 did not reduce the aggregation of the HSPB5 mutants, suggesting that aggregate formation is most likely not related to a toxic gain of function of the mutants per se, but rather related to a loss of chaperone function of the oligomeric complexes containing the HSPB5 mutants (dominant negative effects). Our data suggest that the rescue of aggregation associated with the HSPB5 mutants is due to competitive incorporation of its partners into hetero-oligomers hereby negating the dominant negative effects of the mutant on the functioning of the hetero-oligomer.

  13. Co-expression network analyses identify functional modules associated with development and stress response in Gossypium arboreum

    PubMed Central

    You, Qi; Zhang, Liwei; Yi, Xin; Zhang, Kang; Yao, Dongxia; Zhang, Xueyan; Wang, Qianhua; Zhao, Xinhua; Ling, Yi; Xu, Wenying; Li, Fuguang; Su, Zhen

    2016-01-01

    Cotton is an economically important crop, essential for the agriculture and textile industries. Through integrating transcriptomic data, we discovered that multi-dimensional co-expression network analysis was powerful for predicting cotton gene functions and functional modules. Here, the recently available transcriptomic data on Gossypium arboreum, including data on multiple growth stages of tissues and stress treatment samples were applied to construct a co-expression network exploring multi-dimensional expression (development and stress) through multi-layered approaches. Based on differential gene expression and network analysis, a fibre development regulatory module of the gene GaKNL1 was found to regulate the second cell wall through repressing the activity of REVOLUTA, and a tissue-selective module of GaJAZ1a was examined in response to water stress. Moreover, comparative genomics analysis of the JAZ1-related regulatory module revealed high conservation across plant species. In addition, 1155 functional modules were identified through integrating the co-expression network, module classification and function enrichment tools, which cover functions such as metabolism, stress responses, and transcriptional regulation. In the end, an online platform was built for network analysis (http://structuralbiology.cau.edu.cn/arboreum), which could help to refine the annotation of cotton gene function and establish a data mining system to identify functional genes or modules with important agronomic traits. PMID:27922095

  14. Co-expression of galectin-3 and CRIP-1 in endometrial cancer: prognostic value and patient survival.

    PubMed

    Lambropoulou, Maria; Deftereou, Theodora-Eleftheria; Kynigopoulos, Sryridon; Patsias, Anargyros; Anagnostopoulos, Constantinos; Alexiadis, Georgios; Kotini, Athanasia; Tsaroucha, Alexandra; Nikolaidou, Christina; Kiziridou, Anastasia; Papadopoulos, Nikolaos; Chatzaki, Ekaterini

    2016-01-01

    Endometrial cancer is the sixth most common cancer in women. Galectin-3 (GAL-3) and CRIP-1 are multifunctional proteins which seem to be involved in many neoplasias. This study aims to point out correlations between clinicopathological findings and endometrial cancer patient survival to GAL-3 and CRIP-1 expression in order to enfold their diagnostic/prognostic potential. Tissues from 46 patients diagnosed with endometrial cancer were studied by immunohistochemistry, using monoclonal antibodies for GAL-3 and CRIP-1, and expression levels were correlated with clinicopathological findings and survival. Analysis was performed at single protein level or as co-expression. High expression of GAL-3 and CRIP-1 was independently associated with tumor depth and histological grade, respectively. Also, there was a significant correlation between high co-expression of the two proteins and the histological grade (aOR 2.66), the tumor depth (aOR 0.32) and the histological type (aOR 1.32), but not with the patients' age. Moreover, high expression of both proteins was observed in patients with shorter survival times. Interestingly, the co-expression of the two proteins exhibited some degree of monotony (Spearman's ρ = 0.768), indicating a common molecular pathway. This study provides evidence for a prognostic clinical potential of the combined study of GAL-3 and CRIP-1 in endometrial cancer. These factors are poorly studied in endometrium, and their role in the carcinogenetic process and on effective therapy awaits further elucidation.

  15. Identification of PEG-induced water stress responsive transcripts using co-expression network in Eucalyptus grandis.

    PubMed

    Ghosh Dasgupta, Modhumita; Dharanishanthi, Veeramuthu

    2017-09-05

    Ecophysiological studies in Eucalyptus have shown that water is the principal factor limiting stem growth. Effect of water deficit conditions on physiological and biochemical parameters has been extensively reported in Eucalyptus. The present study was conducted to identify major polyethylene glycol induced water stress responsive transcripts in Eucalyptus grandis using gene co-expression network. A customized array representing 3359 water stress responsive genes was designed to document their expression in leaves of E. grandis cuttings subjected to -0.225MPa of PEG treatment. The differentially expressed transcripts were documented and significantly co-expressed transcripts were used for construction of network. The co-expression network was constructed with 915 nodes and 3454 edges with degree ranging from 2 to 45. Ninety four GO categories and 117 functional pathways were identified in the network. MCODE analysis generated 27 modules and module 6 with 479 nodes and 1005 edges was identified as the biologically relevant network. The major water responsive transcripts represented in the module included dehydrin, osmotin, LEA protein, expansin, arabinogalactans, heat shock proteins, major facilitator proteins, ARM repeat proteins, raffinose synthase, tonoplast intrinsic protein and transcription factors like DREB2A, ARF9, AGL24, UNE12, WLIM1 and MYB66, MYB70, MYB 55, MYB 16 and MYB 103. The coordinated analysis of gene expression patterns and coexpression networks developed in this study identified an array of transcripts that may regulate PEG induced water stress responses in E. grandis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Dynamic co-expression network analysis of lncRNAs and mRNAs associated with venous congestion

    PubMed Central

    Li, Jinshun; Xu, Yuqin; Xu, Jia; Wang, Jinhua; Wu, Liying

    2016-01-01

    Venous congestion and volume overload are important in cardiorenal syndromes, in which multiple regulated factors are involved, including long non-coding RNAs (lncRNAs). To investigate the underlying role of lncRNAs in regulating the development of venous congestion, an Affymetrix microarray associated with peripheral venous congestion was annotated, then a bipartite dynamic lncRNA-mRNA co-expression network was constructed in which nodes indicated lncRNAs or mRNAs. The nodes were connected when the lncRNAs or mRNAs were dynamically co-expressed. Following functional analysis of this network, several dynamic alternative pathways were identified, including the calcium signaling pathway during venous congestion development. Additionally, certain lncRNAs (LINC00523, LINC01210 and RP11-435O5.5) were identified that may potentially dynamically regulate certain proteins, including plasma membrane calcium ATPase (PMCA) and G protein-coupled receptor (GPCR), in the calcium signaling pathway. Particularly, the dynamically regulated switch of LINC00523 from co-expression with PMCA to GPCR may be involved in damage to steady state intracellular calcium. In brief, the current study demonstrated a potential novel mechanism of lncRNA function during venous congestion. PMID:27431002

  17. Enhanced soluble production of cholera toxin B subunit in Escherichia coli by co-expression of SKP chaperones.

    PubMed

    Zhang, Yuanpeng; Qiao, Xuwen; Yu, Xiaoming; Chen, Jin; Hou, Liting; Bi, Zhixiang; Zheng, Qisheng; Hou, Jibo

    2017-10-01

    The cholera toxin B subunit (CTB) is a nontoxic portion of the cholera toxin that retains mucosal adjuvant properties. Expression of CTB in Escherichia coli is difficult as CTB aggregates and accumulates as insoluble inclusion bodies. To remedy this problem, the periplasmic chaperone, SKP, was investigated as possible co-expression partner to increase the solubility of recombinant CTB (rCTB) in E. coli. The result showed co-expression of SKP enhanced the soluble expression of rCTB in E. coli. Moreover, soluble rCTB was successfully expressed and secreted into the periplasmic space through the direction of the LTB leader signal. rCTB in periplasm was purified using an immobilized d-galactose resin; GM1-ELISA experiments showed that rCTB retains strong GM1 ganglioside-binding activity. Intranasal administration of ovalbumin (OVA) with rCTB significantly induced both mucosal and humoral immune responses specific to OVA. These data indicate that co-expression of the molecular chaperone SKP with CTB increased the solubility of rCTB while maintaining its function. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A co-expression gene network associated with developmental regulation of apple fruit acidity.

    PubMed

    Bai, Yang; Dougherty, Laura; Cheng, Lailiang; Xu, Kenong

    2015-08-01

    Apple fruit acidity, which affects the fruit's overall taste and flavor to a large extent, is primarily determined by the concentration of malic acid. Previous studies demonstrated that the major QTL malic acid (Ma) on chromosome 16 is largely responsible for fruit acidity variations in apple. Recent advances suggested that a natural mutation that gives rise to a premature stop codon in one of the two aluminum-activated malate transporter (ALMT)-like genes (called Ma1) is the genetic causal element underlying Ma. However, the natural mutation does not explain the developmental changes of fruit malate levels in a given genotype. Using RNA-seq data from the fruit of 'Golden Delicious' taken at 14 developmental stages from 1 week after full-bloom (WAF01) to harvest (WAF20), we characterized their transcriptomes in groups of high (12.2 ± 1.6 mg/g fw, WAF03-WAF08), mid (7.4 ± 0.5 mg/g fw, WAF01-WAF02 and WAF10-WAF14) and low (5.4 ± 0.4 mg/g fw, WAF16-WAF20) malate concentrations. Detailed analyses showed that a set of 3,066 genes (including Ma1) were expressed not only differentially (P FDR < 0.05) between the high and low malate groups (or between the early and late developmental stages) but also in significant (P < 0.05) correlation with malate concentrations. The 3,066 genes fell in 648 MapMan (sub-) bins or functional classes, and 19 of them were significantly (P FDR < 0.05) co-enriched or co-suppressed in a malate dependent manner. Network inferring using the 363 genes encompassed in the 19 (sub-) bins, identified a major co-expression network of 239 genes. Since the 239 genes were also differentially expressed between the early (WAF03-WAF08) and late (WAF16-WAF20) developmental stages, the major network was considered to be associated with developmental regulation of apple fruit acidity in 'Golden Delicious'.

  19. Locus coeruleus neuronal activity determines proclivity to consume alcohol in a selectively-bred line of rats that readily consumes alcohol

    PubMed Central

    West, Charles H.K.; Boss-Williams, Katherine A.; Ritchie, James C.; Weiss, Jay M.

    2015-01-01

    Sprague-Dawley rats selectively-bred for susceptibility to stress in our laboratory (Susceptible, or SUS rats) voluntarily consume large amounts of alcohol, and amounts that have, as shown here, pharmacological effects, which normal rats will not do. In this paper, we explore neural events in the brain that underlie this propensity to readily consume alcohol. Activity of locus coeruleus neurons (LC), the major noradrenergic cell body concentration in the brain, influences firing of ventral tegmentum dopaminergic cell bodies of the mesocorticolimbic system (VTA-DA neurons), which mediate rewarding aspects of alcohol. We tested the hypothesis that in SUS rats, alcohol potently suppresses LC activity to markedly diminish LC-mediated inhibition of VTA-DA neurons, which permits alcohol to greatly increase VTA-DA activity and rewarding aspects of alcohol. Electrophysiological single-unit recording of LC and VTA-DA activity showed that in SUS rats, alcohol decreased LC burst firing much more than in normal rats and as a result markedly increased VTA-DA activity in SUS rats while having no such effect in normal rats. Consistent with this, in a behavioral test for reward using conditioned place preference (CPP), SUS rats showed alcohol, given by intraperitoneal (i.p.) injection, to be rewarding. Next, manipulation of LC activity by microinfusion of drugs into the LC region of SUS rats showed that (a) decreasing LC activity increased alcohol intake and increasing LC activity decreased alcohol intake in accord with the formulation described above, and (b) increasing LC activity blocked both the rewarding effect of alcohol in the CPP test and the usual alcohol-induced increase in VTA-DA single-unit activity seen in SUS rats. An important ancillary finding in the CPP test was that an increase in LC activity was rewarding by itself, while a decrease in LC activity was aversive; consequently, effects of LC manipulations on alcohol-related reward in the CPP test were perhaps even

  20. Locus coeruleus neuronal activity determines proclivity to consume alcohol in a selectively-bred line of rats that readily consumes alcohol.

