Science.gov

Sample records for lines expressing increased

  1. Increased IMP dehydrogenase gene expression in solid tumor tissues and tumor cell lines

    SciTech Connect

    Collart, F.R.; Chubb, C.B.; Mirkin, B.L.; Huberman, E.

    1992-07-10

    IMP dehydrogenase, a regulatory enzyme of guanine nucleotide biosynthesis, may play a role in cell proliferation and malignancy. To assess this possibility, we examined IMP dehydrogenase expression in a series of human solid tumor tissues and tumor cell lines in comparison with their normal counterparts. Increased IMP dehydrogenase gene expression was observed in brain tumors relative to normal brain tissue and in sarcoma cells relative to normal fibroblasts. Similarly, in several B- and T-lymphoid leukemia cell lines, elevated levels of IMP dehydrogenase mRNA and cellular enzyme were observed in comparison with the levels in peripheral blood lymphocytes. These results are consistent with an association between increased IMP dehydrogenase expression and either enhanced cell proliferation or malignant transformation.

  2. Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines

    PubMed Central

    Januchowski, Radosław; Świerczewska, Monika; Sterzyńska, Karolina; Wojtowicz, Karolina; Nowicki, Michał; Zabel, Maciej

    2016-01-01

    Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. In the drug resistant cell lines, we observed the upregulation of eight collagen genes at the mRNA level and based on these expression levels, we divided the collagen genes into the following three groups: 1. Genes with less than a 50-fold increase in expression: COL1A1, COL5A2, COL12A1 and COL17A1. 2. Genes with greater than a 50-fold increase in expression: COL1A2, COL15A1 and COL21A1. 3. Gene with a very high level of expression: COL3A1. Expression of collagen (COL) proteins from groups 2 and 3 were also confirmed using immunocytochemistry. Western blot analysis showed very high expression levels of COL3A1 protein, and immunocytochemistry analysis showed the presence of extracellular COL3A1 in the W1TR cell line. The cells mainly responsible for the extracellular COL3A1 production are aldehyde dehydrogenase-1A1 (ALDH1A1) positive cells. All correlations between the types of cytostatic drugs and the expression levels of different COL genes were studied, and our results suggest that the expression of fibrillar collagens may be involved in the TOP and PAC resistance of the ovarian cancer cells. The expression pattern of COL genes provide a preliminary view into the role of these proteins in

  3. Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain

    PubMed Central

    Moszczynska, Anna; Flack, Amanda; Qiu, Ping; Muotri, Alysson R.; Killinger, Bryan A.

    2015-01-01

    Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum. PMID:26463126

  4. Neurotoxic Methamphetamine Doses Increase LINE-1 Expression in the Neurogenic Zones of the Adult Rat Brain.

    PubMed

    Moszczynska, Anna; Flack, Amanda; Qiu, Ping; Muotri, Alysson R; Killinger, Bryan A

    2015-10-14

    Methamphetamine (METH) is a widely abused psychostimulant with the potential to cause neurotoxicity in the striatum and hippocampus. Several epigenetic changes have been described after administration of METH; however, there are no data regarding the effects of METH on the activity of transposable elements in the adult brain. The present study demonstrates that systemic administration of neurotoxic METH doses increases the activity of Long INterspersed Element (LINE-1) in two neurogenic niches in the adult rat brain in a promoter hypomethylation-independent manner. Our study also demonstrates that neurotoxic METH triggers persistent decreases in LINE-1 expression and increases the LINE-1 levels within genomic DNA in the striatum and dentate gyrus of the hippocampus, and that METH triggers LINE-1 retrotransposition in vitro. We also present indirect evidence for the involvement of glutamate (GLU) in LINE-1 activation. The results suggest that LINE-1 activation might occur in neurogenic areas in human METH users and might contribute to METH abuse-induced hippocampus-dependent memory deficits and impaired performance on several cognitive tasks mediated by the striatum.

  5. Increased expression of the integral membrane proteins EGFR and FGFR3 in anti-apoptotic Chinese hamster ovary cell lines.

    PubMed

    Ohsfeldt, Erika; Huang, Szu-Han; Baycin-Hizal, Deniz; Kristoffersen, Linda; Le, Thuy-My T; Li, Edwin; Hristova, Kalina; Betenbaugh, Michael J

    2012-01-01

    Membrane proteins such as receptor tyrosine kinases (RTKs) have a vital role in many cellular functions, making them potential targets for therapeutic research. In this study, we investigated the coexpression of the anti-apoptosis gene Bcl-x(L) with model membrane proteins as a means of increasing membrane protein expression in mammalian cells. Chinese hamster ovary (CHO) cells expressing heterologous Bcl-x(L) and wild-type CHO cells were transfected with either epidermal growth factor receptor or fibroblast growth factor receptor 3. The CHO-Bcl-x(L) cell lines showed increased expression of both RTK proteins as compared with the wild-type CHO cell lines in transient expression analysis, as detected by Western blot and flow cytometry after 15 days of antibiotic selection in stable expression pools. Increased expression was also seen in clonal isolates from the CHO-Bcl-x(L) cell lines, whereas the clonal cell line expression was minimal in wild-type CHO cell lines. Our results demonstrate that application of the anti-apoptosis gene Bcl-x(L) can increase expression of RTK proteins in CHO cells. This approach may be applied to improve stable expression of other membrane proteins in the future using mammalian cell lines with Bcl-x(L) or perhaps other anti-apoptotic genes.

  6. Azidothymidine and cisplatin increase p14ARF expression in OVCAR-3 ovarian cancer cell line

    SciTech Connect

    Vaskivuo, Liisa; Rysae, Jaana; Koivuperae, Johanna; Myllynen, Paeivi; Vaskivuo, Tommi; Chvalova, Katerina; Serpi, Raisa; Savolainen, Eeva-Riitta; Puistola, Ulla; Vaehaekangas, Kirsi . E-mail: kirsi.vahakangas@uku.fi

    2006-10-01

    p14{sup ARF} tumor suppressor protein regulates p53 by interfering with mdm2-p53 interaction. p14{sup ARF} is activated in response to oncogenic stimuli but little is known of the responses of endogenous p14{sup ARF} to different types of cellular stress or DNA damage. Azidothymidine (AZT) is being tested in several clinical trials as an enhancer of anticancer chemotherapy. However, the knowledge of the relationship between AZT and cellular pathways, e.g. p53 pathway, is very limited. In this study, we show that AZT, cisplatin (CDDP) and docetaxel (DTX) all induce unique molecular responses in OVCAR-3 ovarian carcinoma cells carrying a mutated p53, while in A2780, ovarian carcinoma and MCF-7 breast carcinoma cells with wild type p53, all of these drugs cause similar p53 responses. We found that endogenous p14{sup ARF} protein in OVCAR-3 cells is down-regulated by DTX but induced by AZT and a short CDDP pulse treatment. In HT-29 colon carcinoma cells with a mutated p53, all treatments down-regulated p14{sup ARF} protein. Both CDDP and AZT increased the expression of p14ARF mRNA in OVCAR-3 cells. Differences in cell death induced by these drugs did not explain the differences in protein and mRNA expressions. No increase in the level of either c-Myc or H-ras oncoproteins was seen in OVCAR-3 cells after AZT or CDDP-treatment. These results suggest that p14{sup ARF} can respond to DNA damage without oncogene activation in cell lines without functional p53.

  7. Protection against UVA-induced photooxidative damage in mammalian cell lines expressing increased levels of metallothionein

    SciTech Connect

    Dudek, E.J. Illinois Inst. of Tech., Chicago, IL . Dept. of Biology); Peak, J.G.; Peak, M.J. ); Roth, R.M. . Dept. of Biology)

    1990-01-01

    Metallothionein (MT) is an endogenous low molecular weight protein that is inducible in a variety of eukaryotic cells and has the ability to selectivity bind heavy metal ions such as zinc and the cadmium. Although the exact physiological role of MT is still not understood, there is strong evidence that MT is involved in providing cellular resistance against the damaging effects of heavy metals and in the regulation of intracellular zinc and copper. Recently, it has been demonstrated that MT can scavenge radiation-induced reactive oxygen intermediates in vitro, specifically hydroxyl and superoxide radicals, and because of these observations it has been suggested that MT may provide protection against radiation-induced oxidative stress in vivo. Cell lines expressing increased levels of MT have demonstrated resistance to ionizing radiation, to ultraviolet radiation, and also to various DNA damaging agents including melphalan and cis-diaminedichloroplatinum. It is therefore important to gain some insight into the relationship between cellular MT content and cellular resistance to radiation and other DNA damaging agents. In this study we investigated the role of MT in providing protection against monochromatic 365-nm UVA radiation, which is known to generate intracellular reactive oxygen species that are involved in both DNA damage and cell killing. For this purpose, we used zinc acetate, a potent inducer of MT, to elevate MT levels in V79 Chinese hamster fibroblasts prior to UVA exposure and determined cell survival for uninduced and induced cultures. In order to eliminate any zinc effects other than MT induction, we also isolated and characterized cadmium chloride-resistant clones of V79 cells that have increased steady-state levels of both MT mRNA and protein, and we examined their survival characteristics against 365-nm radiation in the absence of zinc acetate. 14 refs., 3 figs.

  8. Progesterone increases tissue factor gene expression, procoagulant activity, and invasion in the breast cancer cell line ZR-75-1.

    PubMed

    Kato, Sumie; Pinto, Mauricio; Carvajal, Andrés; Espinoza, Natalia; Monso, Carolina; Sadarangani, Anil; Villalon, Manuel; Brosens, Jan J; White, John O; Richer, Jennifer K; Horwitz, Kathryn B; Owen, Gareth I

    2005-02-01

    Progesterone in hormonal preparations increases the incidence of breast cancer. Tissue factor (TF), the initiator of the extrinsic coagulation pathway, is associated with metastasis in a wide variety of cancers. We demonstrate herein that TF mRNA and protein are up-regulated by progesterone in the breast cancer cell line ZR-75. Epidermal growth factor, also associated with increased breast cancer risk, did not regulate TF. The increase in TF is both rapid and transient; increasing after 6 h, reaching a maximum at 24 h, before decreasing to basal levels at 72 h. Sucrose gradient experiments demonstrated that TF is located in the heavy fraction of the plasma membrane, although caveolin-1 is not expressed in ZR-75. To understand the physiological implications of an increase in TF, we performed coagulation and invasion assays. An increase in TF corresponded to an increase in procoagulant activity. Furthermore, progesterone increased the invasion of ZR-75 cells through a matrigel, an effect that was blocked by an antibody against TF. Because TF expression is associated with an enhanced risk of metastasis, we postulate that the progesterone-dependent up-regulation of TF provides a survival advantage to burgeoning breast cancer cells and may contribute to the increased risk of cancer associated with combined hormone replacement therapy.

  9. Increased free radical production in hypertension due to increased expression of the NADPH oxidase subunit p22(phox) in lymphoblast cell lines.

    PubMed

    Pettit, Andrew I; Wong, Richard K M; Lee, Virginia; Jennings, Sonja; Quinn, Pauline A; Ng, Leong L

    2002-04-01

    To confirm increased production of reactive oxygen species (ROS) in hypertension, to demonstrate the source of ROS and to analyse NADPH oxidase subcomponent expression in hypertension. A lymphoblast model was used, as this has previously been used in the study of hypertension and of NADPH oxidase. Chemiluminescence (CL) was chosen to assay ROS production, as it is simple and sensitive. Lymphocytes from 12 hypertensive patients (HT), and 12 age- and sex-matched normotensive (NT) subjects, were immortalized. Luminol, isoluminol and Cypridina luciferin analogue (CLA) CL were used to assay ROS production. NADPH oxidase subunits were measured by Western blot analysis. Stimulation with 50 micromol/l arachidonic acid (AA) resulted in increased ROS production in HT cell lines with luminol, CLA and isoluminol CL. Stimulation with 500 nmol/l 12-O-tetradecanoylphorbol-13-acetate (TPA) produced a detectable increase in HT ROS production with luminol and with CLA, whereas there was no significant difference with isoluminol. The ROS production was abolished by diphenyleneiodonium chloride (DPI) but not by rotenone, indicating that a non-mitochondrial flavoprotein such as NADPH oxidase is the source of ROS. Analysis of NADPH oxidase subcomponents revealed an increase in p22(phox) in HT subjects. We have shown there is increased ROS production in lymphoblasts derived from hypertensive subjects, probably originating from NADPH oxidase. As the ROS production persists in transformed cells, this suggests a genetic predisposition to increased ROS production. Increased expression of p22(phox) in HT lymphoblasts may account for some of the increased ROS.

  10. Fluoxetine Increases the Expression of miR-572 and miR-663a in Human Neuroblastoma Cell Lines

    PubMed Central

    Mundalil Vasu, Mahesh; Anitha, Ayyappan; Takahashi, Taro; Thanseem, Ismail; Iwata, Keiko; Asakawa, Tetsuya; Suzuki, Katsuaki

    2016-01-01

    Evidence suggests neuroprotective effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on the developed neurons in the adult brain. In contrast, the drug may be deleterious to immature or undifferentiated neural cells, although the mechanism is unclear. Recent investigations have suggested that microRNAs (miRNA) may be critical for effectiveness of psychotropic drugs including SSRI. We investigated whether fluoxetine could modulate expressions of neurologically relevant miRNAs in two neuroblastoma SK-N-SH and SH-SY5Y cell lines. Initial screening results revealed that three (miR-489, miR-572 and miR-663a) and four (miR-320a, miR-489, miR-572 and miR-663a) miRNAs were up-regulated in SK-N-SH cells and SH-SY5Y cells, respectively, after 24 hours treatment of fluoxetine (1–25 μM). Cell viability was reduced according to the dose of fluoxetine. The upregulation of miR-572 and miR-663a was consistent in both the SH-SY5Y and SK-N-SH cells, confirmed by a larger scale culture condition. Our data is the first in vitro evidence that fluoxetine could increase the expression of miRNAs in undifferentiated neural cells, and that putative target genes of those miRNAs have been shown to be involved in fundamental neurodevelopmental processes. PMID:27716787

  11. Increased expression and copy number amplification of LINE-1 and SINE B1 retrotransposable elements in murine mammary carcinoma progression

    PubMed Central

    Gualtieri, Alberto; Andreola, Federica; Sciamanna, Ilaria; Sinibaldi-Vallebona, Paola; Serafino, Annalucia; Spadafora, Corrado

    2013-01-01

    In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons and endogenous retroviruses represent large families of repeated elements encoding reverse transcriptase (RT) proteins. Short Interspersed Nuclear Element B1 (SINE B1) retrotrasposons do not encode RT, but use LINE-1-derived RT for their retrotransposition. We previously showed that many cancer types have an abundant endogenous RT activity. Inhibition of that activity, by either RNA interference-dependent silencing of active LINE-1 elements or by RT inhibitory drugs, reduced proliferation and promoted differentiation in cancer cells, indicating that LINE-1-encoded RT is required for tumor progression. Using MMTV-PyVT transgenic mice as a well-defined model of breast cancer progression, we now report that both LINE-1 and SINE B1 retrotransposons are up-regulated at a very early stage of tumorigenesis; LINE-1-encoded RT product and enzymatic activity were detected in tumor tissues as early as stage 1, preceding the widespread appearance of histological alterations and specific cancer markers, and further increased in later progression stages, while neither was present in non-pathological breast tissues. Importantly, both LINE-1 and SINE B1 retrotransposon families undergo copy number amplification during tumor progression. These findings therefore indicate that RT activity is distinctive of breast cancer cells and that, furthermore, LINE-1 and SINE B1 undergo copy number amplification during cancer progression. PMID:24231191

  12. Increased expression and copy number amplification of LINE-1 and SINE B1 retrotransposable elements in murine mammary carcinoma progression.

