Science.gov

Sample records for lines expressing increased

  1. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    SciTech Connect

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  2. Increased expression of the integral membrane proteins EGFR and FGFR3 in anti-apoptotic Chinese hamster ovary cell lines.

    PubMed

    Ohsfeldt, Erika; Huang, Szu-Han; Baycin-Hizal, Deniz; Kristoffersen, Linda; Le, Thuy-My T; Li, Edwin; Hristova, Kalina; Betenbaugh, Michael J

    2012-01-01

    Membrane proteins such as receptor tyrosine kinases (RTKs) have a vital role in many cellular functions, making them potential targets for therapeutic research. In this study, we investigated the coexpression of the anti-apoptosis gene Bcl-x(L) with model membrane proteins as a means of increasing membrane protein expression in mammalian cells. Chinese hamster ovary (CHO) cells expressing heterologous Bcl-x(L) and wild-type CHO cells were transfected with either epidermal growth factor receptor or fibroblast growth factor receptor 3. The CHO-Bcl-x(L) cell lines showed increased expression of both RTK proteins as compared with the wild-type CHO cell lines in transient expression analysis, as detected by Western blot and flow cytometry after 15 days of antibiotic selection in stable expression pools. Increased expression was also seen in clonal isolates from the CHO-Bcl-x(L) cell lines, whereas the clonal cell line expression was minimal in wild-type CHO cell lines. Our results demonstrate that application of the anti-apoptosis gene Bcl-x(L) can increase expression of RTK proteins in CHO cells. This approach may be applied to improve stable expression of other membrane proteins in the future using mammalian cell lines with Bcl-x(L) or perhaps other anti-apoptotic genes.

  3. Azidothymidine and cisplatin increase p14ARF expression in OVCAR-3 ovarian cancer cell line

    SciTech Connect

    Vaskivuo, Liisa; Rysae, Jaana; Koivuperae, Johanna; Myllynen, Paeivi; Vaskivuo, Tommi; Chvalova, Katerina; Serpi, Raisa; Savolainen, Eeva-Riitta; Puistola, Ulla; Vaehaekangas, Kirsi . E-mail: kirsi.vahakangas@uku.fi

    2006-10-01

    p14{sup ARF} tumor suppressor protein regulates p53 by interfering with mdm2-p53 interaction. p14{sup ARF} is activated in response to oncogenic stimuli but little is known of the responses of endogenous p14{sup ARF} to different types of cellular stress or DNA damage. Azidothymidine (AZT) is being tested in several clinical trials as an enhancer of anticancer chemotherapy. However, the knowledge of the relationship between AZT and cellular pathways, e.g. p53 pathway, is very limited. In this study, we show that AZT, cisplatin (CDDP) and docetaxel (DTX) all induce unique molecular responses in OVCAR-3 ovarian carcinoma cells carrying a mutated p53, while in A2780, ovarian carcinoma and MCF-7 breast carcinoma cells with wild type p53, all of these drugs cause similar p53 responses. We found that endogenous p14{sup ARF} protein in OVCAR-3 cells is down-regulated by DTX but induced by AZT and a short CDDP pulse treatment. In HT-29 colon carcinoma cells with a mutated p53, all treatments down-regulated p14{sup ARF} protein. Both CDDP and AZT increased the expression of p14ARF mRNA in OVCAR-3 cells. Differences in cell death induced by these drugs did not explain the differences in protein and mRNA expressions. No increase in the level of either c-Myc or H-ras oncoproteins was seen in OVCAR-3 cells after AZT or CDDP-treatment. These results suggest that p14{sup ARF} can respond to DNA damage without oncogene activation in cell lines without functional p53.

  4. Protection against UVA-induced photooxidative damage in mammalian cell lines expressing increased levels of metallothionein

    SciTech Connect

    Dudek, E.J. Illinois Inst. of Tech., Chicago, IL . Dept. of Biology); Peak, J.G.; Peak, M.J. ); Roth, R.M. . Dept. of Biology)

    1990-01-01

    Metallothionein (MT) is an endogenous low molecular weight protein that is inducible in a variety of eukaryotic cells and has the ability to selectivity bind heavy metal ions such as zinc and the cadmium. Although the exact physiological role of MT is still not understood, there is strong evidence that MT is involved in providing cellular resistance against the damaging effects of heavy metals and in the regulation of intracellular zinc and copper. Recently, it has been demonstrated that MT can scavenge radiation-induced reactive oxygen intermediates in vitro, specifically hydroxyl and superoxide radicals, and because of these observations it has been suggested that MT may provide protection against radiation-induced oxidative stress in vivo. Cell lines expressing increased levels of MT have demonstrated resistance to ionizing radiation, to ultraviolet radiation, and also to various DNA damaging agents including melphalan and cis-diaminedichloroplatinum. It is therefore important to gain some insight into the relationship between cellular MT content and cellular resistance to radiation and other DNA damaging agents. In this study we investigated the role of MT in providing protection against monochromatic 365-nm UVA radiation, which is known to generate intracellular reactive oxygen species that are involved in both DNA damage and cell killing. For this purpose, we used zinc acetate, a potent inducer of MT, to elevate MT levels in V79 Chinese hamster fibroblasts prior to UVA exposure and determined cell survival for uninduced and induced cultures. In order to eliminate any zinc effects other than MT induction, we also isolated and characterized cadmium chloride-resistant clones of V79 cells that have increased steady-state levels of both MT mRNA and protein, and we examined their survival characteristics against 365-nm radiation in the absence of zinc acetate. 14 refs., 3 figs.

  5. Fluoxetine Increases the Expression of miR-572 and miR-663a in Human Neuroblastoma Cell Lines

    PubMed Central

    Mundalil Vasu, Mahesh; Anitha, Ayyappan; Takahashi, Taro; Thanseem, Ismail; Iwata, Keiko; Asakawa, Tetsuya; Suzuki, Katsuaki

    2016-01-01

    Evidence suggests neuroprotective effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on the developed neurons in the adult brain. In contrast, the drug may be deleterious to immature or undifferentiated neural cells, although the mechanism is unclear. Recent investigations have suggested that microRNAs (miRNA) may be critical for effectiveness of psychotropic drugs including SSRI. We investigated whether fluoxetine could modulate expressions of neurologically relevant miRNAs in two neuroblastoma SK-N-SH and SH-SY5Y cell lines. Initial screening results revealed that three (miR-489, miR-572 and miR-663a) and four (miR-320a, miR-489, miR-572 and miR-663a) miRNAs were up-regulated in SK-N-SH cells and SH-SY5Y cells, respectively, after 24 hours treatment of fluoxetine (1–25 μM). Cell viability was reduced according to the dose of fluoxetine. The upregulation of miR-572 and miR-663a was consistent in both the SH-SY5Y and SK-N-SH cells, confirmed by a larger scale culture condition. Our data is the first in vitro evidence that fluoxetine could increase the expression of miRNAs in undifferentiated neural cells, and that putative target genes of those miRNAs have been shown to be involved in fundamental neurodevelopmental processes. PMID:27716787

  6. Increased expression and copy number amplification of LINE-1 and SINE B1 retrotransposable elements in murine mammary carcinoma progression

    PubMed Central

    Gualtieri, Alberto; Andreola, Federica; Sciamanna, Ilaria; Sinibaldi-Vallebona, Paola; Serafino, Annalucia; Spadafora, Corrado

    2013-01-01

    In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons and endogenous retroviruses represent large families of repeated elements encoding reverse transcriptase (RT) proteins. Short Interspersed Nuclear Element B1 (SINE B1) retrotrasposons do not encode RT, but use LINE-1-derived RT for their retrotransposition. We previously showed that many cancer types have an abundant endogenous RT activity. Inhibition of that activity, by either RNA interference-dependent silencing of active LINE-1 elements or by RT inhibitory drugs, reduced proliferation and promoted differentiation in cancer cells, indicating that LINE-1-encoded RT is required for tumor progression. Using MMTV-PyVT transgenic mice as a well-defined model of breast cancer progression, we now report that both LINE-1 and SINE B1 retrotransposons are up-regulated at a very early stage of tumorigenesis; LINE-1-encoded RT product and enzymatic activity were detected in tumor tissues as early as stage 1, preceding the widespread appearance of histological alterations and specific cancer markers, and further increased in later progression stages, while neither was present in non-pathological breast tissues. Importantly, both LINE-1 and SINE B1 retrotransposon families undergo copy number amplification during tumor progression. These findings therefore indicate that RT activity is distinctive of breast cancer cells and that, furthermore, LINE-1 and SINE B1 undergo copy number amplification during cancer progression. PMID:24231191

  7. Increased expression and copy number amplification of LINE-1 and SINE B1 retrotransposable elements in murine mammary carcinoma progression.

    PubMed

    Gualtieri, Alberto; Andreola, Federica; Sciamanna, Ilaria; Sinibaldi-Vallebona, Paola; Serafino, Annalucia; Spadafora, Corrado

    2013-11-01

    In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons and endogenous retroviruses represent large families of repeated elements encoding reverse transcriptase (RT) proteins. Short Interspersed Nuclear Element B1 (SINE B1) retrotrasposons do not encode RT, but use LINE-1-derived RT for their retrotransposition. We previously showed that many cancer types have an abundant endogenous RT activity. Inhibition of that activity, by either RNA interference-dependent silencing of active LINE-1 elements or by RT inhibitory drugs, reduced proliferation and promoted differentiation in cancer cells, indicating that LINE-1-encoded RT is required for tumor progression. Using MMTV-PyVT transgenic mice as a well-defined model of breast cancer progression, we now report that both LINE-1 and SINE B1 retrotransposons are up-regulated at a very early stage of tumorigenesis; LINE-1-encoded RT product and enzymatic activity were detected in tumor tissues as early as stage 1, preceding the widespread appearance of histological alterations and specific cancer markers, and further increased in later progression stages, while neither was present in non-pathological breast tissues. Importantly, both LINE-1 and SINE B1 retrotransposon families undergo copy number amplification during tumor progression. These findings therefore indicate that RT activity is distinctive of breast cancer cells and that, furthermore, LINE-1 and SINE B1 undergo copy number amplification during cancer progression.

  8. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development.

    PubMed

    Fischer, Simon; Marquart, Kim F; Pieper, Lisa A; Fieder, Juergen; Gamer, Martin; Gorr, Ingo; Schulz, Patrick; Bradl, Harald

    2017-03-06

    In recent years, coherent with growing biologics portfolios also the number of complex and thus difficult-to-express (DTE) therapeutic proteins has increased considerably. DTE proteins challenge bioprocess development and can include various therapeutic protein formats such as monoclonal antibodies (mAbs), multi-specific affinity scaffolds (e.g. bispecific antibodies), cytokines or fusion proteins. Hence, the availability of robust and versatile Chinese hamster ovary (CHO) host cell factories is fundamental for high-yielding bioprocesses. MicroRNAs (miRNAs) have emerged as potent cell engineering tools to improve process performance of CHO manufacturing cell lines. However, there has not been any report demonstrating the impact of beneficial miRNAs on industrial cell line development yet. To address this question, we established novel CHO host cells constitutively expressing a pro-productive miRNA: miR-557. Novel host cells were tested in two independent cell line development campaigns using two different mAb candidates including a normal as well as a DTE antibody. Presence of miR-557 significantly enhanced each process step during cell line development in a product independent manner. Stable expression of miR-557 increased the probability to identify high-producing cell clones. Furthermore, production cell lines derived from miR-557 expressing host cells exhibited significantly increased final product yields in fed-batch cultivation processes without compromising product quality. Strikingly, cells co-expressing miR-557 and a DTE antibody achieved a twofold increase in product titer compared to clones co-expressing a negative control miRNA. Thus, host cell engineering using miRNAs represents a promising tool to overcome limitations in industrial cell line development especially with regard to DTE proteins. This article is protected by copyright. All rights reserved.

  9. Dasatinib reduces FAK phosphorylation increasing the effects of RPI-1 inhibition in a RET/PTC1-expressing cell line

    PubMed Central

    2010-01-01

    Background TPC-1 is a papillary thyroid carcinoma (PTC)-derived cell line that spontaneously expresses the oncogene RET/PTC1. TPC-1 treated with the RET/PTC1 inhibitor RPI-1 displayed a cytostatic and reversible inhibition of cell proliferation and a strong activation of focal adhesion kinase (FAK). As dasatinib inhibition of Src results in reduction of FAK activation, we evaluated the effects of TPC-1 treatment with dasatinib in combination with RPI-1. Results Dasatinib (100 nM) strongly reduced TPC-1 proliferation and induced marked changes in TPC-1 morphology. Cells appeared smaller and more contracted, with decreased cell spreading, due to the inhibition of phosphorylation of important cytoskeletal proteins (p130CAS, Crk, and paxillin) by dasatinib. The combination of RPI-1 with dasatinib demonstrated enhanced effects on cell proliferation (more than 80% reduction) and on the phosphotyrosine protein profile. In particular, RPI-1 reduced the phosphorylation of RET, MET, DCDB2, CTND1, and PLCγ, while dasatinib acted on the phosphorylation of EGFR, EPHA2, and DOK1. Moreover, dasatinib completely abrogated the phosphorylation of FAK at all tyrosine sites (Y576, Y577, Y861, Y925) with the exception of the autoactivation site (Y397). Notably, the pharmacological treatments induced an overexpression of integrin β1 (ITB1) that was correlated with a mild enhancement in phosphorylation of ERK1/2 and STAT3, known for their roles in prevention of apoptosis and in increase of proliferation and survival. A reduction in Akt, p38 and JNK1/2 activation was observed. Conclusions All data demonstrate that the combination of the two drugs effectively reduced cell proliferation (by more than 80%), significantly decreased Tyr phosphorylation of almost all phosphorylable proteins, and altered the morphology of the cells, supporting high cytostatic effects. Following the combined treatment, cell survival pathways appeared to be mediated by STAT3 and ERK activities resulting from

  10. Amphotericin B Increases Transglutaminase 2 Expression Associated with Upregulation of Endocytotic Activity in Mouse Microglial Cell Line BV-2.

    PubMed

    Kawabe, Kenji; Takano, Katsura; Moriyama, Mitsuaki; Nakamura, Yoichi

    2017-02-21

    Amphotericin B (AmB), a polyene antibiotic, is reported to cause the microglial activation to induce nitric oxide (NO) production and proinflammatory cytokines expression, and change neurotrophic factors expression in cultured microglia (Motoyoshi et al. in Neurochem Int 52:1290-1296, 2008). On the other hand, tissue-type transglutaminase (TG2) is involved in connection to phagocytes with apoptotic cells. Engulfment of neurons by activated microglia is thought to cause neurodegenerative diseases but detail is unclear, and involvement of TG2 in phagocytosis has been reported in our previous study using lipopolysaccharide-stimulated BV-2 cells (Kawabe et al. in Neuroimmunomodulation 22(4):243-249, 2015). In the present study, we examined the changes of TG2 expression, phagocytosis and pinocytosis in BV-2 cells stimulated by AmB. AmB stimulation increased TG2 expression and TG activity. Phagocytosis of dead cells and pinocytosis of fluorescent microbeads were also up-regulated by AmB stimulation in BV-2 cells. Blockade of TG activity by cystamine, an inhibitor of TGs, suppressed AmB-enhanced TG2 expression, TG activity, NO production, phagocytosis and pinocytosis. Excessive NO production from microglia and/or facilitation of phagocytosis might be involved in neuronal death. To control TG activity might make possible to protect neurons and care for CNS diseases.

  11. Higher Levels of c-Met Expression and Phosphorylation Identify Cell Lines With Increased Sensitivity to AMG-458, a Novel Selective c-Met Inhibitor With Radiosensitizing Effects

    SciTech Connect

    Li Bo; Torossian, Artour; Sun, Yunguang; Du, Ruihong; Dicker, Adam P.; Lu Bo

    2012-11-15

    Purpose: c-Met is overexpressed in some non-small cell lung cancer (NSCLC) cell lines and tissues. Cell lines with higher levels of c-Met expression and phosphorylation depend on this receptor for survival. We studied the effects of AMG-458 on 2 NSCLC cell lines. Methods and Materials: 3-(4,5-Dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl) -2H-tetrazolium assays assessed the sensitivities of the cells to AMG-458. Clonogenic survival assays illustrated the radiosensitizing effects of AMG-458. Western blot for cleaved caspase 3 measured apoptosis. Immunoblotting for c-Met, phospho-Met (p-Met), Akt/p-Akt, and Erk/p-Erk was performed to observe downstream signaling. Results: AMG-458 enhanced radiosensitivity in H441 but not in A549. H441 showed constitutive phosphorylation of c-Met. A549 expressed low levels of c-Met, which were phosphorylated only in the presence of exogenous hepatocyte growth factor. The combination of radiation therapy and AMG-458 treatment was found to synergistically increase apoptosis in the H441 cell line but not in A549. Radiation therapy, AMG-458, and combination treatment were found to reduce p-Akt and p-Erk levels in H441 but not in A549. H441 became less sensitive to AMG-458 after small interfering RNA knockdown of c-Met; there was no change in A549. After overexpression of c-Met, A549 became more sensitive, while H441 became less sensitive to AMG-458. Conclusions: AMG-458 was more effective in cells that expressed higher levels of c-Met/p-Met, suggesting that higher levels of c-Met and p-Met in NSCLC tissue may classify a subset of tumors that are more sensitive to molecular therapies against this receptor.

  12. The silver lining of a viral agent: increasing seed yield and harvest index in Arabidopsis by ectopic expression of the potato leaf roll virus movement protein.

    PubMed

    Kronberg, Kristin; Vogel, Florian; Rutten, Twan; Hajirezaei, Mohammed-Reza; Sonnewald, Uwe; Hofius, Daniel

    2007-11-01

    Ectopic expression of viral movement proteins (MPs) has previously been shown to alter plasmodesmata (PD) function and carbon partitioning in transgenic plants, giving rise to the view of PD being dynamic and highly regulated structures that allow resource allocation to be adapted to environmental and developmental needs. However, most work has been restricted to solanaceous species and the potential use of MP expression to improve biomass and yield parameters has not been addressed in detail. Here we demonstrate that MP-mediated modification of PD function can substantially alter assimilate allocation, biomass production, and reproductive growth in Arabidopsis (Arabidopsis thaliana). These effects were achieved by constitutive expression of the potato leaf roll virus 17-kD MP (MP17) fused to green fluorescent protein (GFP) in different Arabidopsis ecotypes. The resulting transgenic plants were analyzed for PD localization of the MP17:GFP fusion protein and different lines with low to high expression levels were selected for further analysis. Low-level accumulation of MP17 resulted in enhanced sucrose efflux from source leaves and a considerably increased vegetative biomass production. In contrast, high MP17 levels impaired sucrose export, resulting in source leaf-specific carbohydrate accumulation and a strongly reduced vegetative growth. Surprisingly, later during development the MP17-mediated inhibition of resource allocation was reversed, and final seed yield increased in average up to 30% in different transgenic lines as compared to wild-type plants. This resulted in a strongly improved harvest index. The release of the assimilate export block was paralleled by a reduced PD binding of MP17 in senescing leaves, indicating major structural changes of PD during leaf senescence.

  13. Induction and increase of HLA-DR antigen expression by immune interferon on ML-3 cell line enhances the anti-HLA-DR immunotoxin activity.

    PubMed Central

    Chiron, M; Jaffrezou, J P; Carayon, P; Bordier, C; Roubinet, F; Xavier, C; Brandely, M; Laurent, G

    1990-01-01

    In order to evaluate the impact of induction and increase target antigen expression on immunotoxin potency, we measured the potentiating effect of recombinant immune interferon-gamma (rIFN-gamma) on the cytotoxicity of an anti HLA-DR ricin A-chain immunotoxin (2G5 RTA-IT) on the myeloid cell line ML-3. After 48 h of incubation with rIFN-gamma (500 U/ml) the percentage of 2G5-positive cells increased from 40% to 79%, and the 2G5 mean density was enhanced by 10-fold (11,000 versus 110,000 molecules/cell). Concurrently, rIFN-gamma pretreatment induced a dramatic improvement of 2G5 RTA-IT dose-effect cytotoxicity, as well as immunotoxin cytotoxicity kinetics. When 2G5 RTA-IT was used at the optimal dose of 10(-8)M (the maximum dose which avoided non-specific ricin A-chain cytotoxicity), the immunotoxin-induced cell kill increased with the percentage of DR-positive ML-3 cells according to a similar linear-logarithmic function of rIFN-gamma concentration. Moreover, in the same range of rIFN-gamma concentrations, the killing values and the percentage of DR-positive ML-3 cells were similar if not identical. These findings imply that the enhancement of 2G5 RTA-IT cytotoxicity by rIFN-gamma is mainly related to the rIFN-gamma 2G5 antigen induction on HLA-DR negative cells when immunotoxin was used at 10(-8) M. Furthermore, 2G5 RTA-IT dose-effect cytotoxicity on DR-expressing ML-3 cells, when used at lower concentrations, was also increased by rIFN-gamma in a dose-dependent manner. This result suggests that for immunotoxin concentrations close to the limiting membrane saturation dose (10(-10)M), rIFN-gamma may not solely act by inducing HLA-DR expression on DR-negative ML-3 subpopulation but also by increasing individual cellular DR density on DR expressing ML-3 cells. Finally, our study showed that immunotoxin potency on malignant cell populations which display an heterogeneous antigen expression, could be greatly improved by the use of rIFN-gamma. PMID:2122930

  14. Targeting MAGE-C1/CT7 Expression Increases Cell Sensitivity to the Proteasome Inhibitor Bortezomib in Multiple Myeloma Cell Lines

    PubMed Central

    de Carvalho, Fabricio; Costa, Erico T.; Camargo, Anamaria A.; Gregorio, Juliana C.; Masotti, Cibele; Andrade, Valeria C.C.; Strauss, Bryan E.; Caballero, Otavia L.; Atanackovic, Djordje; Colleoni, Gisele W.B.

    2011-01-01

    The MAGE-C1/CT7 encodes a cancer/testis antigen (CTA), is located on the chromosomal region Xq26–27 and is highly polymorphic in humans. MAGE-C1/CT7 is frequently expressed in multiple myeloma (MM) that may be a potential target for immunotherapy in this still incurable disease. MAGEC1/CT7 expression is restricted to malignant plasma cells and it has been suggested that MAGE-C1/CT7 might play a pathogenic role in MM; however, the exact function this protein in the pathophysiology of MM is not yet understood. Our objectives were (1) to clarify the role of MAGE-C1/CT7 in the control of cellular proliferation and cell cycle in myeloma and (2) to evaluate the impact of silencing MAGE-C1/CT7 on myeloma cells treated with bortezomib. Myeloma cell line SKO-007 was transduced for stable expression of shRNA-MAGE-C1/CT7. Downregulation of MAGE-C1/CT7 was confirmed by real time quantitative PCR and western blot. Functional assays included cell proliferation, cell invasion, cell cycle analysis and apoptosis. Western blot showed a 70–80% decrease in MAGE-C1/CT7 protein expression in inhibited cells (shRNA-MAGE-C1/CT7) when compared with controls. Functional assays did not indicate a difference in cell proliferation and DNA synthesis when inhibited cells were compared with controls. However, we found a decreased percentage of cells in the G2/M phase of the cell cycle among inhibited cells, but not in the controls (p<0.05). When myeloma cells were treated with bortezomib, we observed a 48% reduction of cells in the G2/M phase among inhibited cells while controls showed 13% (empty vector) and 9% (ineffective shRNA) reduction, respectively (p<0.01). Furthermore, inhibited cells treated with bortezomib showed an increased percentage of apoptotic cells (Annexin V+/PI-) in comparison with bortezomib-treated controls (p<0.001). We found that MAGE-C1/CT7 protects SKO-007 cells against bortezomib-induced apoptosis. Therefore, we could speculate that MAGE-C1/CT7 gene therapy could be

  15. Arsenite pretreatment enhances the cytotoxicity of mitomycin C in human cancer cell lines via increased NAD(P)H quinone oxidoreductase 1 expression

    SciTech Connect

    Lin Yiling; Ho, I-C.; Su, P.-F.; Lee, T.-C. . E-mail: bmtcl@ibms.sinica.edu.tw

    2006-08-01

    Arsenic is an effective therapeutic agent for the treatment of patients with refractory or relapsed acute promyelocytic leukemia. The use of arsenic for treating solid tumors, particularly in combination with other chemotherapeutic agents, has been extensively studied. Here, we report that arsenite-resistant human lung cancer CL3R15 cells constitutively overexpress NAD(P)H quinone oxidoreductase 1 (NQO1), an enzyme responsible for activation of mitomycin C (MMC), and are more susceptible to MMC cytotoxicity than parental CL3 cells. The effects of arsenite pretreatment on NQO1 induction were examined in CL3, H1299, H460, and MC-T2 cells. Arsenite pretreatment significantly enhanced the expression of NQO1 and susceptibility to MMC in CL3, H1299, and MC-T2 cells, but not in H460 cells that express high endogenous levels of NQO1. Alternatively, arsenic pretreatment reduced adriamycin sensitivity of CL3 cells. Arsenite-mediated MMC susceptibility was abrogated by dicumarol (DIC), an NQO1 inhibitor, indicating that NQO1 is one of the key regulators of arsenite-mediated MMC susceptibility. Various cancer cell lines showed different basal levels of NQO1 activity and a different capacity for NQO1 induction in response to arsenite treatment. However, overall, there was a positive correlation between induced NQO1 activity and MMC susceptibility in cells pretreated with various doses of arsenite. These results suggest that arsenite may increase NQO1 activity and thus enhance the antineoplastic activity of MMC. In addition, our results also showed that inhibition of NQO1 activity by DIC reversed the arsenite resistance of CL3R15 cells.

  16. Use of the human EF-1alpha promoter for expression can significantly increase success in establishing stable cell lines with consistent expression: a study using the tetracycline-inducible system in human cancer cells.

    PubMed

    Gopalkrishnan, R V; Christiansen, K A; Goldstein, N I; DePinho, R A; Fisher, P B

    1999-12-15

    Establishing cells with an exogenously introduced gene of interest under the inducible control of tetracycline (Tc) initially requires clonal cell lines stably expressing the tetracycline activator (tTA or rtTA). The originally described plasmid vectors expressing tTA/rtTA are driven by the cytomegalovirus (CMV) immediate early (IE) promoter-enhancer, known for its robust activity in a wide spectrum of cell types. While many reports testify to the utility and efficacy of this construct, instances of inexplicable failure to establish cell lines having inducible expression of the cDNA under study are encountered. Spontaneous extinction of CMV promoter activity in cells has been observed in a temporal and cell type-dependent manner. This could be a contributing factor in the failure to establish Tc-responsive cell lines. We here report that a change of the expression cassette to the human elongation factor-1alpha (EF-1alpha) promoter has permitted successful establishment of several inducible cell lines from diverse human tumor tissue origins. We interpret these results to imply that extinction of rtTA (or tTA) expression might be a significant factor in the lack of success in establishing Tc-inducible cell lines. Moreover, the present findings have general relevance to experiments requiring the use of stable cell lines.

  17. Increased expression of prion protein gene is accompanied by demethylation of CpG sites in a mouse embryonal carcinoma cell line, P19C6

    PubMed Central

    DALAI, Wuyun; MATSUO, Eiko; TAKEYAMA, Natsumi; KAWANO, Junichi; SAEKI, Keiichi

    2017-01-01

    Elucidation of the processes regulating the prion protein gene (Prnp) is an important key to understanding the development of prion disorders. In this study, we explored the involvement of DNA methylation in Prnp transcriptional regulation during neuronal differentiation of embryonic carcinoma P19C6 cells. When P19C6 cells were differentiated into neuronal cells, the expression of Prnp was markedly increased, while CpG methylation was significantly demethylated at the nucleotide region between −599 and −238 from the transcription start site. In addition, when P19C6 cells were applied in a DNA methyltransferase inhibitor, RG108, Prnp transcripts were also significantly increased in relation to the decreased methylation statuses. These findings helped to elucidate the DNA methylation-mediated regulation of Prnp expression during neuronal differentiation. PMID:28132962

  18. Increased cytotoxicity of food-borne mycotoxins toward human cell lines in vitro via enhanced cytochrome p450 expression using the MTT bioassay.

    PubMed

    Lewis, C W; Smith, J E; Anderson, J G; Freshney, R I

    1999-11-01

    Eight food-borne mycotoxins epidemiologically implicated in human disease were tested for their cytotoxic effects on human cells previously immortalised and transfected to introduce human cytochrome p450 (CYP 450) genes. Such cells retain many characteristics of normal cell growth and differentiation while simultaneously having the potential of either increasing or decreasing the metabolic activity (cytotoxicity) of the challenging mycotoxins. The MTT assay provided an indication of cytotoxicity. Of the nine CYP450s introduced CYP1A2 was most effective, rendering the cells 540 times more sensitive than the control cells to aflatoxin B1, 28 times more sensitive to aflatoxin G1 and 8-fold more sensitive to ochratoxin A. CYP3A4 resulted in the cells being 211 times more toxic to aflatoxin B1 and 8-fold more toxic to aflatoxin G1 while CYP 2A6, CYP 3A5 and CYP 2E1 also produced observable effects. No increase in metabolic activity was found using cyclopiazonic acid, deoxynivalenol, fumonisin B1, patulin or T-2 toxin. CD5Os were calculated for the mycotoxins against the non-CYP-introduced control cells. There was almost a five order of magnitude difference between the most toxic, T-2 toxin (CD50 0.0057 microgram/ml) and the least toxic, fumonisin B1 (CD50 476.2 micrograms/ml). In vitro biological assays thus provide an excellent system for quantifying the often low CD50s expressed by mycotoxins in foods.

  19. Expression of val-12 mutant ras p21 in an IL-3-dependent murine myeloid cell line is associated with loss of serum-dependence and increases in membrane PIP2-specific phospholipase C activity.

    PubMed

    Rizzo, M T; Boswell, H S; English, D; Gabig, T G

    1991-01-01

    We previously showed that the proliferative response of a serum- and interleukin-3 (IL-3)-dependent murine myeloid cell line, NFS/N1-H7, was partially inhibited by pertussis toxin as a result of toxin-induced increased adenylate cyclase activity. In the present studies, we examined the role of the phosphoinositide cycle in the proliferative response of these cells and demonstrated that there was no change in PIP (phosphatidylinositol bisphosphate)-specific phospholipase C activity in response to IL-3 alone. However, serum caused a pertussis toxin-insensitive increase in PIP2-specific phospholipase C activity as reflected by decreased cellular levels of 32P-labelled PIP2. Proliferation of a subline selected from val-12-mutant H-ras-transfected NFS-H7 cells, clone E5, was insensitive to pertussis toxin, occurred in the absence of serum but remained serum-stimulatable and absolutely dependent on IL-3. This val-12 mutant ras-expressing cell line showed an increase in 32P-labelled PIP (phosphatidylinositol phosphate) in response to serum whereas the parent cell line did not. Membrane fractions from 32P-labelled ras-transfected cells displayed higher GTP gamma S-, GTP-, or F(-)-stimulated PIP2-specific phospholipase C activity compared to membranes from the parent cell line. Thus serum-dependence and adenylate cyclase-mediated pertussis toxin-sensitivity of the parent cell line was bypassed by val-12 mutant ras p21, possibly as a result of increased PIP2-specific phospholipase C activity.

  20. Increased UV resistance of a xeroderma pigmentosum revertant cell line is correlated with selective repair of the transcribed strand of an expressed gene

    SciTech Connect

    Lommel, L.; Hanawalt, P.C. )

    1993-02-01

    People that suffer from xeroderma pigmentosum (XP) are sun sensitive and experience elevated incidences of cancer, particularly skin cancers on sun-light exposed parts of their bodies. Cultured cells from XP patients are found to be subtantially more sensitive to lethal and mutagenic effects of ultraviolet (UV) radiation than are cells from unaffected individuals. Using the cells from XP individuals, researchers study the roles that cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts play in UV resistance. The results demonstrate that overall repair measurements can be misleading, and they support the hypothesis that removal of CPDs form the transcribed strands of expressed genes is essential for UV resistance. 36 refs., 5 figs., 1 tab.

  1. Expression of human cell cycle regulators in the primary cell line of the African savannah elephant (loxodonta africana) increases proliferation until senescence, but does not induce immortalization.

    PubMed

    Fukuda, Tomokazu; Iino, Yuuka; Onuma, Manabu; Gen, Bando; Inoue-Murayama, Miho; Kiyono, Tohru

    2016-01-01

    The African savannah elephant (Loxodonta africana) is one of the critically endangered animals. Conservation of genetic and cellular resources is important for the promotion of wild life-related research. Although primary cultured cells are a useful model for the physiology and genomics of the wild-type animals, their distribution is restricted due to the limited number of cell divisions allowed in them. Here, we tried to immortalize a primary cell line of L. africana with by overexpressing human mutant form of cyclin-dependent kinase 4 (CDK4R24C), cyclin D, and telomerase (TERT). It has been shown before that the combination of human CDK4R24C, cyclin D, and TERT induces the efficient cellular immortalization of cells derived from humans, bovine, swine, and monkeys. Interestingly, although the combination of these three genes extended the cellular proliferation of the L. africana-derived cells, they did not induce cellular immortalization. This study suggest that control of cellular senescence in L. africana-derived cells would be different molecular mechanisms compared to those governing human, bovine, swine, and monkey cells.

  2. Quercetin up-regulates expressions of peroxisome proliferator-activated receptor γ, liver X receptor α, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line.

    PubMed

    Lee, Seung-Min; Moon, Jiyoung; Cho, Yoonsu; Chung, Ji Hyung; Shin, Min-Jeong

    2013-02-01

    Cholesterol-laden macrophages trigger accumulation of foam cells and increase the risk of developing atherosclerosis. We hypothesized that quercetin could lower the content of cholesterol in macrophages by regulating the expression of the ATP binding cassette transporter A1 (ABCA1) gene in differentiated human acute monocyte leukemia cell line (THP-1) cells and thereby reducing the chance of forming foam cells. Quercetin, in concentrations up to 30 μM, was not cytotoxic to differentiated THP-1 cells. Quercetin up-regulated both ABCA1 messenger RNA and protein expression in differentiated THP-1 cells, and its maximum effects were demonstrated at 0.3 μM for 4 to 8 hours in incubation. In addition, quercetin increased protein levels of peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptor α (LXRα) within 2 hours of treatment. Because PPARγ and LXRα are important transcriptional factors for ABCA1, quercetin-induced up-regulation of ABCA1 may be mediated by increased expression levels of the PPARγ and LXRα genes. Furthermore, quercetin-enhanced cholesterol efflux from differentiated THP-1 cells to both high-density lipoprotein (HDL) and apolipoprotein A1. Quercetin at the dose of 0.15 μM elevated the cholesterol efflux only for HDL. At the dose of 0.3 μM, quercetin demonstrated effects both on HDL and apolipoprotein A1. Our data demonstrated that quercetin increased the expressions of PPARγ, LXRα, and ABCA1 genes and cholesterol efflux from THP-1 macrophages. Quercetin-induced expression of PPARγ and LXRα might subsequently affect up-regulation of their target gene ABCA1. Taken together, ingestion of quercetin or quercetin-rich foods could be an effective way to improve cholesterol efflux from macrophages, which would contribute to lowering the risk of atherosclerosis.

  3. Increased metacyclogenesis of antimony-resistant Leishmania donovani clinical lines.

    PubMed

    Ouakad, M; Vanaerschot, M; Rijal, S; Sundar, S; Speybroeck, N; Kestens, L; Boel, L; De Doncker, S; Maes, I; Decuypere, S; Dujardin, J-C

    2011-09-01

    Mathematical models predict that the future of epidemics of drug-resistant pathogens depends in part on the competitive fitness of drug-resistant strains. Considering metacyclogenesis (differentiation process essential for infectivity) as a major contributor to the fitness of Leishmania donovani, we tested its relationship with pentavalent antimony (SbV) resistance in clinical lines. Different methods for the assessment of metacyclogenesis were cross-validated: gene expression profiling (META1 and SHERP), morphometry (microscopy and FACS), in vitro infectivity to macrophages and resistance to complement lysis. This was done on a model constituted by 2 pairs of reference strains cloned from a SbV-resistant and -sensitive isolate. We selected the most adequate parameter and extended the analysis of metacyclogenesis diversity to a sample of 20 clinical lines with different in vitro susceptibility to the drug. The capacity of metacyclogenesis, as measured by the complement lysis test, was shown to be significantly higher in SbV-resistant clinical lines of L. donovani than in SbV-sensitive lines. Together with other lines of evidence, it is concluded that L. donovani constitutes a unique example and model of drug-resistant pathogens with traits of increased fitness. These findings raise a fundamental question about the potential risks of selecting more virulent pathogens through massive chemotherapeutic interventions.

  4. Increased EGF receptors on human squamous carcinoma cell lines.

    PubMed Central

    Cowley, G. P.; Smith, J. A.; Gusterson, B. A.

    1986-01-01

    Characterisation and quantitation of epidermal growth factor receptors (EGFR) have been carried out on eight human squamous carcinoma cell lines and the results compared with those from simian virus transformed keratinocytes and normal keratinocytes grown under similar conditions. All cells tested possess both high and low affinity receptors with dissociation constants ranging from 2.4 X 10(-10) M to 5.4 X 10(-9) M. When epidermal growth factor (EGF) binds to its receptor it is internalised and degraded and the receptor is down regulated. Malignant cells and virally transformed cells possess 5-50 times more EGF receptors than normal keratinocytes and one cell line LICR-LON-HN-5 possesses up to 1.4 X 10(7) receptors per cell, which is the highest number yet reported for a cell line. These results are discussed in the context of recent data that suggest that the increased expression of EGF receptors in epidermoid malignancies may be an important component of the malignant phenotype in these tumours. PMID:2420349

  5. Red Maca (Lepidium meyenii) did not affect cell viability despite increased androgen receptor and prostate-specific antigen gene expression in the human prostate cancer cell line LNCaP.

    PubMed

    Díaz, P; Cardenas, H; Orihuela, P A

    2016-10-01

    We examined whether aqueous extract of Lepidium meyenii (red Maca) could inhibit growth, potentiate apoptotic activity of two anticancer drugs Taxol and 2-methoxyestradiol (2ME) or change mRNA expression for the androgen target genes, androgen receptor (Ar) and prostate-specific antigen (Psa) in the human prostate cancer cell line LNCaP. Red Maca aqueous extract at 0, 10, 20, 40 or 80 μg/ml was added to LNCaP cells, and viability was evaluated by the MTS assay at 24 or 48 hr after treatment. Furthermore, LNCaP cells were treated with 80 μg/ml of red Maca plus Taxol or 2ME 5 μM and viability was assessed 48 hr later. Finally, LNCaP cells were treated with red Maca 0, 20, 40 or 80 μg/ml, and 12 hr later, mRNA level for Ar or Psa was assessed by real-time PCR. Treatment with red Maca did not affect viability of LNCaP cells. Apoptotic activity induced by Taxol and 2ME in LNCaP cells was not altered with red Maca treatment. Relative expression of the mRNA for Ar and Psa increased with red Maca 20 and 40 μg/ml, but not at 80 μg/ml. We conclude that red Maca aqueous extract does not have toxic effects, but stimulates androgen signalling in LNCaP cells.

  6. Lead exposure increases blood pressure by increasing angiotensinogen expression.

    PubMed

    Jiao, Jiandong; Wang, Miaomiao; Wang, Yiqing; Sun, Na; Li, Chunping

    2016-01-01

    Lead exposure can induce increased blood pressure. Several mechanisms have been proposed to explain lead-induced hypertension. Changes in angiotensinogen (AGT) expression levels or gene variants may also influence blood pressure. In this study, we hypothesized that AGT expression levels or gene variants contribute to lead-induced hypertension. A preliminary HEK293 cell model experiment was performed to analyze the association between AGT expression and lead exposure. In a population-based study, serum AGT level was measured in both lead-exposed and control populations. To further detect the influence of AGT gene single nucleotide polymorphisms (SNPs) in lead-induced hypertension, two SNPs (rs699 and rs4762) were genotyped in a case-control study including 219 lead-exposed subjects and 393 controls. Lead exposure caused an increase in AGT expression level in HEK 293 cell models (P < 0.001) compared to lead-free cells, and individuals exposed to lead had higher systolic and diastolic blood pressure (P < 0.001). Lead-exposed individuals had higher serum AGT levels compared to controls (P < 0.001). However, no association was found between AGT gene SNPs (rs699 and rs4762) and lead exposure. Nevertheless, the change in AGT expression level may play an important role in the development of lead-induced hypertension.

  7. Globally increased ultraconserved noncoding RNA expression in pancreatic adenocarcinoma

    PubMed Central

    Lee, Eun Joo; Gusev, Yuriy; Allard, David; Sutaria, Dhruvitkumar S.; Badawi, Mohamed; Elgamal, Ola A.; Lerner, Megan R.; Brackett, Daniel J.; Calin, George A.; Schmittgen, Thomas D.

    2016-01-01

    Transcribed ultraconserved regions (T-UCRs) are a class of non-coding RNAs with 100% sequence conservation among human, rat and mouse genomes. T-UCRs are differentially expressed in several cancers, however their expression in pancreatic adenocarcinoma (PDAC) has not been studied. We used a qPCR array to profile all 481 T-UCRs in pancreatic cancer specimens, pancreatic cancer cell lines, during experimental pancreatic desmoplasia and in the pancreases of P48Cre/wt; KrasLSL-G12D/wt mice. Fourteen, 57 and 29% of the detectable T-UCRs were differentially expressed in the cell lines, human tumors and transgenic mouse pancreases, respectively. The vast majority of the differentially expressed T-UCRs had increased expression in the cancer. T-UCRs were monitored using an in vitro model of the desmoplastic reaction. Twenty-five % of the expressed T-UCRs were increased in the HPDE cells cultured on PANC-1 cellular matrix. UC.190, UC.233 and UC.270 were increased in all three human data sets. siRNA knockdown of each of these three T-UCRs reduced the proliferation of MIA PaCa-2 cells up to 60%. The expression pattern among many T-UCRs in the human and mouse pancreases closely correlated with one another, suggesting that groups of T-UCRs are co-activated in PDAC. Successful knockout of the transcription factor EGR1 in PANC-1 cells caused a reduction in the expression of a subset of T-UCRs suggesting that EGR1 may control T-UCR expression in PDAC. We report a global increase in expression of T-UCRs in both human and mouse PDAC. Commonalties in their expression pattern suggest a similar mechanism of transcriptional upregulation for T-UCRs in PDAC. PMID:27363020

  8. Modified developer increases line resolution in photosensitive resist

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Standard developer solution is mixed with dipropyl carbonate. This reduces swelling in the photosensitive resist and permits application of relatively thick films with minimal pinhole formation and increased line resolution.

  9. Estrogen increases renal oxytocin receptor gene expression.

    PubMed

    Ostrowski, N L; Young, W S; Lolait, S J

    1995-04-01

    Estrogens have been implicated in the sodium and fluid imbalances associated with the menstrual cycle and late pregnancy. An estrogen-dependent role for renal oxytocin receptors in fluid homeostasis is suggested by the present findings which demonstrate that estradiol benzoate treatment increases the expression of the oxytocin receptor messenger ribonucleic acid and 125I-OTA binding to oxytocin receptors in the renal cortex and medullary collecting ducts of ovariectomized female rats. Moreover, estradiol induced high levels of oxytocin receptor expression in outer stripe proximal tubules of ovariectomized female and adrenalectomized male rats. Proximal tubule induction was inhibited in a dose-dependent manner by the antiestrogen tamoxifen, but cortical expression of oxytocin receptors in macula densa cells was unaffected by tamoxifen. These data demonstrate cell-specific regulation of oxytocin receptor expression in macula densa and proximal tubule cells, and suggest a important role for these receptors in mediating estrogen-induced alterations in renal fluid dynamics by possibly affecting glomerular filtration and water and solute reabsorption during high estrogen states.

  10. Expression of Arabidopsis LINEs from two promoters.

    PubMed

    Ohta, Yoshizu; Noma, Kenichi; Tsuchimoto, Suguru; Ohtsubo, Eiichi; Ohtsubo, Hisako

    2002-12-01

    Most Arabidopsis long interspersed elements (LINEs, called ATLNs) have two open reading frames, orf1 and orf2. In the 5' untranslated regions (UTRs) located upstream of orf1, the most proximal segments of tens of base pairs long are not homologous even in two ATLN members with almost identical sequences. In this study, we first show that RT-PCR products from ATLN39, a member of ATLN, can be detected only in total RNA from the hypomethylation mutant ddm1 or from suspension-cultured cells treated with a DNA methylation inhibitor 5-azacytidine, indicating that the expression of ATLN39 is negatively regulated by DNA methylation. We then show that orf1 fused in frame with the luciferase (luc) gene is expressed in suspension-cultured cells of A. thaliana when the 5' UTR is present in the region upstream of orf1. Analysis of deletion in the 5' UTR revealed that the 5' UTR has two promoters, designated here as P1 and P2. Analysis of transcripts by 5' RACE showed that their 5' ends were located at sites immediately upstream of the P1 region or at sites downstream of the P2 region. This observation and the fact that the P1 region contains no TATA sequence indicate that P1 is an internal promoter that initiates transcription from sites upstream of the promoter. A sequence containing GGCGA with a CpG methylatable site is conserved in the P1 regions in members closely related to ATLN39. The P2 region, however, contains the TATA sequence as well as another sequence with a CpG site. The TATA sequence is conserved in members closely related to ATLN39 but not in the other ATLN members, suggesting that P2 is the promoter uniquely present in the ATLN39-related members. Transcripts from promoter P1 can be used as templates to give new copies proficient in retroposition, but those from promoter P2 cannot because of the lack of the proximal half region of the 5' UTR sequence. Transcripts from promoter P2, as well as those from promoter P1 can, however, be used for the production of a

  11. Expression Profiling of Cell Lines Expressing Regulated NP2 Transcripts

    DTIC Science & Technology

    2004-09-01

    EGF in the presence or absence of exogenous HRS . The results will provide a framework fo r the interpretation of future gene expression studies in...e studies require further verification. Small sam- ple size, tissue heterogeneity, and inter-indivi- dual variations among human patients may result ... studies we proposed using gene expression profiling to determine change s in gene expression as a function of expression of the neurofibromatosis-2 (NF2

  12. Expression of MIF and CD74 in leukemic cell lines: correlation to DR expression destiny.

    PubMed

    Georgouli, Mirella; Papadimitriou, Lina; Glymenaki, Maria; Patsaki, Valia; Athanassakis, Irene

    2016-06-01

    Invariant chain (Ii) or CD74 is a non-polymorphic glycoprotein, which apart from its role as a chaperone dedicated to MHCII molecules, is known to be a high-affinity receptor for macrophage migration inhibitory factor (MIF). The present study aimed to define the roles of CD74 and MIF in the immune surveillance escape process. Towards this direction, the cell lines HL-60, Raji, K562 and primary pre-B leukemic cells were examined for expression and secretion of MIF. Flow cytometry analysis detected high levels of MIF and intracellular/membrane CD74 expression in all leukemic cells tested, while MIF secretion was shown to be inversely proportional to intracellular HLA-DR (DR) expression. In the MHCII-negative cells, IFN-γ increased MIF expression and induced its secretion in HL-60 and K562 cells, respectively. In K562 cells, CD74 (Iip33Iip35) was shown to co-precipitate with HLA-DOβ (DOβ), inhibiting thus MIF or DR binding. Induced expression of DOα in K562 (DOα-DOβ+) cells in different transfection combinations decreased MIF expression and secretion, while increasing surface DR expression. Thus, MIF could indeed be part of the antigen presentation process.

  13. Thyroid hormone increases bulk histones expression by enhancing translational efficiency.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Villamuera, Raquel; Aranda, Ana

    2015-01-01

    The expression of canonical histones is normally coupled to DNA synthesis during the S phase of the cell cycle. Replication-dependent histone mRNAs do not contain a poly(A) tail at their 3' terminus, but instead possess a stem-loop motif, the binding site for the stem-loop binding protein (SLBP), which regulates mRNA processing, stability, and relocation to polysomes. Here we show that the thyroid hormone can increase the levels of canonical histones independent of DNA replication. Incubation of mouse embryonic fibroblasts with T3 increases the total levels of histones, and expression of the thyroid hormone receptor β induces a further increase. This is not restricted to mouse embryonic fibroblasts, because T3 also raises histone expression in other cell lines. T3 does not increase histone mRNA or SLBP levels, suggesting that T3 regulates histone expression by a posttranscriptional mechanism. Indeed, T3 enhanced translational efficiency, inducing relocation of histone mRNA to heavy polysomes. Increased translation was associated with augmented transcription of the eukaryotic translation initiation factor 4 γ2 (EIF4G2). T3 induced EIF4G2 protein and mRNA levels and the thyroid hormone receptor bound to the promoter region of the Eif4g2 gene. Induction of EIF4G2 was essential for T3-dependent histone induction, because depletion of this factor abolished histone increase. These results point out the importance of the thyroid hormones on the posttranscriptional regulation of histone biosynthesis in a cell cycle-independent manner and also suggest the potential regulation of eukaryotic translation by the modulation of the initiation factor EIF4G2, which also operates in the translation of canonical mRNAs.

  14. Transthyretin expression in medulloblastomas and medulloblastoma cell lines.

    PubMed

    Albrecht, S; Bayer, T A; Kraus, J A; Pietsch, T

    1995-10-01

    Transthyretin is a protein crucial to the transport of lipophilic molecules such as thyroid hormones and retinoids. In the central nervous system, large amounts of transthyretin are synthesized by the choroid plexus and are secreted into the cerebrospinal fluid. The choroid plexus is the only site of transthyretin synthesis in the brain. Transthyretin is expressed by most benign and malignant choroid plexus tumours while gliomas and meningiomas do not express transthyretin. Other major sites of transthyretin synthesis are the retinal pigment epithelium and hepatocytes. Medulloblastoma is the prototypical primitive neuroectodermal tumour of the cerebellum and can show multiple lines of differentiation, including the expression of retinal markers. In this study, we examined transthyretin expression both at the RNA and protein level in four medulloblastomas and six medulloblastoma cell lines using Northern and Western blot analysis, reverse transcription polymerase chain reaction (PCR), RNA in situ hybridization, and immunohistochemistry. All four medulloblastomas and five of the six medulloblastoma cell lines expressed transthyretin-mRNA as demonstrated by reverse PCR and in situ hybridization while three medulloblastomas and one cell line were positive on Northern blot. The medulloblastoma with the most abundant RNA expression was transthyretin-immunoreactive on cryosections and the medulloblastoma cell line that was positive on Northern blot also expressed transthyretin at levels detectable by Western blot. No transthyretin-immunoreactivity was seen in 16 additional medulloblastomas studied on paraffin sections. These findings indicate that low-level expression of transthyretin-mRNA is common in medulloblastomas and medulloblastoma cell lines. Expression of transthyretin protein occurs rarely but can reach significant levels. Transthyretin expression in medulloblastoma is consistent with retinal pigment epithelium differentiation in medulloblastomas and reflects

  15. Enhanced receptor-mediated endocytosis and cytotoxicity of a folic acid-desacetylvinblastine monohydrazide conjugate in a pemetrexed-resistant cell line lacking folate-specific facilitative carriers but with increased folate receptor expression.

    PubMed

    Zhao, Rongbao; Diop-Bove, Ndeye; Goldman, I David

    2014-02-01

    The reduced folate carrier (RFC), proton-coupled folate transporter (PCFT), and folate receptors (FR) are folate-specific transporters. Antifolates currently in the clinic, such as pemetrexed, methotrexate, and pralatrexate, are transported into tumor cells primarily via RFC. Folic acid conjugated to cytotoxics, a new class of antineoplastics, are transported into cells via FR-mediated endocytosis. To better define the role of PCFT in antifolate resistance, a methotrexate-resistant cell line, M160-8, was selected from a HeLa subline in which the RFC gene was deleted and PCFT was highly overexpressed. These cells were cross-resistant to pemetrexed. PCFT function and the PCFT mRNA level in M160-8 cells were barely detectable, and FR-α function and mRNA level were increased as compared with the parent cells. While pemetrexed rapidly associated with FR and was internalized within endosomes in M160-8 cells, consistent with FR-mediated transport, subsequent pemetrexed and (6S)-5-formyltetrahydrofolate export into the cytosol was markedly impaired. In contrast, M160-8 cells were collaterally sensitive to EC0905, a folic acid-desacetylvinblastine monohydrazide conjugate also transported by FR-mediated endocytosis. However, in this case a sulfhydryl bond is cleaved to release the lipophilic cytotoxic moiety into the endosome, which passively diffuses out of the endosome into the cytosol. Hence, resistance to pemetrexed in M160-8 cells was due to entrapment of the drug within the endosome due to the absence of PCFT under conditions in which the FR cycling function was intact.

  16. Increased Cortical Thickness in Professional On-Line Gamers

    PubMed Central

    Hyun, Gi Jung; Shin, Yong Wook; Kim, Bung-Nyun; Cheong, Jae Hoon; Jin, Seong Nam

    2013-01-01

    Objective The bulk of recent studies have tested whether video games change the brain in terms of activity and cortical volume. However, such studies are limited by several factors including cross-sectional comparisons, co-morbidity, and short-term follow-up periods. In the present study, we hypothesized that cognitive flexibility and the volume of brain cortex would be correlated with the career length of on-line pro-gamers. Methods High-resolution magnetic resonance scans were acquired in twenty-three pro-gamers recruited from StarCraft pro-game teams. We measured cortical thickness in each individual using FreeSurfer and the cortical thickness was correlated with the career length and the performance of the pro-gamers. Results Career length was positively correlated with cortical thickness in three brain regions: right superior frontal gyrus, right superior parietal gyrus, and right precentral gyrus. Additionally, increased cortical thickness in the prefrontal cortex was correlated with winning rates of the pro-game league. Increased cortical thickness in the prefrontal and parietal cortices was also associated with higher performance of Wisconsin Card Sorting Test. Conclusion Our results suggest that in individuals without pathologic conditions, regular, long-term playing of on-line games is associated with volume changes in the prefrontal and parietal cortices, which are associated with cognitive flexibility. PMID:24474988

  17. Increased transversions in a novel mutator colon cancer cell line.

    PubMed

    Eshleman, J R; Donover, P S; Littman, S J; Swinler, S E; Li, G M; Lutterbaugh, J D; Willson, J K; Modrich, P; Sedwick, W D; Markowitz, S D; Veigl, M L

    1998-03-05

    We describe a novel mutator phenotype in the Vaco411 colon cancer cell line which increases the spontaneous mutation rate 10-100-fold over background. This mutator results primarily in transversion base substitutions which are found infrequently in repair competent cells. Of the four possible types of transversions, only three were principally recovered. Spontaneous mutations recovered also included transitions and large deletions, but very few frameshifts were recovered. When compared to known mismatch repair defective colon cancer mutators, the distribution of mutations in Vaco411 is significantly different. Consistent with this difference, Vaco411 extracts are proficient in assays of mismatch repair. The Vaco411 mutator appears to be novel, and is not an obvious human homologue of any of the previously characterized bacterial or yeast transversion phenotypes. Several hypotheses by which this mutator may produce transversions are presented.

  18. Immunoglobulin expression and synthesis by human haemic cell lines.

    PubMed Central

    Gordon, J; Hough, D; Karpas, A; Smith, J L

    1977-01-01

    Twenty-six human cell lines derived from a variety of lymphoid and non-lymphoid malignancies, were investigated for their immunological markers, with special reference to the class of immunoglobulin expressed. Twenty-five of the lines stained positively for surface immunoglobulin and IgD together with IgM proved to be the major immunoglobulin classes on these cells. Six of the lines were chosen for a study of their immunoglobulin synthesis patterns over an 18-h period and the immunoglobulin produced was analysed on SDS-polyacrylamide gel electrophoresis. Patterns obtained from the cell lines were similar to that from normal lymph node lymphocytes and differed markedly to plasma cells. Two of the cell lines had abnormal immunoglobulin synthesis patterns characterized as free light chains in one case. The cell lines are evaluated for their usefulness as models of immunoglobulin synthesis and analogues of normal and neoplastic states. PMID:608682

  19. Over-expression of secreted proteins from mammalian cell lines

    PubMed Central

    Dalton, Annamarie C; Barton, William A

    2014-01-01

    Secreted mammalian proteins require the development of robust protein over-expression systems for crystallographic and biophysical studies of protein function. Due to complex disulfide bonds and distinct glycosylation patterns preventing folding and expression in prokaryotic expression hosts, many secreted proteins necessitate production in more complex eukaryotic expression systems. Here, we elaborate on the methods used to obtain high yields of purified secreted proteins from transiently or stably transfected mammalian cell lines. Among the issues discussed are the selection of appropriate expression vectors, choice of signal sequences for protein secretion, availability of fusion tags for enhancing protein stability and purification, choice of cell line, and the large-scale growth of cells in a variety of formats. PMID:24510886

  20. Increased ERp57 Expression in HBV-Related Hepatocellular Carcinoma: Possible Correlation and Prognosis

    PubMed Central

    Liu, Miao; Du, Lingyao; He, Zhiliang; Yan, Libo; Shi, Ying; Shang, Jin

    2017-01-01

    Aim. ERp57 is involved in virus induced endoplasmic reticulum stress (ERS) and plays an important role in tumorigenesis. This study aimed to find whether HBV infection altered ERp57 expression and whether ERp57 regulation was involved in hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) genesis. Materials and Methods. HBV-HCC tissues, chronic hepatitis B (CHB) liver tissues, and normal liver tissues were acquired. ERp57 expressions in these tissues were detected through immunohistochemistry (IHC). And ERp57 expression in liver cell line L02, HBV replicative liver cell line L02-pHBV4.1, and HCC cell lines were detected through western blot for verification. Then medical data on patients providing HCC tissues were collected and analyzed along with ERp57 expression. Results. Higher ERp57 expression was found in HCC and CHB tissues (p < 0.001). And HCC cell lines and L02-pHBV4.1 presented higher ERp57 expression as well. In patients, ERp57 expression showed significant differences between death and survival groups (p = 0.037). And cumulative survival in patients with higher ERp57 (score ⩾ 8.75) is significantly lower (p = 0.009). Conclusion. Our study found increased expression of ERp57 in HBV-HCC. Such altered expression could be related to HBV infection and high ERp57 expression may lead to poor prognosis of HBV-HCC patients. PMID:28373975

  1. Codon Preference Optimization Increases Prokaryotic Cystatin C Expression

    PubMed Central

    Wang, Qing; Mei, Cui; Zhen, Honghua; Zhu, Jess

    2012-01-01

    Gene expression is closely related to optimal vector-host system pairing in many prokaryotes. Redesign of the human cystatin C (cysC) gene using the preferred codons of the prokaryotic system may significantly increase cysC expression in Escherichia coli (E. coli). Specifically, cysC expression may be increased by removing unstable sequences and optimizing GC content. According to E. coli expression system codon preferences, the gene sequence was optimized while the amino acid sequence was maintained. The codon-optimized cysC (co-cysC) and wild-type cysC (wt-cysC) were expressed by cloning the genes into a pET-30a plasmid, thus transforming the recombinant plasmid into E. coli BL21. Before and after the optimization process, the prokaryotic expression vector and host bacteria were examined for protein expression and biological activation of CysC. The recombinant proteins in the lysate of the transformed bacteria were purified using Ni2+-NTA resin. Recombinant protein expression increased from 10% to 46% based on total protein expression after codon optimization. Recombinant CysC purity was above 95%. The significant increase in cysC expression in E. coli expression produced by codon optimization techniques may be applicable to commercial production systems. PMID:23093857

  2. Establishment a CHO Cell Line Expressing Human CD52 Molecule

    PubMed Central

    Kadijeh, Tati; Mahsa, Yazdanpanah-Samani; Amin, Ramezani; Elham, Mahmoudi Maymand; Abbas, Ghaderi

    2016-01-01

    Background: CD52 is a small glycoprotein with a GPI anchor at its C-terminus. CD52 is expressed by Normal and malignant T and B lymphocytes and monocytes. There are detectable amounts of soluble CD52 in plasma of patients with CLL and could be used as a tumor marker. Although the biological function of CD52 is unknown but it seems that CD52 may be involved in migration and activation of T-cells .The aim of this study was to clone and express human CD52 gene in CHO cell line and studying its function in more details Methods: Based on GenBank databases two specific primers were designed for amplification of cd52 gene. Total RNA was extracted from Raji cell line and cDNA synthesized. Amplified fragment was cloned in pBudCE4.1 vector. The new construct was transfected to CHO-K1 cell line using electroporation method. Expression of recombinant CD52 protein was evaluated by Real time PCR and flow cytometry methods. Results: Amplification of CD52 gene using specific primers on Raji cDNA showed a 209 bp band. New construct was confirmed by PCR and restriction pattern and sequence analysis. The new construct was designated as pBudKT1. RT-PCR analysis detected cd52 mRNAs in transfected cells and Flow cytometry Results showed that 78.4 % of cells represented CD52 in their surfaces. Conclusion: In conclusion, we established a human CD52 positive cell line, CHO-CD52, and the protein was expressed on the membrane. Cloning of the CD52 gene could be the first step for the production of therapeutic monoclonal antibodies and detection systems for soluble CD52 in biological fluids PMID:28070536

  3. Connexin expression in epidermal cell lines from SENCAR mouse skin tumors.

    PubMed

    Budunova, I V; Carbajal, S; Viaje, A; Slaga, T J

    1996-03-01

    Alteration of gap-junctional intercellular communication (GJIC) has long been proposed to be involved in carcinogenesis. Previously, we reported that the level of gap junctional intercellular communication in mouse skin carcinoma cell lines is significantly lower than in papilloma cell lines and normal mouse keratinocytes Klann et al., Cancer Res 49:699-705, 1989). Here, we present data on expression of the gap-junctional protein connexins (Cx) 26, Cx31.1, and Cx43 in a comprehensive panel of keratinocyte cell lines representing different stages of mouse skin carcinogenesis and the effect of different conditions of propagation on Cx phenotype. Northern and western blot analyses and immunostaining showed that all cell lines studied in vitro expressed Cx43 but most did not express Cx31.1 or Cx26. The abundance of Cx43 expression on plasma membranes correlated well with the level of GJIC. In vivo expression of Cx43 and Cx26 was strongly increased. Whereas none of tumorigenic cell lines expressed Cx26 gap junctions in culture, those growing as tumors in nude mice began to express Cx26 protein. The comparison of Cx expression on the keratinocyte membranes in three different groups of tumors (papillomas and squamous cell and spindle cell carcinomas) clearly revealed that the abundance of Cx43 and Cx26 expression directly correlated with the level of tumor differentiation. All studied tumors were Cx31.1 negative. These results suggest that both Cx expression and gap-junction permeability are gradually reduced during the tumor progression stage of mouse skin carcinogenesis.

  4. Mechanisms involved in biological behavior changes associated with Angptl4 expression in colon cancer cell lines.

    PubMed

    Huang, Xue-Feng; Han, Jie; Hu, Xiao-Tong; He, Chao

    2012-05-01

    Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths throughout the world. Angiopoietin-like-4 (Angptl4), a member of the angiopoietin family of secreted proteins, is frequently expressed in the perinecrotic areas of different human tumors, yet its role is still unclear in colorectal cancer. Angptl4 mRNA expression in primary colorectal cancer tissue and seven colon cancer cell lines was measured by semi-quantitative RT-PCR; the influence of Angptl4 expression on the colon cancer cell lines was investigated by either overexpression or knockdown of Angptl4 in colon cancer cell lines HCT116 and HT29, respectively. The results showed that Angptl4 mRNA is frequently expressed in human colorectal cancer tissues and cell lines. Overexpression of Angptl4 promoted cell migration, F-actin reorganization and formation of pseudopodia. Further investigation showed that high Angptl4 expression was associated with an increase in ezrin/radixin/moesin and vasodilator-stimulated phosphoprotein expression and a decrease in E-cadherin expression. These results indicate that overexpression of Angptl4 may promote invasion and metastasis in CRC.

  5. Metastatic progression and gene expression between breast cancer cell lines from African American and Caucasian women

    PubMed Central

    Yancy, Haile F; Mason, Jacquline A; Peters, Sharla; Thompson, Charles E; Littleton, George K; Jett, Marti; Day, Agnes A

    2007-01-01

    African American (AA) women have a lower overall incidence of breast cancer than do Caucasian (CAU) women, but a higher overall mortality. Little is known as to why the incidence of breast cancer is lower yet mortality is higher in AA women. Many studies speculate that this is only a socio-economical problem. This investigation suggests the possibility that molecular mechanisms contribute to the increased mortality of AA women with breast cancer. This study investigates the expression of 14 genes which have been shown to play a role in cancer metastasis. Cell lines derived from AA and CAU patients were analyzed to demonstrate alterations in the transcription of genes known to be involved in cancer and the metastatic process. Total RNA was isolated from cell lines and analyzed by RT-PCR analysis. Differential expression of the 14 targeted genes between a spectrum model (6 breast cancer cell lines and 2 non-cancer breast cell lines) and a metastasis model (12 metastatic breast cancer cell lines) were demonstrated. Additionally, an in vitro comparison of the expression established differences in 5 of the 14 biomarker genes between African American and Caucasian breast cell lines. Results from this study indicates that altered expression of the genes Atp1b1, CARD 10, KLF4, Spint2, and Acly may play a role in the aggressive phenotype seen in breast cancer in African American women. PMID:17472751

  6. Expression Profiling of a Human Thyroid Cell Line Stably Expressing the BRAFVV600E Mutation

    PubMed Central

    KIM*, BYOUNG-AE; JEE*, HYEON-GUN; WOOK YI*, JIN; KIM, SU-JIN; JUN CHAI, YOUNG; YOUNG CHOI, JUNE; EUN LEE, KYU

    2016-01-01

    Background/Aim: The BRAFV600E mutation acts as an initiator of cancer development in papillary thyroid carcinoma (PTC). Gene expression changes caused by the BRAFV600E mutation may have an important role in thyroid cancer development. Materials and Methods: To study genomic alterations caused by the BRAFV600E mutation, we made human thyroid cell lines that harbor the wild-type BRAF gene (Nthy/WT) and the V600E mutant-type BRAF gene (Nthy/V600E). Results: Flow cytometry and western blotting showed stable transfection of the BRAF gene. In functional experiments, Nthy/V600E showed increased anchorage-independent growth and invasion through Matrigel, compared to Nthy/WT. Microarray analysis revealed that 2,441 genes were up-regulated in Nthy/V600E compared to Nthy/WT. Gene ontology analysis showed that the up-regulated genes were associated with cell adhesion, migration, and the ERK and MAPK cascade, and pathway analysis showed enrichment in cancer-related pathways. Conclusion: Our Nthy/WT and Nthy/V600E cell line pair could be a suitable model to study the molecular characteristics of BRAFV600E PTC. *These Authors contributed equally to this study. PMID:28031237

  7. Clinical and biological significance of CXCR5 expressed by prostate cancer specimens and cell lines.

    PubMed

    Singh, Shailesh; Singh, Rajesh; Singh, Udai P; Rai, Shesh N; Novakovic, Kristian R; Chung, Leland W K; Didier, Peter J; Grizzle, William E; Lillard, James W

    2009-11-15

    Chemokines and chemokine receptors have been shown to be involved in metastatic process of prostate cancer (PCa). In this study, we show primary PCa tissues and cell lines (LNCaP and PC3) express CXCR5, a specific chemokine receptor for CXCL13. Expression of CXCR5 was significantly higher (p < 0.001) in PCa cases than compared to normal match (NM) tissues. CXCR5 intensity correlated (R(2) = 0.97) with Gleason score. While prostate tumor tissues with Gleason scores >or= 7, displayed predominantly nuclear CXCR5 expression patterns, PCa specimens with Gleason scores expression patterns that were comparable to benign prostatic hyperplasia (BPH). Similar to tissue expression, PCa cell lines expressed significantly more CXCR5 than normal prostatic epithelial cells (PrECs), and CXCR5 expression was distributed among intracellular and extracellular compartments. Functional in vitro assays showed higher migratory and invasive potentials toward CXCL13, an effect that was mediated by CXCR5. In both PCa cell lines, CXCL13 treatment increased the expression of collagenase-1 or matrix metalloproteinase-1 (MMP-1), collagenase-3 (MMP-13), stromelysin-1 (MMP-3), stromelysin-2 (MMP-10) and stromelysin-3 (MMP-11). These data demonstrate the clinical and biological relevance of the CXCL13-CXCR5 pathway and its role in PCa cell invasion and migration.

  8. Moisture sensors 1980 on-line roles increase

    SciTech Connect

    Bailey, S.J.

    1980-09-01

    A review of on- and off-line moisture and humidity sensors covers instruments based on the capacitive principle such as Panametrics' Aquamax II and those developed by Ondyne, Moisture Control Systems, Phys-Chemical Research Corp., Shaw Instruments, and Diversified Engineering; instruments based on the microwave plus gamma and nuclear plus gamma radiation principles such as those by Kay-Ray and Ohmart Corp., respectively; sensors based on the saturated salt principle such as Foxboro's self-heated lithium chloride sensor; Kahn and Co.'s electrolytic hygrometer for monitoring the moisture content of pure gases or gas mixtures in natural gas transmissions; the Ohaus gravimetric instrument; microprocessor-based titrators by Foxboro Analytical and Photovolt Corp.; instruments which sense moving web moisture such as Beckman Instrument's Hygroline System HMP20 and Hy-Cal Engineering's sensor; IR stack gas analyzers by Anarad Inc. and Moisture Systems Corp.; optical hygrometers by EG and G and General Eastern; Panametrics' Model 4000 moisture computer; and Du Pont's standard 560 analyzer and new controller.