    PubMed

    West, Charles H K; Boss-Williams, Katherine A; Ritchie, James C; Weiss, Jay M

    2015-11-01

    Sprague-Dawley rats selectively-bred for susceptibility to stress in our laboratory (Susceptible, or SUS rats) voluntarily consume large amounts of alcohol, and amounts that have, as shown here, pharmacological effects, which normal rats will not do. In this paper, we explore neural events in the brain that underlie this propensity to readily consume alcohol. Activity of locus coeruleus neurons (LC), the major noradrenergic cell body concentration in the brain, influences firing of ventral tegmentum dopaminergic cell bodies of the mesocorticolimbic system (VTA-DA neurons), which mediate rewarding aspects of alcohol. We tested the hypothesis that in SUS rats alcohol potently suppresses LC activity to markedly diminish LC-mediated inhibition of VTA-DA neurons, which permits alcohol to greatly increase VTA-DA activity and rewarding aspects of alcohol. Electrophysiological single-unit recording of LC and VTA-DA activity showed that in SUS rats alcohol decreased LC burst firing much more than in normal rats and as a result markedly increased VTA-DA activity in SUS rats while having no such effect in normal rats. Consistent with this, in a behavioral test for reward using conditioned place preference (CPP), SUS rats showed alcohol, given by intraperitoneal (i.p.) injection, to be rewarding. Next, manipulation of LC activity by microinfusion of drugs into the LC region of SUS rats showed that (a) decreasing LC activity increased alcohol intake and increasing LC activity decreased alcohol intake in accord with the formulation described above, and (b) increasing LC activity blocked both the rewarding effect of alcohol in the CPP test and the usual alcohol-induced increase in VTA-DA single-unit activity seen in SUS rats. An important ancillary finding in the CPP test was that an increase in LC activity was rewarding by itself, while a decrease in LC activity was aversive; consequently, effects of LC manipulations on alcohol-related reward in the CPP test were perhaps even

  1. DCGL v2.0: An R Package for Unveiling Differential Regulation from Differential Co-expression

    PubMed Central

    Liu, Bao-Hong; Zhao, Zhongming; Liu, Lei; Ma, Liang-Xiao; Li, Yi-Xue; Li, Yuan-Yuan

    2013-01-01

    Motivation Differential co-expression analysis (DCEA) has emerged in recent years as a novel, systematic investigation into gene expression data. While most DCEA studies or tools focus on the co-expression relationships among genes, some are developing a potentially more promising research domain, differential regulation analysis (DRA). In our previously proposed R package DCGL v1.0, we provided functions to facilitate basic differential co-expression analyses; however, the output from DCGL v1.0 could not be translated into differential regulation mechanisms in a straightforward manner. Results To advance from DCEA to DRA, we upgraded the DCGL package from v1.0 to v2.0. A new module named “Differential Regulation Analysis” (DRA) was designed, which consists of three major functions: DRsort, DRplot, and DRrank. DRsort selects differentially regulated genes (DRGs) and differentially regulated links (DRLs) according to the transcription factor (TF)-to-target information. DRrank prioritizes the TFs in terms of their potential relevance to the phenotype of interest. DRplot graphically visualizes differentially co-expressed links (DCLs) and/or TF-to-target links in a network context. In addition to these new modules, we streamlined the codes from v1.0. The evaluation results proved that our differential regulation analysis is able to capture the regulators relevant to the biological subject. Conclusions With ample functions to facilitate differential regulation analysis, DCGL v2.0 was upgraded from a DCEA tool to a DRA tool, which may unveil the underlying differential regulation from the observed differential co-expression. DCGL v2.0 can be applied to a wide range of gene expression data in order to systematically identify novel regulators that have not yet been documented as critical. Availability DCGL v2.0 package is available at http://cran.r-project.org/web/packages/DCGL/index.html or at our project home page http://lifecenter.sgst.cn/main/en/dcgl.jsp. PMID

  2. p16(INK4a) /Ki-67 co-expression specifically identifies transformed cells in the head and neck region.

    PubMed

    Prigge, Elena-Sophie; Toth, Csaba; Dyckhoff, Gerhard; Wagner, Steffen; Müller, Franziska; Wittekindt, Claus; Freier, Kolja; Plinkert, Peter; Hoffmann, Jürgen; Vinokurova, Svetlana; Klussmann, Jens Peter; von Knebel Doeberitz, Magnus; Reuschenbach, Miriam

    2015-04-01

    p16(INK4a) immunohistochemical overexpression is an overall reliable surrogate marker of human papillomavirus (HPV)-associated head and neck squamous cell carcinomas (HNSCC). However, cases of ambiguous p16(INK4a) overexpression are regularly detected in the head and neck: p16(INK4a) expression can be observed in non-malignant tissue, such as tonsillar crypt epithelium and a proportion of branchial cleft cysts. Additionally, diverse patterns of p16(INK4) expression can complicate interpretation of "p16(INK4a) -positivity". These aspects impede the unrestricted application of p16(INK4a) as a diagnostic marker in the head and neck. We hypothesized that combined detection of p16(INK4a) and the proliferation marker Ki-67 could support clarification of ambiguous p16(INK4a) expression in the head and neck by specifically indicating p16(INK4a) -expressing cells with proliferative activity. p16(INK4a) /Ki-67 co-expression in a combined staining procedure was correlated to distinct p16(INK4a) expression patterns and HPV status (HPV DNA followed by E6*I oncogene mRNA detection) in 147 HNSCC and 50 non-malignant head and neck samples. p16(INK4a) /Ki-67 co-expression only occurred in transformed cells of the head and neck. Co-expression was never detected in non-transformed cells. Combined p16(INK4a) /Ki-67 expression was stringently associated with a diffuse p16(INK4a) expression pattern. All HPV oncogene-expressing HNSCC showed p16(INK4a) /Ki-67 co-expression. We demonstrate that p16(INK4a) /Ki-67 co-expression occurs exclusively in transformed cells of the head and neck. Our findings indicate a substantial impact of combined p16(INK4a) /Ki-67 expression in the assessment of ambiguous p16(INK4a) expression in the head and neck by specifically identifying p16(INK4a) -expressing cells with proliferative activity. This property will be of considerable significance for head and neck histo- and cytopathology. © 2014 UICC.

  3. Parvalbumin+ Neurons and Npas1+ Neurons Are Distinct Neuron Classes in the Mouse External Globus Pallidus

    PubMed Central

    Hernández, Vivian M.; Hegeman, Daniel J.; Cui, Qiaoling; Kelver, Daniel A.; Fiske, Michael P.; Glajch, Kelly E.; Pitt, Jason E.; Huang, Tina Y.; Justice, Nicholas J.

    2015-01-01

    Compelling evidence suggests that pathological activity of the external globus pallidus (GPe), a nucleus in the basal ganglia, contributes to the motor symptoms of a variety of movement disorders such as Parkinson's disease. Recent studies have challenged the idea that the GPe comprises a single, homogenous population of neurons that serves as a simple relay in the indirect pathway. However, we still lack a full understanding of the diversity of the neurons that make up the GPe. Specifically, a more precise classification scheme is needed to better describe the fundamental biology and function of different GPe neuron classes. To this end, we generated a novel multicistronic BAC (bacterial artificial chromosome) transgenic mouse line under the regulatory elements of the Npas1 gene. Using a combinatorial transgenic and immunohistochemical approach, we discovered that parvalbumin-expressing neurons and Npas1-expressing neurons in the GPe represent two nonoverlapping cell classes, amounting to 55% and 27% of the total GPe neuron population, respectively. These two genetically identified cell classes projected primarily to the subthalamic nucleus and to the striatum, respectively. Additionally, parvalbumin-expressing neurons and Npas1-expressing neurons were distinct in their autonomous and driven firing characteristics, their expression of intrinsic ion conductances, and their responsiveness to chronic 6-hydroxydopamine lesion. In summary, our data argue that parvalbumin-expressing neurons and Npas1-expressing neurons are two distinct functional classes of GPe neurons. This work revises our understanding of the GPe, and provides the foundation for future studies of its function and dysfunction. SIGNIFICANCE STATEMENT Until recently, the heterogeneity of the constituent neurons within the external globus pallidus (GPe) was not fully appreciated. We addressed this knowledge gap by discovering two principal GPe neuron classes, which were identified by their nonoverlapping

  4. Hetero-oligomerization of neuronal glutamate transporters.

    PubMed

    Nothmann, Doreen; Leinenweber, Ariane; Torres-Salazar, Delany; Kovermann, Peter; Hotzy, Jasmin; Gameiro, Armanda; Grewer, Christof; Fahlke, Christoph

    2011-02-04

    Excitatory amino acid transporters (EAATs) mediate the uptake of glutamate into neuronal and glial cells of the mammalian central nervous system. Two transporters expressed primarily in glia, EAAT1 and EAAT2, are crucial for glutamate homeostasis in the adult mammalian brain. Three neuronal transporters (EAAT3, EAAT4, and EAAT5) appear to have additional functions in regulating and processing cellular excitability. EAATs are assembled as trimers, and the existence of multiple isoforms raises the question of whether certain isoforms can form hetero-oligomers. Co-expression and pulldown experiments of various glutamate transporters showed that EAAT3 and EAAT4, but neither EAAT1 and EAAT2, nor EAAT2 and EAAT3 are capable of co-assembling into heterotrimers. To study the functional consequences of hetero-oligomerization, we co-expressed EAAT3 and the serine-dependent mutant R501C EAAT4 in HEK293 cells and Xenopus laevis oocytes and studied glutamate/serine transport and anion conduction using electrophysiological methods. Individual subunits transport glutamate independently of each other. Apparent substrate affinities are not affected by hetero-oligomerization. However, polarized localization in Madin-Darby canine kidney cells was different for homo- and hetero-oligomers. EAAT3 inserts exclusively into apical membranes of Madin-Darby canine kidney cells when expressed alone. Co-expression with EAAT4 results in additional appearance of basolateral EAAT3. Our results demonstrate the existence of heterotrimeric glutamate transporters and provide novel information about the physiological impact of EAAT oligomerization.

  5. [Neuronal ageing].

    PubMed

    Piechota, Małgorzata; Sunderland, Piotr

    2014-01-01

    Ageing leads to irreversible alterations in the nervous system, which to various extent impair its functions such as capacity to learn and memory. In old neurons and brain, similarly to what may take place in other cells, there is increased oxidative stress, disturbed energetic homeostasis and metabolism, accumulation of damage in proteins and nucleic acids. Characteristic of old neurons are alterations in plasticity, synaptic transmission, sensitivity to neurotrophic factors and cytoskeletal changes. Some markers of senescence, whose one of them is SA-beta-galactosidase were used to show the process of neuronal ageing both in vitro, and in vivo. Some research suggest that, despite the fact that neurons are postmitotic cells, it is cell cycle proteins which play a certain role in their biology, e.g. differentiation. However, their role in neuronal ageing is not known or explained. Ageing is the serious factor of development of neurodegenerative diseases among others Alzheimer disease.

  6. Co-expression of chimeric chitinase and a polygalacturonase-inhibiting protein in transgenic canola (Brassica napus) confers enhanced resistance to Sclerotinia sclerotiorum.

    PubMed

    Ziaei, Mahboobeh; Motallebi, Mostafa; Zamani, Mohammad Reza; Panjeh, Nasim Zarin

    2016-06-01

    Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum is one of the major fungal diseases of canola. To develop resistance against this fungal disease, the chit42 from Trichoderma atroviride with chitin-binding domain and polygalacturonase-inhibiting protein 2 (PG1P2) of Phaseolus vulgaris were co-expressed in canola via Agrobacterium-mediated transformation. Stable integration and expression of transgenes in T0 and T2 plants was confirmed by PCR, Southern blot and RT-PCR analyses. Chitinase activity and PGIP2 inhibition were detected by colorimetric and agarose diffusion assay in transgenic lines but not in untransformed plants. The crude proteins from single copy transformant leaves having high chitinase and PGIP2 activity (T16, T8 and T3), showed up to 44 % inhibition of S. sclerotiorum hyphal growth. The homozygous T2 plants, showing inheritance in Mendelian fashion (3:1), were further evaluated under greenhouse conditions for resistance to S. sclerotiorum. Intact plants contaminated with mycelia showed resistance through delayed onset of the disease and restricted size and expansion of lesions as compared to wild type plants. Combined expression of chimeric chit42 and pgip2 in Brassica napus L. provide subsequent protection against SSR disease and can be helpful in increasing the canola production in Iran.

  7. Ligand-dependent EGFR activation induces the co-expression of IL-6 and PAI-1 via the NFkB pathway in advanced-stage epithelial ovarian cancer.

    PubMed

    Alberti, C; Pinciroli, P; Valeri, B; Ferri, R; Ditto, A; Umezawa, K; Sensi, M; Canevari, S; Tomassetti, A

    2012-09-13

    The epidermal growth factor receptor (EGFR), a member of the ErbB family of receptor tyrosine kinases, is expressed in up to 70% of epithelial ovarian cancers (EOCs), where it correlates with poor prognosis. The majority of EOCs are diagnosed at an advanced stage, and at least 50% present malignant ascites. High levels of IL-6 have been found in the ascites of EOC patients and correlate with shorter survival. Herein, we investigated the signaling cascade led by EGFR activation in EOC and assessed whether EGFR activation could induce an EOC microenvironment characterized by pro-inflammatory molecules. In vitro analysis of EOC cell lines revealed that ligand-stimulated EGFR activated NFkB-dependent transcription and induced secretion of IL-6 and plasminogen activator inhibitor (PAI-1). IL-6/PAI-1 expression and secretion were strongly inhibited by the tyrosine kinase inhibitor AG1478 and EGFR silencing. A significant reduction of EGF-stimulated IL-6/PAI-1 secretion was also obtained with the NFkB inhibitor dehydroxymethylepoxyquinomicin. Of 23 primary EOC tumors from advanced-stage patients with malignant ascites at surgery, 12 co-expressed membrane EGFR, IL-6 and PAI-1 by immunohistochemistry; both IL-6 and PAI-1 were present in 83% of the corresponding ascites. Analysis of a publicly available gene-expression data set from 204 EOCs confirmed a significant correlation between IL-6 and PAI-1 expression, and patients with the highest IL-6 and PAI-1 co-expression showed a significantly shorter progression-free survival time (P=0.028). This suggests that EGFR/NFkB/IL-6-PAI-1 may have a significant impact on the therapy of a particular subset of EOC, and that IL-6/PAI-1 co-expression may be a novel prognostic marker.