    PubMed

    Gualtieri, Alberto; Andreola, Federica; Sciamanna, Ilaria; Sinibaldi-Vallebona, Paola; Serafino, Annalucia; Spadafora, Corrado

    2013-11-01

    In higher eukaryotic genomes, Long Interspersed Nuclear Element 1 (LINE-1) retrotransposons and endogenous retroviruses represent large families of repeated elements encoding reverse transcriptase (RT) proteins. Short Interspersed Nuclear Element B1 (SINE B1) retrotrasposons do not encode RT, but use LINE-1-derived RT for their retrotransposition. We previously showed that many cancer types have an abundant endogenous RT activity. Inhibition of that activity, by either RNA interference-dependent silencing of active LINE-1 elements or by RT inhibitory drugs, reduced proliferation and promoted differentiation in cancer cells, indicating that LINE-1-encoded RT is required for tumor progression. Using MMTV-PyVT transgenic mice as a well-defined model of breast cancer progression, we now report that both LINE-1 and SINE B1 retrotransposons are up-regulated at a very early stage of tumorigenesis; LINE-1-encoded RT product and enzymatic activity were detected in tumor tissues as early as stage 1, preceding the widespread appearance of histological alterations and specific cancer markers, and further increased in later progression stages, while neither was present in non-pathological breast tissues. Importantly, both LINE-1 and SINE B1 retrotransposon families undergo copy number amplification during tumor progression. These findings therefore indicate that RT activity is distinctive of breast cancer cells and that, furthermore, LINE-1 and SINE B1 undergo copy number amplification during cancer progression.

  13. miRNA engineering of CHO cells facilitates production of difficult-to-express proteins and increases success in cell line development.

    PubMed

    Fischer, Simon; Marquart, Kim F; Pieper, Lisa A; Fieder, Juergen; Gamer, Martin; Gorr, Ingo; Schulz, Patrick; Bradl, Harald

    2017-03-06

    In recent years, coherent with growing biologics portfolios also the number of complex and thus difficult-to-express (DTE) therapeutic proteins has increased considerably. DTE proteins challenge bioprocess development and can include various therapeutic protein formats such as monoclonal antibodies (mAbs), multi-specific affinity scaffolds (e.g. bispecific antibodies), cytokines or fusion proteins. Hence, the availability of robust and versatile Chinese hamster ovary (CHO) host cell factories is fundamental for high-yielding bioprocesses. MicroRNAs (miRNAs) have emerged as potent cell engineering tools to improve process performance of CHO manufacturing cell lines. However, there has not been any report demonstrating the impact of beneficial miRNAs on industrial cell line development yet. To address this question, we established novel CHO host cells constitutively expressing a pro-productive miRNA: miR-557. Novel host cells were tested in two independent cell line development campaigns using two different mAb candidates including a normal as well as a DTE antibody. Presence of miR-557 significantly enhanced each process step during cell line development in a product independent manner. Stable expression of miR-557 increased the probability to identify high-producing cell clones. Furthermore, production cell lines derived from miR-557 expressing host cells exhibited significantly increased final product yields in fed-batch cultivation processes without compromising product quality. Strikingly, cells co-expressing miR-557 and a DTE antibody achieved a twofold increase in product titer compared to clones co-expressing a negative control miRNA. Thus, host cell engineering using miRNAs represents a promising tool to overcome limitations in industrial cell line development especially with regard to DTE proteins. This article is protected by copyright. All rights reserved.

  14. Dasatinib reduces FAK phosphorylation increasing the effects of RPI-1 inhibition in a RET/PTC1-expressing cell line

    PubMed Central

    2010-01-01

    Background TPC-1 is a papillary thyroid carcinoma (PTC)-derived cell line that spontaneously expresses the oncogene RET/PTC1. TPC-1 treated with the RET/PTC1 inhibitor RPI-1 displayed a cytostatic and reversible inhibition of cell proliferation and a strong activation of focal adhesion kinase (FAK). As dasatinib inhibition of Src results in reduction of FAK activation, we evaluated the effects of TPC-1 treatment with dasatinib in combination with RPI-1. Results Dasatinib (100 nM) strongly reduced TPC-1 proliferation and induced marked changes in TPC-1 morphology. Cells appeared smaller and more contracted, with decreased cell spreading, due to the inhibition of phosphorylation of important cytoskeletal proteins (p130CAS, Crk, and paxillin) by dasatinib. The combination of RPI-1 with dasatinib demonstrated enhanced effects on cell proliferation (more than 80% reduction) and on the phosphotyrosine protein profile. In particular, RPI-1 reduced the phosphorylation of RET, MET, DCDB2, CTND1, and PLCγ, while dasatinib acted on the phosphorylation of EGFR, EPHA2, and DOK1. Moreover, dasatinib completely abrogated the phosphorylation of FAK at all tyrosine sites (Y576, Y577, Y861, Y925) with the exception of the autoactivation site (Y397). Notably, the pharmacological treatments induced an overexpression of integrin β1 (ITB1) that was correlated with a mild enhancement in phosphorylation of ERK1/2 and STAT3, known for their roles in prevention of apoptosis and in increase of proliferation and survival. A reduction in Akt, p38 and JNK1/2 activation was observed. Conclusions All data demonstrate that the combination of the two drugs effectively reduced cell proliferation (by more than 80%), significantly decreased Tyr phosphorylation of almost all phosphorylable proteins, and altered the morphology of the cells, supporting high cytostatic effects. Following the combined treatment, cell survival pathways appeared to be mediated by STAT3 and ERK activities resulting from

  15. Amphotericin B Increases Transglutaminase 2 Expression Associated with Upregulation of Endocytotic Activity in Mouse Microglial Cell Line BV-2.

    PubMed

    Kawabe, Kenji; Takano, Katsura; Moriyama, Mitsuaki; Nakamura, Yoichi

    2017-02-21

    Amphotericin B (AmB), a polyene antibiotic, is reported to cause the microglial activation to induce nitric oxide (NO) production and proinflammatory cytokines expression, and change neurotrophic factors expression in cultured microglia (Motoyoshi et al. in Neurochem Int 52:1290-1296, 2008). On the other hand, tissue-type transglutaminase (TG2) is involved in connection to phagocytes with apoptotic cells. Engulfment of neurons by activated microglia is thought to cause neurodegenerative diseases but detail is unclear, and involvement of TG2 in phagocytosis has been reported in our previous study using lipopolysaccharide-stimulated BV-2 cells (Kawabe et al. in Neuroimmunomodulation 22(4):243-249, 2015). In the present study, we examined the changes of TG2 expression, phagocytosis and pinocytosis in BV-2 cells stimulated by AmB. AmB stimulation increased TG2 expression and TG activity. Phagocytosis of dead cells and pinocytosis of fluorescent microbeads were also up-regulated by AmB stimulation in BV-2 cells. Blockade of TG activity by cystamine, an inhibitor of TGs, suppressed AmB-enhanced TG2 expression, TG activity, NO production, phagocytosis and pinocytosis. Excessive NO production from microglia and/or facilitation of phagocytosis might be involved in neuronal death. To control TG activity might make possible to protect neurons and care for CNS diseases.

  16. Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression

    PubMed Central

    Hofmann, U B; Westphal, J R; Waas, E T; Zendman, A J W; Cornelissen, I M H A; Ruiter, D J; Muijen, G N P van

    1999-01-01

    Matrix metalloproteinases (MMPs) and their tissue inhibitors (TIMPs) are involved in tumour progression and metastasis. In this study, we investigated the in vitro and in vivo expression patterns of MMP-1, MMP-2, MMP-3, MMP-9, TIMP-1 and TIMP-2 mRNA and protein in a previously described human melanoma xenograft model. This model consists of eight human melanoma cell lines with different metastatic behaviour after subcutaneous (s.c.) injection into nude mice. MMP-1 mRNA was detectable in all cell lines by reverse transcription polymerase chain reaction (RT-PCR), but the expression was too low to be detected by Northern blot analysis. No MMP-1 protein could be found using Western blotting. MMP-2 mRNA and protein were present in all cell lines, with the highest expression of both latent and active MMP-2 in the highest metastatic cell lines MV3 and BLM. MMP-3 mRNA was expressed in MV3 and BLM, and in the non-metastatic cell line 530, whereas MMP-3 protein was detectable only in MV3 and BLM. None of the melanoma cell lines expressed MMP-9. TIMP-1 and TIMP-2 mRNA and protein, finally, were present in all cell lines. A correlation between TIMP expression level and metastatic capacity of cell lines, however, was lacking. MMP and TIMP mRNA and protein expression levels were also studied in s.c. xenograft lesions derived from a selection of these cell lines. RT-PCR analysis revealed that MMP-1 mRNA was present in MV3 and BLM xenografts, and to a lesser extent in 530. Positive staining for MMP-1 protein was found in xenograft lesions derived from both low and high metastatic cell lines, indicating an in vivo up-regulation of MMP-1. MMP-2 mRNA was detectable only in xenografts derived from the highly metastatic cell lines 1F6m, MV3 and BLM. In agreement with the in vitro results, the highest levels of both latent and activated MMP-2 protein were observed in MV3 and BLM xenografts. With the exception of MMP-9 mRNA expression in 530 xenografts, MMP-3, MMP-9, and TIMP-1 mRNA and

  17. S(+)-ibuprofen destabilizes MYC/MYCN and AKT, increases p53 expression, and induces unfolded protein response and favorable phenotype in neuroblastoma cell lines

    PubMed Central

    IKEGAKI, NAOHIKO; HICKS, SAKEENAH L.; REGAN, PAUL L.; JACOBS, JOSHUA; JUMBO, AMINA S.; LEONHARDT, PAYTON; RAPPAPORT, ERIC F.; TANG, XAO X.

    2014-01-01

    Neuroblastoma is a common pediatric solid tumor that exhibits a striking clinical bipolarity favorable and unfavorable. The survival rate of children with unfavorable neuroblastoma remains low among all childhood cancers. MYCN and MYC play a crucial role in determining the malignancy of unfavorable neuroblastomas, whereas high-level expression of the favorable neuroblastoma genes is associated with a good disease outcome and confers growth suppression of neuroblastoma cells. A small fraction of neuroblastomas harbors TP53 mutations at diagnosis, but a higher proportion of the relapse cases acquire TP53 mutations. In this study, we investigated the effect of S(+)-ibuprofen on neuroblastoma cell lines, focusing on the expression of the MYCN, MYC, AKT, p53 proteins and the favorable neuroblastoma genes in vitro as biomarkers of malignancy. Treatment of neuroblastoma cell lines with S(+)-ibuprofen resulted in a significant growth suppression. This growth effect was accompanied by a marked decrease in the expression of MYC, MYCN, AKT and an increase in p53 expression in neuroblastoma cell lines without TP53 mutation. In addition, S(+)-ibuprofen enhanced the expression of some favorable neuroblastoma genes (EPHB6, CD44) and genes involved in growth suppression and differentiation (EGR1, EPHA2, NRG1 and SEL1L). Gene expression profile and Ingenuity pathway analyses using TP53-mutated SKNAS cells further revealed that S(+)-ibuprofen suppressed molecular pathways associated with cell growth and conversely enhanced those of cell cycle arrest and the unfolded protein response. Collectively, these results suggest that S(+)-ibuprofen or its related compounds may have the potential for therapeutic and/or palliative use for unfavorable neuroblastoma. PMID:24173829

  18. Ketoconazole Treatment Decreases the Viability of Immortalized Pituitary Cell Lines Associated with an Increased Expression of Apoptosis-Related Genes and Cell Cycle Inhibitors.

    PubMed

    Guzzo, M F; Carvalho, L R; Bronstein, M D

    2015-07-01

    Ketoconazole, which was initially developed as an antifungal agent, is a potent inhibitor of adrenal steroidogenesis and has therefore been used in the management of Cushing's disease. Surprisingly, the reduction of cortisol levels during ketoconazole treatment is not accompanied by the expected elevation in plasma adrenocorticotrophic hormone (ACTH) at the loss of negative cortisol feedback from corticotrophic cells, suggesting a direct effect of ketoconazole on these cells. To characterize the direct effects of ketoconazole, we evaluated its in vitro effect on cell viability using the pituitary tumoural cell lines AtT-20 (which secretes ACTH), GH3 (which secretes growth hormone and prolactin) and αT3.1 (which secretes α-subunit) and we also determined the expression levels of genes involved in apoptosis and DNA replication by the quantitative reverse transcription polymerase chain reaction (qRT-PCR). We also evaluated ACTH levels in AtT-20 cells during ketoconazole treatment. We observed a ketoconazole concentration-dependent decrease in pituitary cell viability and reduced ACTH levels in AtT-20 cells after removal of the drug. We also observed increased expression of cell death receptors (e.g. Fas, tumour necrosis factor receptor) and caspases (e.g., caspase-6, caspase-7, caspase-9), suggesting activation of the apoptosis pathway. In addition, we observed increased gene expression of the cell cycle inhibitors p21 and p27 in GH3 cells and increased expression of p21 in αT3.1 cells. In conclusion, our findings suggest that ketoconazole significantly reduces cell viability in a concentration-dependent manner in pituitary tumour cell lines and is associated with an increase in apoptosis- and cell cycle regulation-related gene expression.

  19. The silver lining of a viral agent: increasing seed yield and harvest index in Arabidopsis by ectopic expression of the potato leaf roll virus movement protein.

    PubMed

    Kronberg, Kristin; Vogel, Florian; Rutten, Twan; Hajirezaei, Mohammed-Reza; Sonnewald, Uwe; Hofius, Daniel

    2007-11-01

    Ectopic expression of viral movement proteins (MPs) has previously been shown to alter plasmodesmata (PD) function and carbon partitioning in transgenic plants, giving rise to the view of PD being dynamic and highly regulated structures that allow resource allocation to be adapted to environmental and developmental needs. However, most work has been restricted to solanaceous species and the potential use of MP expression to improve biomass and yield parameters has not been addressed in detail. Here we demonstrate that MP-mediated modification of PD function can substantially alter assimilate allocation, biomass production, and reproductive growth in Arabidopsis (Arabidopsis thaliana). These effects were achieved by constitutive expression of the potato leaf roll virus 17-kD MP (MP17) fused to green fluorescent protein (GFP) in different Arabidopsis ecotypes. The resulting transgenic plants were analyzed for PD localization of the MP17:GFP fusion protein and different lines with low to high expression levels were selected for further analysis. Low-level accumulation of MP17 resulted in enhanced sucrose efflux from source leaves and a considerably increased vegetative biomass production. In contrast, high MP17 levels impaired sucrose export, resulting in source leaf-specific carbohydrate accumulation and a strongly reduced vegetative growth. Surprisingly, later during development the MP17-mediated inhibition of resource allocation was reversed, and final seed yield increased in average up to 30% in different transgenic lines as compared to wild-type plants. This resulted in a strongly improved harvest index. The release of the assimilate export block was paralleled by a reduced PD binding of MP17 in senescing leaves, indicating major structural changes of PD during leaf senescence.

  20. Beta-amyloid-induced neurotoxicity of a hybrid septal cell line associated with increased tau phosphorylation and expression of beta-amyloid precursor protein.

    PubMed

    Le, W D; Xie, W J; Kong, R; Appel, S H

    1997-09-01

    Recent evidence suggests that beta-amyloid peptide (beta-AP) may induce tau protein phosphorylation, resulting in loss of microtubule binding capacity and formation of paired helical filaments. The mechanism by which beta-AP increases tau phosphorylation, however, is unclear. Using a hybrid septal cell line, SN56, we demonstrate that aggregated beta-AP(1-40) treatment caused cell injury. Accompanying the cell injury, the levels of phosphorylated tau as well as total tau were enhanced as detected immunochemically by AT8, PHF-1, Tau-1, and Tau-5 antibodies. Alkaline phosphatase treatment abolished AT8 and PHF-1 immunoreactivity, confirming that the tau phosphorylation sites were at least at Ser(199/202) and Ser396. In association with the increase in tau phosphorylation, the immunoreactivity of cell-associated and secreted beta-amyloid precursor protein (beta-APP) was markedly elevated. Application of antisense oligonucleotide to beta-APP reduced expression of beta-APP and immunoreactivity of phosphorylated tau. Control peptide beta-AP(1-28) did not produce significant effects on tau phosphorylation, although it slightly increased cell-associated beta-APP. These results suggest that betaAP(1-40)-induced tau phosphorylation may be associated with increased beta-APP expression in degenerated neurons.