  9. Anticancer drug bortezomib increases interleukin-8 expression in human monocytes.

    PubMed

    Sanacora, Shannon; Urdinez, Joaquin; Chang, Tzu-Pei; Vancurova, Ivana

    2015-05-01

    Bortezomib (BZ) is the first clinically approved proteasome inhibitor that has shown remarkable anticancer activity in patients with hematological malignancies. However, many patients relapse and develop resistance; yet, the molecular mechanisms of BZ resistance are not fully understood. We have recently shown that in solid tumors, BZ unexpectedly increases expression of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8), while it inhibits expression of other NFκB-regulated genes. Since monocytes and macrophages are major producers of IL-8, the goal of this study was to test the hypothesis that BZ increases the IL-8 expression in human monocytes and macrophages. Here, we show that BZ dramatically increases the IL-8 expression in lipopolysaccharide (LPS)-stimulated U937 macrophages as well as in unstimulated U937 monocytes and peripheral blood mononuclear cells, while it inhibits expression of IL-6, IL-1 and tumor necrosis factor-α. In addition, our results show that the underlying mechanisms involve p38 mitogen-activated protein kinase, which is required for the BZ-induced IL-8 expression. Together, these data suggest that the BZ-increased IL-8 expression in monocytes and macrophages may represent one of the mechanisms responsible for the BZ resistance and indicate that targeting the p38-mediated IL-8 expression could enhance the BZ effectiveness in cancer treatment.

  10. Regulation of alkaline phosphatase expression in human choriocarcinoma cell lines.

    PubMed Central

    Hamilton, T A; Tin, A W; Sussman, H H

    1979-01-01

    The coincident expression of two structurally distinct isoenzymes of human alkaline phosphatase was demonstrated in two independently derived gestational choriocarcinoma cell lines. These proteins were shown to have enzymatic, antigenic, and physical-chemical properties resembling those of isoenzymes from term placenta and adult liver. The regulation of these isoenzymes has been studied during the exposure of both cell lines to 5-bromodeoxyuridine and dibutyryl cyclic AMP. The responses of the alkaline phosphatase isoenzymes to these agents have also been compared with the response of another protein phenotypic to placenta, the alpha subunit of chorionic gonadotropin. The results show that (i) the separate structural genes coding for placental and liver alkaline phosphatases are regulated in a noncoordinate fashion; (ii) both alkaline phosphatase genes respond independently of the alpha subunit; and (iii) the induction of the placental type isoenzyme occurs via at least two independent pathways. Images PMID:218197

  11. A conditional transgenic mouse line for targeted expression of the stem cell marker LGR5.

    PubMed

    Norum, Jens Henrik; Bergström, Åsa; Andersson, Agneta Birgitta; Kuiper, Raoul V; Hoelzl, Maria A; Sørlie, Therese; Toftgård, Rune

    2015-08-15

    LGR5 is a known marker of embryonic and adult stem cells in several tissues. In a mouse model, Lgr5+ cells have shown tumour-initiating properties, while in human cancers, such as basal cell carcinoma and colon cancer, LGR5 expression levels are increased: however, the effect of increased LGR5 expression is not fully understood. To study the effects of elevated LGR5 expression levels we generated a novel tetracycline-responsive, conditional transgenic mouse line expressing human LGR5, designated TRELGR5. In this transgenic line, LGR5 expression can be induced in any tissue depending on the expression pattern of the chosen transcriptional regulator. For the current study, we used transgenic mice with a tetracycline-regulated transcriptional transactivator linked to the bovine keratin 5 promoter (K5tTA) to drive expression of LGR5 in the epidermis. As expected, expression of human LGR5 was induced in the skin of double transgenic mice (K5tTA;TRELGR5). Inducing LGR5 expression during embryogenesis and early development resulted in macroscopically and microscopically detectable phenotypic changes, including kink tail, sparse fur coat and enlarged sebaceous glands. The fur and sebaceous gland phenotypes were reversible upon discontinued expression of transgenic LGR5, but this was not observed for the kink tail phenotype. There were no apparent phenotypic changes if LGR5 expression was induced at three weeks of age. The results demonstrate that increased expression of LGR5 during embryogenesis and the neonatal period alter skin development and homeostasis.

  12. Expression of tropomyosin 2 gene isoforms in human breast cancer cell lines

    PubMed Central

    DUBE, SYAMALIMA; THOMAS, ANISH; ABBOTT, LYNN; BENZ, PATRICIA; MITSCHOW, CHARLES; DUBE, DIPAK K.; POIESZ, BERNARD J.

    2016-01-01

    In humans, four tropomyosin genes (TPM1, TPM2, TPM3, and TPM4) are known to produce a multitude of isoforms via alternate splicing and/or using alternate promoters. Expression of tropomyosin has been shown to be modulated at both the transcription and the translational levels. Tropomyosins are known to make up some of the stress fibers of human epithelial cells and differences in their expression has been demonstrated in malignant breast epithelial cell lines compared to 'normal' breast cell lines. We have recently reported the expression of four novel TPM1 isoforms (TPM1λ, TPM1µ, TPM1ν, and TPM1ξ) from human malignant tumor breast cell lines that are not expressed in adult and fetal cardiac tissue. Also, we evaluated their expression in relation to the stress fiber formation. In this study, nine malignant breast epithelial cell lines and three 'normal' breast cell lines were examined for stress fiber formation and expression of tropomyosin 2 (TPM2) isoform-specific RNAs and proteins. Stress fiber formation was assessed by immunofluorescence using Leica AF6000 Deconvolution microscope. Stress fiber formation was strong (++++) in the 'normal' cell lines and varied among the malignant cell lines (negative to +++). No new TPM2 gene RNA isoforms were identified, and TPM2β was the most frequently expressed TPM2 RNA and protein isoform. Stress fiber formation positively correlated with TPM2β RNA or protein expression at high, statistically significant degrees. Previously, we had shown that TPM1δ and TPM1λ positively and inversely, respectively, correlated with stress fiber formation. The most powerful predictor of stress fiber formation was the combination of TPM2β RNA, TPM1δ RNA, and the inverse of TPM1λ RNA expression. Our results suggest that the increased expression of TPM1λ and the decreased expression of TPM1δ RNA and TPM2β may lead to decreased stress fiber formation and malignant transformation in human breast epithelial cells. PMID:27108600

  13. Differential expression of alkaline phosphatase gene in proliferating primary lymphocytes and malignant lymphoid cell lines.

    PubMed

    Latheef, S A A; Devanabanda, Mallaiah; Sankati, Swetha; Madduri, Ramanadham

    2016-02-01

    Alkaline Phosphatase (APase) activity has been shown to be enhanced specifically in mitogen stimulated B lymphocytes committed to proliferation, but not in T lymphocytes. APase gene expression was analyzed in proliferating murine and human primary lymphocytes and human malignant cell lines using reverse transcriptase and real time PCR. In mitogen stimulated murine splenic lymphocytes, enhancement of APase activity correlated well with an increase in APase gene expression. However, in mitogen stimulated murine T lymphocytes and human PBL despite a vigorous proliferative response, no increase in APase enzyme activity or gene expression was observed. A constitutive expression of APase activity concomitant with APase gene expression was observed inhuman myeloma cell line, U266 B1. However, neither enzyme activity nor gene expression of APase were observed in human T cell lymphoma, SUPT-1. The results suggest a differential expression of APase activity and its gene in proliferating primary lymphocytes of mice and humans. The specific expression of APase activity and its gene only in human myeloma cells, but not in proliferating primary B cells can be exploited as a sensitive disease marker.

  14. Random Monoallelic Gene Expression Increases upon Embryonic Stem Cell Differentiation

    PubMed Central

    Eckersley-Maslin, Mélanie A.; Thybert, David; Bergmann, Jan H.; Marioni, John C.; Flicek, Paul; Spector, David L.

    2014-01-01

    Summary Random autosomal monoallelic gene expression refers to the transcription of a gene from one of two homologous alleles. We assessed the dynamics of monoallelic expression during development through an allele-specific RNA sequencing screen in clonal populations of hybrid mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We identified 67 and 376 inheritable autosomal random monoallelically expressed genes in ESCs and NPCs respectively, a 5.6-fold increase upon differentiation. While DNA methylation and nuclear positioning did not distinguish the active and inactive alleles, specific histone modifications were differentially enriched between the two alleles. Interestingly, expression levels of 8% of the monoallelically expressed genes remained similar between monoallelic and biallelic clones. These results support a model in which random monoallelic expression occurs stochastically during differentiation, and for some genes is compensated for by the cell to maintain the required transcriptional output of these genes. PMID:24576421

  15. Increased HOX C13 expression in metastatic melanoma progression

    PubMed Central

    2012-01-01

    Background The process of malignant transformation, progression and metastasis of melanoma is not completely understood. Recently, the microarray technology has been used to survey transcriptional differences that might provide insight into the metastatic process, but the validation of changing gene expression during metastatic transition period is poorly investigated. A large body of literature has been produced on the role of the HOX genes network in tumour evolution, suggesting the involvement of HOX genes in several types of human cancers. Deregulated paralogous group 13 HOX genes expression has been detected in melanoma, cervical cancer and odonthogenic tumors. Among these, Hox C13 is also involved in the expression control of the human keratin genes hHa5 and hHa2, and recently it was identified as a member of human DNA replication complexes. Methods In this study, to investigate HOX C13 expression in melanoma progression, we have compared its expression pattern between naevi, primary melanoma and metastasis. In addition HOXC13 profile pattern of expression has been evaluated in melanoma cell lines. Results Our results show the strong and progressive HOX C13 overexpression in metastatic melanoma tissues and cytological samples compared to nevi and primary melanoma tissues and cells. Conclusions The data presentated in the paper suggest a possible role of HOX C13 in metastatic melanoma switch. PMID:22583695

  16. Expression and detection of LINE-1 ORF-encoded proteins.

    PubMed

    Dai, Lixin; LaCava, John; Taylor, Martin S; Boeke, Jef D

    2014-01-01

    LINE-1 (L1) elements are endogenous retrotransposons active in mammalian genomes. The L1 RNA is bicistronic, encoding two non-overlapping open reading frames, ORF1 and ORF2, whose protein products (ORF1p and ORF2p) bind the L1 RNA to form a ribonucleoprotein (RNP) complex that is presumed to be a critical retrotransposition intermediate. However, ORF2p is expressed at a significantly lower level than ORF1p; these differences are thought to be controlled at the level of translation, due to a low frequency ribosome reinitiation mechanism controlling ORF2 expression. As a result, while ORF1p is readily detectable, ORF2p has previously been very challenging to detect in vitro and in vivo. To address this, we recently tested several epitope tags fused to the N- or C-termini of the ORF proteins in an effort to enable robust detection and affinity purification from native (L1RP) and synthetic (ORFeus-Hs) L1 constructs. An analysis of tagged RNPs from both L1RP and ORFeus-Hs showed similar host-cell-derived protein interactors. Our observations also revealed that the tag sequences affected the retrotransposition competency of native and synthetic L1s differently although they encode identical ORF proteins. Unexpectedly, we observed apparently stochastic expression of ORF2p within seemingly homogenous L1-expressing cell populations.

  17. Gene expression profile induced by BCNU in human glioma cell lines with differential MGMT expression.

    PubMed

    Bandres, Eva; Andion, Esther; Escalada, Alvaro; Honorato, Beatriz; Catalan, Victoria; Cubedo, Elena; Cordeu, Lucia; Garcia, Fermin; Zarate, Ruth; Zabalegui, Natalia; Garcia-Foncillas, Jesus

    2005-07-01

    Chemotherapy with the alkylating agent BCNU (1,3-bis (2-chloroethyl)-1-nitrosourea) is the most commonly used chemotherapeutic agent for gliomas. However, the usefulness of this agent is limited because tumor cell resistance to BCNU is frequently found in clinical brain tumor therapy. The O6-methylguanine-DNA methyltransferase protein (MGMT) reverses alkylation at the O6 position of guanine and we have reported the role of MGMT in the response of brain tumors to alkylating agents. However, the different mechanisms underlying the patterns related to MGMT remain unclear. To better understand the molecular mechanism by which BCNU exerts its effect in glioma cell lines according MGMT expression, we used microarray technology to interrogate 3800 known genes and determine the gene expression profiles altered by BCNU treatment. Our results showed that treatment with BCNU alters the expression of a diverse group of genes in a time-dependent manner. A subset of gene changes was found common in both glioma cell lines and other subset is specific of each cell line. After 24 h of BCNU treatment, up-regulation of transcription factors involved in the nucleation of both RNA polymerase II and III transcription initiation complexes was reported. Interestingly, BCNU promoted the expression of actin-dependent regulators of chromatin. Similar effects were found with higher BCNU doses in MGMT+ cell line showing a similar mechanism that in MGMT-deficient cell with standard doses. Our data suggest that human glioma cell lines treated with BCNU, independently of MGMT expression, show changes in the expression of cell cycle and survival-related genes interfering the transcription mechanisms and the chromatin regulation.

  18. Differential hormonal and gene expression dynamics in two inbred sunflower lines with contrasting dormancy level.

    PubMed

    Roselló, Paula L; Vigliocco, Ana E; Andrade, Andrea M; Riera, Natalí V; Calafat, Mario; Molas, María L; Alemano, Sergio G

    2016-05-01

    Seed germination and dormancy are tightly regulated by hormone metabolism and signaling pathway. We investigated the endogenous content of abscisic acid (ABA), its catabolites, and gibberellins (GAs), as well as the expression level of certain ABA and GAs metabolic and signaling genes in embryo of dry and imbibed cypselas of inbred sunflower (Helianthus annuus L., Asteraceae) lines: B123 (dormant) and B91 (non-dormant). Under our experimental conditions, the expression of RGL2 gene might be related to the ABA peak in B123 line at 3 h of imbibition. Indeed, RGL2 transcripts are absent in dry and early embedded cypselas of the non-dormant line B91. ABA increase was accompanied by a significant ABA-Glucosyl ester (ABA-GE) and phaseic acid (PA) (two ABA catabolites) decrease in B123 line (3 h) which indicates that ABA metabolism seems to be more active in this line, and that it would be involved in the imposition and maintenance of sunflower seed dormancy, as it has been reported for many species. Finally, an increase of bioactive GAs (GA1 and GA3) occurs at 12 h of imbibition in both lines after a decrease in ABA content. This study shows the first report about the RGL2 tissue-specific gene expression in sunflower inbred lines with contrasting dormancy level. Furthermore, our results provide evidence that ABA and GAs content and differential expression of metabolism and signaling genes would be interacting in seed dormancy regulation through a mechanism of action related to embryo itself.

  19. Development of stable cell lines for production or regulated expression using matrix attachment regions.

    PubMed

    Zahn-Zabal, M; Kobr, M; Girod, P A; Imhof, M; Chatellard, P; de Jesus, M; Wurm, F; Mermod, N

    2001-04-27

    One of the major hurdles of isolating stable, inducible or constitutive high-level producer cell lines is the time-consuming selection procedure. Given the variation in the expression levels of the same construct in individual clones, hundreds of clones must be isolated and tested to identify one or more with the desired characteristics. Various boundary elements (BEs), matrix attachment regions, and locus control regions (LCRs) were screened for their ability to augment the expression of heterologous genes in Chinese hamster ovary (CHO) cells. Of the chromatin elements assayed, the chicken lysozyme matrix-attachment region (MAR) was the only element to significantly increase stable reporter expression. We found that the use of the MAR increases the proportion of high-producing clones, thus reducing the number of clones that need to be screened. These benefits are observed both for constructs with MARs flanking the transgene expression cassette, as well as when constructs are co-transfected with the MAR on a separate plasmid. Moreover, the MAR was co-transfected with a multicomponent regulatable beta-galactosidase expression system in C2C12 cells and several clones exhibiting regulated expression were identified. Hence, MARs are useful in the development of stable cell lines for production or regulated expression.

  20. Systemic alteration of cell-surface and secreted glycoprotein expression in malignant breast cancer cell lines.

    PubMed

    Timpe, Leslie C; Yen, Roger; Haste, Nicole V; Litsakos-Cheung, Christina; Yen, Ten-Yang; Macher, Bruce A

    2013-11-01

    Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with those expressed by a nonmalignant set. The average number of spectral counts (proportional to relative protein abundance) and the total number of glycopeptides in the malignant samples were reduced to about two-thirds of the level in the nonmalignant samples. Most glycoproteins were expressed at a different level in the malignant samples, with nearly as many increasing as decreasing. The glycoproteins with reduced expression accounted for a larger change in spectral counts, and hence for the net loss of spectral counts in the malignant lines. Similar results were found when the glycoproteins were studied via identified glycosylation sites only, or through identified sites together with non-glycopeptides. The overall reduction is largely due to the loss of integrins, laminins and other proteins that form or interact with the basement membrane.

  1. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro.

    PubMed

    Frajese, Giovanni Vanni; Benvenuto, Monica; Fantini, Massimo; Ambrosin, Elena; Sacchetti, Pamela; Masuelli, Laura; Giganti, Maria Gabriella; Modesti, Andrea; Bei, Roberto

    2016-06-01

    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-κB. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro.

  2. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro

    PubMed Central

    FRAJESE, GIOVANNI VANNI; BENVENUTO, MONICA; FANTINI, MASSIMO; AMBROSIN, ELENA; SACCHETTI, PAMELA; MASUELLI, LAURA; GIGANTI, MARIA GABRIELLA; MODESTI, ANDREA; BEI, ROBERTO

    2016-01-01

    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-κB. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro. PMID:27313770

  3. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    SciTech Connect

    Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay; Shirsat, Neelam Vishwanath

    2014-05-30

    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effect of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy

  4. Expression and initial promoter characterization of PCAN1 in retinal tissue and prostate cell lines.

    PubMed

    Cross, D; Reding, D J; Salzman, S A; Zhang, K Q; Catalona, W J; Burke, J; Burmester, J K

    2004-01-01

    Prostate cancer is the most frequently diagnosed neoplasia in men and one of the leading causes of cancer-related deaths in men over 60. In an effort to understand the molecular events leading to prostate cancer, we have identified PCAN1 (prostate cancer gene 1) (also known as GDEP), a gene that is highly expressed in prostate epithelial tissue and frequently mutated in prostate tumors. Here we demonstrate its expression in neural retina, and retinoblastoma cell culture but not retinal pigment epithelial cell culture. We further characterize PCAN1 expression in the prostate cell lines RWPE1, RWPE2, and LnCAP FGC. We demonstrate an increase in expression when the cells are grown in the presence of Matrigel, an artificial extracellular basement membrane. Expression was time dependent, with expression observed on d 6 and little or no expression on d 12. Testosterone was not found to increase PCAN1 expression in this culture system. In addition, normal prostate epithelial cells co-cultured with normal prostate stromal cells did not exhibit PCAN1 expression at any time. To definitively locate the transcription initiation sites, we performed restriction-ligase-mediated 5' RACE, to selectively amplify only mRNA with a 5' cap. An initial characterization of the sequence upstream of the initiation sites determined six possible binding sites for the prostate specific regulatory protein NKX3.1 and four potential binding sites for the PPAR/RXR heterodimer that is involved in the control of cell differentiation and apoptosis.

  5. Resistance of cell lines to prion toxicity aided by phospho-ERK expression.

    PubMed

    Uppington, Kay M; Brown, David R

    2008-05-01

    Prion diseases are fatal neurodegenerative disorders. They are characterised by neuronal loss and the accumulation of an abnormal protein in the CNS. Cell lines exist that express the toxic form of the prion protein (PrP) with little evidence of cell death. Other cell based models studying the mechanism by which cell death occurs employ exogenous application of peptides or fragments of PrP. In this study, we demonstrated that full-length recombinant PrP binding manganese was toxic to PrP-expressing cell lines and primary neuronal cultures but not to PrP-knockout neurones. This toxic form of PrP was also toxic to cell lines equivalently regardless of whether they were infected with scrapie or not. Both scrapie-infected cells and cells resistant to the toxicity of PrP showed increased levels of phosphorylated ERK protein. Scrapie-infected cells also showed elevated levels of caspase 12. Inhibition of phospho-ERK resulted in increased cell death suggesting the increased levels of phospho-ERK served a protective effect. These results suggest that scrapie-infected cell lines resist the toxicity of the prions they generate because they produce only low levels of abnormal protein and have increased resistance to apoptotic signs because of heightened activity of the MAP kinase pathway.

  6. PKCeta expression contributes to the resistance of Hodgkin's lymphoma cell lines to apoptosis.

    PubMed

    Abu-Ghanem, Sara; Oberkovitz, Galia; Benharroch, Daniel; Gopas, Jacob; Livneh, Etta

    2007-09-01

    The Hodgkin-Reed-Sternberg (HRS) malignant cells in Hodgkin's lymphoma (HL) originate from germinal center B lymphocytes that did not undergo apoptosis. Protein Kinase C (PKC), a family of serine/threonine kinases, plays a crucial role in signal transduction modulating cell growth, differentiation and apoptosis. Here, we report the expression of PKC isoforms in two HL-derived cell lines, L428 and KMH2 and their correlation with drug resistance to CPT and doxorubicin. Among the PKC isoforms examined, only PKCeta and PKCbetaII were preferentially expressed in the drug resistant L428 cells. We have shown correlation between the response to apoptosis of L428 and KMH2 cells and PKCeta expression in these cell lines. In order to directly demonstrate a role for PKCeta in apoptosis, its expression was knocked-down by siRNA in the resistant L428 cells. Downregulation of PKCeta rendered L428 cells more sensitive to doxorubicin and CPT. Furthermore, PKCeta knocked-down cells showed increased PARP-1 cleavage, cytochrome c release and caspase 7 activation. It appears that PKCeta functions as an anti-apoptotic protein in HL-derived cell lines, and as we show here that it is also expressed in HRS of HL biopsies, it may have therapeutic relevance in HL. Thus, PKCeta could provide a new target aimed to reduce resistance to anti-cancer treatments of HL and other cancer patients.

  7. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line.

    PubMed

    Wang, Yi; Jiang, Yang; Ikeda, Jun-Ichiro; Tian, Tian; Sato, Atsushi; Ohtsu, Hiroshi; Morii, Eiichi

    2014-10-01

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, migration, and invasion. Here, we examined the effect of histamine on ALDH1 expression in endometrioid adenocarcinoma cell line. The addition of histamine increased ALDH1 high population, which was consistent with the result that histamine enhanced the invasive ability and the resistance to anticancer drug. Among 4 types of histamine receptors, histamine H1 and H2 receptor (H1R and H2R) were expressed in endometrioid adenocarcinoma cell line. The addition of H1R agonist but not H2R agonist increased ALDH1. The antagonist H1R but not H2R inhibited the effect of histamine on ALDH1 expression. These results indicated that histamine increased the expression of ALDH1 via H1R but not H2R. These findings may provide the evidence for exploring a new strategy to suppress CICs by inhibiting ALDH1 expression with histamine.

  8. An Empirical Expression for the Line Widths of Ammonia

    NASA Technical Reports Server (NTRS)

    Brown, Linda R.; Peterson, Dean B.

    1994-01-01

    The hydrogen-broadened line widths of 116 (sup 14)NH(sub 3) ground state transitions have been measured at 0.006 cm(sup -1) resolution using a Bruker spectrometer in the 24 to 210 cm(sup -1) region. The rotational variation of the experimental widths with J(sup '),K(sup ') = 1,0 to 10,10 has been reproduced to 2.4 % using an heuristically derived expression of the form

    gamma = a(sub 0) + a(sub 1) J(sup ') + a (sub 2) K(sup ') + a(sub 3) J(sup ')(sup 2) + a(sub 4) J(sup ') K(sup ')

    where J(sup ') and K(sup ') are the lower state symmetric top quantum numbers. This function has also been applied to the measured widths of the 58 transitions of nu(sub 1) at 3 (micro)m, each broadened by N(sub 2), O(sub 2), Ar, H(sub 2), and He. The rms of the observed minus calculated widths are 5% or better for the five foreign broadeners. The values of the fitted constants suggest that for some broadeners the expression might also be written as

    gamma = a(sub 0) + b(sub 1) J(sup ') + b(sub 2)(J(sup ' )- K(sup ')) + b(sub 3) J(sup ')(J(sup ') - K(sup '))

    .

  9. Increased intra- and extracellular granzyme expression in patients with tuberculosis.

    PubMed

    Garcia-Laorden, M Isabel; Blok, Dana C; Kager, Liesbeth M; Hoogendijk, Arie J; van Mierlo, Gerard J; Lede, Ivar O; Rahman, Wahid; Afroz, Rumana; Ghose, Aniruddha; Visser, Caroline E; Md Zahed, Abu Shahed; Husain, Md Anwar; Alam, Khan Mashrequl; Chandra Barua, Pravat; Hassan, Mahtabuddin; Hossain, Ahmed; Tayab, Md Abu; Day, Nick; Dondorp, Arjen M; de Vos, Alex F; van der Poll, Tom

    2015-09-01

    Tuberculosis (TB) is an important cause of morbidity and mortality worldwide. Granzymes (gzms) are proteases mainly found in cytotoxic lymphocytes, but also extracellularly. While the role of gzms in target cell death has been widely characterized, considerable evidence points towards broader roles related to infectious and inflammatory responses. To investigate the expression of the gzms in TB, intracellular gzms A, B and K were measured by flow cytometry in lymphocyte populations from peripheral blood mononuclear cells from 18 TB patients and 12 healthy donors from Bangladesh, and extracellular levels of gzmA and B were measured in serum from 58 TB patients and 31 healthy controls. TB patients showed increased expression of gzmA in CD8(+) T, CD4(+) T and CD56(+) T, but not NK, cells, and of gzmB in CD8(+) T cells, when compared to controls. GzmK expression was not altered in TB patients in any lymphocyte subset. The extracellular levels of gzmA and, to a lesser extent, of gzmB, were increased in TB patients, but did not correlate with intracellular gzm expression in lymphocyte subsets. Our results reveal enhanced intra- and extracellular expression of gzmA and B in patients with pulmonary TB, suggesting that gzms are part of the host response to tuberculosis.

  10. Analysis of CCL5 expression in classical Hodgkin's lymphoma L428 cell line.

    PubMed

    Liu, Fanrong; Zhang, Yan; Wu, Zi-Qing; Zhao, Tong

    2011-01-01

    CCL5 is one of the chemoattractant cytokines involved in inflammatory observed in both diffuse large B-cell lymphoma (DLBCL) and classical Hodgkin's lymphoma (CHL). However, the pathological effects of CCL5 remain unclear. To gain a better understanding of the role of CCL5 in CHL and DLBCL, we examined the expression of CCL5 in the CHL cell line L428 and the DLBCL cell lines Ly1 and Ly8, as well as its chemotactic effect on CD4+ T cells. CCL5 mRNA expression was detected by real-time quantitative RT-PCR. Intracellular CCL5 protein expression was analyzed using confocal microscopy, and CCL5 protein secretion was detected by ELISA. The chemotactic function of CCL5 was assessed using a Transwell coculture system, and the number of migrated CD4+ T cells was counted. Moreover, the p-iкBα and p65 levels of NF-кB signaling molecules in these lymphoma cell lines were detected by Western blotting. The results showed that CCL5 mRNA and protein expression in the L428 cells was significantly higher than in Ly1 and Ly8 cells (p<0.05). L428 cells secreted more CCL5 than the Ly1 or Ly8 cells, and the secreted CCL5 was capable of inducing CD4+ T cell migration. The expression levels of the NF-кB transcription factors p65 and p-iкBα were examined in these lymphoma cells. L428, Ly1 and Ly8 cells expressed similar levels of p65, while p-iкBα expression was higher in the L428 cells than in the Ly1 or Ly8 cells, indicating that a high CCL5 expression may be related to the increased activity of the NF-кB signaling pathway in L428 cells.

  11. Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines.

    PubMed

    Romand, Sandrine; Jostock, Thomas; Fornaro, Mara; Schmidt, Joerg; Ritter, Anett; Wilms, Burkhard; Laux, Holger

    2016-05-01

    Chinese Hamster Ovary (CHO) cells are widely used for the large-scale production of recombinant biopharmaceuticals. However, attempts to express IGF-1 (a mutated human Insulin-like growth factor 1 Ea peptide (hIGF-1Ea mut)) in CHO cells resulted in poor cell growth and low productivity (0.1-0.2 g/L). Human IGF-1 variants negatively impacted CHO cell growth via the IGF-1 receptor (IGF-1R). Therefore knockout (KO) of the IGF-1R gene in two different CHO cell lines as well as knockdown (KD) of IGF-1R in one CHO cell line were performed. These cell line engineering approaches decreased significantly the hIGF-1 mediated cell growth inhibition and increased productivity of both KO CHO cell lines as well as of the KD CHO cell line. A productivity increase of 10-fold at pool level and sevenfold at clone level was achieved, resulting in a titer of 1.3 g/L. This data illustrate that cell line engineering approaches are powerful tools to improve the yields of recombinant proteins which are difficult to produce in CHO cells.

  12. Tetraspanin-8 promotes hepatocellular carcinoma metastasis by increasing ADAM12m expression

    PubMed Central

    Wang, Yanru; Chen, Guangnan; Huang, Jing; Chen, Jie; Zhao, Yan; Sun, Ruixia; Liang, Chunmin; Liu, Binbin

    2016-01-01

    Recent evidence indicates that tetraspanin-8 (TSPAN8) promotes tumor progression and metastasis. In this study, we explored the effects of TSPAN8 and the molecular mechanisms underlying hepatocellular carcinoma (HCC) metastasis using various HCC cell lines, tissues from 149 HCC patients, and animal models of HCC progression. We showed that elevated expression of TSPAN8 promoted HCC invasion in vitro and metastasis in vivo, but did not influence HCC cell proliferation in vitro. Increased TSPAN8 expression in human HCC was predictive of poor survival, and multivariate analyses indicated TSPAN8 expression to be an independent predictor for both postoperative overall survival and relapse-free survival. Importantly, TSPAN8 enhanced HCC invasion and metastasis by increasing ADAM12m expression. We therefore conclude that TSPAN8 and ADAM12m may be useful therapeutic targets for the prevention of HCC progression and metastasis. PMID:27270327

  13. Empowering Multi-Cohort Gene Expression Analysis to Increase Reproducibility

    PubMed Central

    Haynes, Winston A; Vallania, Francesco; Liu, Charles; Bongen, Erika; Tomczak, Aurelie; Andres-Terrè, Marta; Lofgren, Shane; Tam, Andrew; Deisseroth, Cole A; Li, Matthew D; Sweeney, Timothy E

    2016-01-01

    A major contributor to the scientific reproducibility crisis has been that the results from homogeneous, single-center studies do not generalize to heterogeneous, real world populations. Multi-cohort gene expression analysis has helped to increase reproducibility by aggregating data from diverse populations into a single analysis. To make the multi-cohort analysis process more feasible, we have assembled an analysis pipeline which implements rigorously studied meta-analysis best practices. We have compiled and made publicly available the results of our own multi-cohort gene expression analysis of 103 diseases, spanning 615 studies and 36,915 samples, through a novel and interactive web application. As a result, we have made both the process of and the results from multi-cohort gene expression analysis more approachable for non-technical users. PMID:27896970

  14. Aging increases CCN1 expression leading to muscle senescence.

    PubMed

    Du, Jie; Klein, Janet D; Hassounah, Faten; Zhang, Jin; Zhang, Cong; Wang, Xiaonan H

    2014-01-01

    Using microarray analysis, we found that aging sarcopenia is associated with a sharp increase in the mRNA of the matricellular protein CCN1 (Cyr61/CTGF/Nov). CCN1 mRNA was upregulated 113-fold in muscle of aged vs. young rats. CCN1 protein was increased in aging muscle in both rats (2.8-fold) and mice (3.8-fold). When muscle progenitor cells (MPCs) were treated with recombinant CCN1, cell proliferation was decreased but there was no change in the myogenic marker myoD. However, the CCN1-treated MPCs did express a senescence marker (SA-βgal). Interestingly, we found CCN1 increased p53, p16(Ink4A), and pRP (hypophosphorylated retinoblastoma protein) protein levels, all of which can arrest cell growth in MPCs. When MPCs were treated with aged rodent serum CCN1 mRNA increased by sevenfold and protein increased by threefold suggesting the presence of a circulating regulator. Therefore, we looked for a circulating regulator. Wnt-3a, a stimulator of CCN1 expression, was increased in serum from elderly humans (2.6-fold) and aged rodents (2.0-fold) compared with young controls. We transduced C2C12 myoblasts with wnt-3a and found that CCN1 protein was increased in a time- and dose-dependent manner. We conclude that in aging muscle, the circulating factor wnt-3a acts to increase CCN1 expression, prompting muscle senescence by activating cell arrest proteins.

  15. Increased expression and aberrant localization of mucin 13 in metastatic colon cancer.

    PubMed

    Gupta, Brij K; Maher, Diane M; Ebeling, Mara C; Sundram, Vasudha; Koch, Michael D; Lynch, Douglas W; Bohlmeyer, Teresa; Watanabe, Akira; Aburatani, Hiroyuki; Puumala, Susan E; Jaggi, Meena; Chauhan, Subhash C

    2012-11-01

    MUC13 is a newly identified transmembrane mucin. Although MUC13 is known to be overexpressed in ovarian and gastric cancers, limited information is available regarding the expression of MUC13 in metastatic colon cancer. Herein, we investigated the expression profile of MUC13 in colon cancer using a novel anti-MUC13 monoclonal antibody (MAb, clone ppz0020) by immunohistochemical (IHC) analysis. A cohort of colon cancer samples and tissue microarrays containing adjacent normal, non-metastatic colon cancer, metastatic colon cancer, and liver metastasis tissues was used in this study to investigate the expression pattern of MUC13. IHC analysis revealed significantly higher (p<0.001) MUC13 expression in non-metastatic colon cancer samples compared with faint or very low expression in adjacent normal tissues. Interestingly, metastatic colon cancer and liver metastasis tissue samples demonstrated significantly (p<0.05) higher cytoplasmic and nuclear MUC13 expression compared with non-metastatic colon cancer and adjacent normal colon samples. Moreover, cytoplasmic and nuclear MUC13 expression correlated with larger and poorly differentiated tumors. Four of six tested colon cancer cell lines also expressed MUC13 at RNA and protein levels. These studies demonstrate a significant increase in MUC13 expression in metastatic colon cancer and suggest a correlation between aberrant MUC13 localization (cytoplasmic and nuclear expression) and metastatic colon cancer.

  16. Lnc-CC3 increases metastasis in cervical cancer by increasing Slug expression

    PubMed Central

    Jiang, Binyuan; Sun, Ruili; Fang, Shujuan; Qin, Changfei; Pan, Xi; Peng, Li; Li, Yuehui; Li, Guancheng

    2016-01-01

    Although screening has reduced mortality rates, metastasis still results in poor survival and prognosis in cervical cancer patients. We compared cervical cancer ESTs libraries with other ESTs libraries to identify candidate genes and cloned a novel cervical cancer-associated lncRNA, lnc-CC3. Overexpression of lnc-CC3 promoted migration and invasion by SiHa cervical cancer cells in vitro and in vivo, increased Slug expression, and reduced the expression of the epithelial cell marker E-cadherin. Conversely, lnc-CC3 knockdown altered SiHa cell morphology and increased the expression of E-cadherin, thereby suppressing migration and invasion. These results suggest lnc-CC3 may be a useful marker of metastasis in cervical cancer. PMID:27223436

  17. SFRP2 Is Associated with Increased Adiposity and VEGF Expression

    PubMed Central

    Crowley, Rachel K.; Bujalska, Iwona J.; Hassan-Smith, Zaki K.; Hazlehurst, Jonathan M.; Foucault, Danielle R.; Stewart, Paul M.; Tomlinson, Jeremy W.

    2016-01-01

    Aims The aim of this study was to assess depot-specific expression and secretion of secreted frizzled-related protein 2 (sFRP2) by adipose tissue and its effect on adipocyte biology. We measured serum sFRP2 concentrations in 106 patients in vivo to explore its relationship to fat mass, glycaemia and insulin resistance. Methods Expression of sFRP2 in mouse and human tissues was assessed using polymerase chain reaction and Western blot. Western blot confirmed secretion of sFRP2 by adipose tissue into cell culture medium. Effects of recombinant sFRP2 on lipogenesis and preadipocyte proliferation were measured. Preadipocyte expression of the angiogenic genes vascular endothelial growth factor (VEGF) and nuclear factor of activated T-cells 3 (NFATC3) was measured after recombinant sFRP2 exposure. Complementary clinical studies correlating human serum sFRP2 with age, gender, adiposity and insulin secretion were also performed. Results sFRP2 messenger RNA (mRNA) was expressed in mouse and human adipose tissue. In humans, sFRP2 mRNA expression was 4.2-fold higher in omental than subcutaneous adipose. Omental adipose tissue secreted 63% more sFRP2 protein than subcutaneous. Treatment with recombinant sFRP2 did not impact on lipogenesis or preadipocyte proliferation but was associated with increased VEGF mRNA expression. In human subjects, circulating insulin levels positively correlated with serum sFRP2, and levels were higher in patients with abnormal glucose tolerance (34.2ng/ml) compared to controls (29.5ng/ml). A positive correlation between sFRP2 and BMI was also observed. Conclusions Circulating sFRP2 is associated with adipose tissue mass and has a potential role to drive adipose angiogenesis through enhanced VEGF expression. PMID:27685706

  18. 78 FR 76140 - Extension of Public Comment Period for the Champlain Hudson Power Express Transmission Line...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... Extension of Public Comment Period for the Champlain Hudson Power Express Transmission Line Project Draft... Hudson Power Express Transmission Line Project Draft Environmental Impact Statement (DOE/EIS-0447). The... permit to the Applicant, Champlain Hudson Power Express, Inc. (CHPEI), to construct, operate,...

  19. Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion.

    PubMed

    Whitt, Jason D; Keeton, Adam B; Gary, Bernard D; Sklar, Larry A; Sodani, Kamlesh; Chen, Zhe-Sheng; Piazza, Gary A

    2016-03-01

    ATP-binding cassette (ABC) transporters ABCC1 (MRP1), ABCB1 (P-gp), and ABCG2 (BCRP) contribute to chemotherapy failure. The primary goals of this study were to characterize the efficacy and mechanism of the nonsteroidal anti-inflammatory drug (NSAID), sulindac sulfide, to reverse ABCC1 mediated resistance to chemotherapeutic drugs and to determine if sulindac sulfide can influence sensitivity to chemotherapeutic drugs independently of drug efflux. Cytotoxicity assays were performed to measure resistance of ABC-expressing cell lines to doxorubicin and other chemotherapeutic drugs. NSAIDs were tested for the ability to restore sensitivity to resistance selected tumor cell lines, as well as a large panel of standard tumor cell lines. Other experiments characterized the mechanism by which sulindac sulfide inhibits ABCC1 substrate and co-substrate (GSH) transport in isolated membrane vesicles and intact cells. Selective reversal of multi-drug resistance (MDR), decreased efflux of doxorubicin, and fluorescent substrates were demonstrated by sulindac sulfide and a related NSAID, indomethacin, in resistance selected and engineered cell lines expressing ABCC1, but not ABCB1 or ABCG2. Sulindac sulfide also inhibited transport of leukotriene C4 into membrane vesicles. Sulindac sulfide enhanced the sensitivity to doxorubicin in 24 of 47 tumor cell lines, including all melanoma lines tested (7-7). Sulindac sulfide also decreased intracellular GSH in ABCC1 expressing cells, while the glutathione synthesis inhibitor, BSO, selectively increased sensitivity to sulindac sulfide induced cytotoxicity. Sulindac sulfide potently and selectively reverses ABCC1-mediated MDR at clinically achievable concentrations. ABCC1 expressing tumors may be highly sensitive to the direct cytotoxicity of sulindac sulfide, and in combination with chemotherapeutic drugs that induce oxidative stress.

  20. Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion

    PubMed Central

    Whitt, Jason D.; Keeton, Adam B.; Gary, Bernard D.; Sklar, Larry A.; Sodani, Kamlesh; Chen, Zhe-Sheng; Piazza, Gary A.

    2016-01-01

    Abstract ATP-binding cassette (ABC) transpo rters ABCC1 (MRP1), ABCB1 (P-gp), and ABCG2 (BCRP) contribute to chemotherapy failure. The primary goals of this study were to characterize the efficacy and mechanism of the non­steroidal anti-inflammatory drug (NSAID), sulindac sulfide, to reverse ABCC1 mediated resistance to chemother­apeutic drugs and to determine if sulindac sulfide can influence sensitivity to chemotherapeutic drugs independently of drug efflux. Cytotoxicity assays were performed to measure resistance of ABC-expressing cell lines to doxoru­bicin and other chemotherapeutic drugs. NSAIDs were tested for the ability to restore sensitivity to resistance selected tumor cell lines, as well as a large panel of standard tumor cell lines. Other experiments characterized the mechanism by which sulindac sulfide inhibits ABCC1 substrate and co-substrate (GSH) transport in isolated membrane vesicles and intact cells. Selective reversal of multi-drug resistance (MDR), decreased efflux of doxor­ubicin, and fluorescent substrates were demonstrated by sulindac sulfide and a related NSAID, indomethacin, in resistance selected and engineered cell lines expressing ABCC1, but not ABCB1 or ABCG2. Sulindac sulfide also inhibited transport of leukotriene C4 into membrane vesicles. Sulindac sulfide enhanced the sensitivity to doxoru­bicin in 24 of 47 tumor cell lines, including all melanoma lines tested (7-7). Sulindac sulfide also decreased intra­cellular GSH in ABCC1 expressing cells, while the glutathione synthesis inhibitor, BSO, selectively increased sensitivity to sulindac sulfide induced cytotoxicity. Sulindac sulfide potently and selectively reverses ABCC1-mediated MDR at clinically achievable concentrations. ABCC1 expressing tumors may be highly sensitive to the direct cytotoxicity of sulindac sulfide, and in combination with chemotherapeutic drugs that induce oxidative stress. PMID:28276667

  1. Exercise-Mediated Increase in Nigral Tyrosine Hydroxylase Is Accompanied by Increased Nigral GFR-α1 and EAAC1 Expression in Aging Rats

    PubMed Central

    Arnold, Jennifer C.; Salvatore, Michael F.

    2016-01-01

    Exercise may alleviate locomotor impairment in Parkinson's disease (PD) or aging. Identifying molecular responses immediately engaged by exercise in the nigrostriatal pathway and allied tissue may reveal critical targets associated with its long-term benefits. In aging, there is loss of tyrosine hydroxylase (TH) and the glial cell line-derived neurotrophic factor (GDNF) receptor, GFR-α1, in the substantia nigra (SN). Exercise can increase GDNF expression, but its effect on GFR-α1 expression is unknown. Infusion of GDNF into striatum or GFR-α1 in SN, respectively, can increase locomotor activity and TH function in SN but not striatum in aged rats. GDNF may also increase glutamate transporter expression, which attenuates TH loss in PD models. We utilized a footshock-free treadmill exercise regimen to determine the immediate impact of short-term exercise on GFR-α1 expression, dopamine regulation, glutamate transporter expression, and glutamate uptake in 18 month old male Brown-Norway/Fischer 344 F1 hybrid rats. GFR-α1 and TH expression significantly increased in SN but not striatum. This exercise regimen did not affect glutamate uptake or glutamate transporter expression in striatum. However, EAAC1 expression increased in SN. These results indicate that nigral GFR-α1 and EAAC1 expression increased in conjunction with increased nigral TH expression following short-term exercise. PMID:26599339

  2. Unexpected expression of intermediate filament protein genes in human oligodendroglioma cell lines

    SciTech Connect

    Kashima, Tsuyoshi; Vinters, H.V.; Campagnoni, A.T.

    1995-01-01

    From a human oligodendroglioma cell line cDNA library, ten intermediate filament (IF) cDNA clones were isolated. Five clones corresponded to vimentin mRNA, two corresponded to cytokeratin K7 mRNA, and two corresponded to cytokeratin K8 mRNA. One clone encoded a novel IF mRNA. The expression of these and other IF protein genes was examined in five cell lines derived from human oligodendroglioma, astrocytoma and neuroblastoma tumors. Vimentin mRNA and K18 mRNA were expressed in all the cell lines. The K7 and K8 genes were expressed only in the oligodendroglioma cell lines. Surprisingly, nestin mRNA was expressed in the astrocytoma lines and the neuroblastoma line, but was not expressed in the oligodendroglioma lines. These results indicate that oligodendroglioma cell lines express Types I and II cytokeratin genes. This pattern of IF gene expression was different from that of the astrocytoma and neuroblastoma cell lines, which expressed IF genes usually associated with the mature cell types or with differentiating fetal neural precursor cells, i.e. GFAP and neurofilament-L. The results also suggest that the oligodendroglioma cell lines are more epithelial in character and do not reflect the gene expression of mature oligodendrocytes. 46 refs., 8 figs., 2 tabs.

  3. Chemoresistance of CD133(+) colon cancer may be related with increased survivin expression.

    PubMed

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133(+) colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133(-) cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133(+) and siRNA-induced CD133(-) cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133(+) cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133(+) cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133(+) cells at 96 h after siRNA transfection. From this study, we conclude that CD133(+) cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133(+) colon cancer.

  4. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  5. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    PubMed

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  6. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  7. Characterization of keratin and cell cycle protein expression in cell lines from squamous intraepithelial lesions progressing towards a malignant phenotype.

    PubMed Central

    Hietanen, S.; Syrjänen, K.; Syrjänen, S.

    1998-01-01

    Two cell lines derived from vaginal intraepithelial neoplasias (VAINs) expressing human papillomavirus (HPV) 33 (VAIN I, UT-DEC-1) and 16 (VAIN II, UT-DEC-2) E6-E7 mRNA were studied in organotypic culture for their keratins and cell cycle regulatory proteins in relation to replicative aging. Early-passage UT-DEC-1 and UT-DEC-2 cells reproduced epithelial patterns consistent with VAIN. Cells from later passages resembled full-thickness intraepithelial neoplasia (UT-DEC-1) and microinvasive cancer (UT-DEC-2). The morphological changes were compatible with these cell lines' ability for anchorage-independent growth at later passages. Simple epithelial keratins were aberrantly expressed in both cell lines. K18 (absent in normal vaginal keratinocytes) and K17 expression increased in UT-DEC-1 and UT-DEC-2 cells at late passages. No marked differences in expression of p53 (wild type in both cell lines), mdm-2 or PCNA were detected in parallel with progression. The expression of p21WAF1/cip1 localized mostly to the upper half of the epithelium at early passage and was more intense in the HPV 16-positive UT-DEC-2 cell line expressing K10. In Northern blot analyses, the transcription pattern of the HPV 33 E6-E7 of the UT-DEC-1 cell line changed during later passages, whereas that of the HPV 16 E6-E7 of the UT-DEC-2 cell line remained unaltered. The present characterization of the phenotype of these cell lines derived from natural squamous intraepithelial lesions shows an association between simple epithelial-type keratin expression and progressive changes in growth and morphology, but fails to demonstrate consistent changes in the expression of cell cycle regulatory proteins studied in parallel with progression. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9514056

  8. Increased SNAIL expression and low syndecan levels are associated with high Gleason grade in prostate cancer

    PubMed Central

    POBLETE, CRISTIAN E.; FULLA, JUAN; GALLARDO, MARCELA; MUÑOZ, VALENTINA; CASTELLÓN, ENRIQUE A.; GALLEGOS, IVAN; CONTRERAS, HECTOR R.

    2014-01-01

    Prostate cancer (PC) is a leading male oncologic malignancy wideworld. During malignant transformation, normal epithelial cells undergo genetic and morphological changes known as epithelial-mesenchymal transition (EMT). Several regulatory genes and specific marker proteins are involved in PC EMT. Recently, syndecans have been associated with malignancy grade and Gleason score in PC. Considering that SNAIL is mainly a gene repressor increased in PC and that syndecan promoters have putative binding sites for this repressor, we propose that SNAIL might regulate syndecan expression during PC EMT. The aim of this study was to analyze immunochemically the expression of SNAIL, syndecans 1 and 2 and other EMT markers in a tissue microarray (TMA) of PC samples and PC cell lines. The TMAs included PC samples of different Gleason grade and benign prostatic hyperplasia (BPH) samples, as non-malignant controls. PC3 and LNCaP cell lines were used as models of PC representing different tumorigenic capacities. Semi-quantitative immunohistochemistry was performed on TMAs and fluorescence immunocytochemistry and western blot analysis were conducted on cell cultures. Results show that SNAIL exhibits increased expression in high Gleason specimens compared to low histological grade and BPH samples. Accordingly, PC3 cells show higher SNAIL expression levels compared to LNCaP cells. Conversely, syndecan 1, similarly to E-cadherin (a known marker of EMT), shows a decreased expression in high Gleason grades samples and PC3 cells. Interestingly, syndecan 2 shows no changes associated to histological grade. It is concluded that increased SNAIL levels in advanced PC are associated with low expression of syndecan 1. The mechanism by which SNAIL regulates the expression of syndecan 1 remains to be investigated. PMID:24424718

  9. Concurrent expression of heme oxygenase-1 and p53 in human retinal pigment epithelial cell line

    SciTech Connect

    Lee, Sang Yull; Jo, Hong Jae; Kim, Kang Mi; Song, Ju Dong; Chung, Hun Taeg; Park, Young Chul

    2008-01-25

    Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. Here, we investigated the effects of HO activity on the expression of p53 in the human retinal pigment epithelium (RPE) cell line ARPE-19. Cobalt protoporphyrin (CoPP) induced the expression of both HO-1 and p53 without significant toxicity to the cells. In addition, the blockage of HO activity with the iron chelator DFO or with HO-1 siRNA inhibited the CoPP-induced expression of p53. Similarly, zinc protoporphyrin (ZnPP), an inhibitor of HO, suppressed p53 expression in ARPE-19 cells, although ZnPP increased the level of HO-1 protein while inhibiting HO activity. Also, CoPP-induced p53 expression was not affected by the formation of reactive oxygen species (ROS). Based on these results, we conclude that HO activity is involved in the regulation of p53 expression in a ROS-independent mechanism, and also suggest that the expression of p53 in ARPE-19 cells is associated with heme metabolites such as biliverdin/bilirubin, carbon monoxide, and iron produced by the activity of HO.

  10. Expression Status of UBE2Q2 in Colorectal Primary Tumors and Cell Lines

    PubMed Central

    Shafiee, Sayed Mohammad; Seghatoleslam, Atefeh; Nikseresht, Mohsen; Hosseini, Seyed Vahid; Alizadeh-Naeeni, Mahvash; Safaei, Akbar; Owji, Ali Akbar

    2014-01-01

    Background: Activation of the ubiquitin-proteasome pathway in various malignancies, including colorectal cancer, is established. This pathway mediates the degradation of damaged proteins and regulates growth and stress response. The novel human gene, UBE2Q2, with a putative ubiquitin-conjugating enzyme activity, is reported to be overexpressed in some malignancies. We sought to investigate the expression levels of the UBE2Q2 gene in colorectal cell lines as well as in cancerous and normal tissues from patients with colorectal cancer. Methods: Levels of UBE2Q2 mRNA in cell lines were assessed by Real-Time PCR. Western blotting was employed to investigate the levels of the UBE2Q2 protein in 8 colorectal cell lines and 43 colorectal tumor samples. Results: Expression of UBE2Q2 was observed at the level of both mRNA and protein in colorectal cell lines, HT29/219, LS180, SW742, Caco2, HTC116, SW48, SW480, and SW1116. Increased levels of UBE2Q2 immunoreactivity was observed in the 65.11% (28 out of 43) of the colorectal carcinoma tissues when compared with their corresponding normal tissues. Difference between the mean intensities of UBE2Q2 bands from cancerous and normal tissues was statistically significant at P<0.001 (paired t test). Conclusion: We showed the expression pattern of the novel human gene, UBE2Q2, in 8 colorectal cell lines. Overexpression of UBE2Q2 in the majority of the colorectal carcinoma samples denotes that it may have implications for the pathogenesis of colorectal cancer. PMID:24753643

  11. Metabotropic glutamate receptor 5 in Down's syndrome hippocampus during development: increased expression in astrocytes.

    PubMed

    Iyer, A M; van Scheppingen, J; Milenkovic, I; Anink, J J; Lim, D; Genazzani, A A; Adle-Biassette, H; Kovacs, G G; Aronica, E

    2014-01-01

    Metabotropic glutamate receptor 5 (mGluR5) is highly expressed throughout the forebrain and hippocampus. Several lines of evidence support the role of this receptor in brain development and developmental disorders, as well as in neurodegenerative disorders like Alzheimer's disease (AD). In the present study, the expression pattern of mGluR5 was investigated by immunocytochemistry in the developing hippocampus from patients with Down's syndrome (DS) and in adults with DS and AD. mGluR5 was expressed in developing human hippocampus from the earliest stages tested (9 gestational weeks), with strong expression in the ventricular/subventricular zones. We observed a consistent similar temporal and spatial neuronal pattern of expression in DS hippocampus. However, in DS we detected increased prenatal mGluR5 expression in white matter astrocytes, which persisted postnatally. In addition, in adult DS patients with widespread ADassociated neurodegeneration (DS-AD) increased mGluR5 expression was detected in astrocytes around amyloid plaque. In vitro data confirm the existence of a modulatory crosstalk between amyloid-β and mGluR5 in human astrocytes. These findings demonstrate a developmental regulation of mGluR5 in human hippocampus and suggest a role for this receptor in astrocytes during early development in DS hippocampus, as well as a potential contribution to the pathogenesis of ADassociated pathology.

  12. Gene expression profiling of hematologic malignant cell lines resistant to oncolytic virus treatment

    PubMed Central

    Lee, Nam Hee; Kim, Mikyung; Oh, Sung Yong; Kim, Seong-Geun; Kwon, Hyuk-Chan; Hwang, Tae-Ho

    2017-01-01

    Pexa-Vec (pexastimogene devacirpvec; JX-594) has emerged as an attractive tool in oncolytic virotherapy. Pexa-Vec demonstrates oncolytic and immunotherapeutic mechanisms of action. But the determinants of resistance to Pexa-Vec are mostly unknown. We treated hemoatologic malignant cells with Pexa-Vec and examined the gene-expression pattern of sensitive and resistant cells. Human myeloid malignant cell lines (RPMI-8226, IM-9, K562, THP-1) and lymphoid cancer cell lines (MOLT4, CCRF-CEM, Ramos, U937) were treated with Pexa-Vec. Pexa-Vec was cytotoxic on myeloid cell lines in a dose-dependent manner, and fluorescent imaging and qPCR revealed that Pexa-Vec expression was low in RAMOS than IM-9 after 24 hrs and 48 hrs of infection. Gene expression profiles between two groups were analyzed by microarray. Genes with at least 2-fold increase or decrease in their expression were identified. A total of 660 genes were up-regulated and 776 genes were down-regulated in lymphoid cancer cell lines. The up- and down-regulated genes were categorized into 319 functional gene clusters. We identified the top 10 up-regulated genes in lymphoid cells. Among them three human genes (LEF1, STAMBPL1, and SLFN11) strongly correlated with viral replication. Up-regulation of PVRIG, LPP, CECR1, Arhgef6, IRX3, IGFBP2, CD1d were related to resistant to Pexa-Vec. In conclusion, lymphoid malignant cells are resistant to Pexa-Vec and displayed up-regulated genes associated with resistance to oncolytic viral therapy. These data provide potential targets to overcome resistance, and suggest that molecular assays may be useful in selecting patients for further clinical trials with Pexa-Vec. PMID:27901484

  13. Increased expression of differentiation markers can accompany laminin-induced attachment of small cell lung cancer cells.

    PubMed Central

    Giaccone, G.; Broers, J.; Jensen, S.; Fridman, R. I.; Linnoila, R.; Gazdar, A. F.

    1992-01-01

    We investigated the interaction between human lung cancer cells, laminin, and several differentiating agents. When grown on laminin coated substrate eight out of 11 small cell lung cancer (SCLC) cell lines exhibited attachment to laminin and three had extensive outgrowth of long neurite-like processes. Of seven non-small cell lung cancer cell lines, selected for their in vitro anchorage-independent growth, attachment was observed in only three cell lines, and process formation was far less extensive than in SCLC cell lines. Among several differentiating agents, only dcAMP, which alone induced attachment and some process formation, increased laminin-mediated attachment and process formation of two SCLC cell lines, NCI-N417 a variant cell line, and NCI-H345, a classic cell line. The expression of several neuroendocrine and neuronal markers was investigated in these two SCLC cell lines. The expression of the light subunit of neurofilaments increased in NCI-N417 within 3 to 4 days of seeding, while NCI-H345 exhibited approximately 5 fold increase in expression of the GRP gene and a 3 fold increase expression of the beta-actin gene. The expression of a number of other neuroendocrine and neuronal markers did not change following growth on laminin. The doubling times remained unchanged independent of the presence of and attachment to laminin while topoisomerase II gene expression levels in NCI-N417 cells decreased approximately 5 fold when cells were growing on laminin. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:1325826

  14. Complexity of expression of the intermediate filaments of six new human ovarian carcinoma cell lines: new expression of cytokeratin 20.

    PubMed Central

    Yanagibashi, T.; Gorai, I.; Nakazawa, T.; Miyagi, E.; Hirahara, F.; Kitamura, H.; Minaguchi, H.

    1997-01-01

    Six permanent human ovarian carcinoma cell lines (OVISE, OVTOKO, OVMANA and OVSAYO from clear cell adenocarcinoma, and OVSAHO and OVKATE from serous papillary adenocarcinoma) were established from solid tumours. The cell lines have been in culture for 5-8 years, the passage number varying from 62 to 246. Immunohistochemical analysis has shown that five of the six cell lines express at least six cytokeratin (CK) polypeptides. OVISE and OVSAYO expressed CKs 6, 7, 8, 18, 19 and 15 and/or 16. OVTOKO was positive for CKs 7, 8, 18, 19 and 15 and/or 16. OVSAHO expressed CKs 6, 7, 8, 14, 18, 19 and 15 and/or 16. OVMANA expressed CKs 6, 7, 8, 18, 19, 20 and 15 and/or 16. OVKATE expressed CKs 6, 7, 8, 13, 17, 18, 19, 20 and 15 and/or 16. The expression of CK7, additional expression of vimentin, and clinical and histopathological findings enabled us to confirm that six cell lines had been established from primary ovarian cancers. Two of the six cell lines were positive for CK20, although CK20 was not expressed in the original tumours. The heterotransplanted tumours produced by CK20-positive cells also expressed CK20. This is the first report of ovarian carcinoma cell lines that express CK20 irrespective of their histological type. CK20 has been found in all colon carcinoma cell lines, but only in the mucinous type of ovarian tumours. These new ovarian carcinoma cell lines will therefore provide a relevant experimental system for elucidating the regulatory control mechanisms of intermediate filament expression. Images Figure 1 Figure 2 Figure 3 PMID:9328139

  15. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish.

    PubMed

    Horstick, Eric J; Jordan, Diana C; Bergeron, Sadie A; Tabor, Kathryn M; Serpe, Mihaela; Feldman, Benjamin; Burgess, Harold A

    2015-04-20

    Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3' untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.

  16. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines.

    PubMed Central

    Nørgaard, P.; Spang-Thomsen, M.; Poulsen, H. S.

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II mRNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF-beta receptor proteins beta-glycan mRNA was rapidly down-regulated and this effect was sustained throughout the 24 h observation period. RI and RII mRNAs were slightly increased 24 h after treatment. In one cell line sensitive to growth inhibition by TGF-beta, 1 but lacking beta-glycan expression, and one cell line expressing only beta-glycan and thus TGF-beta 1 -resistant, no autoregulation of mRNA of either TGF-beta receptor was demonstrated. The results suggest that TGF-beta 1 regulates the expression of its receptors, in particular beta-glycan, and that this effect is dependent on co-expression of beta-glycan, RI and RII. Images Figure 1 Figure 2 Figure 4 PMID:8624260

  17. Zinc transporter mRNA expression in the RWPE-1 human prostate epithelial cell line.

    PubMed

    Albrecht, Amy L; Somji, Seema; Sens, Mary Ann; Sens, Donald A; Garrett, Scott H

    2008-08-01

    The human prostate gland undergoes a prominent alteration in Zn+2 homeostasis during the development of prostate cancer. The goal of the present study was to determine if the immortalized human prostate cell line (RWPE-1) could serve as a model system to study the role of zinc in prostate cancer. The study examined the expression of mRNA for 19 members of the zinc transporter gene family in normal prostate tissue, the prostate RWPE-1 cell line, and the LNCaP, DU-145 and PC-3 prostate cancer cell lines. The study demonstrated that the expression of the 19 zinc transporters was similar between the RWPE-1 cell line and the in situ prostate gland. Of the 19 zinc transporters, only 5 had levels that were different between the RWPE-1 cells and the tissue samples; all five being increased (ZnT-6, Zip-1, Zip-3A, Zip-10, and Zip-14). The response of the 19 transporters was also determined when the cell lines were exposed to 75 microM Zn+2 for 24 h. It was shown for the RWPE-1 cells that only 5 transporters responded to Zn+2 with mRNA for ZnT-1 and ZnT-2 being increased while mRNA for ZnT-7, Zip-7 and Zip-10 transporters were decreased. It was shown for the LNCaP, DU-145 and PC-3 cells that Zn+2 had no effect on the mRNA levels of all 19 transporters except for an induction of ZnT-1 in PC-3 cells. Overall, the study suggests that the RWPE-1 cells could be a valuable model for the study of the zinc transporter gene family in the prostate.

  18. Development of Species-Specific Ah Receptor-Responsive Third Generation CALUX Cell Lines with Increased Sensitivity and Responsiveness

    PubMed Central

    Brennan, Jennifer C.; He, Guochun; Tsutsumi, Tomoaki; Zhao, Jing; Wirth, Ed; Fulton, Michael H.; Denison, Michael S.

    2016-01-01

    The Ah receptor (AhR)-responsive CALUX (chemically-activated luciferase expression) cell bioassay is commonly used for rapid screening of samples for the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), dioxin-like compounds, and AhR agonists/antagonists. By increasing the number of AhR DNA recognition sites (dioxin responsive elements), we previously generated a novel third generation (G3) recombinant AhR-responsive mouse CALUX cell line (H1L7.5c3) with significantly enhanced sensitivity and response to DLCs compared to existing AhR-CALUX cell bioassays. However, the elevated background luciferase activity of these cells and the absence of comparable G3 cell lines derived from other species have limited their utility for screening purposes. Here, we describe the development and characterization of species-specific G3 recombinant AhR-responsive CALUX cell lines (rat, human, and guinea pig) that exhibit significantly improved sensitivity and dramatically increased TCDD induction response. The low background luciferase activity, low minimal detection limit (0.1 pM TCDD) and enhanced induction response of the rat G3 cell line (H4L7.5c2) over the H1L7.5c3 mouse G3 cells, identifies them as a more optimal cell line for screening purposes. The utility of the new G3 CALUX cell lines were demonstrated by screening sediment extracts and a small chemical compound library for the presence of AhR agonists. The increased sensitivity and response of these new G3 CALUX cell lines will facilitate species-specific analysis of DLCs and AhR agonists in samples with low levels of contamination and/or in small sample volumes. PMID:26366531

  19. Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine.

    PubMed

    Fang, Jia-Long; Han, Tao; Wu, Qiangen; Beland, Frederick A; Chang, Ching-Wei; Guo, Lei; Fuscoe, James C

    2014-03-01

    Zidovudine (3'-azido-3'-deoxythymidine; AZT) is the most widely used nucleoside reverse transcriptase inhibitor for the treatment of AIDS patients and prevention of mother-to-child transmission of HIV-1. Previously, we demonstrated that AZT had significantly greater growth inhibitory effects upon the human liver carcinoma cell line HepG2 as compared to the immortalized human liver cell line THLE2. We have now used gene expression profiling to determine the molecular pathways associated with toxicity in both cell lines. HepG2 cells were incubated with 0, 2, 20, or 100 μM AZT for 2 weeks; THLE2 cells were treated with 0, 50, 500, or 2,500 μM AZT, concentrations that were equi-toxic to those used in the HepG2 cells. After the treatment, total RNA was isolated and subjected to microarray analysis. Global analysis of gene expression, with a false discovery rate ≤0.01 and a fold change ≥1.5, indicated that 6- to 70-fold more genes were differentially expressed in a significant concentration-dependent manner in HepG2 cells when compared to THLE2 cells. Comparative analysis indicated that 7 % of these genes were common to both cell lines. Among the common differentially expressed genes, 70 % changed in the same direction, most of which were associated with cell death and survival, cell cycle, cell growth and proliferation, and DNA replication, recombination, and repair. As determined by the uptake of [methyl-(3)H]AZT, the intracellular levels of total AZT were approximately twofold higher in THLE2 cells than in HepG2 cells. The expression of thymidine kinase 1 (TK1) and UDP-glucuronosyltransferase 2B7 (UGT2B7) genes that regulate the metabolic activation and deactivation of AZT, respectively, was increased in HepG2 cells but decreased in THLE2 cells after treatment with AZT. This differential response in AZT metabolism was confirmed by real-time PCR, western blotting, and/or enzymatic assays. These data indicate that molecular pathways involved with cell death and

  20. Enhanced membrane protein expression by engineering increased intracellular membrane production

    PubMed Central

    2013-01-01

    Background Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved. Results We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the ∆pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the ∆pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER. Conclusions We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol- and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of

  1. Thrombin Increases Expression of Fibronectin Antigen on the Platelet Surface

    NASA Astrophysics Data System (ADS)

    Ginsberg, Mark H.; Painter, Richard G.; Forsyth, Jane; Birdwell, Charles; Plow, Edward F.

    1980-02-01

    Fibronectins (fn) are adhesive glycoproteins which bind to collagen and to fibrin and appear to be important in cellular adhesion to other cells or surfaces. Fn-related antigen is present in human platelets, suggesting a possible role for fn in the adhesive properties of platelets. We have studied the localization of fn in resting and thrombin-stimulated platelets by immunofluorescence and quantitative binding of radiolabeled antibody. In resting fixed platelets, variable light surface staining for fn was observed. When these cells were made permeable to antibody with detergent, staining for fn was markedly enhanced and was present in a punctate distribution, suggesting intracellular localization. Stimulation with thrombin, which is associated with increased platelet adhesiveness, resulted in increased staining for fn antigen on intact platelets. These stimulated cells did not leak 51Cr nor did they stain for F-actin, thus documenting that the increased fn staining was not due to loss of plasma membrane integrity. The thrombin-induced increase in accessible platelet fn antigen was confirmed by quantitative antibody binding studies in which thrombin-stimulated platelets specifically bound 15 times as much radiolabeled F(ab')2 anti-fn as did resting cells. Thus, thrombin stimulation results in increased expression of fn antigen on the platelet surface. Here it may participate in interactions with fibrin, connective tissue, or other cells.

  2. Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line.

    PubMed

    Januchowski, Radosław; Zawierucha, Piotr; Ruciński, Marcin; Nowicki, Michał; Zabel, Maciej

    2014-01-01

    Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly--over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.

  3. Human MiR-544a Modulates SELK Expression in Hepatocarcinoma Cell Lines

    PubMed Central

    Potenza, Nicoletta; Castiello, Filomena; Panella, Marta; Colonna, Giovanni; Ciliberto, Gennaro; Russo, Aniello; Costantini, Susan

    2016-01-01

    Hepatocellular carcinoma (HCC) is a multi-factorial cancer with a very poor prognosis; therefore, there are several investigations aimed at the comprehension of the molecular mechanisms leading to development and progression of HCC and at the definition of new therapeutic strategies. We have recently evaluated the expression of selenoproteins in HCC cell lines in comparison with normal hepatocytes. Recent results have shown that some of them are down- and others up-regulated, including the selenoprotein K (SELK), whose expression was also induced by sodium selenite treatment on cells. However, so far very few studies have been dedicated to a possible effect of microRNAs on the expression of selenoproteins and their implication in HCC. In this study, the analysis of SELK 3’UTR by bioinformatics tools led to the identification of eight sites potentially targeted by human microRNAs. They were then subjected to a validation test based on luciferase reporter constructs transfected in HCC cell lines. In this functional screening, miR-544a was able to interact with SELK 3’UTR suppressing the reporter activity. Transfection of a miR-544a mimic or inhibitor was then shown to decrease or increase, respectively, the translation of the endogenous SELK mRNA. Intriguingly, miR-544a expression was found to be modulated by selenium treatment, suggesting a possible role in SELK induction by selenium. PMID:27275761

  4. Zinc pyrithione induces apoptosis and increases expression of Bim.

    PubMed

    Mann, J J; Fraker, P J

    2005-03-01

    We demonstrate herein that zinc pyrithione can induce apoptosis at nanomolar concentrations. Zinc pyrithione was a potent inducer of cell death causing greater than 40-60% apoptosis among murine thymocytes, murine splenic lymphocytes and human Ramos B and human Jurkat T cells. Conversely, the addition of a zinc chelator protected thymocytes against zinc pyrithione induced apoptosis indicating these responses were specific for zinc. Zinc-induced apoptosis was dependent on transcription and translation which suggested possible regulation by a proapoptotic protein. Indeed, zinc induced a 1.9 and 3.4 fold increase respectively in expression of the BimEL and BimL isoforms and also stimulated production of the most potent isoform, BimS. This increase in Bim isoform expression was dependent on transcription being blocked by treatment with actinomycin D. Overexpression of Bcl-2 or Bcl-xL provided substantial protection of Ramos B and Jurkat T cells against zinc-induced apoptosis. Zinc also activated the caspase cascade demonstrated by cleavage of caspase 9. Addition of specific inhibitors for caspase 9 and caspase 3 also blocked zinc-induced apoptosis. The data herein adds to the growing evidence that free or unbound zinc could be harmful to cells of the immune system.