  8. Heterologous Expression of Equine CYP3A94 and Investigation of a Tunable System to Regulate Co-Expressed NADPH P450 Oxidoreductase Levels

    PubMed Central

    Dettwiler, Ramona; Schmitz, Andrea L.; Plattet, Philippe; Zielinski, Jana; Mevissen, Meike

    2014-01-01

    The activity of cytochrome P450 enzymes depends on the enzyme NADPH P450 oxidoreductase (POR). The aim of this study was to investigate the activity of the equine CYP3A94 using a system that allows to regulate the POR protein levels in mammalian cells. CYP3A94 and the equine POR were heterologously expressed in V79 cells. In the system used, the POR protein regulation is based on a destabilizing domain (DD) that transfers its instability to a fused protein. The resulting fusion protein is therefore degraded by the ubiquitin-proteasome system (UPS). Addition of “Shield-1” prevents the DD fusion protein from degradation. The change of POR levels at different Shield-1 concentrations was demonstrated by cytochrome c reduction, Western immunoblot analysis, and immunocytochemistry. The alteration of CYP3A94 activity was investigated using a substrate (BFC) known to detect CYP3A4 activity. Equine CYP3A94 was demonstrated to be metabolically active and its activity could be significantly elevated by co-expression of POR. Cytochrome c reduction was significantly increased in V79-CYP3A94/DD-POR cells compared to V79-CYP3A94 cells. Surprisingly, incubation with different Shield-1 concentrations resulted in a decrease in POR protein shown by Western immunoblot analysis. Cytochrome c reduction did not change significantly, but the CYP3A94 activity decreased more than 4-fold after incubation with 500 nM and 1 µM Shield-1 for 24 hours. No differences were obtained when V79-CYP3A94 POR cells with and without Shield-1 were compared. The basal activity levels of V79-CYP3A94/DD-POR cells were unexpectedly high, indicating that DD/POR is not degraded without Shield-1. Shield-1 decreased POR protein levels and CYP3A94 activity suggesting that Shield-1 might impair POR activity by an unknown mechanism. Although regulation of POR with the pPTuner system could not be obtained, the cell line V79-CYP3A94/DD-POR system can be used for further experiments to characterize the equine CYP3A

  9. Effects of estrogens and endocrine-disrupting chemicals on cell differentiation-survival-proliferation in brain: contributions of neuronal cell lines.

    PubMed

    Habauzit, Denis; Flouriot, Gilles; Pakdel, Farzad; Saligaut, Christian

    2011-01-01

    Estrogens and estrogen receptors (ER) are key actors in the control of differentiation and survival and act on extrareproductive tissues such as brain. Thus, estrogens may display neuritogenic effects during development and neuroprotective effects in the pathophysiological context of brain ischemia and neurodegenerative pathologies like Alzheimer's disease or Parkinson's disease. Some of these effects require classical transcriptional "genomic" mechanisms through ER, whereas other effects appear to rely clearly on "membrane-initiated mechanisms" through cytoplasmic signal transduction pathways. Disturbances of these mechanisms by endocrine-disrupting chemicals (EDC) may exert adverse effects on brain. Some EDC may act via ER-independent mechanisms but might cross-react with endogenous estrogen. Other EDC may act through ER-dependent mechanisms and display agonistic/antagonistic estrogenic properties. Because of these potential effects of EDC, it is necessary to establish sensitive cell-based assays to determine EDC effects on brain. In the present review, some effects of estrogens and EDC are described with focus on ER-mediated effects in neuronal cells. Particular attention is given to PC12 cells, an interesting model to study the mechanisms underlying ER-mediated differentiating and neuroprotective effects of estrogens.

  10. Effects of N-acetylcysteine amide (NACA), a novel thiol antioxidant against glutamate-induced cytotoxicity in neuronal cell line PC12.

    PubMed

    Penugonda, Suman; Mare, Suneetha; Goldstein, Glenn; Banks, William A; Ercal, Nuran

    2005-09-21

    Oxidative stress plays an important role in neuronal cell death associated with many different neurodegenerative conditions such as cerebral ischemia and Parkinson's disease. Elevated levels of glutamate are thought to be responsible for CNS disorders through various mechanisms causing oxidative stress induced by a nonreceptor-mediated oxidative pathway which blocks cystine uptake and results in depletion of intracellular glutathione (GSH). The newly designed amide form of N-acetylcysteine (NAC), N-acetylcysteine amide (NACA), was assessed for its ability to protect PC12 cells against oxidative toxicity induced by glutamate. NACA was shown to protect PC12 cells from glutamate (Glu) toxicity, as evaluated by LDH and MTS assays. NACA prevented glutamate-induced intracellular GSH loss. In addition, NACA restored GSH synthesis in a Glu (10 mM) plus buthionine-sulfoximine (BSO) (0.2 mM)-treated group, indicating that the intracellular GSH increase is independent of gamma-GSC (gamma-glutamylcysteinyl synthetase). The increase in levels of reactive oxygen species (ROS) induced by glutamate was significantly decreased by NACA. Measurement of malondialdehyde (MDA) showed that NACA reduced glutamate-induced elevations in levels of lipid peroxidation by-products. These results demonstrate that NACA can protect PC12 cells against glutamate cytotoxicity by inhibiting lipid peroxidation, and scavenging ROS, thus preserving intracellular GSH.

  11. Co-expression of CD147 and GLUT-1 indicates radiation resistance and poor prognosis in cervical squamous cell carcinoma

    PubMed Central

    Huang, Xin-Qiong; Chen, Xiang; Xie, Xiao-Xue; Zhou, Qin; Li, Kai; Li, Shan; Shen, Liang-Fang; Su, Juan

    2014-01-01

    The aim of this study was to investigate the association of CD147 and GLUT-1, which play important roles in glycolysis in response to radiotherapy and clinical outcomes in patients with locally advanced cervical squamous cell carcinoma (LACSCC). The records of 132 female patients who received primary radiation therapy to treat LACSCC at FIGO stages IB-IVA were retrospectively reviewed. Forty-seven patients with PFS (progression-free survival) of less than 36 months were regarded as radiation-resistant. Eighty-five patients with PFS longer than 36 months were regarded as radiation-sensitive. Using pretreatment paraffin-embedded tissues, we evaluated CD147 and GLUT-1 expression by immunohistochemistry. Overexpression of CD147, GLUT-1, and CD147 and GLUT-1 combined were 44.7%, 52.9% and 36.5%, respectively, in the radiation-sensitive group, and 91.5%, 89.4% and 83.0%, respectively, in the radiation-resistant group. The 5-year progress free survival (PFS) rates in the CD147-low, CD147-high, GLUT-1-low, GLUT-1-high, CD147- and/or GLUT-1-low and CD147- and GLUT-1- dual high expression groups were 66.79%, 87.10%, 52.78%, 85.82%, 55.94%, 82.90% and 50.82%, respectively. CD147 and GLUT-1 co-expression, FIGO stage and tumor diameter were independent poor prognostic factors for patients with LACSCC in multivariate Cox regression analysis. Patients with high expression of CD147 alone, GLUT-1 alone or co-expression of CD147 and GLUT-1 showed greater resistance to radiotherapy and a shorter PFS than those with low expression. In particular, co-expression of CD147 and GLUT-1 can be considered as a negative independent prognostic factor. PMID:24817962

  12. Co-expression of CD147 and GLUT-1 indicates radiation resistance and poor prognosis in cervical squamous cell carcinoma.

    PubMed

    Huang, Xin-Qiong; Chen, Xiang; Xie, Xiao-Xue; Zhou, Qin; Li, Kai; Li, Shan; Shen, Liang-Fang; Su, Juan

    2014-01-01

    The aim of this study was to investigate the association of CD147 and GLUT-1, which play important roles in glycolysis in response to radiotherapy and clinical outcomes in patients with locally advanced cervical squamous cell carcinoma (LACSCC). The records of 132 female patients who received primary radiation therapy to treat LACSCC at FIGO stages IB-IVA were retrospectively reviewed. Forty-seven patients with PFS (progression-free survival) of less than 36 months were regarded as radiation-resistant. Eighty-five patients with PFS longer than 36 months were regarded as radiation-sensitive. Using pretreatment paraffin-embedded tissues, we evaluated CD147 and GLUT-1 expression by immunohistochemistry. Overexpression of CD147, GLUT-1, and CD147 and GLUT-1 combined were 44.7%, 52.9% and 36.5%, respectively, in the radiation-sensitive group, and 91.5%, 89.4% and 83.0%, respectively, in the radiation-resistant group. The 5-year progress free survival (PFS) rates in the CD147-low, CD147-high, GLUT-1-low, GLUT-1-high, CD147- and/or GLUT-1-low and CD147- and GLUT-1- dual high expression groups were 66.79%, 87.10%, 52.78%, 85.82%, 55.94%, 82.90% and 50.82%, respectively. CD147 and GLUT-1 co-expression, FIGO stage and tumor diameter were independent poor prognostic factors for patients with LACSCC in multivariate Cox regression analysis. Patients with high expression of CD147 alone, GLUT-1 alone or co-expression of CD147 and GLUT-1 showed greater resistance to radiotherapy and a shorter PFS than those with low expression. In particular, co-expression of CD147 and GLUT-1 can be considered as a negative independent prognostic factor.

  13. An integrative approach predicted co-expression sub-networks regulating properties of stem cells and differentiation.

    PubMed

    Sahu, Mousumi; Mallick, Bibekanand

    2016-10-01

    The differentiation of human Embryonic Stem Cells (hESCs) is accompanied by the formation of different intermediary cells, gradually losing its stemness and acquiring differentiation. The precise mechanisms underlying hESCs integrity and its differentiation into fibroblast (Fib) are still elusive. Here, we aimed to assess important genes and co-expression sub-networks responsible for stemness, early differentiation of hESCs into embryoid bodies (EBs) and its lineage specification into Fibs. To achieve this, we compared transcriptional profiles of hESCs-EBs and EBs-Fibs and obtained differentially expressed genes (DEGs) exclusive to hESCs-EBs (early differentiation), EBs-Fibs (late differentiation) and common DEGs in hESCs-EBs and EBs-Fibs. Then, we performed gene set enrichment analysis (GSEA) followed by overrepresentation study and identified key genes for each gene category. The regulations of these genes were studied by integrating ChIP-Seq data of core transcription factors (TFs) and histone methylation marks in hESCs. Finally, we identified co-expression sub-networks from key genes of each gene category using k-clique sub-network extraction method. Our study predicted seven genes edicting core stemness properties forming a co-expression network. From the pathway analysis of sub-networks of hESCs-EBs, we hypothesize that FGF2 is contributing to pluripotent transcription network of hESCs in association with DNMT3B and JARID2 thereby facilitating cell proliferation. On the contrary, FGF2 is found to promote cell migration in Fibs along with DDR2, CAV1, DAB2, and PARVA. Moreover, our study identified three k-clique sub-networks regulating TGF-β signaling pathway thereby promoting EBs to Fibs differentiation by: (i) modulating extracellular matrix involving ITGB1, TGFB1I1 and GBP1, (ii) regulating cell cycle remodeling involving CDKN1A, JUNB and DUSP1 and (iii) helping in epithelial to mesenchymal transition (EMT) involving THBS1, INHBA and LOX. This study put

  14. Gene co-expression network analysis in Rhodobacter capsulatus and application to comparative expression analysis of Rhodobacter sphaeroides

    SciTech Connect

    Pena-Castillo, Lourdes; Mercer, Ryan; Gurinovich, Anastasia; Callister, Stephen J.; Wright, Aaron T.; Westbye, Alexander; Beatty, J. T.; Lang, Andrew S.

    2014-08-28

    The genus Rhodobacter contains purple nonsulfur bacteria found mostly in freshwater environments. Representative strains of two Rhodobacter species, R. capsulatus and R. sphaeroides, have had their genomes fully sequenced and both have been the subject of transcriptional profiling studies. Gene co-expression networks can be used to identify modules of genes with similar expression profiles. Functional analysis of gene modules can then associate co-expressed genes with biological pathways, and network statistics can determine the degree of module preservation in related networks. In this paper, we constructed an R. capsulatus gene co-expression network, performed functional analysis of identified gene modules, and investigated preservation of these modules in R. capsulatus proteomics data and in R. sphaeroides transcriptomics data. Results: The analysis identified 40 gene co-expression modules in R. capsulatus. Investigation of the module gene contents and expression profiles revealed patterns that were validated based on previous studies supporting the biological relevance of these modules. We identified two R. capsulatus gene modules preserved in the protein abundance data. We also identified several gene modules preserved between both Rhodobacter species, which indicate that these cellular processes are conserved between the species and are candidates for functional information transfer between species. Many gene modules were non-preserved, providing insight into processes that differentiate the two species. In addition, using Local Network Similarity (LNS), a recently proposed metric for expression divergence, we assessed the expression conservation of between-species pairs of orthologs, and within-species gene-protein expression profiles. Conclusions: Our analyses provide new sources of information for functional annotation in R. capsulatus because uncharacterized genes in modules are now connected with groups of genes that constitute a joint functional

  15. Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase

    PubMed Central

    2012-01-01

    Background Solar energy is the ultimate energy source on the Earth. The conversion of solar energy into fuels and energy sources can be an ideal solution to address energy problems. The recent discovery of proteorhodopsin in uncultured marine γ-proteobacteria has made it possible to construct recombinant Escherichia coli with the function of light-driven proton pumps. Protons that translocate across membranes by proteorhodopsin generate a proton motive force for ATP synthesis by ATPase. Excess protons can also be substrates for hydrogen (H2) production by hydrogenase in the periplasmic space. In the present work, we investigated the effect of the co-expression of proteorhodopsin and hydrogenase on H2 production yield under light conditions. Results Recombinant E. coli BL21(DE3) co-expressing proteorhodopsin and [NiFe]-hydrogenase from Hydrogenovibrio marinus produced ~1.3-fold more H2 in the presence of exogenous retinal than in the absence of retinal under light conditions (70 μmole photon/(m2·s)). We also observed the synergistic effect of proteorhodopsin with endogenous retinal on H2 production (~1.3-fold more) with a dual plasmid system compared to the strain with a single plasmid for the sole expression of hydrogenase. The increase of light intensity from 70 to 130 μmole photon/(m2·s) led to an increase (~1.8-fold) in H2 production from 287.3 to 525.7 mL H2/L-culture in the culture of recombinant E. coli co-expressing hydrogenase and proteorhodopsin in conjunction with endogenous retinal. The conversion efficiency of light energy to H2 achieved in this study was ~3.4%. Conclusion Here, we report for the first time the potential application of proteorhodopsin for the production of biohydrogen, a promising alternative fuel. We showed that H2 production was enhanced by the co-expression of proteorhodopsin and [NiFe]-hydrogenase in recombinant E. coli BL21(DE3) in a light intensity-dependent manner. These results demonstrate that E. coli can be applied as

  16. Improved production of biohydrogen in light-powered Escherichia coli by co-expression of proteorhodopsin and heterologous hydrogenase.