  1. Characterization of the mechanisms of the increase in PPARδ expression induced by digoxin in the heart using the H9c2 cell line

    PubMed Central

    Chen, Zhih-Cherng; Yu, Bu-Chin; Chen, Li-Jen; Cheng, Kai-Chun; Lin, Hung Jung; Cheng, Juei-Tang

    2011-01-01

    BACKGROUND AND PURPOSE Digoxin has been used as an inotropic agent in heart failure for a long time. Troponin I (TnI) phosphorylation is related to cardiac contractility, and the genes are regulated by peroxisome proliferator-activated receptors (PPARs). Our previous studies indicated that cardiac abnormality related to the depressed expression of PPARδ in the hearts of STZ rats is reversed by digoxin. However, the cellular mechanisms for this effect of digoxin have not been elucidated. The aim of the present study was to investigate possible mechanisms for this effect of digoxin using the H9c2 cell line cultured in high glucose (HG) conditions. METHODS The effects of digoxin on PPARδ expression, intracellular calcium and TnI phosphorylation were investigated in cultured H9c2 cells, maintained in a HG medium, by using Western blot analysis. RESULTS Digoxin increased PPARδ expression in H9c2 cells subjected to HG conditions, and increase the intracellular calcium concentration. This effect of digoxin was blocked by BAPTA-AM at concentrations sufficient to chelate calcium ions. In addition, the calcineurin inhibitor cyclosporine A and KN93, an inhibitor of calcium/calmodulin-dependent protein kinase, inhibited this action. Digoxin also increased TnI phosphorylation and this was inhibited when PPARδ was silenced by the addition of RNAi to the cells. Similar changes were observed on the contraction of H9c2 cells. CONCLUSION The results suggest that digoxin appears, through calcium-triggered signals, to reverse the reduced expression of PPARδ in H9c2 cells caused by HG treatment. PMID:21232041

  2. Induction and increase of HLA-DR antigen expression by immune interferon on ML-3 cell line enhances the anti-HLA-DR immunotoxin activity.

    PubMed Central

    Chiron, M; Jaffrezou, J P; Carayon, P; Bordier, C; Roubinet, F; Xavier, C; Brandely, M; Laurent, G

    1990-01-01

    In order to evaluate the impact of induction and increase target antigen expression on immunotoxin potency, we measured the potentiating effect of recombinant immune interferon-gamma (rIFN-gamma) on the cytotoxicity of an anti HLA-DR ricin A-chain immunotoxin (2G5 RTA-IT) on the myeloid cell line ML-3. After 48 h of incubation with rIFN-gamma (500 U/ml) the percentage of 2G5-positive cells increased from 40% to 79%, and the 2G5 mean density was enhanced by 10-fold (11,000 versus 110,000 molecules/cell). Concurrently, rIFN-gamma pretreatment induced a dramatic improvement of 2G5 RTA-IT dose-effect cytotoxicity, as well as immunotoxin cytotoxicity kinetics. When 2G5 RTA-IT was used at the optimal dose of 10(-8)M (the maximum dose which avoided non-specific ricin A-chain cytotoxicity), the immunotoxin-induced cell kill increased with the percentage of DR-positive ML-3 cells according to a similar linear-logarithmic function of rIFN-gamma concentration. Moreover, in the same range of rIFN-gamma concentrations, the killing values and the percentage of DR-positive ML-3 cells were similar if not identical. These findings imply that the enhancement of 2G5 RTA-IT cytotoxicity by rIFN-gamma is mainly related to the rIFN-gamma 2G5 antigen induction on HLA-DR negative cells when immunotoxin was used at 10(-8) M. Furthermore, 2G5 RTA-IT dose-effect cytotoxicity on DR-expressing ML-3 cells, when used at lower concentrations, was also increased by rIFN-gamma in a dose-dependent manner. This result suggests that for immunotoxin concentrations close to the limiting membrane saturation dose (10(-10)M), rIFN-gamma may not solely act by inducing HLA-DR expression on DR-negative ML-3 subpopulation but also by increasing individual cellular DR density on DR expressing ML-3 cells. Finally, our study showed that immunotoxin potency on malignant cell populations which display an heterogeneous antigen expression, could be greatly improved by the use of rIFN-gamma. PMID:2122930

  3. Elemene Increases Autophagic Apoptosis and Drug Sensitivity in Human Cisplatin (DDP)-Resistant Lung Cancer Cell Line SPC-A-1/DDP By Inducing Beclin-1 Expression.

    PubMed

    Zhou, Kun; Wang, Liping; Cheng, Ruirui; Liu, Xia; Mao, Shengya; Yan, Yan

    2017-05-23

    Drug resistance is the major obstacle for the successful therapy of lung adenocarcinoma. It was suggested that ß-elemene, a major isoform of elemene, could reverse the drug resistance in lung cancer cells. However, the underlying mechanisms remains poorly known. Here, we aimed to investigate whether elemene is involved in the cisplatin (DDP)-resistance of lung adenocarcinoma cells and further explore the underlying mechanism. The results showed that human lung adenocarcinoma cell line SPC-A-1 and its DDP-resistant strain SPC-A-1/DDP had a similar sensitivity to elemene treatment. Low dose elemene increased the sensitivity of SPC-A-1/DDP cells to DDP, accompanied by a dramatically decrease in expression of multidrug-resistance proteins and cell proliferation, and an increase in cell autophagy and autophagic apoptosis. We found that the expression of Beclin-1, the key regulator of autophagy, was induced by elemene treatment in a dose-dependent manner. Furthermore, we found that Beclin-1 overexpression had a similar effect with elemene treatment on autophagy and autophagic apoptosis in SPC-A-1/DDP cells. In contrast, Beclin-1 knockdown could significantly rescue elemene-induced autophagic apoptosis and counteract elemene-induced sensitivity in SPC-A-1/DDP cells. Our findings demonstrate that elemene can reverses the drug resistance of SPC-A-1/DDP cells via promotion of Beclin-1-induced autophagy.

  4. Targeting MAGE-C1/CT7 Expression Increases Cell Sensitivity to the Proteasome Inhibitor Bortezomib in Multiple Myeloma Cell Lines

    PubMed Central

    de Carvalho, Fabricio; Costa, Erico T.; Camargo, Anamaria A.; Gregorio, Juliana C.; Masotti, Cibele; Andrade, Valeria C.C.; Strauss, Bryan E.; Caballero, Otavia L.; Atanackovic, Djordje; Colleoni, Gisele W.B.

    2011-01-01

    The MAGE-C1/CT7 encodes a cancer/testis antigen (CTA), is located on the chromosomal region Xq26–27 and is highly polymorphic in humans. MAGE-C1/CT7 is frequently expressed in multiple myeloma (MM) that may be a potential target for immunotherapy in this still incurable disease. MAGEC1/CT7 expression is restricted to malignant plasma cells and it has been suggested that MAGE-C1/CT7 might play a pathogenic role in MM; however, the exact function this protein in the pathophysiology of MM is not yet understood. Our objectives were (1) to clarify the role of MAGE-C1/CT7 in the control of cellular proliferation and cell cycle in myeloma and (2) to evaluate the impact of silencing MAGE-C1/CT7 on myeloma cells treated with bortezomib. Myeloma cell line SKO-007 was transduced for stable expression of shRNA-MAGE-C1/CT7. Downregulation of MAGE-C1/CT7 was confirmed by real time quantitative PCR and western blot. Functional assays included cell proliferation, cell invasion, cell cycle analysis and apoptosis. Western blot showed a 70–80% decrease in MAGE-C1/CT7 protein expression in inhibited cells (shRNA-MAGE-C1/CT7) when compared with controls. Functional assays did not indicate a difference in cell proliferation and DNA synthesis when inhibited cells were compared with controls. However, we found a decreased percentage of cells in the G2/M phase of the cell cycle among inhibited cells, but not in the controls (p<0.05). When myeloma cells were treated with bortezomib, we observed a 48% reduction of cells in the G2/M phase among inhibited cells while controls showed 13% (empty vector) and 9% (ineffective shRNA) reduction, respectively (p<0.01). Furthermore, inhibited cells treated with bortezomib showed an increased percentage of apoptotic cells (Annexin V+/PI-) in comparison with bortezomib-treated controls (p<0.001). We found that MAGE-C1/CT7 protects SKO-007 cells against bortezomib-induced apoptosis. Therefore, we could speculate that MAGE-C1/CT7 gene therapy could be

  5. Arsenite pretreatment enhances the cytotoxicity of mitomycin C in human cancer cell lines via increased NAD(P)H quinone oxidoreductase 1 expression

    SciTech Connect

    Lin Yiling; Ho, I-C.; Su, P.-F.; Lee, T.-C. . E-mail: bmtcl@ibms.sinica.edu.tw

    2006-08-01

    Arsenic is an effective therapeutic agent for the treatment of patients with refractory or relapsed acute promyelocytic leukemia. The use of arsenic for treating solid tumors, particularly in combination with other chemotherapeutic agents, has been extensively studied. Here, we report that arsenite-resistant human lung cancer CL3R15 cells constitutively overexpress NAD(P)H quinone oxidoreductase 1 (NQO1), an enzyme responsible for activation of mitomycin C (MMC), and are more susceptible to MMC cytotoxicity than parental CL3 cells. The effects of arsenite pretreatment on NQO1 induction were examined in CL3, H1299, H460, and MC-T2 cells. Arsenite pretreatment significantly enhanced the expression of NQO1 and susceptibility to MMC in CL3, H1299, and MC-T2 cells, but not in H460 cells that express high endogenous levels of NQO1. Alternatively, arsenic pretreatment reduced adriamycin sensitivity of CL3 cells. Arsenite-mediated MMC susceptibility was abrogated by dicumarol (DIC), an NQO1 inhibitor, indicating that NQO1 is one of the key regulators of arsenite-mediated MMC susceptibility. Various cancer cell lines showed different basal levels of NQO1 activity and a different capacity for NQO1 induction in response to arsenite treatment. However, overall, there was a positive correlation between induced NQO1 activity and MMC susceptibility in cells pretreated with various doses of arsenite. These results suggest that arsenite may increase NQO1 activity and thus enhance the antineoplastic activity of MMC. In addition, our results also showed that inhibition of NQO1 activity by DIC reversed the arsenite resistance of CL3R15 cells.

  6. Significantly increased expression of OCT4 and ABCG2 in spheroid body-forming cells of the human gastric cancer MKN-45 cell line.

    PubMed

    Liu, Jianming; Wang, Lei; Ma, Lilin; Xu, Junfei; Liu, Chun; Zhang, Jianguo; Liu, Jie; Chen, Ruixin

    2013-10-01

    The cancer stem cell (CSC) theory hypothesizes that CSCs are the cause of tumor formation, recurrence and metastasis. Key to the study of CSCs is their isolation and identification. The present study investigated whether spheroid body-forming cells in the human gastric cancer (GC) MKN-45 cell line are enriched for CSC properties, and also assessed the expression of the candidate CSC markers, octamer-binding transcription factor-4 (OCT4) and adenosine triphosphate-binding cassette transporter G2 (ABCG2) in the MKN-45 spheroid body cells. The MKN-45 cells were plated in a stem cell-conditioned culture system to allow for spheroid body formation. The expression levels of OCT4 and ABCG2 in the spheroid body cells were assessed by qPCR, western blot analysis and immunofluorescence staining, while the tumorigenicity of the spheroid body-forming cells was assessed by in vivo xenograft studies in nude mice. The MKN-45 cells were able to form spheroid bodies when cultured in stem cell-conditioned medium. The spheroid body-forming cells showed a significantly higher (P<0.01) expression of OCT4 and ABCG2 compared with the parental cells. These data suggest that the spheroid body cells from the MKN-45 GC cell line cultured in stem cell-conditioned medium possessed gastric CSC properties. The co-expression of OCT4 and ABCG2 by these cells may represent the presence of a subpopulation of gastric CSCs.

  7. Androgen Receptor Increases CD133 Expression and Progenitor-Like Population That Associate With Cisplatin Resistance in Endometrial Cancer Cell Line

    PubMed Central

    Chen, Lumin; Chang, Wei-Chun; Hung, Yao-Ching; Chang, Ying-Yi; Bao, Bo-Yin; Huang, Hsin-Ching; Chung, Wei-Min; Shyr, Chih-Rong

    2014-01-01

    Endometrial cancer (EMC) is a sex steroid hormone-related female malignancy. Androgen and androgen receptor (androgen/AR) signals have been implicated in EMC progression. Cancer stem/progenitor cells (CSPCs) are suspected to link to chemoresistance in patients with EMC. In this study, we examined the androgen/AR roles in cisplatin resistance and CSPC population. We found AR expression increased naive EMC side population, CSPC population, cell migration, and epithelial–mesenchymal transition. Meanwhile, it decreased cisplatin cytotoxic effect on EMC cells. Collaterally, endogenous AR expressions in EMC cells were upregulated in the cisplatin-resisting state. Moreover, AR expression could further enhance CD133 expression, CSPC-related markers, and drug-resistance gene messenger RNA expression in EMC cells. Finally, the AR-associated gene expression might go through indirect regulation. This is the first report revealing AR function on EMC cells’ CSPC and cisplatin resistance. PMID:23962788

  8. Use of the human EF-1alpha promoter for expression can significantly increase success in establishing stable cell lines with consistent expression: a study using the tetracycline-inducible system in human cancer cells.

    PubMed

    Gopalkrishnan, R V; Christiansen, K A; Goldstein, N I; DePinho, R A; Fisher, P B

    1999-12-15

    Establishing cells with an exogenously introduced gene of interest under the inducible control of tetracycline (Tc) initially requires clonal cell lines stably expressing the tetracycline activator (tTA or rtTA). The originally described plasmid vectors expressing tTA/rtTA are driven by the cytomegalovirus (CMV) immediate early (IE) promoter-enhancer, known for its robust activity in a wide spectrum of cell types. While many reports testify to the utility and efficacy of this construct, instances of inexplicable failure to establish cell lines having inducible expression of the cDNA under study are encountered. Spontaneous extinction of CMV promoter activity in cells has been observed in a temporal and cell type-dependent manner. This could be a contributing factor in the failure to establish Tc-responsive cell lines. We here report that a change of the expression cassette to the human elongation factor-1alpha (EF-1alpha) promoter has permitted successful establishment of several inducible cell lines from diverse human tumor tissue origins. We interpret these results to imply that extinction of rtTA (or tTA) expression might be a significant factor in the lack of success in establishing Tc-inducible cell lines. Moreover, the present findings have general relevance to experiments requiring the use of stable cell lines.

  9. Increased expression of prion protein gene is accompanied by demethylation of CpG sites in a mouse embryonal carcinoma cell line, P19C6

    PubMed Central

    DALAI, Wuyun; MATSUO, Eiko; TAKEYAMA, Natsumi; KAWANO, Junichi; SAEKI, Keiichi

    2017-01-01

    Elucidation of the processes regulating the prion protein gene (Prnp) is an important key to understanding the development of prion disorders. In this study, we explored the involvement of DNA methylation in Prnp transcriptional regulation during neuronal differentiation of embryonic carcinoma P19C6 cells. When P19C6 cells were differentiated into neuronal cells, the expression of Prnp was markedly increased, while CpG methylation was significantly demethylated at the nucleotide region between −599 and −238 from the transcription start site. In addition, when P19C6 cells were applied in a DNA methyltransferase inhibitor, RG108, Prnp transcripts were also significantly increased in relation to the decreased methylation statuses. These findings helped to elucidate the DNA methylation-mediated regulation of Prnp expression during neuronal differentiation. PMID:28132962

  10. Increased cytotoxicity of food-borne mycotoxins toward human cell lines in vitro via enhanced cytochrome p450 expression using the MTT bioassay.