  5. Hippocampal GR expression is increased in elderly depressed females.

    PubMed

    Wang, Q; Joels, M; Swaab, D F; Lucassen, P J

    2012-01-01

    Hyperactivity of the Hypthalamus-Pituitary-Adrenal (HPA)-axis is common in major depression and evident from e.g., a frequently exaggerated response to combined application of dexamethasone and CRH in this disorder. HPA-axis activity and hence the secretion of glucocorticoids (GC), the endpoint of the HPA-axis, depends to some extent on GC binding to glucocorticoid receptors (GR) that are abundantly expressed in the hippocampus. To assess whether differences in hippocampal GR expression occur in association with depression, we investigated GR-alpha protein immunoreactivity (ir) in postmortem hippocampal tissue of an elderly cohort of 9 well-characterized depressed patients and 9 control subjects that were pair-wise matched for age, sex, CSF-pH and postmortem delay. Abundant nuclear GR-ir was observed in neurons of the hippocampal Ammon's horn (CA) and dentate gyrus (DG) subregions. GR-ir in the DG correlated positively with age in the depressed but not the control group. Although no significant differences were found in GR-ir between the depressed and control groups, a significant increase in GR-ir was present in depressed females compared to depressed males. Whether this sex difference in hippocampal GR-ir in depression relates to the increased incidence of depression in females awaits further study. This article is part of a Special Issue entitled 'Anxiety and Depression'.

  6. Increased caveolin-1 expression in Alzheimer's disease brain.

    PubMed

    Gaudreault, Sophie B; Dea, Doris; Poirier, Judes

    2004-07-01

    Increasing evidence suggests that cholesterol plays a central role in the pathophysiology of Alzheimer's disease (AD). Caveolin is a cholesterol-binding membrane protein involved in cellular cholesterol transport. We investigated the changes in the protein amount of hippocampal caveolin of autopsy-confirmed AD and aged-matched control subjects. Our results demonstrate that caveolin protein levels in the hippocampus and caveolin mRNA in the frontal cortex are up-regulated in AD by approximately two-fold, compared to control brains. These results suggest a relationship between caveolin-1 expression levels and a dysregulation of cholesterol homeostasis at the plasma membrane of brain cells. In support of this hypothesis, a significant increase in caveolin protein levels has also been observed in hippocampal tissue from ApoE-deficient (knockout) and aged wild-type mice; two situations associated with modifications of transbilayer distribution of cholesterol in brain synaptic plasma membranes. These results indicate that caveolin over-expression is linked to alterations of cholesterol distribution in the plasma membrane of brain cells and are consistent with the notion of a deterioration of cholesterol homeostasis in AD.

  7. Loss of RUNX3 increases osteopontin expression and promotes cell migration in gastric cancer.

    PubMed

    Cheng, Hui-Chuan; Liu, Yu-Peng; Shan, Yan-Shen; Huang, Chi-Ying; Lin, Forn-Chia; Lin, Li-Ching; Lee, Ling; Tsai, Chen-Hsun; Hsiao, Michael; Lu, Pei-Jung

    2013-11-01

    Loss of RUNX3 expression is frequently observed in gastric cancer and is highly associated with lymph node metastasis and poor prognosis. However, the underlying molecular mechanisms of gastric cancer remain unknown. In this study, we found that the protein levels of RUNX3 and osteopontin (OPN) are inversely correlated in gastric cancer clinical specimens and cell lines. Furthermore, similar inverse trends between RUNX3 and OPN messenger RNA (mRNA) expression were demonstrated in six out of seven normal-tumor-paired gastric cancer clinical specimens. In addition, low RUNX3 and high OPN expression were associated with poor prognosis in gastric cancer patients. Ectopic expression of green fluorescent protein-RUNX3 reduced OPN protein and mRNA expression in the AGS and SCM-1 gastric cancer cell lines. In contrast, knockdown of RUNX3 in GES-1, a normal gastric epithelial cell line, increased OPN expression. Although three RUNX3-binding sequences have been identified in the OPN promoter region, direct binding of RUNX3 to the specific binding site, -142 to -137bp, was demonstrated by chromatin immunoprecipitation assay. The binding of RUNX3 to the OPN promoter significantly decreased OPN promoter activity. The knockdown of OPN or overexpression of RUNX3 inhibited cell migration in AGS and SCM-1 cells; however, the coexpression of RUNX3 and OPN reversed the RUNX3-reduced migration ability in AGS and SCM-1 cells. In contrast, the knockdown of both RUNX3 and OPN inhibited RUNX3-knockdown-induced migration of GES-1 cells. Together, our data demonstrated that RUNX3 is a transcriptional repressor of OPN and that loss of RUNX3 upregulates OPN, which promotes migration in gastric cancer cells.

  8. Chemoresistance of CD133{sup +} colon cancer may be related with increased survivin expression

    SciTech Connect

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133{sup +} colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133{sup −} cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133{sup +} and siRNA-induced CD133{sup −} cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133{sup +} cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133{sup +} cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133{sup +} cells at 96 h after siRNA transfection. From this study, we conclude that CD133{sup +} cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133{sup +} colon cancer. - Highlights: • We evaluate the role of CD133 in chemoresistance of colon cancer. • We compared the chemoresistance of CD133{sup +} cells and siRNA-induced CD133{sup −} cells. • CD133 had little to no effect on MDR1, ABCG2 and AKT1 expression. • Survivin expression and chemoresistance were increased in CD133{sup +} colon cancer cells.

  9. Characterization of MTAP Gene Expression in Breast Cancer Patients and Cell Lines.

    PubMed

    de Oliveira, Sarah Franco Vieira; Ganzinelli, Monica; Chilà, Rosaria; Serino, Leandro; Maciel, Marcos Euzébio; Urban, Cícero de Andrade; de Lima, Rubens Silveira; Cavalli, Iglenir João; Generali, Daniele; Broggini, Massimo; Damia, Giovanna; Ribeiro, Enilze Maria de Souza Fonseca

    2016-01-01

    MTAP is a ubiquitously expressed gene important for adenine and methionine salvage. The gene is located at 9p21, a chromosome region often deleted in breast carcinomas, similar to CDKN2A, a recognized tumor suppressor gene. Several research groups have shown that MTAP acts as a tumor suppressor, and some therapeutic approaches were proposed based on a tumors´ MTAP status. We analyzed MTAP and CDKN2A gene (RT-qPCR) and protein (western-blotting) expression in seven breast cancer cell lines and evaluated their promoter methylation patterns to better characterize the contribution of these genes to breast cancer. Cytotoxicity assays with inhibitors of de novo adenine synthesis (5-FU, AZA and MTX) after MTAP gene knockdown showed an increased sensitivity, mainly to 5-FU. MTAP expression was also evaluated in two groups of samples from breast cancer patients, fresh tumors and paired normal breast tissue, and from formalin-fixed paraffin embedded (FFPE) core breast cancer samples diagnosed as Luminal-A tumors and triple negative breast tumors (TNBC). The difference of MTAP expression between fresh tumors and normal tissues was not statistically significant. However, MTAP expression was significantly higher in Luminal-A breast tumors than in TNBC, suggesting the lack of expression in more aggressive breast tumors and the possibility of using the new approaches based on MTAP status in TNBC.

  10. [Expression of the apomictic potential and selection for apomixis in sorghum line AS-1a].

    PubMed

    El'konin, L A; Beliaeva, E V; Fadeeva, I Iu

    2012-01-01

    Expression of elements of apomixis was studied for ten seasons in sorghum line AS-la and its backcross hybrids on the 9E and A3 sterile cytoplasms. Cytoembryological analysis revealed aposporous embryo sacks (apo-ESs), their initial cells, and, rare, parthenogeneic proembryos in ovules of line AS-la and its BC2 and BC3 hybrids on the 9E cytoplasm. The A3 sterile cytoplasm suppressed the development of parthenogenetic proembryos, but did not affect the apo-ES formation. The frequency of apomictic elements increased in seasons with high daily temperatures and total precipitation deficiency in the period when the ovule and megagametophyte developed (r = -0.805, P < 0.01). Selection was used to isolate the families where the frequency of ovules with apo-ESs was 28% and the frequency of parthenogenetic proembryos was 14%. Emasculated panicles of line AS-la were pollinated with pollen of line Volzhskoe-4v, which carried the Rs marker dominant gene, responsible for the anthocyan color of coleoptyles and leaves in seedlings. Plants of the maternal type were found in the progenies of these crosses at a frequency of 1.4-28.1%. The genetic structure of the endosperm in grains with maternal-type seedlings was inferred from the electrophoretic patterns of storage proteins (kafirins). The kafirin spectra of grains producing maternal-type seedlings was similar to the spectrum of line AS-la and differed from the spectra of grains producing hybrid seedlings, indicating that the endosperm developed independently when apomictic grains formed in line AS-1a. The results showed that lines with facultative apomixis can be constructed in functionally diploid plants.

  11. Increased Growth of a Newly Established Mouse Epithelial Cell Line Transformed with HPV-16 E7 in Diabetic Mice

    PubMed Central

    He, Lan; Law, Priscilla T. Y.; Boon, Siaw Shi; Zhang, Chuqing; Ho, Wendy C. S.; Banks, Lawrence; Wong, C. K.; Chan, Juliana C. N.; Chan, Paul K. S.

    2016-01-01

    Epidemiological evidence supports that infection with high-risk types of human papillomavirus (HPV) can interact with host and environmental risk factors to contribute to the development of cervical, oropharyngeal, and other anogenital cancers. In this study, we established a mouse epithelial cancer cell line, designated as Chinese University Papillomavirus-1 (CUP-1), from C57BL/KsJ mice through persistent expression of HPV-16 E7 oncogene. After continuous culturing of up to 200 days with over 60 passages, we showed that CUP-1 became an immortalized and transformed epithelial cell line with continuous E7 expression and persistent reduction of retinoblastoma protein (a known target of E7). This model allowed in-vivo study of interaction between HPV and co-factors of tumorigenesis in syngeneic mice. Diabetes has been shown to increase HPV pathogenicity in different pathological context. Herein, with this newly-established cell line, we uncovered that diabetes promoted CUP-1 xenograft growth in syngeneic db/db mice. In sum, we successfully established a HPV-16 E7 transformed mouse epithelial cell line, which allowed subsequent studies of co-factors in multistep HPV carcinogenesis in an immunocompetent host. More importantly, this study is the very first to demonstrate the promoting effect of diabetes on HPV-associated carcinogenesis in vivo, implicating the importance of cancer surveillance in diabetic environment. PMID:27749912

  12. Increased Growth of a Newly Established Mouse Epithelial Cell Line Transformed with HPV-16 E7 in Diabetic Mice.

    PubMed

    He, Lan; Law, Priscilla T Y; Boon, Siaw Shi; Zhang, Chuqing; Ho, Wendy C S; Banks, Lawrence; Wong, C K; Chan, Juliana C N; Chan, Paul K S

    2016-01-01

    Epidemiological evidence supports that infection with high-risk types of human papillomavirus (HPV) can interact with host and environmental risk factors to contribute to the development of cervical, oropharyngeal, and other anogenital cancers. In this study, we established a mouse epithelial cancer cell line, designated as Chinese University Papillomavirus-1 (CUP-1), from C57BL/KsJ mice through persistent expression of HPV-16 E7 oncogene. After continuous culturing of up to 200 days with over 60 passages, we showed that CUP-1 became an immortalized and transformed epithelial cell line with continuous E7 expression and persistent reduction of retinoblastoma protein (a known target of E7). This model allowed in-vivo study of interaction between HPV and co-factors of tumorigenesis in syngeneic mice. Diabetes has been shown to increase HPV pathogenicity in different pathological context. Herein, with this newly-established cell line, we uncovered that diabetes promoted CUP-1 xenograft growth in syngeneic db/db mice. In sum, we successfully established a HPV-16 E7 transformed mouse epithelial cell line, which allowed subsequent studies of co-factors in multistep HPV carcinogenesis in an immunocompetent host. More importantly, this study is the very first to demonstrate the promoting effect of diabetes on HPV-associated carcinogenesis in vivo, implicating the importance of cancer surveillance in diabetic environment.

  13. Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI).

    PubMed

    Sandberg, Rickard; Ernberg, Ingemar

    2005-02-08

    The gene expression profiles of 60 cell lines, derived from nine different tissues, were compared with their corresponding in vivo tumors and tissues. Cell lines expressed few tissue-specific (2%) or tumor-specific (5%) genes when analyzed group-wise. A tissue similarity index (TSI) was designed based upon singular value decomposition that measured in vivo tumor characteristic gene expression in each cell line independently. Only 34 of the 60 cell lines received the highest TSI toward its tumor of origin. In addition, we identified the most appropriate cell lines to be used as model systems for different in vivo tumors. Seven cell lines were identified as being of another origin than the originally presumed one. The proposed TSI will likely become an important tool for the selection of the most appropriate cell lines in pharmaceutical screening programs and experimental and biomedical research.

  14. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.

    PubMed

    Abid, Nabeela; Khatoon, Asia; Maqbool, Asma; Irfan, Muhammad; Bashir, Aftab; Asif, Irsa; Shahid, Muhammad; Saeed, Asma; Brinch-Pedersen, Henrik; Malik, Kauser A

    2017-02-01

    Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.

  15. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    PubMed Central

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study , we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA – mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. PMID:26780400

  16. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    SciTech Connect

    Nemoto, Kiyomitsu; Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki; Fujiwara, Hironori; Yokosuka, Akihito; Mimaki, Yoshihiro; Ohizumi, Yasushi; Degawa, Masakuni

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  17. Weight gain increases human aromatase expression in mammary gland.

    PubMed

    Chen, Dong; Zhao, Hong; Coon, John S; Ono, Masanori; Pearson, Elizabeth K; Bulun, Serdar E

    2012-05-15

    Adulthood weight gain predicts estrogen receptor-positive breast cancer. Because local estrogen excess in the breast likely contributes to cancer development, and aromatase is the key enzyme in estrogen biosynthesis, we investigated the role of local aromatase expression in weight gain-associated breast cancer risk in a humanized aromatase (Arom(hum)) mouse model containing the coding region and the 5'-regulatory region of the human aromatase gene. Compared with littermates on normal chow, female Arom(hum) mice on a high fat diet gained more weight, and had a larger mammary gland mass with elevated total human aromatase mRNA levels via promoters I.4 and II associated with increased levels of their regulators TNFα and C/EBPβ. There was no difference in total human aromatase mRNA levels in gonadal white adipose tissue. Our data suggest that diet-induced weight gain preferentially stimulates local aromatase expression in the breast, which may lead to local estrogen excess and breast cancer risk.

  18. Increased expression of nestin in human pterygial epithelium

    PubMed Central

    Wen, Dan; Wang, Hua; Heng, Boon Chin; Liu, Hua

    2013-01-01

    AIM To investigate the distribution of nestin-positive cells in pterygium, as well as the relationship between nestin-positive cells and proliferative cells in the pathogenesis of pterygium. METHODS Nine pterygium specimens and 5 normal conjunctiva specimens were investigated. All explanted specimens were immediately immersed in 5-Ethynyl-2′-deoxyuridine, and were subjected to hematoxylin and eosin staining, as well as immunostaining to detect nestin. RESULTS Small sub-populations of nestin-expressing cells in both normal and pterygial conjunctiva epithelium were found. These were located at the superficial layer of the epithelium, and were significantly increased (P=0.007) and spread out in the pterygial conjunctiva epithelium, even though these cells were mitotically quiescent. CONCLUSION In pterygium, more nestin-positive cells were present at the superficial layer of the epithelium. With growing scientific evidence that nestin plays an important role in defining various specialized cell types, such as stem cells, cancer cells and angiogenic cells, further investigations on the roles of nestin-expressing cells in pterygium may help to uncover the mechanisms of initiation, development and the prognosis of this disease. PMID:23826515

  19. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    PubMed

    Ihnatovych, Ivanna; Sielski, Neil L; Hofmann, Wilma A

    2014-01-01

    Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C). Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP) model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate-) cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN) lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  20. BACE2 expression increases in human neurodegenerative disease.

    PubMed

    Holler, Christopher J; Webb, Robin L; Laux, Ashley L; Beckett, Tina L; Niedowicz, Dana M; Ahmed, Rachel R; Liu, Yinxing; Simmons, Christopher R; Dowling, Amy L S; Spinelli, Angela; Khurgel, Moshe; Estus, Steven; Head, Elizabeth; Hersh, Louis B; Murphy, M Paul

    2012-01-01

    β-Secretase, the rate-limiting enzymatic activity in the production of the amyloid-β (Aβ) peptide, is a major target of Alzheimer's disease (AD) therapeutics. There are two forms of the enzyme: β-site Aβ precursor protein cleaving enzyme (BACE) 1 and BACE2. Although BACE1 increases in late-stage AD, little is known about BACE2. We conducted a detailed examination of BACE2 in patients with preclinical to late-stage AD, including amnestic mild cognitive impairment, and age-matched controls, cases of frontotemporal dementia, and Down's syndrome. BACE2 protein and enzymatic activity increased as early as preclinical AD and were found in neurons and astrocytes. Although the levels of total BACE2 mRNA were unchanged, the mRNA for BACE2 splice form C (missing exon 7) increased in parallel with BACE2 protein and activity. BACE1 and BACE2 were strongly correlated with each other at all levels, suggesting that their regulatory mechanisms may be largely shared. BACE2 was also elevated in frontotemporal dementia but not in Down's syndrome, even in patients with substantial Aβ deposition. Thus, expression of both forms of β-secretase are linked and may play a combined role in human neurologic disease. A better understanding of the normal functions of BACE1 and BACE2, and how these change in different disease states, is essential for the future development of AD therapeutics.

  1. Vincristine-resistant erythroleukemia cell line has marked increased sensitivity to hexamethylenebisacetamide-induced differentiation.

    PubMed Central

    Melloni, E; Pontremoli, S; Damiani, G; Viotti, P; Weich, N; Rifkind, R A; Marks, P A

    1988-01-01

    Hexamethylenebisacetamide (HMBA)-induced murine erythroleukemia (MEL) differentiation is a multistep process. Commitment is the capacity to express terminal cell division and characteristics of the differentiated phenotype even after the cells are removed from culture with inducer. Culture of MEL cell line 745A.DS19 (DS19) with HMBA causes commitment to terminal differentiation after a latent period of about 10-12 hr. Previous studies have shown that during this latent period, HMBA causes a number of metabolic changes, including modulation in expression of certain protooncogenes. We now report the development of a MEL cell line (designated V3.17) derived from DS19 that is resistant to vincristine and is (i) markedly more sensitive to HMBA, (ii) induced to commitment without a detectable latent period, and (iii) resistant to the effects of phorbol ester and dexamethasone, which are potent inhibitors of HMBA-mediated DS19 differentiation. We suggest that this V3.17 MEL cell line may express a factor that circumvents HMBA-mediated early events, which prepare the cells for commitment to terminal differentiation. Images PMID:3163801

  2. Trametes robiniophila may induce apoptosis and inhibit MMPs expression in the human gastric carcinoma cell line MKN-45

    PubMed Central

    Ji, Xuening; Pan, Chunxia; Li, Xiaowen; Gao, Yunbin; Xia, Lu; Quan, Xiulian; Lv, Jinyan; Wang, Ruoyu

    2017-01-01

    Gastric carcinoma (GC) is one of the most common malignant tumors and is mainly treated by invasive surgeries. The present study aimed to investigate the treatment potential of Trametes robiniophila on GC using the human GC cell line MKN-45. Cells were incubated with Trametes robiniophila at a concentration of 0, 5 and 10 mg/ml for 24 h. The apoptosis of the cell line was examined with acridine orange/ethidium bromide staining and flow cytometry. The expression of B-cell lymphoma (Bcl)-2, Fas, caspase-3, matrix metalloproteinase (MMP)-2 and MMP-9 was analyzed using reverse transcription-polymerase chain reaction and western blotting. With increasing drug concentrations, the proportion of apoptotic and necrotic cells increased. For a certain concentration, the apoptotic ratio also increased with increasing response times. Compared with the control group, the Bcl-2, MMP-2 and MMP-9 expression levels in the MKN-45 cell line decreased, while the expression levels of Fas and caspase-3 increased (P<0.05), and the expression patterns were strengthened with increasing drug concentrations. The present study revealed that Trametes robiniophila had treatment potential on GC, and it may act on gastric cells through apoptotic induction and MMPs expression inhibition. Based on the present results, Trametes robiniophila may be considered as an alternative approach for noninvasive therapy of GC. However, future studies should be performed to clarify this further. PMID:28356967

  3. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression

    SciTech Connect

    Gao, Yong; Luo, Ling-hui; Li, Shuai; Yang, Cao

    2014-02-07

    Highlights: • miR-17 was increased in OS tissues and cell lines. • Inhibition of miR-17 suppressed OS cell proliferation. • Inhibition of miR-17 suppressed OS cell migration and invasion. • PTEN was a target of miR-17. • miR-17 was negatively correlated with PTEN in OS tissues. - Abstract: MicroRNAs (miRNAs) play essential roles in cancer development and progression. Here, we investigated the role of miR-17 in the progression and metastasis of osteosarcoma (OS). miR-17 was frequently increased in OS tissues and cell lines. Inhibition of miR-17 in OS cell lines substantially suppressed cell proliferation, migration, and invasion. Phosphatase and tensin homolog (PTEN) was identified as a target of miR-17, and ectopic expression of miR-17 inhibited PTEN by direct binding to its 3′-untranslated region (3′-UTR). Expression of miR-17 was negatively correlated with PTEN in OS tissues. Together, these findings indicate that miR-17 acts as an oncogenic miRNA and may contribute to the progression and metastasis of OS, suggesting miR-17 as a potential novel diagnostic and therapeutic target of OS.

  4. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  5. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes

    PubMed Central

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F.; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M.; Serra, Dolors

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  6. [Flavonoids contents and expression analysis of related genes in red cell line of Saussurea medusa].

    PubMed

    Wang, Yajie; Li, Houhua; Fu, Wanyi; Gao, Yan; Wang, Bingjie; Li, Ling

    2014-08-01

    Saussurea medusa is a rare traditional Chinese medicinal herb. Besides anti-inflammatory and analgesic activities, it has effects of disinhibiting cold, dispelling dampness and promoting blood circulation. Flavonoids are the main medicinal compounds in S. medusa. Contents of flavonoids and expression of flavonoids biosynthesis related genes in white and red (induced by low temperature, high sucrose and high light) callus were analyzed. The results showed that the total flavone in red line was 3.60 times higher compared to white line. The accumulation of rutin in red line (0.25% of dry weight) was 2.40 times higher compared to white line. Anthocyanins were abundant in red line, with the contents of cyanidin 3-O-glucosidechloride and cyanidin 3-O-succinyl glycoside 0.12% and 0.19% of dry weight respectively. CHS, F3'H, FNS, FLS, DFR and ANS genes were highly expressed in red line compared to white line. Expression of three transcription factors (MYB, bHLH and WD40) in red line was significantly higher than that in white line, especially the expression of MYB (19.70 times higher compared to white line). These results indicated that high expression levels of transcription factors induced high expression of structural genes in red line, thereby enhancing the flavonoids biosynthesis. The expression of bHLH and WD40 was similar, whereas it was significantly different from that of MYB, indicating that bHLH and WD40 could form a binary complex to regulate expression of structural genes and flavonoids biosynthesis.

  7. Human UDP-Glucuronosyltransferases: Effects of altered expression in breast and pancreatic cancer cell lines.

    PubMed

    Dates, Centdrika R; Fahmi, Tariq; Pyrek, Sebastian J; Yao-Borengasser, Aiwei; Borowa-Mazgaj, Barbara; Bratton, Stacie M; Kadlubar, Susan A; Mackenzie, Peter I; Haun, Randy S; Radominska-Pandya, Anna

    2015-01-01

    Increased aerobic glycolysis and de novo lipid biosynthesis are common characteristics of invasive cancers. UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that in normal cells possess the ability to glucuronidate these lipids and speed their excretion; however, de-regulation of these enzymes in cancer cells can lead to an accumulation of bioactive lipids, which further fuels cancer progression. We hypothesize that UGT2B isoform expression is down-regulated in cancer cells and that exogenous re-introduction of these enzymes will reduce lipid content, change the cellular phenotype, and inhibit cancer cell proliferation. In this study, steady-state mRNA levels of UGT isoforms from the 2B family were measured using qPCR in 4 breast cancer and 5 pancreatic cancer cell lines. Expression plasmids for UGT2B isoforms known to glucuronidate cellular lipids, UGT2B4, 2B7, and 2B15 were transfected into MCF-7 and Panc-1 cells, and the cytotoxic effects of these enzymes were analyzed using trypan blue exclusion, annexin V/PI staining, TUNEL assays, and caspase-3 immunohistochemistry. There was a significant decrease in cell proliferation and a significant increase in the number of dead cells after transfection with each of the 3 UGT isoforms in both cell lines. Cellular lipids were also found to be significantly decreased after transfection. The results presented here support our hypothesis and emphasize the important role UGTs can play in cellular proliferation and lipid homeostasis. Evaluating the effect of UGT expression on the lipid levels in cancer cell lines can be relevant to understanding the complex regulation of cancer cells, identifying the roles of UGTs as "lipid-controllers" in cellular homeostasis, and illustrating their suitability as targets for future clinical therapy development.

  8. BHK cell lines with increased rates of gene amplification are hypersensitive to ultraviolet light

    SciTech Connect

    Giulotto, E.; Bertoni, L.; Attolini, C.; Rainaldi, G.; Anglana, M. )

    1991-04-15

    Four cell lines (MP1, -4, -5, -7), isolated from baby hamster kidney cells after simultaneous selection with N-(phosphonacetyl)-L-aspartate and methotrexate, have previously been shown to amplify their DNA at an increased rate. We now show that all four lines are hypersensitive to killing by UV light and mitomycin C. At high doses of UV light or mitomycin C, the MP lines survived less than 10% or less than 5% as well as parental cells, respectively. After UV irradiation, inhibition of DNA and RNA synthesis was greater in MP than in parental cells, and recovery was slower or absent. A 2- to 3.5-fold increase in the frequency of UV-induced sister chromatid exchange was also seen in the four cell lines. In MP5, unscheduled DNA replication after treatment with UV light was only approximately 70% as great as in parental cells and the other MP lines. In MP4 and MP7 cells S phase was elongated. Although their individual properties confirm that the four cell lines are independent, their common properties suggest a relationship between tolerance of DNA damage and gene amplification.

  9. Expressing gait-line symmetry in able-bodied gait

    PubMed Central

    Jeleń, Piotr; Wit, Andrzej; Dudziński, Krzysztof; Nolan, Lee

    2008-01-01

    Background Gait-lines, or the co-ordinates of the progression of the point of application of the vertical ground reaction force, are a commonly reported parameter in most in-sole measuring systems. However, little is known about what is considered a "normal" or "abnormal" gait-line pattern or level of asymmetry. Furthermore, no reference databases on healthy young populations are available for this parameter. Thus the aim of this study is to provide such reference data in order to allow this tool to be better used in gait analysis. Methods Vertical ground reaction force data during several continuous gait cycles were collected using a Computer Dyno Graphy in-sole system® for 77 healthy young able-bodied subjects. A curve (termed gait-line) was obtained from the co-ordinates of the progression of the point of application of the force. An Asymmetry Coefficient Curve (AsC) was calculated between the mean gait-lines for the left and right foot for each subject. AsC limits of ± 1.96 and 3 standard deviations (SD) from the mean were then calculated. Gait-line data from 5 individual subjects displaying pathological gait due to disorders relating to the discopathy of the lumbar spine (three with considerable plantarflexor weakness, two with considerable dorsiflexor weakness) were compared to the AsC results from the able-bodied group. Results The ± 1.96 SD limit suggested that non-pathological gait falls within 12–16% asymmetry for gait-lines. Those exhibiting pathological gait fell outside both the ± 1.96 and ± 3SD limits at several points during stance. The subjects exhibiting considerable plantarflexor weakness all fell outside the ± 1.96SD limit from 30–50% of foot length to toe-off while those exhibiting considerable dorsiflexor weakness fell outside the ± 1.96SD limit between initial contact to 25–40% of foot length, and then surpassed the ± 3SD limit after 55–80% of foot length. Conclusion This analysis of gait-line asymmetry provides a reference

  10. Snake venom causes apoptosis by increasing the reactive oxygen species in colorectal and breast cancer cell lines

    PubMed Central

    Al-Asmari, Abdulrahman Khazim; Riyasdeen, Anvarbatcha; Al-Shahrani, Mohammad Hamed; Islam, Mozaffarul

    2016-01-01

    Snake venom possesses various kinds of proteins and neurotoxic polypeptides, which can negatively interfere with the neurotransmitter signaling cascade. This phenomenon occurs mainly due to the blocking of ion channels in the body system. Envenomation prevents or severely interrupts nerve impulses from being transmitted, inhibition of adenosine triphosphate synthesis, and proper functioning of the cardiac muscles. However, some beneficial properties of venoms have also been reported. The aim of this study was to examine the snake venom as an anticancer agent due to its inhibitory effects on cancer progression such as cell motility, cell invasion, and colony formation. In this study, the effect of venoms on phenotypic changes and the change on molecular level in colorectal and breast cancer cell lines were examined. A reduction of 60%–90% in cell motility, colony formation, and cell invasion was observed when these cell lines were treated with different concentrations of snake venom. In addition, the increase in oxidative stress that results in an increase in the number of apoptotic cancer cells was significantly higher in the venom-treated cell lines. Further analysis showed that there was a decrease in the expression of pro-inflammatory cytokines and signaling proteins, strongly suggesting a promising role for snake venom against breast and colorectal cancer cell progression. In conclusion, the snake venoms used in this study showed significant anticancer properties against colorectal and breast cancer cell lines. PMID:27799796

  11. Cigarette smoke extract inhibits expression of peroxiredoxin V and increases airway epithelial permeability.

    PubMed

    Serikov, Vladimir B; Leutenegger, Christian; Krutilina, Raisa; Kropotov, Andrei; Pleskach, Nadezhda; Suh, Jung H; Tomilin, Nikolay V

    2006-01-01

    Inhaled cigarette smoke induces oxidative stress in the epithelium of airways. Peroxiredoxin V (PRXV) is a potent antioxidant protein, highly expressed in cells of the airway epithelium. The goal of our study was to determine whether cigarette smoke extract (CSE) influenced expression of this protein in airway epithelia in vivo and in vitro. In Sprague-Dawley rats, we determined effects of CSE on airway epithelial permeability, mRNA levels and expression of PRXV protein. Exposure of isolated tracheal segment in vitro to 20% CSE for 4 h resulted in development of increased permeability to albumin, significantly reduced mRNA levels for PRXV, and reduced amounts of PRXV protein in the epithelium. In cultures of the airway epithelial cell lines (Calu-3, JME), primary airway cell culture (cow), and alveolar epithelial cells A549, CSE also significantly decreased transepithelial electrical resistance and expression of PRXV protein, and induced glutathione and protein oxidation. To demonstrate functional importance of PRXV, we exposed clones of HeLa cells with siRNA-downregulated PRXV to hydrogen peroxide, which resulted in increased rate of cell death and protein oxidation. CSE directly downregulates expression of functionally important antioxidant enzyme PRXV in the epithelial cells of airways, which represents one pathophysiological mechanism of cigarette smoke toxicity.

  12. Joint line elevation in revision TKA leads to increased patellofemoral contact forces.

    PubMed

    König, Christian; Sharenkov, Alexey; Matziolis, Georg; Taylor, William R; Perka, Carsten; Duda, Georg N; Heller, Markus O

    2010-01-01

    One difficulty in revision total knee arthroplasty (TKA) is the management of distal femoral bone defects in which a joint line elevation (JLE) is likely to occur. Although JLE has been associated with inferior clinical results, the effect that an elevated joint line has on knee contact forces has not been investigated. To understand the clinical observations and elaborate the potential risk associated with a JLE, we performed a virtual TKA on the musculoskeletal models of four subjects. Tibio- and patellofemoral joint contact forces (JCF) were calculated for walking and stair climbing, varying the location of the joint line. An elevation of the joint line primarily affected the patellofemoral joint with JCF increases of as much as 60% of the patient's body weight (BW) at 10-mm JLE and 90% BW at 15-mm JLE, while the largest increase in tibiofemoral JCF was only 14% BW. This data demonstrates the importance of restoring the joint line, as it plays a critical role for the magnitudes of the JCFs, particularly for the patellofemoral joint. JLE caused by managing distal femoral defects with downsizing and proximalizing the femoral component could increase the patellofemoral contact forces, and may be a contributing factor to postoperative complications such as pain, polyethylene wear, and limited function.

  13. Increased Id-1 expression is significantly associated with poor survival of patients with prostate cancer.

    PubMed

    Forootan, Shiva S; Wong, Yong-Chuan; Dodson, Andrew; Wang, Xianghong; Lin, Ke; Smith, Paul H; Foster, Christopher S; Ke, Youqiang

    2007-09-01

    The levels of Id-1 (inhibitor of DNA binding or inhibitor of cell differentiation) expression in a series of prostate cell lines and in an archival set of prostate tissues were examined. Western blot analysis showed that the level of Id-1 expressed in the androgen sensitive cell line LNCaP was 1.2 +/- 0.2 times that detected in the benign cell line PNT-2. The level of Id-1 increased further to 1.8 +/- 0.2 and 2.9 +/- 0.3 in the androgen-insensitive cell lines Du-145 and PC-3, respectively. Immunohistochemical staining with Id-1 antibody performed on 113 cases of prostate tissues showed that among the 7 normal cases, 6 (86%) stained either negative or weakly positive whereas only 1 (14%) stained moderately positive. Among the 36 benign prostatic hyperplasia (BPH) samples, 34 (94%) stained either negative or weakly positive; only 1 (3%) stained moderately and 1 (3%) stained strongly. Of the 70 carcinomas, 8 (11.5%) stained weakly, 34 (48.5%) stained moderately, and 28 (40%) stained strongly positive. The intensity of Id-1 staining in carcinomas was significantly stronger than that detected in the normal prostate and BPH (chi(2) test, P < .001) and it was significantly increased as the increasing malignancy of carcinomas measured by Gleason score (chi(2) test, P < .001). The intensity of Id-1 staining was partially associated with the levels of prostate-specific antigen, but not related to the level of androgen receptor. Kaplan-Meier survival curve analysis showed that, similar to Gleason scores, overexpression of Id-1 was significantly associated with the reduced length of patient survival (log-rank test, P = .01). These results suggest that Id-1 is a useful prognostic marker to predict the outcomes of patients with prostate cancer.

  14. ClC-3 expression enhances etoposide resistance by increasing acidification of the late endocytic compartment.

    PubMed

    Weylandt, Karsten H; Nebrig, Maxim; Jansen-Rosseck, Nils; Amey, Joanna S; Carmena, David; Wiedenmann, Bertram; Higgins, Christopher F; Sardini, Alessandro

    2007-03-01

    Resistance to anticancer drugs and consequent failure of chemotherapy is a complex problem severely limiting therapeutic options in metastatic cancer. Many studies have shown a role for drug efflux pumps of the ATP-binding cassette transporters family in the development of drug resistance. ClC-3, a member of the CLC family of chloride channels and transporters, is expressed in intracellular compartments of neuronal cells and involved in vesicular acidification. It has previously been suggested that acidification of intracellular organelles can promote drug resistance by increasing drug sequestration. Therefore, we hypothesized a role for ClC-3 in drug resistance. Here, we show that ClC-3 is expressed in neuroendocrine tumor cell lines, such as BON, LCC-18, and QGP-1, and localized in intracellular vesicles co-labeled with the late endosomal/lysosomal marker LAMP-1. ClC-3 overexpression increased the acidity of intracellular vesicles, as assessed by acridine orange staining, and enhanced resistance to the chemotherapeutic drug etoposide by almost doubling the IC(50) in either BON or HEK293 cell lines. Prevention of organellar acidification, by inhibition of the vacuolar H(+)-ATPase, reduced etoposide resistance. No expression of common multidrug resistance transporters, such as P-glycoprotein or multidrug-related protein-1, was detected in either the BON parental cell line or the derivative clone overexpressing ClC-3. The probable mechanism of enhanced etoposide resistance can be attributed to the increase of vesicular acidification as consequence of ClC-3 overexpression. This study therefore provides first evidence for a role of intracellular CLC proteins in the modulation of cancer drug resistance.

  15. Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor.

    PubMed

    Cervellini, Ilaria; Annenkov, Alexander; Brenton, Thomas; Chernajovsky, Yuti; Ghezzi, Pietro; Mengozzi, Manuela

    2013-08-28

    Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in nonhematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein [MOG] and myelin basic protein [MBP]). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by Western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects.

  16. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  17. Stromal p16 expression is significantly increased in endometrial carcinoma.

    PubMed

    Yoon, Gun; Koh, Chang Won; Yoon, Nara; Kim, Ji-Ye; Kim, Hyun-Soo

    2017-01-17

    p16 is a negative regulator of cell proliferation and is considered a tumor suppressor protein. Alterations in p16 protein expression are associated with tumor development and progression. However, the p16 expression status in the peritumoral stroma has not been investigated in the endometrium. Therefore, we evaluated stromal p16 expression in different types of endometrial lesions using immunohistochemistry. Differences in the p16 expression status according to the degree of malignancy and histological type were analyzed. This study included 62, 26, and 36 cases of benign, precancerous, and malignant endometrial lesions, respectively. Most benign lesions showed negative or weak expression, whereas precancerous lesions showed a variable degree of staining proportion and intensity. Atypical hyperplasia/endometrial intraepithelial neoplasia (AH/EIN) and serous endometrial intraepithelial carcinoma (SEIC) had significantly higher stromal p16 expression levels than benign lesions. Endometrioid carcinoma (EC), serous carcinoma (SC), and carcinosarcoma showed significantly elevated stromal p16 expression levels compared with benign and precancerous lesions. In addition, there were significant differences in stromal p16 expression between AH/EIN and SEIC and between EC and SC. In contrast, differences in stromal p16 expression among nonpathological endometrium, atrophic endometrium, endometrial polyp, and hyperplasia without atypia were not statistically significant. Our observations suggest that stromal p16 expression is involved in the development and progression of endometrial carcinoma, and raise the possibility that p16 overexpression in the peritumoral stroma is associated with aggressive oncogenic behavior of endometrial SC.

  18. Wired: impacts of increasing power line use by a growing bird population

    NASA Astrophysics Data System (ADS)

    Moreira, Francisco; Encarnação, Vitor; Rosa, Gonçalo; Gilbert, Nathalie; Infante, Samuel; Costa, Julieta; D’Amico, Marcello; Martins, Ricardo C.; Catry, Inês

    2017-02-01

    Power lines are increasingly widespread across many regions of the planet. Although these linear infrastructures are known for their negative impacts on bird populations, through collision and electrocution, some species take advantage of electricity pylons for nesting. In this case, estimation of the net impact of these infrastructures at the population level requires an assessment of trade-offs between positive and negative impacts. We compiled historical information (1958–2014) of the Portuguese white stork Ciconia ciconia population to analyze long-term changes in numbers, distribution range and use of nesting structures. White stork population size increased 660% up to 12000 breeding pairs between 1984 and 2014. In the same period, the proportion of nests on electricity pylons increased from 1% to 25%, likely facilitated by the 60% increase in the length of the very high tension power line grid (holding the majority of the nests) in the stork’s distribution range. No differences in breeding success were registered for storks nesting on electricity pylons versus other structures, but a high risk of mortality by collision and electrocution with power lines was estimated. We discuss the implications of this behavioral change, and of the management responses by power line companies, both for stork populations and for managers.

  19. Increased expression of S100A4, a metastasis-associated gene, in human colorectal adenocarcinomas.

    PubMed

    Takenaga, K; Nakanishi, H; Wada, K; Suzuki, M; Matsuzaki, O; Matsuura, A; Endo, H

    1997-12-01

    The S100A4 gene (also known as pEL98/mts1/p9Ka/18A2/42A/calvasculin /FSP1/CAPL) encoding an S100-related calcium-binding protein is implied to be involved in the invasion and metastasis of murine tumor cells. In the present study, the expression of S100A4 in human colorectal adenocarcinoma cell lines (SW837, LoVo, DLD-1, HT-29, SW480, SW620, WiDr, and Colo201) and surgically resected neoplastic tissues was examined to investigate whether S100A4 plays a role in the invasion and metastasis of human tumor cells. Northern blot analysis using total RNA isolated from the adenocarcinoma cell lines revealed that five of the eight cell lines expressed substantial amounts of S100A4 mRNA. Normal colon fibroblasts (CCD-18Co) expressed little of the RNA. Using surgically resected specimens, it seemed that the amount of S100A4 mRNA in adenomas was nearly equal to that in normal colonic mucosa, whereas adenocarcinomas expressed a significantly higher amount of the RNA than did the adjacent normal colonic mucosa. Immunohistochemical analysis using formalin-fixed paraffin-embedded surgical specimens and monoclonal anti-S100A4 antibody demonstrated that none of 12 adenoma specimens were immunopositive, whereas 8 of 18 (44%) focal carcinomas in carcinoma in adenoma specimens and 50 of 53 (94%) adenocarcinoma specimens were immunopositive. Interestingly, the incidence of immunopositive cells increased according to the depth of invasion, and nearly all of the carcinoma cells in 14 metastases in the liver were positive. These results suggest that S100A4 may be involved in the progression and the metastatic process of human colorectal neoplastic cells.

  20. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    PubMed Central

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  1. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  2. Increased expression of BDNF and proliferation of dentate granule cells after bacterial meningitis.

    PubMed

    Tauber, Simone C; Stadelmann, Christine; Spreer, Annette; Brück, Wolfgang; Nau, Roland; Gerber, Joachim

    2005-09-01

    Proliferation and differentiation of neural progenitor cells is increased after bacterial meningitis. To identify endogenous factors involved in neurogenesis, expression of brain-derived neurotrophic factor (BDNF), TrkB, nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) was investigated. C57BL/6 mice were infected by intracerebral injection of Streptococcus pneumoniae. Mice were killed 30 hours later or treated with ceftriaxone and killed 4 days after infection. Hippocampal BDNF mRNA levels were increased 2.4-fold 4 days after infection (p = 0.026). Similarly, BDNF protein levels in the hippocampal formation were higher in infected mice than in control animals (p = 0.0003). This was accompanied by an elevated proliferation of dentate granule cells (p = 0.0002). BDNF protein was located predominantly in the hippocampal CA3/4 area and the hilus of the dentate gyrus. The density of dentate granule cells expressing the BDNF receptor TrkB as well as mRNA levels of TrkB in the hippocampal formation were increased 4 days after infection (p = 0.027 and 0.0048, respectively). Conversely, NGF mRNA levels at 30 hours after infection were reduced by approximately 50% (p = 0.004). No significant changes in GDNF expression were observed. In conclusion, increased synthesis of BDNF and TrkB suggests a contribution of this neurotrophic factor to neurogenesis after bacterial meningitis.

  3. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions.

    PubMed

    Gez, Swetlana; Crossett, Ben; Christopherson, Richard I

    2007-09-01

    Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.

  4. Ectopic expression of new alternative splice variant of Smac/DIABLO increases mammospheres formation

    PubMed Central

    Martinez-Ruiz, Gustavo U; Victoria-Acosta, Georgina; Vazquez-Santillan, Karla I; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Ceballos-Cancino, Gisela; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2014-01-01

    Smac-α is a mitochondrial protein that, during apoptosis, is translocated to the cytoplasm, where it negatively regulates members of the inhibitor of apoptosis (IAP) family via the IAP-binding motif (IBM) contained within its amino-terminus. Here, we describe a new alternative splice variant from Smac gene, which we have named Smac-ε. Smac-ε lacks both an IBM and a mitochondrial-targeting signal (MTS) element. Smac-ε mRNA exhibits a tissue-specific expression pattern in healthy human tissues as well as in several cancer cell lines. The steady-state levels of endogenous Smac-ε protein is regulated by the proteasomal pathway. When ectopically expressed, this isoform presents a cytosolic localization and is unable to associate with or to regulate the expression of X-linked Inhibitor of apoptosis protein, the best-studied member of IAP family. Nevertheless, over-expression of Smac-ε increases mammosphere formation. Whole genome expression analyses from these mammospheres show activation of several pro-survival and growth pathways, including Estrogen-Receptor signaling. In conclusion, our results support the functionality of this new Smac isoform. PMID:25337193

  5. Ectopic expression of new alternative splice variant of Smac/DIABLO increases mammospheres formation.

    PubMed

    Martinez-Ruiz, Gustavo U; Victoria-Acosta, Georgina; Vazquez-Santillan, Karla I; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Ceballos-Cancino, Gisela; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2014-01-01

    Smac-α is a mitochondrial protein that, during apoptosis, is translocated to the cytoplasm, where it negatively regulates members of the inhibitor of apoptosis (IAP) family via the IAP-binding motif (IBM) contained within its amino-terminus. Here, we describe a new alternative splice variant from Smac gene, which we have named Smac-ε. Smac-ε lacks both an IBM and a mitochondrial-targeting signal (MTS) element. Smac-ε mRNA exhibits a tissue-specific expression pattern in healthy human tissues as well as in several cancer cell lines. The steady-state levels of endogenous Smac-ε protein is regulated by the proteasomal pathway. When ectopically expressed, this isoform presents a cytosolic localization and is unable to associate with or to regulate the expression of X-linked Inhibitor of apoptosis protein, the best-studied member of IAP family. Nevertheless, over-expression of Smac-ε increases mammosphere formation. Whole genome expression analyses from these mammospheres show activation of several pro-survival and growth pathways, including Estrogen-Receptor signaling. In conclusion, our results support the functionality of this new Smac isoform.

  6. The mechanosensitive cell line ND-C does not express functional thermoTRP channels.

    PubMed

    Rugiero, François; Wood, John N

    2009-06-01

    The molecular basis of mechanosensation in sensory neurons has yet to be defined. We found that ND-C cells, a hybrid cell line derived from neonatal rat DRG neurons, express mechanosensitive ion channels, and provide a useful expression system for testing candidate mechanosensitive ion channels. ND-C cells retain some important features of DRG neurons such as the expression of TTX-sensitive Na(+) and acid-activated currents as well as the ability to respond to mechanical stimulation with cationic currents sensitive to the analgesic peptide NMB1. ND-C cells do not respond to agonists of the 'thermoTRP' channels, suggesting that these channels are not responsible for MA currents in these cells and DRG neurons. Furthermore, transfecting ND-C cells with the candidate mechanotransducer channel TRPA1 does not increase MA current amplitudes, despite TRPA1 being functionally expressed at the plasma membrane. This correlates well with the fact that all types of MA currents can be recorded from TRPA1-negative DRG neurons.

  7. Resistin and Visfatin Expression in HCT-116 Colorectal Cancer Cell Line

    PubMed Central

    Ghaemmaghami, Sara; Mohaddes, Seyed Mojtaba; Hedayati, Mehdi; Gorgian Mohammadi, Masumeh; Dehbashi, Golnoosh

    2013-01-01

    Adipocytokines, hormones secreted from adipose tissue, have been shown to be associated with many cancers such as breast, prostate and colorectal cancer. Recent studies have indicated that resistin and visfatin, two of these adipokines have high level plasma concentrations in colorectal cancer patients and may be promising biomarkers for colorectal cancer. The aim of this study was to identify whether the colorectal cancer cell line, HCT-116, itself is the source of these two adipokines secretion. Resistin and visfatin expression were investigated in HCT-116 by RT – PCR at mRNA level and confirmed by ELISA at protein level. Visfatin showed a high expression at both mRNA and protein levels in HCT-116. Conversely, resistin was not expressed in either cell lysate or supernatant. These results showed that HCT-116 colorectal cancer cells secrete and express visfatin endogenously. However, they are not the main source of resistin and the high level of resistin in colorectal cancer may be due to monocytes and other inflammatory cells which increase in proinflammation status of cancer. Taken together, visfatin may act on colorectal cancer cell in an autocrine manner while resistin may act in a paracrine manner. PMID:24551805

  8. Autonomous Bioluminescent Expression of the Bacterial Luciferase Gene Cassette (lux) in a Mammalian Cell Line

    PubMed Central

    Close, Dan M.; Patterson, Stacey S.; Ripp, Steven; Baek, Seung J.; Sanseverino, John; Sayler, Gary S.

    2010-01-01

    Background The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo. Methodology/Principal Findings Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH2) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background. Conclusions/Significance The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies. PMID:20805991

  9. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    SciTech Connect

    Sustarsic, Elahu G.; Junnila, Riia K.; Kopchick, John J.

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  10. Immunodetection of Human LINE-1 Expression in Cultured Cells and Human Tissues.

    PubMed

    Sharma, Reema; Rodić, Nemanja; Burns, Kathleen H; Taylor, Martin S

    2016-01-01

    Long interspersed element-1 (LINE-1) is the only active protein-coding retrotransposon in humans. It is not expressed in somatic tissue but is aberrantly expressed in a wide variety of human cancers. ORF1p protein is the most robust indicator of LINE-1 expression; the protein accumulates in large quantities in cellular cytoplasm. Recently, monoclonal antibodies have allowed more complete characterizations of ORF1p expression and indicated potential for developing ORF1p as a clinical biomarker. Here, we describe a mouse monoclonal antibody specific for human LINE-1 ORF1p and its application in immunofluorescence and immunohistochemistry of both cells and human tissues. We also describe detection of tagged LINE-1 ORF2p via immunofluorescence. These general methods may be readily adapted to use with many other proteins and antibodies.

  11. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression

    PubMed Central

    Prados, Jose; Caba, Octavio; Cabeza, Laura; Berdasco, Maria; Gónzalez, Beatriz; Melguizo, Consolación

    2015-01-01

    Background The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated. Methods Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2’-deoxycytidine was used to demethylate the MGMT promoter and O(6)-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed. Results Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229) and high (SF268 and SK-N-SH) basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines. Conclusions These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma

  12. Transient HEXA expression in a transformed human fetal Tay-Sachs disease neuroglial cell line

    SciTech Connect

    Fernandes, M.J.; Hechtman, P.; Kaplan, F.

    1994-09-01

    Tay-Sachs disease (TSD) is a severe neurodegenerative disorder characterized by the accumulation of GM{sub 2} ganglioside in the neurons of the central cortex. The recessively inherited disorder results from deficiency of hexosaminidase A (Hex A), a heterodimer of an {alpha} and {beta} subunit encoded by the HEXA and HEXB genes. Expression of HEXA mutations in COS cells has several disadvantages including high endogenous hexosaminidase activity. We report a new transient expression system with very low endogenous Hex A activity. An SV40-transformed fetal TSD neuroglial cell line was assessed for transient expression of the HEXA gene. pCMV{alpha}, a vector incorporating the cytomegalovirus promoter with the human {alpha}-subunit cDNA insert, proved to be the most efficient expression vector. Transfection of 4x10{sup 6} cells with 5-20 {mu}g of plasmid resulted in 100 to 500-fold Hex A activity (4MUGS hydrolysis) relative to mock-transfected cells. Use of pCMV{beta}-Gal as a control for transfection efficiency indicated that 10-20% of cells were transfected. Hex A specific activity increased for at least 72 h post-transfection. This new transient expression system should greatly improve the characterization of mutations in which low levels of HEXA expression result in milder clinical phenotypes and permit studies on enzymatic properties of mutant forms of Hex A. Since the cells used are of CNS origin and synthesize gangliosides, it should also be possible to study, in culture, the metabolic phenotype associated with TSD.

  13. Gene and microRNA expression reveals sensitivity to paclitaxel in laryngeal cancer cell line

    PubMed Central

    Xu, Cheng-Zhi; Xie, Jin; Jin, Bin; Chen, Xin-Wei; Sun, Zhen-Feng; Wang, Bao-Xing; Dong, Pin

    2013-01-01

    Paclitaxel is a widely used chemotherapy drug for advanced laryngeal cancer patients. However, the fact that there are 20-40% of advanced laryngeal cancer patients do not response to paclitaxel makes it necessary to figure out potential biomarkers for paclitaxel sensitivity prediction. In this work, Hep2, a laryngeal cancer cell line, untreated or treated with lower dose of paclitaxel for 24 h, was applied to DNA microarray chips for gene and miR expression profile analysis. Expression of eight genes altered significantly following paclitaxel treatment, which was further validated by quantitative real-time PCR. Four up-regulated genes were ID2, BMP4, CCL4 and ACTG2, in which ID2 and BMP4 were implicated to be involved in several drugs sensitivity. While the down-regulated four genes, MAPK4, FASN, INSIG1 and SCD, were mainly linked to the endoplasmic reticulum and fatty acid biosynthesis, these two cell processes that are associated with drug sensitivity by increasing evidences. After paclitaxel treatment, expression of 49 miRs was significantly altered. Within these miRs, the most markedly expression-changed were miR-31-star, miR-1264, miR-3150b-5p and miR-210. While the miRs putatively modulated the mRNA expression of the most significantly expression-altered genes were miR-1264, miR-130a, miR-27b, miR-195, miR-1291, miR-214, miR-1277 and miR-1265, which were obtained by miR target prediction and miRNA target correlation. Collectively, our study might provide potential biomarkers for paclitaxel sensitivity prediction and drug resistance targets in laryngeal cancer patients. PMID:23826416

  14. Increased expression of Zinc finger protein 267 in non-alcoholic fatty liver disease

    PubMed Central

    Schnabl, Bernd; Czech, Barbara; Valletta, Daniela; Weiss, Thomas S; Kirovski, Georgi; Hellerbrand, Claus

    2011-01-01

    Hepatocellular lipid accumulation is a hallmark of non-alcoholic fatty liver disease (NAFLD), which encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and ultimately cirrhosis. Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulate diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 expression is up-regulated in liver cirrhosis and is further increased in hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in tissue specimens of NAFLD patients and found a significant up-regulation compared to normal liver tissue. Noteworthy, ZNF267 mRNA was already significantly increased in steatotic liver tissue without inflammation. In line with this, incubation of primary human hepatocytes with palmitic acid induced a dose-dependent lipid accumulation and corresponding dose-dependent ZNF267 induction in vitro. Furthermore, hepatocellular lipid accumulation induced formation of reactive oxygen species (ROS), and also chemically induced ROS formation increased ZNF267 mRNA expression. In summary with previous findings, which revealed ZNF267 as pro-fibrogenic and pro-cancerogenic factor in chronic liver disease, the present study further suggests ZNF267 as promising therapeutic target particularly for NAFLD patients. In addition, it further indicates that hepatic steatosis per se has pathophysiological relevance and should not be considered as benign. PMID:22076166

  15. HIV Infection of Hepatocytes Results in a Modest Increase in Hepatitis C Virus Expression In Vitro

    PubMed Central

    Kong, Ling; Welge, Jeffrey A.; Powell, Eleanor A.; Blackard, Jason T.

    2014-01-01

    Previous studies demonstrate that soluble HIV proteins impact both hepatocyte function and HCV replication in vitro. It has also been reported that HIV can productively infect hepatocytes. We therefore investigated the impact of HIV infection of hepatocytes on HCV expression. The Huh7.5JFH1 cell line that constitutively expresses infectious HCV was infected with the lab-adapted strains HIVNL4-3 or HIVYK-JRCSF. HCV expression was quantified via HCV core antigen ELISA, Western blot, and strand-specific real-time PCR for positive-sense and negative-sense HCV RNA. After HIVNL4-3 infection of Huh7.5JFH1 cells, positive-sense and negative-sense HCV RNA levels were elevated compared to HIV uninfected cells. Increased HCV RNA synthesis was also observed after infection of Huh7.5JFH1 cells with HIVYK-JRCSF. HIV-induced HCV core production was decreased in the presence of the anti-HIV drugs AZT, T20, and raltegravir, although these medications had a minimal effect on HCV expression in the absence of HIV. HCV core, NS3, and NS5A protein expression were increased after HIV infection of Huh7.5JFH1 cells. Chemically inactivated HIV had a minimal effect on HCV expression in Huh7.5JFH1 cells suggesting that ongoing viral replication was critical. These data demonstrate that HIV induces HCV RNA synthesis and protein production in vitro and complement previous in vivo reports that HCV RNA levels are elevated in individuals with HIV/HCV co-infection compared to those with HCV mono-infection. These findings suggest that HIV suppression may be a critical factor in controlling liver disease, particularly if the underlying liver disease is not treated. PMID:24586227

  16. Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines.

    PubMed

    Koty, P P; Zhang, H; Levitt, M L

    1999-02-01

    Programmed cell death (PCD) is a genetically regulated pathway that is altered in many cancers. This process is, in part, regulated by the ratio of PCD inducers (Bax) or inhibitors (Bcl-2). An abnormally high ratio of Bcl-2 to Bax prevents PCD, thus contributing to resistance to chemotherapeutic agents, many of which are capable of inducing PCD. Non-small cell lung cancer (NSCLC) cells demonstrate resistance to these PCD-inducing agents. If Bcl-2 prevents NSCLC cells from entering the PCD pathway, then reducing the amount of endogenous Bcl-2 product may allow these cells to spontaneously enter the PCD pathway. Our purpose was to determine the effects of bcl-2 antisense treatment on the levels of programmed cell death in NSCLC cells. First, we determined whether bcl-2 and bax mRNA were expressed in three morphologically distinct NSCLC cell lines: NCI-H226 (squamous), NCI-H358 (adenocarcinoma), and NCI-H596 (adenosquamous). Cells were then exposed to synthetic antisense bcl-2 oligonucleotide treatment, after which programmed cell death was determined, as evidenced by DNA fragmentation. Bcl-2 protein expression was detected immunohistochemically. All three NSCLC cell lines expressed both bcl-2 and bax mRNA and had functional PCD pathways. Synthetic antisense bcl-2 oligonucleotide treatment resulted in decreased Bcl-2 levels, reduced cell proliferation, decreased cell viability, and increased levels of spontaneous PCD. This represents the first evidence that decreasing Bcl-2 in three morphologically distinct NSCLC cell lines allows the cells to spontaneously enter a PCD pathway. It also indicates the potential therapeutic use of antisense bcl-2 in the treatment of NSCLC.

  17. Caring On-Line: On-Line Empathy, Self-Disclosure, Emotional Expression, and Nurturing.

    ERIC Educational Resources Information Center

    Burford, Vicki Niemants; Gross, Daniel D.

    The purpose of this study was to analyze, categorize, and critique actual responses to expressed student confusion and frustration with online courses. Samplings of actual student messages from two courses were used to frame instructor responses, as well as a focus group survey of current college students. The focus of the study was the…

  18. Increased FNDC5/Irisin expression in human hepatocellular carcinoma.

    PubMed

    Gaggini, Melania; Cabiati, Manuela; Del Turco, Serena; Navarra, Teresa; De Simone, Paolo; Filipponi, Franco; Del Ry, Silvia; Gastaldelli, Amalia; Basta, Giuseppina

    2017-02-01

    The fibronectin type III domain containing 5 (FNDC5)/Irisin, a novel energy-regulating hormone, is associated with lipid and carbohydrate metabolism. It is produced in low amounts by normal hepatic tissue, while in human hepatocellular carcinoma (HCC), in which aberrant de novo lipogenesis (DNL) occurs, the hepatic expression of FNDC5/Irisin is still unknown. The gene expression of FNDC5/Irisin, associated to key regulators of DNL, inflammation and cancer progression was evaluated in liver tissue of 18 patients with HCC undergoing liver transplantation and of 18 deceased donors. Hepatic mRNA expression of FNDC5/Irisin and stearoyl-CoA desaturase (SCD-1), main enzymatic regulator of DNL, were significantly higher in HCC patients than in donors (p<0.0001 and p=0.015, respectively). The hepatic mRNA expression of the neurogenic locus notch homolog protein 1 (NOTCH1) tended to be higher in HCC patients than in donors (p=0.06). Only in HCC patients, hepatic FNDC5/Irisin strongly correlated with the transcription factor sterol regulatory element-binding factor 1, SCD-1, NOTCH1, tumor necrosis factor-α and Interleukin-6 mRNA expression. Further, in HCC patients, FNDC5/Irisin mRNA tended to correlate to plasma lipid profile namely triglycerides, palmitic/linoleic acid and polyunsaturated fatty acid/saturated fatty acid ratios. In conclusion, HCC-liver tissue over-expressed FNDC5/Irisin in association with gene expression of mediators involved in lipogenesis, inflammation and cancer, suggesting a possible protective role of the hormone from the liver damage.

  19. On-line Versus Face-to-Face Education: Utilizing Technology to Increase Effectiveness

    DTIC Science & Technology

    2012-05-17

    Education. Thousand Oaks: Sage Publications , 2010. Leonard, Henry A. Enhancing Stability and Professional Development Using Distance Learning. Santa...Approved for Public Release; Distribution is Unlimited On-line Versus Face-to-Face Education: Utilizing Technology to Increase Effectiveness A...Leavenworth, Kansas AY 2012-001 REPORT DOCUMENTATION PAGE Form Approved OMB No. 074-0188 Public reporting burden for this collection of

  20. Lipopolysaccharide induces multinuclear cell from RAW264.7 line with increased phagocytosis activity

    SciTech Connect

    Nakanishi-Matsui, Mayumi; Yano, Shio; Matsumoto, Naomi; Futai, Masamitsu

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer LPS induces multinuclear cells from murine macrophage-derived RAW264.7 cells. Black-Right-Pointing-Pointer The multinuclear cells are formed through cell-cell fusion in the presence of Ca{sup 2+}. Black-Right-Pointing-Pointer The multinuclear cells do not express osteoclast-specific enzymes. Black-Right-Pointing-Pointer They internalized more and larger beads than mononuclear cells and osteoclasts. -- Abstract: Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, induces strong proinflammatory responses, including the release of cytokines and nitric oxide from macrophage. In this study, we found that a murine macrophage-derived line, RAW264.7, became multinuclear through cell-cell fusion after incubation with highly purified LPS or synthetic lipid A in the presence of Ca{sup 2+}. The same cell line is known to differentiate into multinuclear osteoclast, which expresses a specific proton pumping ATPase together with osteoclast markers on stimulation by the extracellular domain of receptor activator of nuclear factor {kappa}B ligand (Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G.-H., Wada, Y. and Futai, M., 2003). The LPS-induced multinuclear cells did not express osteoclast-specific enzymes including tartrate-resistant acid phosphatase and cathepsin K. During multinuclear cell formation, the cells internalized more and larger polystyrene beads (diameter 6-15 {mu}m) than mononuclear cells and osteoclasts. The internalized beads were located in lysosome-marker positive organelles, which were probably phagolysosomes. The LPS-induced multinuclear cell could be a good model system to study phagocytosis of large foreign bodies.

  1. A Transgenic Mouse Line Expressing the Red Fluorescent Protein tdTomato in GABAergic Neurons

    PubMed Central

    Besser, Stefanie; Sicker, Marit; Marx, Grit; Winkler, Ulrike; Eulenburg, Volker; Hülsmann, Swen; Hirrlinger, Johannes

    2015-01-01

    GABAergic inhibitory neurons are a large population of neurons in the central nervous system (CNS) of mammals and crucially contribute to the function of the circuitry of the brain. To identify specific cell types and investigate their functions labelling of cell populations by transgenic expression of fluorescent proteins is a powerful approach. While a number of mouse lines expressing the green fluorescent protein (GFP) in different subpopulations of GABAergic cells are available, GFP expressing mouse lines are not suitable for either crossbreeding to other mouse lines expressing GFP in other cell types or for Ca2+-imaging using the superior green Ca2+-indicator dyes. Therefore, we have generated a novel transgenic mouse line expressing the red fluorescent protein tdTomato in GABAergic neurons using a bacterial artificial chromosome based strategy and inserting the tdTomato open reading frame at the start codon within exon 1 of the GAD2 gene encoding glutamic acid decarboxylase 65 (GAD65). TdTomato expression was observed in all expected brain regions; however, the fluorescence intensity was highest in the olfactory bulb and the striatum. Robust expression was also observed in cortical and hippocampal neurons, Purkinje cells in the cerebellum, amacrine cells in the retina as well as in cells migrating along the rostral migratory stream. In cortex, hippocampus, olfactory bulb and brainstem, 80% to 90% of neurons expressing endogenous GAD65 also expressed the fluorescent protein. Moreover, almost all tdTomato-expressing cells coexpressed GAD65, indicating that indeed only GABAergic neurons are labelled by tdTomato expression. This mouse line with its unique spectral properties for labelling GABAergic neurons will therefore be a valuable new tool for research addressing this fascinating cell type. PMID:26076353

  2. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation.

    PubMed

    Chen, Huiyong; Choesang, Tenzin; Li, Huihui; Sun, Shuming; Pham, Petra; Bao, Weili; Feola, Maria; Westerman, Mark; Li, Guiyuan; Follenzi, Antonia; Blanc, Lionel; Rivella, Stefano; Fleming, Robert E; Ginzburg, Yelena Z

    2016-03-01

    Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbb(th1/th1) (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes.

  3. TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer

    PubMed Central

    GRIMMIG, TANJA; MATTHES, NIELS; HOELAND, KATHARINA; TRIPATHI, SUDIPTA; CHANDRAKER, ANIL; GRIMM, MARTIN; MOENCH, ROMANA; MOLL, EVA-MARIA; FRIESS, HELMUT; TSAUR, IGOR; BLAHETA, ROMAN A.; GERMER, CRISTOPH T.; WAAGA-GASSER, ANA MARIA; GASSER, MARTIN

    2015-01-01

    Chronic inflammation as an important epigenetic and environmental factor for putative tumorigenesis and tumor progression may be associated with specific activation of Toll-like receptors (TLR). Recently, carcinogenesis has been suggested to be dependent on TLR7 signaling. In the present study, we determined the role of both TLR7 and TLR8 expression and signaling in tumor cell proliferation and chemoresistance in pancreatic cancer. Expression of TLR7/TLR8 in UICC stage I–IV pancreatic cancer, chronic pancreatitis, normal pancreatic tissue and human pancreatic (PANC1) cancer cell line was examined. For in vitro/in vivo studies TLR7/TLR8 overexpressing PANC1 cell lines were generated and analyzed for effects of (un-)stimulated TLR expression on tumor cell proliferation and chemoresistance. TLR expression was increased in pancreatic cancer, with stage-dependent upregulation in advanced tumors, compared to earlier stages and chronic pancreatitis. Stimulation of TLR7/TLR8 overexpressing PANC1 cells resulted in elevated NF-κB and COX-2 expression, increased cancer cell proliferation and reduced chemosensitivity. More importantly, TLR7/TLR8 expression increased tumor growth in vivo. Our data demonstrate a stage-dependent upregulation of both TLR7 and TLR8 expression in pancreatic cancer. Functional analysis in human pancreatic cancer cells point to a significant role of both TLRs in chronic inflammation-mediated TLR7/TLR8 signaling leading to tumor cell proliferation and chemoresistance. PMID:26134824

  4. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines.

    PubMed

    Hilgendorf, Constanze; Ahlin, Gustav; Seithel, Annick; Artursson, Per; Ungell, Anna-Lena; Karlsson, Johan

    2007-08-01

    This study was designed to quantitatively assess the mRNA expression of 36 important drug transporters in human jejunum, colon, liver, and kidney. Expression of these transporters in human organs was compared with expression in commonly used cell lines (Caco-2, HepG2, and Caki-1) originating from these organs to assess their value as in vitro transporter system models, and was also compared with data obtained from the literature on expression in rat tissues to assess species differences. Transporters that were highly expressed in the intestine included HPT1, PEPT1, BCRP, MRP2, and MDR1, whereas, in the liver, OCT1, MRP2, OATP-C, NTCP and BSEP were the main transporters. In the kidney, OAT1 was expressed at the highest levels, followed by OAT3, OAT4, MCT5, MDR1, MRP2, OCT2, and OCTN2. The best agreement between human tissue and the representative cell line was observed for human jejunum and Caco-2 cells. Expression in liver and kidney ortholog cell lines was not correlated with that in the associated tissue. Comparisons with rat transporter gene expression revealed significant species differences. Our results allowed a comprehensive quantitative comparison of drug transporter expression in human intestine, liver, and kidney. We suggest that it would be beneficial for predictive pharmacokinetic research to focus on the most highly expressed transporters. We hope that our comparison of rat and human tissue will help to explain the observed species differences in in vivo models, increase understanding of the impact of active transport processes on pharmacokinetics and distribution, and improve the quality of predictions from animal studies to humans.

  5. Inhibition of Enhancer of Zeste Homolog 2 (EZH2) expression is associated with decreased tumor cell proliferation, migration and invasion in endometrial cancer cell lines

    PubMed Central

    Eskander, Ramez N.; Ji, Tao; Huynh, Be; Wardeh, Rooba; Randall, Leslie M; Hoang, Bang

    2013-01-01

    Objective To investigate the impact of Enhancer of Zeste Homolog 2 (EZH2) expression on endometrial cancer cell line behavior. Methods/materials EZH2 expression levels were compared between the non-malignant endometrial cell line T-HESC, and 3 endometrial cancer cell lines, ECC-1, RL95-2 and HEC1-A. Stable EZH2 knockdown cell lines were created and the impact on cellular proliferation, migration and invasion were determined. Fluorescent activated cell sorting was used to examine effects of EZH2 silencing on cell cycle progression. EZH2 expression in endometrial cancer tissue specimens was examined using immunohistochemistry. Comparison of differences between control and shEZH2 cell lines was performed using student's t test and Fischer's exact test. Results EZH2 protein expression was increased in all 3 cancer cell lines, and human endometrial cancer tissue specimens relative to control. RNA interference of EZH2 expression in ECC-1, RL95-2, and HEC1-A significantly decreased cell proliferation, migration and invasion. Down regulation of EZH2 expression resulted in a significant increase in the proportion of cells arrested in G2/M. RNA interference of EZH2 expression was associated with an increase in the expression of Wnt pathway inhibitors sFRP1 and DKK3, and a concomitant decrease in β-catenin. EZH2 expression in human tissue samples was significantly associated with increased stage, grade, depth of invasion and nodal metastasis. Conclusions EZH2 expression is associated with tumor cell proliferation, migration and invasion in 3 endometrial cancer cell lines, as well as increased stage, grade, depth of invasion and nodal metastasis in human cancer tissue specimens. Further investigation into this potential therapeutic target is warranted. PMID:23792601

  6. The expression of S100P increases and promotes cellular proliferation by increasing nuclear translocation of β-catenin in endometrial cancer.