    PubMed

    Kim, Jaoon Y H; Jo, Byung Hoon; Jo, Younghwa; Cha, Hyung Joon

    2012-01-04

    Solar energy is the ultimate energy source on the Earth. The conversion of solar energy into fuels and energy sources can be an ideal solution to address energy problems. The recent discovery of proteorhodopsin in uncultured marine γ-proteobacteria has made it possible to construct recombinant Escherichia coli with the function of light-driven proton pumps. Protons that translocate across membranes by proteorhodopsin generate a proton motive force for ATP synthesis by ATPase. Excess protons can also be substrates for hydrogen (H(2)) production by hydrogenase in the periplasmic space. In the present work, we investigated the effect of the co-expression of proteorhodopsin and hydrogenase on H(2) production yield under light conditions. Recombinant E. coli BL21(DE3) co-expressing proteorhodopsin and [NiFe]-hydrogenase from Hydrogenovibrio marinus produced ~1.3-fold more H(2) in the presence of exogenous retinal than in the absence of retinal under light conditions (70 μmole photon/(m2·s)). We also observed the synergistic effect of proteorhodopsin with endogenous retinal on H(2) production (~1.3-fold more) with a dual plasmid system compared to the strain with a single plasmid for the sole expression of hydrogenase. The increase of light intensity from 70 to 130 μmole photon/(m(2)·s) led to an increase (~1.8-fold) in H(2) production from 287.3 to 525.7 mL H(2)/L-culture in the culture of recombinant E. coli co-expressing hydrogenase and proteorhodopsin in conjunction with endogenous retinal. The conversion efficiency of light energy to H(2) achieved in this study was ~3.4%. Here, we report for the first time the potential application of proteorhodopsin for the production of biohydrogen, a promising alternative fuel. We showed that H(2) production was enhanced by the co-expression of proteorhodopsin and [NiFe]-hydrogenase in recombinant E. coli BL21(DE3) in a light intensity-dependent manner. These results demonstrate that E. coli can be applied as light

  17. Co-expression of GroEL/ES enhances the expression of plant catalase in bacterial cytosol.

    PubMed

    Mondal, Prosenjit; Ray, Mamata; Sahu, Sushmita; Sabat, Surendra Chandra

    2008-01-01

    Expression of plant proteins in E. coli is frequently unsuccessful, but soluble and functional rice catalase-B can be produced in E. coli when it is co-expressed with the chaperone GroEL/ES. The rice catalase exhibited properties typical for a catalase including the decomposition of H(2)O(2) and inhibition by aminotriazole, a specific inhibitor for plant and animal catalases. This achievement records for first time the successful expression of a both native and variant rice plant catalase in bacterial cytosol suggesting that it may be an option to be considered for the expression of other plant proteins in E. coli.

  18. UNCLES: method for the identification of genes differentially consistently co-expressed in a specific subset of datasets.

    PubMed

    Abu-Jamous, Basel; Fa, Rui; Roberts, David J; Nandi, Asoke K

    2015-06-04

    Collective analysis of the increasingly emerging gene expression datasets are required. The recently proposed binarisation of consensus partition matrices (Bi-CoPaM) method can combine clustering results from multiple datasets to identify the subsets of genes which are consistently co-expressed in all of the provided datasets in a tuneable manner. However, results validation and parameter setting are issues that complicate the design of such methods. Moreover, although it is a common practice to test methods by application to synthetic datasets, the mathematical models used to synthesise such datasets are usually based on approximations which may not always be sufficiently representative of real datasets. Here, we propose an unsupervised method for the unification of clustering results from multiple datasets using external specifications (UNCLES). This method has the ability to identify the subsets of genes consistently co-expressed in a subset of datasets while being poorly co-expressed in another subset of datasets, and to identify the subsets of genes consistently co-expressed in all given datasets. We also propose the M-N scatter plots validation technique and adopt it to set the parameters of UNCLES, such as the number of clusters, automatically. Additionally, we propose an approach for the synthesis of gene expression datasets using real data profiles in a way which combines the ground-truth-knowledge of synthetic data and the realistic expression values of real data, and therefore overcomes the problem of faithfulness of synthetic expression data modelling. By application to those datasets, we validate UNCLES while comparing it with other conventional clustering methods, and of particular relevance, biclustering methods. We further validate UNCLES by application to a set of 14 real genome-wide yeast datasets as it produces focused clusters that conform well to known biological facts. Furthermore, in-silico-based hypotheses regarding the function of a few

  19. Co-expression of COX-2 and 5-LO in primary glioblastoma is associated with poor prognosis.

    PubMed

    Wang, Xingfu; Chen, Yupeng; Zhang, Sheng; Zhang, Lifeng; Liu, Xueyong; Zhang, Li; Li, Xiaoling; Chen, Dayang

    2015-11-01

    Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) are important factors in tumorigenesis and malignant progression; however, studies of their roles in glioblastoma have produced conflicting results. To define the frequencies of COX-2 and 5-LO expression and their correlation with clinicopathological features and prognosis, tumor tissues from 76 cases of newly diagnosed primary ordinary glioblastoma were examined for COX-2 and 5-LO expression by immunohistochemistry. The expression levels of COX-2 and 5-LO and the relationships between the co-expression of COX-2/5-LO and patient age and gender, edema index (EI), Karnofsky Performance Scale and overall survival (OS) were analyzed. COX-2 and 5-LO were expressed in 73.7 % (56/76) and 92.1 % (70/76) of the samples, respectively. Among the clinicopathological characteristics, only age (>60 years) exhibited a significant association with the high expression of COX-2. No statistically significant correlations were found in the 5-LO cohort. A significant positive correlation was revealed between the COX-2 and 5-LO scores (r = 0.374; p = 0.001). The elevated co-expression of COX-2 and 5-LO was observed primarily in the patients over the age of 60 years. Patients with a high expression of COX-2 had a significantly shorter OS (p < 0.01), whereas the immunoexpression of 5-LO was not associated with the OS of patients with glioblastoma. Survival analysis indicated that simultaneous high levels of COX-2 and 5-LO expression were significantly correlated with poor OS and, conversely, that a low/low expression pattern of these two proteins was significantly associated with better OS (p < 0.05). Moreover, the Cox multivariable proportional hazard model showed that a high expression of COX-2, high co-expression of COX-2 and 5-LO, and a high Ki-67 index were significant predictors of shorter OS in primary glioblastoma, independent of age, gender, EI, 5-LO expression and p53 status. The hazard ratios for OS were 2.347 (95 % CI 1

  20. Quantifying the effects of co-expressing EGFR and HER2 on HER activation and trafficking

    SciTech Connect

    Shankaran, Harish; Zhang, Yi; Opresko, Lee; Resat, Haluk

    2008-06-27

    The integration of experimental measurements and computational predictions is a powerful means to understand the molecular mechanisms of complex biological systems. The human epidermal growth factor receptor (HER) system is an intricately regulated system that plays critical roles in development and tumorigenesis. Here, we apply integrated experimentation and modeling to analyze HER receptor activation in a panel of cell lines expressing different levels of HER1 and HER2. A mathematical model that includes the fundamental biochemical/biophysical processes involved in receptor activation was used to fit the experimental data, and 19 independent parameters including receptor dimerization affinities, trafficking rates and relative phosphorylation levels were estimated. The parameter values quantitatively support existing ideas on the effect of HER2 on HER1 phosphorylation dynamics, and enable us to predict receptor dimerization patterns in the cell lines. The integrated approach described here can be applied to obtain a predictive understanding of other biomolecular systems.

  1. High-frequency stimulation-induced peptide release synchronizes arcuate kisspeptin neurons and excites GnRH neurons

    PubMed Central

    Qiu, Jian; Nestor, Casey C; Zhang, Chunguang; Padilla, Stephanie L; Palmiter, Richard D

    2016-01-01

    Kisspeptin (Kiss1) and neurokinin B (NKB) neurocircuits are essential for pubertal development and fertility. Kisspeptin neurons in the hypothalamic arcuate nucleus (Kiss1ARH) co-express Kiss1, NKB, dynorphin and glutamate and are postulated to provide an episodic, excitatory drive to gonadotropin-releasing hormone 1 (GnRH) neurons, the synaptic mechanisms of which are unknown. We characterized the cellular basis for synchronized Kiss1ARH neuronal activity using optogenetics, whole-cell electrophysiology, molecular pharmacology and single cell RT-PCR in mice. High-frequency photostimulation of Kiss1ARH neurons evoked local release of excitatory (NKB) and inhibitory (dynorphin) neuropeptides, which were found to synchronize the Kiss1ARH neuronal firing. The light-evoked synchronous activity caused robust excitation of GnRH neurons by a synaptic mechanism that also involved glutamatergic input to preoptic Kiss1 neurons from Kiss1ARH neurons. We propose that Kiss1ARH neurons play a dual role of driving episodic secretion of GnRH through the differential release of peptide and amino acid neurotransmitters to coordinate reproductive function. DOI: http://dx.doi.org/10.7554/eLife.16246.001 PMID:27549338

  2. Clinical benefit of lapatinib-based therapy in patients with HER2-positive breast tumors co-expressing the truncated p95HER2 receptor

    PubMed Central

    Scaltriti, Maurizio; Chandarlapaty, Sarat; Prudkin, Ludmila; Aura, Claudia; Jimenez, José; Angelini, Pier Davide; Sánchez, Gertrudis; Guzman, Marta; Parra, Josep Lluis; Ellis, Catherine; Gagnon, Robert; Koehler, Maria; Gomez, Henry; Geyer, Charles; Cameron, David; Arribas, Joaquin; Rosen, Neal; Baselga, José

    2011-01-01

    Purpose A subgroup of HER2 overexpressing breast tumors co-expresses p95HER2, a truncated HER2 receptor that retains a highly functional HER2 kinase domain but lacks the extracellular domain and results in intrinsic trastuzumab resistance. We hypothesized that lapatinib, a HER2 tyrosine kinase inhibitor, would be active in these tumors. We have studied the correlation between p95HER2 expression and response to lapatinib, both in preclinical models and in the clinical setting Experimental design Two different p95HER2 animal models were used for preclinical studies. Expression of p95HER2 was analyzed in HER2 overexpressing breast primary tumors from a first line lapatinib monotherapy study (EGF20009) and a second line lapatinib in combination with capecitabine study (EGF100151). p95HER2 expression was correlated with overall response rate (complete + partial response), clinical benefit rate (complete response + partial response + stable disease ≥ 24 weeks) and progression-free survival using logistic regression and Cox-proportional hazard models. Results Lapatinib inhibited tumor growth and HER2 downstream signaling of p95HER2 expressing tumors. A total of 68 and 156 tumors from studies EGF20009 and EGF100151 were evaluable, respectively, for p95HER2 detection. The percentage of p95HER2 positive patients was 20.5% in the EGF20009 study and 28.5% in the EGF100151 study. In both studies there was no statistically significant difference in progression-free survival, clinical benefit rate and overall response rate between p95HER2-positive and p95HER2-negative tumors. Conclusions Lapatinib as a monotherapy or in combination with capecitabine appears to be equally effective in patients with p95HER2-positive and p95HER2-negative HER2-positive breast tumors. PMID:20406840

  3. Co-expressed differentially expressed genes and long non-coding RNAs involved in the celecoxib treatment of gastric cancer: An RNA sequencing analysis

    PubMed Central

    Song, Bin; Du, Juan; Feng, Ye; Gao, Yong-Jian; Zhao, Ji-Sheng

    2016-01-01

    The aim of the present study was to investigate the mechanisms of long non-coding RNAs (lncRNAs) in a gastric cancer cell line treated with celecoxib. The human gastric carcinoma cell line NCI-N87 was treated with 15 µM celecoxib for 72 h (celecoxib group) and an equal volume of dimethylsulfoxide (control group), respectively. Libraries were constructed by NEBNext Ultra RNA Library Prep kit for Illumina. Paired-end RNA sequencing reads were aligned to a human hg19 reference genome using TopHat2. Differentially expressed genes (DEGs) and lncRNAs were identified using Cuffdiff. Enrichment analysis was performed using GO-function package and KEGG profile in Bioconductor. A protein-protein interaction network was constructed using STRING database and module analysis was performed using ClusterONE plugin of Cytoscape. ATP5G1, ATP5G3, COX8A, CYC1, NDUFS3, UQCRC1, UQCRC2 and UQCRFS1 were enriched in the oxidative phosphorylation pathway. CXCL1, CXCL3, CXCL5 and CXCL8 were enriched in the chemokine signaling and cytokine-cytokine receptor interaction pathways. ITGA3, ITGA6, ITGB4, ITGB5, ITGB6 and ITGB8 were enriched in the integrin-mediated signaling pathway. DEGs co-expressed with lnc-SCD-1:13, lnc-LRR1-1:2, lnc-PTMS-1:3, lnc-S100P-3:1, lnc-AP000974.1-1:1 and lnc-RAB3IL1-2:1 were enriched in the pathways associated with cancer, such as the basal cell carcinoma pathway in cancer. In conclusion, these DEGs and differentially expressed lncRNAs may be important in the celecoxib treatment of gastric cancer. PMID:27698747

  4. Co-expression of ILT4/HLA-G in human non-small cell lung cancer correlates with poor prognosis and ILT4-HLA-G interaction activates ERK signaling.