    PubMed

    Lewis, C W; Smith, J E; Anderson, J G; Freshney, R I

    1999-11-01

    Eight food-borne mycotoxins epidemiologically implicated in human disease were tested for their cytotoxic effects on human cells previously immortalised and transfected to introduce human cytochrome p450 (CYP 450) genes. Such cells retain many characteristics of normal cell growth and differentiation while simultaneously having the potential of either increasing or decreasing the metabolic activity (cytotoxicity) of the challenging mycotoxins. The MTT assay provided an indication of cytotoxicity. Of the nine CYP450s introduced CYP1A2 was most effective, rendering the cells 540 times more sensitive than the control cells to aflatoxin B1, 28 times more sensitive to aflatoxin G1 and 8-fold more sensitive to ochratoxin A. CYP3A4 resulted in the cells being 211 times more toxic to aflatoxin B1 and 8-fold more toxic to aflatoxin G1 while CYP 2A6, CYP 3A5 and CYP 2E1 also produced observable effects. No increase in metabolic activity was found using cyclopiazonic acid, deoxynivalenol, fumonisin B1, patulin or T-2 toxin. CD5Os were calculated for the mycotoxins against the non-CYP-introduced control cells. There was almost a five order of magnitude difference between the most toxic, T-2 toxin (CD50 0.0057 microgram/ml) and the least toxic, fumonisin B1 (CD50 476.2 micrograms/ml). In vitro biological assays thus provide an excellent system for quantifying the often low CD50s expressed by mycotoxins in foods.

  11. Gastrin gene expression and regulation in rat islet cell lines.

    PubMed

    Brand, S J; Wang, T C

    1988-11-15

    Gastrin gene expression was observed in two permanent rat insulinoma (RIN) cell lines derived from a rat insulinoma. Gastrin expression was selective; highest expression was seen in a cell line which did not express other islet cell hormones. Gastrin mRNA transcription initiated from the same promoter as antral gastrin mRNA. DNA transfection studies with a gastrin chloramphenicol acetyltransferase chimeric gene showed higher expression in gastrin-expressing RIN cells than non-gastrin-expressing islet cells. This implies that gastrin-expressing RIN cells selectively express a trans-acting transcriptional activator which binds to cis-acting regulatory sequences within the 5'-flanking DNA sequence and first exon of the gastrin gene. The gastrin peptide precursor synthesized in these RIN cell lines is subject to the same repertoire of posttranslational modifications within the cell's secretory apparatus (endoproteolytic cleavage, tyrosine sulfation, and C-terminal amidation) as seen in antral G cells. Gastrin mRNA levels in these RIN cells were selectively increased by increasing the extracellular calcium concentration. Membrane depolarization also stimulated gastrin mRNA levels, probably through activation of voltage-sensitive calcium channels. Thus, these gastrin-expressing RIN cell lines provide permanent cell lines useful in analyzing the cellular regulation of gastrin gene expression.

  12. Expression of val-12 mutant ras p21 in an IL-3-dependent murine myeloid cell line is associated with loss of serum-dependence and increases in membrane PIP2-specific phospholipase C activity.

    PubMed

    Rizzo, M T; Boswell, H S; English, D; Gabig, T G

    1991-01-01

    We previously showed that the proliferative response of a serum- and interleukin-3 (IL-3)-dependent murine myeloid cell line, NFS/N1-H7, was partially inhibited by pertussis toxin as a result of toxin-induced increased adenylate cyclase activity. In the present studies, we examined the role of the phosphoinositide cycle in the proliferative response of these cells and demonstrated that there was no change in PIP (phosphatidylinositol bisphosphate)-specific phospholipase C activity in response to IL-3 alone. However, serum caused a pertussis toxin-insensitive increase in PIP2-specific phospholipase C activity as reflected by decreased cellular levels of 32P-labelled PIP2. Proliferation of a subline selected from val-12-mutant H-ras-transfected NFS-H7 cells, clone E5, was insensitive to pertussis toxin, occurred in the absence of serum but remained serum-stimulatable and absolutely dependent on IL-3. This val-12 mutant ras-expressing cell line showed an increase in 32P-labelled PIP (phosphatidylinositol phosphate) in response to serum whereas the parent cell line did not. Membrane fractions from 32P-labelled ras-transfected cells displayed higher GTP gamma S-, GTP-, or F(-)-stimulated PIP2-specific phospholipase C activity compared to membranes from the parent cell line. Thus serum-dependence and adenylate cyclase-mediated pertussis toxin-sensitivity of the parent cell line was bypassed by val-12 mutant ras p21, possibly as a result of increased PIP2-specific phospholipase C activity.

  13. Expression of human cell cycle regulators in the primary cell line of the African savannah elephant (loxodonta africana) increases proliferation until senescence, but does not induce immortalization.

    PubMed

    Fukuda, Tomokazu; Iino, Yuuka; Onuma, Manabu; Gen, Bando; Inoue-Murayama, Miho; Kiyono, Tohru

    2016-01-01

    The African savannah elephant (Loxodonta africana) is one of the critically endangered animals. Conservation of genetic and cellular resources is important for the promotion of wild life-related research. Although primary cultured cells are a useful model for the physiology and genomics of the wild-type animals, their distribution is restricted due to the limited number of cell divisions allowed in them. Here, we tried to immortalize a primary cell line of L. africana with by overexpressing human mutant form of cyclin-dependent kinase 4 (CDK4R24C), cyclin D, and telomerase (TERT). It has been shown before that the combination of human CDK4R24C, cyclin D, and TERT induces the efficient cellular immortalization of cells derived from humans, bovine, swine, and monkeys. Interestingly, although the combination of these three genes extended the cellular proliferation of the L. africana-derived cells, they did not induce cellular immortalization. This study suggest that control of cellular senescence in L. africana-derived cells would be different molecular mechanisms compared to those governing human, bovine, swine, and monkey cells.

  14. Increased UV resistance of a xeroderma pigmentosum revertant cell line is correlated with selective repair of the transcribed strand of an expressed gene

    SciTech Connect

    Lommel, L.; Hanawalt, P.C. )

    1993-02-01

    People that suffer from xeroderma pigmentosum (XP) are sun sensitive and experience elevated incidences of cancer, particularly skin cancers on sun-light exposed parts of their bodies. Cultured cells from XP patients are found to be subtantially more sensitive to lethal and mutagenic effects of ultraviolet (UV) radiation than are cells from unaffected individuals. Using the cells from XP individuals, researchers study the roles that cyclobutane pyrimidine dimers (CPDs) and 6-4 photoproducts play in UV resistance. The results demonstrate that overall repair measurements can be misleading, and they support the hypothesis that removal of CPDs form the transcribed strands of expressed genes is essential for UV resistance. 36 refs., 5 figs., 1 tab.

  15. Quercetin up-regulates expressions of peroxisome proliferator-activated receptor γ, liver X receptor α, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line.

    PubMed

    Lee, Seung-Min; Moon, Jiyoung; Cho, Yoonsu; Chung, Ji Hyung; Shin, Min-Jeong

    2013-02-01

    Cholesterol-laden macrophages trigger accumulation of foam cells and increase the risk of developing atherosclerosis. We hypothesized that quercetin could lower the content of cholesterol in macrophages by regulating the expression of the ATP binding cassette transporter A1 (ABCA1) gene in differentiated human acute monocyte leukemia cell line (THP-1) cells and thereby reducing the chance of forming foam cells. Quercetin, in concentrations up to 30 μM, was not cytotoxic to differentiated THP-1 cells. Quercetin up-regulated both ABCA1 messenger RNA and protein expression in differentiated THP-1 cells, and its maximum effects were demonstrated at 0.3 μM for 4 to 8 hours in incubation. In addition, quercetin increased protein levels of peroxisome proliferator-activated receptor γ (PPARγ) and liver X receptor α (LXRα) within 2 hours of treatment. Because PPARγ and LXRα are important transcriptional factors for ABCA1, quercetin-induced up-regulation of ABCA1 may be mediated by increased expression levels of the PPARγ and LXRα genes. Furthermore, quercetin-enhanced cholesterol efflux from differentiated THP-1 cells to both high-density lipoprotein (HDL) and apolipoprotein A1. Quercetin at the dose of 0.15 μM elevated the cholesterol efflux only for HDL. At the dose of 0.3 μM, quercetin demonstrated effects both on HDL and apolipoprotein A1. Our data demonstrated that quercetin increased the expressions of PPARγ, LXRα, and ABCA1 genes and cholesterol efflux from THP-1 macrophages. Quercetin-induced expression of PPARγ and LXRα might subsequently affect up-regulation of their target gene ABCA1. Taken together, ingestion of quercetin or quercetin-rich foods could be an effective way to improve cholesterol efflux from macrophages, which would contribute to lowering the risk of atherosclerosis.

  16. Increased metacyclogenesis of antimony-resistant Leishmania donovani clinical lines.

    PubMed

    Ouakad, M; Vanaerschot, M; Rijal, S; Sundar, S; Speybroeck, N; Kestens, L; Boel, L; De Doncker, S; Maes, I; Decuypere, S; Dujardin, J-C

    2011-09-01

    Mathematical models predict that the future of epidemics of drug-resistant pathogens depends in part on the competitive fitness of drug-resistant strains. Considering metacyclogenesis (differentiation process essential for infectivity) as a major contributor to the fitness of Leishmania donovani, we tested its relationship with pentavalent antimony (SbV) resistance in clinical lines. Different methods for the assessment of metacyclogenesis were cross-validated: gene expression profiling (META1 and SHERP), morphometry (microscopy and FACS), in vitro infectivity to macrophages and resistance to complement lysis. This was done on a model constituted by 2 pairs of reference strains cloned from a SbV-resistant and -sensitive isolate. We selected the most adequate parameter and extended the analysis of metacyclogenesis diversity to a sample of 20 clinical lines with different in vitro susceptibility to the drug. The capacity of metacyclogenesis, as measured by the complement lysis test, was shown to be significantly higher in SbV-resistant clinical lines of L. donovani than in SbV-sensitive lines. Together with other lines of evidence, it is concluded that L. donovani constitutes a unique example and model of drug-resistant pathogens with traits of increased fitness. These findings raise a fundamental question about the potential risks of selecting more virulent pathogens through massive chemotherapeutic interventions.

  17. Somatic expression of LINE-1 elements in human tissues

    PubMed Central

    Belancio, Victoria P.; Roy-Engel, Astrid M.; Pochampally, Radhika R.; Deininger, Prescott

    2010-01-01

    LINE-1 expression damages host DNA via insertions and endonuclease-dependent DNA double-strand breaks (DSBs) that are highly toxic and mutagenic. The predominant tissue of LINE-1 expression has been considered to be the germ line. We show that both full-length and processed L1 transcripts are widespread in human somatic tissues and transformed cells, with significant variation in both L1 expression and L1 mRNA processing. This is the first demonstration that RNA processing is a major regulator of L1 activity. Many tissues also produce translatable spliced transcript (SpORF2). An Alu retrotransposition assay, COMET assays and 53BP1 foci staining show that the SpORF2 product can support functional ORF2 protein expression and can induce DNA damage in normal cells. Tests of the senescence-associated β-galactosidase expression suggest that expression of exogenous full-length L1, or the SpORF2 mRNA alone in human fibroblasts and adult stem cells triggers a senescence-like phenotype, which is one of the reported responses to DNA damage. In contrast to previous assumptions that L1 expression is germ line specific, the increased spectrum of tissues exposed to L1-associated damage suggests a role for L1 as an endogenous mutagen in somatic tissues. These findings have potential consequences for the whole organism in the form of cancer and mammalian aging. PMID:20215437

  18. Increased EGF receptors on human squamous carcinoma cell lines.

    PubMed Central

    Cowley, G. P.; Smith, J. A.; Gusterson, B. A.

    1986-01-01

    Characterisation and quantitation of epidermal growth factor receptors (EGFR) have been carried out on eight human squamous carcinoma cell lines and the results compared with those from simian virus transformed keratinocytes and normal keratinocytes grown under similar conditions. All cells tested possess both high and low affinity receptors with dissociation constants ranging from 2.4 X 10(-10) M to 5.4 X 10(-9) M. When epidermal growth factor (EGF) binds to its receptor it is internalised and degraded and the receptor is down regulated. Malignant cells and virally transformed cells possess 5-50 times more EGF receptors than normal keratinocytes and one cell line LICR-LON-HN-5 possesses up to 1.4 X 10(7) receptors per cell, which is the highest number yet reported for a cell line. These results are discussed in the context of recent data that suggest that the increased expression of EGF receptors in epidermoid malignancies may be an important component of the malignant phenotype in these tumours. PMID:2420349

  19. Red Maca (Lepidium meyenii) did not affect cell viability despite increased androgen receptor and prostate-specific antigen gene expression in the human prostate cancer cell line LNCaP.

    PubMed

    Díaz, P; Cardenas, H; Orihuela, P A

    2016-10-01

    We examined whether aqueous extract of Lepidium meyenii (red Maca) could inhibit growth, potentiate apoptotic activity of two anticancer drugs Taxol and 2-methoxyestradiol (2ME) or change mRNA expression for the androgen target genes, androgen receptor (Ar) and prostate-specific antigen (Psa) in the human prostate cancer cell line LNCaP. Red Maca aqueous extract at 0, 10, 20, 40 or 80 μg/ml was added to LNCaP cells, and viability was evaluated by the MTS assay at 24 or 48 hr after treatment. Furthermore, LNCaP cells were treated with 80 μg/ml of red Maca plus Taxol or 2ME 5 μM and viability was assessed 48 hr later. Finally, LNCaP cells were treated with red Maca 0, 20, 40 or 80 μg/ml, and 12 hr later, mRNA level for Ar or Psa was assessed by real-time PCR. Treatment with red Maca did not affect viability of LNCaP cells. Apoptotic activity induced by Taxol and 2ME in LNCaP cells was not altered with red Maca treatment. Relative expression of the mRNA for Ar and Psa increased with red Maca 20 and 40 μg/ml, but not at 80 μg/ml. We conclude that red Maca aqueous extract does not have toxic effects, but stimulates androgen signalling in LNCaP cells. © 2016 Blackwell Verlag GmbH.

  20. Lead exposure increases blood pressure by increasing angiotensinogen expression.

    PubMed

    Jiao, Jiandong; Wang, Miaomiao; Wang, Yiqing; Sun, Na; Li, Chunping

    2016-01-01

    Lead exposure can induce increased blood pressure. Several mechanisms have been proposed to explain lead-induced hypertension. Changes in angiotensinogen (AGT) expression levels or gene variants may also influence blood pressure. In this study, we hypothesized that AGT expression levels or gene variants contribute to lead-induced hypertension. A preliminary HEK293 cell model experiment was performed to analyze the association between AGT expression and lead exposure. In a population-based study, serum AGT level was measured in both lead-exposed and control populations. To further detect the influence of AGT gene single nucleotide polymorphisms (SNPs) in lead-induced hypertension, two SNPs (rs699 and rs4762) were genotyped in a case-control study including 219 lead-exposed subjects and 393 controls. Lead exposure caused an increase in AGT expression level in HEK 293 cell models (P < 0.001) compared to lead-free cells, and individuals exposed to lead had higher systolic and diastolic blood pressure (P < 0.001). Lead-exposed individuals had higher serum AGT levels compared to controls (P < 0.001). However, no association was found between AGT gene SNPs (rs699 and rs4762) and lead exposure. Nevertheless, the change in AGT expression level may play an important role in the development of lead-induced hypertension.

  1. Globally increased ultraconserved noncoding RNA expression in pancreatic adenocarcinoma

    PubMed Central

    Lee, Eun Joo; Gusev, Yuriy; Allard, David; Sutaria, Dhruvitkumar S.; Badawi, Mohamed; Elgamal, Ola A.; Lerner, Megan R.; Brackett, Daniel J.; Calin, George A.; Schmittgen, Thomas D.