    PubMed

    Guo, Luyan; Chen, Shuqin; Jiang, Hongye; Huang, Jiaming; Jin, Wenyan; Yao, Shuzhong

    2014-01-01

    There is increasing evidence suggesting that S100P has a significant role in cancer, and is associated with poor clinical outcomes. The expression of S100P mRNA and protein in endometrial cancer and normal endometrium tissues was detected by real-time quantitative RT-PCR and immunohistochemistry. Moreover, we reduced the expression of S100P in HEC-1A and Ishikawa endometrial cancer cell lines by siRNA transfection. Based on the reduced S100P mRNA expression, we measured the effects of S100P on cellular proliferation by the cell-counting kit-8. Nuclear β-catenin protein level was detected by western blotting. Cyclin D1 and c-myc mRNA expression regulated by β-catenin was detected by real-time quantitative RT-PCR. We found that the expression of S100P mRNA and protein increased in endometrial cancer tissues compared with the normal endometrium. Local S100P expression progressively increased from pathologic differenciation grade 1 to 3. After reducing the S100P expression, the cellular proliferation ability, nuclear β-catenin protein level, cyclin D1 and c-myc mRNA levels reduced. It indicated that S100P could promote cell proliferation by increasing nuclear translocation of β-catenin. The expression of S100P mRNA and protein in endometrial cancer significantly increased and is associated with pathologic differenciation grade. S100P may promote endometrial cell proliferation by increasing nuclear translocation of β-catenin.

  7. Initial Molecular-Level Response to Artificial Selection for Increased Aerobic Metabolism Occurs Primarily through Changes in Gene Expression.

    PubMed

    Konczal, Mateusz; Babik, Wiesław; Radwan, Jacek; Sadowska, Edyta T; Koteja, Paweł

    2015-06-01

    Experimental evolution combined with genome or transcriptome resequencing (Evolve and Resequence) represents a promising approach for advancing our understanding of the genetic basis of adaptation. Here, we applied this strategy to investigate the effect of selection on a complex trait in lines derived from a natural population of a small mammal. We analyzed the liver and heart transcriptomes of bank voles (Myodes [=Clethrionomys] glareolus) that had been selected for increased aerobic metabolism. The organs were sampled from 13th generation voles; at that point, the voles from four replicate selected lines had 48% higher maximum rates of oxygen consumption than those from four control lines. At the molecular level, the response to selection was primarily observed in gene expression: Over 300 genes were found to be differentially expressed between the selected and control lines and the transcriptome-wide pattern of expression distinguished selected lines from controls. No evidence for selection-driven changes of allele frequencies at coding sites was found: No single nucleotide polymorphism (SNP) changed frequency more than expected under drift alone and frequency changes aggregated over all SNPs did not separate selected and control lines. Nevertheless, among genes which showed highest differentiation in allele frequencies between selected and control lines we identified, using information about gene functions and the biology of the selected phenotype, plausible targets of selection; these genes, together with those identified in expression analysis, have been prioritized for further studies. Because our selection lines were derived from a natural population, the amount and the spectrum of variation available for selection probably closely approximated that typically found in populations of small mammals. Therefore, our results are relevant to the understanding of the molecular basis of complex adaptations occurring in natural vertebrate populations.

  8. Silencing of LINE-1 retrotransposons contributes to variation in small noncoding RNA expression in human cancer cells

    PubMed Central

    Ohms, Stephen; Rangasamy, Danny

    2014-01-01

    Noncoding RNAs are key players in the maintenance of genomic integrity, particularly in silencing the expression of repetitive elements, some of which are retrotransposable and capable of causing genomic instability. Recent computational studies suggest an association between L1 expression and the generation of small RNAs. However, whether L1 expression has a role in the activation of small RNA expression has yet to be determined experimentally.; Here we report a global analysis of small RNAs in deep sequencing from L1-active and L1-silenced breast cancer cells. We found that cells in which L1 expression was silenced exhibited greatly increased expression of a number of miRNAs and in particular, members of the let-7 family. In addition, we found differential expression of a few piRNAs that might potentially regulate gene expression. We also report the identification of several repeat RNAs against LTRs, LINEs and SINE elements. Although most of the repeat RNAs mapped to L1 elements, in general we found no significant differences in the expression levels of repeat RNAs in the presence or absence of L1 expression except for a few RNAs targeting subclasses of L1 elements. These differentially expressed small RNAs may function in human genome defence responses. PMID:24980824

  9. Heparin treatment increases thioredoxin interacting protein expression in hepatocellular carcinoma cells.

    PubMed

    Gunes, Aysim; Iscan, Evin; Topel, Hande; Avci, Sanem Tercan; Gumustekin, Mukaddes; Erdal, Esra; Atabey, Nese

    2015-08-01

    Heparins play an important role in cell growth, differentiation, migration and invasion. However, the molecular mechanisms of heparin mediated cellular behaviors are not well defined. To determine the effect of heparin on gene expression, we performed a cDNA microarray in a hepatocellular carcinoma cell line and found that heparin regulates transcription of genes involved in glucose metabolism. In this study, we showed a new role of heparin in the regulation of thioredoxin interacting protein, which is a major regulator of glucose metabolism, in hepatocellular carcinoma cell lines. We determined the importance of a unique carbohydrate response element located on its promoter for the heparin-induced activation of thioredoxin-interacting protein and the modulatory role of heparin on nuclear accumulation of carbohydrate response element associated proteins. We showed the importance of heparin mediated histone modifications and down-regulation of Enhancer of zeste 2 polycomb repressive complex 2 expression for heparin mediated overexpression of thioredoxin-interacting protein. When we tested biological significance of these data; we observed that cells overexpressing thioredoxin-interacting protein are less adhesive and proliferative, however they have a higher migration and invasion ability. Interestingly, heparin treatment increased thioredoxin-interacting protein expression in liver of diabetic rats. In conclusion, our results show that heparin activates thioredoxin-interacting protein expression in liver and hepatocellular carcinoma cells and provide the first evidences of regulatory roles of heparin on carbohydrate response element associated factors. This study will contribute future understanding of the effect of heparin on glucose metabolism and glucose independent overexpression of thioredoxin-interacting protein during hepatocarcinogenesis.

  10. Prevalent expression of fibroblast growth factor (FGF) receptors and FGF2 in human tumor cell lines.

    PubMed

    Chandler, L A; Sosnowski, B A; Greenlees, L; Aukerman, S L; Baird, A; Pierce, G F

    1999-05-05

    Basic fibroblast growth factor (FGF2) has potent mitogenic and angiogenic activities that have been implicated in tumor development and malignant progression. The biological effects of FGF2 and other members of the FGF ligand family are mediated by 4 transmembrane tyrosine kinase receptors (FGFRs). To better understand the roles of FGFRs in cancer, the expression of FGF2 and each of the 4 FGFRs was assessed by RNase protection analysis of 60 human tumor cell lines, representing 9 tumor types. Expression of at least one FGFR isoform was detected in 90% and FGF2 mRNA in 35% of the cell lines. Our comprehensive analysis of FGF2 and FGFR expression in human tumor cell lines provides evidence that FGF signaling pathways are active in a majority of human tumor cell lines, and lends support to the development of anti-tumor strategies that target FGFRs.

  11. Regret Expression and Social Learning Increases Delay to Sexual Gratification

    PubMed Central

    Quisenberry, Amanda J.; Eddy, Celia R.; Patterson, David L.; Franck, Christopher T.; Bickel, Warren K.

    2015-01-01

    Objective Modification and prevention of risky sexual behavior is important to individuals’ health and public health policy. This study employed a novel sexual discounting task to elucidate the effects of social learning and regret expression on delay to sexual gratification in a behavioral task. Methods Amazon Mechanical Turk Workers were assigned to hear one of three scenarios about a friend who engages in similar sexual behavior. The scenarios included a positive health consequence, a negative health consequence or a negative health consequence with the expression of regret. After reading one scenario, participants were asked to select from 60 images, those with whom they would have casual sex. Of the selected images, participants chose one image each for the person they most and least want to have sex with and person most and least likely to have a sexually transmitted infection. They then answered questions about engaging in unprotected sex now or waiting some delay for condom-protected sex in each partner condition. Results Results indicate that the negative health outcome scenario with regret expression resulted in delayed sexual gratification in the most attractive and least STI partner conditions, whereas in the least attractive and most STI partner conditions the negative health outcome with and without regret resulted in delayed sexual gratification. Conclusions Results suggest that the sexual discounting task is a relevant laboratory measure and the framing of information to include regret expression may be relevant for prevention of risky sexual behavior. PMID:26280349

  12. Agouti expression in human adipose tissue: functional consequences and increased expression in type 2 diabetes.

    PubMed

    Smith, Steven R; Gawronska-Kozak, Barbara; Janderová, Lenka; Nguyen, Taylor; Murrell, Angela; Stephens, Jacqueline M; Mynatt, Randall L

    2003-12-01

    It is well recognized that the agouti/melanocortin system is an important regulator of body weight homeostasis. Given that agouti is expressed in human adipose tissue and that the ectopic expression of agouti in adipose tissue results in moderately obese mice, the link between agouti expression in human adipose tissue and obesity/type 2 diabetes was investigated. Although there was no apparent relationship between agouti mRNA levels and BMI, agouti mRNA levels were significantly elevated in subjects with type 2 diabetes. The regulation of agouti in cultured human adipocytes revealed that insulin did not regulate agouti mRNA, whereas dexamethasone treatment potently increased the levels of agouti mRNA. Experiments with cultured human preadipocytes and with cells obtained from transgenic mice that overexpress agouti demonstrated that melanocortin receptor (MCR) signaling in adipose tissue can regulate both preadipocyte proliferation and differentiation. Taken together, these results reveal that agouti can regulate adipogenesis at several levels and suggest that there are functional consequences of elevated agouti levels in human adipose tissue. The influence of MCR signaling on adipogenesis combined with the well-established role of MCR signaling in the hypothalamus suggest that adipogenesis is coordinately regulated with food intake and energy expenditure.

  13. Cisplatin-resistant cells express increased levels of a factor that recognizes damaged DNA

    SciTech Connect

    Chu, G.; Chang, E. )

    1990-05-01

    Cancer treatment with the drug cisplatin is often thwarted by the emergence of drug-resistant cells. To study this phenomenon, the authors identified two independent cellular factors that recognize cisplatin-damaged DNA. One of the two factors, designated XPE binding factor, is deficient in complementation group E of xeroderma pigmentosum, an inherited disease characterized by defective repair of DNA damaged by ultraviolet radiation, cisplatin, and other agents. Human tumor cell lines selected for resistance to cisplatin showed more efficient DNA repair and increased expression of XPE binding factor. These results suggest that XPE binding factor may be responsible, at least in part, for the development of cisplatin resistance in human tumors and that the mechanism may be increased DNA repair.

  14. Silencing of CerS6 increases the invasion and glycolysis of melanoma WM35, WM451 and SK28 cell lines via increased GLUT1-induced downregulation of WNT5A.

    PubMed

    Tang, Yuanyuan; Cao, Ke; Wang, Qi; Chen, Jia; Liu, Rui; Wang, Shaohua; Zhou, Jianda; Xie, Huiqing

    2016-05-01

    Ceramide synthases (CerSs) have been shown to regulate numerous aspects of cancer development. CerS6 has been suggested to be involved in cancer etiology. However, little is known concerning the exact effect of CerS6 on the malignant behavior of melanoma, including glycolysis, proliferation and invasion. In the present study, we found that the expression of CerS6 was low in the melanoma cell lines, including WM35, WM451 and SK-28, and the expression level was related to the malignanct behavior of the melanoma cell lines. We constructed overexpression and silencing models of CerS6 in three melanoma cell lines and found that silencing of CerS6 promoted the ability of proliferation and invasion in the melanoma cell lines. Additionally, downregulation of CerS6 upregulated the activity of glycolysis-related enzyme, and enhanced the expression of glycolysis-related genes, including GLUT1 and MCT1. Furthermore, we identified the genes whose expression levels were changed after silencing of CerS6 by gene microarray. The expression of glycolysis-related gene SLC2A1 (also known as GLUT1) was found to be upregulated, while notably WNT5A was downregulated. The altered expression of GLUT1 and WNT5A was verified by qPCR and western blotting. Furthermore, silencing of GLUT1 in the melanoma cells resulted in the increased expression of WNT5A and the decreased ability of invasion and proliferation in the melanoma cells. Collectively, silencing of CerS6 induced the increased expression of GLUT1, which downregulated the expression of WNT5A and enhanced the invasion and proliferation of melanoma cells. Thus, CerS6 may provide a novel therapeutic target for melanoma treatment.

  15. LINE-1 retrotransposition events regulate gene expression after X-ray irradiation.

    PubMed

    Banaz-Yaşar, Ferya; Gedik, Nilgün; Karahan, Selda; Diaz-Carballo, David; Bongartz, Birthe M; Ergün, Süleyman

    2012-09-01

    Long interspersed nuclear element-1 (LINE-1) retrotransposons are mobile elements that insert into new genomic locations via reverse transcription of an RNA intermediate. The mechanism of retrotransposition is not entirely understood. The integration of these elements occurs by target-primed reverse transcription (TPRT), which initiates double-strand breaks (DSBs) during the LINE-1 integration. Also, X-ray is known to induce DNA damage. The aim of this study was to evaluate the potential effects of LINE-1 de novo retrotransposition on the expression of different genes after X-ray irradiation in human endothelial cells. After stable transfection of the human hybrid endothelial cell line EA.hy926 with the human LINE-1 element, we analyzed the expression of different genes after irradiation with 5 Gy X-rays by reverse transcription-polymerase chain reaction (RT-PCR). We determine the expression level of phosphorylated p53 and γ-histone H2AX protein levels upon X-ray irradiation with 5 Gy for 24 h. Our results showed that EA.hy926 LINE-1 cell clones react with a strong upregulation of phosphorylated p53 protein, already 15 min after irradiation compared to the wild type (WT) cells. Also, the expression of γ-histone H2AX protein was elevated in the cell clones with retrotransposition events 15 min after irradiation, whereas the WT cells have a delayed expression of phosphorylated histone H2AX protein. Taken together, our findings provide that LINE-1 retrotransposition events regulate different gene expression after irradiation in the EA.hy926 cell line.

  16. Sensitivity of malignant rhabdoid tumor cell lines to PD 0332991 is inversely correlated with p16 expression

    SciTech Connect

    Katsumi, Yoshiki; Iehara, Tomoko; Miyachi, Mitsuru; Yagyu, Shigeki; Tsubai-Shimizu, Satoko; Kikuchi, Ken; Tamura, Shinichi; Kuwahara, Yasumichi; Tsuchiya, Kunihiko; Kuroda, Hiroshi; Sugimoto, Tohru; Houghton, Peter J.; Hosoi, Hajime

    2011-09-16

    Highlights: {yields} PD 0332991 (PD) could suppress four of five malignant rhabdoid tumor (MRT) cell lines. {yields} The sensitivity of the MRT cell lines to PD was inversely correlated with p16 expression (r = 0.951). {yields} p16 expression in MRT could be used to predict its sensitivity to PD. {yields} PD may be an attractive agent for patients with MRT whose tumors express low levels of p16. -- Abstract: Malignant rhabdoid tumor (MRT) is a rare and highly aggressive neoplasm of young children. MRT is characterized by inactivation of integrase interactor 1 (INI1). Cyclin-dependent kinase 4 (CDK4), which acts downstream of INI1, is required for the proliferation of MRT cells. Here we investigated the effects of PD 0332991 (PD), a potent inhibitor of CDK4, against five human MRT cell lines (MP-MRT-AN, KP-MRT-RY, G401, KP-MRT-NS, KP-MRT-YM). In all of the cell lines except KP-MRT-YM, PD inhibited cell proliferation >50%, (IC{sub 50} values 0.01 to 0.6 {mu}M) by WST-8 assay, and induced G1-phase cell cycle arrest, as shown by flow cytometry and BrdU incorporation assay. The sensitivity of the MRT cell lines to PD was inversely correlated with p16 expression (r = 0.951). KP-MRT-YM cells overexpress p16 and were resistant to the growth inhibitory effect of PD. Small interfering RNA against p16 significantly increased the sensitivity of KP-MRT-YM cells to PD (p < 0.05). These results suggest that p16 expression in MRT could be used to predict its sensitivity to PD. PD may be an attractive agent for patients with MRT whose tumors express low levels of p16.

  17. Increased chemosensitivity and radiosensitivity of human breast cancer cell lines treated with novel functionalized single-walled carbon nanotubes

    PubMed Central

    Jia, Yijun; Weng, Ziyi; Wang, Chuanying; Zhu, Mingjie; Lu, Yunshu; Ding, Longlong; Wang, Yongkun; Cheng, Xianhua; Lin, Qing; Wu, Kejin

    2017-01-01

    Hypoxia is a major cause of treatment resistance in breast cancer. Single-walled carbon nanotubes (SWCNTs) exhibit unique properties that make them promising candidates for breast cancer treatment. In the present study, a new functionalized single-walled carbon nanotube carrying oxygen was synthesized; it was determined whether this material could increase chemosensitivity and radiosensitivity of human breast cancer cell lines, and the underlying mechanisms were investigated. MDA-MB-231 cells growing in folic acid (FA) free medium, MDA-MB-231 cells growing in medium containing FA and ZR-75-1 cells were treated with chemotherapy drugs or radiotherapy with or without tombarthite-modified-FA-chitosan (R-O2-FA-CHI)-SWCNTs under hypoxic conditions, and the cell viability was determined by water-soluble tetrazolium salts-1 assay. The cell surviving fractions were determined by colony forming assay. Cell apoptosis induction was monitored by flow cytometry. Expression of B-cell lymphoma 2 (Bcl-2), survivin, hypoxia-inducible factor 1-α (HIF-1α), multidrug resistance-associated protein 1 (MRP-1), P-glycoprotein (P-gp), RAD51 and Ku80 was monitored by western blotting. The novel synthesized R-O2-FA-CHI-SWCNTs were able to significantly enhance the chemosensitivity and radiosensitivity of human breast cancer cell lines and the material exhibited its expected function by downregulating the expression of Bcl-2, survivin, HIF-1α, P-gp, MRP-1, RAD51 and Ku80. PMID:28123543

  18. Growth dynamics and cyclin expression in cutaneous T-cell lymphoma cell lines

    PubMed Central

    Biskup, Edyta; Manfé, Valentina; Kamstrup, Maria R.; Gniadecki, Robert

    2010-01-01

    We have investigated cell growth dynamics and cyclins B1 and E expression in cell lines derived from mycosis fungoides (MyLa), Sézary syndrome (SeAx), and CD30+ lympho-proliferative diseases (Mac1, Mac2a, JK). Mac1 and Mac2a had the highest growth rate (doubling time 18–28 h, >90% cycling cells) whereas SeAx was proliferating slowly (doubling time 55 h, approximately 35% cycling cells). Expression of cyclin B1 correlated positively with doubling time whereas expression of cyclin E was unscheduled and constant across the investigated cell lines. All cell lines exhibited high expression of PCNA. Thus, we concluded that cyclin B1 could be used for rapid screening of cell proliferation in malignant lymphocytes derived from cutaneous T-cell lymphoma. PMID:25386244

  19. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    PubMed Central

    2012-01-01

    Background Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Methods Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. Results CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 103 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 105 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). Conclusions We characterized a self-renewing subpopulation of CICs found among four well known human

  20. Strategy for increased efficiency of transfection in human cell lines using radio frequency electroporation.

    PubMed

    Zald, P B; Cotter, M A; Robertso, E S

    2001-02-01

    Traditional electroporation devices use direct current electric fields to stimulate the uptake of oligonucleotides, plasmids, short peptides, and proteins into a variety of cell types. A variation of this widely used technique is now available which relies on radio frequency (RF) electrical pulses. This oscillating type of electrical field reportedly elicits greater uptake of plasmid DNA across the plasma membrane. We evaluated a protocol for RF electroporation of the a human embryonic kidney cell line and a Burkitt's lymphoma (BL) cell line for effeciency of transfection by RF electroporation. The plasmid EGFP, which codes for the widely used fusion protein, enhanced green fluorescent protein (EGFP), was used as a reporter of plasmid uptake after transfections. Transfection efficiency consistently increased approximately 30% from that typically obtained with conventional DC type electroporation and was accompanied by greater survivability of cells. Additionally, in some instances, percent transfection efficiency increased to over 70%. Thus, RF electroporation represents an improved methodology for transfection of human cell lines. Moreover, the RF protocol is simple to incorporate in laboratories already utilizing conventional electroporation devices and techniques.

  1. The increased expression of fatty acid-binding protein 9 in prostate cancer and its prognostic significance

    PubMed Central

    Al Fayi, Majed Saad; Gou, Xiaojun; Forootan, Shiva S.; Al-Jameel, Waseem; Bao, Zhengzheng; Rudland, Philip R.; Cornford, Philip A.; Hussain, Syed A.; Ke, Youqiang

    2016-01-01

    In contrast to numerous studies conducted to investigate the crucial role of fatty acid binding protein 5 (FABP5) in prostate cancer, investigations on the possible involvement of other FABPs are rare. Here we first measured the mRNA levels of 10 FABPs in benign and malignant prostate cell lines and identified the differentially expressed FABP6 and FABP9 mRNAs whose levels in all malignant cell lines were higher than those in the benign cells. Thereafter we assessed the expression status of FABP6 and FABP9 in both prostate cell lines and in human tissues. FABP6 protein was overexpressed only in 1 of the 5 malignant cell lines and its immunostaining intensities were not significantly different between benign and malignant prostate tissues. In contrast, FABP9 protein was highly expressed in highly malignant cell lines PC-3 and PC3-M, but its level in the benign PNT-2 and other malignant cell lines was not detectable. When analysed in an archival set of human prostate tissues, immunohistochemical staining intensity for FABP9 was significantly higher in carcinomas than in benign cases and the increase in FABP9 was significantly correlated with reduced patient survival times. Moreover, the increased level of staining for FABP9 was significantly associated with the increased joint Gleason scores (GS) and androgen receptor index (AR). Suppression of FABP9 expression in highly malignant PC3-M cells inhibited their invasive potential. Our results suggest that FABP9 is a valuable prognostic marker to predict the outcomes of prostate cancer patients, perhaps by playing an important role in prostate cancer cell invasion. PMID:27779102

  2. Frequent Attenuation of the WWOX Tumor Suppressor in Osteosarcoma is Associated with Increased Tumorigenicity and Aberrant RUNX2 Expression

    PubMed Central

    Kurek, Kyle; Del Mare, Sara; Salah, Zaidoun; Abdeen, Suhaib; Sadiq, Hussain; Lee, Sukhee; Gaudio, Eugenio; Zanesi, Nicola; Jones, Kevin B.; DeYoung, Barry; Amir, Gail; Gebhardt, Mark; Warman, Matthew; Stein, Gary S.; Stein, Janet L.; Lian, Jane B.; Aqeilan, Rami I.

    2011-01-01

    The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma (OS), an aggressive bone tumor with poor prognosis that often metastasizes to lung. On the basis of these observations, we examined the status of WWOX in human OS specimens and cell lines. In human OS clinical samples, WWOX expression was absent or reduced in 58% of tumors examined (P< 0.0001). Compared to the primary tumors, WWOX levels frequently increased in tumors resected following chemotherapy. In contrast, tumor metastases to lung often exhibited reduced WWOX levels, relative to the primary tumor. In human OS cell lines having reduced WWOX expression, ectopic expression of WWOX inhibited proliferation and attenuated invasion in vitro, and suppressed tumorgenicity in nude mice. Expression of WWOX was associated with reduced RUNX2 expression in OS cell lines, whereas Runx2 levels were elevated in femurs of Wwox-deficient mice. Furthermore, WWOX reconstitution in HOS cells was associated with downregulation of RUNX2 levels and RUNX2 target genes, consistent with the ability of WWOX to suppress RUNX2 transactivation activity. In clinical samples, RUNX2 was expressed in the majority of primary tumors and undetectable in most tumors resected following chemotherapy, whereas most metastases were RUNX2 positive. Our results deepen the evidence of a tumor suppressor role for WWOX in OS, furthering its prognostic and therapeutic significance in this disease. PMID:20530675

  3. Frequent attenuation of the WWOX tumor suppressor in osteosarcoma is associated with increased tumorigenicity and aberrant RUNX2 expression.

    PubMed

    Kurek, Kyle C; Del Mare, Sara; Salah, Zaidoun; Abdeen, Suhaib; Sadiq, Hussain; Lee, Suk-Hee; Gaudio, Eugenio; Zanesi, Nicola; Jones, Kevin B; DeYoung, Barry; Amir, Gail; Gebhardt, Mark; Warman, Matthew; Stein, Gary S; Stein, Janet L; Lian, Jane B; Aqeilan, Rami I

    2010-07-01

    The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma (OS), an aggressive bone tumor with poor prognosis that often metastasizes to lung. On the basis of these observations, we examined the status of WWOX in human OS specimens and cell lines. In human OS clinical samples, WWOX expression was absent or reduced in 58% of tumors examined (P < 0.0001). Compared with the primary tumors, WWOX levels frequently increased in tumors resected following chemotherapy. In contrast, tumor metastases to lung often exhibited reduced WWOX levels relative to the primary tumor. In human OS cell lines having reduced WWOX expression, ectopic expression of WWOX inhibited proliferation and attenuated invasion in vitro, and suppressed tumorigenicity in nude mice. Expression of WWOX was associated with reduced RUNX2 expression in OS cell lines, whereas RUNX2 levels were elevated in femurs of Wwox-deficient mice. Furthermore, WWOX reconstitution in HOS cells was associated with downregulation of RUNX2 levels and RUNX2 target genes, consistent with the ability of WWOX to suppress RUNX2 transactivation activity. In clinical samples, RUNX2 was expressed in the majority of primary tumors and undetectable in most tumors resected following chemotherapy, whereas most metastases were RUNX2 positive. Our results deepen the evidence of a tumor suppressor role for WWOX in OS, furthering its prognostic and therapeutic significance in this disease.

  4. Metallothionein-3 Increases Triple-Negative Breast Cancer Cell Invasiveness via Induction of Metalloproteinase Expression.

    PubMed

    Kmiecik, Alicja M; Pula, Bartosz; Suchanski, Jaroslaw; Olbromski, Mateusz; Gomulkiewicz, Agnieszka; Owczarek, Tomasz; Kruczak, Anna; Ambicka, Aleksandra; Rys, Janusz; Ugorski, Maciej; Podhorska-Okolow, Marzena; Dziegiel, Piotr

    2015-01-01

    It has been recently found that metallothionein-3 (MT3) enhances the invasiveness and tumorigenesis of prostate cancer cells. This finding is in contrast to those of earlier studies, which indicated that overexpression of MT3 in breast cancer and prostate cancer cell lines inhibits their growth in vitro. Therefore, to clarify the role of MT3 in breast cancer progression, we analyzed the effect of MT3-overexpression on proliferation, invasiveness, migration, and tumorigenesis of breast cancer MDA-MB-231/BO2 cells. It was found that MDA-MB-231/BO2 cells overexpressing MT3 were characterized by increased invasiveness in vitro, compared to the control cells. Interestingly, this increased invasiveness correlated with a highly increased concentration of MMP3 in the culture supernatants (p<0.0001). Our data suggest that MT3 may regulate breast cancer cell invasiveness by modulating the expression of MMP3. These experimental results, obtained using triple-negative MDA-MB-231/BO2 cells, were further supported by clinical data. It was found that, in triple-negative breast cancer (TNBC), nuclear MT3 immunoreactivity in cancer cells tended to be associated with patients' shorter disease-specific survival, suggesting that nuclear MT3 expression may be a potential marker of poor prognosis of triple-negative TNBC cases.

  5. Metallothionein-3 Increases Triple-Negative Breast Cancer Cell Invasiveness via Induction of Metalloproteinase Expression

    PubMed Central

    Suchanski, Jaroslaw; Olbromski, Mateusz; Gomulkiewicz, Agnieszka; Owczarek, Tomasz; Kruczak, Anna; Ambicka, Aleksandra; Rys, Janusz; Ugorski, Maciej; Podhorska-Okolow, Marzena; Dziegiel, Piotr

    2015-01-01

    It has been recently found that metallothionein-3 (MT3) enhances the invasiveness and tumorigenesis of prostate cancer cells. This finding is in contrast to those of earlier studies, which indicated that overexpression of MT3 in breast cancer and prostate cancer cell lines inhibits their growth in vitro. Therefore, to clarify the role of MT3 in breast cancer progression, we analyzed the effect of MT3-overexpression on proliferation, invasiveness, migration, and tumorigenesis of breast cancer MDA-MB-231/BO2 cells. It was found that MDA-MB-231/BO2 cells overexpressing MT3 were characterized by increased invasiveness in vitro, compared to the control cells. Interestingly, this increased invasiveness correlated with a highly increased concentration of MMP3 in the culture supernatants (p<0.0001). Our data suggest that MT3 may regulate breast cancer cell invasiveness by modulating the expression of MMP3. These experimental results, obtained using triple-negative MDA-MB-231/BO2 cells, were further supported by clinical data. It was found that, in triple-negative breast cancer (TNBC), nuclear MT3 immunoreactivity in cancer cells tended to be associated with patients’ shorter disease-specific survival, suggesting that nuclear MT3 expression may be a potential marker of poor prognosis of triple-negative TNBC cases. PMID:25933064

  6. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  7. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons

    PubMed Central

    2014-01-01

    Background Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Results Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund’s adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. Conclusions

  8. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines.

    PubMed

    Chen, Xuan; Wang, Cong; Guan, Shanghui; Liu, Yuan; Han, Lihui; Cheng, Yufeng

    2016-07-01

    Telomerase is a type of reverse transcriptase that is overexpressed in almost all human tumor cells, but not in normal tissues, which provides an opportunity for radiosensitization targeting telomerase. Zidovudine, abacavir and lamivudine are reverse transcriptase inhibitors that have been applied in clinical practice for several years. We sought to explore the radiosensitization effect of these three drugs on human esophageal cancer cell lines. Eca109 and Eca9706 cells were treated with zidovudine, abacavir and lamivudine for 48 h before irradiation was administered. Samples were collected 1 h after irradiation. Clonal efficiency assay was used to evaluate the effect of the combination of these drugs with radiation doses of 2, 4, 6 and 8 Gy. DNA damage was measured by comet assay. Telomerase activity (TA) and relative telomere length (TL) were detected and evaluated by real-time PCR. Apoptosis rates were assessed by flow cytometric analysis. The results showed that all the drugs tested sensitized the esophageal squamous cell carcinoma (ESCC) cell lines to radiation through an increase in radiation-induced DNA damage and cell apoptosis, deregulation of TA and decreasing the shortened TL caused by radiation. Each of the drugs investigated (zidovudine, abacavir and lamivudine) could be used for sensitizing human esophageal cancer cell lines to radiation. Consequently, the present study supports the potential of these three drugs as therapeutic agents for the radiosensitization of esophageal squamous cell cancer.

  9. Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance.

    PubMed

    Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-06-01

    Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.

  10. Morphine-Induced Constipation Develops With Increased Aquaporin-3 Expression in the Colon via Increased Serotonin Secretion.

    PubMed

    Kon, Risako; Ikarashi, Nobutomo; Hayakawa, Akio; Haga, Yusuke; Fueki, Aika; Kusunoki, Yoshiki; Tajima, Masataka; Ochiai, Wataru; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2015-06-01

    Aquaporin-3 (AQP3) is a water channel that is predominantly expressed in the colon, where it plays a critical role in the regulation of fecal water content. This study investigated the role of AQP3 in the colon in morphine-induced constipation. AQP3 expression levels in the colon were analyzed after oral morphine administration to rats. The degree of constipation was analyzed after the combined administration of HgCl(2) (AQP3 inhibitor) or fluoxetine (5-HT reuptake transporter [SERT] inhibitor) and morphine. The mechanism by which morphine increased AQP3 expression was examined in HT-29 cells. AQP3 expression levels in rat colon were increased during morphine-induced constipation. The combination of HgCl(2) and morphine improved morphine-induced constipation. Treatment with morphine in HT-29 cells did not change AQP3 expression. However, 5-HT treatment significantly increased the AQP3 expression level and the nuclear translocation of peroxisome proliferator-activated receptor gamma (PPARγ) 1 h after treatment. Pretreatment with fluoxetine significantly suppressed these increases. Fluoxetine pretreatment suppressed the development of morphine-induced constipation and the associated increase in AQP3 expression in the colon. The results suggest that morphine increases the AQP3 expression level in the colon, which promotes water absorption from the luminal side to the vascular side and causes constipation. This study also showed that morphine-induced 5-HT secreted from the colon was taken into cells by SERT and activated PPARγ, which subsequently increased AQP3 expression levels.

  11. Increasing morphinan alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum.

    PubMed

    Larkin, Philip J; Miller, James A C; Allen, Robert S; Chitty, Julie A; Gerlach, Wayne L; Frick, Susanne; Kutchan, Toni M; Fist, Anthony J

    2007-01-01

    Only plants of the Papaver genus (poppies) are able to synthesize morphinan alkaloids, and cultivation of P. somniferum, opium poppy, remains critical for the production and supply of morphine, codeine and various semi-synthetic analgesics. Opium poppy was transformed with constitutively expressed cDNA of codeinone reductase (PsCor1.1), the penultimate step in morphine synthesis. Most transgenic lines showed significant increases in capsule alkaloid content in replicated glasshouse and field trials over 4 years. The morphinan alkaloid contents on a dry weight basis were between 15% and 30% greater than those in control high-yielding genotypes and control non-transgenic segregants. Transgenic leaves had approximately 10-fold greater levels of Cor transcript compared with non-transgenic controls. Two cycles of crossing of the best transgenic line into an elite high-morphine genotype resulted in significant increases in morphine and total alkaloids relative to the elite recurrent parent. No significant changes in alkaloid profiles or quantities were observed in leaf, roots, pollen and seed.

  12. Activation of the Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration potential.

    PubMed

    Alasmael, Noura; Mohan, Rati; Meira, Lisiane B; Swales, Karen E; Plant, Nick J

    2016-01-28

    Breast cancer is the commonest form of cancer in women, but successful treatment is confounded by the heterogeneous nature of breast tumours: Effective treatments exist for hormone-sensitive tumours, but triple-negative breast cancer results in poor survival. An area of increasing interest is metabolic reprogramming, whereby drug-induced alterations in the metabolic landscape of a tumour slow tumour growth and/or increase sensitivity to existing therapeutics. Nuclear receptors are transcription factors central to the expression of metabolic and transport proteins, and thus represent potential targets for metabolic reprogramming. We show that activation of the nuclear receptor FXR, either by its endogenous ligand CDCA or the synthetic GW4064, leads to cell death in four breast cancer cell lines with distinct phenotypes: MCF-10A (normal), MCF-7 (receptor positive), MDA-MB-231 and MDA-MB-468 (triple negative). Furthermore, we show that the mechanism of cell death is predominantly through the intrinsic apoptotic pathway. Finally, we demonstrate that FXR agonists do not stimulate migration in breast cancer cell lines, an important potential adverse effect. Together, our data support the continued examination of FXR agonists as a novel class of therapeutics for the treatment of breast cancer.

  13. Expression of human LINE-1 elements in enhanced by isochromosome 12p; evidence from testicular germ cell tumors and the Pallister-Killian syndrome

    SciTech Connect

    Swergold, D.

    1994-09-01

    Expression of the human LINE-1 (L1Hs) transposable element is restricted to a narrow range of cell types. Specific expression of either endogenous elements or transfected recombinant elements has been reported primarily in tumors and cell lines of germ cell origin, including the NTera2D1, 2102EP, and JEG3 cell lines. These tumors and cell lines often contain one or more copies of isochromosome 12p, or translocations of 12p. Another human condition, the Pallister-Killian syndrome, is also characterized by the mosaic presence of an isochromosome 12p in patient`s cells. M28, a previously described somatic hybrid cell line, contains a human isochromosone 12p derived from fibroblasts of a patient with Pallister-Killian syndrome in a mouse LMTK-background. I asked whether the M28 cell line would exhibit enhanced expression of endogenous or transfected L1Hs elements. Expression of transfected recombinant L1Hs elements was 10-20 fold higher in M28 than in LMTK-cells. Expression of L1Hs elements was not increased in the GM10868A somatic cell hybrid line which contains a complete human chromosome 12 in a Chinese Hamster Ovary background. Somatic cell hybrid lines containing various human chromosomes in a LMTK-background also exhibited no enhanced L1Hs expression. P40, the protein encoded by the L1Hs first open reading frame, was detected in NTera2D1 but not in non-transfected M28 cells. Preliminary promoter deletion experiments indicate that similar, but non-identical regions of the L1Hs 5{prime} UTR, contribute to high level expression in the NTera2D1 and the M28 cell lines. These data suggest that the enhanced expression of human LINE-1 elements in tumors of germ cell origin is due in part to the presence of the isochromosome 12p.

  14. Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt's lymphoma cells.

    PubMed

    Kim, Jeong Hwa; Lee, Jae Kwon

    2015-11-01

    Natural killer (NK) cells are capable of identifying and killing tumor cells as well as virus infected cells without pre-sensitization. NK cells express activating and inhibitory receptors, and can distinguish between normal and tumor cells. The present study was designed to demonstrate the importance of the expression level of NKG2D ligands on the Burkitt's lymphoma cell line, Raji, in enhancing NK cell cytolytic activity. Various flavonoids were used as stimulants to enhance the expression of NKG2D ligands. NK cell lysis activity against Raji was not changed by pre-treatment of Raji with luteolin, kaempferol, taxifolin and hesperetin. However, treatment of Raji with naringenin showed increased sensitivity to NK cell lysis than untreated control cells. The activity of naringenin was due to enhanced NKG2D ligand expression. These results provide evidence that narigenin's antitumor activity may be due to targeting of NKG2D ligand expression and suggests a possible immunotherapeutic role for cancer treatment.

  15. Induction of matrix metalloprotease-1 gene expression by retinoic acid in the human pancreatic tumour cell line Dan-G

    PubMed Central

    Marschall, Z von; Riecken, E-O; Rosewicz, S

    1999-01-01

    We have investigated the effects of retinoic acid (RA) on matrix metalloprotease-1 (MMP-1) gene expression in the human pancreatic tumour cell line Dan-G. 13-cis RA results in a time- and dose-dependent increase of MMP-1 protein concentration. These stimulatory effects were paralleled by a time- and dose-dependent increase of MMP-1 mRNA steady-state concentrations. Nuclear run-on analysis revealed that the increase of MMP-1 mRNA was partially due to an increase of MMP-1 gene transcription. In addition, 13-cis RA treatment results in an increase of MMP-1 mRNA stability. These data demonstrate that RA stimulates MMP-1 gene expression in human pancreatic carcinoma cells by transcriptional and post-transcriptional mechanisms. © 1999 Cancer Research Campaign PMID:10362099

  16. Increased hydrophobicity in Malassezia species correlates with increased proinflammatory cytokine expression in human keratinocytes.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Takeoka, Shiori; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko

    2012-11-01

    Malassezia cells stimulate cytokine production by keratinocytes, although this ability differs among Malassezia species for unknown reasons. The aim of this study was to clarify the factors determining the ability to induce cytokine production by human keratinocytes in response to Malassezia species. M. furfur NBRC 0656, M. sympodialis CBS 7222, M. dermatis JCM 11348, M. globosa CBS 7966, M. restricta CBS 7877, and three strains each of M. globosa, M. restricta, M. dermatis, M. sympodialis, and M. furfur maintained under various culture conditions were used. Normal human epidermal keratinocytes (NHEKs) (1 × 10(5) cells) and the Malassezia species (1 × 10(6) cells) were co-cultured, and IL-1α, IL-6, and IL-8 mRNA levels were determined. Moreover, the hydrophobicity and β-1,3-glucan expression at the surface of Malassezia cells were analyzed. The ability of Malassezia cells to trigger the mRNA expression of proinflammatory cytokines in NHEKs differed with the species and conditions and was dependent upon the hydrophobicity of Malassezia cells not β-1,3-glucan expression.

  17. Establishment of enhancer detection lines expressing GFP in the gut of the ascidian Ciona intestinalis.

    PubMed

    Yoshida, Reiko; Sasakura, Yasunori

    2012-01-01

    The gut is a tubular, endodermal organ for digesting food and absorbing nutrients. In this study, we characterized eight enhancer detection lines that express green fluorescent protein (GFP) in the whole or part of the digestive tube of the ascidian Ciona intestinalis. Three enhancer detection lines for the pyloric gland, a structure associated with the digestive tube, were also analyzed. These lines are valuable markers for analyzing the mechanisms of development of the gut. Based on the GFP expression of the enhancer detection lines together with morphological characteristics, the digestive tube of Ciona can be subdivided into at least 10 compartments in which different genetic cascades operate. Causal insertion sites of the enhancer detection lines were identified, and the expression pattern of the genes near the insertion sites were characterized by means of whole-mount in situ hybridization. We have characterized four and two genes that were specifically or strongly expressed in the digestive tube and pyloric gland, respectively. The present data provide the basic information and useful resources for studying gut formation in Ciona.

  18. Expression of P2Y receptors in cell lines derived from the human lung.

    PubMed

    Communi, D; Paindavoine, P; Place, G A; Parmentier, M; Boeynaems, J M

    1999-05-01

    1. Northern blotting experiments have been performed with RNA extracted from several cell lines derived from the human lung in order to detect P2Y1, P2Y2, P2Y4 and P2Y6 mRNA. We have investigated the 1HAEo- and 16HBE14o- epithelial cell lines derived from the airway epithelium, the A549 cell line displaying properties of type II alveolar epithelial cells, the CALU-3 serous cells, the 6CFSMEo- submucosal cells and the HASMSC1 airway smooth muscle cells. We have also evaluated one pancreatic epithelial cell line called CFPAC-1. These experiments revealed that P2Y2 and P2Y6 mRNA are co-expressed in the IHAEo-, 16HBE14o- and A549 epithelial cell lines. The CFPAC-1 pancreatic cell line was strongly positive for the P2Y2 receptor. No signal was obtained for the P2Y1 and P2Y4 receptors. 2. We have then performed RT-PCR experiments with specific oligonucleotides of these last two P2Y receptors with the RNA used for the Northern blotting experiments. P2Y4 mRNA was detected in five cell lines: 1HAEo-, 16HBE14o-, 6CFSMEo-, HASMSC1 and CFPAC-1. P2Y1 mRNA was only detected in the CALU-3 cell line. 3. Inositol trisphosphates assays have identified a response typical of the P2Y2 receptor in the 1HAEo- and the 16HBE14o- airway epithelial cell lines which co-express P2Y2 and P2Y6 mRNA. By contrast, the 6CFSMEo- submucosal cells expressed a UTP-specific response which displayed pharmacological characteristics compatible with the human P2Y4 receptor: in particular, there was no response to UDP or ATP and the UTP effect was totally inhibited by pertussis toxin.

  19. The expression and functional characterization of sigma (sigma) 1 receptors in breast cancer cell lines.

    PubMed

    Aydar, Ebru; Onganer, Pinar; Perrett, Rebecca; Djamgoz, Mustafa B; Palmer, Christopher P

    2006-10-28

    Sigma (sigma) receptors have been implicated in cancer. However, to date there is little molecular data demonstrating the role of sigma1 receptors in cancer. Expression of sigma1 receptors in various human cancer cell lines in comparison to non-cancerous cell lines was investigated, using real time RT-PCR and by western blotting with a sigma1 receptor specific antibody. Our results indicate that cancer cells express higher levels of sigma1 receptors than corresponding non-cancerous cells. Localization of the sigma1 receptor was investigated in MDA-MB-231 cells by immunocytochemistry and confocal microscopy, expression was visualized predominantly at the cell periphery. We have tested the effect of sigma1 and sigma2 drugs and a sigma1 receptor silencing construct on various aspects of the metastatic process on two breast cell lines of different metastatic potential and a normal breast cell line. Both sigma1 and sigma2 drugs and the sigma1 receptor silencing construct had effects on proliferation and adhesion for breast cancer cell lines, compared to a non-cancerous breast cell line. This data suggests sigma1 receptor plays a role in proliferation and adhesion of breast cancer cells. Therefore, it is likely to be a potential target for the diagnosis and therapy of breast cancer.

  20. Integration of cell line and process development to overcome the challenge of a difficult to express protein.

    PubMed

    Alves, Christina S; Gilbert, Alan; Dalvi, Swati; St Germain, Bryan; Xie, Wenqi; Estes, Scott; Kshirsagar, Rashmi; Ryll, Thomas

    2015-01-01

    This case study addresses the difficulty in achieving high level expression and production of a small, very positively charged recombinant protein. The novel challenges with this protein include the protein's adherence to the cell surface and its inhibitory effects on Chinese hamster ovary (CHO) cell growth. To overcome these challenges, we utilized a multi-prong approach. We identified dextran sulfate as a way to simultaneously extract the protein from the cell surface and boost cellular productivity. In addition, host cells were adapted to grow in the presence of this protein to improve growth and production characteristics. To achieve an increase in productivity, new cell lines from three different CHO host lines were created and evaluated in parallel with new process development workflows. Instead of a traditional screen of only four to six cell lines in bioreactors, over 130 cell lines were screened by utilization of 15 mL automated bioreactors (AMBR) in an optimal production process specifically developed for this protein. Using the automation, far less manual intervention is required than in traditional bench-top bioreactors, and much more control is achieved than typical plate or shake flask based screens. By utilizing an integrated cell line and process development incorporating medium optimized for this protein, we were able to increase titer more than 10-fold while obtaining desirable product quality. Finally, Monte Carlo simulations were performed to predict the optimal number of cell lines to screen in future cell line development work with the goal of systematically increasing titer through enhanced cell line screening.

  1. IFN-γ, IL-21, and IL-10 co-expression in evolving autoimmune vitiligo lesions of Smyth line chickens.

    PubMed

    Shi, Fengying; Erf, Gisela F

    2012-03-01

    The Smyth line (SL) of chicken is an excellent animal model for human autoimmune vitiligo. In SL vitiligo (SLV), postnatal loss of melanocytes in feathers appears to be due to cell-mediated immunity. In this study, leukocyte infiltration and associated expression (RNA) of immune function-related cytokines in growing feathers were investigated throughout SLV development and progression. Both leukocyte infiltration and cytokine expression levels started to increase near visible SLV onset (early SLV), reached peak levels during active SLV, and decreased to near pre-vitiligo levels after complete loss of melanocytes. Specifically, significant increases were noticed in relative proportions of T cells, B cells, and major histocompatibility complex (MHC) II-expressing cells during active SLV. Levels of T-cell infiltration were higher than those of B cells, with more CD8+ than CD4+ cells throughout SLV. Elevated leukocyte infiltration in early and active SLV was accompanied by increased levels of cytokine expression, especially in IFN-γ, IL-10, and IL-21. Low expression of IL-4 and IL-17 did not suggest important roles of Th2 and Th17 cells in SLV pathogenesis. Taken together, SLV appears to be a Th1-polarized autoimmune disease, whereby IFN-γ expression is strongly associated with parallel increases in IL-10 and IL-21, particularly during early and active stages of SLV.

  2. Cerium oxide nanoparticles inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression.

    PubMed

    Xiao, Yu-Feng; Li, Jian-Mei; Wang, Su-Min; Yong, Xin; Tang, Bo; Jie, Meng-Meng; Dong, Hui; Yang, Xiao-Chao; Yang, Shi-Ming

    2016-01-01

    Gastric cancer is one of the leading causes of tumor-related deaths in the world. Current treatment options do not satisfy doctors and patients, and new therapies are therefore needed. Cerium oxide nanoparticles (CNPs) have been studied as a potential therapeutic approach for treating many diseases. However, their effects on human gastric cancer are currently unknown. Therefore, in this study, we aimed to characterize the effects of CNPs on human gastric cancer cell lines (MKN28 and BGC823). Gastric cancer cells were cocultured with different concentrations of CNPs, and proliferation and migration were measured both in vitro and in vivo. We found that CNPs inhibited the migration of gastric cancer cells when applied at different concentrations, but only a relatively high concentration (10 µg/mL) of CNPs suppressed proliferation. Furthermore, we found that CNPs increased the expression of DHX15 and its downstream signaling pathways. We therefore provide evidence showing that CNPs may be a promising approach to suppress malignant activity of gastric cancer by increasing the expression of DHX15.

  3. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression.

    PubMed

    Zhang, Hao; Wei, Jing; Xue, Rong; Wu, Jin-Dan; Zhao, Wei; Wang, Zi-Zheng; Wang, Shu-Kui; Zhou, Zheng-Xian; Song, Dan-Qing; Wang, Yue-Ming; Pan, Huai-Ning; Kong, Wei-Jia; Jiang, Jian-Dong

    2010-02-01

    Our previous work demonstrated that berberine (BBR) increases insulin receptor (InsR) expression and improves glucose utility both in vitro and in animal models. Here, we study the InsR-up-regulating and glucose-lowering activities of BBR in humans. Our results showed that BBR increased InsR messenger RNA and protein expression in a variety of human cell lines, including CEM, HCT-116, SW1990, HT1080, 293T, and hepatitis B virus-transfected human liver cells. Accordingly, insulin-stimulated phosphorylations of InsR beta-subunit and Akt were increased after BBR treatment in cultured cells. In the clinical study, BBR significantly lowered fasting blood glucose (FBG), hemoglobin A(1c), triglyceride, and insulin levels in patients with type 2 diabetes mellitus (T2DM). The FBG- and hemoglobin A(1c)-lowering efficacies of BBR were similar to those of metformin and rosiglitazone. In the BBR-treated patients, the percentages of peripheral blood lymphocytes that express InsR were significantly elevated after therapy. Berberine also lowered FBG effectively in chronic hepatitis B and hepatitis C patients with T2DM or impaired fasting glucose. Liver function was improved greatly in these patients by showing reduction of liver enzymes. Our results confirmed the activity of BBR on InsR in humans and its relationship with the glucose-lowering effect. Together with our previous report, we strongly suggest BBR as an ideal medicine for T2DM with a mechanism different from metformin and rosiglitazone.

  4. Regulation of metallothionein gene expression and cellular zinc accumulation in a rat small intestinal cell line

    SciTech Connect

    Carlson, J.M.; Cousins, R.J. )

    1991-03-15

    The effects of extracellular zinc concentration on metallothionein gene expression and cellular zinc accumulation were studied in IRD-98 cells. This is a non-transformed clonal line established by Negrel, et al. from fetal rat small intestine which possess characteristics of small bowel epithelial cells. Cells were maintained in DMEM and grown to confluent monolayers. The response to media zinc concentrations over the range of 5-150 {mu}mol/L was assessed. After 24 h in culture, cell zinc and metallothionein protein concentrations were significantly increased in cells provided higher levels of media zinc. Subsequent time course experiments showed that cells exposed to higher zinc levels had significant elevations in both metallothionein mRNA, peaking at 24 h, and metallothionein protein increasing through 48 h. Furthermore, cell zinc concentrations were significantly increased. At 48 h of culture, greater than 50% of the additional cellular zinc accumulated could be attributed to elevated metallothionein protein levels. These cells represent a zinc-responsive model to examine the mechanism of zinc uptake and transcellular transport by intestinal cells and the regulatory factors involved.

  5. Human immunodeficiency virus type 1 infection of H9 cells induces increased glucose transporter expression.

    PubMed Central

    Sorbara, L R; Maldarelli, F; Chamoun, G; Schilling, B; Chokekijcahi, S; Staudt, L; Mitsuya, H; Simpson, I A; Zeichner, S L

    1996-01-01

    A clone obtained from a differential display screen for cellular genes with altered expression during human immunodeficiency virus (HIV) infection matched the sequence for the human GLUT3 facilitative glucose transporter, a high-velocity-high-affinity facilitative transporter commonly expressed in neurons of the central nervous system. Northern (RNA) analysis showed that GLUT3 expression increased during infection. Flow cytometry showed that GLUT3 protein expression increased specifically in the HIV-infected cells; this increase correlated with increased 2-deoxyglucose transport in the HIV-infected culture. HIV infection therefore leads to increased expression of a glucose transporter normally expressed at high levels in other cell types and a corresponding increase in glucose transport activity. If HIV infection places increased metabolic demands on the host cell, changes in the expression of a cellular gene that plays an important role in cellular metabolism might provide a more favorable environment for viral replication. PMID:8794382

  6. Lenalidomide affect expression level of cereblon protein in multiple myeloma cell line RPMI8226.

    PubMed

    Yang, D Y; Ren, J H; Guo, X N; Guo, X L; Cai, X Y; Guo, X F; Zhang, J N

    2015-10-29

    We investigated the mechanisms of action of immuno-modulatory drug (lenalidomide) on the protein expression of cereblon (CRBN) and their therapeutic targets in the multiple myeloma cell line RPMI8226. The multiple myeloma cell line RPMI8226 was cultured and treated with different concentrations of lenalidomide and bortezomib to determine the proliferation inhibition rate, apoptosis rate, and protein expression of CRBN. The results revealed that both lenalidomide and bortezomib inhibited the proliferation of RPMI8226 and promoted cell apoptosis. However, the protein expression of CRBN decreased signifi-cantly after treatment with lenalidomide, while bortezomib had no effect on the expression of CRBN. We confirmed that CRBN may be a target of lenalidomide.

  7. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line.

    PubMed

    Goldberg, D A; Posakony, J W; Maniatis, T

    1983-08-01

    We have used P-element-mediated transformation to introduce a cloned Drosophila alcohol dehydrogenase (Adh) gene into the germ line of ADH null flies. Six independent transformants expressing ADH were identified by their acquired resistance to ethanol. Each transformant carries a single copy of the cloned Adh gene in a different chromosomal location. Four of the six transformant lines exhibit normal Adh expression by the following criteria: quantitative levels of ADH enzyme activity in larvae and adults; qualitative tissue specificity; the size of stable Adh mRNA; and the characteristic developmental switch in utilization of two different Adh promoters. The remaining two transformants express ADH enzyme activity with the correct tissue specificity, but at a lower level than wild type. These results demonstrate that an 11.8 kb chromosomal fragment containing the Adh gene includes the cis-acting sequences necessary for its correct developmental expression, and that a variety of chromosomal sites permit proper Adh gene function.

  8. Ectopic over-expression of oncogene Pim-2 induce malignant transformation of nontumorous human liver cell line L02.

    PubMed

    Ren, Ke; Duan, Wentao; Shi, Yujun; Li, Bo; Liu, Zuojin; Gong, Jiangping

    2010-07-01

    In order to prove that ectopic over-expression of Pim-2 could induce malignant transformation of human liver cell line L02, three groups of cells were set up including human liver cell line L02 (L02), L02 cells transfected with Pim-2 gene (L02/Pim-2) and L02 cells transfected with empty-vector (L02/Vector). Pim-2 expression levels were detected. The morphology, proliferation level, apoptosis rate and migration ability of the cells were detected respectively. Then the cells were subcutaneously inoculated into athymic mice and the microstructures of the neoplasm were observed. Compared with the controls, Pim-2 expression levels were significantly higher in L02/Pim-2 cells (P<0.05), and their morphology had obvious malignant changes. They also showed a significantly increased proliferation rate (P<0.05) and migration capacity (P<0.05), as well as a significantly decreased apoptosis rate (P<0.05). Only the athymic mice inoculated with L02/Pim-2 cells could generate neoplasm, and the morphology of the neoplasm coincided with that of the hepatoma. The results manifest that ectopic Pim-2 gene could be stably expressed in L02/Pim-2 cells. Both the morphological and biological changes of L02/Pim-2 cells demonstrate the trend of malignant transformation. L02/Pim-2 cells could generate hepatoma in athymic mice. In conclusion, Pim-2 could induce malignant transformation of human liver cell line L02.

  9. Differential expression and cytoplasm/membrane distribution of endoglin (CD105) in human tumour cell lines: Implications in the modulation of cell proliferation.

    PubMed

    Postiglione, L; Di Domenico, G; Caraglia, M; Marra, M; Giuberti, G; Del Vecchio, L; Montagnani, S; Macri, M; Bruno, E M; Abbruzzese, A; Rossi, G

    2005-05-01

    Endoglin (CD105, an accessory component of the TGF-beta receptor complex) expression and distribution on different human tumour cells and its role in cellular proliferation were evaluated. We examined: 1) sixteen human carcinoma cell lines, 2) eight human sarcoma cell lines, 3) five miscellaneous tumour cell lines. HECV (endothelial cells) were employed as a positive control for endoglin expression. Normal Human Dermal Fibroblasts (NHDF) and 293 cells (epithelial kidney cells) were used as normal controls for connective and epithelial tissues, respectively. The results showed that CD105 was poorly expressed in the majority of human carcinoma cells (10/16), whereas it was highly expressed in most human sarcoma cells (7/8), and differently expressed by miscellaneous tumour cell lines. These data reflect endoglin expression by the normal counterparts of tumour cell lines, i.e. NHDF and 293 cells. However, CD105 levels in sarcoma cell lines, even though consistently lower than in NHDF, were significantly higher than those observed in carcinoma cells. Interestingly, CD105 presented a strong expression in the cytoplasm of MDA-MB-453 (breast carcinoma), NPA (papillary thyroid carcinoma), COLO-853 (melanoma) and SaOS-2 (osteosarcoma), but was weakly expressed on their cell membrane. This differential expression in the cytoplasm and on the membrane of some tumour cells, suggests a complex mechanism of translocation for this protein. The analysis of clonal growth in soft agar of some cell lines, characterized by high CD105 expression, showed an increased colony formation potential that was antagonized by the addition of anti-CD105 blocking mAb. The results indicated that endoglin is differentially expressed in human carcinoma and sarcoma cells and its overexpression modulates the proliferative rate of human solid tumour cells. Moreover, these data suggest that CD105 is involved in the regulation of TGF-beta effects in human solid malignancies, and therefore it could play an

  10. Differential pattern of integrin receptor expression in differentiated and anaplastic thyroid cancer cell lines.

    PubMed

    Hoffmann, S; Maschuw, K; Hassan, I; Reckzeh, B; Wunderlich, A; Lingelbach, S; Zielke, A

    2005-09-01

    Adhesion of tumor cells to the extracellular matrix (ECM) is a crucial step for the development of metastatic disease and is mediated by specific integrin receptor molecules (IRM). The pattern of metastatic spread differs substantially among the various histotypes of thyroid cancer (TC). However, IRM have only occasionally been characterized in TC until now. IRM expression was investigated in 10 differentiated (FTC133, 236, 238, HTC, HTC TSHr, XTC, PTC4.0/4.2, TPC1, Kat5) and two anaplastic TC cell lines (ATC, C643, Hth74), primary cultures of normal thyroid tissue (Thy1,3), and thyroid cancer specimens (TCS). Expression of 16 IRM (beta1-4, beta7, alpha1-6, alphaV, alphaIIb, alphaL, alphaM, alphaX) and of four IRM heterodimers (alpha2beta1, alpha5beta1, alphaVbeta3, alphaVbeta5), was analyzed by fluorescent-activated cell sorter (FACS) and immunohistochemical staining. Thyroid tumor cell adhesion to ECM proteins and their IRM expression in response to thyrotropin (TSH) was assessed. Follicular TC cell lines presented high levels of integrins alpha2, alpha3, alpha5, beta1, beta3 and low levels of alpha1, whereas papillary lines expressed a heterogenous pattern of IRM, dominated by alpha5 and beta1. ATC mainly displayed integrins alpha2, alpha3, alpha5, alpha6, beta1 and low levels of alpha1, alpha4 and alphaV. Integrin heterodimers correlated with monomer expression. Evaluation of TCS largely confirmed these results with few exceptions, namely alpha4, alpha6, and beta3. The ability of TC cell lines to adhere to purified ECM proteins correlated with IRM expression. TSH induced TC cell adhesion in a dose-dependent fashion, despite an unchanged array of IRM expression or level of a particular IRM. Thyroid carcinoma cell lines of different histogenetic background display profoundly different patterns of IRM expression that appear to correlate with tumor aggressiveness. In vitro adhesion to ECM proteins and IRM expression concur. Finally, TSH-stimulated adhesion of

  11. Conceptus development during blastocyst elongation in lines of pigs selected for increased uterine capacity or ovulation rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lines of pigs selected for increased uterine capacity (UC) have improved conceptus survival while pigs selected for increased ovulation rate (OR) have decreased conceptus survival relative to an unselected control (CO) line. The objective of this study was to evaluate conceptus development during em...

  12. Increased catalase expression improves muscle function in mdx mice.

    PubMed

    Selsby, Joshua T

    2011-02-01

    It has been well established that oxidative stress contributes to pathology associated with Duchenne muscular dystrophy (DMD). I hypothesized that overexpression of the antioxidant enzyme catalase would improve muscle function in the mdx mouse, the mouse model of DMD. To test this hypothesis, neonatal mdx mice were injected with a recombinant adeno-associated virus driving the catalase transgene. Animals were killed 4 or 6 weeks or 6 months following injection. Muscle function was generally improved by catalase overexpression. Four weeks following injection, extensor digitorum longus specific tension was improved twofold, while soleus was similar between groups. Resistance to contraction-induced injury was similar between groups; however, resistance to fatigue was increased 25% in catalase-treated soleus compared with control muscle. Six weeks following injection, extensor digitorum longus specific tension was increased 15%, while soleus specific tension was similar between treated and untreated limbs. Catalase overexpression reduced contraction-induced injury by 30-45% and fatigue by 20% compared with control limbs. Six months following injection, diaphragm specific tension was similar between groups, but resistance to contraction-induced injury was improved by 35% and fatigue by 25%. Taken together, these data indicate that catalase can improve a subset of parameters of muscle function in dystrophin-deficient skeletal muscle.

  13. Gastrointestinal hormone mRNA expression in human colonic adenocarcinomas, hepatic metastases and cell lines

    PubMed Central

    Monges, G; Biagini, P; Cantaloube, J F; De Micco, P; Parriaux, D; Seitz, J F; Delpero, J R; Hassoun, J

    1996-01-01

    Aims—(1) To investigate the expression of the four main hormones of the digestive tract by performing reverse transcription polymerase chain reaction (RT-PCR) on a series of samples, comprising tumoral and healthy colonic tissues, hepatic metastases and colonic cell line samples; and (2) to study the patterns of labelling obtained with serological and morphological markers. Methods—After extraction and reverse transcription, gastrin, somatostatin, cholecystokinin (CCK) and transforming growth factor α (TGFα) mRNAs were detected by PCR and nested PCR using specific primers. The corresponding proteins were detected by immunohistochemistry. Results—The cell lines expressed all four mRNAs. Gastrin mRNA was present in most tumoral and metastatic samples, while the somatostatin transcript was detected in all samples and was frequently overexpressed in the normal colon. TGFα mRNA was expressed systematically in tumours of the right and transverse colon, but not in those located in the left colon; the expression of CCK mRNA was systematically absent in the left colon. Conclusions—The data presented here shed some light on the transcriptional events involved in the production of the various hormones present in the gastrointestinal tract, in both healthy and tumoral tissues. The various mRNAs expressed in cell lines are therefore not systematically expressed in the human pathology. Images PMID:16696065

  14. Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines

    PubMed Central

    Galetti, Maricla; Petronini, Pier Giorgio; Fumarola, Claudia; Cretella, Daniele; La Monica, Silvia; Bonelli, Mara; Cavazzoni, Andrea; Saccani, Francesca; Caffarra, Cristina; Andreoli, Roberta; Mutti, Antonio; Tiseo, Marcello; Ardizzoni, Andrea; Alfieri, Roberta R.

    2015-01-01

    Background BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC) carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism. Aim The present study, performed in a panel of NSCLC cell lines expressing different ABCG2 plasma membrane levels, was designed to investigate the effect of the efflux transporter ABCG2 on intracellular gefitinib accumulation, by dissecting the contribution of uptake and efflux processes. Methods and Results Our findings indicate that gefitinib, in lung cancer cells, inhibits ABCG2 activity, as previously reported. In addition, we suggest that ABCG2 silencing or overexpression affects intracellular gefitinib content by modulating the uptake rather than the efflux. Similarly, overexpression of ABCG2 affected the expression of a number of drug transporters, altering the functional activities of nutrient and drug transport systems, in particular inhibiting MPP, glucose and glutamine uptake. Conclusions Therefore, we conclude that gefitinib is an inhibitor but not a substrate for ABCG2 and that ABCG2 overexpression may modulate the expression and activity of other transporters involved in the uptake of different substrates into the cells. PMID:26536031

  15. Drosophila enhancer-Gal4 lines show ectopic expression during development

    PubMed Central

    Arnés, Mercedes; Ferrús, Alberto

    2017-01-01

    In Drosophila melanogaster the most widely used technique to drive gene expression is the binary UAS/Gal4 system. We show here that a set of nervous system specific enhancers (elav, D42/Toll-6, OK6/RapGAP1) display ectopic activity in epithelial tissues during development, which is seldom considered in experimental studies. This ectopic activity is variable, unstable and influenced by the primary sequence of the enhancer and the insertion site in the chromosome. In addition, the ectopic activity is independent of the protein expressed, Gal4, as it is reproduced also with the expression of Gal80. Another enhancer, LN2 from the sex lethal (Sxl) gene, shows sex-dependent features in its ectopic expression. Feminization of LN2 expressing males does not alter the male specific pattern indicating that the sexual dimorphism of LN2 expression is an intrinsic feature of this enhancer. Other X chromosome enhancers corresponding to genes not related to sex determination do not show sexual dimorphism in their ectopic expressions. Although variable and unstable, the ectopic activation of enhancer-Gal4 lines seems to be regulated in terms of tissue and intensity. To characterize the full domain of expression of enhancer-Gal4 constructs is relevant for the design of transgenic animal models and biotechnology tools, as well as for the correct interpretation of developmental and behavioural studies in which Gal4 lines are used.

  16. Suppression of laminin-5 expression leads to increased motility, tumorigenicity, and invasion

    SciTech Connect

    Yuen Hengwai; Ziober, Amy F.; Gopal, Pallavi; Nasrallah, Ilya; Falls, Erica M.; Meneguzzi, Guerrino; Ang, Hwee-Quan; Ziober, Barry L. . E-mail: bziober@mail.med.upenn.edu

    2005-09-10

    Laminin-5 (Ln-5) is expressed in several human carcinomas and hypothesized to contribute to tumor invasion. To understand the role of Ln-5 in human cancers, we stably delivered small interfering RNAs (siRNAs) directed against the Ln-5 {gamma}2 chain into JHU-022-SCC cells (022), a non-invasive oral squamous cell carcinoma (OSCC) cell line which secretes Ln-5. Lysates from {gamma}2 siRNA cells (022-si{gamma}2) had nearly undetectable levels of the {gamma}2 chain while the {alpha}3 and {beta}3 subunits of Ln-5 remained unchanged compared to parental and control. In conditioned medium from 022-si{gamma}2 cells, the {gamma}2 chain and the Ln-5 heterotrimer were barely detectable, similar to an invasive OSCC cell line. Conditioned medium from 022-si{gamma}2 cells contained less {alpha}3 and {beta}3 subunits than both parental and control. Although the proliferation and adhesive properties of the 022-si{gamma}2 cells remained similar to parental and control cells, 022-si{gamma}2 cells showed increased detachment and a fibroblastic morphology similar to invasive cells. Moreover, migration, in vitro invasion, and in vivo tumorigenicity were enhanced in 022-si{gamma}2 cells. Our results suggest that the Ln-5 {gamma}2 chain regulates the secretion of the {alpha}3 and {beta}3 subunits. More importantly, suppression of Ln-5 results in a phenotype that is representative of invasive tumor cells.

  17. Using the Tg(nrd:egfp)/albino Zebrafish Line to Characterize In Vivo Expression of neurod

    PubMed Central

    Thomas, Jennifer L.; Ochocinska, Margaret J.; Hitchcock, Peter F.; Thummel, Ryan

    2012-01-01

    In this study, we used a newly-created transgenic zebrafish, Tg(nrd:egfp)/albino, to further characterize the expression of neurod in the developing and adult retina and to determine neurod expression during adult photoreceptor regeneration. We also provide observations regarding the expression of neurod in a variety of other tissues. In this line, EGFP is found in cells of the developing and adult retina, pineal gland, cerebellum, olfactory bulbs, midbrain, hindbrain, neural tube, lateral line, inner ear, pancreas, gut, and fin. Using immunohistochemistry and in situ hybridization, we compare the expression of the nrd:egfp transgene to that of endogenous neurod and to known retinal cell types. Consistent with previous data based on in situ hybridizations, we show that during retinal development, the nrd:egfp transgene is not expressed in proliferating retinal neuroepithelium, and is expressed in a subset of retinal neurons. In contrast to previous studies, nrd:egfp is gradually re-expressed in all rod photoreceptors. During photoreceptor regeneration in adult zebrafish, in situ hybridization reveals that neurod is not expressed in Müller glial-derived neuronal progenitors, but is expressed in photoreceptor progenitors as they migrate to the outer nuclear layer and differentiate into new rod photoreceptors. During photoreceptor regeneration, expression of the nrd:egfp matches that of neurod. We conclude that Tg(nrd:egfp)/albino is a good representation of endogenous neurod expression, is a useful tool to visualize neurod expression in a variety of tissues and will aid investigating the fundamental processes that govern photoreceptor regeneration in adults. PMID:22235264

  18. Generation and characterization of transgenic plum lines expressing gafp-1 with the bul409 promoter

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Gastrodia anti fungal protein (GAFP-1) is a mannose-binding lectin that can confer increased disease resistance in transgenic tobacco and plum. In all previously-generated transgenic lines, the gene was under the control of the 35SCaMV promoter. In this study, transgenic plum lines were create...