    PubMed

    Zhang, Yanwen; Zhao, Jianqiang; Qiu, Lijun; Zhang, Pei; Li, Juan; Yang, Dong; Wei, Xiaojuan; Han, Yali; Nie, Siyue; Sun, Yuping

    2016-08-01

    Non-small cell lung cancer (NSCLC) is the most common malignant tumor in the world, of which prognosis is generally poor due to insufficient mechanistic understanding. To explore the molecular pathogenesis of NSCLC, the co-expression of immunoglobulin-like transcript 4 (ILT4) and its ligand human leukocyte antigen G (HLA-G) in NSCLC tissues and cells were investigated. Here, we detected the expression of ILT4 and HLA-G in 81 tumor specimens from primary NSCLC patients, and we found that co-expression of ILT4/HLA-G was significantly associated with regional lymph node involvement, advanced stages, and the overall survival of patients. In NSCLC cell lines, HLA-G expression increased/decreased accordingly when ILT4 was up-/down-regulated, and ILT4 expression increased in a concentration-dependent manner via the stimulation of HLA-G fusion protein. Interestingly, HLA-G fusion protein could also up-regulate the phospho-ERK1/2 expression, which means the activation of extracellular signal-regulated kinase (ERK) signaling. All in all, our results indicate that the ILT4-HLA-G interaction might play an important role in NSCLC progression. Identification of ILT4 and HLA-G expression may provide an indicator to predict prognosis and guide prevention and treatment of NSCLC.

  5. Identification of candidate genes in Populus cell wall biosynthesis using text-mining, co-expression network and comparative genomics

    SciTech Connect

    Yang, Xiaohan; Ye, Chuyu; Bisaria, Anjali; Tuskan, Gerald A; Kalluri, Udaya C

    2011-01-01

    Populus is an important bioenergy crop for bioethanol production. A greater understanding of cell wall biosynthesis processes is critical in reducing biomass recalcitrance, a major hindrance in efficient generation of ethanol from lignocellulosic biomass. Here, we report the identification of candidate cell wall biosynthesis genes through the development and application of a novel bioinformatics pipeline. As a first step, via text-mining of PubMed publications, we obtained 121 Arabidopsis genes that had the experimental evidences supporting their involvement in cell wall biosynthesis or remodeling. The 121 genes were then used as bait genes to query an Arabidopsis co-expression database and additional genes were identified as neighbors of the bait genes in the network, increasing the number of genes to 548. The 548 Arabidopsis genes were then used to re-query the Arabidopsis co-expression database and re-construct a network that captured additional network neighbors, expanding to a total of 694 genes. The 694 Arabidopsis genes were computationally divided into 22 clusters. Queries of the Populus genome using the Arabidopsis genes revealed 817 Populus orthologs. Functional analysis of gene ontology and tissue-specific gene expression indicated that these Arabidopsis and Populus genes are high likelihood candidates for functional genomics in relation to cell wall biosynthesis.

  6. SeqEnrich: A tool to predict transcription factor networks from co-expressed Arabidopsis and Brassica napus gene sets.

    PubMed

    Becker, Michael G; Walker, Philip L; Pulgar-Vidal, Nadège C; Belmonte, Mark F

    2017-01-01

    Transcription factors and their associated DNA binding sites are key regulatory elements of cellular differentiation, development, and environmental response. New tools that predict transcriptional regulation of biological processes are valuable to researchers studying both model and emerging-model plant systems. SeqEnrich predicts transcription factor networks from co-expressed Arabidopsis or Brassica napus gene sets. The networks produced by SeqEnrich are supported by existing literature and predicted transcription factor-DNA interactions that can be functionally validated at the laboratory bench. The program functions with gene sets of varying sizes and derived from diverse tissues and environmental treatments. SeqEnrich presents as a powerful predictive framework for the analysis of Arabidopsis and Brassica napus co-expression data, and is designed so that researchers at all levels can easily access and interpret predicted transcriptional circuits. The program outperformed its ancestral program ChipEnrich, and produced detailed transcription factor networks from Arabidopsis and Brassica napus gene expression data. The SeqEnrich program is ideal for generating new hypotheses and distilling biological information from large-scale expression data.

  7. Differential co-expression and regulation analyses reveal different mechanisms underlying major depressive disorder and subsyndromal symptomatic depression.

    PubMed

    Xu, Fan; Yang, Jing; Chen, Jin; Wu, Qingyuan; Gong, Wei; Zhang, Jianguo; Shao, Weihua; Mu, Jun; Yang, Deyu; Yang, Yongtao; Li, Zhiwei; Xie, Peng

    2015-04-03

    Recent depression research has revealed a growing awareness of how to best classify depression into depressive subtypes. Appropriately subtyping depression can lead to identification of subtypes that are more responsive to current pharmacological treatment and aid in separating out depressed patients in which current antidepressants are not particularly effective. Differential co-expression analysis (DCEA) and differential regulation analysis (DRA) were applied to compare the transcriptomic profiles of peripheral blood lymphocytes from patients with two depressive subtypes: major depressive disorder (MDD) and subsyndromal symptomatic depression (SSD). Six differentially regulated genes (DRGs) (FOSL1, SRF, JUN, TFAP4, SOX9, and HLF) and 16 transcription factor-to-target differentially co-expressed gene links or pairs (TF2target DCLs) appear to be the key differential factors in MDD; in contrast, one DRG (PATZ1) and eight TF2target DCLs appear to be the key differential factors in SSD. There was no overlap between the MDD target genes and SSD target genes. Venlafaxine (Efexor™, Effexor™) appears to have a significant effect on the gene expression profile of MDD patients but no significant effect on the gene expression profile of SSD patients. DCEA and DRA revealed no apparent similarities between the differential regulatory processes underlying MDD and SSD. This bioinformatic analysis may provide novel insights that can support future antidepressant R&D efforts.

  8. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    PubMed Central

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-01-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases. PMID:27703186

  9. Broad Integration of Expression Maps and Co-Expression Networks Compassing Novel Gene Functions in the Brain

    PubMed Central

    Okamura-Oho, Yuko; Shimokawa, Kazuro; Nishimura, Masaomi; Takemoto, Satoko; Sato, Akira; Furuichi, Teiichi; Yokota, Hideo

    2014-01-01

    Using a recently invented technique for gene expression mapping in the whole-anatomy context, termed transcriptome tomography, we have generated a dataset of 36,000 maps of overall gene expression in the adult-mouse brain. Here, using an informatics approach, we identified a broad co-expression network that follows an inverse power law and is rich in functional interaction and gene-ontology terms. Our framework for the integrated analysis of expression maps and graphs of co-expression networks revealed that groups of combinatorially expressed genes, which regulate cell differentiation during development, were present in the adult brain and each of these groups was associated with a discrete cell types. These groups included non-coding genes of unknown function. We found that these genes specifically linked developmentally conserved groups in the network. A previously unrecognized robust expression pattern covering the whole brain was related to the molecular anatomy of key biological processes occurring in particular areas. PMID:25382412

  10. Hyaluronic acid production is enhanced by the additional co-expression of UDP-glucose pyrophosphorylase in Lactococcus lactis.

    PubMed

    Prasad, Shashi Bala; Jayaraman, Guhan; Ramachandran, K B

    2010-03-01

    Hyaluronic acid (HA) production was metabolically engineered in Lactococcus lactis by introducing the HA synthetic machinery from the has operon of the pathogenic bacterium Streptococcus zooepidemicus. This study shows that the insertion of uridine diphosphate (UDP)-glucose pyrophosphorylase (hasC) gene in addition to the HA synthase (hasA) and UDP-glucose dehydrogenase (hasB) genes has a significant impact on increasing HA production. The recombinant L. lactis NZ9000 strain transformed with the plasmid pSJR2 (co-expressing hasA and hasB genes only) produced a maximum of 107 mg/l HA in static flask experiments with varying initial glucose concentrations, while the corresponding experiments with the transformant SJR3 (co-expressing hasA, hasB, and hasC genes) gave a maximum yield of 234 mg/l HA. The plasmid cloned with the insertion of the full has operon comprising of five different genes (hasA, hasB, hasC, hasD, and hasE) exhibited structural instability. The HA yield was further enhanced in batch bioreactor experiments with controlled pH and aeration, and a maximum of 1.8 g/l HA was produced by the SJR3 culture.

  11. Matrix factorization reveals aging-specific co-expression gene modules in the fat and muscle tissues in nonhuman primates

    NASA Astrophysics Data System (ADS)

    Wang, Yongcui; Zhao, Weiling; Zhou, Xiaobo

    2016-10-01

    Accurate identification of coherent transcriptional modules (subnetworks) in adipose and muscle tissues is important for revealing the related mechanisms and co-regulated pathways involved in the development of aging-related diseases. Here, we proposed a systematically computational approach, called ICEGM, to Identify the Co-Expression Gene Modules through a novel mathematical framework of Higher-Order Generalized Singular Value Decomposition (HO-GSVD). ICEGM was applied on the adipose, and heart and skeletal muscle tissues in old and young female African green vervet monkeys. The genes associated with the development of inflammation, cardiovascular and skeletal disorder diseases, and cancer were revealed by the ICEGM. Meanwhile, genes in the ICEGM modules were also enriched in the adipocytes, smooth muscle cells, cardiac myocytes, and immune cells. Comprehensive disease annotation and canonical pathway analysis indicated that immune cells, adipocytes, cardiomyocytes, and smooth muscle cells played a synergistic role in cardiac and physical functions in the aged monkeys by regulation of the biological processes associated with metabolism, inflammation, and atherosclerosis. In conclusion, the ICEGM provides an efficiently systematic framework for decoding the co-expression gene modules in multiple tissues. Analysis of genes in the ICEGM module yielded important insights on the cooperative role of multiple tissues in the development of diseases.

  12. ccNET: Database of co-expression networks with functional modules for diploid and polyploid Gossypium

    PubMed Central

    You, Qi; Xu, Wenying; Zhang, Kang; Zhang, Liwei; Yi, Xin; Yao, Dongxia; Wang, Chunchao; Zhang, Xueyan; Zhao, Xinhua; Provart, Nicholas J.; Li, Fuguang; Su, Zhen

    2017-01-01

    Plant genera with both diploid and polyploid species are a common evolutionary occurrence. Polyploids, especially allopolyploids such as cotton and wheat, are a great model system for heterosis research. Here, we have integrated genome sequences and transcriptome data of Gossypium species to construct co-expression networks and identified functional modules from different cotton species, including 1155 and 1884 modules in G. arboreum and G. hirsutum, respectively. We overlayed the gene expression results onto the co-expression network. We further provided network comparison analysis for orthologous genes across the diploid and allotetraploid Gossypium. We also constructed miRNA-target networks and predicted PPI networks for both cotton species. Furthermore, we integrated in-house ChIP-seq data of histone modification (H3K4me3) together with cis-element analysis and gene sets enrichment analysis tools for studying possible gene regulatory mechanism in Gossypium species. Finally, we have constructed an online ccNET database (http://structuralbiology.cau.edu.cn/gossypium) for comparative gene functional analyses at a multi-dimensional network and epigenomic level across diploid and polyploid Gossypium species. The ccNET database will be beneficial for community to yield novel insights into gene/module functions during cotton development and stress response, and might be useful for studying conservation and diversity in other polyploid plants, such as T. aestivum and Brassica napus. PMID:28053168

  13. Forced co-expression of IL-21 and IL-7 in whole-cell cancer vaccines promotes antitumor immunity

    PubMed Central

    Gu, Yang-Zhuo; Fan, Chuan-Wen; Lu, Ran; Shao, Bin; Sang, Ya-Xiong; Huang, Qiao-Rong; Li, Xue; Meng, Wen-Tong; Mo, Xian-Ming; Wei, Yu-Quan

    2016-01-01

    Genetic modification of whole-cell cancer vaccines to augment their efficacies has a history of over two and a half decades. Various genes and gene combinations, targeting different aspects of immune responses have been tested in pursuit of potent adjuvant effects. Here we show that co-expression of two cytokine members of the common cytokine receptor γ-chain family, IL-21 and IL-7, in whole-cell cancer vaccines boosts antitumor immunity in a CD4+ and CD8+ T cell-dependent fashion. It also generates effective immune memory. The vaccine-elicited short-term effects positively correlated with enhanced infiltration of CD4+ and CD8+ effector T cells, and the long-term effects positively correlated with enhanced infiltration of effector memory T cells, especially CD8+ effector memory T cells. Preliminary data suggested that the vaccine exhibited good safety profile in murine models. Taken together, the combination of IL-21 and IL-7 possesses potent adjuvant efficacy in whole-cell vaccines. This finding warrants future development of IL-21 and IL-7 co-expressing whole-cell cancer vaccines and their relevant combinatorial regimens. PMID:27571893