    2016-01-01

    Transcribed ultraconserved regions (T-UCRs) are a class of non-coding RNAs with 100% sequence conservation among human, rat and mouse genomes. T-UCRs are differentially expressed in several cancers, however their expression in pancreatic adenocarcinoma (PDAC) has not been studied. We used a qPCR array to profile all 481 T-UCRs in pancreatic cancer specimens, pancreatic cancer cell lines, during experimental pancreatic desmoplasia and in the pancreases of P48Cre/wt; KrasLSL-G12D/wt mice. Fourteen, 57 and 29% of the detectable T-UCRs were differentially expressed in the cell lines, human tumors and transgenic mouse pancreases, respectively. The vast majority of the differentially expressed T-UCRs had increased expression in the cancer. T-UCRs were monitored using an in vitro model of the desmoplastic reaction. Twenty-five % of the expressed T-UCRs were increased in the HPDE cells cultured on PANC-1 cellular matrix. UC.190, UC.233 and UC.270 were increased in all three human data sets. siRNA knockdown of each of these three T-UCRs reduced the proliferation of MIA PaCa-2 cells up to 60%. The expression pattern among many T-UCRs in the human and mouse pancreases closely correlated with one another, suggesting that groups of T-UCRs are co-activated in PDAC. Successful knockout of the transcription factor EGR1 in PANC-1 cells caused a reduction in the expression of a subset of T-UCRs suggesting that EGR1 may control T-UCR expression in PDAC. We report a global increase in expression of T-UCRs in both human and mouse PDAC. Commonalties in their expression pattern suggest a similar mechanism of transcriptional upregulation for T-UCRs in PDAC. PMID:27363020

  2. Modified developer increases line resolution in photosensitive resist

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Standard developer solution is mixed with dipropyl carbonate. This reduces swelling in the photosensitive resist and permits application of relatively thick films with minimal pinhole formation and increased line resolution.

  3. Expression of Arabidopsis LINEs from two promoters.

    PubMed

    Ohta, Yoshizu; Noma, Kenichi; Tsuchimoto, Suguru; Ohtsubo, Eiichi; Ohtsubo, Hisako

    2002-12-01

    Most Arabidopsis long interspersed elements (LINEs, called ATLNs) have two open reading frames, orf1 and orf2. In the 5' untranslated regions (UTRs) located upstream of orf1, the most proximal segments of tens of base pairs long are not homologous even in two ATLN members with almost identical sequences. In this study, we first show that RT-PCR products from ATLN39, a member of ATLN, can be detected only in total RNA from the hypomethylation mutant ddm1 or from suspension-cultured cells treated with a DNA methylation inhibitor 5-azacytidine, indicating that the expression of ATLN39 is negatively regulated by DNA methylation. We then show that orf1 fused in frame with the luciferase (luc) gene is expressed in suspension-cultured cells of A. thaliana when the 5' UTR is present in the region upstream of orf1. Analysis of deletion in the 5' UTR revealed that the 5' UTR has two promoters, designated here as P1 and P2. Analysis of transcripts by 5' RACE showed that their 5' ends were located at sites immediately upstream of the P1 region or at sites downstream of the P2 region. This observation and the fact that the P1 region contains no TATA sequence indicate that P1 is an internal promoter that initiates transcription from sites upstream of the promoter. A sequence containing GGCGA with a CpG methylatable site is conserved in the P1 regions in members closely related to ATLN39. The P2 region, however, contains the TATA sequence as well as another sequence with a CpG site. The TATA sequence is conserved in members closely related to ATLN39 but not in the other ATLN members, suggesting that P2 is the promoter uniquely present in the ATLN39-related members. Transcripts from promoter P1 can be used as templates to give new copies proficient in retroposition, but those from promoter P2 cannot because of the lack of the proximal half region of the 5' UTR sequence. Transcripts from promoter P2, as well as those from promoter P1 can, however, be used for the production of a

  4. Salbutamol increases tristetraprolin expression in macrophages.

    PubMed

    Jalonen, Ulla; Leppänen, Tiina; Kankaanranta, Hannu; Moilanen, Eeva

    2007-12-14

    Tristetraprolin (TTP) is a tandem zinc finger protein that can bind to AU-rich elements (AREs) in the 3'-untranslated regions (3'-UTR) in mRNAs of transiently expressed genes, e.g. tumor necrosis factor-alpha (TNF-alpha) and granulocyte macrophage colony-stimulating factor (GM-CSF). TTP increases the turnover rate of the target mRNAs, thereby reducing, for example, the expression of TNF-alpha and GM-CSF. We examined the role of beta(2)-agonists, cAMP analogs, and forskolin (an activator of adenylate cyclase) on TTP mRNA and protein expression by quantitative real-time RT-PCR and Western blotting in J774 murine macrophages and THP-1 human macrophages. All of these agents increased TTP expression. A nonspecific inhibitor of phosphodiesterases (PDEs) 3-isobutyl-1-methylxanthine (IBMX) and type IV PDE-inhibitor rolipram further enhanced the increase in TTP expression levels, suggesting a cAMP-mediated effect. A possible mediator of these effects is transcription factor activator protein 2 (AP-2), whereas nuclear factor kappaB (NF-kappaB) seemed not to play any role. This mechanism may, at least in part, explain the anti-inflammatory effects which beta(2)-agonists have been reported to have in macrophages.

  5. Increased synapsin I expression in cerebral malaria.

    PubMed

    Thonsranoi, Klairoong; Glaharn, Supattra; Punsawad, Chuchard; Chaisri, Urai; Krudsood, Srivicha; Viriyavejakul, Parnpen

    2015-01-01

    Synapsin I is a neuronal phosphoprotein contained in the synaptic vesicles of mammalian central and peripheral nervous systems. It regulates both neurotransmitter release and synaptic formation. Variations in synapsin I expression in the brain have been reported to cause brain malfunction. In severe malaria, neurological complications, such as convulsion, delirium and coma, suggest abnormalities in the release of neurotransmitters. This study evaluated synapsin I expression in cerebral malaria (CM). An immunohistochemical method was used to study the semi-quantitative and qualitative expression of synapsin I in the brain of CM patients (10 cases) who died with Plasmodium falciparum, compared with non-cerebral malaria (NCM) (4 cases), and control brain tissues (5). Synapsin I was expressed in the gray matter of the cerebral cortex and the molecular layer of the cerebellum, as a diffusely dense precipitate pattern in the neuropil, with no immunoreactivity in the neurons, neuronal dendrites, glial cells, endothelial cells, and Purkinje cells. The findings were similarly demonstrated in CM, NCM, and control brain tissues. However, in the granular layer of the cerebellum, a significant increase in synapsin I expression was observed in the granule cells, and the glomerular synaptic complex, from the CM group, compared with the NCM, and control brain tissues (all P < 0.05). Parasitemia showed a positive correlation with synapsin I expression in the granule cells (on admission: Spearman's ρ = 0.600, P = 0.023) (before death: Spearman's ρ = 0.678, P = 0.008), and glomerular synaptic complex (before death: Spearman's ρ = 0.571, P = 0.033). It was hypothesized that CM causes pre-synaptic excitation and eventually activation of synapsin I, leading to increased neurotransmitter release. Synapsin I inhibitor should be investigated further as a target for a therapeutic intervention to alleviate neurological symptoms in severe malaria.

  6. Estrogen increases renal oxytocin receptor gene expression.

    PubMed

    Ostrowski, N L; Young, W S; Lolait, S J

    1995-04-01

    Estrogens have been implicated in the sodium and fluid imbalances associated with the menstrual cycle and late pregnancy. An estrogen-dependent role for renal oxytocin receptors in fluid homeostasis is suggested by the present findings which demonstrate that estradiol benzoate treatment increases the expression of the oxytocin receptor messenger ribonucleic acid and 125I-OTA binding to oxytocin receptors in the renal cortex and medullary collecting ducts of ovariectomized female rats. Moreover, estradiol induced high levels of oxytocin receptor expression in outer stripe proximal tubules of ovariectomized female and adrenalectomized male rats. Proximal tubule induction was inhibited in a dose-dependent manner by the antiestrogen tamoxifen, but cortical expression of oxytocin receptors in macula densa cells was unaffected by tamoxifen. These data demonstrate cell-specific regulation of oxytocin receptor expression in macula densa and proximal tubule cells, and suggest a important role for these receptors in mediating estrogen-induced alterations in renal fluid dynamics by possibly affecting glomerular filtration and water and solute reabsorption during high estrogen states.

  7. Increase in ezrin expression from benign to malignant breast tumours.

    PubMed

    Gschwantler-Kaulich, Daphne; Natter, Camilla; Steurer, Stefan; Walter, Ingrid; Thomas, Almut; Salama, Mohamed; Singer, Christian F

    2013-12-01

    Ezrin is known to be involved in intercellular interactions, and a shift from membrane-bound to cytoplasmatic protein expression has been associated with malignant potential. This association has primarily been demonstrated in cell lines and, as yet, little is known about the distribution of ezrin in primary benign and malignant breast tissues. We have, therefore, set out to investigate ezrin protein expression in a series of primary breast lesions. Immunohistochemistry was used to detect ezrin expression in 465 samples of normal breast tissues, benign breast tumours, pre-invasive breast lesions, breast cancer tissues and metastatic lymph nodes, and the protein expression patterns observed were correlated with clinicopathological parameters. Ezrin was detected in the cytoplasm of both benign and malignant breast tissues, but its expression was significantly higher in the malignant tissues (13 % vs 60 %, p < 0.0001; χ (2) test). We also detected a statistically significant higher ezrin expression in pre-invasive lesions compared to benign lesions (15 % vs 44 %, p = 0.04; χ (2) test). We did not find such a difference in ezrin expression between pre-invasive and invasive cancer samples, nor between invasive cancer samples and lymph node metastases. Within the group of invasive cancer samples, we found a significant correlation between ezrin expression and CK14 (rs:0.38, p < 0.007) and Her2 (rs:0.25, p < 0.002) expression. No such correlation was observed between ezrin expression and nodal status, grading, patient's age, hormone receptor status, and Ki67 or p53 expression. Taken together, we found that cytoplasmatic ezrin expression increases from benign to malignant breast tumour development. We hypothesize that the tissue architectural alterations that are associated with aberrant ezrin expression may point at pathophysiological mechanisms that may be instrumental for the design of novel therapies.

  8. Expression Profiling of Cell Lines Expressing Regulated NP2 Transcripts

    DTIC Science & Technology

    2004-09-01

    EGF in the presence or absence of exogenous HRS . The results will provide a framework fo r the interpretation of future gene expression studies in...e studies require further verification. Small sam- ple size, tissue heterogeneity, and inter-indivi- dual variations among human patients may result ... studies we proposed using gene expression profiling to determine change s in gene expression as a function of expression of the neurofibromatosis-2 (NF2

  9. WHIRLIN INCREASES TRPV1 CHANNEL EXPRESSION AND CELLULAR STABILITY

    PubMed Central

    Ciardo, Maria Grazia; Andrés-Bordería, Amparo; Cuesta, Natalia; Valente, Pierluigi; Camprubí-Robles, María; Yang, Jun; Planells-Cases, Rosa; Ferrer-Montiel, Antonio

    2017-01-01

    The expression and function of TRPV1 is influenced by its interaction with cellular proteins. Here, we identify whirlin, a cytoskeletal PDZ-scaffold protein implicated in hearing, vision and mechanosensory transduction, as an interacting partner of TRPV1. Whirlin associates with TRPV1 in cell lines and in primary cultures of rat nociceptors. Whirlin is expressed in 55% of mouse sensory C-fibers, including peptidergic and non-peptidergic nociceptors, and co-localizes with TRPV1 in 70% of them. Heterologous expression of Whirlin increased TRPV1 protein expression and trafficking to the plasma membrane, and promoted receptor clustering. Silencing Whirlin expression with siRNA or blocking protein translation resulted in a concomitant degradation of TRPV1 that could be prevented by inhibiting the proteasome. The degradation kinetics of TRPV1 upon arresting protein translation mirrored that of Whirlin in cells co-expressing both proteins, suggesting a parallel degradation mechanism. Noteworthy, Whirlin expression significantly reduced TRPV1 degradation induced by prolonged exposure to capsaicin. Thus, our findings indicate that Whirlin and TRPV1 are associated in a subset of nociceptors and that TRPV1 protein stability is increased through the interaction with the cytoskeletal scaffold protein. Our results suggest that the Whirlin-TRPV1 complex may represent a novel molecular target and its pharmacological disruption might be a therapeutic strategy for the treatment of peripheral TRPV1-mediated disorders. PMID:26516054

  10. Expression of MIF and CD74 in leukemic cell lines: correlation to DR expression destiny.

    PubMed

    Georgouli, Mirella; Papadimitriou, Lina; Glymenaki, Maria; Patsaki, Valia; Athanassakis, Irene

    2016-06-01

    Invariant chain (Ii) or CD74 is a non-polymorphic glycoprotein, which apart from its role as a chaperone dedicated to MHCII molecules, is known to be a high-affinity receptor for macrophage migration inhibitory factor (MIF). The present study aimed to define the roles of CD74 and MIF in the immune surveillance escape process. Towards this direction, the cell lines HL-60, Raji, K562 and primary pre-B leukemic cells were examined for expression and secretion of MIF. Flow cytometry analysis detected high levels of MIF and intracellular/membrane CD74 expression in all leukemic cells tested, while MIF secretion was shown to be inversely proportional to intracellular HLA-DR (DR) expression. In the MHCII-negative cells, IFN-γ increased MIF expression and induced its secretion in HL-60 and K562 cells, respectively. In K562 cells, CD74 (Iip33Iip35) was shown to co-precipitate with HLA-DOβ (DOβ), inhibiting thus MIF or DR binding. Induced expression of DOα in K562 (DOα-DOβ+) cells in different transfection combinations decreased MIF expression and secretion, while increasing surface DR expression. Thus, MIF could indeed be part of the antigen presentation process.

  11. Increased BMP expression in arthrofibrosis after TKA.

    PubMed

    Pfitzner, Tilman; Geissler, Sven; Duda, Georg; Perka, Carsten; Matziolis, Georg

    2012-09-01

    Because of the multiple possible aetiologies of painful total knee arthroplasty (TKA), the diagnosis and treatment of such patients are challenging. In a considerable number of patients, an intraarticular pathology is present, although not verifiable with clinical and diagnostic imaging techniques as in cases of primary arthrofibrosis. In these patients, the differentiation between intra- and extraarticular causes of pain remains difficult. Until now, little attention has been paid to changes of the synovial fluid and tissue in these knees. The objective of this study was to analyse the changes of the synovial environment in patients suffering from arthrofibrosis after TKA in comparison with knees with referred pain suffering from hip arthritis. The changes of the synovial environment probably provide additional diagnostic information to verify an intraarticular pathology. The synovial fluid of 10 consecutive knees in 10 patients presenting with a primary arthrofibrosis after TKA without signs of infection, instability, malalignment, or loosening was analysed and compared to the synovial fluid of 10 knees with referred pain serving as controls. The BMP-2 concentration was measured in the synovial fluid, and the presence of cytokines leading to an overexpression of BMP-2 was detected by measuring the change of BMP-2 expression in a synoviocyte cell line following exposing to the synovial fluid of the patients. The concentration of BMP-2 in the synovial fluid was significantly higher in arthrofibrotic TKA knees (24.3 ± 6.9 pg/mL), compared with the control group 5.9 ± 4.8 pg/mL (P < 0.001). Corresponding to this finding, BMP-2 expression in synoviocytes was upregulated 11.5-fold (P < 0.05) by synovial fluid of patients suffering from arthrofibrosis after TKA, compared with the control group with referred pain. BMP-2 is overexpressed and its concentrations are consequently higher in patients suffering from arthrofibrosis after TKA. The synovial BMP-2