  19. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat.

    PubMed

    Volpi, Chiara; Janni, Michela; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato

    2011-09-01

    Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.

  20. Hyperoxia increases hepatic arginase expression and ornithine production in mice

    SciTech Connect

    Malleske, Daniel T.; Rogers, Lynette K.; Velluci, Sean M.; Young, Tamara L.; Park, Min S.; Long, Donald W.; Welty, Stephen E.; Smith, Charles V.; Nelin, Leif D. . E-mail: NelinL@pediatrics.ohio-state.edu

    2006-08-15

    Hyperoxic exposure affects the levels and activities of some hepatic proteins. We tested the hypothesis that hyperoxic exposure would result in greater hepatic .NO concentrations. C3H/HeN mice were exposed to >95% O{sub 2} for 72 or 96 h and compared to room air-breathing controls. In contrast to our working hypothesis, exposure to >95% O{sub 2} for 96 h decreased hepatic nitrite/nitrate NO {sub X} concentrations (10.9 {+-} 2.2 nmol/g liver versus 19.3 {+-} 2.4 nmol/g liver in room air, P < 0.05). The hepatic levels of endothelial NO synthase (eNOS) and inducible NOS (iNOS) proteins were not different among the groups. The arginases, which convert L-arginine to urea and L-ornithine, may affect hepatic NOS activities by decreasing L-arginine bioavailability. Hepatic ornithine concentrations were greater in hyperoxic animals than in controls (318 {+-} 18 nmol/g liver in room air, and 539 {+-} 64, and 475 {+-} 40 at 72 and 96 h of hyperoxia, respectively, P < 0.01). Hepatic arginase I protein levels were greater in hyperoxic animals than in controls. Hepatic carbamoyl phosphate synthetase (CPS) protein levels and activities were not different among groups. These results indicate that increases in hepatic levels of arginase I in mice exposed to hyperoxia may diminish .NO production, as reflected by lower liver levels of NO {sub X}. The resultant greater hepatic ornithine concentrations may represent a mechanism to facilitate tissue repair, by favoring the production of polyamines and/or proline.

  1. [Cloning of flavone synthase (FNSII) gene and expression in three cell lines of Saussurea medusa].

    PubMed

    Wang, Bingjie; Li, Houhua; Wang, Yajie; Gaol, Yan; Fu, Wany; Weil, Xincui

    2015-12-01

    Saussurea medusa is a rare traditional Chinese medicinal herb, of which luteolin is the niain active medicinal compound for cancer prevention and treatment. A full-length FNSII gene, namely SmFNSII (GenBank Accession No. KF170286), was obtained from green cell line of Saussurea medusa by RT-PCR and RACE-PCR. Sequence analysis indicated that SmFNSII is 1 710 bp in full length, containing a 34 bp 5'-untranslated region (5'-UTR), a 125 bp 3'-UTR, and a 1 551 bp open reading frame (ORF) encoding 516 amino acid residues. Amino acid sequence analysis indicated that SmFNSII belonged to subfamily CYP93B of plant cytochrome P450. Sequence alignment and phylogenetic analysis revealed that amino acid sequences of SmFNSII shared 87% homology with the protein in Hieracium pilosella. Quantitative real-time PCR analysis indicated that SmFNSII expression is the highest in red cell line and the lowest in white cell line, corresponding to quantitative analysis of luteolin concentration. pET-SmFNSII, a prokaryotic expression recombinant plasmid, was constructed and transferred into Escherichia coli, and the expressed protein band was the same size with predicted protein. Saussurea medusa cultivars with high anti-inflammatory, anti-cancer activities and health care function would be cultivated through filtering cell lines and plants with high expression level of FNSII gene and luteolin accumulation.

  2. Coinfection of hepatic cell lines with human immunodeficiency virus and hepatitis B virus leads to an increase in intracellular hepatitis B surface antigen.

    PubMed

    Iser, David M; Warner, Nadia; Revill, Peter A; Solomon, Ajantha; Wightman, Fiona; Saleh, Suha; Crane, Megan; Cameron, Paul U; Bowden, Scott; Nguyen, Tin; Pereira, Cândida F; Desmond, Paul V; Locarnini, Stephen A; Lewin, Sharon R

    2010-06-01

    Liver-related mortality is increased in the setting of HIV-hepatitis B virus (HBV) coinfection. However, interactions between HIV and HBV to explain this observation have not been described. We hypothesized that HIV infection of hepatocytes directly affects the life cycle of HBV. We infected human hepatic cell lines expressing HBV (Hep3B and AD38 cells) or not expressing HBV (Huh7, HepG2, and AD43 cells) with laboratory strains of HIV (NL4-3 and AD8), as well as a vesicular stomatitis virus (VSV)-pseudotyped HIV expressing enhanced green fluorescent protein (EGFP). Following HIV infection with NL4-3 or AD8 in hepatic cell lines, we observed a significant increase in HIV reverse transcriptase activity which was infectious. Despite no detection of surface CD4, CCR5, and CXCR4 by flow cytometry, AD8 infection of AD38 cells was inhibited by maraviroc and NL4-3 was inhibited by AMD3100, demonstrating that HIV enters AD38 hepatic cell lines via CCR5 or CXCR4. High-level infection of AD38 cells (50%) was achieved using VSV-pseudotyped HIV. Coinfection of the AD38 cell line with HIV did not alter the HBV DNA amount or species as determined by Southern blotting or nucleic acid signal amplification. However, coinfection with HIV was associated with a significant increase in intracellular HBsAg when measured by Western blotting, quantitative HBsAg, and fluorescence microscopy. We conclude that HIV infection of HBV-infected hepatic cell lines significantly increased intracellular HBsAg but not HBV DNA synthesis and that increased intrahepatic HBsAg secondary to direct infection by HIV may contribute to accelerated liver disease in HIV-HBV-coinfected individuals.

  3. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  4. Human hedgehog interacting protein expression and promoter methylation in medulloblastoma cell lines and primary tumor samples

    PubMed Central

    Shahi, Mehdi H.; Afzal, Mohammad; Sinha, Subrata; Eberhart, Charles G.; Rey, Juan A.; Fan, Xing

    2015-01-01

    Medulloblastoma is the most common pediatric brain tumor and its development is affected by genetic and epigenetic factors. In this study we found there is low or no expression of the hedgehog interacting protein (HHIP), a negative regulator of the sonic hedgehog pathway, in most medulloblastoma cell lines and primary samples explored. We proceeded to promoter methylation assays of this gene by MCA-Meth, and found that HHIP was hypermethylated in all medulloblastoma cell lines, but only in 2 out of 14 (14%) primary tumor samples. Methylation correlated with low or unexpressed HHIP in cell lines but not in primary tumor samples. These results suggest the possibility of epigenetic regulation of HHIP in medulloblastoma, similarly to gastric, hepatic and pancreatic cancer. However, HHIP seems to be not only under regulation of promoter methylation, but under other factors involved in the control of its low levels of expression in medulloblastoma. PMID:20853133

  5. Diversity of Reporter Expression Patterns in Transgenic Mouse Lines Targeting Corticotropin-Releasing Hormone-Expressing Neurons

    PubMed Central

    Molet, Jenny; Gunn, Benjamin G.; Ressler, Kerry

    2015-01-01

    Transgenic mice, including lines targeting corticotropin-releasing factor (CRF or CRH), have been extensively employed to study stress neurobiology. These powerful tools are poised to revolutionize our understanding of the localization and connectivity of CRH-expressing neurons, and the crucial roles of CRH in normal and pathological conditions. Accurate interpretation of studies using cell type-specific transgenic mice vitally depends on congruence between expression of the endogenous peptide and reporter. If reporter expression does not faithfully reproduce native gene expression, then effects of manipulating unintentionally targeted cells may be misattributed. Here, we studied CRH and reporter expression patterns in 3 adult transgenic mice: Crh-IRES-Cre;Ai14 (tdTomato mouse), Crfp3.0CreGFP, and Crh-GFP BAC. We employed the CRH antiserum generated by Vale after validating its specificity using CRH-null mice. We focused the analyses on stress-salient regions, including hypothalamus, amygdala, bed nucleus of the stria terminalis, and hippocampus. Expression patterns of endogenous CRH were consistent among wild-type and transgenic mice. In tdTomato mice, most CRH-expressing neurons coexpressed the reporter, yet the reporter identified a few non-CRH-expressing pyramidal-like cells in hippocampal CA1 and CA3. In Crfp3.0CreGFP mice, coexpression of CRH and the reporter was found in central amygdala and, less commonly, in other evaluated regions. In Crh-GFP BAC mice, the large majority of neurons expressed either CRH or reporter, with little overlap. These data highlight significant diversity in concordant expression of reporter and endogenous CRH among 3 available transgenic mice. These findings should be instrumental in interpreting important scientific findings emerging from the use of these potent neurobiological tools. PMID:26402844

  6. Neuropeptide TLQP-21, a VGF internal fragment, modulates hormonal gene expression and secretion in GH3 cell line.

    PubMed

    Petrocchi Passeri, Pamela; Biondini, Laura; Mongiardi, Maria Patrizia; Mordini, Nadia; Quaresima, Stefania; Frank, Claudio; Baratta, Mario; Bartolomucci, Alessandro; Levi, Andrea; Severini, Cinzia; Possenti, Roberta

    2013-01-01

    In the present study we demonstrated that TLQP-21, a biologically active peptide derived from the processing of the larger pro-VGF granin, plays a role in mammotrophic cell differentiation. We used an established in vitro model, the GH3 cell line, which upon treatment with epidermal growth factor develops a mammotrophic phenotype consisting of induction of prolactin expression and secretion, and inhibition of growth hormone. Here we determined for the first time that during mammotrophic differentiation, epidermal growth factor also induces Vgf gene expression and increases VGF protein precursor processing and peptide secretion. After this initial observation we set out to determine the specific role of the VGF encoded TLQP-21 peptide on this model. TLQP-21 induced a trophic effect on GH3 cells and increased prolactin expression and its own gene transcription without affecting growth hormone expression. TLQP-21 was also able to induce a significant rise of cytoplasmic calcium, as measured by Fura2AM, due to the release from a thapsigargin-sensitive store. TLQP-21-dependent rise in cytoplasmic calcium was, at least in part, dependent on the activation of phospholipase followed by phosphorylation of PKC and ERK. Taken together, the present results demonstrate that TLQP-21 contributes to differentiation of the GH3 cell line toward a mammotrophic phenotype and suggest that it may exert a neuroendocrine role in vivo on lactotroph cells in the pituitary gland.

  7. Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines

    SciTech Connect

    Price, Karina J.; Tsykin, Anna; Giles, Keith M.; Sladic, Rosemary T.; Epis, Michael R.; Ganss, Ruth; Goodall, Gregory J.; Leedman, Peter J.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Matrigel alters cancer cell line miRNA expression relative to culture on plastic. Black-Right-Pointing-Pointer Many identified Matrigel-regulated miRNAs are implicated in cancer. Black-Right-Pointing-Pointer miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. Black-Right-Pointing-Pointer miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence of Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a

  8. Genetic variation and expression diversity between grain and sweet sorghum lines

    PubMed Central

    2013-01-01

    Background Biological scientists have long sought after understanding how genes and their structural/functional changes contribute to morphological diversity. Though both grain (BT×623) and sweet (Keller) sorghum lines originated from the same species Sorghum bicolor L., they exhibit obvious phenotypic variations. However, the genome re-sequencing data revealed that they exhibited limited functional diversity in their encoding genes in a genome-wide level. The result raises the question how the obvious morphological variations between grain and sweet sorghum occurred in a relatively short evolutionary or domesticated period. Results We implemented an integrative approach by using computational and experimental analyses to provide a detail insight into phenotypic, genetic variation and expression diversity between BT×623 and Keller lines. We have investigated genome-wide expression divergence between BT×623 and Keller under normal and sucrose treatment. Through the data analysis, we detected more than 3,000 differentially expressed genes between these two varieties. Such expression divergence was partially contributed by differential cis-regulatory elements or DNA methylation, which was genetically determined by functionally divergent genes between these two varieties. Both tandem and segmental duplication played important roles in the genome evolution and expression divergence. Conclusion Substantial differences in gene expression patterns between these two varieties have been observed. Such an expression divergence is genetically determined by the divergence in genome level. PMID:23324212

  9. Assessment of a systematic expression profiling approach in ENU-induced mouse mutant lines.

    PubMed

    Seltmann, Matthias; Horsch, Marion; Drobyshev, Alexei; Chen, Yali; de Angelis, Martin Hrabé; Beckers, Johannes

    2005-01-01

    Comparative genomewide expression profiling is a powerful tool in the effort to annotate the mouse genome with biological function. The systematic analysis of RNA expression data of mouse lines from the Munich ENU mutagenesis screen might support the understanding of the molecular biology of such mutants and provide new insights into mammalian gene function. In a direct comparison of DNA microarray experiments of individual versus pooled RNA samples of organs from ENU-induced mouse mutants, we provide evidence that individual RNA samples may outperform pools in some aspects. Genes with high biological variability in their expression levels (noisy genes) are identified as false positives in pooled samples. Evidence suggests that highly stringent housing conditions and standardized procedures for the isolation of organs significantly reduce biological variability in gene expression profiling experiments. Data on wild-type individuals demonstrate the positive effect of controlling variables such as social status, food intake before organ sampling, and stress with regard to reproducibility of gene expression patterns. Analyses of several organs from various ENU-induced mutant lines in general show low numbers of differentially expressed genes. We demonstrate the feasibility to detect transcriptionally affected organs employing RNA expression profiling as a tool for molecular phenotyping.

  10. 'Fluorescent Cell Chip' for immunotoxicity testing: Development of the c-fos expression reporter cell lines

    SciTech Connect

    Trzaska, Dominika; Zembek, Patrycja; Olszewski, Maciej; Adamczewska, Violetta; Ulleras, Erik; Dastych, JarosIaw . E-mail: jdastych@cbm.pan.pl

    2005-09-01

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals.

  11. Differential Expression of OCT4 Pseudogenes in Pluripotent and Tumor Cell Lines

    PubMed Central

    Poursani, Ensieh M.; Mohammad Soltani, Bahram; Mowla, Seyed Javad

    2016-01-01

    Objective The human OCT4 gene, the most important pluripotency marker, can generate at least three different transcripts (OCT4A, OCT4B, and OCT4B1) by alternative splicing. OCT4A is the main isoform responsible for the stemness property of embryonic stem (ES) cells. There also exist eight processed OCT4 pseudogenes in the human genome with high homology to the OCT4A, some of which are transcribed in various cancers. Recent conflicting reports on OCT4 expression in tumor cells and tissues emphasize the need to discriminate the expression of OCT4A from other variants as well as OCT4 pseudogenes. Materials and Methods In this experimental study, DNA sequencing confirmed the authenticity of transcripts of OCT4 pseudogenes and their expression patterns were investigated in a panel of different human cell lines by reverse transcription-polymerase chain reaction (RT-PCR). Results Differential expression of OCT4 pseudogenes in various human cancer and pluripotent cell lines was observed. Moreover, the expression pattern of OCT4-pseudogene 3 (OCT4-pg3) followed that of OCT4A during neural differentiation of the pluripotent cell line of NTERA-2 (NT2). Although OCT4-pg3 was highly expressed in undifferentiated NT2 cells, its expression was rapidly down-regulated upon induction of neural differentiation. Analysis of protein expression of OCT4A, OCT4-pg1, OCT4-pg3, and OCT4-pg4 by Western blotting indicated that OCT4 pseudogenes cannot produce stable proteins. Consistent with a newly proposed competitive role of pseudogene microRNA docking sites, we detected miR-145 binding sites on all transcripts of OCT4 and OCT4 pseudogenes. Conclusion Our study suggests a potential coding-independent function for OCT4 pseudogenes during differentiation or tumorigenesis. PMID:27054116

  12. Coordinated steroid hormone-dependent and independent expression of multiple kallikreins in breast cancer cell lines.

    PubMed

    Paliouras, Miltiadis; Diamandis, Eleftherios P

    2007-03-01

    The regulation of gene expression by steroid hormones plays an important role in the normal development and function of many organs, as well in the pathogenesis of endocrine-related cancers. Previous experiments have shown that many kallikrein genes are under steroid hormone regulation in breast cancer cell lines. We here examine the coordinated expression of multiple kallikrein genes in several breast cancer cell lines after steroid hormone stimulation. Breast cancer cell lines were treated with various steroid hormones and kallikrein (KLK/hK) expression of hK3 (prostate-specific antigen, PSA), hK5, hK6, hK7, hK8, hK10, hK11, hK13, and hK14 was analyzed at the RNA level via RT-PCR and at the protein level by immunofluorometric ELISA assays. We identified several distinct hK hormone-dependent and hormone-independent expression patterns. Hormone-specific modulation of expression was seen for several kallikreins in BT-474, MCF-7, and T-47D cell lines. hK6 was specifically up-regulated upon estradiol treatment in all three cell lines whereas PSA expression was induced by dihydrotestosterone (DHT) and norgestrel stimulation in BT-474 and T-47D. hK10, hK11, hK13, and hK14 were specifically up-regulated by DHT in T-47D and by estradiol in BT-474 cells. Bioinformatic analysis of upstream proximal promoter sequences for these hKs did not identify any recognizable hormone-response elements (HREs), suggesting that the coordinated activation of these four hKs represents a unique expression "cassette", utilizing a common hormone-dependent mechanism. We conclude that groups of human hKs are coordinately expressed in a steroid hormone-dependent manner. Our data supports clinical observations linking expression of multiple hKs with breast cancer prognosis.

  13. Hyperketonemia increases monocyte adhesion to endothelial cells and is mediated by LFA-1 expression in monocytes and ICAM-1 expression in endothelial cells.

    PubMed

    Rains, Justin L; Jain, Sushil K

    2011-08-01

    Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. The objective of this study was to examine the hypothesis that hyperketonemia increases monocyte-endothelial cell (EC) adhesion and the development of vascular disease in diabetes. Human U937 and THP-1 monocyte cell lines and human umbilical vein endothelial cells (HUVECs) were cultured with acetoacetate (AA) (0-10 mM) or β-hydroxybutyrate (BHB) (0-10 mM) for 24 h prior to evaluating adhesion and adhesion molecule expression. The results demonstrate a significant (P < 0.01) increase in both U937 and THP-1 adhesion to HUVEC monolayers treated with 4 mM AA compared with control. Equal concentrations of BHB resulted in similar increases in monocyte-EC adhesion. Similarly, treatments of AA or BHB to isolated monocytes from human blood also show increases in adhesion to endothelial cells. intercellular adhesion molecule-1 (ICAM-1) was significantly increased on the surface of HUVECs and an increase in total protein expression with AA treatment compared with control. The expression level of lymphocyte function-associated antigen-1 (LFA-1) was increased in monocytes treated with AA, and LFA-1 affinity was altered from low to high affinity following treatment with both AA and BHB. Monocyte adhesion could be blocked when cells were preincubated with an antibody to ICAM-1 or LFA-1. Results also show a significant increase in IL-8 and MCP-1 secretion in monocytes and HUVECs treated with 0-10 mM AA. These results suggest that hyperketonemia can induce monocyte adhesion to endothelial cells and that it is mediated via increased ICAM-1 expression in endothelial cells and increased expression and affinity of LFA-1 in monocytes.

  14. Hyperketonemia increases monocyte adhesion to endothelial cells and is mediated by LFA-1 expression in monocytes and ICAM-1 expression in endothelial cells

    PubMed Central

    Rains, Justin L.

    2011-01-01

    Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. The objective of this study was to examine the hypothesis that hyperketonemia increases monocyte-endothelial cell (EC) adhesion and the development of vascular disease in diabetes. Human U937 and THP-1 monocyte cell lines and human umbilical vein endothelial cells (HUVECs) were cultured with acetoacetate (AA) (0–10 mM) or β-hydroxybutyrate (BHB) (0–10 mM) for 24 h prior to evaluating adhesion and adhesion molecule expression. The results demonstrate a significant (P < 0.01) increase in both U937 and THP-1 adhesion to HUVEC monolayers treated with 4 mM AA compared with control. Equal concentrations of BHB resulted in similar increases in monocyte-EC adhesion. Similarly, treatments of AA or BHB to isolated monocytes from human blood also show increases in adhesion to endothelial cells. intercellular adhesion molecule-1 (ICAM-1) was significantly increased on the surface of HUVECs and an increase in total protein expression with AA treatment compared with control. The expression level of lymphocyte function-associated antigen-1 (LFA-1) was increased in monocytes treated with AA, and LFA-1 affinity was altered from low to high affinity following treatment with both AA and BHB. Monocyte adhesion could be blocked when cells were preincubated with an antibody to ICAM-1 or LFA-1. Results also show a significant increase in IL-8 and MCP-1 secretion in monocytes and HUVECs treated with 0–10 mM AA. These results suggest that hyperketonemia can induce monocyte adhesion to endothelial cells and that it is mediated via increased ICAM-1 expression in endothelial cells and increased expression and affinity of LFA-1 in monocytes. PMID:21540444

  15. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    PubMed Central

    Ghosheh, Nidal; Olsson, Björn; Edsbagge, Josefina; Küppers-Munther, Barbara; Van Giezen, Mariska; Asplund, Annika; Andersson, Tommy B.; Björquist, Petter; Carén, Helena; Simonsson, Stina; Sartipy, Peter; Synnergren, Jane

    2016-01-01

    Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models. PMID:26949401

  16. Increased range of ultrasonic guided wave testing of overhead transmission line cables using dispersion compensation.

    PubMed

    Legg, Mathew; Yücel, Mehmet K; Kappatos, Vassilios; Selcuk, Cem; Gan, Tat-Hean

    2015-09-01

    Overhead Transmission Line (OVTL) cables can experience structural defects and are, therefore, inspected using Non-Destructive Testing (NDT) techniques. Ultrasonic Guided Waves (UGW) is one NDT technique that has been investigated for inspection of these cables. For practical use, it is desirable to be able to inspect as long a section of cable as possible from a single location. This paper investigates increasing the UGW inspection range on Aluminium Conductor Steel Reinforced (ACSR) cables by compensating for dispersion using dispersion curve data. For ACSR cables, it was considered to be difficult to obtain accurate dispersion curves using modelling due to the complex geometry and unknown coupling between wire strands. Group velocity dispersion curves were, therefore, measured experimentally on an untensioned, 26.5m long cable and a method of calculating theoretical dispersion curves was obtained. Attenuation and dispersion compensation were then performed for a broadband Maximum Length Sequence (MLS) excitation signal. An increase in the Signal to Noise Ratio (SNR) of about 4-8dB compared to that of the dispersed signal was obtained. However, the main benefit was the increased ability to resolve the individual echoes from the end of the cable and an introduced defect in the form of a cut, which was 7 to at least 13dB greater than that of the dispersed signal. Five echoes were able to be clearly detected using MLS excitation signal, indicating the potential for an inspection range of up to 130m in each direction. To the best of the authors knowledge, this is the longest inspection range for ACSR cables reported in the literature, where typically cables, which were only one or two meter long, have been investigated previously. Narrow band tone burst and Hann windowed tone burst excitation signal also showed increased SNR and ability to resolve closely spaced echoes.

  17. Increased efficiency for beyond line-of-sight in airborne ISR operations

    NASA Astrophysics Data System (ADS)

    Frayter, Slava; Willems, Koen

    2013-05-01

    Airborne platforms are increasingly being used as vehicles to capture intelligence data for defense, state and civil applications. The aerial vehicles are equipped with technology for both video and sensor data collection; the data is then sent to a ground mission control center for further processing. When the airborne platform is outside the reach of direct data relay due to distance or environment, satellite communications is used for Beyond Line of Sight (BLoS) communication. It is a key requirement for the satellite link in ISR (Intelligence, Surveillance and Reconnaissance) operations to get as much data and video as possible through the available bandwidth. The satellite link also needs to be available at all times during operations to insure mission critical communications and not endanger ground operations. Only by using robust satellite technology can the demand for more data and highest efficiency be satisfied while keeping OPEX costs under control. This paper will highlight both technical and practical challenges of operators in the airborne ISR missions, going from technical requirements to efficiency-driven solutions. It will also look at what the final results in the field are when transmitting ISR data and video from the airborne platform over satellite in highly adaptive environments. The existing qualified and deployed BLoS airborne solution already achieves over 20Mbps from the aircraft to the ground in active operations, but requirements and capabilities continue to increase as more comprehensive ISR data is being transmitted.

  18. Increased expression of protein kinase CK2α correlates with poor patient prognosis in epithelial ovarian cancer

    PubMed Central

    Ma, Zebiao; Wang, Xiaojing; He, Jiehua

    2017-01-01

    Epithelial ovarian cancer (EOC) is one of the deadly gynecological malignancies. The function of protein kinase CK2α (CK2α) in EOC is still unknown. Our study aimed to investigate the relationship between the protein expression of CK2α and the tumor progression, the prognosis of human EOC. In this study, we analyzed the expression levels of CK2α through Western blot, using EOC cell lines like A2780, HO8910, COV644, OVCAR3, SKOV3, and the primary normal ovarian surface epithelial (NOSE) cells. Furthermore, OVCAR3 and SKOV3 EOC cells were employed as a cellular model to study the role of CK2α on cell growth, migration, invasion, apoptosis, and cell cycle distribution. In addition, we investigated CK2α protein expression in tumor tissues from patients with EOC by immunohistochemistry and analyzed the association between CK2α expression and clinicopathologic parameters and prognosis of EOC patients. And we found that compared with NOSE cells, CK2α protein expression was increased in A2780, HO8910, OVCAR3, and SKOV3 ovarian cancer cell lines. Decreased CK2α expression suppressed OVCAR3 and SKOV3 cell growth and induced more apoptosis. CK2α knockdown using specific siRNAs inhibited migration and invasion ability of OVCAR3 and SKOV3 cells. In addition, high CK2α protein expression was found in 68.4% (80/117) of EOC patients. Increased CK2α expression of was significantly correlated with FIGO staging and peritoneal cytology. Patients with higher CK2α expression had a significantly poorer overall survival compared with those with lower CK2α expression. Multi-variate Cox regression analysis proved that increased CK2α expression was an independent prognostic marker for EOC. Taken together, our data displayed that CK2α may play a role in tumor aggressive behavior of EOC and could be used as a marker for predicting prognosis of EOC patient. High CK2α expression might predict poor patient survival. PMID:28355289

  19. Ectopic expression of catalase in Drosophila mitochondria increases stress resistance but not longevity.

    PubMed

    Mockett, Robin J; Bayne, Anne Cécile V; Kwong, Linda K; Orr, William C; Sohal, Rajindar S

    2003-01-15

    The goal of this study was to test the hypothesis that the rate of mitochondrial oxidant production governs the aging process of the fruit fly, Drosophila melanogaster. Catalase, an antioxidative enzyme expressed in the cytosol and peroxisomes of Drosophila, was targetted ectopically to the mitochondrial matrix by fusion of a leader peptide derived from ornithine aminotransferase with its N-terminus. The presence of the transgene encoding this fusion protein was associated with moderate (35 +/- 13%) increases in total catalase activity in most lines, and measurable levels of catalase activity in the mitochondria (30-140 U/mg protein). There was no impact on the life span of the flies at 25 degrees C, even in an exceptional line with a 149% increase in total catalase activity, and there was a small decrease in longevity at 29 degrees C. There were no compensatory changes in the rate of metabolism or physical activity, or in the levels of other major antioxidants, suggesting that the aging process was largely unaffected. Resistance to exogenous hydrogen peroxide, paraquat, and cold stress was enhanced, but there was no appreciable effect on resistance to hyperoxia. The results demonstrate the importance of mitochondrial antioxidant levels in the resistance to oxidative stress at the organismal level, and illustrate that different effects on aging and stress resistance may ensue from a single treatment. The main inferences drawn are that: (i) levels of stress resistance may neither be a cause nor a reliable indicator of the rate of aging, and (ii) bolstering antioxidant levels in Drosophila may not delay or slow down the aging process.

  20. Marinobufagenin induces increases in procollagen expression in a process involving protein kinase C and Fli-1: implications for uremic cardiomyopathy.

    PubMed

    Elkareh, Jihad; Periyasamy, Sankaridrug M; Shidyak, Amjad; Vetteth, Sandeep; Schroeder, Jeremy; Raju, Vanamala; Hariri, Imad M; El-Okdi, Nasser; Gupta, Shalini; Fedorova, Larisa; Liu, Jiang; Fedorova, Olga V; Kahaleh, M Bashar; Xie, Zijian; Malhotra, Deepak; Watson, Dennis K; Bagrov, Alexei Y; Shapiro, Joseph I

    2009-05-01

    The cardiotonic steroid marinobufagenin (MBG) has been implicated in the pathogenesis of experimental uremic cardiomyopathy, which is characterized by progressive cardiac fibrosis. We examined whether the transcription factor Friend leukemia integration-1 (Fli-1) might be involved in this process. Fli-1-knockdown mice demonstrated greater cardiac collagen-1 expression and fibrosis compared with wild-type mice; both developed increased cardiac collagen expression and fibrosis after 5/6 nephrectomy. There was a strong inverse relationship between the expressions of Fli-1 and procollagen in primary culture of rat cardiac and human dermal fibroblasts as well as a cell line derived from renal fibroblasts and MBG-induced decreases in nuclear Fli-1 as well as increases in procollagen-1 expression in these cells. Transfection of a Fli-1 expression vector prevented increased procollagen-1 expression from MBG. MBG exposure induced a rapid translocation of the delta-isoform of protein kinase C (PKCdelta) to the nucleus. This translocation was prevented by pharmacological inhibition of phospholipase C, and MBG-induced increases in procollagen-1 expression were prevented with a PKCdelta- but not a PKCalpha-specific inhibitor. Finally, immunoprecipitation studies strongly suggest that MBG induced phosphorylation of Fli-1. We feel these data support a causal relationship with MBG-induced translocation of PKCdelta, which results in phosphorylation of as well as decreases in nuclear Fli-1 expression, which, in turn, leads to increases in collagen production. Should these findings be confirmed, we speculate that this pathway may represent a therapeutic target for uremic cardiomyopathy as well as other conditions associated with excessive fibrosis.

  1. The expression of TIPE1 in murine tissues and human cell lines.

    PubMed

    Cui, Jian; Zhang, Guizhong; Hao, Chunyan; Wang, Yan; Lou, Yunwei; Zhang, Wenqian; Wang, Juan; Liu, Suxia

    2011-07-01

    Members of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8 or TIPE) family play important roles in immune homeostasis and cancer. TIPE1 (TNFAIP8-like 1) is a new member of the TIPE family that may regulate cell death. However, due to the lack of a suitable antibody, the nature of cells and tissues that express TIPE1 protein has not been determined. In this study, we generated a highly specific antibody to TIPE1 and examined TIPE1 expression in various murine tissues and human cell lines by immunohistochemistry, reverse transcription real-time PCR, and Western blot. We found that TIPE1 protein was detected in a wide variety of tissues in C57BL/6 mice, such as neurons in brain, hepatocytes, germ cells of female and male reproductive organs, muscular tissues, and a variety of cells of the epithelial origin, particularly those with secretory functions. TIPE1 protein was not expressed in mature T or B lymphocytes, but detectable in human B lymphoblast cell line HMy2.CIR and murine T cell line EL4. Furthermore, high levels of TIPE1 mRNA were detected in most human carcinoma cell lines, especially in cells transformed with viral genomes. These results indicate that TIPE1 may perform functions in cell secretion and carcinogenesis, but not in immunity.

  2. Slow inbred lines of Drosophila melanogaster express as much inbreeding depression as fast inbred lines under semi-natural conditions.

    PubMed

    Kristensen, Torsten Nygaard; Knudsen, Morten Ravn; Loeschcke, Volker

    2011-04-01

    Selection may reduce the deleterious consequences of inbreeding. This may be due to purging of recessive deleterious alleles or balancing selection favouring heterozygote offspring. Such selection is expected to be more efficient at slower compared to at faster rates of inbreeding. In this study we tested the impact of inbreeding and the rate of inbreeding on fitness related traits (egg productivity, egg-to-adult viability, developmental time and behaviour) under cold and benign semi-natural thermal conditions using Drosophila melanogaster as a model organism. We used non-inbred control and slow and fast inbred lines (both with an expected inbreeding level of 0.25). The results show that contrary to expectations the slow inbred lines do not maintain higher average fitness than the fast inbred lines. Furthermore, we found that stressful environmental conditions increased the level of inbreeding depression but the impact of inbreeding rate on the level of inbreeding depression was not affected by the environmental conditions. The results do not support the hypothesis that inbreeding depression is less severe with slow compared to fast rates of inbreeding and illustrate that although selection may be more efficient with slower rates of inbreeding this does not necessary lead to less inbreeding depression.

  3. Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability

    SciTech Connect

    Zhou Huimin; Jia Li; Wang Shujing; Wang Hongmei; Chu Haiying; Hu Yichuan; Cao Jun; Zhang Jianing . E-mail: jnzhang@dlmedu.edu.cn

    2006-06-23

    Caveolin-1 is the major component protein of caveolae and associated with a lot of cellular events such as endocytosis, cholesterol homeostasis, signal transduction, and tumorigenesis. The majority of results suggest that caveolin-1 might not only act as a tumor suppressor gene but also a promoting metastasis gene. In this study, the divergent expression and roles of caveolin-1 were investigated in mouse hepatocarcinoma cell lines Hca-F, Hca-P, and Hepa1-6, which have high, low, and no metastatic potential in the lymph nodes, as compared with normal mouse liver cell line IAR-20. The results showed that expression of caveolin-1 mRNA and protein along with the amount of caveolae number in Hca-F cells was higher than that in Hca-P cells, but was not detectable in Hepa1-6 cells. When caveolin-1 expression in Hca-F cells was down-regulated by RNAi approach, Hca-F cells proliferation rate in vitro declined and the expression of lymphangiogenic factor VEGFA in Hca-F decreased as well. Furthermore, in vivo implantation assay indicated that reduction of caveolin-1 expression in Hca-F prevented the lymphatic metastasis tumor burden of Hca-F cells in 615 mice. These results suggest that caveolin-1 facilities the lymphatic metastasis ability of mouse hepatocarcinoma cells via regulation tumor cell growth and VEGFA expression.

  4. High levels of protein expression using different mammalian CMV promoters in several cell lines.

    PubMed

    Xia, Wei; Bringmann, Peter; McClary, John; Jones, Patrick P; Manzana, Warren; Zhu, Ying; Wang, Soujuan; Liu, Yi; Harvey, Susan; Madlansacay, Mary Rose; McLean, Kirk; Rosser, Mary P; MacRobbie, Jean; Olsen, Catherine L; Cobb, Ronald R

    2006-01-01

    With the recent completion of the human genome sequencing project, scientists are faced with the daunting challenge of deciphering the function of these newly found genes quickly and efficiently. Equally as important is to produce milligram quantities of the therapeutically relevant gene products as quickly as possible. Mammalian expression systems provide many advantages to aid in this task. Mammalian cell lines have the capacity for proper post-translational modifications including proper protein folding and glycosylation. In response to the needs described above, we investigated the protein expression levels driven by the human CMV in the presence or absence of intron A, the mouse and rat CMV promoters with intron A, and the MPSV promoter in plasmid expression vectors. We evaluated the different promoters using an in-house plasmid vector backbone. The protein expression levels of four genes of interest driven by these promoters were evaluated in HEK293EBNA and CHO-K1 cells. Stable and transient transfected cells were utilized. In general, the full-length human CMV, in the presence of intron A, gave the highest levels of protein expression in transient transfections in both cell lines. However, the MPSV promoter resulted in the highest levels of stable protein expression in CHO-K1 cells. Using the CMV driven constitutive promoters in the presence of intron A, we have been able to generate >10 microg/ml of recombinant protein using transient transfections.

  5. Expressing genes do not forget their LINEs: transposable elements and gene expression.

    PubMed

    Kines, Kristine J; Belancio, Victoria P

    2012-01-01

    Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue- or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored.

  6. Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Ye, C.; Vassilev, P. M.; Sanders, J. L.; Brown, E. M.

    2001-01-01

    We have previously shown the expression of the extracellular calcium (Ca2+o)-sensing receptor (CaR) in osteoblast-like cell lines, and others have documented its expression in sections of murine, bovine, and rat bone. The existence of the CaR in osteoblasts remains controversial, however, since some studies have failed to document its expression in the same osteoblast-like cell lines. The goals of the present study were twofold. 1) We sought to determine whether the CaR is expressed in the human osteoblast-like cell line, MG-63, which has recently been reported by others not to express this receptor. 2) We investigated whether the CaR, if present in MG-63 cells, is functionally active, since most previous studies have not proven the role of the CaR in mediating known actions of Ca2+o on osteoblast-like cells. We used immunocytochemistry and Western blotting with the specific, affinity-purified anti-CaR antiserum 4637 as well as Northern blot analysis and RT-PCR using a riboprobe and PCR primers specific for the human CaR, respectively, to show readily detectable CaR protein and mRNA expression in MG-63 cells. Finally, we employed the patch-clamp technique to show that an elevation in Ca2+o as well as the specific, allosteric CaR activator NPS R-467 (0.5 microM), but not its less active stereoisomer NPS S-467 (0.5 microM), activate an outward K+ channel in MG-63 cells, strongly suggesting that the CaR in MG-63 cells is not only expressed but is functionally active.

  7. Cell line specific modulation of connexin43 expression after exposure to ionizing radiation.

    PubMed

    Banaz-Yaşar, Ferya; Tischka, Rabea; Iliakis, George; Winterhager, Elke; Gellhaus, Alexandra

    2005-01-01

    Gap junctional intercellular communication plays a significant role in mediating radiation-induced bystander effects. However, the level of Cx43 itself is influenced by ionizing radiation, which could modify the bystander effect. Here we have investigated several cell lines for the modulation of Cx43 expression 24 h after irradiation with 5 Gy X-rays. The mouse endothelial cell line bEnd3 revealed a significantly elevated level of Cx43 already 15 min after exposure to X-rays, whereas human hybrid endothelial cells (EA.hy926) exhibited a transient downregulation of Cx43 mRNA. No obvious changes in the communication properties of the different cell lines could be observed after irradiation. The communication-deficient malignant human trophoblast cell line Jeg3 stably transfected with Cx43 did not reveal any induction of endogenous nor alteration in the exogenous Cx43 transcript level upon exposure to 5 Gy. Taken together, our data show a cell line specific modulation of Cx43 expression after exposure to X-rays.

  8. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin.

    PubMed

    Hurteau, Gregory J; Carlson, J Andrew; Spivack, Simon D; Brock, Graham J

    2007-09-01

    MicroRNAs are approximately 22-nucleotide sequences thought to interact with multiple mRNAs resulting in either translational repression or degradation. We previously reported that several microRNAs had variable expression in mammalian cell lines, and we examined one, miR-200c, in more detail. A combination of bioinformatics and quantitative reverse transcription-PCR was used to identify potential targets and revealed that the zinc finger transcription factor transcription factor 8 (TCF8; also termed ZEB1, deltaEF1, Nil-2-alpha) had inversely proportional expression levels to miR-200c. Knockout experiments using anti-microRNA oligonucleotides increased TCF8 levels but with nonspecific effects. Therefore, to investigate target predictions, we overexpressed miR-200c in select cells lines. Ordinarily, the expression level of miR-200c in non-small-cell lung cancer A549 cells is low in contrast to normal human bronchial epithelial cells. Stable overexpression of miR-200c in A549 cells results in a loss of TCF8, an increase in expression of its regulatory target, E-cadherin, and altered cell morphology. In MCF7 (estrogen receptor-positive breast cancer) cells, there is endogenous expression of miR-200c and E-cadherin but TCF8 is absent. Conversely, MDA-MB-231 (estrogen receptor-negative) cells lack detectable miR-200c and E-cadherin (the latter reportedly due to promoter region methylation) but express TCF8. The ectopic expression of miR-200c in this cell line also reduced levels of TCF8, restored E-cadherin expression, and altered cell morphology. Because the down-regulation of E-cadherin is a crucial event in epithelial-to-mesenchymal transition, loss of miR-200c expression could play a significant role in the initiation of an invasive phenotype, and, equally, miR-200c overexpression holds potential for its reversal.

  9. Differential expression of the ufo/axl oncogene in human leukemia-lymphoma cell lines.

    PubMed

    Challier, C; Uphoff, C C; Janssen, J W; Drexler, H G

    1996-05-01

    The ufo protein (also termed axl) is a member of a new family of receptor tyrosine kinases and is encoded by a transforming gene that was initially isolated from primary human myeloid leukemia cells by DNA-mediated transformation of NIH/3T3 cells. The ligand, Gas6, a protein S-related molecule lacking any known function yet, has recently been identified. We report the expression pattern of ufo mRNA in a panel of 76 human continuous leukemia-lymphoma cell lines. The gene was not expressed in cell lines derived from lymphoid malignancies (n=28), but transcription was seen in 3/11 myeloid, 0/6 monocytic, 9/13 erythroid and 11/18 megakaryocytic cell lines. Several cell lines were treated with phorbol ester leading to significant upregulation of the ufo message in constitutively positive cells. An apparent ufo mRNA overexpression was not found in any of the positive leukemia cell lines, but was identified in the drug-resistant subclones of the cervix carcinoma cell line HeLa. Southern blot analysis of restriction enzyme-digested genomic DNA did not provide evidence for gene amplification, but the HeLa subclones showed banding patterns suggestive of gene rearrangement. Two main ufo mRNA bands of 3.2 and 5.0 kb were identified; no differences in the half-lives (t1/2 = 2.5 h) of these two mRNA species could be identified. In summary, ufo, representing a novel type of receptor tyrosine kinase, is expressed solely in myeloid and erythro-megakaryocytic leukemias but not in lymphoid malignancies. These and previous data suggest an involvement of the ufo receptor tyrosine kinase in normal and malignant myelopoiesis; however, its exact role, if any, and mode of operation in leukemogenesis remains to be determined.

  10. Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines.

    PubMed

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Yalcin, Murat; Sahin, Saliha; Budak, Ferah; Cecener, Gulsah; Egeli, Unal; Demir, Cevdet; Guvenc, Gokcen; Yilmaz, Gozde; Erkan, Leman Gizem; Malyer, Hulusi; Taskapilioglu, Mevlut Ozgur; Evrensel, Turkkan; Bilir, Ayhan

    2015-03-01

    Glioblastoma multiforme (GBM) is one of the deadliest human malignancies. A cure for GBM remains elusive, and the overall survival time is less than 1 year. Thus, the development of more efficient therapeutic approaches for the treatment of these patients is required. Induction of tumor cell death by certain phytochemicals derived from medicinal herbs and dietary plants has become a new frontier for cancer therapy research. Although the cancer suppressive effect of Ficus carica (fig) latex (FCL) has been determined in a few cancer types, the effect of this latex on GBM tumors has not been investigated. Therefore, in the current study, the anti-proliferative activity of FCL and the effect of the FCL-temozolomide (TMZ) combination were tested in the T98G, U-138 MG, and U-87 MG GBM cell lines using the WST-1 assay. The mechanism of cell death was analyzed using Annexin-V/FITC and TUNEL assays, and the effect of FCL on invasion was tested using the chick chorioallantoic membrane assay. To determine the effect of FCL on GBM progression, the expression levels of 40 GBM associated miRNAs were analyzed in T98G cells using RT-qPCR. According to the obtained data, FCL causes cell death in GBM cells with different responses to TMZ, and this effect is synergistically increased in combination with TMZ. In addition, the current study is the first to demonstrate the effect of FCL on modulation of let-7d expression, which may be an important underlying mechanism of the anti-invasive effect of this extract.

  11. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines

    PubMed Central

    2011-01-01

    Background Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical phenotypes. Results In this work, we proposed a computational method to reconstruct association modules containing driver aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal segments' copy number variations, gene mutations and DNA methylations, microRNA expressions, and the expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions. Conclusions The results provide rich mechanistic information regarding molecular aberrations and gene expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis and treatment of cancer in the era of personalized medicine. PMID:22051105

  12. Creation and characterization of an airway epithelial cell line for stable expression of CFTR variants

    PubMed Central

    Gottschalk, Laura B.; Vecchio-Pagan, Briana; Sharma, Neeraj; Han, Sangwoo T.; Franca, Arianna; Wohler, Elizabeth S.; Batista, Denise A.S.; Goff, Loyal A.; Cutting, Garry R.

    2016-01-01

    Background Analysis of the functional consequences and treatment response of rare CFTR variants is challenging due to the limited availability of primary airways cells. Methods A Flp recombination target (FRT) site for stable expression of CFTR was incorporated into an immortalized CF bronchial epithelial cell line (CFBE41o−). CFTR cDNA was integrated into the FRT site. Expression was evaluated by western blotting and confocal microscopy and function measured by short circuit current. RNA sequencing was used to compare the transcriptional profile of the resulting CF8Flp cell line to primary cells and tissues. Results Functional CFTR was expressed from integrated cDNA at the FRT site of the CF8Flp cell line at levels comparable to that seen in native airway cells. CF8Flp cells expressing WT-CFTR have a stable transcriptome comparable to that of primary cultured airway epithelial cells, including genes that play key roles in CFTR pathways. Conclusion CF8Flp cells provide a viable substitute for primary CF airway cells for the analysis of CFTR variants in a native context. PMID:26694805

  13. Induced expression of Fndc5 significantly increased cardiomyocyte differentiation rate of mouse embryonic stem cells.

    PubMed

    Rabiee, Farzaneh; Forouzanfar, Mahboobeh; Ghazvini Zadegan, Faezeh; Tanhaei, Somayeh; Ghaedi, Kamran; Motovali Bashi, Majid; Baharvand, Hossein; Nasr-Esfahani, Mohammad Hossein

    2014-11-10

    Fibronectin type III domain-containing 5 protein (Fndc5) is an exercise hormone and its transcript profile in mouse showed high degree of expression in heart, skeletal muscle and brain. Our previous studies indicated a significant increase (approximately 10 fold) in mRNA level of Fndc5 when embryonic stem cells were differentiated into beating bodies. As a step closer to identify the involvement of Fndc5 in the process of cardiomyocyte differentiation, we generated a stably inducible transduced mouse embryonic stem cell (mESC) line that overexpressed Fndc5 following Doxycycline induction. Our results indicated that the overexpression of Fndc5 during spontaneous cardiac differentiation significantly increased not only at RNA levels for mesodermal markers but also at the transcriptional levels for cardiac progenitor and cardiac genes. These data suggest that Fndc5 may be involved in cardiomyocyte differentiation. Therefore, a new hope will be arisen for potential application of this myokine for regeneration of damaged cardiac tissues especially in cardiac failure.

  14. Increased gastrin gene expression provides a physiological advantage to mice under hypoxic conditions.

    PubMed

    Laval, Marie; Baldwin, Graham S; Shulkes, Arthur; Marshall, Kathryn M

    2015-01-15

    Hypoxia, or a low concentration of O2, is encountered in humans undertaking activities such as mountain climbing and scuba diving and is important pathophysiologically as a limiting factor in tumor growth. Although data on the interplay between hypoxia and gastrins are limited, gastrin expression is upregulated by hypoxia in gastrointestinal cancer cell lines, and gastrins counterbalance hypoxia by stimulating angiogenesis in vitro and in vivo. The aim of this study was to determine if higher concentrations of the gastrin precursor progastrin are protective against hypoxia in vivo. hGAS mice, which overexpress progastrin in the liver, and mice of the corresponding wild-type FVB/N strain were exposed to normoxia or hypoxia. Iron status was assessed by measurement of serum iron parameters, real-time PCR for mRNAs encoding critical iron regulatory proteins, and Perls' stain and atomic absorption spectrometry for tissue iron concentrations. FVB/N mice lost weight at a faster rate and had higher sickness scores than hGAS mice exposed to hypoxia. Serum iron levels were lower in hGAS than FVB/N mice and decreased further when the animals were exposed to hypoxia. The concentration of iron in the liver was strikingly lower in hGAS than FVB/N mice. We conclude that increased circulating concentrations of progastrin provide a physiological advantage against systemic hypoxia in mice, possibly by increasing the availability of iron stores. This is the first report of an association between progastrin overexpression, hypoxia, and iron homeostasis.

  15. Redox-modulating agents target NOX2-dependent IKKε oncogenic kinase expression and proliferation in human breast cancer cell lines

    PubMed Central

    Mukawera, Espérance; Chartier, Stefany; Williams, Virginie; Pagano, Patrick J.; Lapointe, Réjean; Grandvaux, Nathalie

    2015-01-01

    Oxidative stress is considered a causative factor in carcinogenesis, but also in the development of resistance to current chemotherapies. The appropriate usage of redox-modulating compounds is limited by the lack of knowledge of their impact on specific molecular pathways. Increased levels of the IKKε kinase, as a result of gene amplification or aberrant expression, are observed in a substantial number of breast carcinomas. IKKε not only plays a key role in cell transformation and invasiveness, but also in the development of resistance to tamoxifen. Here, we studied the effect of in vitro treatment with the redox-modulating triphenylmethane dyes, Gentian Violet and Brilliant Green, and nitroxide Tempol on IKKε expression and cell proliferation in the human breast cancer epithelial cell lines exhibiting amplification of IKKε, MCF-7 and ZR75.1. We show that Gentian Violet, Brilliant Green and Tempol significantly decrease intracellular superoxide anion levels and inhibit IKKε expression and cell viability. Treatment with Gentian Violet and Brilliant Green was associated with a reduced cyclin D1 expression and activation of caspase 3 and/or 7. Tempol decreased cyclin D1 expression in both cell lines, while activation of caspase 7 was only observed in MCF-7 cells. Silencing of the superoxide-generating NOX2 NADPH oxidase expressed in breast cancer cells resulted in the significant reduction of IKKε expression. Taken together, our results suggest that redox-modulating compounds targeting NOX2 could present a particular therapeutic interest in combination therapy against breast carcinomas exhibiting IKKε amplification. PMID:26177467

  16. Over-expression of OsPTR6 in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply.

    PubMed

    Fan, Xiaorong; Xie, Dan; Chen, Jingguang; Lu, Haiyan; Xu, Yanling; Ma, Cui; Xu, Guohua

    2014-10-01

    Nitrogen (N) plays a critical role in plant growth and productivity and PTR/NRT1 transporters are critical for rice growth. In this study, OsPTR6, a PTR/NRT1 transporter, was over-expressed in the Nipponbare rice cultivar by Agrobacterium tumefaciens transformation using the ubiquitin (Ubi) promoter. Three single-copy T2 generation transgenic lines, named OE1, OE5 and OE6, were produced and subjected to hydroponic growth experiments in different nitrogen treatments. The results showed the plant height and biomass of the over-expression lines were increased, and plant N accumulation and glutamine synthetase (GS) activities were enhanced at 5.0mmol/L NH4(+) and 2.5mmol/L NH4NO3. The expression of OsATM1 genes in over-expression lines showed that the OsPTR6 over expression increased OsAMT1.1, OsATM1.2 and OsAMT1.3 expression at 0.2 and 5.0mmol/L NH4(+) and 2.5mmol/L NH4NO3. However, nitrogen utilisation efficiency (NUE) was decreased at 5.0mmol/LNH4(+). These data suggest that over-expression of the OsPTR6 gene could increase rice growth through increasing ammonium transporter expression and glutamine synthetase activity (GSA), but decreases nitrogen use efficiency under conditions of high ammonium supply.

  17. Monitoring of the effects of transfection with baculovirus on Sf9 cell line and expression of human dipeptidyl peptidase IV.

    PubMed

    Ustün-Aytekin, Ozlem; Gürhan, Ismet Deliloğlu; Ohura, Kayoko; Imai, Teruko; Ongen, Gaye

    2014-01-01

    Human dipeptidylpeptidase IV (hDPPIV) is an enzyme that is in hydrolase class and has various roles in different parts of human body. Its deficiency may cause some disorders in the gastrointestinal, neurologic, endocrinological and immunological systems of humans. In the present study, hDPPIV enzyme was expressed on Spodoptera frugiperda (Sf9) cell lines as a host cell, and the expression of hDPPIV was obtained by a baculoviral expression system. The enzyme production, optimum multiplicity of infection, optimum transfection time, infected and uninfected cell size and cell behavior during transfection were also determined. For maximum hDPPIV (269 mU mL(-1)) enzyme, optimum multiplicity of infection (MOI) and time were 0.1 and 72 h, respectively. The size of infected cells increased significantly (P < 0.001) after 24 h post infection. The results indicated that Sf9 cell line was applicable to the large scale for hDPPIV expression by using optimized parameters (infection time and MOI) because of its high productivity (4.03 mU m L(-1) h(-1)).

  18. Oxytocin increases bias, but not accuracy, in face recognition line-ups.

    PubMed

    Bate, Sarah; Bennetts, Rachel; Parris, Benjamin A; Bindemann, Markus; Udale, Robert; Bussunt, Amanda

    2015-07-01

    Previous work indicates that intranasal inhalation of oxytocin improves face recognition skills, raising the possibility that it may be used in security settings. However, it is unclear whether oxytocin directly acts upon the core face-processing system itself or indirectly improves face recognition via affective or social salience mechanisms. In a double-blind procedure, 60 participants received either an oxytocin or placebo nasal spray before completing the One-in-Ten task-a standardized test of unfamiliar face recognition containing target-present and target-absent line-ups. Participants in the oxytocin condition outperformed those in the placebo condition on target-present trials, yet were more likely to make false-positive errors on target-absent trials. Signal detection analyses indicated that oxytocin induced a more liberal response bias, rather than increasing accuracy per se. These findings support a social salience account of the effects of oxytocin on face recognition and indicate that oxytocin may impede face recognition in certain scenarios.

  19. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    PubMed Central

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  20. Chinese Hamster Ovary (CHO) Host Cell Engineering to Increase Sialylation of Recombinant Therapeutic Proteins by Modulating Sialyltransferase Expression

    PubMed Central

    Lin, Nan; Mascarenhas, Joaquina; Sealover, Natalie R.; George, Henry J.; Brooks, Jeanne; Kayser, Kevin J.; Gau, Brian; Yasa, Isil; Azadi, Parastoo; Archer-Hartmann, Stephanie

    2015-01-01

    N-Glycans of human proteins possess both α2,6- and α2,3-linked terminal sialic acid (SA). Recombinant glycoproteins produced in Chinese hamster overy (CHO) only have α2,3-linkage due to the absence of α2,6-sialyltransferase (St6gal1) expression. The Chinese hamster ST6GAL1 was successfully overexpressed using a plasmid expression vector in three recombinant immunoglobulin G (IgG)-producing CHO cell lines. The stably transfected cell lines were enriched for ST6GAL1 overexpression using FITC-Sambucus nigra (SNA) lectin that preferentially binds α2,6-linked SA. The presence of α2,6-linked SA was confirmed using a novel LTQ Linear Ion Trap Mass Spectrometry (LTQ MS) method including MSn fragmentation in the enriched ST6GAL1 Clone 27. Furthermore, the total SA (mol/mol) in IgG produced by the enriched ST6GAL1 Clone 27 increased by 2-fold compared to the control. For host cell engineering, the CHOZN® GS host cell line was transfected and enriched for ST6GAL1 overexpression. Single-cell clones were derived from the enriched population and selected based on FITC-SNA staining and St6gal1 expression. Two clones (“ST6GAL1 OE Clone 31 and 32”) were confirmed for the presence of α2,6-linked SA in total host cell protein extracts. ST6GAL1 OE Clone 32 was subsequently used to express SAFC human IgG1. The recombinant IgG expressed in this host cell line was confirmed to have α2,6-linked SA and increased total SA content. In conclusion, overexpression of St6gal1 is sufficient to produce recombinant proteins with increased sialylation and more human-like glycoprofiles without combinatorial engineering of other sialylation pathway genes. This work represents our ongoing effort of glycoengineering in CHO host cell lines for the development of “bio-better” protein therapeutics and cell culture vaccine production. PMID:25641927

  1. Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression.

    PubMed

    Lin, Nan; Mascarenhas, Joaquina; Sealover, Natalie R; George, Henry J; Brooks, Jeanne; Kayser, Kevin J; Gau, Brian; Yasa, Isil; Azadi, Parastoo; Archer-Hartmann, Stephanie

    2015-01-01

    N-Glycans of human proteins possess both α2,6- and α2,3-linked terminal sialic acid (SA). Recombinant glycoproteins produced in Chinese hamster overy (CHO) only have α2,3-linkage due to the absence of α2,6-sialyltransferase (St6gal1) expression. The Chinese hamster ST6GAL1 was successfully overexpressed using a plasmid expression vector in three recombinant immunoglobulin G (IgG)-producing CHO cell lines. The stably transfected cell lines were enriched for ST6GAL1 overexpression using FITC-Sambucus nigra (SNA) lectin that preferentially binds α2,6-linked SA. The presence of α2,6-linked SA was confirmed using a novel LTQ Linear Ion Trap Mass Spectrometry (LTQ MS) method including MSn fragmentation in the enriched ST6GAL1 Clone 27. Furthermore, the total SA (mol/mol) in IgG produced by the enriched ST6GAL1 Clone 27 increased by 2-fold compared to the control. For host cell engineering, the CHOZN(®) GS host cell line was transfected and enriched for ST6GAL1 overexpression. Single-cell clones were derived from the enriched population and selected based on FITC-SNA staining and St6gal1 expression. Two clones ("ST6GAL1 OE Clone 31 and 32") were confirmed for the presence of α2,6-linked SA in total host cell protein extracts. ST6GAL1 OE Clone 32 was subsequently used to express SAFC human IgG1. The recombinant IgG expressed in this host cell line was confirmed to have α2,6-linked SA and increased total SA content. In conclusion, overexpression of St6gal1 is sufficient to produce recombinant proteins with increased sialylation and more human-like glycoprofiles without combinatorial engineering of other sialylation pathway genes. This work represents our ongoing effort of glycoengineering in CHO host cell lines for the development of "bio-better" protein therapeutics and cell culture vaccine production.

  2. Exercise and adrenaline increase PGC-1α mRNA expression in rat adipose tissue

    PubMed Central

    Sutherland, Lindsey N; Bomhof, Marc R; Capozzi, Lauren C; Basaraba, Susan A U; Wright, David C

    2009-01-01

    The purpose of the present investigation was to explore the effects of exercise and adrenaline on the mRNA expression of PGC-1α, a master regulator of mitochondrial biogenesis, in rat abdominal adipose tissue. We hypothesized that (1) exercise training would increase PGC-1α mRNA expression in association with increases in mitochondrial marker enzymes, (2) adrenaline would increase PGC-1α mRNA expression and (3) the effect of exercise on PGC-1α mRNA expression in white adipose tissue would be attenuated by a β-blocker. Two hours of daily swim training for 4 weeks led to increases in mitochondrial marker proteins and PGC-1α mRNA expression in epididymal and retroperitoneal fat depots. Additionally, a single 2 h bout of exercise led to increases in PGC-1α mRNA expression immediately following exercise cessation. Adrenaline treatment of adipose tissue organ cultures led to dose-dependent increases in PGC-1α mRNA expression. A supra-physiological concentration of adrenaline increased PGC-1α mRNA expression in epididymal but not retroperitoneal adipose tissue. β-Blockade attenuated the effects of an acute bout of exercise on PGC-1α mRNA expression in epididymal but not retroperitoneal fat pads. In summary, this is the first investigation to demonstrate that exercise training, an acute bout of exercise and adrenaline all increase PGC-1α mRNA expression in rat white adipose tissue. Furthermore it would appear that increases in circulating catecholamine levels may be one potential mechanism mediating exercise induced increases in PGC-1α mRNA expression in rat abdominal adipose tissue. PMID:19221126

  3. Sow line differences in heat stress tolerance expressed in reproductive performance traits.

    PubMed

    Bloemhof, S; van der Waaij, E H; Merks, J W M; Knol, E F

    2008-12-01

    farrowing rate, 21.7 degrees C for litter size, and 19.6 degrees C for total number born per first insemination. The decrease in reproductive performance of I-line sows with increasing outside temperature was less than in D-line sows. From this study it can be concluded that there are differences in heat stress tolerance between sow lines as measured by the differences in reproductive performance. These differences are an indication of genetic differences in heat stress tolerance in sow lines.

  4. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    PubMed

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

  5. LOX-1 expression and oxidized LDL uptake and toxicity in the HN33 neuronal cell line.

    PubMed

    Mao, Xiaoou; Xie, Lin; Greenberg, David A

    2014-09-19

    Cardiovascular risk factors appear to influence the risk and progression of neurodegenerative disease, but the mechanisms involved are poorly understood. We investigated the possible involvement of oxidized low-density lipoprotein receptor (LOX-1) and oxidized low-density lipoprotein (Ox-LDL) in neurodegeneration by studying the expression of LOX-1 and the effects of Ox-LDL in HN33 cells, a neuronal cell line of central nervous system origin. HN33 cells showed LOX-1 protein expression, hypoxic induction of LOX-1, Ox-LDL uptake and Ox-LDL toxicity. LOX-1/Ox-LDL signaling may contribute to the association between cardiovascular risk factors and neurodegenerative disease.

  6. Advanced glycation endproducts increase proliferation, migration and invasion of the breast cancer cell line MDA-MB-231.

    PubMed

    Sharaf, Hana; Matou-Nasri, Sabine; Wang, Qiuyu; Rabhan, Zaki; Al-Eidi, Hamad; Al Abdulrahman, Abdulkareem; Ahmed, Nessar

    2015-03-01

    Diabetic patients have increased likelihood of developing breast cancer. Advanced glycation endproducts (AGEs) underlie the pathogenesis of diabetic complications but their impact on breast cancer cells is not understood. This study aims to determine the effects of methylglyoxal-derived bovine serum albumin AGEs (MG-BSA-AGEs) on the invasive MDA-MB-231 breast cancer cell line. By performing cell counting, using wound-healing assay, invasion assay and zymography analysis, we found that MG-BSA-AGEs increased MDA-MB-231 cell proliferation, migration and invasion through Matrigel™ associated with an enhancement of matrix metalloproteinase (MMP)-9 activities, in a dose-dependent manner. Using Western blot and flow cytometry analyses, we demonstrated that MG-BSA-AGEs increased expression of the receptor for AGEs (RAGE) and phosphorylation of key signaling protein extracellular signal-regulated kinase (ERK)-1/2. Furthermore, in MG-BSA-AGE-treated cells, phospho-protein micro-array analysis revealed enhancement of phosphorylation of the ribosomal protein 70 serine S6 kinase beta 1 (p70S6K1), which is known to be involved in protein synthesis, the signal transducer and activator of transcription (STAT)-3 and the mitogen-activated protein kinase (MAPK) p38, which are involved in cell survival. Blockade of MG-BSA-AGE/RAGE interactions using a neutralizing anti-RAGE antibody inhibited MG-BSA-AGE-induced MDA-MB-231 cell processes, including the activation of signaling pathways. Throughout the study, non-modified BSA had a negligible effect. In conclusion, AGEs might contribute to breast cancer development and progression partially through the regulation of MMP-9 activity and RAGE signal activation. The up-regulation of RAGE and the concomitant increased phosphorylation of p70S6K1 induced by AGEs may represent promising targets for drug therapy to treat diabetic patients with breast cancer.

  7. Proinflammatory Cytokines Increase Vascular Endothelial Growth Factor Expression in Alveolar Epithelial Cells.

    PubMed

    Maloney, James P; Gao, Li

    2015-01-01

    Vascular endothelial growth factor (VEGF) is an endothelial permeability mediator that is highly expressed in lung epithelium. In nonlung cells proinflammatory cytokines have been shown to increase VEGF expression, but their effects on lung epithelium remain unclear. We hypothesized that increases in alveolar epithelial cell VEGF RNA and protein expression occur after exposure to proinflammatory cytokines. We tested this using human alveolar epithelial cells (A549) stimulated with 5 proinflammatory cytokines. VEGF RNA expression was increased 1.4-2.7-fold in response to IL-1, IL-6, IL-8, TNF-α, or TGF-β over 6 hours, with TGF-β having the largest response. TNF-α increased VEGF RNA as early as 1 hour. A mix of IL-1, IL-6, and IL-8 had effects similar to IL-1. TNF-α increased protein expression as early as 4 hours and had a sustained effect at 16 hours, whereas IL-1 did not increase protein expression. Only VEGF165 was present in cultured A549 cells, yet other isoforms were seen in human lung tissue. Increased expression of VEGF in alveolar epithelial cells occurs in response to proinflammatory cytokines. Increased VEGF expression likely contributes to the pathogenesis of inflammatory lung diseases and to the angiogenic phenotype of lung cancer, a disease typically preceded by chronic inflammation.

  8. Ectopic expression of SlAGO7 alters leaf pattern and inflorescence architecture and increases fruit yield in tomato.

    PubMed

    Lin, Dongbo; Xiang, Ya; Xian, Zhiqiang; Li, Zhengguo

    2016-08-01

    ARGONAUTE7 (AGO7), a key regulator of the trans-acting small interfering RNAs (ta-siRNA) pathway, plays a conserved role in controlling leaf pattern among species. However, little is known about the ta-siRNA pathway in regulating inflorescence architecture and fruit yield. In this study, we characterized the expression pattern, subcellular localization and developmental functions of SlAGO7 in tomato (Solanum lycopersicum). Overexpressing SlAGO7 in tomato exhibited pleiotropic phenotypes, including improved axillary bud formation, altered leaf morphology and inflorescence architecture, and increased fruit yield. Cross-sectioning of leaves showed that the number of vascular bundles was significantly increased in 35:SlAGO7 lines. Overexpression of SlAGO7 increased the production of ta-siRNA, and repressed the expression ta-siRNA-targeted genes (SlARF2a, SlARF2b, SlARF3 and SlARF4). Further analysis showed that overexpression of SlAGO7 alters the expression of key genes implicated in leaf morphology, inflorescence architecture, auxin transport and signaling. In addition, the altered auxin response of 35:SlAGO7 lines were also investigated. These results suggested that SlAGO7 plays a positive role in determining inflorescence architecture and fruit yield though the ta-siRNA pathway. Therefore, SlAGO7 represents a useful gene that can be incorporated in tomato breeding programs for developing cultivars with yield potential.

  9. Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield.

    PubMed

    Tata, Sandeep Kumar; Jung, Jihye; Kim, Yoon-Ha; Choi, Jun Young; Jung, Ji-Yul; Lee, In-Jung; Shin, Jeong Sheop; Ryu, Stephen Beungtae

    2016-01-01

    Geranylgeranyl pyrophosphate synthase (GGPS) is a key enzyme for a structurally diverse class of isoprenoid biosynthetic metabolites including gibberellins, carotenoids, chlorophylls and rubber. We expressed a chloroplast-targeted GGPS isolated from sunflower (Helianthus annuus) under control of the cauliflower mosaic virus 35S promoter in tobacco (Nicotiana tabacum). The resulting transgenic tobacco plants expressing heterologous GGPS showed remarkably enhanced growth (an increase in shoot and root biomass and height), early flowering, increased number of seed pods and greater seed yield compared with that of GUS-transgenic lines (control) or wild-type plants. The gibberellin levels in HaGGPS-transgenic plants were higher than those in control plants, indicating that the observed phenotype may result from increased gibberellin content. However, in HaGGPS-transformant tobacco plants, we did not observe the phenotypic defects such as reduced chlorophyll content and greater petiole and stalk length, which were previously reported for transgenic plants expressing gibberellin biosynthetic genes. Fast plant growth was also observed in HaGGPS-expressing Arabidopsis and dandelion plants. The results of this study suggest that GGPS expression in crop plants may yield desirable agronomic traits, including enhanced growth of shoots and roots, early flowering, greater numbers of seed pods and/or higher seed yield. This research has potential applications for fast production of plant biomass that provides commercially valuable biomaterials or bioenergy.

  10. The hESC line Envy expresses high levels of GFP in all differentiated progeny.

    PubMed

    Costa, Magdaline; Dottori, Mirella; Ng, Elizabeth; Hawes, Susan M; Sourris, Koula; Jamshidi, Pegah; Pera, Martin F; Elefanty, Andrew G; Stanley, Edouard G

    2005-04-01

    Human embryonic stem cells (hESCs) have been advanced as a potential source of cells for use in cell replacement therapies. The ability to identify hESCs and their differentiated progeny readily in transplantation experiments will facilitate the analysis of hESC potential and function in vivo. We have generated a hESC line designated 'Envy', in which robust levels of green fluorescent protein (GFP) are expressed in stem cells and all differentiated progeny.

  11. Effect of Thymoquinone on P53 Gene Expression and Consequence Apoptosis in Breast Cancer Cell Line

    PubMed Central

    Dastjerdi, Mehdi Nikbakht; Mehdiabady, Ebrahim Momeni; Iranpour, Farhad Golshan; Bahramian, Hamid

    2016-01-01

    Background: Nigella sativa has been a nutritional flavoring factor and natural treatment for many ailments for so many years in medical science. Earlier studies have been reported that thymoquinone (TQ), an active compound of its seed, contains anticancer properties. Previous studies have shown that TQ induces apoptosis in breast cancer cells but it is unclear the role of P53 in the apoptotic pathway. Hereby, this study reports the potency of TQ on expression of tumor suppressor gene P53 and apoptosis induction in breast cancer cell line Michigan Cancer Foundation-7 (MCF-7). Methods: MCF-7 cell line was cultured and treated with TQ, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out for evaluating the half-maximal inhibitory concentration (IC50) values after 24 h of treatment. The percentage of apoptotic cells was measured by flow cytometry. Real-time polymerase chain reaction (PCR) was performed to estimate the messenger RNA expression of P53 in MCF-7 cell line at different times. Results: The IC50 value for the TQ in MCF-7 cells was 25 μM that determined using MTT assay. The flow cytometry and real-time PCR results showed that TQ could induce apoptosis in MCF-7 cells, and the P53 gene expression was dramatically up-regulated by ascending time, respectively. Hence, there was significant difference in 48 and 72 h. Conclusions: Our results demonstrated that TQ could induce apoptosis in MCF-7 cells through up-regulation of P53 expression in breast cancer cell line (MCF-7) by time-dependent manner. PMID:27141285

  12. Osmotic stress regulates mineralocorticoid receptor expression in a novel aldosterone-sensitive cortical collecting duct cell line.