  14. Gene Co-Expression Network Analysis for Identifying Modules and Functionally Enriched Pathways in Type 1 Diabetes

    PubMed Central

    Riquelme Medina, Ignacio; Lubovac-Pilav, Zelmina

    2016-01-01

    Type 1 diabetes (T1D) is a complex disease, caused by the autoimmune destruction of the insulin producing pancreatic beta cells, resulting in the body’s inability to produce insulin. While great efforts have been put into understanding the genetic and environmental factors that contribute to the etiology of the disease, the exact molecular mechanisms are still largely unknown. T1D is a heterogeneous disease, and previous research in this field is mainly focused on the analysis of single genes, or using traditional gene expression profiling, which generally does not reveal the functional context of a gene associated with a complex disorder. However, network-based analysis does take into account the interactions between the diabetes specific genes or proteins and contributes to new knowledge about disease modules, which in turn can be used for identification of potential new biomarkers for T1D. In this study, we analyzed public microarray data of T1D patients and healthy controls by applying a systems biology approach that combines network-based Weighted Gene Co-Expression Network Analysis (WGCNA) with functional enrichment analysis. Novel co-expression gene network modules associated with T1D were elucidated, which in turn provided a basis for the identification of potential pathways and biomarker genes that may be involved in development of T1D. PMID:27257970

  15. The impact of microRNAs on transcriptional heterogeneity and gene co-expression across single embryonic stem cells

    PubMed Central

    Gambardella, Gennaro; Carissimo, Annamaria; Chen, Amy; Cutillo, Luisa; Nowakowski, Tomasz J.; di Bernardo, Diego; Blelloch, Robert

    2017-01-01

    MicroRNAs act posttranscriptionally to suppress multiple target genes within a cell population. To what extent this multi-target suppression occurs in individual cells and how it impacts transcriptional heterogeneity and gene co-expression remains unknown. Here we used single-cell sequencing combined with introduction of individual microRNAs. miR-294 and let-7c were introduced into otherwise microRNA-deficient Dgcr8 knockout mouse embryonic stem cells. Both microRNAs induce suppression and correlated expression of their respective gene targets. The two microRNAs had opposing effects on transcriptional heterogeneity within the cell population, with let-7c increasing and miR-294 decreasing the heterogeneity between cells. Furthermore, let-7c promotes, whereas miR-294 suppresses, the phasing of cell cycle genes. These results show at the individual cell level how a microRNA simultaneously has impacts on its many targets and how that in turn can influence a population of cells. The findings have important implications in the understanding of how microRNAs influence the co-expression of genes and pathways, and thus ultimately cell fate. PMID:28102192

  16. Co-Expression of Wild-Type P2X7R with Gln460Arg Variant Alters Receptor Function

    PubMed Central

    Aprile-Garcia, Fernando; Metzger, Michael W.; Paez-Pereda, Marcelo; Stadler, Herbert; Acuña, Matías; Liberman, Ana C.; Senin, Sergio A.; Gerez, Juan; Hoijman, Esteban; Refojo, Damian; Mitkovski, Mišo; Panhuysen, Markus; Stühmer, Walter; Holsboer, Florian; Deussing, Jan M.; Arzt, Eduardo

    2016-01-01

    The P2X7 receptor is a member of the P2X family of ligand-gated ion channels. A single-nucleotide polymorphism leading to a glutamine (Gln) by arginine (Arg) substitution at codon 460 of the purinergic P2X7 receptor (P2X7R) has been associated with mood disorders. No change in function (loss or gain) has been described for this SNP so far. Here we show that although the P2X7R-Gln460Arg variant per se is not compromised in its function, co-expression of wild-type P2X7R with P2X7R-Gln460Arg impairs receptor function with respect to calcium influx, channel currents and intracellular signaling in vitro. Moreover, co-immunoprecipitation and FRET studies show that the P2X7R-Gln460Arg variant physically interacts with P2X7R-WT. Specific silencing of either the normal or polymorphic variant rescues the heterozygous loss of function phenotype and restores normal function. The described loss of function due to co-expression, unique for mutations in the P2RX7 gene so far, explains the mechanism by which the P2X7R-Gln460Arg variant affects the normal function of the channel and may represent a mechanism of action for other mutations. PMID:26986975

  17. Modulating secretory pathway pH by proton channel co-expression can increase recombinant protein stability in plants.

    PubMed

    Jutras, Philippe V; D'Aoust, Marc-André; Couture, Manon M-J; Vézina, Louis-Philippe; Goulet, Marie-Claire; Michaud, Dominique; Sainsbury, Frank

    2015-09-01

    Eukaryotic expression systems are used for the production of complex secreted proteins. However, recombinant proteins face considerable biochemical challenges along the secretory pathway, including proteolysis and pH variation between organelles. As the use of synthetic biology matures into solutions for protein production, various host-cell engineering approaches are being developed to ameliorate host-cell factors that can limit recombinant protein quality and yield. We report the potential of the influenza M2 ion channel as a novel tool to neutralize the pH in acidic subcellular compartments. Using transient expression in the plant host, Nicotiana benthamiana, we show that ion channel expression can significantly raise pH in the Golgi apparatus and that this can have a strong stabilizing effect on a fusion protein separated by an acid-susceptible linker peptide. We exemplify the utility of this effect in recombinant protein production using influenza hemagglutinin subtypes differentially stable at low pH; the expression of hemagglutinins prone to conformational change in mildly acidic conditions is considerably enhanced by M2 co-expression. The co-expression of a heterologous ion channel to stabilize acid-labile proteins and peptides represents a novel approach to increasing the yield and quality of secreted recombinant proteins in plants and, possibly, in other eukaryotic expression hosts. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Weighted gene co-expression network analysis identifies specific modules and hub genes related to coronary artery disease.

    PubMed

    Liu, Jing; Jing, Ling; Tu, Xilin

    2016-03-05

    The analysis of the potential molecule targets of coronary artery disease (CAD) is critical for understanding the molecular mechanisms of disease. However, studies of global microarray gene co-expression analysis of CAD still remain limited. Microarray data of CAD (GSE23561) were downloaded from Gene Expression Omnibus, including peripheral blood samples from CAD patients (n = 6) and controls (n = 9). Limma package in R was used to identify the differentially expressed genes (DEGs) between CAD and control samples. Using weighted gene co-expression network analysis (WGCNA) package in R, WGCNA was performed to identify significant modules in the network. Then, functional and pathway enrichment analyses were conducted for genes in the most significant module using DAVID software. Moreover, hub genes in the module were analyzed by isubpathwayminer package in R and GenCLiP 2.0 tool to identify the significant sub-pathways. Total 3711 DEGs and 21 modules for them were identified in CAD samples. The most significant module was associated with the pathways of hypertrophic cardiomyopathy and membrane related functions. In addition, the top 30 hub genes with high connectivity in the module were selected, and two genes (G6PD and S100A7) were taken as key molecules via sub-pathway screening and data mining. A module associated with hypertrophic cardiomyopathy pathway was detected in CAD samples. G6PD and S100A7 were the potential targets in CAD. Our finding might provide novel insight into the underlying molecular mechanism of CAD.

  19. Transcriptomics of the late gestation ovine fetal brain: modeling the co-expression of immune marker genes.

    PubMed

    Rabaglino, Maria B; Keller-Wood, Maureen; Wood, Charles E

    2014-11-19

    Major changes in gene expression occur in the fetal brain to modulate the function of this organ postnatally. Thus, factors can alter the genomics of the fetal brain, predisposing to neurological disorders later in life. We hypothesized that the physiological dynamics of the immune system transcriptome of the fetal brain during the last stage of gestation will reveal patterns of immune function and development in the developing brain. In this study we applied weighted gene co-expression analysis of microarrays performed on ovine fetal brain samples, to model the changes in gene expression throughout the second half of gestation. Clusters of co-expressed genes that strongly increase in expression toward the first day of extra-uterine life are related to the hematopoietic lineage, while activation of immune pathways is induced after birth. Moreover, the pattern of gene expression suggests induction of tolerance mechanisms, probably necessary to protect highly produced proteins--such as myelin basic protein--from an autoimmune attack. This study provides insight into the dramatic changes in gene expression that take place in the brain during the fetal life, especially during the last stage of gestation, and suggests that the immune system may have an important role in maturation of the fetal brain, which if disrupted or altered, could have negative consequences in postnatal life.

  20. Integration of Metabolic Modeling with Gene Co-expression Reveals Transcriptionally Programmed Reactions Explaining Robustness in Mycobacterium tuberculosis

    PubMed Central

    Puniya, Bhanwar Lal; Kulshreshtha, Deepika; Mittal, Inna; Mobeen, Ahmed; Ramachandran, Srinivasan

    2016-01-01

    Robustness of metabolic networks is accomplished by gene regulation, modularity, re-routing of metabolites and plasticity. Here, we probed robustness against perturbations of biochemical reactions of M. tuberculosis in the form of predicting compensatory trends. In order to investigate the transcriptional programming of genes associated with correlated fluxes, we integrated with gene co-expression network. Knock down of the reactions NADH2r and ATPS responsible for producing the hub metabolites, and Central carbon metabolism had the highest proportion of their associated genes under transcriptional co-expression with genes of their flux correlated reactions. Reciprocal gene expression correlations were observed among compensatory routes, fresh activation of alternative routes and in the multi-copy genes of Cysteine synthase and of Phosphate transporter. Knock down of 46 reactions caused the activation of Isocitrate lyase or Malate synthase or both reactions, which are central to the persistent state of M. tuberculosis. A total of 30 new freshly activated routes including Cytochrome c oxidase, Lactate dehydrogenase, and Glycine cleavage system were predicted, which could be responsible for switching into dormant or persistent state. Thus, our integrated approach of exploring transcriptional programming of flux correlated reactions has the potential to unravel features of system architecture conferring robustness. PMID:27000948

  1. Engineering production of functional scFv antibody in E. coli by co-expressing the molecule chaperone Skp

    PubMed Central

    Wang, Rongzhi; Xiang, Shuangshuang; Feng, Youjun; Srinivas, Swaminath; Zhang, Yonghui; Lin, Mingshen; Wang, Shihua

    2013-01-01

    Single-chain variable fragment (scFv) is a class of engineered antibodies generated by the fusion of the heavy (VH) and light chains (VL) of immunoglobulins through a short polypeptide linker. ScFv play a critical role in therapy and diagnosis of human diseases, and may in fact also be developed into a potential diagnostic and/or therapeutic agent. However, the fact that current scFv antibodies have poor stability, low solubility, and affinity, seriously limits their diagnostic and clinical implication. Here we have developed four different expression vectors, and evaluated their abilities to express a soluble scFv protein. The solubility and binding activity of the purified proteins were determined using both SDS-PAGE and ELISA. Amongst the four purified proteins, the Skp co-expressed scFv showed the highest solubility, and the binding activity to antigen TLH was 3-4 fold higher than the other three purified scFv. In fact, this scFv is specific for TLH and does not cross-react with other TLH-associated proteins and could be used to detect TLH directly in real samples. These results suggest that the pACYC-Duet-skp co-expression vector might be a useful tool for the production of soluble and functional scFv antibody. PMID:24224158

  2. GeNET: a web application to explore and share Gene Co-expression Network Analysis data.

    PubMed

    Desai, Amit P; Razeghin, Mehdi; Meruvia-Pastor, Oscar; Peña-Castillo, Lourdes

    2017-01-01

    Gene Co-expression Network Analysis (GCNA) is a popular approach to analyze a collection of gene expression profiles. GCNA yields an assignment of genes to gene co-expression modules, a list of gene sets statistically over-represented in these modules, and a gene-to-gene network. There are several computer programs for gene-to-gene network visualization, but these programs have limitations in terms of integrating all the data generated by a GCNA and making these data available online. To facilitate sharing and study of GCNA data, we developed GeNET. For researchers interested in sharing their GCNA data, GeNET provides a convenient interface to upload their data and automatically make it accessible to the public through an online server. For researchers interested in exploring GCNA data published by others, GeNET provides an intuitive online tool to interactively explore GCNA data by genes, gene sets or modules. In addition, GeNET allows users to download all or part of the published data for further computational analysis. To demonstrate the applicability of GeNET, we imported three published GCNA datasets, the largest of which consists of roughly 17,000 genes and 200 conditions. GeNET is available at bengi.cs.mun.ca/genet.

  3. Increased co-expression of genes harboring the damaging de novo mutations in Chinese schizophrenic patients during prenatal development.

    PubMed

    Wang, Qiang; Li, Miaoxin; Yang, Zhenxing; Hu, Xun; Wu, Hei-Man; Ni, Peiyan; Ren, Hongyan; Deng, Wei; Li, Mingli; Ma, Xiaohong; Guo, Wanjun; Zhao, Liansheng; Wang, Yingcheng; Xiang, Bo; Lei, Wei; Sham, Pak C; Li, Tao

    2015-12-15

    Schizophrenia is a heritable, heterogeneous common psychiatric disorder. In this study, we evaluated the hypothesis that de novo variants (DNVs) contribute to the pathogenesis of schizophrenia. We performed exome sequencing in Chinese patients (N = 45) with schizophrenia and their unaffected parents (N = 90). Forty genes were found to contain DNVs. These genes had enriched transcriptional co-expression profile in prenatal frontal cortex (Bonferroni corrected p < 9.1 × 10(-3)), and in prenatal temporal and parietal regions (Bonferroni corrected p < 0.03). Also, four prenatal anatomical subregions (VCF, MFC, OFC and ITC) have shown significant enrichment of connectedness in co-expression networks. Moreover, four genes (LRP1, MACF1, DICER1 and ABCA2) harboring the damaging de novo mutations are strongly prioritized as susceptibility genes by multiple evidences. Our findings in Chinese schizophrenic patients indicate the pathogenic role of DNVs, supporting the hypothesis that schizophrenia is a neurodevelopmental disease.