  12. Transthyretin expression in medulloblastomas and medulloblastoma cell lines.

    PubMed

    Albrecht, S; Bayer, T A; Kraus, J A; Pietsch, T

    1995-10-01

    Transthyretin is a protein crucial to the transport of lipophilic molecules such as thyroid hormones and retinoids. In the central nervous system, large amounts of transthyretin are synthesized by the choroid plexus and are secreted into the cerebrospinal fluid. The choroid plexus is the only site of transthyretin synthesis in the brain. Transthyretin is expressed by most benign and malignant choroid plexus tumours while gliomas and meningiomas do not express transthyretin. Other major sites of transthyretin synthesis are the retinal pigment epithelium and hepatocytes. Medulloblastoma is the prototypical primitive neuroectodermal tumour of the cerebellum and can show multiple lines of differentiation, including the expression of retinal markers. In this study, we examined transthyretin expression both at the RNA and protein level in four medulloblastomas and six medulloblastoma cell lines using Northern and Western blot analysis, reverse transcription polymerase chain reaction (PCR), RNA in situ hybridization, and immunohistochemistry. All four medulloblastomas and five of the six medulloblastoma cell lines expressed transthyretin-mRNA as demonstrated by reverse PCR and in situ hybridization while three medulloblastomas and one cell line were positive on Northern blot. The medulloblastoma with the most abundant RNA expression was transthyretin-immunoreactive on cryosections and the medulloblastoma cell line that was positive on Northern blot also expressed transthyretin at levels detectable by Western blot. No transthyretin-immunoreactivity was seen in 16 additional medulloblastomas studied on paraffin sections. These findings indicate that low-level expression of transthyretin-mRNA is common in medulloblastomas and medulloblastoma cell lines. Expression of transthyretin protein occurs rarely but can reach significant levels. Transthyretin expression in medulloblastoma is consistent with retinal pigment epithelium differentiation in medulloblastomas and reflects

  13. Identification of genes expressed in the hermaphrodite germ line of C. elegans using SAGE.

    PubMed

    Wang, Xin; Zhao, Yongjun; Wong, Kim; Ehlers, Peter; Kohara, Yuji; Jones, Steven J; Marra, Marco A; Holt, Robert A; Moerman, Donald G; Hansen, Dave

    2009-05-09

    Germ cells must progress through elaborate developmental stages from an undifferentiated germ cell to a fully differentiated gamete. Some of these stages include exiting mitosis and entering meiosis, progressing through the various stages of meiotic prophase, adopting either a male (sperm) or female (oocyte) fate, and completing meiosis. Additionally, many of the factors needed to drive embryogenesis are synthesized in the germ line. To increase our understanding of the genes that might be necessary for the formation and function of the germ line, we have constructed a SAGE library from hand dissected C. elegans hermaphrodite gonads. We found that 4699 genes, roughly 21% of all known C. elegans genes, are expressed in the adult hermaphrodite germ line. Ribosomal genes are highly expressed in the germ line; roughly four fold above their expression levels in the soma. We further found that 1063 of the germline-expressed genes have enriched expression in the germ line as compared to the soma. A comparison of these 1063 germline-enriched genes with a similar list of genes prepared using microarrays revealed an overlap of 460 genes, mutually reinforcing the two lists. Additionally, we identified 603 germline-enriched genes, supported by in situ expression data, which were not previously identified. We also found >4 fold enrichment for RNA binding proteins in the germ line as compared to the soma. Using multiple technological platforms provides a more complete picture of global gene expression patterns. Genes involved in RNA metabolism are expressed at a significantly higher level in the germ line than the soma, suggesting a stronger reliance on RNA metabolism for control of the expression of genes in the germ line. Additionally, the number and expression level of germ line expressed genes on the X chromosome is lower than expected based on a random distribution.

  14. Immunoglobulin expression and synthesis by human haemic cell lines.

    PubMed Central

    Gordon, J; Hough, D; Karpas, A; Smith, J L

    1977-01-01

    Twenty-six human cell lines derived from a variety of lymphoid and non-lymphoid malignancies, were investigated for their immunological markers, with special reference to the class of immunoglobulin expressed. Twenty-five of the lines stained positively for surface immunoglobulin and IgD together with IgM proved to be the major immunoglobulin classes on these cells. Six of the lines were chosen for a study of their immunoglobulin synthesis patterns over an 18-h period and the immunoglobulin produced was analysed on SDS-polyacrylamide gel electrophoresis. Patterns obtained from the cell lines were similar to that from normal lymph node lymphocytes and differed markedly to plasma cells. Two of the cell lines had abnormal immunoglobulin synthesis patterns characterized as free light chains in one case. The cell lines are evaluated for their usefulness as models of immunoglobulin synthesis and analogues of normal and neoplastic states. PMID:608682

  15. Enhanced Receptor-Mediated Endocytosis and Cytotoxicity of a Folic Acid-Desacetylvinblastine Monohydrazide Conjugate in a Pemetrexed-Resistant Cell Line Lacking Folate-Specific Facilitative Carriers but with Increased Folate Receptor Expression

    PubMed Central

    Diop-Bove, Ndeye; Goldman, I. David

    2014-01-01

    The reduced folate carrier (RFC), proton-coupled folate transporter (PCFT), and folate receptors (FR) are folate-specific transporters. Antifolates currently in the clinic, such as pemetrexed, methotrexate, and pralatrexate, are transported into tumor cells primarily via RFC. Folic acid conjugated to cytotoxics, a new class of antineoplastics, are transported into cells via FR-mediated endocytosis. To better define the role of PCFT in antifolate resistance, a methotrexate-resistant cell line, M160-8, was selected from a HeLa subline in which the RFC gene was deleted and PCFT was highly overexpressed. These cells were cross-resistant to pemetrexed. PCFT function and the PCFT mRNA level in M160-8 cells were barely detectable, and FR-α function and mRNA level were increased as compared with the parent cells. While pemetrexed rapidly associated with FR and was internalized within endosomes in M160-8 cells, consistent with FR-mediated transport, subsequent pemetrexed and (6S)-5-formyltetrahydrofolate export into the cytosol was markedly impaired. In contrast, M160-8 cells were collaterally sensitive to EC0905, a folic acid–desacetylvinblastine monohydrazide conjugate also transported by FR-mediated endocytosis. However, in this case a sulfhydryl bond is cleaved to release the lipophilic cytotoxic moiety into the endosome, which passively diffuses out of the endosome into the cytosol. Hence, resistance to pemetrexed in M160-8 cells was due to entrapment of the drug within the endosome due to the absence of PCFT under conditions in which the FR cycling function was intact. PMID:24249723

  16. Enhanced receptor-mediated endocytosis and cytotoxicity of a folic acid-desacetylvinblastine monohydrazide conjugate in a pemetrexed-resistant cell line lacking folate-specific facilitative carriers but with increased folate receptor expression.

    PubMed

    Zhao, Rongbao; Diop-Bove, Ndeye; Goldman, I David

    2014-02-01

    The reduced folate carrier (RFC), proton-coupled folate transporter (PCFT), and folate receptors (FR) are folate-specific transporters. Antifolates currently in the clinic, such as pemetrexed, methotrexate, and pralatrexate, are transported into tumor cells primarily via RFC. Folic acid conjugated to cytotoxics, a new class of antineoplastics, are transported into cells via FR-mediated endocytosis. To better define the role of PCFT in antifolate resistance, a methotrexate-resistant cell line, M160-8, was selected from a HeLa subline in which the RFC gene was deleted and PCFT was highly overexpressed. These cells were cross-resistant to pemetrexed. PCFT function and the PCFT mRNA level in M160-8 cells were barely detectable, and FR-α function and mRNA level were increased as compared with the parent cells. While pemetrexed rapidly associated with FR and was internalized within endosomes in M160-8 cells, consistent with FR-mediated transport, subsequent pemetrexed and (6S)-5-formyltetrahydrofolate export into the cytosol was markedly impaired. In contrast, M160-8 cells were collaterally sensitive to EC0905, a folic acid-desacetylvinblastine monohydrazide conjugate also transported by FR-mediated endocytosis. However, in this case a sulfhydryl bond is cleaved to release the lipophilic cytotoxic moiety into the endosome, which passively diffuses out of the endosome into the cytosol. Hence, resistance to pemetrexed in M160-8 cells was due to entrapment of the drug within the endosome due to the absence of PCFT under conditions in which the FR cycling function was intact.

  17. Over-expression of secreted proteins from mammalian cell lines

    PubMed Central

    Dalton, Annamarie C; Barton, William A

    2014-01-01

    Secreted mammalian proteins require the development of robust protein over-expression systems for crystallographic and biophysical studies of protein function. Due to complex disulfide bonds and distinct glycosylation patterns preventing folding and expression in prokaryotic expression hosts, many secreted proteins necessitate production in more complex eukaryotic expression systems. Here, we elaborate on the methods used to obtain high yields of purified secreted proteins from transiently or stably transfected mammalian cell lines. Among the issues discussed are the selection of appropriate expression vectors, choice of signal sequences for protein secretion, availability of fusion tags for enhancing protein stability and purification, choice of cell line, and the large-scale growth of cells in a variety of formats. PMID:24510886

  18. Increased cortical thickness in professional on-line gamers.

    PubMed

    Hyun, Gi Jung; Shin, Yong Wook; Kim, Bung-Nyun; Cheong, Jae Hoon; Jin, Seong Nam; Han, Doug Hyun

    2013-12-01

    The bulk of recent studies have tested whether video games change the brain in terms of activity and cortical volume. However, such studies are limited by several factors including cross-sectional comparisons, co-morbidity, and short-term follow-up periods. In the present study, we hypothesized that cognitive flexibility and the volume of brain cortex would be correlated with the career length of on-line pro-gamers. High-resolution magnetic resonance scans were acquired in twenty-three pro-gamers recruited from StarCraft pro-game teams. We measured cortical thickness in each individual using FreeSurfer and the cortical thickness was correlated with the career length and the performance of the pro-gamers. CAREER LENGTH WAS POSITIVELY CORRELATED WITH CORTICAL THICKNESS IN THREE BRAIN REGIONS: right superior frontal gyrus, right superior parietal gyrus, and right precentral gyrus. Additionally, increased cortical thickness in the prefrontal cortex was correlated with winning rates of the pro-game league. Increased cortical thickness in the prefrontal and parietal cortices was also associated with higher performance of Wisconsin Card Sorting Test. Our results suggest that in individuals without pathologic conditions, regular, long-term playing of on-line games is associated with volume changes in the prefrontal and parietal cortices, which are associated with cognitive flexibility.

  19. Increased Cortical Thickness in Professional On-Line Gamers

    PubMed Central

    Hyun, Gi Jung; Shin, Yong Wook; Kim, Bung-Nyun; Cheong, Jae Hoon; Jin, Seong Nam

    2013-01-01

    Objective The bulk of recent studies have tested whether video games change the brain in terms of activity and cortical volume. However, such studies are limited by several factors including cross-sectional comparisons, co-morbidity, and short-term follow-up periods. In the present study, we hypothesized that cognitive flexibility and the volume of brain cortex would be correlated with the career length of on-line pro-gamers. Methods High-resolution magnetic resonance scans were acquired in twenty-three pro-gamers recruited from StarCraft pro-game teams. We measured cortical thickness in each individual using FreeSurfer and the cortical thickness was correlated with the career length and the performance of the pro-gamers. Results Career length was positively correlated with cortical thickness in three brain regions: right superior frontal gyrus, right superior parietal gyrus, and right precentral gyrus. Additionally, increased cortical thickness in the prefrontal cortex was correlated with winning rates of the pro-game league. Increased cortical thickness in the prefrontal and parietal cortices was also associated with higher performance of Wisconsin Card Sorting Test. Conclusion Our results suggest that in individuals without pathologic conditions, regular, long-term playing of on-line games is associated with volume changes in the prefrontal and parietal cortices, which are associated with cognitive flexibility. PMID:24474988

  20. Thyroid hormone increases bulk histones expression by enhancing translational efficiency.

    PubMed

    Zambrano, Alberto; García-Carpizo, Verónica; Villamuera, Raquel; Aranda, Ana

    2015-01-01

    The expression of canonical histones is normally coupled to DNA synthesis during the S phase of the cell cycle. Replication-dependent histone mRNAs do not contain a poly(A) tail at their 3' terminus, but instead possess a stem-loop motif, the binding site for the stem-loop binding protein (SLBP), which regulates mRNA processing, stability, and relocation to polysomes. Here we show that the thyroid hormone can increase the levels of canonical histones independent of DNA replication. Incubation of mouse embryonic fibroblasts with T3 increases the total levels of histones, and expression of the thyroid hormone receptor β induces a further increase. This is not restricted to mouse embryonic fibroblasts, because T3 also raises histone expression in other cell lines. T3 does not increase histone mRNA or SLBP levels, suggesting that T3 regulates histone expression by a posttranscriptional mechanism. Indeed, T3 enhanced translational efficiency, inducing relocation of histone mRNA to heavy polysomes. Increased translation was associated with augmented transcription of the eukaryotic translation initiation factor 4 γ2 (EIF4G2). T3 induced EIF4G2 protein and mRNA levels and the thyroid hormone receptor bound to the promoter region of the Eif4g2 gene. Induction of EIF4G2 was essential for T3-dependent histone induction, because depletion of this factor abolished histone increase. These results point out the importance of the thyroid hormones on the posttranscriptional regulation of histone biosynthesis in a cell cycle-independent manner and also suggest the potential regulation of eukaryotic translation by the modulation of the initiation factor EIF4G2, which also operates in the translation of canonical mRNAs.

  1. Increased transversions in a novel mutator colon cancer cell line.

    PubMed

    Eshleman, J R; Donover, P S; Littman, S J; Swinler, S E; Li, G M; Lutterbaugh, J D; Willson, J K; Modrich, P; Sedwick, W D; Markowitz, S D; Veigl, M L

    1998-03-05

    We describe a novel mutator phenotype in the Vaco411 colon cancer cell line which increases the spontaneous mutation rate 10-100-fold over background. This mutator results primarily in transversion base substitutions which are found infrequently in repair competent cells. Of the four possible types of transversions, only three were principally recovered. Spontaneous mutations recovered also included transitions and large deletions, but very few frameshifts were recovered. When compared to known mismatch repair defective colon cancer mutators, the distribution of mutations in Vaco411 is significantly different. Consistent with this difference, Vaco411 extracts are proficient in assays of mismatch repair. The Vaco411 mutator appears to be novel, and is not an obvious human homologue of any of the previously characterized bacterial or yeast transversion phenotypes. Several hypotheses by which this mutator may produce transversions are presented.

  2. Expression of membrane glycoproteins in normal keratinocytes and squamous carcinoma cell lines

    SciTech Connect

    Rayter, Z. ); McIlhinney, R. ); Gusterson, B. )

    1989-08-01

    Con A acceptor glycoproteins were analyzed by 2D-PAGE and {sup 125}I-Con A overlay in three squamous carcinoma cell lines and compared with those in the simian virus (SV40)-transformed keratinocyte cell line SVK-14 and in normal keratinocytes. The majority of the glycoproteins identified by this technique were expressed at similar levels in all of the cells examined, independent of the culture conditions used. A cell surface glycoprotein gp34 was increased in the tumor cells compared with normal keratinocytes and expression varied with the culture density. Another glycoprotein, gp21, was found to be increased in expression in normal keratinocytes and stratified hyperconfluent cultures of squamous carcinoma cell lines. This paper describes the potential of this technique to identify membrane glycoproteins which may be expressed as a function of proliferation or differentiation.