    PubMed

    Viengchareun, Say; Kamenicky, Peter; Teixeira, Marie; Butlen, Daniel; Meduri, Geri; Blanchard-Gutton, Nicolas; Kurschat, Christine; Lanel, Aurélie; Martinerie, Laetitia; Sztal-Mazer, Shoshana; Blot-Chabaud, Marcel; Ferrary, Evelyne; Cherradi, Nadia; Lombès, Marc

    2009-12-01

    Aldosterone effects are mediated by the mineralocorticoid receptor (MR), a transcription factor highly expressed in the distal nephron. Given that MR expression level constitutes a key element controlling hormone responsiveness, there is much interest in elucidating the molecular mechanisms governing MR expression. To investigate whether hyper- or hypotonicity could affect MR abundance, we established by targeted oncogenesis a novel immortalized cortical collecting duct (CCD) cell line and examined the impact of osmotic stress on MR expression. KC3AC1 cells form domes, exhibit a high transepithelial resistance, express 11beta-hydroxysteroid dehydrogenase 2 and functional endogenous MR, which mediates aldosterone-stimulated Na(+) reabsorption through the epithelial sodium channel activation. MR expression is tightly regulated by osmotic stress. Hypertonic conditions induce expression of tonicity-responsive enhancer binding protein, an osmoregulatory transcription factor capable of binding tonicity-responsive enhancer response elements located in MR regulatory sequences. Surprisingly, hypertonicity leads to a severe reduction in MR transcript and protein levels. This is accompanied by a concomitant tonicity-induced expression of Tis11b, a mRNA-destabilizing protein that, by binding to the AU-rich sequences of the 3'-untranslated region of MR mRNA, may favor hypertonicity-dependent degradation of labile MR transcripts. In sharp contrast, hypotonicity causes a strong increase in MR transcript and protein levels. Collectively, we demonstrate for the first time that optimal adaptation of CCD cells to changes in extracellular fluid composition is accompanied by drastic modification in MR abundance via transcriptional and posttranscriptional mechanisms. Osmotic stress-regulated MR expression may represent an important molecular determinant for cell-specific MR action, most notably in renal failure, hypertension, or mineralocorticoid resistance.

  13. Murine bone cell lines as models for spaceflight induced effects on differentiation and gene expression

    NASA Astrophysics Data System (ADS)

    Lau, P.; Hellweg, C. E.; Baumstark-Khan, C.; Reitz, G.

    Critical health factors for space crews especially on long-term missions are radiation exposure and the absence of gravity DNA double strand breaks DSB are presumed to be the most deleterious DNA lesions after radiation as they disrupt both DNA strands in close proximity Besides radiation risk the absence of gravity influences the complex skeletal apparatus concerning muscle and especially bone remodelling which results from mechanical forces exerting on the body Bone is a dynamic tissue which is life-long remodelled by cells from the osteoblast and osteoclast lineage Any imbalance of this system leads to pathological conditions such as osteoporosis or osteopetrosis Osteoblastic cells play a crucial role in bone matrix synthesis and differentiate either into bone-lining cells or into osteocytes Premature terminal differentiation has been reported to be induced by a number of DNA damaging or cell stress inducing agents including ionising and ultraviolet radiation as well as treatment with mitomycin C In the present study we compare the effects of sequential differentiation by adding osteoinductive substances ss -glycerophosphate and ascorbic acid Radiation-induced premature differentiation was investigated regarding the biosynthesis of specific osteogenic marker molecules and the differentiation dependent expression of marker genes The bone cell model established in our laboratory consists of the osteocyte cell line MLO-Y4 the osteoblast cell line OCT-1 and the subclones 4 and 24 of the osteoblast cell line MC3T3-E1 expressing several

  14. Conditional Expression of the Androgen Receptor Increases Susceptibility of Bladder Cancer in Mice

    PubMed Central

    Luong, Richard; Yu, Eun-Jeong; He, Yongfeng; Gonzalgo, Mark L.; Sun, Zijie

    2016-01-01

    Bladder cancer represents a significant human tumor burden, accounting for about 7.7% and 2.4% of all cancer cases in males and females, respectively. While men have a higher risk of developing bladder cancer, women tend to present at a later stage of disease and with more aggressive tumors. Previous studies have suggested a promotional role of androgen signaling in enhancing bladder cancer development. To directly assess the role of androgens in bladder tumorigenesis, we have developed a novel transgenic mouse strain, R26hARLoxP/+:Upk3aGCE/+, in which the human AR transgene is conditionally expressed in bladder urothelium. Intriguingly, both male and female R26hARLoxP/+:Upk3aGCE/+ mice display a higher incidence of urothelial cell carcinoma (UCC) than the age and sex matched control littermates in response to the carcinogen, N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN). We detect expression of the human AR transgene in CK5-positive and p63-positive basal cells in bladder urothelium. Further analyses of UCC tissues from R26hARLoxP/+:Upk3aGCE/+ mice showed that the majority of tumor cells are of urothelial basal cell origin. Positive immunostaining of transgenic AR protein was observed in the majority of tumor cells of the transgenic mice, providing a link between transgenic AR expression and oncogenic transformation. We observed an increase in Ki67 positive cells within the UCC lesions of transgenic AR mice. Manipulating endogenous androgen levels by castration and androgen supplementation directly affected bladder tumor development in male and female R26hARLoxP/+:Upk3aGCE/+ mice, respectively. Taken together, our data demonstrate for the first time that conditional activation of transgenic AR expression in bladder urothelium enhances carciongen-induced bladder tumor formation in mice. This new AR transgenic mouse line mimics certain features of human bladder cancer and can be used to study bladder tumorigenesis and for drug development. PMID:26862755

  15. Increased adipose tissue expression of Grb14 in several models of insulin resistance.

    PubMed

    Cariou, Bertrand; Capitaine, Nadège; Le Marcis, Véronique; Vega, Nathalie; Béréziat, Véronique; Kergoat, Micheline; Laville, Martine; Girard, Jean; Vidal, Hubert; Burnol, Anne-Françoise

    2004-06-01

    Grb14 is an effector of insulin signaling, which directly inhibits insulin receptor catalytic activity in vitro. Here, we investigated whether the expression of Grb14 and its binding partner ZIP (PKC zeta interacting protein) is regulated during insulin resistance in type 2 diabetic rodents and humans. Grb14 expression was increased in adipose tissue of both ob/ob mice and Goto-Kakizaki (GK) rats, whereas there was no difference in liver. An increase was also observed in subcutaneous adipose tissue of type 2 diabetic subjects when compared with controls. ZIP expression was increased in adipose tissue of ob/ob mice and type 2 diabetic patients, but it did not vary in GK rats. Hormonal regulation of Grb14 and ZIP expression was then investigated in 3T3-F442A adipocytes. In this model, insulin stimulated Grb14 expression, while TNF-alpha increased ZIP expression. Moreover, the insulin-sensitizing drugs thiazolidinediones (TZDs) decreased Grb14 expression in 3T3-F442A adipocytes. Finally, we investigated the dynamic regulation of Grb14 expression in ob/ob mice in several conditions improving their insulin sensitivity. Prolonged fasting and treatment with metformin significantly decreased Grb14 expression in peri-epidydimal adipose tissue, while there was only a trend to a diminution after TZD treatment. Taken together, these results suggest that the regulation of Grb14 expression in adipose tissue may play a physiological role in insulin sensitivity.

  16. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  17. Profiling of differential expression of messenger RNA in normal, benign, and metastatic prostate cell lines.

    PubMed

    Chakrabarti, Ratna; Robles, Liza D; Gibson, Jane; Muroski, Megan

    2002-12-01

    To understand the phenotypic changes associated with prostate cancer development and metastasis, we investigated differential gene expression in primary and established prostate cell lines used as models. We have used a differential display of messenger RNA (DDRT-PCR) technique using 168 primer combinations and total RNA from BPH-1, LNCaP, and PC3 cells to identify filter-based cDNA microarrays containing 18,376 nonredundant clones of genes and expressed sequence tags (EST) using mRNA from PrEC and MDAPCa2a cells to identify genes that are differentially expressed in normal, benign, and cancerous prostate cell lines. Twenty-five cDNA with a significant difference in expression of 76 candidate cDNA, as identified by DDRT-PCR and confirmed by slot-blot analysis, were selected for sequence analysis. Of these, 14 cDNA were further confirmed by Northern blot analysis. Analysis of the cDNA microarray data showed that a variety of genes/EST were up- or down-regulated in the metastatic prostate tumor cells and a majority of these genes encode cytoskeletal proteins and proteins with regulatory function. Expression profile of two EST was confirmed by reverse transcription polymerase chain reaction. We also have identified a number of genes exhibiting differential expression in prostate cancer cells, which were not known earlier to be involved in prostate cancer. This report provides a comparative analysis of differential gene expression between normal prostatic epithelial cells and prostate cancer cells, and a foundation to facilitate in-depth studies on the mechanism of prostate cancer development and metastasis.

  18. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    SciTech Connect

    Takahashi, Nobuhiko; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  19. Bleaching induced tooth sensitivity: do the existing enamel craze lines increase sensitivity? A clinical study.

    PubMed

    Özcan, Mutlu; Abdin, Sam; Sipahi, Cumhur

    2014-07-01

    The aim of this clinical study was to evaluate whether or not an association exists between the presence of enamel craze lines and the prevalence of tooth sensitivity (TS) after in-office bleaching. Subjects that met the inclusion criteria (N = 23) were screened to detect the existence of enamel craze lines. In total, 460 teeth were subjected to bleaching where 49% of them presented enamel craze lines. After bleaching (15% hydrogen peroxide), the subjects were asked to rate the level of TS by answering a self-administered questionnaire. The majority of subjects (91%) experienced TS at the first day of bleaching. The TS prevalence decreased gradually to 22% at second day, to 17% at third day, and to 9% at fourth day. After the fourth day, no subject reported TS. While 15% of teeth with craze lines presented TS, 11% of teeth with no craze lines also showed TS. A positive but weak correlation (r = 0.214) was found between the existence of enamel craze lines and TS. In this clinical study, higher incidence of TS was found with the use of 15% hydrogen peroxide bleaching agent compared to the previous studies. Patients who would undergo in-office bleaching should be informed that tooth sensitivity is a very often side effect but it may disappear within 1 week.

  20. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate

    PubMed Central

    Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms. PMID:27073913

  1. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate.

    PubMed

    Barenholz, Uri; Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms.

  2. Characterization of a new human melanoma cell line with CD133 expression.

    PubMed

    Gil-Benso, Rosario; Monteagudo, Carlos; Cerdá-Nicolás, Miguel; Callaghan, Robert C; Pinto, Sandra; Martínez-Romero, Alicia; Pellín-Carcelén, Ana; San-Miguel, Teresa; Cigudosa, Juan C; López-Ginés, Concha

    2012-06-01

    A novel human malignant melanoma cell line, designated MEL-RC08, was established from a pericranial metastasis of a malignant melanoma of the skin. The cell line has been subcultured for more than 150 passages and is tumorigenic in nude mice. Growth kinetics, cytogenetics, flow cytometry, and molecular techniques for analysis of the genes implicated in cell cycle control; mutations in BRAF, NRAS, C-KiT, RB, and TP53 genes; and amplification of MDM2, CDK4, and cyclin D1 have been studied. Cytogenetically, the tumor and the cell line showed a hypertriploid karyotype with many clonal numeric and structural abnormalities. DNA flow cytometry showed an aneuploid peak with a DNA index value of 1.5. Mutations in TP53 and BRAF genes were demonstrated in both tumor and cell line. Furthermore, stem cell marker CD133 expression was detected in most cells, together with other stem cell markers, suggesting the presence of cells with tumor-initiating potential in this cell line.

  3. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines

    PubMed Central

    Mahé, Cécile; Bernhard, Michel; Bobirnac, Ionel; Keser, Corinna; Loetscher, Erika; Feuerbach, Dominik; Dev, Kumlesh K; Schoeffter, Philippe

    2004-01-01

    Serotonin 5-HT7 receptors are present in astrocytes. Understanding their role in this type of cell would greatly benefit from the identification of astroglial cell lines expressing this receptor type. The aim of the present study was to assess the expression of native 5-HT7 receptors and 5-HT7 receptor mRNA in a number of human glioblastoma cell lines, by means of cAMP measurements, Western blot analysis and reverse transcriptase–polymerase chain reaction (RT–PCR) analysis. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human glioblastoma cell lines, U-373 MG, U-138 MG, U-87 MG, DBTRG-05MG, T98G, H4, CCF-STTG1 and Hs 683. The rank order of potency was 5-CT>5-HT=5-MeOT≫8-OH-DPAT. The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT7 receptor antagonist SB-269970 in all human glioblastoma cells. Schild analyses yielded slope factors close to unity (0.89–1.13) and pA2 values of 8.69–9.05. Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT7 receptor in extracts of all human glioblastoma cell lines. The presence of the three splice variants of the 5-HT7 receptor (5-HT7(a/b/d)) was visualized by RT–PCR analysis with specific primers in all human glioblastoma cell lines. In conclusion, human glioblastoma cell lines express functional 5-HT7 receptors and the three splice variants of the corresponding mRNA. These cell lines could serve as model systems of native 5-HT7 receptors in glial cells to investigate their putative role in processes like release of neurotrophic factors or inflammatory cytokines. PMID:15339860

  4. Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line.

    PubMed

    Steiner, Aaron B; Kim, Taeryn; Cabot, Victoria; Hudspeth, A J

    2014-04-08

    Hearing loss is most commonly caused by the destruction of mechanosensory hair cells in the ear. This condition is usually permanent: Despite the presence of putative hair-cell progenitors in the cochlea, hair cells are not naturally replenished in adult mammals. Unlike those of the mammalian ear, the progenitor cells of nonmammalian vertebrates can regenerate hair cells throughout life. The basis of this difference remains largely unexplored but may lie in molecular dissimilarities that affect how progenitors respond to hair-cell death. To approach this issue, we analyzed gene expression in hair-cell progenitors of the lateral-line system. We developed a transgenic line of zebrafish that expresses a red fluorescent protein in the presumptive hair-cell progenitors known as mantle cells. Fluorescence-activated cell sorting from the skins of transgenic larvae, followed by microarray-based expression analysis, revealed a constellation of transcripts that are specifically enriched in these cells. Gene expression analysis after hair-cell ablation uncovered a cohort of genes that are differentially regulated early in regeneration, suggesting possible roles in the response of progenitors to hair-cell death. These results provide a resource for studying hair-cell regeneration and the biology of sensory progenitor cells.

  5. Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line

    PubMed Central

    Kim, Taeryn; Cabot, Victoria; Hudspeth, A. J.

    2014-01-01

    Hearing loss is most commonly caused by the destruction of mechanosensory hair cells in the ear. This condition is usually permanent: Despite the presence of putative hair-cell progenitors in the cochlea, hair cells are not naturally replenished in adult mammals. Unlike those of the mammalian ear, the progenitor cells of nonmammalian vertebrates can regenerate hair cells throughout life. The basis of this difference remains largely unexplored but may lie in molecular dissimilarities that affect how progenitors respond to hair-cell death. To approach this issue, we analyzed gene expression in hair-cell progenitors of the lateral-line system. We developed a transgenic line of zebrafish that expresses a red fluorescent protein in the presumptive hair-cell progenitors known as mantle cells. Fluorescence-activated cell sorting from the skins of transgenic larvae, followed by microarray-based expression analysis, revealed a constellation of transcripts that are specifically enriched in these cells. Gene expression analysis after hair-cell ablation uncovered a cohort of genes that are differentially regulated early in regeneration, suggesting possible roles in the response of progenitors to hair-cell death. These results provide a resource for studying hair-cell regeneration and the biology of sensory progenitor cells. PMID:24706895

  6. Changes in the phenotype of human small cell lung cancer cell lines after transfection and expression of the c-myc proto-oncogene.

    PubMed Central

    Johnson, B E; Battey, J; Linnoila, I; Becker, K L; Makuch, R W; Snider, R H; Carney, D N; Minna, J D

    1986-01-01

    Small cell lung cancer growing in cell culture possesses biologic properties that allow classification into two categories: classic and variant. Compared with classic small cell lung cancer cell lines, variant lines have altered large cell morphology, shorter doubling times, higher cloning efficiencies in soft agarose, and very low levels of L dopa decarboxylase production and bombesin-like immunoreactivity. C-myc is amplified and expressed in some small cell lung cancer cell lines and all c-myc amplified lines studied to date display the variant phenotype. To investigate if c-myc amplification and expression is responsible for the variant phenotype, a normal human c-myc gene was transfected into a cloned classic small cell lung cancer cell line not amplified for or expressing detectable c-myc messenger RNA (mRNA). Clones were isolated with one to six copies of c-myc stably integrated into DNA that expressed c-myc mRNA. In addition, one clone with an integrated neo gene but a deleted c-myc gene was isolated and in this case c-myc was not expressed. C-myc expression in transfected clones was associated with altered large cell morphology, a shorter doubling time, and increased cloning efficiency, but no difference in L dopa decarboxylase levels and bombesin-like immunoreactivity. We conclude increased c-myc expression observed here in transfected clones correlates with some of the phenotypic properties distinguishing c-myc amplified variants from unamplified classic small cell lung cancer lines. Images PMID:3016030

  7. Hydrogen peroxide overload increases adriamycin-induced apoptosis of SaOS(2)FM, a manganese superoxide dismutase-overexpressing human osteosarcoma cell line.

    PubMed

    Wang, Yadi; Kuroda, Masahiro; Gao, Xian-Shu; Asaumi, Jun-Ichi; Shibuya, Kohichi; Kawasaki, Shoji; Akaki, Shiro; St Clair, Daret; Hiraki, Yoshio; Kanazawa, Susumu

    2005-05-01

    We previously developed a new microscopic observation system that enables time-lapse quantitative analysis of apoptosis and necrosis. With this system we quantitatively analyzed adriamycin (ADR)-induced cell death using manganese superoxide dismutase (MnSOD)- and wild-type p53-gene transfectants on SaOS(2), a p53-deficient human osteosarcoma cell line. A highly MnSOD-overexpressing cell line, SaOS(2)FM(H), acquired ADR-tolerance compared to the parent cell line SaOS(2). The ADR-tolerance of SaOS(2)FM(H) diminished by L-buthionine-[S,R]-sulfoximine (BSO), which did not change ADR-sensitivity of SaOS(2), to the similar ADR-sensitivity of SaOS(2). A wild-type p53-expressing cell line, SaOS(2)wtp53, significantly increased in ADR-sensitivity compared to SaOS(2). This ADR-sensitivity of SaOS(2)wtp53 was enhanced by BSO. When isosorbide 5-mononitrate was combined with BSO, isosorbide 5-mononitrate increased ADR sensitivity of a moderately MnSOD-overexpressing cell line, SaOS(2)FM(L), decreased that of SaOS(2) FM(H), and did not change those of SaOS(2) and SaOS(2)wtp53 compared to BSO alone. Time-lapse microscopic observations during ADR treatment for 24 h indicated that the most cells of each cell line underwent apoptosis, and a few cells (less than 11%) died by necrosis. When cells were treated with iso-concentration of ADR, apoptosis of SaOS(2)FM(H) was less than that of SaOS(2). BSO, which did not change ADR-sensitivity of SaOS(2), increased appearance rate of ADR-induced apoptosis, but not necrosis of MnSOD-overexpressing cell lines. When iso-survival dose of ADR, which reduced surviving fraction to 0.01, was given for each cell line, no difference was observed in appearance of either apoptosis or necrosis between SaOS(2) and MnSOD-overexpressing cell lines. On the other hands, appearance of both apoptosis and the following secondary necrosis of SaOS(2) wtp53 was significantly accelerated compared to those of SaOS(2). These findings indicate that hydrogen peroxide

  8. Decreased expression of APAF-1 and increased expression of cathepsin B in invasive pituitary adenoma

    PubMed Central

    Tanase, Cristiana; Albulescu, Radu; Codrici, Elena; Calenic, Bogdan; Popescu, Ionela Daniela; Mihai, Simona; Necula, Laura; Cruceru, Maria Linda; Hinescu, Mihail Eugen

    2015-01-01

    Purpose Apoptotic protease-activating factor-1 (APAF-1) and cathepsin B are important functional proteins in apoptosis; the former is involved in the intrinsic (mitochondrial) pathway, while the latter is associated with both intrinsic and extrinsic pathways. Changes in the expression of apoptosome-related proteins could be useful indicators of tumor development since a priori defects in the mitochondrial pathway might facilitate the inception and progression of human neoplasms. Our aim was to evaluate the profiles of APAF-1 and cathepsin B in relation with other molecules involved in apoptosis/proliferation and to correlate them with the aggressive behavior of invasive pituitary adenomas. Materials and methods APAF-1 and cathepsin B were assessed in tissue samples from 30 patients with pituitary adenomas, of which 16 were functional adenomas and 22 were invasive adenomas. Results A positive relationship between high proliferation and invasiveness was observed in invasive pituitary adenomas when compared to their noninvasive counterparts (Ki-67 labeling index – 4.72% versus 1.75%). Decreased expression of APAF-1 was recorded in most of the invasive adenomas with a high proliferation index, while the cathepsin B level was elevated in this group. We have noticed a negative correlation between the low level of APAF-1 and invasiveness (63.63%; P<0.01); at the same time, a positive correlation between cathepsin B expression and invasiveness (59.09%; P<0.01) was found. In all, 81.25% out of the total APAF-1-positive samples were cathepsin B negative (P<0.01); 76.92% out of the total cathepsin B-positive samples were APAF-1-negative (P<0.01). These results were reinforced by an apoptosis protein array examination, which showed inhibition of the extrinsic apoptotic pathway in an invasive pituitary adenoma. Conclusion A bidirectional–inverted relationship between APAF-1 and cathepsin B expressions was noticed. One might hypothesize that shifting the balance between

  9. Forced Trefoil Factor Family Peptide 3 (TFF3) Expression Reduces Growth, Viability, and Tumorigenicity of Human Retinoblastoma Cell Lines

    PubMed Central

    Winter, Claudia; Pikos, Stefanie; Stephan, Harald; Dünker, Nicole

    2016-01-01

    Trefoil factor family (TFF) peptides have been shown to effect cell proliferation, apoptosis, migration and invasion of normal cells and various cancer cell lines. In the literature TFF peptides are controversially discussed as tumor suppressors and potential tumor progression factors. In the study presented, we investigated the effect of TFF3 overexpression on growth, viability, migration and tumorigenicity of the human retinoblastoma cell lines Y-79, WERI-Rb1, RBL-13 and RBL-15. As revealed by WST-1 and TUNEL assays as well as DAPI and BrdU cell counts, recombinant human TFF3 significantly lowers retinoblastoma cell viability and increases apoptosis levels. Transient TFF3 overexpression likewise significantly increases RB cell apoptosis. Stable, lentiviral TFF3 overexpression lowers retinoblastoma cell viability, proliferation and growth and significantly increases cell death in retinoblastoma cells. Blockage experiments using a broad-spectrum caspase inhibitor and capase-3 immunocytochemistry revealed the involvement of caspases in general and of caspase-3 in particular in TFF3 induced apoptosis in retinoblastoma cell lines. Soft agarose and in ovo chicken chorioallantoic membrane (CAM) assays revealed that TFF3 overexpression influences anchorage independent growth and significantly decreases the size of tumors forming from retinoblastoma cells. Our study demonstrates that forced TFF3 expression exerts a significant pro-apoptotic, anti-proliferative, and tumor suppressive effect in retinoblastoma cells, setting a starting point for new additive chemotherapeutic approaches in the treatment of retinoblastoma. PMID:27626280

  10. Simvastatin induces mitochondrial dysfunction and increased atrogin-1 expression in H9c2 cardiomyocytes and mice in vivo.

    PubMed

    Bonifacio, Annalisa; Mullen, Peter J; Mityko, Ileana Scurtu; Navegantes, Luiz C; Bouitbir, Jamal; Krähenbühl, Stephan

    2016-01-01

    Simvastatin is effective and well tolerated, with adverse reactions mainly affecting skeletal muscle. Important mechanisms for skeletal muscle toxicity include mitochondrial impairment and increased expression of atrogin-1. The aim was to study the mechanisms of toxicity of simvastatin on H9c2 cells (a rodent cardiomyocyte cell line) and on the heart of male C57BL/6 mice. After, exposure to 10 μmol/L simvastatin for 24 h, H9c2 cells showed impaired oxygen consumption, a reduction in the mitochondrial membrane potential and a decreased activity of several enzyme complexes of the mitochondrial electron transport chain (ETC). The cellular ATP level was also decreased, which was associated with phosphorylation of AMPK, dephosphorylation and nuclear translocation of FoxO3a as well as increased mRNA expression of atrogin-1. Markers of apoptosis were increased in simvastatin-treated H9c2 cells. Treatment of mice with 5 mg/kg/day simvastatin for 21 days was associated with a 5 % drop in heart weight as well as impaired activity of several enzyme complexes of the ETC and increased mRNA expression of atrogin-1 and of markers of apoptosis in cardiac tissue. Cardiomyocytes exposed to simvastatin in vitro or in vivo sustain mitochondrial damage, which causes AMPK activation, dephosphorylation and nuclear transformation of FoxO3a as well as increased expression of atrogin-1. Mitochondrial damage and increased atrogin-1 expression are associated with apoptosis and increased protein breakdown, which may cause myocardial atrophy.

  11. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses

    PubMed Central

    Stegle, Oliver; Parts, Leopold; Piipari, Matias; Winn, John; Durbin, Richard

    2012-01-01

    We present PEER (probabilistic estimation of expression residuals), a software package implementing statistical models that improve the sensitivity and interpretability of genetic associations in population-scale expression data. This approach builds on factor analysis methods that infer broad variance components in the measurements. PEER takes as input transcript profiles and covariates from a set of individuals, and then outputs hidden factors that explain much of the expression variability. Optionally, these factors can be interpreted as pathway or transcription factor activations by providing prior information about which genes are involved in the pathway or targeted by the factor. The inferred factors are used in genetic association analyses. First, they are treated as additional covariates, and are included in the model to increase detection power for mapping expression traits. Second, they are analyzed as phenotypes themselves to understand the causes of global expression variability. PEER extends previous related surrogate variable models and can be implemented within hours on a desktop computer. PMID:22343431

  12. Expression of a bioactive recombinant human interleukin-11 in chicken HD11 cell line.

    PubMed

    Léon, Arnaud; Wang, Xiao-Ming; Champion-Arnaud, Patrick; Sobczyk, André; Pain, Bertrand; Content, Jean; Jacques, Yannick; Valarché, Isabelle

    2005-06-21

    To direct the synthesis and secretion of recombinant human interleukin-11 (rhIL-11) in chicken HD11 cells, a plasmid targeting the c-lysozyme gene has been constructed which contains the mature cytokine cDNA in frame with the lysozyme leader sequence. The upregulation of rhIL-11 mediated by LPS proves the knock-in of hIL-11 cDNA in the lysozyme gene. The bioactivity of the expressed protein is demonstrated and quantified with the hIL-11 dependent 7TD1 and B9 cell lines. The electrophoretic mobility, receptor binding properties and growth promoting effect of the chicken-derived cytokine are identical to those of a rhIL-11 expressed in Escherichia coli. These results describe the secretion of a biologically active rhIL-11 expressed by an avian cellular machinery.

  13. Highly and moderately aggressive mouse ovarian cancer cell lines exhibit differential gene expression

    PubMed Central

    Zhang, Wensheng; Kale, Shubha P.; McFerrin, Harris; Davenport, Ian; Wang, Guangdi; Skripnikova, Elena; Li, Xiao-Lin; Bowen, Nathan J.; McDaniels, Leticia B; Meng, Yuan-Xiang; Polk, Paula; Liu, Yong-Yu; Zhang, Qian-Jin

    2017-01-01

    Patients with advanced epithelial ovarian cancer often experience disease recurrence after standard therapies, a critical factor in determining their five-year survival rate. Recent reports indicated that long-term or short-term survival is associated with varied gene expression of cancer cells. Thus, identification of novel prognostic biomarkers should be considered. Since the mouse genome is similar to the human genome, we explored potential prognostic biomarkers using two groups of mouse ovarian cancer cell lines (group 1: IG-10, IG-10pw, and IG-10pw/agar; group 2: IG-10 clones 2, 3, and 11) which display highly and moderately aggressive phenotypes in vivo. Mice injected with these cell lines have different survival time and rates, capacities of tumor, and ascites formations, reflecting different prognostic potentials. Using an Affymetrix Mouse Genome 430 2.0 Array, a total of 181 genes were differentially expressed (P<0.01) by at least twofold between two groups of the cell lines. Of the 181 genes, 109 and 72 genes were overexpressed in highly and moderately aggressive cell lines, respectively. Analysis of the 109 and 72 genes using Ingenuity Pathway Analysis (IPA) tool revealed two cancer-related gene networks. One was associated with the highly aggressive cell lines and affiliated with MYC gene, and another was associated with the moderately aggressive cell lines and affiliated with the androgen receptor (AR). Finally, the gene enrichment analysis indicated that the overexpressed 89 genes (out of 109 genes) in highly aggressive cell lines had a function annotation in the David database. The cancer-relevant significant gene ontology (GO) terms included Cell cycle, DNA metabolic process, and Programmed cell death. None of the genes from a set of the 72 genes overexpressed in the moderately aggressive cell lines had a function annotation in the David database. Our results suggested that the overexpressed MYC and 109 gene set represented highly aggressive ovarian

  14. Neuropilin2 expressed in gastric cancer endothelial cells increases the proliferation and migration of endothelial cells in response to VEGF

    SciTech Connect

    Kim, Woo Ho; Lee, Sun Hee; Jung, Myung Hwan; Seo, Ji Heun; Kim, Jin; Kim, Min A; Lee, You Mie

    2009-08-01

    The structure and characteristics of the tumor vasculature are known to be different from those of normal vessels. Neuropilin2 (Nrp2), which is expressed in non-endothelial cell types, such as neuronal or cancer cells, functions as a receptor for both semaphorin and vascular endothelial growth factor (VEGF). After isolating tumor and normal endothelial cells from advanced gastric cancer tissue and normal gastric mucosa tissues, respectively, we identified genes that were differentially expressed in gastric tumor endothelial (TEC) and normal endothelial cells (NEC) using DNA oligomer chips. Using reverse transcriptase-PCR, we confirmed the chip results by showing that Nrp2 gene expression is significantly up-regulated in TEC. Genes that were found to be up-regulated in TEC were also observed to be up-regulated in human umbilical vein endothelial cells (HUVECs) that were co-cultured with gastric cancer cells. In addition, HUVECs co-cultured with gastric cancer cells showed an increased reactivity to VEGF-induced proliferation and migration. Moreover, overexpression of Nrp2 in HUVECs significantly enhanced the proliferation and migration induced by VEGF. Observation of an immunohistochemical analysis of various human tumor tissue arrays revealed that Nrp2 is highly expressed in the tumor vessel lining and to a lesser extent in normal tissue microvessels. From these results, we suggest that Nrp2 may function to increase the response to VEGF, which is more significant in TEC than in NEC given the differential expression, leading to gastric TEC with aggressive angiogenesis phenotypes.

  15. NanoCAGE analysis of the mouse olfactory epithelium identifies the expression of vomeronasal receptors and of proximal LINE elements

    PubMed Central

    Pascarella, Giovanni; Lazarevic, Dejan; Plessy, Charles; Bertin, Nicolas; Akalin, Altuna; Vlachouli, Christina; Simone, Roberto; Faulkner, Geoffrey J.; Zucchelli, Silvia; Kawai, Jun; Daub, Carsten O.; Hayashizaki, Yoshihide; Lenhard, Boris; Carninci, Piero; Gustincich, Stefano

    2013-01-01

    By coupling laser capture microdissection to nanoCAGE technology and next-generation sequencing we have identified the genome-wide collection of active promoters in the mouse Main Olfactory Epithelium (MOE). Transcription start sites (TSSs) for the large majority of Olfactory Receptors (ORs) have been previously mapped increasing our understanding of their promoter architecture. Here we show that in our nanoCAGE libraries of the mouse MOE we detect a large number of tags mapped in loci hosting Type-1 and Type-2 Vomeronasal Receptors genes (V1Rs and V2Rs). These loci also show a massive expression of Long Interspersed Nuclear Elements (LINEs). We have validated the expression of selected receptors detected by nanoCAGE with in situ hybridization, RT-PCR and qRT-PCR. This work extends the repertory of receptors capable of sensing chemical signals in the MOE, suggesting intriguing interplays between MOE and VNO for pheromone processing and positioning transcribed LINEs as candidate regulatory RNAs for VRs expression. PMID:24600346

  16. Increasing The Genetic Admixture of Available Lines of Human Pluripotent Stem Cells

    PubMed Central

    Tofoli, Fabiano A.; Dasso, Maximiliano; Morato-Marques, Mariana; Nunes, Kelly; Pereira, Lucas Assis; da Silva, Giselle Siqueira; Fonseca, Simone A. S.; Costas, Roberta Montero; Santos, Hadassa Campos; da Costa Pereira, Alexandre; Lotufo, Paulo A.; Bensenor, Isabela M.; Meyer, Diogo; Pereira, Lygia Veiga

    2016-01-01

    Human pluripotent stem cells (hPSCs) may significantly improve drug development pipeline, serving as an in vitro system for the identification of novel leads, and for testing drug toxicity. Furthermore, these cells may be used to address the issue of differential drug response, a phenomenon greatly influenced by genetic factors. This application depends on the availability of hPSC lines from populations with diverse ancestries. So far, it has been reported that most lines of hPSCs derived worldwide are of European or East Asian ancestries. We have established 23 lines of hPSCs from Brazilian individuals, and we report the analysis of their genomic ancestry. We show that embryo-derived PSCs are mostly of European descent, while induced PSCs derived from participants of a national-wide Brazilian cohort study present high levels of admixed European, African and Native American genomic ancestry. Additionally, we use high density SNP data and estimate local ancestries, particularly those of CYP genes loci. Such information will be of key importance when interpreting variation among cell lines with respect to cellular phenotypes of interest. The availability of genetically admixed lines of hPSCs will be of relevance when setting up future in vitro studies of drug response. PMID:27708369

  17. [Four-week simulated weightlessness increases the expression of atrial natriuretic peptide in the myocardium].

    PubMed

    Zhang, Wen-Cheng; Lu, Yuan-Ming; Yang, Huai-Zhang; Xu, Peng-Tao; Chang, Hui; Yu, Zhi-Bin

    2013-04-25

    One of the major circulatory changes that occur in human during space flight and simulated weightlessness is a cerebral redistribution of body fluids, which is accompanied by an increase of blood volume in the upper body. Therefore, atrial myocardium should increase the secretion of atrial natriuretic peptide (ANP), but the researches lack common conclusion until now. The present study was to investigate the expression level of ANP in simulated weightlessness rats, and to confirm the changes of ANP by observing the associated proteins of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The tail-suspended rat model was used to simulate weightlessness. Western blots were carried out to examine the expression levels of ANP and SNARE proteins in atrial and left ventricular myocardium. The results showed that ANP expression in atrial myocardium showed an increase in 4-week tail-suspended rats (SUS) compared with that in the synchronous control rats (CON). We only detected a trace amount of ANP in the left ventricular myocardium of the CON, but found an enhanced expression of ANP in left ventricular myocardium of the SUS. Expression of VAMP-1/2 (vesicle associated SNARE) increased significantly in both atrial and left ventricular myocardium in the SUS compared with that in the CON. There was no difference of the expression of syntaxin-4 (target compartment associated SNARE) between the CON and SUS, but the expression of SNAP-23 showed an increase in atrial myocardium of the SUS compared with that in the CON. Synip and Munc-18c as regulators of SNAREs did not show significant difference between the CON and SUS. These results suggest that the expression of ANP shows an increase in atrial and left ventricular myocardium of 4-week tail-suspended rats. Enhanced expression of VAMP-1/2 associated with ANP vesicles confirms the increased expression of ANP in atrial and left ventricular myocardium.

  18. Botulinum neurotoxin type A inhibits synaptic vesicle 2 expression in breast cancer cell lines

    PubMed Central

    Bandala, C; Cortés-Algara, AL; Mejía-Barradas, CM; Ilizaliturri-Flores, I; Dominguez-Rubio, R; Bazán-Méndez, CI; Floriano-Sánchez, E; Luna-Arias, JP; Anaya-Ruiz, M; Lara-Padilla, E

    2015-01-01

    Aim: It is known that botulinum neurotoxin type A (BoNTA) improves some kinds of cancer (e.g. prostate) and that synaptic vesicle glycoprotein 2 (SV2) is the molecular target of this neurotoxin. Besides having potential therapeutic value, this glycoprotein has recently been proposed as a molecular marker for several types of cancer. Although the mechanisms of cancer development and the improvement found with botulinum treatment are not well understood, the formation of the botulinum-SV2 complex may influence the presence and distribution of SV2 and the function of vesicles. To date, there are no reports on the possible effect of botulinum on breast cancer of unknown causes, which have a great impact on women’s health. Thus we determined the presence of SV2 in three breast cancer cell lines and the alterations found with botulinum application. Materials and methods: With and without adding 10 units of botulinum, SV2 protein expression was determined by optical densitometry in T47D, MDA-MB-231 and MDA-MB-453 cell lines and the distribution of SV2 was observed with immunochemistry (hematoxylin staining). Results: The SV2 protein was abundant in the cancer cells herein tested, and maximally so in T47D. In all three cancer cell lines botulinum diminished SV2 expression, which was found mostly in the cell periphery. Conclusion: SV2 could be a molecular marker in breast cancer. Its expression and distribution is regulated by botulinum, suggesting an interesting control mechanism for SV2 expression and a possible alternative therapy. Further studies are needed in this sense. PMID:26339411

  19. The Use of Transcription Terminators to Generate Transgenic Lines of Chinese Hamster Ovary Cells (CHO) with Stable and High Level of Reporter Gene Expression

    PubMed Central

    Gasanov, N. B.; Toshchakov, S. V.; Georgiev, P. G.; Maksimenko, O. G.

    2015-01-01

    Mammalian cell lines are widely used to produce recombinant proteins. Stable transgenic cell lines usually contain many insertions of the expression vector in one genomic region. Transcription through transgene can be one of the reasons for target gene repression after prolonged cultivation of cell lines. In the present work, we used the known transcription terminators from the SV40 virus, as well as the human β- and γ-globin genes, to prevent transcription through transgene. The transcription terminators were shown to increase and stabilize the expression of the EGFP reporter gene in transgenic lines of Chinese hamster ovary (CHO) cells. Hence, transcription terminators can be used to create stable mammalian cells with a high and stable level of recombinant protein production. PMID:26483962

  20. Supercooling Capacity Increases from Sea Level to Tree Line in the Hawaiian Tree Species Metrosideros polymorpha.

    PubMed

    Melcher; Cordell; Jones; Scowcroft; Niemczura; Giambelluca; Goldstein

    2000-05-01

    Population-specific differences in the freezing resistance of Metrosideros polymorpha leaves were studied along an elevational gradient from sea level to tree line (located at ca. 2500 m above sea level) on the east flank of the Mauna Loa volcano in Hawaii. In addition, we also studied 8-yr-old saplings grown in a common garden from seeds collected from the same field populations. Leaves of low-elevation field plants exhibited damage at -2 degrees C, before the onset of ice formation, which occurred at -5.7 degrees C. Leaves of high-elevation plants exhibited damage at ca. -8.5 degrees C, concurrent with ice formation in the leaf tissue, which is typical of plants that avoid freezing in their natural environment by supercooling. Nuclear magnetic resonance studies revealed that water molecules of both extra- and intracellular leaf water fractions from high-elevation plants had restricted mobility, which is consistent with their low water content and their high levels of osmotically active solutes. Decreased mobility of water molecules may delay ice nucleation and/or ice growth and may therefore enhance the ability of plant tissues to supercool. Leaf traits that correlated with specific differences in supercooling capacity were in part genetically determined and in part environmentally induced. Evidence indicated that lower apoplastic water content and smaller intercellular spaces were associated with the larger supercooling capacity of the plant's foliage at tree line. The irreversible tissue-damage temperature decreased by ca. 7 degrees C from sea level to tree line in leaves of field populations. However, this decrease appears to be only large enough to allow M. polymorpha trees to avoid leaf tissue damage from freezing up to a level of ca. 2500 m elevation, which is also the current tree line location on the east flank of Mauna Loa. The limited freezing resistance of M. polymorpha leaves may be partially responsible for the occurrence of tree line at a relatively

  1. Human immunodeficiency virus type 1 Tat increases the expression of cleavage and polyadenylation specificity factor 73-kilodalton subunit modulating cellular and viral expression.

    PubMed

    Calzado, Marco A; Sancho, Rocío; Muñoz, Eduardo

    2004-07-01

    The human immunodeficiency virus type 1 (HIV-1) Tat protein, which is essential for HIV gene expression and viral replication, is known to mediate pleiotropic effects on various cell functions. For instance, Tat protein is able to regulate the rate of transcription of host cellular genes and to interact with the signaling machinery, leading to cellular dysfunction. To study the effect that HIV-1 Tat exerts on the host cell, we identified several genes that were up- or down-regulated in tat-expressing cell lines by using the differential display method. HIV-1 Tat specifically increases the expression of the cleavage and polyadenylation specificity factor (CPSF) 73-kDa subunit (CPSF3) without affecting the expression of the 160- and 100-kDa subunits of the CPSF complex. This complex comprises four subunits and has a key function in the 3'-end processing of pre-mRNAs by a coordinated interaction with other factors. CPSF3 overexpression experiments and knockdown of the endogenous CPSF3 by mRNA interference have shown that this subunit of the complex is an important regulatory protein for both viral and cellular gene expression. In addition to the known CPSF3 function in RNA polyadenylation, we also present evidence that this protein exerts transcriptional activities by repressing the mdm2 gene promoter. Thus, HIV-1-Tat up-regulation of CPSF3 could represent a novel mechanism by which this virus increases mRNA processing, causing an increase in both cell and viral gene expression.

  2. α-Synuclein Over-Expression Induces Increased Iron Accumulation and Redistribution in Iron-Exposed Neurons.

    PubMed

    Ortega, Richard; Carmona, Asuncion; Roudeau, Stéphane; Perrin, Laura; Dučić, Tanja; Carboni, Eleonora; Bohic, Sylvain; Cloetens, Peter; Lingor, Paul

    2016-04-01

    Parkinson's disease is the most common α-synucleinopathy, and increased levels of iron are found in the substantia nigra of Parkinson's disease patients, but the potential interlink between both molecular changes has not been fully understood. Metal to protein binding assays have shown that α-synuclein can bind iron in vitro; therefore, we hypothesized that iron content and iron distribution could be modified in cellulo, in cells over-expressing α-synuclein. Owing to particle-induced X-ray emission and synchrotron X-ray fluorescence chemical nano-imaging, we were able to quantify and describe the iron distribution at the subcellular level. We show that, in neurons exposed to excess iron, the mere over-expression of human α-synuclein results in increased levels of intracellular iron and in iron redistribution from the cytoplasm to the perinuclear region within α-synuclein-rich inclusions. Reproducible results were obtained in two distinct recombinant expression systems, in primary rat midbrain neurons and in a rat neuroblastic cell line (PC12), both infected with viral vectors expressing human α-synuclein. Our results link two characteristic molecular features found in Parkinson's disease, the accumulation of α-synuclein and the increased levels of iron in the substantia nigra.

  3. Transepithelial resistance and claudin expression in trout RTgill-W1 cell line: effects of osmoregulatory hormones.

    PubMed

    Trubitt, Rebecca T; Rabeneck, D Brett; Bujak, Joanna K; Bossus, Maryline C; Madsen, Steffen S; Tipsmark, Christian K

    2015-04-01

    In the present study, we examined the trout gill cell line RTgill-W1 as a possible tool for in vitro investigation of epithelial gill function in fish. After seeding in transwells, transepithelial resistance (TER) increased until reaching a plateau after 1-2 days (20-80Ω⋅cm(2)), which was then maintained for more than 6 days. Tetrabromocinnamic acid, a known stimulator of TER via casein kinase II inhibition, elevated TER in the cell line to 125% of control values after 2 and 6h. Treatment with ethylenediaminetetraacetic acid induced a decrease in TER to <15% of pre-treatment level. Cortisol elevated TER after 12-72 h in a concentration-dependent manner, and this increase was antagonized by growth hormone (Gh). The effects of three osmoregulatory hormones, Gh, prolactin, and cortisol, on the mRNA expression of three tight junction proteins were examined: claudin-10e (Cldn-10e), Cldn-30, and zonula occludens-1 (Zo-1). The expression of cldn-10e was stimulated by all three hormones but with the strongest effect of Gh (50-fold). cldn-30 expression was stimulated especially by cortisol (20-fold) and also by Gh (4-fold). Finally, zo-1 was unresponsive to hormone treatment. Western blot analysis detected Cldn-10e and Cldn-30 immunoreactive proteins of expected molecular weight in samples from rainbow trout gills but not from RTgill-W1 cultures, possibly due to low expression levels. Collectively, these results show that the RTgill-W1 cell layers have tight junctions between cells, are sensitive to hormone treatments, and may provide a useful model for in vitro study of some in vivo gill phenomena.

  4. Expression of the TIMP2 gene is not regulated by promoter hypermethylation in the Caski cell line.

    PubMed

    Parashar, Gaurav; Capalash, Neena

    2012-05-01

    Promoter hypermethylation has been linked to loss of expression of tumor suppressor genes in various types of tumors. A strong reciprocal correlation between promoter hypermethylation and expression of the TIMP2 gene was observed in the Caski cell line. The TIMP2 promoter was found to be methylated within the 1919 and 1987 region (-325 to -257), relative to the transcription start site through methylation-specific PCR in the HeLa, SiHa and Caski cervical cancer cell lines. However, a reverse transcription PCR analysis of the TIMP2 gene confirmed a normal expression in the HeLa and SiHa cell lines with a high expression in the Caski cell line, indicating that expression of the TIMP2 gene is independent of methylation of CpG sites located within the -325 to -257 region of the TIMP2 promoter, relative to the transcription start site.

  5. Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium/iodide symporter.

    PubMed

    Petrich, T; Helmeke, H-J; Meyer, G J; Knapp, W H; Pötter, E

    2002-07-01

    The sodium/iodide symporter (NIS) has been recognized as an attractive target for radioiodine-mediated cancer gene therapy. In this study we investigated the role of human NIS for cellular uptake of the high LET alpha-emitter astatine-211 ((211)At) in comparison with radioiodine as a potential radionuclide for future applications. A mammalian NIS expression vector was constructed and used to generate six stable NIS-expressing cancer cell lines (three derived from thyroid carcinoma, two from colon carcinoma, one from glioblastoma). Compared with the respective control cell lines, steady state radionuclide uptake of NIS-expressing cell lines increased up to 350-fold for iodine-123 ((123)I), 340-fold for technetium-99m pertechnetate ((99m)TcO(4)(-)) and 60-fold for (211)At. Cellular (211)At accumulation was found to be dependent on extracellular Na(+) ions and displayed a similar sensitivity towards sodium perchlorate inhibition as radioiodide and (99m)TcO(4)(-) uptake. Heterologous competition with unlabelled NaI decreased NIS-mediated (211)At uptake to levels of NIS-negative control cells. Following uptake both radioiodide and (211)At were rapidly (apparent t(1/2) 3-15 min) released by the cells as determined by wash-out experiments. Data of scintigraphic tumour imaging in a xenograft nude mice model of transplanted NIS-modified thyroid cells indicated that radionuclide uptake in NIS-expressing tumours was up to 70 times ((123)I), 25 times ((99m)TcO(4)(-)) and 10 times ((211)At) higher than in control tumours or normal tissues except stomach (3-5 times) and thyroid gland (5-10 times). Thirty-four percent and 14% of the administered activity of (123)I and (211)At, respectively, was found in NIS tumours by region of interest analysis ( n=2). Compared with cell culture experiments, the effective half-life in vivo was greatly prolonged (6.5 h for (123)I, 5.2 h for (211)At) and preliminary dosimetric calculations indicate high tumour absorbed doses (3.5 Gy

  6. Calpain activity and expression are increased in splenic inflammatory cells associated with experimental allergic encephalomyelitis.

    PubMed

    Shields, D C; Schaecher, K E; Goust, J M; Banik, N L

    1999-09-01

    Since calcium-activated neutral proteinase (calpain) activity and expression are significantly increased in activated glial/inflammatory cells in the central nervous system of animals with autoimmune demyelinating diseases, this enzyme may also play a role in peripheral organ systems in these diseases. In this study, the activity and expression of calpain and the endogenous inhibitor, calpastatin, were evaluated at transcriptional and translational levels in spleens of Lewis rats with acute experimental allergic encephalomyelitis (EAE) prior to the onset of clinical symptoms. Calpain activity and translational expression were increased by 475.5% and 44.3% respectively, on day 4 post-induction in adjuvant controls and animals with EAE. These levels remained elevated compared to normal controls on days 8 and 12. Calpastatin translational expression was similarly increased at these time points although transcriptional expression was not significantly altered at any time following induction of EAE. Likewise, transcriptional expression of mu-calpain was unchanged following induction, while small increases in m-calpain transcriptional expression were observed on days 2 and 8. Most calpain expression was observed in activated splenic macrophages at day 8 post-induction even though activated T cells were also calpain positive. In spinal cords of animals with EAE, calpain expression was significantly increased in rats with severe disease compared to those exhibiting only mild symptoms at day 12 post-induction. Thus, prior to symptomatic EAE, increased calpain activity and expression in peripheral lymphoid organs may play an important role in T cell migration and subsequent disease progression.

  7. Phenolic Compounds and Expression of 4CL Genes in Silver Birch Clones and Pt4CL1a Lines

    PubMed Central

    Sutela, Suvi; Hahl, Terhi; Tiimonen, Heidi; Aronen, Tuija; Ylioja, Tiina; Laakso, Tapio; Saranpää, Pekka; Chiang, Vincent; Julkunen-Tiitto, Riitta; Häggman, Hely

    2014-01-01

    A small multigene family encodes 4-coumarate:CoA ligases (4CLs) catalyzing the CoA ligation of hydroxycinnamic acids, a branch point step directing metabolites to a flavonoid or monolignol pathway. In the present study, we examined the effect of antisense Populus tremuloides 4CL (Pt4CL1) to the lignin and soluble phenolic compound composition of silver birch (Betula pendula) Pt4CL1a lines in comparison with non-transgenic silver birch clones. The endogenous expression of silver birch 4CL genes was recorded in the stems and leaves and also in leaves that were mechanically injured. In one of the transgenic Pt4CL1a lines, the ratio of syringyl (S) and guaiacyl (G) lignin units was increased. Moreover, the transcript levels of putative silver birch 4CL gene (Bp4CL1) were reduced and contents of cinnamic acid derivatives altered. In the other two Pt4CL1a lines changes were detected in the level of individual phenolic compounds. However, considerable variation was found in the transcript levels of silver birch 4CLs as well as in the concentration of phenolic compounds among the transgenic lines and non-transgenic clones. Wounding induced the expression of Bp4CL1 and Bp4CL2 in leaves in all clones and transgenic lines, whereas the transcript levels of Bp4CL3 and Bp4CL4 remained unchanged. Moreover, minor changes were detected in the concentrations of phenolic compounds caused by wounding. As an overall trend the wounding decreased the flavonoid content in silver birches and increased the content of soluble condensed tannins. The results indicate that by reducing the Bp4CL1 transcript levels lignin composition could be modified. However, the alterations found among the Pt4CL1a lines and the non-transgenic clones were within the natural variation of silver birches, as shown in the present study by the clonal differences in the transcripts levels of 4CL genes, soluble phenolic compounds and condensed tannins. PMID:25502441

  8. Phenolic compounds and expression of 4CL genes in silver birch clones and Pt4CL1a lines.

    PubMed

    Sutela, Suvi; Hahl, Terhi; Tiimonen, Heidi; Aronen, Tuija; Ylioja, Tiina; Laakso, Tapio; Saranpää, Pekka; Chiang, Vincent; Julkunen-Tiitto, Riitta; Häggman, Hely

    2014-01-01

    A small multigene family encodes 4-coumarate:CoA ligases (4CLs) catalyzing the CoA ligation of hydroxycinnamic acids, a branch point step directing metabolites to a flavonoid or monolignol pathway. In the present study, we examined the effect of antisense Populus tremuloides 4CL (Pt4CL1) to the lignin and soluble phenolic compound composition of silver birch (Betula pendula) Pt4CL1a lines in comparison with non-transgenic silver birch clones. The endogenous expression of silver birch 4CL genes was recorded in the stems and leaves and also in leaves that were mechanically injured. In one of the transgenic Pt4CL1a lines, the ratio of syringyl (S) and guaiacyl (G) lignin units was increased. Moreover, the transcript levels of putative silver birch 4CL gene (Bp4CL1) were reduced and contents of cinnamic acid derivatives altered. In the other two Pt4CL1a lines changes were detected in the level of individual phenolic compounds. However, considerable variation was found in the transcript levels of silver birch 4CLs as well as in the concentration of phenolic compounds among the transgenic lines and non-transgenic clones. Wounding induced the expression of Bp4CL1 and Bp4CL2 in leaves in all clones and transgenic lines, whereas the transcript levels of Bp4CL3 and Bp4CL4 remained unchanged. Moreover, minor changes were detected in the concentrations of phenolic compounds caused by wounding. As an overall trend the wounding decreased the flavonoid content in silver birches and increased the content of soluble condensed tannins. The results indicate that by reducing the Bp4CL1 transcript levels lignin composition could be modified. However, the alterations found among the Pt4CL1a lines and the non-transgenic clones were within the natural variation of silver birches, as shown in the present study by the clonal differences in the transcripts levels of 4CL genes, soluble phenolic compounds and condensed tannins.

  9. Aberrant Cosmc genes result in Tn antigen expression in human colorectal carcinoma cell line HT-29

    PubMed Central

    Yu, Xiaofeng; Du, Zhenzhen; Sun, Xuhong; Shi, Chuanqin; Zhang, Huaixiang; Hu, Tao

    2015-01-01

    The Tn antigen, which arises from mutation in the Cosmc gene is one of the most common tumor associated carbohydrate antigens. Cosmc resides in X24 encoded by a single gene and functions as a specific molecular chaperone for T-synthase. While the Tn antigen cannot be detected in normal cells, Cosmc mutations inactivate T-synthase and consequently result in Tn antigen expression within certain cancers. In addition to this Cosmc mutation-induced expression, the Tn antigen is also expressed in such cell lines as Jurkat T, LSC and LS174T. Whether the Cosmc mutation is present in the colon cancer cell line HT-29 is still unclear. Here, we isolate HT-29-Tn+ cells from HT-29 cells derived from a female colon cancer patient. These HT-29-Tn+ cells show a loss of the Cosmc gene coding sequence (CDS) leading to an absence of T-synthase activity and Tn antigen expression. Additionally, almost no methylation of Cosmc CpG islands was detected in HT-29-Tn+ as well as in HT-29-Tn- and Tn- tumor cells from male patients. In contrast, the methylation frequency of CpG island of Cosmc in normal female cells was ~50%. Only one active allele of Cosmc existed in HT-29-Tn+ and HT-29-Tn- cells as based upon detection of SNP sites. These results indicate that Tn antigens expression and T-synthase inactivity in HT-29-Tn+ cells can be related to the absence of CDS in Cosmc active alleles, while an inactive allele deletion of Cosmc in HT-29 cells has no influence on Cosmc function. PMID:26045765

  10. Poly(ADP-ribose) polymerase-1 polymorphisms, expression and activity in selected human tumour cell lines

    PubMed Central

    Zaremba, T; Ketzer, P; Cole, M; Coulthard, S; Plummer, E R; Curtin, N J

    2009-01-01

    Background: Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA-binding enzyme activated by DNA breaks and involved in DNA repair and other cellular processes. Poly(ADP-ribose) polymerase activity can be higher in cancer than in adjacent normal tissue, but cancer predisposition is reported to be greater in individuals with a single-nucleotide polymorphism (SNP) V762A (T2444C) in the catalytic domain that reduces PARP-1 activity. Methods: To resolve these divergent observations, we determined PARP-1 polymorphisms, PARP-1 protein expression and activity in a panel of 19 solid and haematological, adult and paediatric human cancer cell lines. Results: There was a wide variation in PARP activity in the cell line panel (coefficient of variation, CV=103%), with the lowest and the highest activity being 2460 pmol PAR/106 (HS-5 cells) and 85 750 pmol PAR/106 (NGP cells). Lower variation (CV=32%) was observed in PARP-1 protein expression with the lowest expression being 2.0 ng μg−1 (HS-5 cells) and the highest being 7.1 ng μg−1 (ML-1 cells). The mean activity in the cancer cells was 45-fold higher than the mean activity in normal human lymphocytes and the PARP-1 protein levels were 23-fold higher. Conclusions: Surprisingly, there was no significant correlation between PARP activity and PARP-1 protein level or the investigated polymorphisms, T2444C and CA. PMID:19568233

  11. NZ-GMP Approved Serum Improve hDPSC Osteogenic Commitment and Increase Angiogenic Factor Expression

    PubMed Central

    Spina, Anna; Montella, Roberta; Liccardo, Davide; De Rosa, Alfredo; Laino, Luigi; Mitsiadis, Thimios A.; La Noce, Marcella

    2016-01-01

    Human dental pulp stem cells (hDPSCs), selected from the stromal-vascular fraction of dental pulp, are ecto-mesenchymal stem cells deriving from neural crests, successfully used in human bone tissue engineering. For their use in human therapy GMP procedures are required. For instance, the use of fetal bovine serum (FBS) is strongly discouraged in clinical practice due to its high risk of prions and other infections for human health. Alternatively, clinical grade sera have been suggested, including the New Zealand FBS (NZ-FBS). Therefore, the aim of this study was to evaluate the behavior of hDPSCs expanded in culture medium containing NZ-FBS. Since it was widely demonstrated hDPSCs display relevant capabilities to differentiate into osteogenic and angiogenic lineages, we performed a comparative study to assess if these features are also retained by cultivating the cells with a safer serum never tested on this cell line. hDPSCs were grown using NZ-FBS and conventional (C-FBS) for 7, 14, and 21 days, in both 2D and 3D cultures. Growth curves, expression of bone-related markers, calcification and angiogenesis were evaluated. NZ-FBS induced significant cell growth with respect to C-FBS and promoted an earlier increase expression of osteogenic markers, in particular of those involved in the formation of mineralized matrix (BSP and OPN) within 14 days. In addition, hDPSCs cultured in presence of NZ-FBS were found to produce higher mRNA levels of the angiogenic factors, such as VEGF and PDGFA. Taken together, our results highlight that hDPSCs proliferate, enhance their osteogenic commitment and increase angiogenic factors in NZ-FBS containing medium. These features have also been found when hDPSC were seeded on the clinical-grade collagen I scaffold (Bio-Gide®), leading to the conclusion that for human therapy some procedures and above all the use of GMP-approved materials have no negative impact. PMID:27594842

  12. Expression of Escherichia coli branching enzyme in caryopses of transgenic rice results in amylopectin with an increased degree of branching.

    PubMed

    Kim, Won-Seok; Kim, Jukon; Krishnan, Hari B; Nahm, Baek Hie

    2005-03-01

    Physiochemical properties of starch are dependent on several factors including the relative abundance of amylose and amylopectin, and the degree of branching of amylopectin. Utilizing Agrobacterium-mediated transformation, a construct containing the coding region of branching enzyme of Escherichia coli, under transcriptional control of the rice (Oryza sativa L.) starch-branching enzyme promoter was introduced into rice cv. Nakdong. To enhance glgB expression, the first intron of rice starch-branching enzyme and the matrix attachment region (MAR) sequence from chicken lysozyme were included in the expression vector. Eleven independent transgenic rice plants were generated. Southern blot analysis indicated that the copy number of glgB integrated into transgenic rice varied from one to five. High-performance liquid chromatographic analysis of starch from transgenic lines revealed that amylopectin from transgenic lines exhibited greater branching than that of non-transgenic rice. The A/B1 ratio in amylopectin increased from 1.3 to 2.3 and the total branching ratio, A+B1/B-rest, increased from 6 to 12 in transgenic rice. The observed increase in the short-chain fractions with a degree of polymerization between 6 and 10 is expected to have a significant effect on retrogradation. Our study demonstrates that amylopectin branching can be altered in vivo, thus changing the physicochemical properties of starch.

  13. Altered glycaemia differentially modulates efflux transporter expression and activity in hCMEC/D3 cell line.

    PubMed

    Sajja, Ravi K; Cucullo, Luca

    2015-06-26

    The unique phenotype of blood-brain barrier (BBB) endothelium is partly maintained by abundant expression of ATP-binding cassette superfamily of efflux transporters that strictly restrict the CNS access to toxic substances including xenobiotics in circulation. Previously, we have shown that diabetes-related altered glycemic conditions differentially affect and compromise BBB integrity. However, the impact of diabetes on BBB efflux transporters is less understood. In this study, we examined the effects of single or repeated episodes of hypo-and hyperglycemia on major BBB efflux transporters expression/function in human cerebromicrovascular endothelial cell line (hCMEC/D3). Cells were exposed to normal (5.5 mM), hypo (2.2 mM) or hyper (25 or 35 mM)-glycemic media containing D-glucose for 12h (acute) or two 3h episodes/day of hypo- or hyperglycemia with an intercalated 2h normalglycemic exposure for 3 days ("glycemic variability", see Methods). Acute hypoglycemic exposure (12h) up-regulated BBB endothelial mRNA and protein expression of P-glycoprotein, BCRP and other multidrug resistance associated proteins (MRP1 and 4) paralleled by an increase in transporter-specific efflux activity (∼ 2-fold vs. control). Although, 12h hyperglycemia did not affect the efflux transporter expression (except for MRP4), a significant increase in BCRP activity was observed. By contrast, DNA microarray data revealed that repeated hyperglycemic episodes (but not hypoglycemia) significantly up-regulate P-glycoprotein expression and activity. Thus, this study suggests a differential impact of altered glycemic conditions on major BBB drug efflux transporters expression/function, sensitive to the length of exposure (acute vs. repeated), with an implication for altered CNS drug disposition in diabetic population.

  14. Increased Expression of FoxM1 Transcription Factor in Respiratory Epithelium Inhibits Lung Sacculation and Causes Clara Cell Hyperplasia

    PubMed Central

    Wang, I-Ching; Zhang, Yufang; Snyder, Jonathan; Sutherland, Mardi J.; Burhans, Michael S.; Shannon, John M.; Park, Hyun Jung; Whitsett, Jeffrey A.; Kalinichenko, Vladimir V.

    2010-01-01

    Foxm1 is a member of the Forkhead Box (Fox) family of transcription factors. Foxm1 (previously called Foxm1b, HFH-11B, Trident, Win, or MPP2) is expressed in multiple cell types and plays important roles in cellular proliferation, differentiation and tumorigenesis. Genetic deletion of Foxm1 from mouse respiratory epithelium during initial stages of lung development inhibits lung maturation and causes respiratory failure after birth. However, the role of Foxm1 during postnatal lung morphogenesis remains unknown. In the present study, Foxm1 expression was detected in epithelial cells of conducting and peripheral airways and changing dynamically with lung maturation. To discern the biological role of Foxm1 in the prenatal and postnatal lung, a novel transgenic mouse line that expresses a constitutively active form of FoxM1 (FoxM1 N-terminal deletion mutant or FoxM1-ΔN) under the control of lung epithelial-specific SPC promoter was produced. Expression of the FoxM1-ΔN transgene during embryogenesis caused epithelial hyperplasia, inhibited lung sacculation and expression of the type II epithelial marker, pro-SPC. Expression of FoxM1-ΔN mutant during the postnatal period did not influence alveologenesis but caused focal airway hyperplasia and increased proliferation of Clara cells. Likewise, expression of FoxM1-ΔN mutant in conducting airways with Scgb1a1 promoter was sufficient to induce Clara cell hyperplasia. Furthermore, FoxM1-ΔN cooperated with activated K-Ras to induce lung tumor growth in vivo. Increased activity of Foxm1 altered lung sacculation, induced proliferation in the respiratory epithelium and accelerated lung tumor growth, indicating that precise regulation of Foxm1 is critical for normal lung morphogenesis and development of lung cancer. PMID:20816795

  15. Amyloid protein-mediated differential DNA methylation status regulates gene expression in Alzheimer's disease model cell line

    SciTech Connect

    Sung, Hye Youn; Choi, Eun Nam; Ahn Jo, Sangmee; Oh, Seikwan; Ahn, Jung-Hyuck

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Genome-wide DNA methylation pattern in Alzheimer's disease model cell line. Black-Right-Pointing-Pointer Integrated analysis of CpG methylation and mRNA expression profiles. Black-Right-Pointing-Pointer Identify three Swedish mutant target genes; CTIF, NXT2 and DDR2 gene. Black-Right-Pointing-Pointer The effect of Swedish mutation on alteration of DNA methylation and gene expression. -- Abstract: The Swedish mutation of amyloid precursor protein (APP-sw) has been reported to dramatically increase beta amyloid production through aberrant cleavage at the beta secretase site, causing early-onset Alzheimer's disease (AD). DNA methylation has been reported to be associated with AD pathogenesis, but the underlying molecular mechanism of APP-sw-mediated epigenetic alterations in AD pathogenesis remains largely unknown. We analyzed genome-wide interplay between promoter CpG DNA methylation and gene expression in an APP-sw-expressing AD model cell line. To identify genes whose expression was regulated by DNA methylation status, we performed integrated analysis of CpG methylation and mRNA expression profiles, and identified three target genes of the APP-sw mutant; hypomethylated CTIF (CBP80/CBP20-dependent translation initiation factor) and NXT2 (nuclear exporting factor 2), and hypermethylated DDR2 (discoidin domain receptor 2). Treatment with the demethylating agent 5-aza-2 Prime -deoxycytidine restored mRNA expression of these three genes, implying methylation-dependent transcriptional regulation. The profound alteration in the methylation status was detected at the -435, -295, and -271 CpG sites of CTIF, and at the -505 to -341 region in the promoter of DDR2. In the promoter region of NXT2, only one CpG site located at -432 was differentially unmethylated in APP-sw cells. Thus, we demonstrated the effect of the APP-sw mutation on alteration of DNA methylation and subsequent gene expression. This epigenetic regulatory mechanism may

  16. Non-pore lining amino acid side chains influence anion selectivity of the human CFTR Cl− channel expressed in mammalian cell lines

    PubMed Central

    Linsdell, Paul; Zheng, Shu-Xian; Hanrahan, John W

    1998-01-01

    The effects of individually mutating two adjacent threonine residues in the sixth membrane-spanning region (TM6) of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl− channel on permeation properties were examined using patch clamp recording from mammalian cell lines stably expressing human CFTR.A number of mutations of T338 significantly affected the permeation properties of the channel. Increases and decreases in single channel conductance were observed for different mutants. Anion selectivity was strongly affected, with no two channel variants sharing the same selectivity sequence. Several mutations led to strong inward rectification of the macroscopic current-voltage relationship. The effects of these mutations on permeation properties were correlated with the size of the amino acid side chain substituted, rather than its chemical nature.Most mutations of T339 resulted in a lack of functional channel expression and apparent misprocessing of the protein. One mutant, T339V, was characterized in detail; its permeation properties were significantly altered, although these effects were not as strong as for T338 mutations.These results suggest an important role for T338 in controlling the permeation properties of the CFTR Cl− channel. It is suggested that mutation of this residue alters the interaction between permeating anions and the channel pore via an indirect effect on the orientation of the TM6 helix. PMID:9729613

  17. Effect of MUC1 Expression on EGFR Endocytosis and Degradation in Human Breast Cancer Cell Lines

    DTIC Science & Technology

    2009-04-01

    and increase in signaling observed in MUC1-expressing breast cancer cells . Additionally, I identified a novel non -canonical EGFR trafficking mechanism...is knocked down with siRNA. In cells that express high levels of MUC1 protein, I observed a colocalization of MUC1 and EGFR at the endocytic recycling...Activation of the receptor induces signaling that leads to cell growth, proliferation, migration and inhibition of apoptosis. Activated EGFR is

  18. Agronomic nitrogen-use efficiency of rice can be increased by driving OsNRT2.1 expression with the OsNAR2.1 promoter.

    PubMed

    Chen, Jingguang; Zhang, Yong; Tan, Yawen; Zhang, Min; Zhu, Longlong; Xu, Guohua; Fan, Xiaorong

    2016-08-01

    The importance of the nitrate (NO3-) transporter for yield and nitrogen-use efficiency (NUE) in rice was previously demonstrated using map-based cloning. In this study, we enhanced the expression of the OsNRT2.1 gene, which encodes a high-affinity NO3- transporter, using a ubiquitin (Ubi) promoter and the NO3--inducible promoter of the OsNAR2.1 gene to drive OsNRT2.1 expression in transgenic rice plants. Transgenic lines expressing pUbi:OsNRT2.1 or pOsNAR2.1:OsNRT2.1 constructs exhibited the increased total biomass including yields of approximately 21% and 38% compared with wild-type (WT) plants. The agricultural NUE (ANUE) of the pUbi:OsNRT2.1 lines decreased to 83% of that of the WT plants, while the ANUE of the pOsNAR2.1:OsNRT2.1 lines increased to 128% of that of the WT plants. The dry matter transfer into grain decreased by 68% in the pUbi:OsNRT2.1 lines and increased by 46% in the pOsNAR2.1:OsNRT2.1 lines relative to the WT. The expression of OsNRT2.1 in shoot and grain showed that Ubi enhanced OsNRT2.1 expression by 7.5-fold averagely and OsNAR2.1 promoters increased by about 80% higher than the WT. Interestingly, we found that the OsNAR2.1 was expressed higher in all the organs of pUbi:OsNRT2.1 lines; however, for pOsNAR2.1:OsNRT2.1 lines, OsNAR2.1 expression was only increased in root, leaf sheaths and internodes. We show that increased expression of OsNRT2.1, especially driven by OsNAR2.1 promoter, can improve the yield and NUE in rice.