  4. Leptin modulates nutrient reward via inhibitory galanin action on orexin neurons

    PubMed Central

    Laque, Amanda; Yu, Sangho; Qualls-Creekmore, Emily; Gettys, Sarah; Schwartzenburg, Candice; Bui, Kelly; Rhodes, Christopher; Berthoud, Hans-Rudolf; Morrison, Christopher D.; Richards, Brenda K.; Münzberg, Heike

    2015-01-01

    Objective Leptin modulates food reward via central leptin receptor (LepRb) expressing neurons. Food reward requires stimulation of midbrain dopamine neurons and is modulated by central leptin action, but the exact central mechanisms remain unclear. Stimulatory and inhibitory leptin actions on dopamine neurons have been reported, e.g. by indirect actions on orexin neurons or via direct innervation of dopamine neurons in the ventral tegmental area. Methods We showed earlier that LepRb neurons in the lateral hypothalamus (LHA) co-express the inhibitory acting neuropeptide galanin (GAL-LepRb neurons). We studied the involvement of GAL-LepRb neurons to regulate nutrient reward in mice with selective LepRb deletion from galanin neurons (GAL-LepRbKO mice). Results We found that the rewarding value and preference for sucrose over fat was increased in GAL-LepRbKO mice compared to controls. LHA GAL-LepRb neurons innervate orexin neurons, but not the VTA. Further, expression of galanin and its receptor GalR1 are decreased in the LHA of GAL-LepRbKO mice, resulting in increased activation of orexin neurons. Conclusion We suggest galanin as an important mediator of leptin action to modulate nutrient reward by inhibiting orexin neurons. PMID:26500842

  5. Optical control of neuronal excitation and inhibition using a single opsin protein, ChR2

    NASA Astrophysics Data System (ADS)

    Liske, Holly; Qian, Xiang; Anikeeva, Polina; Deisseroth, Karl; Delp, Scott

    2013-10-01

    The effect of electrical stimulation on neuronal membrane potential is frequency dependent. Low frequency electrical stimulation can evoke action potentials, whereas high frequency stimulation can inhibit action potential transmission. Optical stimulation of channelrhodopsin-2 (ChR2) expressed in neuronal membranes can also excite action potentials. However, it is unknown whether optical stimulation of ChR2-expressing neurons produces a transition from excitation to inhibition with increasing light pulse frequencies. Here we report optical inhibition of motor neuron and muscle activity in vivo in the cooled sciatic nerves of Thy1-ChR2-EYFP mice. We also demonstrate all-optical single-wavelength control of neuronal excitation and inhibition without co-expression of inhibitory and excitatory opsins. This all-optical system is free from stimulation-induced electrical artifacts and thus provides a new approach to investigate mechanisms of high frequency inhibition in neuronal circuits in vivo and in vitro.

  6. Morphine upregulates functional expression of neurokinin-1 receptor in neurons.

    PubMed

    Wan, Qi; Douglas, Steven D; Wang, Xu; Kolson, Dennis L; O'Donnell, Lauren A; Ho, Wen-Zhe

    2006-11-15

    Neuronkinin-1 receptor (NK-1R), the neuropeptide substance P (SP) preferring receptor, is highly expressed in areas of the central nervous system (CNS) that are especially implicated in depression, anxiety, and stress. Repeated exposure to opioids may sensitize neuronal systems involved in stress response. We examined the effects of morphine, the principal metabolite of heroin, on the functional expression of NK-1R in the cortical neurons. NK-1R and mu-opioid receptor (MOR) are co-expressed in the cortical neurons. Morphine enhanced NK-1R expression in the cortical neurons at both the mRNA and protein levels. The upregulated NK-1R by morphine had functional activity, because morphine-treated cortical neurons had greater SP-induced Ca(2+) mobilization than untreated neurons. Blocking opioid receptors on the cortical neurons by naltrexone or CTAP (a mu-opioid receptor antagonist) abolished the morphine action. Investigation of the mechanism(s) responsible for the morphine action showed that morphine activated NK-1R promoter and induced the phosphorylation of p38 MAPK protein in the cortical neurons. These in vitro data provide a plausible cellular mechanism for opioid-mediated neurological disorders.

  7. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes.

    PubMed

    Battelle, Barbara-Anne; Kempler, Karen E; Harrison, Alexandra; Dugger, Donald R; Payne, Richard

    2014-09-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors.

  8. Opsin expression in Limulus eyes: a UV opsin is expressed in each eye type and co-expressed with a visible light-sensitive opsin in ventral larval eyes

    PubMed Central

    Battelle, Barbara-Anne; Kempler, Karen E.; Harrison, Alexandra; Dugger, Donald R.; Payne, Richard

    2014-01-01

    The eyes of the horseshoe crab, Limulus polyphemus, are a model for studies of visual function and the visual systems of euarthropods. Much is known about the structure and function of L. polyphemus photoreceptors, much less about their photopigments. Three visible-light-sensitive L. polyphemus opsins were characterized previously (LpOps1, 2 and 5). Here we characterize a UV opsin (LpUVOps1) that is expressed in all three types of L. polyphemus eyes. It is expressed in most photoreceptors in median ocelli, the only L. polyphemus eyes in which UV sensitivity was previously detected, and in the dendrite of eccentric cells in lateral compound eyes. Therefore, eccentric cells, previously thought to be non-photosensitive second-order neurons, may actually be UV-sensitive photoreceptors. LpUVOps1 is also expressed in small photoreceptors in L. polyphemus ventral larval eyes, and intracellular recordings from these photoreceptors confirm that LpUVOps1 is an active, UV-sensitive photopigment. These photoreceptors also express LpOps5, which we demonstrate is an active, long-wavelength-sensitive photopigment. Thus small photoreceptors in ventral larval eyes, and probably those of the other larval eyes, have dual sensitivity to UV and visible light. Interestingly, the spectral tuning of small ventral photoreceptors may change day to night, because the level of LpOps5 in their rhabdoms is lower during the day than during the night, whereas LpUVOps1 levels show no diurnal change. These and previous findings show that opsin co-expression and the differential regulation of co-expressed opsins in rhabdoms is a common feature of L. polyphemus photoreceptors. PMID:24948643

  9. 5-Hydroxytryptamine type 2A receptors regulate cyclic AMP accumulation in a neuronal cell line by protein kinase C-dependent and calcium/calmodulin-dependent mechanisms.

    PubMed

    Berg, K A; Clarke, W P; Chen, Y; Ebersole, B J; McKay, R D; Maayani, S

    1994-05-01

    The effects of 5-hydroxytryptamine (5-HT)2A receptor activation on cAMP formation were studied in a cell line derived from embryonic rat cortex (A1A1). 5-HT (EC50 = 0.87 microM) amplified the amount of cAMP formed in response to 5'-N-ethylcarboxamidoadenosine (an adenosine A2 receptor agonist), cholera toxin, and forskolin after 15 min of coincubation in the presence of the phosphodiesterase inhibitor rolipram. This effect of 5-HT was blocked by 10 nM ketanserin as well as by 10 nM spiperone, indicating a response mediated by the 5-HT2A receptor subtype. Similarly, cAMP accumulation was enhanced by coincubation with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) and the calcium ionophore A23187. After exposure to PMA for 24 hr (PKC-depleted cells), 5-HT and A23187 still enhanced cAMP formed in response to forskolin and 5'-N-ethylcarboxamidoadenosine, whereas the amplifying effects of PMA were abolished. Analysis by Western blots and PKC activity measurements revealed that, of three PKC isoforms detected in A1A1 cells (alpha, delta, and epsilon), only the calcium-independent isoform PKC-epsilon remained in membrane fractions after long term PMA treatment. In PKC-depleted cells, 5-HT-mediated amplification was greatly reduced after treatment with the calcium chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (acetoxymethyl)-ester or the calmodulin antagonists calmidazolium and N-(6-aminohexyl)-5-chloro-1-napthalenesulfonamide hydrochloride. In addition, 5-HT-mediated amplification of cAMP accumulation was reduced by the PKC inhibitor staurosporine in normal cells but was unaffected in PKC-depleted cells. In conclusion, these data suggest that 5-HT2A receptor activation can amplify cAMP formation in A1A1 cells by two distinct pathways coupled to the hydrolysis of inositol phosphates, i.e., PKC and calcium/calmodulin.

  10. L-citrulline immunostaining identifies nitric oxide production sites within neurons.

    PubMed

    Martinelli, G P T; Friedrich, V L; Holstein, G R

    2002-01-01

    The cellular and subcellular localization of L-citrulline was analyzed in the adult rat brain and compared with that of traditional markers for the presence of nitric oxide synthase. Light, transmission electron, and confocal laser scanning microscopy were used to study tissue sections processed for immunocytochemistry employing a monoclonal antibody against L-citrulline or polyclonal anti-neuronal nitric oxide synthase sera, and double immunofluorescence to detect neuronal nitric oxide synthase and L-citrulline co-localization. The results demonstrate that the same CNS regions and cell types are labeled by neuronal nitric oxide synthase polyclonal antisera and L-citrulline monoclonal antibodies, using both immunocytochemistry and immunofluorescence. Short-term pretreatment with a nitric oxide synthase inhibitor reduces L-citrulline immunostaining, but does not affect neuronal nitric oxide synthase immunoreactivity. In the vestibular brainstem, double immunofluorescence studies show that many, but not all, neuronal nitric oxide synthase-positive cells co-express L-citrulline, and that local intracellular patches of intense L-citrulline accumulation are present in some neurons. Conversely, all L-citrulline-labeled neurons co-express neuronal nitric oxide synthase. Cells expressing neuronal nitric oxide synthase alone are interpreted as neurons with the potential to produce nitric oxide under other stimulus conditions, and the subcellular foci of enhanced L-citrulline staining are viewed as intracellular sites of nitric oxide production. This interpretation is supported by ultrastructural observations of subcellular foci with enhanced L-citrulline and/or neuronal nitric oxide synthase staining that are located primarily at postsynaptic densities and portions of the endoplasmic reticulum. We conclude that nitric oxide is produced and released at focal sites within neurons that are identifiable using L-citrulline as a marker. Copyright 2002 IBRO

  11. L-citrulline immunostaining identifies nitric oxide production sites within neurons

    NASA Technical Reports Server (NTRS)

    Martinelli, G. P. T.; Friedrich, V. L. Jr; Holstein, G. R.

    2002-01-01

    The cellular and subcellular localization of L-citrulline was analyzed in the adult rat brain and compared with that of traditional markers for the presence of nitric oxide synthase. Light, transmission electron, and confocal laser scanning microscopy were used to study tissue sections processed for immunocytochemistry employing a monoclonal antibody against L-citrulline or polyclonal anti-neuronal nitric oxide synthase sera, and double immunofluorescence to detect neuronal nitric oxide synthase and L-citrulline co-localization. The results demonstrate that the same CNS regions and cell types are labeled by neuronal nitric oxide synthase polyclonal antisera and L-citrulline monoclonal antibodies, using both immunocytochemistry and immunofluorescence. Short-term pretreatment with a nitric oxide synthase inhibitor reduces L-citrulline immunostaining, but does not affect neuronal nitric oxide synthase immunoreactivity. In the vestibular brainstem, double immunofluorescence studies show that many, but not all, neuronal nitric oxide synthase-positive cells co-express L-citrulline, and that local intracellular patches of intense L-citrulline accumulation are present in some neurons. Conversely, all L-citrulline-labeled neurons co-express neuronal nitric oxide synthase. Cells expressing neuronal nitric oxide synthase alone are interpreted as neurons with the potential to produce nitric oxide under other stimulus conditions, and the subcellular foci of enhanced L-citrulline staining are viewed as intracellular sites of nitric oxide production. This interpretation is supported by ultrastructural observations of subcellular foci with enhanced L-citrulline and/or neuronal nitric oxide synthase staining that are located primarily at postsynaptic densities and portions of the endoplasmic reticulum. We conclude that nitric oxide is produced and released at focal sites within neurons that are identifiable using L-citrulline as a marker. Copyright 2002 IBRO.