  3. Establishment a CHO Cell Line Expressing Human CD52 Molecule

    PubMed Central

    Kadijeh, Tati; Mahsa, Yazdanpanah-Samani; Amin, Ramezani; Elham, Mahmoudi Maymand; Abbas, Ghaderi

    2016-01-01

    Background: CD52 is a small glycoprotein with a GPI anchor at its C-terminus. CD52 is expressed by Normal and malignant T and B lymphocytes and monocytes. There are detectable amounts of soluble CD52 in plasma of patients with CLL and could be used as a tumor marker. Although the biological function of CD52 is unknown but it seems that CD52 may be involved in migration and activation of T-cells .The aim of this study was to clone and express human CD52 gene in CHO cell line and studying its function in more details Methods: Based on GenBank databases two specific primers were designed for amplification of cd52 gene. Total RNA was extracted from Raji cell line and cDNA synthesized. Amplified fragment was cloned in pBudCE4.1 vector. The new construct was transfected to CHO-K1 cell line using electroporation method. Expression of recombinant CD52 protein was evaluated by Real time PCR and flow cytometry methods. Results: Amplification of CD52 gene using specific primers on Raji cDNA showed a 209 bp band. New construct was confirmed by PCR and restriction pattern and sequence analysis. The new construct was designated as pBudKT1. RT-PCR analysis detected cd52 mRNAs in transfected cells and Flow cytometry Results showed that 78.4 % of cells represented CD52 in their surfaces. Conclusion: In conclusion, we established a human CD52 positive cell line, CHO-CD52, and the protein was expressed on the membrane. Cloning of the CD52 gene could be the first step for the production of therapeutic monoclonal antibodies and detection systems for soluble CD52 in biological fluids PMID:28070536

  4. Connexin expression in epidermal cell lines from SENCAR mouse skin tumors.

    PubMed

    Budunova, I V; Carbajal, S; Viaje, A; Slaga, T J

    1996-03-01

    Alteration of gap-junctional intercellular communication (GJIC) has long been proposed to be involved in carcinogenesis. Previously, we reported that the level of gap junctional intercellular communication in mouse skin carcinoma cell lines is significantly lower than in papilloma cell lines and normal mouse keratinocytes Klann et al., Cancer Res 49:699-705, 1989). Here, we present data on expression of the gap-junctional protein connexins (Cx) 26, Cx31.1, and Cx43 in a comprehensive panel of keratinocyte cell lines representing different stages of mouse skin carcinogenesis and the effect of different conditions of propagation on Cx phenotype. Northern and western blot analyses and immunostaining showed that all cell lines studied in vitro expressed Cx43 but most did not express Cx31.1 or Cx26. The abundance of Cx43 expression on plasma membranes correlated well with the level of GJIC. In vivo expression of Cx43 and Cx26 was strongly increased. Whereas none of tumorigenic cell lines expressed Cx26 gap junctions in culture, those growing as tumors in nude mice began to express Cx26 protein. The comparison of Cx expression on the keratinocyte membranes in three different groups of tumors (papillomas and squamous cell and spindle cell carcinomas) clearly revealed that the abundance of Cx43 and Cx26 expression directly correlated with the level of tumor differentiation. All studied tumors were Cx31.1 negative. These results suggest that both Cx expression and gap-junction permeability are gradually reduced during the tumor progression stage of mouse skin carcinogenesis.

  5. Mechanisms involved in biological behavior changes associated with Angptl4 expression in colon cancer cell lines.

    PubMed

    Huang, Xue-Feng; Han, Jie; Hu, Xiao-Tong; He, Chao

    2012-05-01

    Colorectal cancer (CRC) is one of the most common causes of cancer-related deaths throughout the world. Angiopoietin-like-4 (Angptl4), a member of the angiopoietin family of secreted proteins, is frequently expressed in the perinecrotic areas of different human tumors, yet its role is still unclear in colorectal cancer. Angptl4 mRNA expression in primary colorectal cancer tissue and seven colon cancer cell lines was measured by semi-quantitative RT-PCR; the influence of Angptl4 expression on the colon cancer cell lines was investigated by either overexpression or knockdown of Angptl4 in colon cancer cell lines HCT116 and HT29, respectively. The results showed that Angptl4 mRNA is frequently expressed in human colorectal cancer tissues and cell lines. Overexpression of Angptl4 promoted cell migration, F-actin reorganization and formation of pseudopodia. Further investigation showed that high Angptl4 expression was associated with an increase in ezrin/radixin/moesin and vasodilator-stimulated phosphoprotein expression and a decrease in E-cadherin expression. These results indicate that overexpression of Angptl4 may promote invasion and metastasis in CRC.

  6. Increased ERp57 Expression in HBV-Related Hepatocellular Carcinoma: Possible Correlation and Prognosis

    PubMed Central

    Liu, Miao; Du, Lingyao; He, Zhiliang; Yan, Libo; Shi, Ying; Shang, Jin

    2017-01-01

    Aim. ERp57 is involved in virus induced endoplasmic reticulum stress (ERS) and plays an important role in tumorigenesis. This study aimed to find whether HBV infection altered ERp57 expression and whether ERp57 regulation was involved in hepatitis B virus-related hepatocellular carcinoma (HBV-HCC) genesis. Materials and Methods. HBV-HCC tissues, chronic hepatitis B (CHB) liver tissues, and normal liver tissues were acquired. ERp57 expressions in these tissues were detected through immunohistochemistry (IHC). And ERp57 expression in liver cell line L02, HBV replicative liver cell line L02-pHBV4.1, and HCC cell lines were detected through western blot for verification. Then medical data on patients providing HCC tissues were collected and analyzed along with ERp57 expression. Results. Higher ERp57 expression was found in HCC and CHB tissues (p < 0.001). And HCC cell lines and L02-pHBV4.1 presented higher ERp57 expression as well. In patients, ERp57 expression showed significant differences between death and survival groups (p = 0.037). And cumulative survival in patients with higher ERp57 (score ⩾ 8.75) is significantly lower (p = 0.009). Conclusion. Our study found increased expression of ERp57 in HBV-HCC. Such altered expression could be related to HBV infection and high ERp57 expression may lead to poor prognosis of HBV-HCC patients. PMID:28373975

  7. Metastatic progression and gene expression between breast cancer cell lines from African American and Caucasian women

    PubMed Central

    Yancy, Haile F; Mason, Jacquline A; Peters, Sharla; Thompson, Charles E; Littleton, George K; Jett, Marti; Day, Agnes A

    2007-01-01

    African American (AA) women have a lower overall incidence of breast cancer than do Caucasian (CAU) women, but a higher overall mortality. Little is known as to why the incidence of breast cancer is lower yet mortality is higher in AA women. Many studies speculate that this is only a socio-economical problem. This investigation suggests the possibility that molecular mechanisms contribute to the increased mortality of AA women with breast cancer. This study investigates the expression of 14 genes which have been shown to play a role in cancer metastasis. Cell lines derived from AA and CAU patients were analyzed to demonstrate alterations in the transcription of genes known to be involved in cancer and the metastatic process. Total RNA was isolated from cell lines and analyzed by RT-PCR analysis. Differential expression of the 14 targeted genes between a spectrum model (6 breast cancer cell lines and 2 non-cancer breast cell lines) and a metastasis model (12 metastatic breast cancer cell lines) were demonstrated. Additionally, an in vitro comparison of the expression established differences in 5 of the 14 biomarker genes between African American and Caucasian breast cell lines. Results from this study indicates that altered expression of the genes Atp1b1, CARD 10, KLF4, Spint2, and Acly may play a role in the aggressive phenotype seen in breast cancer in African American women. PMID:17472751

  8. Pulmonary vasculature directed adenovirus increases epithelial lining fluid alpha-1 antitrypsin levels.

    PubMed

    Buggio, Maurizio; Towe, Christopher; Annan, Anand; Kaliberov, Sergey; Lu, Zhi Hong; Stephens, Calvin; Arbeit, Jeffrey M; Curiel, David T

    2016-01-01

    Gene therapy for inherited serum deficiency disorders has previously been limited by the balance between obtaining adequate expression and causing hepatic toxicity. Our group has previously described modifications of a replication deficient human adenovirus serotype 5 that increase pulmonary vasculature transgene expression. In the present study, we use a modified pulmonary targeted adenovirus to express human alpha-1 antitrypsin (A1AT) in C57BL/6 J mice. Using the targeted adenovirus, we were able to achieve similar increases in serum A1AT levels with less liver viral uptake. We also increased pulmonary epithelial lining fluid A1AT levels by more than an order of magnitude compared to that of untargeted adenovirus expressing A1AT in a mouse model. These gains are achieved along with evidence of decreased systemic inflammation and no evidence for increased inflammation within the vector-targeted end organ. In addition to comprising a step towards clinically viable gene therapy for A1AT, maximization of protein production at the site of action represents a significant technical advancement in the field of systemically delivered pulmonary targeted gene therapy. It also provides an alternative to the previous limitations of hepatic viral transduction and associated toxicities. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Expression Profiling of a Human Thyroid Cell Line Stably Expressing the BRAFVV600E Mutation

    PubMed Central

    KIM*, BYOUNG-AE; JEE*, HYEON-GUN; WOOK YI*, JIN; KIM, SU-JIN; JUN CHAI, YOUNG; YOUNG CHOI, JUNE; EUN LEE, KYU

    2016-01-01

    Background/Aim: The BRAFV600E mutation acts as an initiator of cancer development in papillary thyroid carcinoma (PTC). Gene expression changes caused by the BRAFV600E mutation may have an important role in thyroid cancer development. Materials and Methods: To study genomic alterations caused by the BRAFV600E mutation, we made human thyroid cell lines that harbor the wild-type BRAF gene (Nthy/WT) and the V600E mutant-type BRAF gene (Nthy/V600E). Results: Flow cytometry and western blotting showed stable transfection of the BRAF gene. In functional experiments, Nthy/V600E showed increased anchorage-independent growth and invasion through Matrigel, compared to Nthy/WT. Microarray analysis revealed that 2,441 genes were up-regulated in Nthy/V600E compared to Nthy/WT. Gene ontology analysis showed that the up-regulated genes were associated with cell adhesion, migration, and the ERK and MAPK cascade, and pathway analysis showed enrichment in cancer-related pathways. Conclusion: Our Nthy/WT and Nthy/V600E cell line pair could be a suitable model to study the molecular characteristics of BRAFV600E PTC. *These Authors contributed equally to this study. PMID:28031237

  10. Clinical and biological significance of CXCR5 expressed by prostate cancer specimens and cell lines.

    PubMed

    Singh, Shailesh; Singh, Rajesh; Singh, Udai P; Rai, Shesh N; Novakovic, Kristian R; Chung, Leland W K; Didier, Peter J; Grizzle, William E; Lillard, James W

    2009-11-15

    Chemokines and chemokine receptors have been shown to be involved in metastatic process of prostate cancer (PCa). In this study, we show primary PCa tissues and cell lines (LNCaP and PC3) express CXCR5, a specific chemokine receptor for CXCL13. Expression of CXCR5 was significantly higher (p < 0.001) in PCa cases than compared to normal match (NM) tissues. CXCR5 intensity correlated (R(2) = 0.97) with Gleason score. While prostate tumor tissues with Gleason scores >or= 7, displayed predominantly nuclear CXCR5 expression patterns, PCa specimens with Gleason scores expression patterns that were comparable to benign prostatic hyperplasia (BPH). Similar to tissue expression, PCa cell lines expressed significantly more CXCR5 than normal prostatic epithelial cells (PrECs), and CXCR5 expression was distributed among intracellular and extracellular compartments. Functional in vitro assays showed higher migratory and invasive potentials toward CXCL13, an effect that was mediated by CXCR5. In both PCa cell lines, CXCL13 treatment increased the expression of collagenase-1 or matrix metalloproteinase-1 (MMP-1), collagenase-3 (MMP-13), stromelysin-1 (MMP-3), stromelysin-2 (MMP-10) and stromelysin-3 (MMP-11). These data demonstrate the clinical and biological relevance of the CXCL13-CXCR5 pathway and its role in PCa cell invasion and migration.

  11. Regulation of alkaline phosphatase expression in human choriocarcinoma cell lines.

    PubMed Central

    Hamilton, T A; Tin, A W; Sussman, H H

    1979-01-01

    The coincident expression of two structurally distinct isoenzymes of human alkaline phosphatase was demonstrated in two independently derived gestational choriocarcinoma cell lines. These proteins were shown to have enzymatic, antigenic, and physical-chemical properties resembling those of isoenzymes from term placenta and adult liver. The regulation of these isoenzymes has been studied during the exposure of both cell lines to 5-bromodeoxyuridine and dibutyryl cyclic AMP. The responses of the alkaline phosphatase isoenzymes to these agents have also been compared with the response of another protein phenotypic to placenta, the alpha subunit of chorionic gonadotropin. The results show that (i) the separate structural genes coding for placental and liver alkaline phosphatases are regulated in a noncoordinate fashion; (ii) both alkaline phosphatase genes respond independently of the alpha subunit; and (iii) the induction of the placental type isoenzyme occurs via at least two independent pathways. Images PMID:218197

  12. Induction of resistance to Aplidin in a human ovarian cancer cell line related to MDR expression.

    PubMed

    Tognon, Gianluca; Bernasconi, Sergio; Celli, Nicola; Faircloth, Glynn T; Cuevas, Carmen; Jimeno, José; Erba, Eugenio; D'Incalci, Maurizio

    2005-12-01

    Aplidin-resistant IGROV-1/APL cells were derived from the human ovarian cancer IGROV-1 cell line by exposing the cells to increasing concentration of Aplidin for eight months, starting from a concentration of 10 nM to a final concentration of 4 microM. IGROV-1/APL cell line possesses five fold relative resistance to Aplidin. IGROV-1/APL resistant cell line shows the typical MDR phenotype: (1) increased expression of membrane-associated P-glycoprotein, (2) cross-resistance to drugs like etoposide, doxorubicin, vinblastine, vincristine, taxol, colchicin and the novel anticancer drug Yondelis (ET-743). The Pgp inhibitor cyclosporin-A restored the sensitivity of IGROV-1/APL cells to Aplidin by increasing the drug intracellular concentration. The resistance to Aplidin was not due to the other proteins, such as LPR-1 and MRP-1, being expressed at the same level in resistant and parental cell line. The finding that cells over-expressing Pgp are resistant to Aplidin was confirmed in CEM/VLB 100 cells, that was found to be 5-fold resistant to Aplidin compared to the CEM parental cell line.

  13. Expression of tropomyosin 2 gene isoforms in human breast cancer cell lines

    PubMed Central

    DUBE, SYAMALIMA; THOMAS, ANISH; ABBOTT, LYNN; BENZ, PATRICIA; MITSCHOW, CHARLES; DUBE, DIPAK K.; POIESZ, BERNARD J.

    2016-01-01

    In humans, four tropomyosin genes (TPM1, TPM2, TPM3, and TPM4) are known to produce a multitude of isoforms via alternate splicing and/or using alternate promoters. Expression of tropomyosin has been shown to be modulated at both the transcription and the translational levels. Tropomyosins are known to make up some of the stress fibers of human epithelial cells and differences in their expression has been demonstrated in malignant breast epithelial cell lines compared to 'normal' breast cell lines. We have recently reported the expression of four novel TPM1 isoforms (TPM1λ, TPM1µ, TPM1ν, and TPM1ξ) from human malignant tumor breast cell lines that are not expressed in adult and fetal cardiac tissue. Also, we evaluated their expression in relation to the stress fiber formation. In this study, nine malignant breast epithelial cell lines and three 'normal' breast cell lines were examined for stress fiber formation and expression of tropomyosin 2 (TPM2) isoform-specific RNAs and proteins. Stress fiber formation was assessed by immunofluorescence using Leica AF6000 Deconvolution microscope. Stress fiber formation was strong (++++) in the 'normal' cell lines and varied among the malignant cell lines (negative to +++). No new TPM2 gene RNA isoforms were identified, and TPM2β was the most frequently expressed TPM2 RNA and protein isoform. Stress fiber formation positively correlated with TPM2β RNA or protein expression at high, statistically significant degrees. Previously, we had shown that TPM1δ and TPM1λ positively and inversely, respectively, correlated with stress fiber formation. The most powerful predictor of stress fiber formation was the combination of TPM2β RNA, TPM1δ RNA, and the inverse of TPM1λ RNA expression. Our results suggest that the increased expression of TPM1λ and the decreased expression of TPM1δ RNA and TPM2β may lead to decreased stress fiber formation and malignant transformation in human breast epithelial cells. PMID:27108600

  14. Codon Preference Optimization Increases Prokaryotic Cystatin C Expression

    PubMed Central

    Wang, Qing; Mei, Cui; Zhen, Honghua; Zhu, Jess

    2012-01-01

    Gene expression is closely related to optimal vector-host system pairing in many prokaryotes. Redesign of the human cystatin C (cysC) gene using the preferred codons of the prokaryotic system may significantly increase cysC expression in Escherichia coli (E. coli). Specifically, cysC expression may be increased by removing unstable sequences and optimizing GC content. According to E. coli expression system codon preferences, the gene sequence was optimized while the amino acid sequence was maintained. The codon-optimized cysC (co-cysC) and wild-type cysC (wt-cysC) were expressed by cloning the genes into a pET-30a plasmid, thus transforming the recombinant plasmid into E. coli BL21. Before and after the optimization process, the prokaryotic expression vector and host bacteria were examined for protein expression and biological activation of CysC. The recombinant proteins in the lysate of the transformed bacteria were purified using Ni2+-NTA resin. Recombinant protein expression increased from 10% to 46% based on total protein expression after codon optimization. Recombinant CysC purity was above 95%. The significant increase in cysC expression in E. coli expression produced by codon optimization techniques may be applicable to commercial production systems. PMID:23093857

  15. A conditional transgenic mouse line for targeted expression of the stem cell marker LGR5.

    PubMed

    Norum, Jens Henrik; Bergström, Åsa; Andersson, Agneta Birgitta; Kuiper, Raoul V; Hoelzl, Maria A; Sørlie, Therese; Toftgård, Rune

    2015-08-15

    LGR5 is a known marker of embryonic and adult stem cells in several tissues. In a mouse model, Lgr5+ cells have shown tumour-initiating properties, while in human cancers, such as basal cell carcinoma and colon cancer, LGR5 expression levels are increased: however, the effect of increased LGR5 expression is not fully understood. To study the effects of elevated LGR5 expression levels we generated a novel tetracycline-responsive, conditional transgenic mouse line expressing human LGR5, designated TRELGR5. In this transgenic line, LGR5 expression can be induced in any tissue depending on the expression pattern of the chosen transcriptional regulator. For the current study, we used transgenic mice with a tetracycline-regulated transcriptional transactivator linked to the bovine keratin 5 promoter (K5tTA) to drive expression of LGR5 in the epidermis. As expected, expression of human LGR5 was induced in the skin of double transgenic mice (K5tTA;TRELGR5). Inducing LGR5 expression during embryogenesis and early development resulted in macroscopically and microscopically detectable phenotypic changes, including kink tail, sparse fur coat and enlarged sebaceous glands. The fur and sebaceous gland phenotypes were reversible upon discontinued expression of transgenic LGR5, but this was not observed for the kink tail phenotype. There were no apparent phenotypic changes if LGR5 expression was induced at three weeks of age. The results demonstrate that increased expression of LGR5 during embryogenesis and the neonatal period alter skin development and homeostasis.