  19. Increased TRPC3 expression in vascular endothelium of patients with malignant hypertension.

    PubMed

    Thilo, Florian; Loddenkemper, Christoph; Berg, Erika; Zidek, Walter; Tepel, Martin

    2009-03-01

    An increased expression of transient receptor potential canonical type 3 (TRPC3) cation channels has been proposed as one of the factors contributing to the pathogenesis of hypertension. To test that hypothesis we compared the expression of TRPC3 and TRPC6 as an endogenous control in human vascular endothelium of preglomerular arterioles in kidney biopsies from six patients with malignant hypertension and from four patients with diarrhea-associated hemolytic-uremic syndrome. Patients with malignant hypertension showed significantly higher systolic blood pressure and more prominent expression of TRPC3 in vascular endothelium of preglomerular arterioles compared to patients with hemolytic-uremic syndrome. The expression of TRPC6 was not different between the two groups. The study supports the hypothesis that the increased expression of TRPC3 is associated with malignant hypertension in humans.

  20. Increased Expression of GOLPH3 is Associated with the Proliferation of Prostate Cancer

    PubMed Central

    Li, Wenzhi; Guo, Fengfu; Gu, Meng; Wang, Guangjian; He, Xiangfei; Zhou, Juan; Peng, Yubing; Wang, Zhong; Wang, Xiang

    2015-01-01

    Background: Golgi phosphoprotein 3 (GOLPH3) is a metastasis-associated gene, however its role in cell proliferation of prostate cancer (PCa) has not yet been elucidated. Methods: The level of expression of GOLPH3 and other genes was examined by quantitative real-time PCR (QPCR) and western blot analysis. Furthermore, we performed a comprehensive analysis of the expression of GOLPH3 in PCa using a tissue microarray (TMA) and correlated our findings with pathological parameters of PCa. RNA interference (RNAi) was used to silence the expression of GOLPH3 in PC-3 cells and to measure the effects on proliferation and cell cycle using the CCK-8 assay and flow cytometry. Western blots were also employed to assess AKT-mTOR and cell cycle-related proteins. Results: We showed that the expression of GOLPH3 was located at the trans-Golgi membranes in PCa cells. We found that GOLPH3 was expressed in all PCa cells and was significantly higher in two androgen-independent cell lines, DU145 and PC-3. TMA immunohistochemistry showed that GOLPH3 was positive in 64% of cancer tissue samples compared with 20% in normal and 30% in benign samples (P<0.05). In vitro, silencing GOLPH3 expression inhibited cell proliferation and arrested the cell cycle at the G2/M phase. Silencing GOLPH3 also activated P21 expression but suppressed the expression of CDK1/2 and cyclinB1 protein together with the phosphorylation of AKT and mTOR. Conclusions: The expression of the GOLPH3 protein was significantly elevated in PCa. GOLPH3 can promote cell proliferation by enhancing the activity of AKT-mTOR signaling. Altogether, these findings suggest that GOLPH3 play important roles in proliferation and cell cycle regulation in PCa and might serve as promising biomarkers for PCa progression as well as potential therapeutic targets. PMID:25874005

  1. Relationships between differential gene expression and heterosis in cotton hybrids developed from the foundation parent CRI-12 and its pedigree-derived lines.

    PubMed

    Zhu, Xinxia; Ainijiang; Zhang, Yuanming; Guo, Wangzen; Zhang, Tian-Zhen

    2011-02-01

    CRI-12, an Upland cotton variety with high yield, elite fiber quality and disease resistance, is further characterized by its high heritability, combining ability and genetic stability. CRI-12 and its pedigree-derived lines were used to develop increased heterosis cotton hybrids, including CRI-28, CRI-29, XZM 2 and Jimian18. CRI-12 was chosen as the cotton foundation parent and analyzed by gene differential expressions between hybrids and their corresponding parents at seedling, squaring and flowering stages. The following approaches were considered the most viable candidates to elucidate the molecular basis of CRI-12: cDNA-amplified fragment length polymorphisms (cDNA-AFLPs), gene differential expression ratios, and vegetative growth heterosis and yield heterosis for correlation analysis. The results indicated that CRI-12 plays a predominant role in vegetative heterosis in CRI-28, CRI-29 and Jimian18 hybrids at the seedling and squaring stages; the percentage of dominant expression in single parents was greater than other patterns; downregulated expression in single parents was higher than upregulated expression in hybrids, and downregulated expression in hybrids was the lowest of the four patterns in the three growth stage cumulative totals. The gene differential expression ratio of hybrids and parents varied for the three growth stages, suggesting gene differential expression changes over time. Further analysis of differential gene expression ratios, vegetative growth and yield heterosis correlation revealed upregulated expression in hybrids were correlated with vegetative heterosis at the seedling and squaring stages, which play an important role in yield heterosis at the flowering stage. Downregulated expression in the maternal parent (CRI-12 and its pedigree-derived lines) suggested benefits in vegetative heterosis at the squaring stage, but a possible hybrid yield decrease at the flowering stage. These results provided evidence that CRI-12 and its pedigree

  2. Increase of hepatic fat accumulation by liver specific expression of Hepatitis B virus X protein in zebrafish.

    PubMed

    Shieh, Yun-Sheng; Chang, Yin-Shan; Hong, Jiann-Ruey; Chen, Li-Je; Jou, Luen-Kuang; Hsu, Chia-Chun; Her, Guor Mour

    2010-07-01

    The pathogenesis of fatty liver disease remains largely unknown. Here, we assessed the importance of hepatic fat accumulation on the progression of hepatitis in zebrafish by liver specific expression of Hepatitis B virus X protein (HBx). Transgenic zebrafish lines, GBXs, which selectively express the GBx transgene (GFP-fused HBx gene) in liver, were established. GBX Liver phenotypes were evaluated by histopathology and molecular analysis of fatty acid (FA) metabolism-related genes expression. Most GBXs (66-81%) displayed obvious emaciation starting at 4 months old. Over 99% of the emaciated GBXs developed hepatic steatosis or steatohepatitis, which in turn led to liver hypoplasia. The liver histology of GBXs displayed steatosis, lobular inflammation, and balloon degeneration, similar to non-alcoholic steatohepatitis (NASH). Oil red O stain detected the accumulation of fatty droplets in GBXs. RT-PCR and Q-rt-PCR analysis revealed that GBx induced hepatic steatosis had significant increases in the expression of lipogenic genes, C/EBP-alpha, SREBP1, ChREBP and PPAR-gamma, which then activate key enzymes of the de novo FA synthesis, ACC1, FAS, SCD1, AGAPT, PAP and DGAT2. In addition, the steatohepatitic GBX liver progressed to liver degeneration and exhibited significant differential gene expression in apoptosis and stress. The GBX models exhibited both the genetic and functional factors involved in lipid accumulation and steatosis-associated liver injury. In addition, GBXs with transmissible NASH-like phenotypes provide a promising model for studying liver disease.

  3. Haptoglobin increases with age in rat hippocampus and modulates Apolipoprotein E mediated cholesterol trafficking in neuroblastoma cell lines

    PubMed Central

    Spagnuolo, Maria Stefania; Maresca, Bernardetta; Mollica, Maria Pina; Cavaliere, Gina; Cefaliello, Carolina; Trinchese, Giovanna; Esposito, Maria Grazia; Scudiero, Rosaria; Crispino, Marianna; Abrescia, Paolo; Cigliano, Luisa

    2014-01-01

    Alteration in cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative disorders. Apolipoprotein E (ApoE) is the major component of brain lipoproteins supporting cholesterol transport. We previously reported that the acute-phase protein Haptoglobin (Hpt) binds ApoE, and influences its function in blood cholesterol homeostasis. Major aim of this study was to investigate whether Hpt influences the mechanisms by which cholesterol is shuttled from astrocytes to neurons. In detail it was studied Hpt effect on ApoE-dependent cholesterol efflux from astrocytes and ApoE-mediated cholesterol incorporation in neurons. We report here that Hpt impairs ApoE-mediated cholesterol uptake in human neuroblastoma cell line SH-SY5Y, and limits the toxicity of a massive concentration of cholesterol for these cells, while it does not affect cholesterol efflux from the human glioblastoma-astrocytoma cell line U-87 MG. As aging is the most important non-genetic risk factor for various neurodegenerative disorders, and our results suggest that Hpt modulates ApoE functions, we evaluated the Hpt and ApoE expression profiles in cerebral cortex and hippocampus of adolescent (2 months), adult (5 and 8 months), and middle-aged (16 months) rats. Hpt mRNA level was higher in hippocampus of 8 and 16 month-old than in 2-month old rats (p < 0.05), and Hpt concentration increased with the age from adolescence to middle-age (p < 0.001). ApoE concentration, in hippocampus, was higher (p < 0.001) in 5 month-old rats compared to 2 month but did not further change with aging. No age-related changes of Hpt (protein and mRNA) were found in the cortex. Our results suggest that aging is associated with changes, particularly in the hippocampus, in the Hpt/ApoE ratio. Age-related changes in the concentration of Hpt were also found in human cerebrospinal fluids. The age-related changes might affect neuronal function and survival in brain, and have important implications in brain

  4. MiRNA expression profiling in human gliomas: upregulated miR-363 increases cell survival and proliferation.

    PubMed

    Conti, Alfredo; Romeo, Sara G; Cama, Annamaria; La Torre, Domenico; Barresi, Valeria; Pezzino, Gaetana; Tomasello, Chiara; Cardali, Salvatore; Angileri, Filippo F; Polito, Francesca; Ferlazzo, Guido; Di Giorgio, Rosamaria; Germanò, Antonino; Aguennouz, M'hammed

    2016-10-01

    The role of microRNAs (miRNAs) in glioma biology is increasingly recognized. To investigate the regulatory mechanisms governing the malignant signature of gliomas with different grades of malignancy, we analyzed miRNA expression profiles in human grade I-IV tumor samples and primary glioma cell cultures. Multiplex real-time PCR was used to profile miRNA expression in a set of World Health Organization (WHO) grade I (pilocytic astrocytoma), II (diffuse fibrillary astrocytoma), and IV (glioblastoma multiforme) astrocytic tumors and primary glioma cell cultures. Primary glioma cell cultures were used to evaluate the effect of transfection of specific miRNAs and miRNA inhibitors. miRNA microarray showed that a set of miRNAs was consistently upregulated in all glioma samples. miR-363 was upregulated in all tumor specimens and cell lines, and its expression correlated with tumor grading. The transfection of glioma cells with the specific inhibitor of miR-363 increased the expression level of tumor suppressor growth-associated protein 43 (GAP-43). Transfection of miR-363 induced cell survival, while inhibition of miR-363 significantly reduced glioma cell viability. Furthermore, miRNA-363 inhibition induced the downregulation of AKT, cyclin-D1, matrix metalloproteinase (MMP)-2, MMP-9, and Bcl-2 and upregulation of caspase 3. Together, these data suggest that the upregulation of miR-363 may play a role in malignant glioma signature.

  5. Identification of the thiamin pyrophosphokinase gene in rainbow trout: Characteristic structure and expression of seven splice variants in tissues and cell lines and during embryo development

    USGS Publications Warehouse

    Yuge, Shinya; Richter, Catherine A.; Wright-Osment, Maureen K.; Nicks, Diane; Saloka, Stephanie K.; Tillitt, Donald E.; Li, Weiming

    2012-01-01

    Thiamin pyrophosphokinase (TPK) converts thiamin to its active form, thiamin diphosphate. In humans, TPK expression is down-regulated in some thiamin deficiency related syndrome, and enhanced during pregnancy. Rainbow trout are also vulnerable to thiamin deficiency in wild life and are useful models for thiamin metabolism research. We identified the tpk gene transcript including seven splice variants in the rainbow trout. Almost all cell lines and tissues examined showed co-expression of several tpk splice variants including a potentially major one at both mRNA and protein levels. However, relative to other tissues, the longest variant mRNA expression was predominant in the ovary and abundant in embryos. During embryogenesis, total tpk transcripts increased abruptly in early development, and decreased to about half of the peak shortly after hatching. In rainbow trout, the tpk transcript complex is ubiquitously expressed for all tissues and cells examined, and its increase in expression could be important in the early-middle embryonic stages. Moreover, decimated tpk expression in a hepatoma cell line relative to hepatic and gonadal cell lines appears to be consistent with previously reported down-regulation of thiamin metabolism in cancer.

  6. Raised expression of the antiapoptotic protein ped/pea-15 increases susceptibility to chemically induced skin tumor development.

    PubMed

    Formisano, Pietro; Perruolo, Giuseppe; Libertini, Silvana; Santopietro, Stefania; Troncone, Giancarlo; Raciti, Gregory Alexander; Oriente, Francesco; Portella, Giuseppe; Miele, Claudia; Beguinot, Francesco

    2005-10-27

    ped/pea-15 is a cytosolic protein performing a broad antiapoptotic function. We show that, upon DMBA/TPA-induced skin carcinogenesis, transgenic mice overexpressing ped/pea-15 (Tg(ped/pea-15)) display early development of papillomas and a four-fold increase in papilloma number compared to the nontransgenic littermates (P<0.001). The malignant conversion frequency was 24% for the Tg(ped/pea-15) mice and only 5% in controls (P<0.01). The isolated application of TPA, but not that of DMBA, was sufficient to reversibly upregulate ped/pea-15 in both untransformed skin and cultured keratinocytes. ped/pea-15 protein levels were also increased in DMBA/TPA-induced papillomas of both Tg(ped/pea-15) and control mice. Isolated TPA applications induced Caspase-3 activation and apoptosis in nontransformed mouse epidermal tissues. The induction of both Caspase-3 and apoptosis by TPA were four-fold inhibited in the skin of the Tg(ped/pea-15) compared to the nontransgenic mice, accompanied by a similarly sized reduction in TPA-induced JNK and p38 stimulation and by constitutive induction of cytoplasmic ERK activity in the transgenics. ped/pea-15 expression was stably increased in cell lines from DMBA/TPA-induced skin papillomas and carcinomas, paralleled by protection from TPA apoptosis. In the A5 spindle carcinoma cell line, antisense inhibition of ped/pea-15 expression simultaneously rescued sensitivity to TPA-induced Caspase-3 function and apoptosis. The antisense also reduced A5 cell ability to grow in semisolid media by 65% (P<0.001) and increased by three-fold tumor latency time (P<0.01). Thus, the expression levels of ped/pea-15 control Caspase-3 function and epidermal cell apoptosis in vivo and determine susceptibility to skin tumor development.

  7. Alteration of CD44 expression in HIV type 1-infected T cell lines.

    PubMed

    Giordanengo, V; Limouse, M; Doglio, A; Lesimple, J; Lefebvre, J C

    1996-11-20

    CD44 is known to interfere in HIV replication and to participate in many physiological processes such as lymphocyte binding to high endothelial venules of lymphoid tissue, lymph nodes, and mucosal endothelium. The T cell lines MOLT-4 and CEM, and CEM subclones were infected with the HIV-1 LAI strain and monitored for the expression of CD44 during the course of chronic virus production until the infected cells were at the stage of latent infection. The levels of CD44 protein expression were quantified using cell surface immunostaining and biotinylation. The maturation of CD44 molecules was evaluated by metabolic sulforadiolabeling and CD44 mRNA was visualized by Northern blot analysis. We show a downmodulation of CD44 expression in infected T cell lines and subclones. This phenomenon was most evident at the stage of latent infection. Then, CD44 molecules were undetectable at both the protein and mRNA levels in latently infected CEM cells and CEM subclones. In addition, the 97-kDa standard CD44 isoform showed a shift upward, while detectable during the stage of chronic virus production. In latently infected MOLT-4 cells, the CD44 protein levels were dramatically decreased; CD44 mRNA was detected, but the sizes differed from the mRNA in uninfected cells. Since CD44 is known to regulate in part lymphocyte homing and HIV replication, the alterations that were observed in the expression of this molecule could interfere with the particular homing of HIV-infected cells and/or viral latency.

  8. Experimental and in silico modelling analyses of the gene expression pathway for recombinant antibody and by-product production in NS0 cell lines.

    PubMed

    Mead, Emma J; Chiverton, Lesley M; Spurgeon, Sarah K; Martin, Elaine B; Montague, Gary A; Smales, C Mark; von der Haar, Tobias

    2012-01-01

    Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway.

  9. Experimental and In Silico Modelling Analyses of the Gene Expression Pathway for Recombinant Antibody and By-Product Production in NS0 Cell Lines

    PubMed Central

    Mead, Emma J.; Chiverton, Lesley M.; Spurgeon, Sarah K.; Martin, Elaine B.; Montague, Gary A.; Smales, C. Mark; von der Haar, Tobias

    2012-01-01

    Monoclonal antibodies are commercially important, high value biotherapeutic drugs used in the treatment of a variety of diseases. These complex molecules consist of two heavy chain and two light chain polypeptides covalently linked by disulphide bonds. They are usually expressed as recombinant proteins from cultured mammalian cells, which are capable of correctly modifying, folding and assembling the polypeptide chains into the native quaternary structure. Such recombinant cell lines often vary in the amounts of product produced and in the heterogeneity of the secreted products. The biological mechanisms of this variation are not fully defined. Here we have utilised experimental and modelling strategies to characterise and define the biology underpinning product heterogeneity in cell lines exhibiting varying antibody expression levels, and then experimentally validated these models. In undertaking these studies we applied and validated biochemical (rate-constant based) and engineering (nonlinear) models of antibody expression to experimental data from four NS0 cell lines with different IgG4 secretion rates. The models predict that export of the full antibody and its fragments are intrinsically linked, and cannot therefore be manipulated individually at the level of the secretory machinery. Instead, the models highlight strategies for the manipulation at the precursor species level to increase recombinant protein yields in both high and low producing cell lines. The models also highlight cell line specific limitations in the antibody expression pathway. PMID:23071804

  10. Longitudinal Claudin Gene Expression Analyses in Canine Mammary Tissues and Thereof Derived Primary Cultures and Cell Lines

    PubMed Central

    Hammer, Susanne C.; Becker, Annegret; Rateitschak, Katja; Mohr, Annika; Lüder Ripoli, Florenza; Hennecke, Silvia; Junginger, Johannes; Hewicker-Trautwein, Marion; Brenig, Bertram; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo

    2016-01-01

    Human and canine mammary tumours show partial claudin expression deregulations. Further, claudins have been used for directed therapeutic approaches. However, the development of claudin targeting approaches requires stable claudin expressing cell lines. This study reports the establishment and characterisation of canine mammary tissue derived cell lines, analysing longitudinally the claudin-1, -3, -4 and -7 expressions in original tissue samples, primary cultures and developed cell lines. Primary cultures were derived from 17 canine mammary tissues: healthy, lobular hyperplasia, simple adenoma, complex adenoma, simple tubular carcinoma, complex carcinoma, carcinoma arising in a benign mixed tumour and benign mixed tissue. Cultivation was performed, if possible, until passage 30. Claudin mRNA and protein expressions were analysed by PCR, QuantiGene Plex Assay, immunocytochemistry and immunofluorescence. Further, cytokeratin expression was analysed immunocytochemically. Cultivation resulted in 11 established cell lines, eight showing epithelial character. In five of the early passages the claudin expressions decreased compared to the original tissues. In general, claudin expressions were diminished during cultivation. Three cell lines kept longitudinally claudin, as well as epithelial marker expressions, representing valuable tools for the development of claudin targeted anti-tumour therapies. PMID:27690019

  11. Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation

    SciTech Connect

    Kim, Kook Hwan; Jeong, Yeon Taek; Kim, Seong Hun; Jung, Hye Seung; Park, Kyong Soo; Lee, Hae-Youn; Lee, Myung-Shik

    2013-10-11

    Highlights: •Metformin induces FGF21 expression in an AMPK independent manner. •Metformin enhances FGF21 expression by inhibiting mitochondrial complex I activity. •The PERK-eIF2α-ATF4 axis is required for metformin-induced FGF21 expression. •Metformin activates the ATF4-FGF21 axis in the liver of mouse. •Metformin increases serum FGF21 level in diabetic human subjects. -- Abstract: Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-obesity and anti-diabetes effects. Because metformin is widely used as a glucose-lowering agent in patients with type 2 diabetes (T2D), we investigated whether metformin modulates FGF21 expression in cell lines, and in mice or human subjects. We found that metformin increased the expression and release of FGF21 in a diverse set of cell types, including rat hepatoma FaO, primary mouse hepatocytes, and mouse embryonic fibroblasts (MEFs). Intriguingly, AMP-activated protein kinase (AMPK) was dispensable for the induction of FGF21 by metformin. Mammalian target of rapamycin complex 1 (mTORC1) and peroxisome proliferator-activated receptor α (PPARα), which are additional targets of metformin, were not involved in metformin-induced FGF21 expression. Importantly, inhibition of mitochondrial complex I activity by metformin resulted in FGF21 induction through PKR-like ER kinase (PERK)-eukaryotic translation factor 2α (eIF2α)-activating transcription factor 4 (ATF4). We showed that metformin activated ATF4 and increased FGF21 expression in the livers of mice, which led to increased serum levels of FGF21. We also found that serum FGF21 level was increased in human subjects with T2D after metformin therapy for 6 months. In conclusion, our results indicate that metformin induced expression of FGF21 through an ATF4-dependent mechanism by inhibiting mitochondrial respiration independently of AMPK. Therefore, FGF21 induction by metformin might explain a portion of the beneficial metabolic effects of metformin.

  12. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors

    PubMed Central

    Boer, Karin; Crino, Peter B.; Gorter, Jan A.; Nellist, Mark; Jansen, Floor E.; Spliet, Wim G.M.; van Rijen, Peter C.; Wittink, Floyd R.A.; Breit, Timo M.; Troost, Dirk; Wadman, Wytse J.; Aronica, Eleonora

    2009-01-01

    Cortical tubers in patients with tuberous sclerosis complex are associated with disabling neurological manifestations, including intractable epilepsy. While these malformations are believed to result from the effects of TSC1 or TSC2 gene mutations, the molecular mechanisms leading to tuber formation, as well as the onset of seizures remain largely unknown. We used the Affymetrix Gene Chip platform to provide the first genome wide investigation of gene expression in surgically resected tubers, compared with histological normal perituberal tissue from the same patients or autopsy control tissue. We identified 2501 differentially expressed genes in cortical tubers compared with autopsy controls. Expression of genes associated with cell adhesion e.g., VCAM1, integrins and CD44, or with the inflammatory response, including complement factors, serpinA3, CCL2 and several cytokines, was increased in cortical tubers, whereas genes related to synaptic transmission e.g., the glial glutamate transporter GLT-1, and voltage-gated channel activity, exhibited lower expression. Gene expression in perituberal cortex was distinct from autopsy control cortex suggesting that even in the absence of tissue pathology the transcriptome is altered in TSC. Changes in gene expression yield insights into new candidate genes that may contribute to tuber formation or seizure onset, representing new targets for potential therapeutic development. PMID:19912235

  13. Increased NY-ESO-1 expression and reduced infiltrating CD3+ T cells in cutaneous melanoma.

    PubMed

    Giavina-Bianchi, Mara; Giavina-Bianchi, Pedro; Sotto, Mirian Nacagami; Muzikansky, Alona; Kalil, Jorge; Festa-Neto, Cyro; Duncan, Lyn M

    2015-01-01

    NY-ESO-1 is a cancer-testis antigen aberrantly expressed in melanomas, which may serve as a robust and specific target in immunotherapy. NY-ESO-1 antigen expression, tumor features, and the immune profile of tumor infiltrating lymphocytes were assessed in primary cutaneous melanoma. NY-ESO-1 protein was detected in 20% of invasive melanomas (16/79), rarely in in situ melanoma (1/10) and not in benign nevi (0/20). Marked intratumoral heterogeneity of NY-ESO-1 protein expression was observed. NY-ESO-1 expression was associated with increased primary tumor thickness (P = 0.007) and inversely correlated with superficial spreading melanoma (P < 0.02). NY-ESO-1 expression was also associated with reduced numbers and density of CD3+ tumor infiltrating lymphocytes (P = 0.017). When NY-ESO-1 protein was expressed, CD3+ T cells were less diffusely infiltrating the tumor and were more often arranged in small clusters (P = 0.010) or as isolated cells (P = 0.002) than in large clusters of more than five lymphocytes. No correlation of NY-ESO-1 expression with gender, age, tumor site, ulceration, lymph node sentinel status, or survival was observed. NY-ESO-1 expression in melanoma was associated with tumor progression, including increased tumor thickness, and with reduced tumor infiltrating lymphocytes.

  14. Increased expression of dermatopontin and its implications for testicular dysfunction in mice

    PubMed Central

    CAI, JUN; LIU, WEIJIA; HAO, JIE; CHEN, MAOXIN; LI, GANG

    2016-01-01

    An array of specific and non-specific molecules, which are expressed in the testis, have been demonstrated to be responsible for testicular function. Our previous study revealed that dermatopontin (DPT) is expressed in Sertoli cells of the testis, however, its roles in testicular function remains somewhat elusive. In the present study, CdCl2- and busulfan-induced testicular dysfunction models were used to investigate the implications of DPT expression for testicular function. The mRNA and protein expression levels of DPT were detected using reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. A negative correlation was observed between testicular damage and the expression of DPT, which suggested that an increase in DPT expression may be a marker for testicular dysfunction. This result was corroborated by the finding that transgenic mice exhibiting Sertoli cell-specific overexpression of DPT exhibited damage to their testicular morphology. Additionally, DPT overexpression in the testis affected the expression levels of claudin-11 and zonula occludens-1, which indicated that DPT may affect testicular function by affecting the integrity of the blood-testis barrier (BTB). In conclusion, the present study provided evidence to suggest that DPT may be indicative of mouse testicular dysfunction, since increased expression may be associated with damage to the BTB. PMID:26861869

  15. Hypermaintenance and hypofunction of aged spermatogonia: insight from age-related increase of Plzf expression.

    PubMed

    Ferder, Ianina C; Wang, Ning

    2015-06-30

    Like stem cells in other tissues, spermatogonia, including spermatogonial stem cells (SSCs) at the foundation of differentiation hierarchy, undergo age-related decline in function. The promyelocytic leukemia zinc finger (Plzf) protein plays an essential role in spermatogonia maintenance by preventing their differentiation. To evaluate whether there is an age-related change in Plzf expression, we found that aged mouse testes exhibited a robust "Plzf overexpression" phenotype, in that they showed not only a higher frequency of Plzf-expressing cells but also an increased level of Plzf expression in these cells. Moreover, some Plzf-expressing cells in aged testes even aberrantly appeared in the differentiating spermatogonia compartment, which is usually low or negative for Plzf expression. Importantly, ectopic Plzf expression in F9 cells suppressed retinoic acid (RA)-induced Stra8 activation, a gene required for meiosis initiation. These data, together with our observation of a lack of meiosis-initiating spermatocytes associated with high Plzf-expressing spermatogonia in the aged testes, particularly in the degenerative seminiferous tubules, suggest that age-related increase in Plzf expression represents a novel molecular signature of spermatogonia aging by functionally arresting their differentiation.

  16. Increasing of MERARG experimental performances: on-line fission gas release measurement by mass spectrometry

    SciTech Connect

    Pontillon, Y.; Capdevila, H.; Clement, S.; Guigues, E.; Janulyte, A.; Zerega, Y.; Andre, J.

    2015-07-01

    The MERARG device - implemented at the LECASTAR Hot Laboratory, at the CEA Cadarache - allows characterizing nuclear fuels with respect to the behaviour of fission gases during thermal transients representative of normal or off normal operating nuclear power plant conditions. The fuel is heated in order to extract a part or the total gas inventory it contains. Fission Gas Release (FGR) is actually recorded by mean of both on-line gamma spectrometry station and micro gas chromatography. These two devices monitor the quantity and kinetics of fission gas release rate. They only address {sup 85}Kr radioactive isotope and the elemental quantification of Kr, Xe and He (with a relatively low detection limit in the latter case, typically 5-10 ppm). In order to better estimate the basic mechanisms that promote fission gas release from irradiated nuclear fuels, the CEA fuel study department decided to improve its experimental facility by modifying MERARG to extend the studies of gamma emitter fission gases to all gases (including Helium) with a complete isotopic distribution capability. To match these specifications, a Residual Gas Analyser (RGA) has been chosen as mass spectrometer. This paper presents a review of the main aspects of the qualification/calibration phase of the RGA type analyser. In particular, results recorded over three mass ranges 1-10 u, 80-90 u and 120-140 u in the two classical modes of MERARG, i.e. on-line and off-line measurements are discussed. Results obtained from a standard gas bottle show that the quantitative analysis at a few ppm levels can be achieved for all isotopes of Kr and Xe, as well as masses 2 and 4 u. (authors)

  17. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis.

    PubMed

    Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L

    2017-02-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell.

  18. Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells.

    PubMed

    Zhao, Chun-Peng; Guo, Xiao; Chen, Si-Jia; Li, Chang-Zheng; Yang, Yun; Zhang, Jun-He; Chen, Shao-Nan; Jia, Yan-Long; Wang, Tian-Yun

    2017-02-20

    Matrix attachment regions (MARs) are cis-acting DNA elements that can increase transgene expression levels in a CHO cell expression system. To investigate the effects of MAR combinations on transgene expression and the underlying regulatory mechanisms, we generated constructs in which the enhanced green fluorescent protein (eGFP) gene flanked by different combinations of human β-interferon and β-globin MAR (iMAR and gMAR, respectively), which was driven by the cytomegalovirus (CMV) or simian virus (SV) 40 promoter. These were transfected into CHO-K1 cells, which were screened with geneticin; eGFP expression was detected by flow cytometry. The presence of MAR elements increased transfection efficiency and transient and stably expression of eGFP expression under both promoters; the level was higher when the two MARs differed (i.e., iMAR and gMAR) under the CMV but not the SV40 promoter. For the latter, two gMARs showed the highest activity. We also found that MARs increased the ratio of stably transfected positive colonies. These results indicate that combining the CMV promoter with two different MAR elements or the SV40 promoter with two gMARs is effective for inducing high expression level and stability of transgenes.

  19. Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells

    PubMed Central

    Zhao, Chun-Peng; Guo, Xiao; Chen, Si-Jia; Li, Chang-Zheng; Yang, Yun; Zhang, Jun-He; Chen, Shao-Nan; Jia, Yan-Long; Wang, Tian-Yun

    2017-01-01

    Matrix attachment regions (MARs) are cis-acting DNA elements that can increase transgene expression levels in a CHO cell expression system. To investigate the effects of MAR combinations on transgene expression and the underlying regulatory mechanisms, we generated constructs in which the enhanced green fluorescent protein (eGFP) gene flanked by different combinations of human β-interferon and β-globin MAR (iMAR and gMAR, respectively), which was driven by the cytomegalovirus (CMV) or simian virus (SV) 40 promoter. These were transfected into CHO-K1 cells, which were screened with geneticin; eGFP expression was detected by flow cytometry. The presence of MAR elements increased transfection efficiency and transient and stably expression of eGFP expression under both promoters; the level was higher when the two MARs differed (i.e., iMAR and gMAR) under the CMV but not the SV40 promoter. For the latter, two gMARs showed the highest activity. We also found that MARs increased the ratio of stably transfected positive colonies. These results indicate that combining the CMV promoter with two different MAR elements or the SV40 promoter with two gMARs is effective for inducing high expression level and stability of transgenes. PMID:28216629

  20. Low dose of arsenic trioxide inhibits multidrug resistant-related P-glycoprotein expression in human neuroblastoma cell line.

    PubMed

    Liu, Ling; Li, Yang; Xiong, Xilin; Qi, Kai; Zhang, Chi; Fang, Jianpei; Guo, Haixia

    2016-12-01

    This study investigated arsenic trioxide (As2O3), cisplatin (DDP) and etoposide (Vp16) on the anticancer effects and P-glycoprotein (P-gp) expression in neuroblastoma (NB) SK-N-SH cells. The potential influence of As2O3, DDP and Vp16 currently included in NB routine treatment protocols on cytotoxicity in SK-N-SH cells was measured by flow cytometry and drug half-maximal inhibitory concentration (IC50) was established. Moreover, chemotherapeutic agent-mediated changes of cellular expression levels of resistant-related P-gp, was monitored using western blotting. The data showed that As2O3, DDP and Vp16 significantly inhibited the growth and survival of the SK-N-SH cells at different concentration. Notably, the levels of apoptosis were upregulated in SK-N-SH cells with an acceleration of the exposure time and the concentration of As2O3, DDP and Vp16. As2O3, DDP and Vp16 were observed with their IC50 values on SK-N-SH cells being 3 µM, 8 and 100 µg/ml, respectively. Flow cytometry analysis showed that As2O3 at low concentrations in SK-N-SH cells led to enhanced accumulation of cell populations in G2/M phase with increasing the exposure time, and increased levels of apoptosis. In contrast, we observed that SK-N-SH cell populations arrested in S phase by DDP and Vp16. In vitro examination revealed that following pretreatment of SK-N-SH cells with As2O3, the expression of P-gp was not increased. The expression of P-gp downregulation were noted following the group treated by As2O3 at 2 and 3 µM. Exposed to As2O3 at 3 µM for 72 h, SK-N-SH cells exhibited lower expression of P-gp than 2 µM As2O3 for 72 h. In contrast, the expression of P-gp was upregulated by DDP and VP16. In summary, SK-N-SH cells were responsive to chemotherapeutic agent-induced apoptosis in a dose-dependent and time-dependent manner. In particular, ours findings showed that low dose of As2O3 markedly reduced the P-gp expression and increased apoptotic cell death in human NB cell line.

  1. ICAM-1 expression by lung cancer cell lines: effects of upregulation by cytokines on the interaction with LAK cells.

    PubMed

    Melis, M; Spatafora, M; Melodia, A; Pace, E; Gjomarkaj, M; Merendino, A M; Bonsignore, G

    1996-09-01

    Intercellular adhesion molecule-1 (ICAM-1) expression by tumour cells may be involved in their interaction with defensive cells. In this study the surface ICAM-1 expression and soluble ICAM-1 (sICAM-1) production by five small cell lung cancer (SCLC) and five non-SCLC (NSCLC) cell lines was investigated. In addition, the effects of ICAM-1 upregulation by cytokines on the adhesion of lung cancer cells to allogeneic lymphokine-activated killer (LAK) cells and susceptibility to LAK cytotoxicity was also evaluated. ICAM-1 expression was assessed by flow cytometry. Soluble ICAM-1 release was measured by enzyme-linked immunosorbent assay (ELISA). Interaction with LAK cells was tested by adhesion and cytotoxicity assays. At baseline, SCLC lines did not express ICAM-1, while 4 of the 5 NSCLC lines expressed ICAM-1. ICAM-1 expression was induced by interferon-gamma (IFN-gamma) in 4 of the 5 SCLC lines and upregulated in 1 of the 5 NSCLC lines. ICAM-1 expression was induced by tumour necrosis factor-alpha (TNF-alpha) in 1 of the 5 SCLC lines (National Cancer Institute (NCI) H211), and upregulated in 2 of the 5 NSCLC lines (NCI H460 and NCI H838). Among the latter lines, one (NCI H838) released significant amounts of sICAM-1. Adhesion to LAK cells and susceptibility to LAK cytotoxicity were significantly higher in TNF-alpha-treated NCI H460 and NCI H211 cells, compared to untreated NCI H460 and NCI H211 cells. In contrast, no difference in adhesion to LAK cells and susceptibility to LAK cytotoxicity was detected between baseline and TNF-alpha-treated NCI H838 cells. Intercellular adhesion molecule-1 surface expression and soluble intercellular adhesion molecule-1 release may play an important role in interactions between lymphokine-activated killer cells and lung cancer cells.

  2. Establishment of a canine mammary gland tumor cell line and characterization of its miRNA expression

    PubMed Central

    Sunden, Yuji; Sugiyama, Akihiko; Azuma, Kazuo; Murahata, Yusuke; Tsuka, Takeshi; Ito, Norihiko; Imagawa, Tomohiro; Okamoto, Yoshiharu

    2016-01-01

    Canine mammary gland tumors (CMGTs), which are the most common neoplasms in sexually intact female dogs, have been suggested as a model for studying human breast cancer because of several similarities, including relative age of onset, risk factors, incidence, histological and molecular features, biological behavior, metastatic pattern, and responses to therapy. In the present study, we established a new cell line, the SNP cell line, from a CMGT. A tumor formed in each NOD.CB17-Prkdcscid/J mouse at the site of subcutaneous SNP cell injection. SNP cells are characterized by proliferation in a tubulopapillary pattern and are vimentin positive. Moreover, we examined miRNA expression in the cultured cells and found that the expression values of miRNA-143 and miRNA-138a showed the greatest increase and decrease, respectively, of all miRNAs observed, indicating that these miRNAs might play a significant role in the malignancy of SNP cells. Overall, the results of this study indicate that SNP cells might serve as a model for future genetic analysis and clinical treatments of human breast tumors. PMID:26726024

  3. Expression of platelet membrane glycoproteins and alpha-granule proteins by a human erythroleukemia cell line (HEL).

    PubMed Central

    Tabilio, A; Rosa, J P; Testa, U; Kieffer, N; Nurden, A T; Del Canizo, M C; Breton-Gorius, J; Vainchenker, W

    1984-01-01

    We demonstrate that HEL, a human erythroleukemic cell line, has numerous megakaryocytic markers which were markedly enhanced following the addition of the inducers dimethyl sulfoxide or 12-O-tetradecanoylphorbol-13-acetate to the culture medium. Ultrastructural and cytochemical studies showed: (i) the presence of organelles morphologically resembling the platelet alpha-granules; and (ii) a peroxidase activity with the same characteristics as that specifically found in platelets. The platelet alpha-granule proteins (von Willebrand factor, platelet factor-4 and beta-thromboglobulin) were immunologically detected in the HEL cell cytoplasm and their amounts increased after induction. Of particular interest was the presence of platelet membrane proteins. A monoclonal antibody specific for glycoprotein Ib bound to HEL cells. Platelet membrane glycoproteins IIb and IIIa were identified on intact cells using specific antibodies in a binding assay or in cell lysates using either crossed immunoelectrophoresis or an immunoblotting procedure following SDS-polyacrylamide gel electrophoresis. Most HEL cells also expressed the platelet alloantigen PIA1. All of the platelet membrane proteins were present in higher amounts after induction. Glycophorin A, specific for the erythroid lineage, was also detected on HEL cells. Thus, while confirming the presence of erythroid markers, our studies provide evidence that the HEL cell line also expresses platelet antigens. As such, HEL cells represent a unique system with which to study the biosynthesis of platelet-specific proteins and glycoproteins. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. PMID:6201359

  4. Role of plasma membrane lipid composition on cellular homeostasis: learning from cell line models expressing fatty acid desaturases

    PubMed Central

    Jaureguiberry, María S.; Tricerri, M. Alejandra; Sanchez, Susana A.; Finarelli, Gabriela S.; Montanaro, Mauro A.; Prieto, Eduardo D.; Rimoldi, Omar J.

    2014-01-01

    Experimental evidence has suggested that plasma membrane (PM)-associated signaling and hence cell metabolism and viability depend on lipid composition and organization. The aim of the present work is to develop a cell model to study the endogenous polyunsaturated fatty acids (PUFAs) effect on PM properties and analyze its influence on cholesterol (Chol) homeostasis. We have previously shown that by using a cell line over-expressing stearoyl-CoA-desaturase, membrane composition and organization coordinate cellular pathways involved in Chol efflux and cell viability by different mechanisms. Now, we expanded our studies to a cell model over-expressing both Δ5 and Δ6 desaturases, which resulted in a permanently higher PUFA content in PM. Furthermore, this cell line showed increased PM fluidity, Chol storage, and mitochondrial activity. In addition, human apolipoprotein A-I-mediated Chol removal was less efficient in these cells than in the corresponding control. Taken together, our results suggested that the cell functionality is preserved by regulating PM organization and Chol exportation and homeostasis. PMID:24473084

  5. Role of plasma membrane lipid composition on cellular homeostasis: learning from cell line models expressing fatty acid desaturases.

    PubMed

    Jaureguiberry, María S; Tricerri, M Alejandra; Sanchez, Susana A; Finarelli, Gabriela S; Montanaro, Mauro A; Prieto, Eduardo D; Rimoldi, Omar J

    2014-04-01

    Experimental evidence has suggested that plasma membrane (PM)-associated signaling and hence cell metabolism and viability depend on lipid composition and organization. The aim of the present work is to develop a cell model to study the endogenous polyunsaturated fatty acids (PUFAs) effect on PM properties and analyze its influence on cholesterol (Chol) homeostasis. We have previously shown that by using a cell line over-expressing stearoyl-CoA-desaturase, membrane composition and organization coordinate cellular pathways involved in Chol efflux and cell viability by different mechanisms. Now, we expanded our studies to a cell model over-expressing both Δ5 and Δ6 desaturases, which resulted in a permanently higher PUFA content in PM. Furthermore, this cell line showed increased PM fluidity, Chol storage, and mitochondrial activity. In addition, human apolipoprotein A-I-mediated Chol removal was less efficient in these cells than in the corresponding control. Taken together, our results suggested that the cell functionality is preserved by regulating PM organization and Chol exportation and homeostasis.

  6. Sonicated Protein Fractions of Mycoplasma hyopneumoniae Induce Inflammatory Responses and Differential Gene Expression in a Murine Alveolar Macrophage Cell Line.

    PubMed

    Damte, Dereje; Lee, Seung-Jin; Birhanu, Biruk Tesfaye; Suh, Joo-Won; Park, Seung-Chun

    2015-12-28

    Mycoplasma hyopneumoniae is known to cause porcine enzootic pneumonia (EP), an important disease in swine production. The objective of this study was to examine the effects of sonicated protein fractions of M. hyopneumoniae on inflammatory response and gene expression in the murine alveolar macrophage MH-S cell line. The effects of sonicated protein fractions and intact M. hyopneumoniae on the gene expression of cytokines and iNOS were assessed using RT-PCR. The Annealing Control Primer (ACP)-based PCR method was used to screen differentially expressed genes. Increased transcription of interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, COX-2, and iNOS mRNA was observed after exposure to the supernatant (SPT), precipitant (PPT), and intact M. hyopneumoniae protein. A time-dependent analysis of the mRNA expression revealed an upregulation after 4 h for IL-6 and iNOS and after 12 h for IL-1β and TNF-α, for both SPT and PPT; the fold change in COX-2 expression was less. A dose- and time-dependent correlation was observed in nitrite (NO) production for both protein fractions; however, there was no significant difference between the effects of the two protein fractions. In a differential gene analysis, PCR revealed differential expression for nine gene bands after 3 h of stimulation - only one gene was downregulated, while the remaining eight were upregulated. The results of this study provide insights that help improve our understanding of the mechanisms underlying the pathogenesis of and macrophage defenses against M. hyopneumoniae assault, and suggest targets for future studies on therapeutic interventions for M. hyopneumoniae infections.

  7. Increasing Student Interest and Comprehension of Production Planning and Control and Operations Performance Measurement Concepts Using a Production Line Game

    ERIC Educational Resources Information Center

    Cox, James F., III; Walker, Edward D., II

    2005-01-01

    Production planning and control (PPC) systems and operations performance measures are topics that students generally find both boring and difficult to understand. In the article, the authors present a production line game that they have found to be an effective tool to increase student interest in the topics as well as student comprehension. The…

  8. Small Businesses Save Big: A Borrower's Guide To Increase the Bottom Line Using Energy Efficiency (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Dollars saved through energy efficiency can directly impact your bottom line. Whether you are planning for a major renovation or upgrading individual pieces of building equipment, these improvements can help reduce operating costs, save on utility bills, and boost profits. This fact sheet provides a guide for small businesses to find the resources to increase the energy efficiency of their buildings.

  9. Increase in gene dosage is a mechanism of HIF-1alpha constitutive expression in head and neck squamous cell carcinomas.

    PubMed

    Secades, Pablo; Rodrigo, Juan Pablo; Hermsen, Mario; Alvarez, Cesar; Suarez, Carlos; Chiara, María-Dolores

    2009-05-01

    The HIF-1alpha protein plays a key role in the cellular response to hypoxia via transcriptional regulation of genes involved in erythropoiesis, angiogenesis, and metabolism. Overexpression of HIF-1alpha is commonly found in solid tumors in significant association with increased patient mortality and resistance to therapy. The predominant mode of HIF-1alpha regulation by hypoxia occurs at the level of protein stability. In addition to hypoxia, HIF-1alpha protein stability and synthesis is regulated by nonhypoxic signals such as inactivation of tumor suppressors and activation of oncogenes. Here, we show that an increase in gene dosage may contribute to HIF-1alpha mRNA and protein overexpression in a nonhypoxic environment in head and neck squamous cell carcinomas (HNSCC). Increased HIF-1alpha gene dosage was found in one out of five HNSCC-derived cell lines and three out of 27 HNSCC primary tumors. Significantly, increased gene dosage in those samples was associated with high HIF-1alpha mRNA and protein levels. Normoxic overexpression of HIF-1alpha protein in HNSCC-derived cell lines was also paralleled by higher expression levels of HIF-1alpha target genes. Array CGH analysis confirmed the copy number increase of HIF-1alpha gene and revealed that the gene is contained within a region of amplification at 14q23-q24.2 both in the cell line and primary tumors. In addition, FISH analysis revealed the presence of 11-13 copies on a tetraploid background in SCC2 cells. These data suggest that increased HIF-1alpha gene dosage is a mechanism of HIF-1alpha protein overexpression in HNSCC that possibly prepares the cells for a higher activity in an intratumoral hypoxic environment.

  10. A Stable HeLa Cell Line That Inducibly Expresses Poliovirus 2Apro: Effects on Cellular and Viral Gene Expression

    PubMed Central

    Barco, Angel; Feduchi, Elena; Carrasco, Luis

    2000-01-01

    A HeLa cell clone (2A7d) that inducibly expresses the gene for poliovirus protease 2A (2Apro) under the control of tetracycline has been obtained. Synthesis of 2Apro induces severe morphological changes in 2A7d cells. One day after tetracycline removal, cells round up and a few hours later die. Poliovirus 2Apro cleaves both forms of initiation factor eIF4G, causing extensive inhibition of capped-mRNA translation a few hours after protease induction. Methoxysuccinyl-Ala-Ala-Pro-Val-chloromethylketone, a selective inhibitor of 2Apro, prevents both eIF4G cleavage and inhibition of translation but not cellular death. Expression of 2Apro still allows both the replication of poliovirus and the translation of mRNAs containing a picornavirus leader sequence, while vaccinia virus replication is drastically inhibited. Translation of transfected capped mRNA is blocked in 2A7d-On cells, while luciferase synthesis from a mRNA bearing a picornavirus internal ribosome entry site (IRES) sequence is enhanced by the presence of 2Apro. Moreover, synthesis of 2Apro in 2A7d cells complements the translational defect of a poliovirus 2Apro-defective variant. These results show that poliovirus 2Apro expression mimics some phenotypical characteristics of poliovirus-infected cells, such as cell rounding, inhibition of protein synthesis and enhancement of IRES-driven translation. This cell line constitutes a useful tool to further analyze 2Apro functions, to complement poliovirus 2Apro mutants, and to test antiviral compounds. PMID:10666269

  11. MURC/cavin-4 Is Co-Expressed with Caveolin-3 in Rhabdomyosarcoma Tumors and Its Silencing Prevents Myogenic Differentiation in the Human Embryonal RD Cell Line

    PubMed Central

    Faggi, Fiorella; Codenotti, Silvia; Poliani, Pietro Luigi; Cominelli, Manuela; Chiarelli, Nicola; Colombi, Marina; Vezzoli, Marika; Monti, Eugenio; Bono, Federica; Tulipano, Giovanni; Fiorentini, Chiara; Zanola, Alessandra; Lo, Harriet P.; Parton, Robert G.; Keller, Charles; Fanzani, Alessandro

    2015-01-01

    The purpose of this study was to investigate whether MURC/cavin-4, a plasma membrane and Z-line associated protein exhibiting an overlapping distribution with Caveolin-3 (Cav-3) in heart and muscle tissues, may be expressed and play a role in rhabdomyosarcoma (RMS), an aggressive myogenic tumor affecting childhood. We found MURC/cavin-4 to be expressed, often concurrently with Cav-3, in mouse and human RMS, as demonstrated through in silico analysis of gene datasets and immunohistochemical analysis of tumor samples. In vitro expression studies carried out using human cell lines and primary mouse tumor cultures showed that expression levels of both MURC/cavin-4 and Cav-3, while being low or undetectable during cell proliferation, became robustly increased during myogenic differentiation, as detected via semi-quantitative RT-PCR and immunoblotting analysis. Furthermore, confocal microscopy analysis performed on human RD and RH30 cell lines confirmed that MURC/cavin-4 mostly marks differentiated cell elements, colocalizing at the cell surface with Cav-3 and labeling myosin heavy chain (MHC) expressing cells. Finally, MURC/cavin-4 silencing prevented the differentiation in the RD cell line, leading to morphological cell impairment characterized by depletion of myogenin, Cav-3 and MHC protein levels. Overall, our data suggest that MURC/cavin-4, especially in combination with Cav-3, may play a consistent role in the differentiation process of RMS. PMID:26086601

  12. Increased expression of the diabetes gene SOX4 reduces insulin secretion by impaired fusion pore expansion

    PubMed Central

    Collins, Stephan C.; Do, Hyun Woong; Hastoy, Benoit; Hugill, Alison; Adam, Julie; Chibalina, Margarita V.; Galvanovskis, Juris; Godazgar, Mahdieh; Lee, Sheena; Goldsworthy, Michelle; Salehi, Albert; Tarasov, Andrei I.; Rosengren, Anders H.; Cox, Roger; Rorsman, Patrik

    2016-01-01

    The transcription factor Sox4 has been proposed to underlie the increased type-2 diabetes risk linked to an intronic SNP in CDKAL1. In a mouse model expressing a mutant form of Sox4, glucose-induced insulin secretion is reduced by 40% despite normal intracellular Ca2+ signalling and depolarization-evoked exocytosis. This paradox is explained by a 4-fold increase in kiss-and-run exocytosis (as determined by single-granule exocytosis measurements), in which the fusion pore connecting the granule lumen to the exterior only expands to a diameter of 2 nm that does not allow the exit of insulin. Microarray analysis indicated that this correlated with an increased expression of the exocytosis-regulating protein Stxbp6. In a large collection of human islet preparations (n=63), STXBP6 expression and GIIS correlated positively and negatively with SOX4 expression, respectively. Overexpression of SOX4 in the human insulin-secreting cell EndoC-βH2 interfered with granule emptying and inhibited hormone release, the latter effect was reversed by silencing of STXBP6. These data suggest that increased SOX4 expression inhibits insulin secretion and increased diabetes risk by upregulation of STXBP6 and an increase in kiss-and-run exocytosis at the expense of full fusion. We propose that pharmacological interventions promoting fusion pore expansion may be effective in diabetes therapy. PMID:26993066

  13. Evaluation of cytokine gene expression after avian influenza virus infection in avian cell lines and primary cell cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The innate immune responses elicited by avian influenza virus (AIV) infection has been studied by measuring cytokine gene expression by relative real time PCR (rRT-PCR) in vitro, using both cell lines and primary cell cultures. Continuous cell lines offer advantages over the use of primary cell cult...

  14. By inhibiting Src, verapamil and dasatinib overcome multidrug resistance via increased expression of Bim and decreased expressions of MDR1 and survivin in human multidrug-resistant myeloma cells.

    PubMed

    Tsubaki, Masanobu; Komai, Makiko; Itoh, Tatsuki; Imano, Motohiro; Sakamoto, Kotaro; Shimaoka, Hirotaka; Takeda, Tomoya; Ogawa, Naoki; Mashimo, Kenji; Fujiwara, Daiichiro; Mukai, Junji; Sakaguchi, Katsuhiko; Satou, Takao; Nishida, Shozo

    2014-01-01

    The calcium channel blocker verapamil inhibits the transport function of multidrug resistance protein 1 (MDR1). Although verapamil acts to reverse MDR in cancer cells, the underlying mechanism remains unclear. In the present study, we investigated the mechanism of reversing MDR by verapamil in anti-cancer drug-resistant multiple myeloma (MM) cell lines. We found that verapamil suppresses MDR1 and survivin expressions and increases Bim expression via suppression of Src activation. Furthermore, dasatinib reversed the drug-resistance of the drug-resistant cell lines. These findings suggest that Src inhibitors are potentially useful as an anti-MDR agent for the treatment of malignant tumor cells.

  15. Cyclic strain increases protease-activated receptor-1 expression in vascular smooth muscle cells

    NASA Technical Reports Server (NTRS)

    Nguyen, K. T.; Frye, S. R.; Eskin, S. G.; Patterson, C.; Runge, M. S.; McIntire, L. V.

    2001-01-01

    Cyclic strain regulates many vascular smooth muscle cell (VSMC) functions through changing gene expression. This study investigated the effects of cyclic strain on protease-activated receptor-1 (PAR-1) expression in VSMCs and the possible signaling pathways involved, on the basis of the hypothesis that cyclic strain would enhance PAR-1 expression, reflecting increased thrombin activity. Uniaxial cyclic strain (1 Hz, 20%) of cells cultured on elastic membranes induced a 2-fold increase in both PAR-1 mRNA and protein levels. Functional activity of PAR-1, as assessed by cell proliferation in response to thrombin, was also increased by cyclic strain. In addition, treatment of cells with antioxidants or an NADPH oxidase inhibitor blocked strain-induced PAR-1 expression. Preincubation of cells with protein kinase inhibitors (staurosporine or Ro 31-8220) enhanced strain-increased PAR-1 expression, whereas inhibitors of NO synthase, tyrosine kinase, and mitogen-activated protein kinases had no effect. Cyclic strain in the presence of basic fibroblast growth factor induced PAR-1 mRNA levels beyond the effect of cyclic strain alone, whereas no additive effect was observed between cyclic strain and platelet-derived growth factor-AB. Our findings that cyclic strain upregulates PAR-1 mRNA expression but that shear stress downregulates this gene in VSMCs provide an opportunity to elucidate signaling differences by which VSMCs respond to different mechanical forces.

  16. Increased FasL expression correlates with apoptotic changes in granulocytes cultured with oxidized clozapine

    SciTech Connect

    Husain, Zaheed; Almeciga, Ingrid; Delgado, Julio C.; Clavijo, Olga P.; Castro, Januario E.; Belalcazar, Viviana; Pinto, Clara; Zuniga, Joaquin; Romero, Viviana; Yunis, Edmond J. . E-mail: edmond_yunis@dfci.harvard.edu

    2006-08-01

    Clozapine has been associated with a 1% incidence of agranulocytosis. The formation of an oxidized intermediate clozapine metabolite has been implicated in direct polymorphonuclear (PMN) toxicity. We utilized two separate systems to analyze the role of oxidized clozapine in inducing apoptosis in treated cells. Human PMN cells incubated with clozapine (0-10 {mu}M) in the presence of 0.1 mM H{sub 2}O{sub 2} demonstrated a progressive decrease of surface CD16 expression along with increased apoptosis. RT-PCR analysis showed decreased CD16 but increased FasL gene expression in clozapine-treated PMN cells. No change in constitutive Fas expression was observed in treated cells. In HL-60 cells induced to differentiate with retinoic acid (RA), a similar increase in FasL expression, but no associated changes in CD16 gene expression, was observed following clozapine treatments. Our results demonstrate increased FasL gene expression in oxidized clozapine-induced apoptotic neutrophils suggesting that apoptosis in granulocytes treated with clozapine involves Fas/FasL interaction that initiates a cascade of events leading to clozapine-induced agranulocytosis.

  17. Combination of FACS and homologous recombination for the generation of stable and high-expression engineered cell lines.

    PubMed

    Shi, Lei; Chen, Xuesi; Tang, Wenying; Li, Zhenyi; Liu, Jin; Gao, Feng; Sang, Jianli

    2014-01-01

    Traditionally, cell line generation requires several months and involves screening of over several hundred cell clones for high productivity before dozens are selected as candidate cell lines. Here, we have designed a new strategy for the generation of stable and high-expression cell lines by combining homologous recombination (HR) and fluorescence-activated cell sorting (FACS). High expression was indicated by the expression of secreted green fluorescent protein (SEGFP). Parental cell lines with the highest expression of SEGFP were then selected by FACS and identified by stability analysis. Consequently, HR vectors were constructed using the cassette for SEGFP as the HR region. After transfecting the HR vector, the cells with negative SEGFP expression were enriched by FACS. The complete exchange between SEGFP and target gene (TNFR-Fc) cassettes was demonstrated by DNA analysis. Compared with the traditional method, by integrating the cassette containing the gene of interest into the pre-selected site, the highest producing cells secreted a more than 8-fold higher titer of target protein. Hence, this new strategy can be applied to isolated stable cell lines with desirable expression of any gene of interest. The stable cell lines can rapidly produce proteins for researching protein structure and function and are even applicable in drug discovery.

  18. Human peripheral blood granulocytes and myeloid leukemic cell lines express both transcripts encoding for stem cell factor.

    PubMed

    Ramenghi, U; Ruggieri, L; Dianzani, I; Rosso, C; Brizzi, M F; Camaschella, C; Pietsch, T; Saglio, G

    1994-09-01

    Stem cell factor (SCF), the ligand for the c-kit proto-oncogene, has been shown to play a critical role in the migration of melanocytes and germ cells during embryogenesis as well as in the proliferative control of the hematopoietic compartment. In this study we investigated the expression of both the soluble and transmembrane SCF forms in purified peripheral blood populations and in several hematopoietic cell lines. Expression of both transcripts, though in different ratios, was identified in whole bone marrow, in bone marrow stromal cells and in human peripheral blood. In peripheral blood, SCF expression could be ascribable to polymorphonuclear leukocytes (PMN), whereas no SCF expression was detected in isolated lymphocytes, monocytes and in some T lymphoid cell lines. Conversely, some hematopoietic myeloid cell lines, such as HL-60, KG1 and K562, express SCF with similar patterns.

  19. Ethanol increases matrix metalloproteinase-12 expression via NADPH oxidase-dependent ROS production in macrophages

    SciTech Connect

    Kim, Mi Jin; Nepal, Saroj; Lee, Eung-Seok; Jeong, Tae Cheon; Kim, Sang-Hyun; Park, Pil-Hoon

    2013-11-15

    Matrix metalloproteinase-12 (MMP-12), an enzyme responsible for degradation of extracellular matrix, plays an important role in the progression of various diseases, including inflammation and fibrosis. Although most of those are pathogenic conditions induced by ethanol ingestion, the effect of ethanol on MMP-12 has not been explored. In the present study, we investigated the effect of ethanol on MMP-12 expression and its potential mechanisms in macrophages. Here, we demonstrated that ethanol treatment increased MMP-12 expression in primary murine peritoneal macrophages and RAW 264.7 macrophages at both mRNA and protein levels. Ethanol treatment also significantly increased the activity of nicotinamide adenine dinucleotide (NADPH) oxidase and the expression of NADPH oxidase-2 (Nox2). Pretreatment with an anti-oxidant (N-acetyl cysteine) or a selective inhibitor of NADPH oxidase (diphenyleneiodonium chloride (DPI)) prevented ethanol-induced MMP-12 expression. Furthermore, knockdown of Nox2 by small interfering RNA (siRNA) prevented ethanol-induced ROS production and MMP-12 expression in RAW 264.7 macrophages, indicating a critical role for Nox2 in ethanol-induced intracellular ROS production and MMP-12 expression in macrophages. We also showed that ethanol-induced Nox2 expression was suppressed by transient transfection with dominant negative IκB-α plasmid or pretreatment with Bay 11-7082, a selective inhibitor of NF-κB, in RAW 264.7 macrophages. In addition, ethanol-induced Nox2 expression was also attenuated by treatment with a selective inhibitor of p38 MAPK, suggesting involvement of p38 MAPK/NF-κB pathway in ethanol-induced Nox2 expression. Taken together, these results demonstrate that ethanol treatment elicited increase in MMP-12 expression via increase in ROS production derived from Nox2 in macrophages. - Highlights: • Ethanol increases ROS production through up-regulation of Nox2 in macrophages. • Enhanced oxidative stress contributes to ethanol

  20. Tianeptine increases brain-derived neurotrophic factor expression in the rat amygdala.

    PubMed

    Reagan, Lawrence P; Hendry, Robert M; Reznikov, Leah R; Piroli, Gerardo G; Wood, Gwendolyn E; McEwen, Bruce S; Grillo, Claudia A

    2007-06-22

    Chronic restraint stress affects hippocampal and amygdalar synaptic plasticity as determined by electrophysiological, morphological and behavioral measures, changes that are inhibited by some but not all antidepressants. The efficacy of some classes of antidepressants is proposed to involve increased phosphorylation of cAMP response element binding protein (CREB), leading to increased expression of neurotrophic factors, such as brain-derived neurotrophic factor (BDNF). Conversely, some studies suggest that acute and chronic stress downregulate BDNF expression and activity. Accordingly, the aim of the current study was to examine total and phosphorylated CREB (pCREB), as well as BDNF mRNA and protein levels in the hippocampus and amygdala of rats subjected to chronic restraint stress in the presence and absence of the antidepressant tianeptine. In the hippocampus, chronic restraint stress increased pCREB levels without affecting BDNF mRNA or protein expression. Tianeptine administration had no effect upon these measures in the hippocampus. In the amygdala, BDNF mRNA expression was not modulated in chronic restraint stress rats given saline in spite of increased pCREB levels. Conversely, BDNF mRNA levels were increased in the amygdala of chronic restraint stress/tianeptine rats in the absence of changes in pCREB levels when compared to non-stressed controls. Amygdalar BDNF protein increased while pCREB levels decreased in tianeptine-treated rats irrespective of stress conditions. Collectively, these results demonstrate that tianeptine concomitantly decreases pCREB while increasing BDNF expression in the rat amygdala, increases in neurotrophic factor expression that may participate in the enhancement of amygdalar synaptic plasticity mediated by tianeptine.

  1. Surface L-type Ca2+ channel expression levels are increased in aged hippocampus

    PubMed Central

    Núñez-Santana, Félix Luis; Oh, Myongsoo Matthew; Antion, Marcia Diana; Lee, Amy; Hell, Johannes Wilhelm; Disterhoft, John Francis

    2014-01-01

    Age-related increase in L-type Ca2+ channel (LTCC) expression in hippocampal pyramidal neurons has been hypothesized to underlie the increased Ca2+ influx and subsequent reduced intrinsic neuronal excitability of these neurons that lead to age-related cognitive deficits. Here, using specific antibodies against Cav1.2 and Cav1.3 subunits of LTCCs, we systematically re-examined the expression of these proteins in the hippocampus from young (3 to 4 month old) and aged (30 to 32 month old) F344xBN rats. Western blot analysis of the total expression levels revealed significant reductions in both Cav1.2 and Cav1.3 subunits from all three major hippocampal regions of aged rats. Despite the decreases in total expression levels, surface biotinylation experiments revealed significantly higher proportion of expression on the plasma membrane of Cav1.2 in the CA1 and CA3 regions and of Cav1.3 in the CA3 region from aged rats. Furthermore, the surface biotinylation results were supported by immunohistochemical analysis that revealed significant increases in Cav1.2 immunoreactivity in the CA1 and CA3 regions of aged hippocampal pyramidal neurons. In addition, we found a significant increase in the level of phosphorylated Cav1.2 on the plasma membrane in the dentate gyrus of aged rats. Taken together, our present findings strongly suggest that age-related cognitive deficits cannot be attributed to a global change in L-type channel expression nor to the level of phosphorylation of Cav1.2 on the plasma membrane of hippocampal neurons. Rather, increased expression and density of LTCCs on the plasma membrane may underlie the age-related increase in L-type Ca2+ channel activity in CA1 pyramidal neurons. PMID:24033980

  2. Hindlimb unloading results in increased predisposition to cardiac arrhythmias and alters left ventricular connexin 43 expression.

    PubMed

    Moffitt, Julia A; Henry, Matthew K; Welliver, Kathryn C; Jepson, Amanda J; Garnett, Emily R

    2013-03-01

    Hindlimb unloading (HU) is a well-established animal model of cardiovascular deconditioning. Previous data indicate that HU results in cardiac sympathovagal imbalance. It is well established that cardiac sympathovagal imbalance increases the risk for developing cardiac arrhythmias. The cardiac gap junction protein connexin 43 (Cx43) is predominately expressed in the left ventricle (LV) and ensures efficient cell-to-cell electrical coupling. In the current study we wanted to test the hypothesis that HU would result in increased predisposition to cardiac arrhythmias and alter the expression and/or phosphorylation of LV-Cx43. Electrocardiographic data using implantable telemetry were obtained over a 10- to 14-day HU or casted control (CC) condition and in response to a sympathetic stressor using isoproterenol administration and brief restraint. The arrhythmic burden was calculated using a modified scoring system to quantify spontaneous and provoked arrhythmias. In addition, Western blot analysis was used to measure LV-Cx43 expression in lysates probed with antibodies directed against the total and an unphosphorylated form of Cx43 in CC and HU rats. HU resulted in a significantly greater total arrhythmic burden during the sympathetic stressor with significantly more ventricular arrhythmias occurring. In addition, there was increased expression of total LV-Cx43 observed with no difference in the expression of unphosphorylated LV-Cx43. Specifically, the increased expression of LV-Cx43 was consistent with the phosphorylated form. These data taken together indicate that cardiovascular deconditioning produced through HU results in increased predisposition to cardiac arrhythmias and increased expression of phosphorylated LV-Cx43.

  3. A combination of gene expression ranking and co-expression network analysis increases discovery rate in large-scale mutant screens for novel Arabidopsis thaliana abiotic stress genes.

    PubMed

    Ransbotyn, Vanessa; Yeger-Lotem, Esti; Basha, Omer; Acuna, Tania; Verduyn, Christoph; Gordon, Michal; Chalifa-Caspi, Vered; Hannah, Matthew A; Barak, Simon

    2015-05-01

    As challenges to food security increase, the demand for lead genes for improving crop production is growing. However, genetic screens of plant mutants typically yield very low frequencies of desired phenotypes. Here, we present a powerful computational approach for selecting candidate genes for screening insertion mutants. We combined ranking of Arabidopsis thaliana regulatory genes according to their expression in response to multiple abiotic stresses (Multiple Stress [MST] score), with stress-responsive RNA co-expression network analysis to select candidate multiple stress regulatory (MSTR) genes. Screening of 62 T-DNA insertion mutants defective in candidate MSTR genes, for abiotic stress germination phenotypes yielded a remarkable hit rate of up to 62%; this gene discovery rate is 48-fold greater than that of other large-scale insertional mutant screens. Moreover, the MST score of these genes could be used to prioritize them for screening. To evaluate the contribution of the co-expression analysis, we screened 64 additional mutant lines of MST-scored genes that did not appear in the RNA co-expression network. The screening of these MST-scored genes yielded a gene discovery rate of 36%, which is much higher than that of classic mutant screens but not as high as when picking candidate genes from the co-expression network. The MSTR co-expression network that we created, AraSTressRegNet is publicly available at http://netbio.bgu.ac.il/arnet. This systems biology-based screening approach combining gene ranking and network analysis could be generally applicable to enhancing identification of genes regulating additional processes in plants and other organisms provided that suitable transcriptome data are available.

  4. In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor.

    PubMed Central

    Damstrup, L.; Rude Voldborg, B.; Spang-Thomsen, M.; Brünner, N.; Skovgaard Poulsen, H.

    1998-01-01

    Formation of metastasis is a multistep process involving attachment to the basement membrane, local proteolysis and migration into surrounding tissues, lymph or bloodstream. In the present study, we have analysed the correlation between in vitro invasion and presence of the epidermal growth factor receptor (EGFR) in a panel of 21 small-cell lung cancer (SCLC) cell lines. We have previously reported that ten of these cell lines expressed EGFR protein detected by radioreceptor and affinity labelling assays. In 11 small-cell lung cancer (SCLC) cell lines, EGFR mRNA was detected by Northern blot analysis. In vitro invasion in a Boyden chamber assay was found in all EGFR-positive cell lines, whereas no invasion was detected in the EGFR-negative cell lines. Quantification of the in vitro invasion in 12 selected SCLC cell lines demonstrated that, in the EGFR-positive cell lines, between 5% and 16% of the cells added to the upper chamber were able to traverse the Matrigel membrane. Expression of several matrix metalloproteases (MMP), of tissue inhibitor of MMP (TIMP) and of cathepsin B was evaluated by immunoprecipitation, Western blot analysis and reverse transcriptase polymerase chain reaction (RT-PCR). However, in vitro invasive SCLC cell lines could not be distinguished from non-invasive cell lines based on the expression pattern of these molecules. In six SCLC cell lines, in vitro invasion was also determined in the presence of the EGFR-neutralizing monoclonal antibody mAb528. The addition of this antibody resulted in a significant reduction of the in vitro invasion in three selected EGFR-positive cell lines. Our results show that only EGFR-positive SCLC cell lines had the in vitro invasive phenotype, and it is therefore suggested that the EGFR might play an important role for the invasion potential of SCLC cell lines. Images Figure 1 Figure 3 Figure 4 PMID:9744504

  5. Divergent control of Cav-1 expression in non-cancerous Li-Fraumeni syndrome and human cancer cell lines

    PubMed Central

    Sherif, Zaki A.; Sultan, Ahmed S.