  12. Co-expression of Cyanobacterial Genes for Arsenic Methylation and Demethylation in Escherichia coli Offers Insights into Arsenic Resistance

    PubMed Central

    Yan, Yu; Xue, Xi-Mei; Guo, Yu-Qing; Zhu, Yong-Guan; Ye, Jun

    2017-01-01

    Arsenite [As(III)] and methylarsenite [MAs(III)] are the most toxic inorganic and methylated arsenicals, respectively. As(III) and MAs(III) can be interconverted in the unicellular cyanobacterium Nostoc sp. PCC 7120 (Nostoc), which has both the arsM gene (NsarsM), which is responsible for arsenic methylation, and the arsI gene (NsarsI), which is responsible for MAs(III) demethylation. It is not clear how the cells prevent a futile cycle of methylation and demethylation. To investigate the relationship between arsenic methylation and demethylation, we constructed strains of Escherichia coli AW3110 (ΔarsRBC) expressing NsarsM or/and NsarsI. Expression of NsarsI conferred MAs(III) resistance through MAs(III) demethylation. Compared to NsArsI, NsArsM conferred higher resistance to As(III) and lower resistance to MAs(III) by methylating both As(III) and MAs(III). The major species found in solution was dimethylarsenate [DMAs(V)]. Co-expression of NsarsM and NsarsI conferred As(III) resistance at levels similar to that with NsarsM alone, although the main species found in solution after As(III) biotransformation was methylarsenate [MAs(V)] rather than DMAs(V). Co-expression of NsarsM and NsarsI conferred a higher level of resistance to MAs(III) than found with expression of NsarsM alone but lower than expression of only NsarsI. Cells co-expressing both genes converted MAs(III) to a mixture of As(III) and DMAs(V). In Nostoc NsarsM is constitutively expressed, while NsarsI is inducible by either As(III) or MAs(III). Thus, our results suggest that at low concentrations of arsenic, NsArsM activity predominates, while NsArsI activity predominates at high concentrations. We propose that coexistence of arsM and arsI genes in Nostoc could be advantageous for several reasons. First, it confers a broader spectrum of resistance to both As(III) and MAs(III). Second, at low concentrations of arsenic, the MAs(III) produced by NsArsM will possibly have antibiotic-like properties and

  13. Large-scale gene co-expression network as a source of functional annotation for cattle genes.

    PubMed

    Beiki, Hamid; Nejati-Javaremi, Ardeshir; Pakdel, Abbas; Masoudi-Nejad, Ali; Hu, Zhi-Liang; Reecy, James M

    2016-11-02

    Genome sequencing and subsequent gene annotation of genomes has led to the elucidation of many genes, but in vertebrates the actual number of protein coding genes are very consistent across species (~20,000). Seven years after sequencing the cattle genome, there are still genes that have limited annotation and the function of many genes are still not understood, or partly understood at best. Based on the assumption that genes with similar patterns of expression across a vast array of tissues and experimental conditions are likely to encode proteins with related functions or participate within a given pathway, we constructed a genome-wide Cattle Gene Co-expression Network (CGCN) using 72 microarray datasets that contained a total of 1470 Affymetrix Genechip Bovine Genome Arrays that were retrieved from either NCBI GEO or EBI ArrayExpress. The total of 16,607 probe sets, which represented 11,397 genes, with unique Entrez ID were consolidated into 32 co-expression modules that contained between 29 and 2569 probe sets. All of the identified modules showed strong functional enrichment for gene ontology (GO) terms and Reactome pathways. For example, modules with important biological functions such as response to virus, response to bacteria, energy metabolism, cell signaling and cell cycle have been identified. Moreover, gene co-expression networks using "guilt-by-association" principle have been used to predict the potential function of 132 genes with no functional annotation. Four unknown Hub genes were identified in modules highly enriched for GO terms related to leukocyte activation (LOC509513), RNA processing (LOC100848208), nucleic acid metabolic process (LOC100850151) and organic-acid metabolic process (MGC137211). Such highly connected genes should be investigated more closely as they likely to have key regulatory roles. We have demonstrated that the CGCN and its corresponding regulons provides rich information for experimental biologists to design experiments

  14. Importance of Being Nernst: Synaptic Activity and Functional Relevance in Stem Cell-derived Neurons

    DTIC Science & Technology

    2015-07-26

    Although dissociated primary neuron cultures readily form functioning synapses and network behaviors in vitro , continuously cultured neurogenic cell... dissociated primary neurons, immortalized cell lines derived from neuronal and non-neuronal tissues and, most recently, stem cells. The predictive value of...While many dissociated primary neuron cultures reliably form functioning networks that exhibit physiological behaviors, their use is limited by

  15. Addictive neurons

    PubMed Central

    Kodirov, Sodikdjon A.

    2017-01-01

    Since the reward center is considered to be the area tegmentalis ventralis of the hypothalamus, logically its neurons could mainly be responsible for addiction. However, the literature asserts that almost any neurons of CNS can respond to one or another addictive compound. Obviously not only addictive nicotine, but also alcohol, amphetamine, cannabis, cocaine, heroin and morphine may influence dopaminergic cells alone in VTA. Moreover, paradoxically some of these drugs ameliorate symptoms, counterbalance syndromes, cure diseases and improve health, not only those related to the CNS and in adults, but also almost all other organs and in children, e.g. epilepsy. PMID:28649663

  16. Differential co-expression network centrality and machine learning feature selection for identifying susceptibility hubs in networks with scale-free structure.

    PubMed

    Lareau, Caleb A; White, Bill C; Oberg, Ann L; McKinney, Brett A

    2015-01-01

    Biological insights into group differences, such as disease status, have been achieved through differential co-expression analysis of microarray data. Additional understanding of group differences may be achieved by integrating the connectivity structure of the differential co-expression network and per-gene differential expression between phenotypic groups. Such a global differential co-expression network strategy may increase sensitivity to detect gene-gene interactions (or expression epistasis) that may act as candidates for rewiring susceptibility co-expression networks. We test two methods for inferring Genetic Association Interaction Networks (GAIN) incorporating both differential co-expression effects and differential expression effects: a generalized linear model (GLM) regression method with interaction effects (reGAIN) and a Fisher test method for correlation differences (dcGAIN). We rank the importance of each gene with complete interaction network centrality (CINC), which integrates each gene's differential co-expression effects in the GAIN model along with each gene's individual differential expression measure. We compare these methods with statistical learning methods Relief-F, Random Forests and Lasso. We also develop a mixture model and permutation approach for determining significant importance score thresholds for network centralities, Relief-F and Random Forest. We introduce a novel simulation strategy that generates microarray case-control data with embedded differential co-expression networks and underlying correlation structure based on scale-free or Erdos-Renyi (ER) random networks. Using the network simulation strategy, we find that Relief-F and reGAIN provide the best balance between detecting interactions and main effects, plus reGAIN has the ability to adjust for covariates and model quantitative traits. The dcGAIN approach performs best at finding differential co-expression effects by design but worst for main effects, and it does not

  17. Divergent and convergent modes of interaction between wheat and Puccinia graminis f. sp. tritici isolates revealed by the comparative gene co-expression network and genome analyses.

    PubMed

    Rutter, William B; Salcedo, Andres; Akhunova, Alina; He, Fei; Wang, Shichen; Liang, Hanquan; Bowden, Robert L; Akhunov, Eduard

    2017-04-12

    Two opposing evolutionary constraints exert pressure on plant pathogens: one to diversify virulence factors in order to evade plant defenses, and the other to retain virulence factors critical for maintaining a compatible interaction with the plant host. To better understand how the diversified arsenals of fungal genes promote interaction with the same compatible wheat line, we performed a comparative genomic analysis of two North American isolates of Puccinia graminis f. sp. tritici (Pgt). The patterns of inter-isolate divergence in the secreted candidate effector genes were compared with the levels of conservation and divergence of plant-pathogen gene co-expression networks (GCN) developed for each isolate. Comprative genomic analyses revealed substantial level of interisolate divergence in effector gene complement and sequence divergence. Gene Ontology (GO) analyses of the conserved and unique parts of the isolate-specific GCNs identified a number of conserved host pathways targeted by both isolates. Interestingly, the degree of inter-isolate sub-network conservation varied widely for the different host pathways and was positively associated with the proportion of conserved effector candidates associated with each sub-network. While different Pgt isolates tended to exploit similar wheat pathways for infection, the mode of plant-pathogen interaction varied for different pathways with some pathways being associated with the conserved set of effectors and others being linked with the diverged or isolate-specific effectors. Our data suggest that at the intra-species level pathogen populations likely maintain divergent sets of effectors capable of targeting the same plant host pathways. This functional redundancy may play an important role in the dynamic of the "arms-race" between host and pathogen serving as the basis for diverse virulence strategies and creating conditions where mutations in certain effector groups will not have a major effect on the pathogen

  18. High and compact formation of baculoviral polyhedrin-induced inclusion body by co-expression of baculoviral FP25 in Escherichia coli.

    PubMed

    Li, Lin; Kim, Young Soo; Hwang, Dong Soo; Seo, Jeong Hyun; Jung, Hee Jung; Du, Juan; Cha, Hyung Joon

    2007-04-15

    Previously, we found that baculoviral polyhedrin (Polh) can successfully be used in Escherichia coli as a fusion partner for the expression of special foreign proteins as inclusion bodies, and the resulting, easily isolatable Polh-induced fusion inclusion bodies had almost the same characteristics as the native Polh. Here, we investigated the effects of co-expression of baculoviral FP25 protein on Polh-induced inclusion-body production in an E. coli expression system, as FP25 is known to be involved specifically in polyhedra formation. Using several analytical tools, including SDS-PAGE, pronase proteolysis, solubilization under alkaline conditions, and electron microscopy, we found that co-expressed FP25 was associated with Polh-induced inclusion bodies and that its co-expression led to formation of compact inclusion bodies as well as high production levels. We confirmed that FP25 co-expression induced higher production levels of other heterologous protein, antimicrobial peptide Hal18, fused with aggregation-prone Polh. Therefore, co-expression of baculoviral FP25 can be promisingly used to increase the levels of baculoviral Polh-fused foreign proteins, especially harmful proteins, expressed as inclusion bodies in an E. coli expression system.

  19. Protein Co-Expression Analysis as a Strategy to Complement a Standard Quantitative Proteomics Approach: Case of a Glioblastoma Multiforme Study

    PubMed Central

    Deighton, Ruth F.

    2016-01-01

    Although correlation network studies from co-expression analysis are increasingly popular, they are rarely applied to proteomics datasets. Protein co-expression analysis provides a complementary view of underlying trends, which can be overlooked by conventional data analysis. The core of the present study is based on Weighted Gene Co-expression Network Analysis applied to a glioblastoma multiforme proteomic dataset. Using this method, we have identified three main modules which are associated with three different membrane associated groups; mitochondrial, endoplasmic reticulum, and a vesicle fraction. The three networks based on protein co-expression were assessed against a publicly available database (STRING) and show a statistically significant overlap. Each of the three main modules were de-clustered into smaller networks using different strategies based on the identification of highly connected networks, hierarchical clustering and enrichment of Gene Ontology functional terms. Most of the highly connected proteins found in the endoplasmic reticulum module were associated with redox activity while a core of the unfolded protein response was identified in addition to proteins involved in oxidative stress pathways. The proteins composing the electron transfer chain were found differently affected with proteins from mitochondrial Complex I being more down-regulated than proteins from Complex III. Finally, the two pyruvate kinases isoforms show major differences in their co-expressed protein networks suggesting roles in different cellular locations. PMID:27571357

  20. Tetrahymena Gene Expression Database (TGED): a resource of microarray data and co-expression analyses for Tetrahymena.

    PubMed

    Xiong, Jie; Lu, XingYi; Lu, YuMing; Zeng, HongHui; Yuan, DongXia; Feng, LiFang; Chang, Yue; Bowen, Josephine; Gorovsky, Martin; Fu, ChengJie; Miao, Wei

    2011-01-01

    Tetrahymena thermophila is a model eukaryotic organism. Functional genomic analyses in Tetrahymena present rich opportunities to address fundamental questions of cell and molecular biology. The Tetrahymena Gene Expression Database (TGED; available at http://tged.ihb.ac.cn) is the first expression database of a ciliated protozoan. It covers three major physiological and developmental states: growth, starvation, and conjugation, and can be accessed through a user-friendly web interface. The gene expression profiles and candidate co-expressed genes for each gene can be retrieved using Gene ID or Gene description searches. Descriptions of standardized methods of sample preparation and the opportunity to add new Tetrahymena microarray data will be of great interest to the Tetrahymena research community. TGED is intended to be a resource for all members of the scientific research community who are interested in Tetrahymena and other ciliates.

  1. Use of transcriptomics and co-expression networks to analyze the interconnections between nitrogen assimilation and photorespiratory metabolism

    PubMed Central

    Pérez-Delgado, Carmen M.; Moyano, Tomás C.; García-Calderón, Margarita; Canales, Javier; Gutiérrez, Rodrigo A.; Márquez, Antonio J.; Betti, Marco

    2016-01-01

    Nitrogen is one of the most important nutrients for plants and, in natural soils, its availability is often a major limiting factor for plant growth. Here we examine the effect of different forms of nitrogen nutrition and of photorespiration on gene expression in the model legume Lotus japonicus with the aim of identifying regulatory candidate genes co-ordinating primary nitrogen assimilation and photorespiration. The transcriptomic changes produced by the use of different nitrogen sources in leaves of L. japonicus plants combined with the transcriptomic changes produced in the same tissue by different photorespiratory conditions were examined. The results obtained provide novel information on the possible role of plastidic glutamine synthetase in the response to different nitrogen sources and in the C/N balance of L. japonicus plants. The use of gene co-expression networks establishes a clear relationship between photorespiration and primary nitrogen assimilation and identifies possible transcription factors connected to the genes of both routes. PMID:27117340

  2. IFR4/MUM1-positive lymphoma in Waldeyer ring with co-expression of CD5 and CD10.

    PubMed

    Chen, Lei; Al-Kzayer, Lika'a Fasih Y; Liu, Tingting; Kobayashi, Norimoto; Nakazawa, Yozo; Koike, Kenichi

    2017-02-01

    IRF4/MUM1-positive lymphoma is a new subgroup of germinal center-derived B-cell lymphoma, predominantly involving the Waldeyer ring (WR) in children. CD5 expression is rare in these lymphomas. We report a 7-year-old Chinese male with B-cell lymphoma. Evaluatio