    2013-01-01

    Li-Fraumeni syndrome (LFS) is primarily characterized by development of tumors exhibiting germ-line mutations in the p53 gene. Cell lines developed from patients of a LFS family have decreased p53 activity as evidenced by the absence of apoptosis upon etoposide treatment. To test our hypothesis that changes in gene expression beyond p53 per se are contributing to the development of tumors, we compared gene expression in non-cancerous skin fibroblasts of LFS-affected (p53 heterozygous) vs. non-affected (p53 wild-type homozygous) family members. Expression analysis showed that several genes were differentially regulated in the p53 homozygous and heterozygous cell lines. We were particularly intrigued by the decreased expression (~88%) of a putative tumor-suppressor protein, caveolin-1 (Cav-1), in the p53-mutant cells. Decreased expression of Cav-1 was also seen in both p53-knockout and p21-knockout HTC116 cells suggesting that p53 controls Cav-1 expression through p21 and leading to the speculation that p53, Cav-1 and p21 may be part of a positive auto-regulatory feedback loop. The direct relationship between p53 and Cav-1 was also tested with HeLa cells (containing inactive p53), which expressed a significantly lower Cav-1 protein. A panel of nonfunctional and p53-deficient colon and epithelial breast cancer cell lines showed undetectable expression of Cav-1 supporting the role of p53 in the control of Cav-1. However, in two aggressively metastasizing breast cancer cell lines, Cav-1 was strongly expressed suggesting a possible role in tumor metastasis. Thus, there is a divergent control of Cav-1 expression as evidenced in non-cancerous Li-Fraumeni syndrome and some aggressive human cancer cell lines. PMID:23114650

  6. Increased expression of the TIAR protein in the hippocampus of Alzheimer patients.

    PubMed

    Oleana, V H; Salehi, A; Swaab, D F

    1998-05-11

    T-cell restricted intracellular antigen related protein (TIAR) is an RNA-binding protein that is supposed to be involved in the process of stress-induced apoptosis. TIAR triggers DNA fragmentation in permeabilized thymocytes and its expression diminishes in the cell nucleus and rises simultaneously in the cytoplasm during Fas-induced cell death. Using a monoclonal antibody against TIAR, we stained different areas of the hippocampus from seven controls and 14 patients with Alzheimer's disease (AD). There was a clear expression of TIAR in the hippocampus of non-demented controls. Surprisingly, a significant increase was found in the expression of TIAR in the hippocampal area in AD. The increased expression of TIAR in AD may be related to the process of neurodegeneration in the hippocampus.

  7. Increased longevity mediated by yeast NDI1 expression in Drosophila intestinal stem and progenitor cells

    PubMed Central

    Hur, Jae H.; Bahadorani, Sepehr; Graniel, Jacqueline; Koehler, Christopher L.; Ulgherait, Matthew; Rera, Michael; Jones, D. Leanne; Walker, David W.

    2013-01-01

    A functional decline in tissue stem cells and mitochondrial dysfunction have each been linked to aging and multiple aging-associated pathologies. However, the interplay between energy homeostasis, stem cells, and organismal aging remains poorly understood. Here, we report that expression of the single-subunit yeast alternative NADH dehydrogenase, ndi1, in Drosophila intestinal stem and progenitor cells delays the onset of multiple markers of intestinal aging and extends lifespan. In addition, expression of ndi1 in the intestine increases feeding behavior and results in organismal weight gain. Consistent with increased nutrient uptake, flies expressing ndi1 in the digestive tract display a systemic reduction in the activity of AMP-activated protein kinase (AMPK), a key cellular energy sensor. Together, these results demonstrate that ndi1 expression in the intestinal epithelium is an effective strategy to delay tissue and organismal aging. PMID:24038661

  8. The transcription factor regulatory factor X1 increases the expression of neuronal glutamate transporter type 3.

    PubMed

    Ma, Kaiwen; Zheng, Shuqiu; Zuo, Zhiyi

    2006-07-28

    Glutamate transporters (excitatory amino acid transporters, EAAT) play an important role in maintaining extracellular glutamate homeostasis and regulating glutamate neurotransmission. However, very few studies have investigated the regulation of EAAT expression. A binding sequence for the regulatory factor X1 (RFX1) exists in the promoter region of the gene encoding for EAAT3, a neuronal EAAT, but not in the promoter regions of the genes encoding for EAAT1 and EAAT2, two glial EAATs. RFX proteins are transcription factors binding to X-boxes of DNA sequences. Although RFX proteins are necessary for the normal function of sensory neurons in Caenorhabditis elegans, their roles in the mammalian brain are not known. We showed that RFX1 increased EAAT3 expression and activity in C6 glioma cells. RFX1 binding complexes were found in the nuclear extracts of C6 cells. The activity of EAAT3 promoter as measured by luciferase reporter activity was increased by RFX1 in C6 cells and the neuron-like SH-SY5Y cells. However, RFX1 did not change the expression of EAAT2 proteins in the NRK52E cells. RFX1 proteins were expressed in the neurons of rat brain. A high expression level of RFX1 proteins was found in the neurons of cerebral cortex and Purkinje cells. Knockdown of the RFX1 expression by RFX1 antisense oligonucleotides decreased EAAT3 expression in rat cortical neurons in culture. These results suggest that RFX1 enhances the activity of EAAT3 promoter to increase the expression of EAAT3 proteins. This study provides initial evidence for the regulation of gene expression in the nervous cells by RFX1.

  9. Increased expression of programmed death ligand 1 (PD-L1) in human pituitary tumors

    PubMed Central

    Greenwald, Noah F.; Du, Ziming; Agar, Nathalie Y. R.; Kaiser, Ursula B.; Woodmansee, Whitney W.; Reardon, David A.; Freeman, Gordon J.; Fecci, Peter E.; Laws, Edward R.; Santagata, Sandro; Dunn, Gavin P.; Dunn, Ian F.

    2016-01-01

    Purpose Subsets of pituitary tumors exhibit an aggressive clinical courses and recur despite surgery, radiation, and chemotherapy. Because modulation of the immune response through inhibition of T-cell checkpoints has led to durable clinical responses in multiple malignancies, we explored whether pituitary adenomas express immune-related biomarkers that could suggest suitability for immunotherapy. Specifically, programmed death ligand 1 (PD-L1) has emerged as a potential biomarker whose expression may portend more favorable responses to immune checkpoint blockade therapies. We thus investigated the expression of PD-L1 in pituitary adenomas. Methods PD-L1 RNA and protein expression were evaluated in 48 pituitary tumors, including functioning and non-functioning adenomas as well as atypical and recurrent tumors. Tumor infiltrating lymphocyte populations were also assessed by immunohistochemistry. Results Pituitary tumors express variable levels of PD-L1 transcript and protein. PD-L1 RNA and protein expression were significantly increased in functioning (growth hormone and prolactin-expressing) pituitary adenomas compared to non-functioning (null cell and silent gonadotroph) adenomas. Moreover, primary pituitary adenomas harbored higher levels of PD-L1 mRNA compared to recurrent tumors. Tumor infiltrating lymphocytes were observed in all pituitary tumors and were positively correlated with increased PD-L1 expression, particularly in the functional subtypes. Conclusions Human pituitary adenomas harbor PD-L1 across subtypes, with significantly higher expression in functioning adenomas compared to non-functioning adenomas. This expression is accompanied by the presence of tumor infiltrating lymphocytes. These findings suggest the existence of an immune response to pituitary tumors and raise the possibility of considering checkpoint blockade immunotherapy in cases refractory to conventional management. PMID:27655724

  10. Increased expression of argininosuccinate synthetase protein predicts poor prognosis in human gastric cancer.

    PubMed

    Shan, Yan-Shen; Hsu, Hui-Ping; Lai, Ming-Derg; Yen, Meng-Chi; Luo, Yi-Pey; Chen, Yi-Ling

    2015-01-01

    Aberrant expression of argininosuccinate synthetase (ASS1, also known as ASS) has been found in cancer cells and is involved in the carcinogenesis of gastric cancer. The aim of the present study was to investigate the level of ASS expression in human gastric cancer and to determine the possible correlations between ASS expression and clinicopathological findings. Immunohistochemistry was performed on paraffin‑embedded tissues to determine whether ASS was expressed in 11 of 11 specimens from patients with gastric cancer. The protein was localized primarily to the cytoplasm of cancer cells and normal epithelium. In the Oncomine cancer microarray database, expression of the ASS gene was significantly increased in gastric cancer tissues. To investigate the clinicopathological and prognostic roles of ASS expression, we performed western blot analysis of 35 matched specimens of gastric adenocarcinomas and normal tissue obtained from patients treated at the National Cheng Kung University Hospital. The ratio of relative ASS expression (expressed as the ASS/β-actin ratio) in tumor tissues to that in normal tissues was correlated with large tumor size (P=0.007) and with the tumor, node, metastasis (TNM) stage of the American Joint Committee on Cancer staging system (P=0.031). Patients whose cancer had increased the relative expression of ASS were positive for perineural invasion and had poor recurrence-free survival. In summary, ASS expression in gastric cancer was associated with a poor prognosis. Further study of mechanisms to silence the ASS gene or decrease the enzymatic activity of ASS protein has the potential to provide new treatments for patients with gastric cancer.

  11. Increasing marketability and profitability of product line thru PATRAN and NASTRAN

    NASA Technical Reports Server (NTRS)

    Hyatt, Art

    1989-01-01

    Starting with the design objective the operational cycle life of the Swaging Tool was increased. To accomplish this increase in cycle life without increasing the size or weight of the tool would be engineering achievement. However, not only was the operational cycle life increased between 2 to 10 times but simultaneously the size and weight of the Swage Tool was decreased by about 50 percent. This accomplishment now becomes an outstanding engineering achievement. This achievement was only possible because of the computerized Patran, Nastran and Medusa programs.

  12. Mice that are fed a high-fat diet display increased hepcidin expression in adipose tissue.

    PubMed

    Gotardo, Érica Martins Ferreira; dos Santos, Aline Noronha; Miyashiro, Renan Akira; Gambero, Sheley; Rocha, Thalita; Ribeiro, Marcelo Lima; Gambero, Alessandra

    2013-01-01

    Since the discovery that hepcidin is expressed in the adipose tissue of obese subjects, attention has been increasingly focused on alterations in iron homeostasis that are associated with adiposity. We examined the production of hepcidin, the expression of hepcidin-related genes and the iron content of the adipose tissue in obesity using Swiss mice fed a high-fat diet (HFD). The mice were maintained on a control diet or HFD for 12 or 24 wk, and body weight, adiposity and glucose homeostasis were evaluated. The expression of several genes (hepcidin, TfR1, TfR2, DMT1, FT-heavy, ferroportin, IRP-1, IRP-2 and HIF-1) and the protein expression of hepcidin and IL-6 were quantified. The iron level was assessed using a Prussian blue reaction in paraffin-embedded tissue. After 24 wk on the HFD, we observed increases in the levels of hepcidin in the serum and the visceral adipose tissue. The IL-6 levels also increased in the visceral adipose tissue. Adipocytes isolated from the visceral adipose tissues of lean and obese mice expressed hepcidin at comparable levels; however, isolated macrophages from the stromal vascular fraction expressed higher hepcidin levels. Adipose tissues from obese mice displayed increased tfR2 expression and the presence of iron. Our results indicate that IL-6 and iron may affect the signaling pathways governing hepcidin expression. Thus, the mice fed HFD for 24 wk represent a suitable model for the study of obesity-linked hepcidin alterations. In addition, hepcidin may play local roles in controlling iron availability and interfering with inflammation in adipose tissue.

  13. Common Spatial Organization of Number and Emotional Expression: A Mental Magnitude Line

    ERIC Educational Resources Information Center

    Holmes, Kevin J.; Lourenco, Stella F.

    2011-01-01

    Converging behavioral and neural evidence suggests that numerical representations are mentally organized in left-to-right orientation. Here we show that this format of spatial organization extends to emotional expression. In Experiment 1, right-side responses became increasingly faster as number (represented by Arabic numerals) or happiness…

  14. Dysregulation of Claudin-7 Leads to Loss of E-Cadherin Expression and the Increased Invasion of Esophageal Squamous Cell Carcinoma Cells

    PubMed Central

    Lioni, Mercedes; Brafford, Patricia; Andl, Claudia; Rustgi, Anil; El-Deiry, Wafik; Herlyn, Meenhard; Smalley, Keiran S.M.

    2007-01-01

    The claudins constitute a 24-member family of proteins that are critical for the function and formation of tight junctions. Here, we examine the expression of claudin-7 in squamous cell carcinoma (SCC) of the esophagus and its possible role in tumor progression. In the normal esophagus, expression of claudin-7 was confined to the cell membrane of differentiated keratinocytes. However, in the tumor samples, claudin-7 expression is often lost or localized to the cytoplasm. Assaying esophageal SCC lines revealed variable expression of claudin-7, with some lacking expression completely. Knockdown of claudin-7 in SCC cell lines using a small interfering RNA approach led to decreased E-cadherin expression, increased cell growth, and enhanced invasion into a three-dimensional matrix. The opposite was observed when claudin-7 was overexpressed in esophageal SCC cells lacking both claudin-7 and E-cadherin. In this context, the claudin-7-overexpressing cells became more adhesive and less invasive associated with increased E-cadherin expression. In summary, we demonstrate that claudin-7 is mislocalized during the malignant transformation of esophageal keratinocytes. We also demonstrate a critical role for claudin-7 expression in the regulation of E-cadherin in these cells, suggesting this may be one mechanism for the loss of epithelial architecture and invasion observed in esophageal SCC. PMID:17255337

  15. TLR ligands and butyrate increase Pyy expression through two distinct but inter-regulated pathways.

    PubMed

    Larraufie, Pierre; Doré, Joël; Lapaque, Nicolas; Blottière, Hervé M

    2017-02-01

    The intestinal epithelium is an active barrier separating the host from its microbiota. It senses microbial compounds through expression of a wide range of receptors including the Toll-like receptors (TLRs). TLRs have been shown to regulate epithelium permeability or secretion of defensin by Paneth cells. However, the expression and function of TLRs in enteroendocrine L-cells, a specific subtype of intestinal cells secreting PYY and GLP-1, have not yet been assessed. PYY and GLP-1 are implicated in regulation of gut motility, food intake and insulin secretion, and are of great interest regarding obesity and type 2 diabetes. Using a cellular model of human L-cells and a reporter system for NF-κB activation pathway, we reported functional expression of TLRs in these cells. Stimulation with specific TLR-agonists increased expression of Pyy but not Proglucagon in an NF-κB-dependent manner. Moreover, the effect of TLR stimulation was additive to butyrate, a product of bacterial fermentation, on Pyy expression. Additionally, butyrate also increased Tlr expression, including Tlr4, and the NF-κB response to TLR stimulation. Altogether, our results demonstrated a role of TLRs in the modulation of Pyy expression and the importance of butyrate, a product of bacterial fermentation in regulation of microbial TLR-dependent sensing.

  16. Oxytocin Increases Neurite Length and Expression of Cytoskeletal Proteins Associated with Neuronal Growth.

    PubMed

    Lestanova, Z; Bacova, Z; Kiss, A; Havranek, T; Strbak, V; Bakos, J

    2016-06-01

    Neuropeptide oxytocin acts as a growth and differentiation factor; however, its effects on neurite growth are poorly understood. The aims of the present study were (1) to evaluate time effects of oxytocin on expression of nestin and MAP2; (2) to measure the effect of oxytocin on gene expression of β-actin, vimentin, cofilin, and drebrin; and (3) to measure changes in neurite length and number in response to oxytocin/oxytocin receptor antagonist L-371,257. Exposure of SH-SY5Y cells to 1 μM oxytocin resulted in a significant increase in gene expression and protein levels of nestin after 12, 24, and 48 h. Oxytocin treatment induced no changes in gene expression of MAP2; however, a decrease of protein levels was observed in all time intervals. Gene expression of β-actin, vimentin, and drebrin increased in response to oxytocin. Oxytocin induced significant elongation of neurites after 12, 24, and 48 h. No change in neurite length was observed in the presence of the combination of retinoic acid and oxytocin receptor antagonist L-371,257. Oxytocin treatment for 12 h increased the number of neurites. Overall, the present data suggest that oxytocin contributes to the regulation of expression of cytoskeletal proteins associated with growth of neuronal cones and induces neurite elongation mediated by oxytocin receptors at least in certain types of neuronal cells.

  17. Memory-enhancing corticosterone treatment increases amygdala norepinephrine and Arc protein expression in hippocampal synaptic fractions.

    PubMed

    McReynolds, Jayme R; Donowho, Kyle; Abdi, Amin; McGaugh, James L; Roozendaal, Benno; McIntyre, Christa K

    2010-03-01

    Considerable evidence indicates that glucocorticoid hormones enhance the consolidation of memory for emotionally arousing events through interactions with the noradrenergic system of the basolateral complex of the amygdala (BLA). We previously reported that intra-BLA administration of a beta-adrenoceptor agonist immediately after inhibitory avoidance training enhanced memory consolidation and increased hippocampal expression of the protein product of the immediate early gene activity-regulated cytoskeletal-associated protein (Arc). In the present experiments corticosterone (3 mg/kg, i.p.) was administered to male Sprague-Dawley rats immediately after inhibitory avoidance training to examine effects on long-term memory, amygdala norepinephrine levels, and hippocampal Arc expression. Corticosterone increased amygdala norepinephrine levels 15 min after inhibitory avoidance training, as assessed by in vivo microdialysis, and enhanced memory tested at 48 h. Corticosterone treatment also increased expression of Arc protein in hippocampal synaptic tissue. The elevation in BLA norepinephrine appears to participate in corticosterone-influenced modulation of hippocampal Arc expression as intra-BLA blockade of beta-adrenoceptors with propranolol (0.5 microg/0.2 microL) attenuated the corticosterone-induced synaptic Arc expression in the hippocampus. These findings indicate that noradrenergic activity at BLA beta-adrenoceptors is involved in corticosterone-induced enhancement of memory consolidation and expression of the synaptic-plasticity-related protein Arc in the hippocampus.

  18. Increased proliferation and chemosensitivity of human mesenchymal stromal cells expressing fusion yeast cytosine deaminase.

    PubMed

    Kucerova, Lucia; Poturnajova, Martina; Tyciakova, Silvia; Matuskova, Miroslava

    2012-03-01

    Mesenchymal stromal cells (MSCs) are considered to be suitable vehicles for cellular therapy in various conditions. The expression of reporter and/or effector protein(s) enabled both the identification of MSCs within the organism and the exploitation in targeted tumor therapies. The aim of this study was to evaluate cellular changes induced by retrovirus-mediated transgene expression in MSCs in vitro. Human Adipose Tissue-derived MSCs (AT-MSCs) were transduced to express (i) the enhanced green fluorescent protein (EGFP) reporter transgene, (ii) the fusion yeast cytosine deaminase::uracil phosphoribosyltransferase (CDy::UPRT) enzyme along with the expression of dominant positive selection gene NeoR or (iii) the selection marker NeoR alone (MOCK). CDy::UPRT expression resulted in increased proliferation of CDy::UPRT-MSCs versus naïve AT-MSCs, MOCK-MSCs or EGFP-MSCs. Furthermore, CDy::UPRT-MSCs were significantly more sensitive to 5-fluorouracil (5FU), cisplatin, cyclophosphamide and cytosine arabinoside as determined by increased Caspase 3/7 activation and/or decreased relative proliferation. CDy::UPRT-MSCs in direct cocultures with breast cancer cells MDA-MB-231 increased tumor cell killing induced by low concentrations of 5FU. Our data demonstrated the changes in proliferation and chemoresistance in engineered MSCs expressing transgene with enzymatic function and suggested the possibilities for further augmentation of targeted MSC-mediated antitumor therapy.

  19. Expression of the RNA-binding protein TIAR is increased in neurons after ischemic cerebral injury.

    PubMed

    Jin, K; Li, W; Nagayama, T; He, X; Sinor, A D; Chang, J; Mao, X; Graham, S H; Simon, R P; Greenberg, D A

    2000-03-15

    T-cell restricted intracellular antigen-related protein (TIAR) is an RNA recognition motif-type RNA-binding protein that has been implicated in the apoptotic death of T-lymphocytes and retinal pigment epithelial cells. Western blots prepared with a monoclonal antibody against TIAR showed expression in normal rat hippocampus, and induction by 15 min of global cerebral ischemia. This increased expression was evident at 8 hr after ischemia and maximal at 24 hr, whereas expression at 72 hr was reduced below basal levels. Expression of TIAR protein was also increased in parietal cortex 6 and 24 hr after 90 min of focal cerebral ischemia induced by middle cerebral artery (MCA) occlusion, as well as in cultured cortical neurons and astroglia after exposure to hypoxia in vitro. Immunocytochemistry showed that increased expression of TIAR occurred mainly in the CA1 sector of hippocampus 24 hr after global ischemia, and in cortical and striatal neurons 24 hr after 20 or 90 min of focal ischemia. Double-labeling studies showed that TIAR protein expression was co-localized with DNA damage in neuronal cells. The findings suggest that TIAR may be involved in neuronal cell death after cerebral ischemic injury.

  20. Expression of BMP and Actin Membrane Bound Inhibitor Is Increased during Terminal Differentiation of MSCs

    PubMed Central

    Karl, Alexandra; Berner, Arne; Schmitz, Paul; Koch, Matthias; Nerlich, Michael; Mueller, Michael B.

    2016-01-01

    Chondrogenic differentiating mesenchymal stem cells (MSCs) are mimicking embryonal endochondral ossification and become hypertrophic. BMP (bone morphogenetic protein) and Activin Membrane Bound Inhibitor (BAMBI) is a pseudoreceptor that regulates the activity of transforming growth factor-β (TGF-β) and BMP signalling during chondrogenesis. Both TGF-β and BMP signalling are regulators of chondrogenic cell differentiation. Human bone marrow derived MSCs were chondrogenically predifferentiated in aggregate culture for 14 days. Thereafter, one group was subjected to hypertrophy enhancing media conditions while controls were kept in chondrogenic medium until day 28. Histological evaluation, gene expression by PCR, and Western blot analysis were carried out at days 1, 3, 7, 14, 17, 21, and 28. A subset of cultures was treated with the BMP inhibitor Noggin to test for BMP dependent expression of BAMBI. Hypertrophic differentiated pellets showed larger cells with increased collagen 10 and alkaline phosphatase staining. There was significantly increased expression of BAMBI on gene expression and protein level in hypertrophic cultures compared to the chondrogenic control and increased BMP4 gene expression. Immunohistochemistry showed intense staining of BAMBI in hypertrophic cells. BAMBI expression was dose-dependently downregulated by Noggin. The pseudoreceptor BAMBI is upregulated upon enhancement of hypertrophy in MSC chondrogenic differentiation by a BMP dependent mechanism. PMID:27843458

  1. Dopamine denervation of the prefrontal cortex increases expression of the astrocytic glutamate transporter GLT-1.

    PubMed

    Vollbrecht, Peter J; Simmler, Linda D; Blakely, Randy D; Deutch, Ariel Y

    2014-07-01

    Both dopamine and glutamate are critically involved in cognitive processes such as working memory. Astrocytes, which express dopamine receptors, are essential elements in the termination of glutamatergic signaling: the astrocytic glutamate transporter GLT-1 is responsible for > 90% of cortical glutamate uptake. The effect of dopamine depletion on glutamate transporters in the prefrontal cortex (PFC) remains unknown. In an effort to determine if astrocytes are a locus of cortical dopamine-glutamate interactions, we examined the effects of chronic dopamine denervation on PFC protein and mRNA levels of glutamate transporters. PFC dopamine denervation elicited a marked increase in GLT-1 protein levels, but had no effect on levels of other glutamate transporters; high-affinity glutamate transport was positively correlated with the extent of dopamine depletion. GLT-1 gene expression was not altered. Our data suggest that dopamine depletion may lead to post-translational modifications that result in increased expression and activity of GLT-1 in PFC astrocytes. The glutamate transporter GLT-1 is expressed by astrocytes, which also express dopamine receptors. Regulation of prefrontal cortical (PFC) GLT-1 potentially offers a novel treatment approach to the cognitive deficits of schizophrenia. Partial PFC dopamine deafferentation increased membrane expression of GLT-1 protein and glutamate uptake, but did not alter levels of the other two neocortical glutamate transporters, GLAST and EAAC1.

  2. Lung arginase expression and activity is increased in cystic fibrosis mouse models.

    PubMed

    Jaecklin, Thomas; Duerr, Julia; Huang, Hailu; Rafii, Mahroukh; Bear, Christine E; Ratjen, Felix; Pencharz, Paul; Kavanagh, Brian P; Mall, Marcus A; Grasemann, Hartmut

    2014-08-01

    The activity of arginase is increased in airway secretions of patients with cystic fibrosis (CF). Downstream products of arginase activity may contribute to CF lung disease. We hypothesized that pulmonary arginase expression and activity would be increased in mouse models of CF and disproportionally increased in CF mice with Pseudomonas aeruginosa pneumonia. Expression of arginase isoforms in lung tissue was quantified with reverse transcriptase-PCR in naive cystic fibrosis transmembrane conductance regulator (Cftr)-deficient mice and β-epithelial sodium channel-overexpressing [β-ENaC-transgenic (Tg)] mice. An isolated lung stable isotope perfusion model was used to measure arginase activity in Cftr-deficient mice before and after intratracheal instillation of Pseudomonas aeruginosa. The expression of arginase-2 in lung was increased in adult Cftr-deficient animals and in newborn β-ENaC-Tg. Arginase-1 lung expression was normal in Cftr-deficient and in newborn β-ENaC-Tg mice, but was increased in β-ENaC-Tg mice at age 1, 3, and 6 wk. Arginase activity was significantly higher in lung (5.0 ± 0.7 vs. 3.2 ± 0.3 nmol·(-1)·h(-1), P = 0.016) and airways (204.6 ± 49.8 vs. 79.3 ± 17.2 nmol·(-1)·h(-1), P = 0.045) of naive Cftr-deficient mice compared with sex-matched wild-type littermate controls. Infection with Pseudomonas aeruginosa resulted in a far greater increase in lung arginase activity in Cftr-deficient mice (10-fold) than in wild-type controls (6-fold) (P = 0.01). This is the first ex vivo characterization of arginase expression and activity in CF mouse lung and airways. Our data show that pulmonary arginase expression and activity is increased in CF mice, especially with Pseudomonas aeruginosa infections.

  3. Histidine tag fusion increases expression levels of active recombinant amelogenin in Escherichia coli.

    PubMed

    Svensson, Johan; Andersson, Christer; Reseland, Janne E; Lyngstadaas, Petter; Bülow, Leif

    2006-07-01

    Amelogenin is a dental enamel matrix protein involved in formation of dental enamel. In this study, we have expressed two different recombinant murine amelogenins in Escherichia coli: the untagged rM179, and the histidine tagged rp(H)M180, identical to rM179 except that it carries the additional N-terminal sequence MRGSHHHHHHGS. The effects of the histidine tag on expression levels, and on growth properties of the amelogenin expressing cells were studied. Purification of a crude protein extract containing rp(H)M180 was also carried out using IMAC and reverse-phase HPLC. The results of this study showed clearly that both growth properties and amelogenin expression levels were improved for E. coli cells expressing the histidine tagged amelogenin rp(H)M180, compared to cells expressing the untagged amelogenin rM179. The positive effect of the histidine tag on amelogenin expression is proposed to be due to the hydrophilic nature of the histidine tag, generating a more hydrophilic amelogenin, which is more compatible with the host cell. Human osteoblasts treated with the purified rp(H)M180 showed increased levels of secreted osteocalcin, compared to untreated cells. This response was similar to cells treated with enamel matrix derivate, mainly composed by amelogenin, suggesting that the recombinant protein is biologically active. Thus, the histidine tag favors expression and purification of biologically active recombinant amelogenin.

  4. Estrogen Enhances the Expression of the Multidrug Transporter Gene ABCG2—Increasing Drug Resistance of Breast Cancer Cells through Estrogen Receptors

    PubMed Central

    Chang, Fung-Wei; Fan, Hueng-Chuen; Liu, Jui-Ming; Fan, Tai-Ping; Jing, Jin; Yang, Chia-Ling; Hsu, Ren-Jun

    2017-01-01

    Background: Multidrug resistance is a major obstacle in the successful therapy of breast cancer. Studies have proved that this kind of drug resistance happens in both human cancers and cultured cancer cell lines. Understanding the molecular mechanisms of drug resistance is important for the reasonable design and use of new treatment strategies to effectively confront cancers. Results: In our study, ATP-binding cassette sub-family G member 2 (ABCG2), adenosine triphosphate (ATP) synthase and cytochrome c oxidase subunit VIc (COX6C) were over-expressed more in the MCF-7/MX cell line than in the normal MCF7 cell line. Therefore, we believe that these three genes increase the tolerance of MCF7 to mitoxantrone (MX). The data showed that the high expression of COX6C made MCF-7/MX have more stable on mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) expression than normal MCF7 cells under hypoxic conditions. The accumulation of MX was greater in the ATP-depleted treatment MCF7/MX cells than in normal MCF7/MX cells. Furthermore, E2 increased the tolerance of MCF7 cells to MX through inducing the expression of ABCG2. However, E2 could not increase the expression of ABCG2 after the inhibition of estrogen receptor α (ERα) in MCF7 cells. According to the above data, under the E2 treatment, MDA-MB231, which lacks ER, had a higher sensitivity to MX than MCF7 cells. Conclusions: E2 induced the expression of ABCG2 through ERα and the over-expressed ABCG2 made MCF7 more tolerant to MX. Moreover, the over-expressed ATP synthase and COX6c affected mitochondrial genes and function causing the over-expressed ABCG2 cells pumped out MX in a concentration gradient from the cell matrix. Finally lead to chemoresistance. PMID:28098816

  5. Interleukin-6 stimulates cell migration, invasion and integrin expression in HTR-8/SVneo cell line.

    PubMed

    Jovanović, M; Vićovac, L

    2009-04-01

    Interleukin-6 (IL-6) is present in human endometrium throughout menstrual cycle and in pregnancy. Trophoblast also expresses IL-6. IL-6R and its associated signal transducer gp130 were found in trophoblast as well. IL-6 is generally assumed to be relevant for trophoblast invasion. This study was undertaken to determine influence of endogenous and externally added IL-6 on invasion and migration of first trimester of pregnancy trophoblast in vitro. Integrins alpha(5)beta(1) and alpha(1)beta(1) have been shown to play an important role in trophoblast invasion and the effect of IL-6 on the expression of these integrin subunits was studied. We are showing that in both isolated first trimester of pregnancy cytotrophoblast (CTB) and HTR-8/SVneo cell line IL-6 and IL-6R are present. The effect on migration was studied using cell wounding and migration test on HTR-8/SVneo cells. Effect of IL-6 and function blocking anti-IL-6 antibody in Matrigel invasion tests was studied on both cell types. The effect of IL-6 on integrin subunit expression was determined by cell-based ELISA and Western blot on HTR-8/SVneo cells. The results obtained show that exogenous IL-6 has stimulatory effect on cell migration in HTR-8/SVneo and invasion by both cell types. Function blocking anti-IL-6 inhibited unstimulated invasion by isolated first trimester cytotrophoblast and both cell migration and invasion in unstimulated HTR-8/SVneo. Integrin alpha(5) expression was stimulated by IL-6 to 134% (p<0.05), alpha(1) to 135% (p<0.005), and beta(1) to 134% (p<0.001) of control in cell-based ELISA, but also in Western blot. The data obtained show for the first time sensitivity of extravillous trophoblast cell line HTR-8/SVneo to IL-6, in addition to isolated first trimester cytotrophoblast. We conclude that both exogenous and endogenous IL-6 stimulate trophoblast cell migration and invasion, which may be partly attributable to stimulation of expression of the studied integrin subunits.

  6. Increased expression of PD-L1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity

    PubMed Central

    Liu, Chaoqi; Lu, Jiao; Tian, Huiqun; Du, Wei; Zhao, Lin; Feng, Jing; Yuan, Ding; Li, Zhiying

    2017-01-01

    Cytotoxic T lymphocyte dysfunction is frequently associated with PD-L1/PD-1 pathway activation, and is a principal obstacle in cancer therapy. In the present study, the mechanisms underlying the human papillomavirus (HPV)-induced evasion of cervical cancer cells to the host immune system via the programmed death ligand 1/programmed death 1 (PD-L1/PD-1) signaling pathway was investigated. A significant increase in the expression of the HPV16E7 viral protein and PD-L1 in cervical tissues was observed when compared with normal cervical tissues. In addition, a positive correlation between HPV16E7 and PD-L1 expression was observed by immunohistochemical staining and reverse transcription-polymerase chain reaction. Overexpressing HPV16E7 oncoprotein in the epithelial carcinoma of PC3 cells increased the expression level of the PD-L1 protein and inhibited peripheral blood mononuclear cell (PBMC) proliferation and cytotoxic T lymphocyte (CTL) activity. Upon knockdown of HPV16E7 in HPV16-associated CaSki cervical cancer cells with a relevant siRNA, a reduction in PD-L1 protein expression was observed, as well as a significant increase in PBMC proliferation and CTL activity. A recombinant plasmid, MSCVPIG-soluble PD-1, was constructed and transfected into the CaSki cell line, and was co-cultured with PBMCs. PBMC proliferation and CTL activity were observed to increase significantly. In conclusion, the results presented in the current study suggest that overexpression of PD-L1, induced by HPV16E7, may be responsible for lymphocyte dysfunction. In addition, soluble PD-1 may restore the function of tumor-infiltrating lymphocytes by inhibiting the PD-L1/PD-1 signaling pathway. These results may provide a novel insight for immunotherapeutic approaches in the treatment of cervical cancer. PMID:28075442

  7. Increased expression of PD‑L1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity.

    PubMed

    Liu, Chaoqi; Lu, Jiao; Tian, Huiqun; Du, Wei; Zhao, Lin; Feng, Jing; Yuan, Ding; Li, Zhiying

    2017-03-01

    Cytotoxic T lymphocyte dysfunction is frequently associated with PD‑L1/PD‑1 pathway activation, and is a principal obstacle in cancer therapy. In the present study, the mechanisms underlying the human papillomavirus (HPV)‑induced evasion of cervical cancer cells to the host immune system via the programmed death ligand  1/programmed death 1 (PD‑L1/PD‑1) signaling pathway was investigated. A significant increase in the expression of the HPV16E7 viral protein and PD‑L1 in cervical tissues was observed when compared with normal cervical tissues. In addition, a positive correlation between HPV16E7 and PD‑L1 expression was observed by immunohistochemical staining and reverse transcription‑polymerase chain reaction. Overexpressing HPV16E7 oncoprotein in the epithelial carcinoma of PC3 cells increased the expression level of the PD‑L1 protein and inhibited peripheral blood mononuclear cell (PBMC) proliferation and cytotoxic T lymphocyte (CTL) activity. Upon knockdown of HPV16E7 in HPV16‑associated CaSki cervical cancer cells with a relevant siRNA, a reduction in PD‑L1 protein expression was observed, as well as a significant increase in PBMC proliferation and CTL activity. A recombinant plasmid, MSCVPIG‑soluble PD‑1, was constructed and transfected into the CaSki cell line, and was co‑cultured with PBMCs. PBMC proliferation and CTL activity were observed to increase significantly. In conclusion, the results presented in the current study suggest that overexpression of PD‑L1, induced by HPV16E7, may be responsible for lymphocyte dysfunction. In addition, soluble PD‑1 may restore the function of tumor‑infiltrating lymphocytes by inhibiting the PD‑L1/PD‑1 signaling pathway. These results may provide a novel insight for immunotherapeutic approaches in the treatment of cervical cancer.

  8. Increased expression of PD-L1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity.

    PubMed

    Liu, Chaoqi; Lu, Jiao; Tian, Huiqun; Du, Wei; Zhao, Lin; Feng, Jing; Yuan, Ding; Li, Zhiying

    2016-12-23

    Cytotoxic T lymphocyte dysfunction is frequently associated with PD‑L1/PD‑1 pathway activation, and is a principal obstacle in cancer therapy. In the present study, the mechanisms underlying the human papillomavirus (HPV)‑induced evasion of cervical cancer cells to the host immune system via the programmed death ligand  1/programmed death 1 (PD‑L1/PD‑1) signaling pathway was investigated. A significant increase in the expression of the HPV16E7 viral protein and PD‑L1 in cervical tissues was observed when compared with normal cervical tissues. In addition, a positive correlation between HPV16E7 and PD‑L1 expression was observed by immunohistochemical staining and reverse transcription‑polymerase chain reaction. Overexpressing HPV16E7 oncoprotein in the epithelial carcinoma of PC3 cells increased the expression level of the PD‑L1 protein and inhibited peripheral blood mononuclear cell (PBMC) proliferation and cytotoxic T lymphocyte (CTL) activity. Upon knockdown of HPV16E7 in HPV16‑associated CaSki cervical cancer cells with a relevant siRNA, a reduction in PD‑L1 protein expression was observed, as well as a significant increase in PBMC proliferation and CTL activity. A recombinant plasmid, MSCVPIG‑soluble PD‑1, was constructed and transfected into the CaSki cell line, and was co‑cultured with PBMCs. PBMC proliferation and CTL activity were observed to increase significantly. In conclusion, the results presented in the current study suggest that overexpression of PD‑L1, induced by HPV16E7, may be responsible for lymphocyte dysfunction. In addition, soluble PD‑1 may restore the function of tumor‑infiltrating lymphocytes by inhibiting the PD‑L1/PD‑1 signaling pathway. These results may provide a novel insight for immunotherapeutic approaches in the treatment of cervical cancer.

  9. Expression of mammalian O6-alkylguanine-DNA alkyltransferase in a cell line sensitive to alkylating agents.

    PubMed

    Dolan, M E; Norbeck, L; Clyde, C; Hora, N K; Erickson, L C; Pegg, A E

    1989-09-01

    Chinese hamster ovary cells (CHO) were co-transfected with pSV2neo and sheared DNA from either a human cell line (HT29) expressing high levels of O6-alkylguanine-DNA alkyltransferase (AGT) or from a cell line (BE) deficient in this activity. Cells expressing the selectable marker were obtained by exposure to G418 and colonies resistant to alkylation damage isolated by growth in the presence of 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU). The number of colonies of cells expressing AGT activity arising after transfection with DNA from BE cells was similar to the number arising from cells exposed to HT29 DNA. Although the amount of AGT repair protein expressed in the transfectant colonies from this experiment was relatively low, these results indicate that repair of alkylation damage can be restored in AGT-deficient cells by transfection of human DNA from both repair-deficient and proficient cells. A separate transfection of CHOMG cells [a mutant of CHO cells resistant to the drug, methylglyoxal bis(guanylhydrazone) (MGBG)] with HT29 DNA and pSV2neo followed by selection of G418 and 1,3-bis-(2-chloroethyl)-1-nitrosourea (BCNU) resulted in three colonies with high AGT levels. These transfectants had different growth rates and expressed levels of the AGT protein between 230 and 300 fmol/mg protein. The transfectants were as resistant to the cytotoxic effects of BCNU, Clomesone, methylnitrosourea (MNU) and 1-methyl-3-nitro-1-nitrosoguanidine (MNNG) as HT29 cells which were much more resistant than the parental CHOMG cells. Pretreatment of transfectant cells with 0.4 mM O6-methylguanine for 24 h reduced AGT activity to 14% basal levels, which upon removal of the base increased to approximately 74% basal level within 8 h. The sensitivity to the cytotoxic effects of both the chloroethylating and methylating agents was enhanced by treatment with O6-methylguanine. In the same manner, the number of BCNU-induced DNA interstrand cross-links increased in transfectant

  10. Simian virus 40 DNA replication correlates with expression of a particular subclass of T antigen in a human glial cell line.

    PubMed

    Deminie, C A; Norkin, L C

    1990-08-01

    Immunocytochemistry and in situ hybridization were used to identify simian virus 40 (SV40) large T-antigen expression and viral DNA replication in individual cells of infected semipermissive human cell lines. SV40 infection aborts before T-antigen expression in many cells of each of the human cell lines examined. In all but one of the human cell lines, most of the T-antigen-producing cells replicated viral DNA. However, in the A172 line of human glial cells only a small percentage of the T-antigen-expressing cells replicated viral DNA. Since different structural and functional classes of T antigen can be recognized with anti-T monoclonal antibodies, we examined infected A172 cells with a panel of 10 anti-T monoclonal antibodies to determine whether viral DNA replication might correlate with the expression of a particular epitope of T antigen. One anti-T monoclonal antibody, PAb 100, did specifically recognize that subset of A172 cells which replicated SV40 DNA. The percentage of PAb 100-reactive A172 cells was dramatically increased by the DNA synthesis inhibitors hydroxyurea and aphidicolin. Removal of the hydroxyurea was followed by an increase in the percentage of cells replicating viral DNA corresponding to the increased percentage reactive with PAb 100. The pattern of SV40 infection in A172 cells was not altered by infection with viable viral mutants containing lesions in the small t protein, the agnoprotein, or the enhancer region. Finally, in situ hybridization was used to show that the percentage of human cells expressing T antigen was similar to the percentage transcribing early SV40 mRNA. Thus, the block to T-antigen expression in human cells is at a stage prior to transcription of early SV40 mRNA.

  11. Bortezomib and Arsenic Trioxide Activity on a Myelodysplastic Cell Line (P39): A Gene Expression Study

    PubMed Central

    Savlı, Hakan; Galimberti, Sara; Sünnetçi, Deniz; Canestraro, Martina; Palumbo, Giuseppe; Nagy, Balint; Raimondo, Francesco Di; Petrini, Mario

    2015-01-01

    Objective: We aimed to understand the molecular pathways affected by bortezomib and arsenic trioxide treatment on myelomonocytoid cell line P39. Materials and Methods: Oligonucleotide microarray platforms were used for gene expression and pathway analysis. Confirmation studies were performed using quantitative real time PCR. Results: Bortezomib treatment has shown upregulated DIABLO and NF-κBIB (a NF-κB inhibitor) and downregulated NF-κB1, NF-κB2, and BIRC1 gene expressions. Combination treatment of the two compounds showed gene expression deregulations in concordance by the results of single bortezomib treatment. Especially, P53 was a pathway more significantly modified and a gene network centralized around the beta estradiol gene. Beta estradiol, BRCA2, and FOXA1 genes were remarkable deregulations in our findings. Conclusion: Results support the suggestions about possible use of proteasome inhibitors in the treatment of high-risk myelodysplastic syndrome (MDS). NF-κB was observed as an important modulator in leukemic transformation of MDS. PMID:25913414

  12. Whole-genome expression analysis of mammalian-wide interspersed repeat elements in human cell lines

    PubMed Central

    Carnevali, Davide; Conti, Anastasia; Pellegrini, Matteo

    2017-01-01

    Abstract With more than 500,000 copies, mammalian-wide interspersed repeats (MIRs), a sub-group of SINEs, represent ∼2.5% of the human genome and one of the most numerous family of potential targets for the RNA polymerase (Pol) III transcription machinery. Since MIR elements ceased to amplify ∼130 myr ago, previous studies primarily focused on their genomic impact, while the issue of their expression has not been extensively addressed. We applied a dedicated bioinformatic pipeline to ENCODE RNA-Seq datasets of seven human cell lines and, for the first time, we were able to define the Pol III-driven MIR transcriptome at single-locus resolution. While the majority of Pol III-transcribed MIR elements are cell-specific, we discovered a small set of ubiquitously transcribed MIRs mapping within Pol II-transcribed genes in antisense orientation that could influence the expression of the overlapping gene. We also identified novel Pol III-transcribed ncRNAs, deriving from transcription of annotated MIR fragments flanked by unique MIR-unrelated sequences, and confirmed the role of Pol III-specific internal promoter elements in MIR transcription. Besides demonstrating widespread transcription at these retrotranspositionally inactive elements in human cells, the ability to profile MIR expression at single-locus resolution will facilitate their study in different cell types and states including pathological alterations. PMID:28028040

  13. SV40-IMMORTALIZED NON-TUMORIGENIC AND TUMORIGENIC CELL LINES DIFFER IN EXPRESSION OF HALLMARK VIRAL RESPONSE MRNAS

    EPA Science Inventory

    SV40-Immortalized Non-Tumorigenic and Tumorigenic Cell Lines Differ in Expression of Hallmark Viral Response mRNAs.

    Prior to the use of an in vitra/in viva transformation system to examine the tumorigenic activity of environmental contaminants, in vitra gene expression pa...

  14. Characterization of a Chinese hamster-human hybrid cell line with increased system L amino acid transport activity.

    PubMed Central

    Lobaton, C D; Moreno, A; Oxender, D L

    1984-01-01

    We have studied leucine transport in several Chinese hamster-human hybrid cell lines obtained by fusion of a temperature-sensitive line of Chinese hamster ovary cells, ts025C1, and normal human leukocytes. A hybrid cell line exhibiting a twofold increase in L-leucine uptake over that in the parental cell line was found. This hybrid cell line, 158CnpT-1, was temperature resistant, whereas the parental Chinese hamster ovary mutant, ts025C1, contained a temperature-sensitive leucyl-tRNA synthetase mutation. An examination of the different amino acid transport systems in this hybrid cell line revealed a specific increase of system L activity with no significant changes in systems A and ASC. The Vmax for L-leucine uptake exhibited by the hybrid 158CnpT-1 was twice that in the CHO parental mutant, ts025C1. Cytogenetic analysis showed that the hybrid 158CnpT-1 contains four complete human chromosomes (numbers 4, 5, 10, and 21) and three interspecific chromosomal translocations in a total complement of 34 chromosomes. Biochemical and cytogenetic analysis of segregant clones obtained from hybrid 158CnpT-1 showed that the primary temperature resistance and high system L transport phenotypes can be segregated from this hybrid independently. The loss of the primary temperature resistance was associated with the loss of the human chromosome 5, as previously reported by other laboratories, whereas the loss of the high leucine transport phenotype, which is associated with a lesser degree of temperature resistance, was correlated with the loss of human chromosome 20. Images PMID:6717430

  15. Characterization of a Chinese hamster-human hybrid cell line with increased system L amino acid transport activity.

    PubMed

    Lobaton, C D; Moreno, A; Oxender, D L

    1984-03-01

    We have studied leucine transport in several Chinese hamster-human hybrid cell lines obtained by fusion of a temperature-sensitive line of Chinese hamster ovary cells, ts025C1, and normal human leukocytes. A hybrid cell line exhibiting a twofold increase in L-leucine uptake over that in the parental cell line was found. This hybrid cell line, 158CnpT-1, was temperature resistant, whereas the parental Chinese hamster ovary mutant, ts025C1, contained a temperature-sensitive leucyl-tRNA synthetase mutation. An examination of the different amino acid transport systems in this hybrid cell line revealed a specific increase of system L activity with no significant changes in systems A and ASC. The Vmax for L-leucine uptake exhibited by the hybrid 158CnpT-1 was twice that in the CHO parental mutant, ts025C1. Cytogenetic analysis showed that the hybrid 158CnpT-1 contains four complete human chromosomes (numbers 4, 5, 10, and 21) and three interspecific chromosomal translocations in a total complement of 34 chromosomes. Biochemical and cytogenetic analysis of segregant clones obtained from hybrid 158CnpT-1 showed that the primary temperature resistance and high system L transport phenotypes can be segregated from this hybrid independently. The loss of the primary temperature resistance was associated with the loss of the human chromosome 5, as previously reported by other laboratories, whereas the loss of the high leucine transport phenotype, which is associated with a lesser degree of temperature resistance, was correlated with the loss of human chromosome 20.

  16. Deimination level and peptidyl arginine deiminase 2 expression are elevated in astrocytes with increased incubation temperature.

    PubMed

    Enriquez-Algeciras, Mabel; Bhattacharya, Sanjoy K; Serra, Horacio M

    2015-09-01

    Astrocytes respond to environmental cues, including changes in temperatures. Increased deimination, observed in many progressive neurological diseases, is thought to be contributed by astrocytes. We determined the level of deimination and expression of peptidyl arginine deiminase 2 (PAD2) in isolated primary astrocytes in response to changes on either side (31°C and 41°C) of the optimal temperature (37°C). We investigated changes in the astrocytes by using a number of established markers and accounted for cell death with the CellTiter-Blue assay. We found increased expression of glial fibrillary acidic protein, ALDH1L1, and J1-31, resulting from increased incubation temperature and increased expression of TSP1, S100β, and AQP4, resulting from decreased incubation temperature vs. optimal temperature, suggesting activation of different biochemical pathways in astrocytes associated with different incubation temperatures. Mass spectrometric analyses support such trends. The PAD2 level was increased only as a result of increased incubation temperature with a commensurate increased level of deimination. Actin cytoskeleton and iso[4]LGE, a lipid peroxidase modification, also showed an increase with higher incubation temperature. Altogether, these results suggest that temperature, as an environmental cue, activates astrocytes in a different manner on either side of the optimal temperature and that increase in deimination is associated only with the higher temperature side of the spectrum.

  17. Bacterial cell wall products increases stabilization of HIF-1 alpha in an oligodendrocyte cell line preconditioned by cobalt chloride or desferrioxamine.

    PubMed

    Yao, Song-yi; Soutto, Mohammed; Sriram, Subramaniam

    2008-08-30

    We examined the effect of lipopolysaccharide (LPS) or lipotechoic acid (LTA) on the regulation of hypoxia inducible factor (HIF-1) alpha on the MO3.13 cells, a human oligodendroglial cell line. Our study shows that MO3.13 cells express the toll like receptors (TLR's) but do not increase cellular levels of HIF-1 alpha following exposure to bacterial cell wall products. When MO3.13 cells were preconditioned by desferrioxamine (DFO) or cobalt chloride (CoCl(2)) and then treated with either LPS or LTA, HIF-1 alpha levels were higher than that induced by DFO or CoCl(2) alone. The increase in HIF-1 alpha was due to increased protein stability that was mediated by activation of the ERK-MAP kinase pathway.

  18. Ghrelin receptor expression and colocalization with anterior pituitary hormones using a GHSR-GFP mouse line.

    PubMed

    Reichenbach, Alex; Steyn, Frederik J; Sleeman, Mark W; Andrews, Zane B

    2012-11-01

    Ghrelin is the endogenous ligand for the GH secretagogue receptor (GHSR) and robustly stimulates GH release from the anterior pituitary gland. Ghrelin also regulates the secretion of anterior pituitary hormones including TSH, LH, prolactin (PRL), and ACTH. However, the relative contribution of a direct action at the GHSR in the anterior pituitary gland vs. an indirect action at the GHSR in the hypothalamus remains undefined. We used a novel GHSR-enhanced green fluorescent protein (eGFP) reporter mouse to quantify GHSR coexpression with GH, TSH, LH, PRL, and ACTH anterior pituitary cells in males vs. females and in chow-fed or calorie-restricted (CR) mice. GHSR-eGFP-expressing cells were only observed in anterior pituitary. The number of GHSR-eGFP-expressing cells was higher in male compared with females, and CR did not affect the GHSR-eGFP cell number. Double staining revealed 77% of somatotrophs expressed GHSR-eGFP in both males and females. Nineteen percent and 12.6% of corticotrophs, 21% and 9% of lactotrophs, 18% and 19% of gonadotrophs, and 3% and 9% of males and females, respectively, expressed GHSR-eGFP. CR increased the number of TSH cells, but suppressed the number of lactotrophs and gonadotrophs, expressing GHSR-eGFP compared with controls. These studies support a robust stimulatory action of ghrelin via the GHSR on GH secretion and identify a previously unknown sexual dimorphism in the GHSR expression in the anterior pituitary. CR affects GHSR-eGFP expression on lactotrophs, gonadotrophs, and thyrotrophs, which may mediate reproductive function and energy metabolism during periods of negative energy balance. The low to moderate expression of GHSR-eGFP suggests that ghrelin plays a minor direct role on remaining anterior pituitary cells.

  19. Organophosphate pesticides increase the expression of alpha glutathione S-transferase in HepG2 cells.

    PubMed

    Medina-Díaz, I M; Rubio-Ortíz, M; Martínez-Guzmán, M C; Dávalos-Ibarra, R L; Rojas-García, A E; Robledo-Marenco, M L; Barrón-Vivanco, B S; Girón-Pérez, M I; Elizondo, G

    2011-12-01

    Chlorpyrifos and methyl parathion are among the most widely used insecticides in the world. Human populations are constantly exposed to low doses of both due to their extensive use and presence in food and drinking water. Glutathione S-transferase (GST) catalyzes the conjugation of glutathione on electrophilic substrates and is an important line of defense in the protection of cellular components from reactive species. GST alpha1 (GSTA1) is the predominant isoform of GST expressed in the human liver; thus, determining the effect of insecticides on GSTA1 transcription is very important. In the present study, we analyzed the effects of methyl parathion and chlorpyrifos on GSTA1 gene expression in HepG2 cells using real time PCR, and activity and immunoreactive protein assays. The results demonstrated that exposure to methyl parathion and chlorpyrifos increased the level of GSTA1 mRNA, GSTA1 immunoreactive protein and GST activity relative to a control. These results demonstrated that these insecticides can increase the expression of GSTA1. In conclusion, HepG2 cell cultures treated with methyl parathion and chlorpyrifos could be a useful model for studying the function of GSTA1 and its role in the metabolism of xenobiotics in the liver.

  20. Heat Stress and Lipopolysaccharide Stimulation of Chicken Macrophage-Like Cell Line Activates Expression of Distinct Sets of Genes

    PubMed Central

    Slawinska, Anna; Hsieh, John C.; Schmidt, Carl J.; Lamont, Susan J.

    2016-01-01

    Acute heat stress requires immediate adjustment of the stressed individual to sudden changes of ambient temperatures. Chickens are particularly sensitive to heat stress due to development of insufficient physiological mechanisms to mitigate its effects. One of the symptoms of heat stress is endotoxemia that results from release of the lipopolysaccharide (LPS) from the guts. Heat-related cytotoxicity is mitigated by the innate immune system, which is comprised mostly of phagocytic cells such as monocytes and macrophages. The objective of this study was to analyze the molecular responses of the chicken macrophage-like HD11 cell line to combined heat stress and lipopolysaccharide treatment in vitro. The cells were heat-stressed and then allowed a temperature-recovery period, during which the gene expression was investigated. LPS was added to the cells to mimic the heat-stress-related endotoxemia. Semi high-throughput gene expression analysis was used to study a gene panel comprised of heat shock proteins, stress-related genes, signaling molecules and immune response genes. HD11 cell line responded to heat stress with increased mRNA abundance of the HSP25, HSPA2 and HSPH1 chaperones as well as DNAJA4 and DNAJB6 co-chaperones. The anti-apoptotic gene BAG3 was also highly up-regulated, providing evidence that the cells expressed pro-survival processes. The immune response of the HD11 cell line to LPS in the heat stress environment (up-regulation of CCL4, CCL5, IL1B, IL8 and iNOS) was higher than in thermoneutral conditions. However, the peak in the transcriptional regulation of the immune genes was after two hours of temperature-recovery. Therefore, we propose the potential influence of the extracellular heat shock proteins not only in mitigating effects of abiotic stress but also in triggering the higher level of the immune responses. Finally, use of correlation networks for the data analysis aided in discovering subtle differences in the gene expression (i.e. the role

  1. Reduced promoter methylation and increased expression of CSPG4 negatively influences survival of HNSCC patients.

    PubMed

    Warta, Rolf; Herold-Mende, Christel; Chaisaingmongkol, Jittiporn; Popanda, Odilia; Mock, Andreas; Mogler, Carolin; Osswald, Florian; Herpel, Esther; Küstner, Sabine; Eckstein, Volker; Plass, Christoph; Plinkert, Peter; Schmezer, Peter; Dyckhoff, Gerhard

    2014-12-01

    Proteoglycans are often overexpressed in tumors and can be found on several normal and neoplastic stem cells. In this study, we analyzed in-depth the role of CSPG4 in head and neck squamous cell carcinomas (HNSCC). Analysis of CSPG4 in a homogeneous study sample of HPV-negative stage IVa HNSCCs revealed overexpression of protein and mRNA levels in a subgroup of HNSCC tumors and a significant association of high CSPG4 protein levels with poor survival. This could be validated in three publicly available microarray datasets. As a potential cause for upregulated CSPG4 expression, we identified DNA hypomethylation in a CpG-island of the promoter region. Accordingly, we found an inverse correlation of methylation and patient outcome. Finally, CSPG4 re-expression was achieved by demethylating treatment of highly methylated HNSCC cell lines establishing a direct link between methylation and CSPG4 expression. In conclusion, we identified CSPG4 as a novel biomarker in HNSCC on several biological levels and established a causative link between DNA methylation and CSPG4 protein and mRNA expression.

  2. Berberine increases the expression of NHE3 and AQP4 in sennosideA-induced diarrhoea model.

    PubMed

    Zhang, Yongguo; Wang, Xin; Sha, Sumei; Liang, Shuli; Zhao, Lina; Liu, Lin; Chai, Na; Wang, Honghong; Wu, Kaichun

    2012-09-01

    Berberine, a compound isolated from Chinese Goldthread Rhizome, has been widely used as a non-prescription drug to treat diarrhoea in China. Previous studies have demonstrated multiple pharmacological activities for berberine, including its significant role in antimicrobial activity. However, its effect on ion exchange and water transfer remains unclear. The present study aims to explore the effect of berberine on the expression of Na(+)/H(+) exchanger3 (NHE3) and aquaporin4 (AQP4) in both diarrhoea mouse model induced by sennosideA and human intestinal epithelium cell line (HIEC). Semi-quantitative RT-PCR, immunohistochemistry and western blotting were adopted to detect the mRNA and protein expression levels of NHE3 and AQP4. Furthermore, the absorption of berberine and the PKC activity were detected by HPLC and PepTag® Assay to elucidate the underlying mechanisms. It was shown that the expression levels of NHE3 and AQP4 were significantly increased in the diarrhoea mice treated with berberine compared with the untreated diarrhoea mice. Similarly, the expression levels of NHE3 and AQP4 were strikingly enhanced in HIEC co-treated with sennosideA and berberine compared with samples treated with sennosideA only. We also found the maximal absorption of berberine to be approximately 0.01%. In addition, no significant change of PKC activity was observed in the different HIEC treated groups. These results showed that berberine was able to increase the expression of NHE3 and AQP4, suggesting that berberine might exhibit its anti-diarrhoeal effect partially by enhancing the absorption of Na(+) and water.

  3. miR-335 Targets SIAH2 and Confers Sensitivity to Anti-Cancer Drugs by Increasing the Expression of HDAC3

    PubMed Central

    Kim, Youngmi; Kim, Hyuna; Park, Deokbum; Jeoung, Dooil

    2015-01-01

    We previously reported the role of histone deacetylase 3 (HDAC3) in response to anti-cancer drugs. The decreased expression of HDAC3 in anti-cancer drug-resistant cancer cell line is responsible for the resistance to anti-cancer drugs. In this study, we investigated molecular mechanisms associated with regulation of HDAC3 expression. MG132, an inhibitor of proteasomal degradation, induced the expression of HDAC3 in various anti-cancer drug-resistant cancer cell lines. Ubiquitination of HDAC3 was observed in various anti-cancer drug-resistant cancer cell lines. HDAC3 showed an interaction with SIAH2, an ubiquitin E3 ligase, that has increased expression in various anti-cancer drug-resistant cancer cell lines. miRNA array analysis showed the decreased expression of miR-335 in these cells. Targetscan analysis predicted the binding of miR-335 to the 3′-UTR of SIAH2. miR-335-mediated increased sensitivity to anti-cancer drugs was associated with its effect on HDAC3 and SIAH2 expression. miR-335 exerted apoptotic effects and inhibited ubiquitination of HDAC3 in anti-cancer drug-resistant cancer cell lines. miR-335 negatively regulated the invasion, migration, and growth rate of cancer cells. The mouse xenograft model showed that miR-335 negatively regulated the tumorigenic potential of cancer cells. The down-regulation of SIAH2 conferred sensitivity to anti-cancer drugs. The results of the study indicated that the miR-335/SIAH2/HDAC3 axis regulates the response to anti-cancer drugs. PMID:25997740

  4. SPARCL1 Expression Increases With Preoperative Radiation Therapy and Predicts Better Survival in Rectal Cancer Patients

    SciTech Connect

    Kotti, Angeliki Holmqvist, Annica; Albertsson, Maria; Sun, Xiao-Feng

    2014-04-01

    Purpose: The secreted protein acidic and rich in cysteine-like 1 (SPARCL1) is expressed in various normal tissues and many types of cancers. The function of SPARCL1 and its relationship to a patient's prognosis have been studied, whereas its relationship to radiation therapy (RT) is not known. Our aim was to investigate the expression of SPARCL1 in rectal cancer patients who participated in a clinical trial of preoperative RT. Methods and Materials: The study included 136 rectal cancer patients who were randomized to undergo preoperative RT and surgery (n=63) or surgery alone (n=73). The expression levels of SPARCL1 in normal mucosa (n=29), primary tumor (n=136), and lymph node metastasis (n=35) were determined by immunohistochemistry. Results: Tumors with RT had stronger SPARCL1 expression than tumors without RT (P=.003). In the RT group, strong SPARCL1 expression was related to better survival than weak expression in patients with stage III tumors, independent of sex, age, differentiation, and margin status (P=.022; RR = 18.128; 95% confidence interval, 1.512-217.413). No such relationship was found in the non-RT group (P=.224). Further analysis of interactions among SPARCL1 expression, RT, and survival showed statistical significance (P=.024). In patients with metastases who received RT, strong SPARCL1 expression was related to better survival compared to weak expression (P=.041) but not in the non-RT group (P=.569). Conclusions: SPARCL1 expression increases with RT and is related to better prognosis in rectal cancer patients with RT but not in patients without RT. This result may help us to select the patients best suited for preoperative RT.

  5. Effect of ploidy increase on transgene expression: example from Citrus diploid cybrid and allotetraploid somatic hybrid expressing the EGFP gene.

    PubMed

    Xu, Shi-Xiao; Cai, Xiao-Dong; Tan, Bin; Li, Ding-Li; Guo, Wen-Wu

    2011-07-01

    Polyploidization is an important speciation mechanism for all eukaryotes, and it has profound impacts on biodiversity dynamics and ecosystem functioning. Green fluorescent protein (GFP) has been used as an effective marker to visually screen somatic hybrids at an early stage in protoplast fusion. We have previously reported that the intensity of GFP fluorescence of regenerated embryoids was also an early indicator of ploidy level. However, little is known concerning the effects of ploidy increase on the GFP expression in citrus somatic hybrids at the plant level. Herein, allotetraploid and diploid cybrid plants with enhanced GFP (EGFP) expression were regenerated from the fusion of embryogenic callus protoplasts from 'Murcott' tangor (Citrus reticulata Blanco × Citrus sinensis (L.) Osbeck) and mesophyll protoplasts from transgenic 'Valencia' orange (C. sinensis (L.) Osbeck) expressing the EGFP gene, via electrofusion. Subsequent simple sequence repeat (SSR), chloroplast simple sequence repeat and cleaved amplified polymorphic sequence analysis revealed that the two regenerated tetraploid plants were true allotetraploid somatic hybrids possessing nuclear genomic DNA of both parents and cytoplasmic DNA from the callus parent, while the five regenerated diploid plants were cybrids containing nuclear DNA of the leaf parent and with complex segregation of cytoplasmic DNA. Furthermore, EGFP expression was compared in cells and protoplasts from mature leaves of these diploid cybrids and allotetraploid somatic hybrids. Results showed that the intensity of GFP fluorescence per cell or protoplast in diploid was generally brighter than in allotetraploid. Moreover, same hybridization signal was detected on allotetraploid and diploid plants by Southern blot analysis. By real-time RT-PCR and Western blot analysis, GFP expression level of the diploid cybrid was revealed significantly higher than that of the allotetraploid somatic hybrid. These results suggest that ploidy

  6. Increased liposome-mediated gene transfer into haematopoietic cells grown in adhesion to stromal or fibroblast cell line monolayers.

    PubMed

    Marit, G; Cao, Y; Froussard, P; Ripoche, J; Dupouy, M; Elandaloussi, A; Lacombe, F; Mahon, F X; Keller, H; Pla, M; Reiffers, J; Theze, J

    2000-01-01

    We investigated transfection rates of CD34+ haematopoietic progenitor cells (HPC) or haematopoietic cell lines (TF-1, KG1a and K562) using the LacZ gene as a reporter and cationic liposomes. The transfection efficiency of CD34+ haematopoietic progenitor cells (HPC) or TF-1, KG1a and K562 grown in suspension is very low (average percentage of 0.013 for HPC and 0.03 for cell lines). Adhesion of HPC or cell lines to plates by immunological or physical methods significantly enhances transfection efficiency; however, the percentage of transfected cells still remained low. We found that adhesion of TF-1, KG1a and K562 HC to MS-5 stroma cells or NIH-3T3 fibroblast cells increased transfection efficiency. Under these conditions transfection is achieved in 11.2-25% (mean 18.30%) for the cell lines and 13.6% (range 8.2-24.2%) for CD34+ HPC. These results indicate that liposome-mediated transfection of HC is significantly increased when cells are grown in adherence to stroma or fibroblast monolayers.

  7. Apoptosis induced by tumor necrosis factor-alpha in rat hepatocyte cell lines expressing hepatitis B virus.

    PubMed Central

    Guilhot, S.; Miller, T.; Cornman, G.; Isom, H. C.

    1996-01-01

    Three well differentiated SV40-immortalized rat hepatocyte cell lines, CWSV1, CWSV2, and CWSV14, and Hepatitis B Virus (HBV)-producing cell lines derived from them were examined for sensitivity to tumor necrosis factor (TNF)-alpha. CWSV1, CWSV2, and CWSV14 cells were co-transfected with a DNA construct containing a dimer of the HBV genome and the neo gene and selected in G418 to generate stable cell lines. Characterization of these cell lines indicated that they contain integrated HBV DNA, contain low molecular weight HBV DNA compatible with the presence of HBV replication intermediates, express HBV transcripts, and produce HBV proteins. The viability of CWSV1, CWSV2, and CWSV2 cells was not significantly altered when they were treated with TNF-alpha at concentrations as high as 20,000 U/ml. The HBV-expressing CWSV1 cell line, SV1di36, and the HBV-expressing CWSV14 cell line, SV14di208, were also not killed when treated with TNF-alpha. However, the HBV-expressing CWSV2 cell line, SV2di366, was extensively killed when treated with TNF-alpha at concentrations ranging from 200 to 20,000 U/ml. Analysis of several different HBV-producing CWSV2 cell lines indicated that TNF-alpha killing depended upon the level of HBV expression. The TNF-alpha-induced cell killing in high HBV-producing CWSV2 cell lines was accompanied by the presence of an oligonucleosomal DNA ladder characteristic of apoptosis. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 9 Figure 10 Figure 11 PMID:8774135

  8. Expression of a deregulated tobacco nitrate reductase gene in potato increases biomass production and decreases nitrate concentration in all organs.

    PubMed

    Djennane, Samia; Quilleré, Isabelle; Leydecker, Marie-Thérèse; Meyer, Christian; Chauvin, Jean-Eric

    2004-09-01

    We investigated the physiological consequences for nitrogen metabolism and growth of the deregulated expression of an N-terminal-deleted tobacco nitrate reductase in two lines of potato (Solanum tuberosum L. cv Safrane). The transgenic plants showed a higher biomass accumulation, especially in tubers, but a constant nitrogen content per plant. This implies that the transformed lines had a reduced nitrogen concentration per unit of dry weight. A severe reduction in nitrate concentrations was also observed in all organs, but was more apparent in tubers where nitrate was almost undetectable in the transgenic lines. In leaves and roots, but not tubers, this nitrate decrease was accompanied by a statistically significant increase in the level of malate, which acts as a counter-anion for nitrate reduction. Apart from glutamine in tubers, no major changes in amino acid concentration were seen in leaves, roots or tubers. We conclude that enhancement of nitrate reduction rate leads to higher biomass production, probably by allowing a better allocation of N-resources to photosynthesis and C-metabolism.

  9. Genetic selection for resistance to mycoplasmal pneumonia of swine (MPS) in the Landrace line influences the expression of soluble factors in blood after MPS vaccine sensitization.

    PubMed

    Shimazu, Tomoyuki; Borjigin, Liushiqi; Katayama, Yuki; Li, Meihua; Satoh, Takumi; Watanabe, Kouichi; Kitazawa, Haruki; Roh, Sang-gun; Aso, Hisashi; Kazuo, Katoh; Suda, Yoshihito; Sakuma, Akiko; Nakajo, Mituru; Suzuki, Keiichi

    2014-04-01

    We recently developed a Landrace line that is resistant to mycoplasmal pneumonia of swine (MPS) infection by genetic selection for five generations, and we reported that the immunophenotype of this line is different from that of the non-selected line in terms of changes in peripheral blood leukocyte population after MPS vaccination. This study followed up previous findings demonstrating changes in soluble factors in blood, namely, hormones, Mycoplasma hyopneumoniae-specific immunoglobulin G (IgG), and cytokines. These two lines were injected with MPS vaccine on days -7 and 0 after blood sampling on those days, and blood samples were collected on days -14, -7, 0, 2, 7 and 14. We found changes in the levels of many hormones and cytokines in both lines. However, we found that only growth hormone (GH) and interferon (IFN)-γ levels were statistically different between these two lines. GH concentration was reduced (day 0) and IFN-γ concentration was increased (day 14) in the MPS-selected line compared with the non-selected line, despite unchanged IFN-γ messenger RNA expression in blood cells. Although detailed mechanisms underlying these phenotypes remain unsolved, these traits would be useful to improve MPS resistance in pig production and provide an insight into MPS infection.