  16. Expression and detection of LINE-1 ORF-encoded proteins.

    PubMed

    Dai, Lixin; LaCava, John; Taylor, Martin S; Boeke, Jef D

    2014-01-01

    LINE-1 (L1) elements are endogenous retrotransposons active in mammalian genomes. The L1 RNA is bicistronic, encoding two non-overlapping open reading frames, ORF1 and ORF2, whose protein products (ORF1p and ORF2p) bind the L1 RNA to form a ribonucleoprotein (RNP) complex that is presumed to be a critical retrotransposition intermediate. However, ORF2p is expressed at a significantly lower level than ORF1p; these differences are thought to be controlled at the level of translation, due to a low frequency ribosome reinitiation mechanism controlling ORF2 expression. As a result, while ORF1p is readily detectable, ORF2p has previously been very challenging to detect in vitro and in vivo. To address this, we recently tested several epitope tags fused to the N- or C-termini of the ORF proteins in an effort to enable robust detection and affinity purification from native (L1RP) and synthetic (ORFeus-Hs) L1 constructs. An analysis of tagged RNPs from both L1RP and ORFeus-Hs showed similar host-cell-derived protein interactors. Our observations also revealed that the tag sequences affected the retrotransposition competency of native and synthetic L1s differently although they encode identical ORF proteins. Unexpectedly, we observed apparently stochastic expression of ORF2p within seemingly homogenous L1-expressing cell populations.

  17. Transformation of Drosophila cell lines: an alternative approach to exogenous protein expression.

    PubMed

    Cherbas, Lucy; Cherbas, Peter

    2007-01-01

    Techniques and experimental applications are described for exogenous protein expression in Drosophila cell lines. Ways in which the Drosophila cell lines and the baculovirus expression vector system differ in their applications are emphasized.

  18. Differential expression of alkaline phosphatase gene in proliferating primary lymphocytes and malignant lymphoid cell lines.

    PubMed

    Latheef, S A A; Devanabanda, Mallaiah; Sankati, Swetha; Madduri, Ramanadham

    2016-02-01

    Alkaline Phosphatase (APase) activity has been shown to be enhanced specifically in mitogen stimulated B lymphocytes committed to proliferation, but not in T lymphocytes. APase gene expression was analyzed in proliferating murine and human primary lymphocytes and human malignant cell lines using reverse transcriptase and real time PCR. In mitogen stimulated murine splenic lymphocytes, enhancement of APase activity correlated well with an increase in APase gene expression. However, in mitogen stimulated murine T lymphocytes and human PBL despite a vigorous proliferative response, no increase in APase enzyme activity or gene expression was observed. A constitutive expression of APase activity concomitant with APase gene expression was observed inhuman myeloma cell line, U266 B1. However, neither enzyme activity nor gene expression of APase were observed in human T cell lymphoma, SUPT-1. The results suggest a differential expression of APase activity and its gene in proliferating primary lymphocytes of mice and humans. The specific expression of APase activity and its gene only in human myeloma cells, but not in proliferating primary B cells can be exploited as a sensitive disease marker.

  19. Gene expression profile induced by BCNU in human glioma cell lines with differential MGMT expression.

    PubMed

    Bandres, Eva; Andion, Esther; Escalada, Alvaro; Honorato, Beatriz; Catalan, Victoria; Cubedo, Elena; Cordeu, Lucia; Garcia, Fermin; Zarate, Ruth; Zabalegui, Natalia; Garcia-Foncillas, Jesus

    2005-07-01

    Chemotherapy with the alkylating agent BCNU (1,3-bis (2-chloroethyl)-1-nitrosourea) is the most commonly used chemotherapeutic agent for gliomas. However, the usefulness of this agent is limited because tumor cell resistance to BCNU is frequently found in clinical brain tumor therapy. The O6-methylguanine-DNA methyltransferase protein (MGMT) reverses alkylation at the O6 position of guanine and we have reported the role of MGMT in the response of brain tumors to alkylating agents. However, the different mechanisms underlying the patterns related to MGMT remain unclear. To better understand the molecular mechanism by which BCNU exerts its effect in glioma cell lines according MGMT expression, we used microarray technology to interrogate 3800 known genes and determine the gene expression profiles altered by BCNU treatment. Our results showed that treatment with BCNU alters the expression of a diverse group of genes in a time-dependent manner. A subset of gene changes was found common in both glioma cell lines and other subset is specific of each cell line. After 24 h of BCNU treatment, up-regulation of transcription factors involved in the nucleation of both RNA polymerase II and III transcription initiation complexes was reported. Interestingly, BCNU promoted the expression of actin-dependent regulators of chromatin. Similar effects were found with higher BCNU doses in MGMT+ cell line showing a similar mechanism that in MGMT-deficient cell with standard doses. Our data suggest that human glioma cell lines treated with BCNU, independently of MGMT expression, show changes in the expression of cell cycle and survival-related genes interfering the transcription mechanisms and the chromatin regulation.

  20. Fluorodeoxyglucose uptake in human cancer cell lines is increased by hypoxia

    SciTech Connect

    Clavo, A.C.; Brown, R.S.; Wahl, R.L.

    1995-09-01

    Malignant neoplasms commonly have increased rates of glucose utilization, poor perfusion and areas of low oxygenation. Autoradiographic studies of excised tumors have shown increased FDG uptake in viable cells near necrotic portions of tumor. We evaluated in vitro whether tumor cell FDG uptake increased with hypoxia. The uptake of {sup 3}H-FDG into two human tumor cell lines (HTB 63 melanoma and HTB 77 IP3 ovarian carcinoma) was determined after exposure to differing oxygen atmospheres ranging from 0% to 20% O{sub 2} for varying time periods. Glucose transport was independently determined as well as estimates of the level of Glut-1 glucose transporter membrane protein. FDG uptake in both the melanoma and the ovarian carcinoma cell lines increased significantly (39.6% {plus_minus} 6.7% and 36.7% {plus_minus}9%, respectively) over basal (20% O{sub 2}) conditions when cells were exposed to a mild hypoxic environment (5% O{sub 2}) for 1.5 hr. With a 4-hr exposure to 1.5% O{sub 2}, the increase in FDG uptake was greater at 52.3% {plus_minus} 8.9% and 43.5% {plus_minus} 19%, respectively. With 4 hr of anoxia, the increase in FDG uptake over basal conditions was 42.7% {plus_minus} 10% and 63.3% {plus_minus} 13.7% for melanoma and ovarian carcinoma cells, respectively. Membrane transport of 3-O-methylglucose (3-OMG) was increased by hypoxia for melanoma and ovarian carcinoma. Immunochemical assays for Glut-1 showed an increase in the membrane expression of the Glut-1 transporter in cells exposed to hypoxia. Hypoxia increases cellular uptake of FDG in two different malignant human cell lines. Increased glucose transport, in part due to increased membrane expression of the Glut-1 glucose transporter, contributes to this phenomenon. Increased FDG uptake in tumors visualized during PET imaging may be partly reflective of tumor hypoxia. 47 refs., 6 figs., 2 tabs.

  1. Differential hormonal and gene expression dynamics in two inbred sunflower lines with contrasting dormancy level.

    PubMed

    Roselló, Paula L; Vigliocco, Ana E; Andrade, Andrea M; Riera, Natalí V; Calafat, Mario; Molas, María L; Alemano, Sergio G

    2016-05-01

    Seed germination and dormancy are tightly regulated by hormone metabolism and signaling pathway. We investigated the endogenous content of abscisic acid (ABA), its catabolites, and gibberellins (GAs), as well as the expression level of certain ABA and GAs metabolic and signaling genes in embryo of dry and imbibed cypselas of inbred sunflower (Helianthus annuus L., Asteraceae) lines: B123 (dormant) and B91 (non-dormant). Under our experimental conditions, the expression of RGL2 gene might be related to the ABA peak in B123 line at 3 h of imbibition. Indeed, RGL2 transcripts are absent in dry and early embedded cypselas of the non-dormant line B91. ABA increase was accompanied by a significant ABA-Glucosyl ester (ABA-GE) and phaseic acid (PA) (two ABA catabolites) decrease in B123 line (3 h) which indicates that ABA metabolism seems to be more active in this line, and that it would be involved in the imposition and maintenance of sunflower seed dormancy, as it has been reported for many species. Finally, an increase of bioactive GAs (GA1 and GA3) occurs at 12 h of imbibition in both lines after a decrease in ABA content. This study shows the first report about the RGL2 tissue-specific gene expression in sunflower inbred lines with contrasting dormancy level. Furthermore, our results provide evidence that ABA and GAs content and differential expression of metabolism and signaling genes would be interacting in seed dormancy regulation through a mechanism of action related to embryo itself.

  2. Moisture sensors 1980 on-line roles increase

    SciTech Connect

    Bailey, S.J.

    1980-09-01

    A review of on- and off-line moisture and humidity sensors covers instruments based on the capacitive principle such as Panametrics' Aquamax II and those developed by Ondyne, Moisture Control Systems, Phys-Chemical Research Corp., Shaw Instruments, and Diversified Engineering; instruments based on the microwave plus gamma and nuclear plus gamma radiation principles such as those by Kay-Ray and Ohmart Corp., respectively; sensors based on the saturated salt principle such as Foxboro's self-heated lithium chloride sensor; Kahn and Co.'s electrolytic hygrometer for monitoring the moisture content of pure gases or gas mixtures in natural gas transmissions; the Ohaus gravimetric instrument; microprocessor-based titrators by Foxboro Analytical and Photovolt Corp.; instruments which sense moving web moisture such as Beckman Instrument's Hygroline System HMP20 and Hy-Cal Engineering's sensor; IR stack gas analyzers by Anarad Inc. and Moisture Systems Corp.; optical hygrometers by EG and G and General Eastern; Panametrics' Model 4000 moisture computer; and Du Pont's standard 560 analyzer and new controller.

  3. Development of stable cell lines for production or regulated expression using matrix attachment regions.

    PubMed

    Zahn-Zabal, M; Kobr, M; Girod, P A; Imhof, M; Chatellard, P; de Jesus, M; Wurm, F; Mermod, N

    2001-04-27

    One of the major hurdles of isolating stable, inducible or constitutive high-level producer cell lines is the time-consuming selection procedure. Given the variation in the expression levels of the same construct in individual clones, hundreds of clones must be isolated and tested to identify one or more with the desired characteristics. Various boundary elements (BEs), matrix attachment regions, and locus control regions (LCRs) were screened for their ability to augment the expression of heterologous genes in Chinese hamster ovary (CHO) cells. Of the chromatin elements assayed, the chicken lysozyme matrix-attachment region (MAR) was the only element to significantly increase stable reporter expression. We found that the use of the MAR increases the proportion of high-producing clones, thus reducing the number of clones that need to be screened. These benefits are observed both for constructs with MARs flanking the transgene expression cassette, as well as when constructs are co-transfected with the MAR on a separate plasmid. Moreover, the MAR was co-transfected with a multicomponent regulatable beta-galactosidase expression system in C2C12 cells and several clones exhibiting regulated expression were identified. Hence, MARs are useful in the development of stable cell lines for production or regulated expression.

  4. Systemic alteration of cell-surface and secreted glycoprotein expression in malignant breast cancer cell lines.

    PubMed

    Timpe, Leslie C; Yen, Roger; Haste, Nicole V; Litsakos-Cheung, Christina; Yen, Ten-Yang; Macher, Bruce A

    2013-11-01

    Breast cancer cell lines express fewer transmembrane and secreted glycoproteins than nonmalignant ones. The objective of these experiments was to characterize the changes in the expression of several hundred glycoproteins quantitatively. Secreted and cell-surface glycoproteins were isolated using a glycoprotein capture protocol and then identified by tandem mass spectrometry. Glycoproteins expressed by a group of cell lines originating from malignant tumors of the breast were compared with those expressed by a nonmalignant set. The average number of spectral counts (proportional to relative protein abundance) and the total number of glycopeptides in the malignant samples were reduced to about two-thirds of the level in the nonmalignant samples. Most glycoproteins were expressed at a different level in the malignant samples, with nearly as many increasing as decreasing. The glycoproteins with reduced expression accounted for a larger change in spectral counts, and hence for the net loss of spectral counts in the malignant lines. Similar results were found when the glycoproteins were studied via identified glycosylation sites only, or through identified sites together with non-glycopeptides. The overall reduction is largely due to the loss of integrins, laminins and other proteins that form or interact with the basement membrane.

  5. SOX17 increases the cisplatin sensitivity of an endometrial cancer cell line.

    PubMed

    Zhang, Yongli; Jiang, FeiZhou; Bao, Wei; Zhang, Huilin; He, XiaoYing; Wang, Huihui; Wan, Xiaoping

    2016-01-01

    Endometrial cancer (EC) is the most common form of malignant gynecological tumor. Treatment with cisplatin (CDDP) is the mainstay of EC chemotherapy. The apoptotic machinery is regarded as an important etiological factor in chemoresistance. Recent evidence has suggested that overexpression of the transcription factor SOX17 prevented apoptosis in tumor cell lines. The effect of SOX17 on apoptosis in EC cisplatin chemoresistance remains unclear. Immunohistochemistry and the reverse transcription-polymerase chain reaction were employed to detect gene expression in paraffin-embedded EC tissues and blood samples. The anti-proliferative ability of SOX17 on EC cells was assessed by MTT. Flow cytometric analysis was used to detect cell apoptosis by annexin V/PI double-staining. The expression of apoptosis-related proteins was analyzed by western blot. In the in vivo study, nude mice were subcutaneously injected with EC cells, and received cisplatin treatment through intraperitoneal chemotherapy. Apoptosis of in vivo samples was analyzed by TUNEL assay. SOX17 expression decreased the chemical resistance of EC cells to CDDP. HEC-1B cells with an elevated expression of SOX17 had a lower cell viability and higher apoptosis rate after cisplatin exposure. Overexpression SOX17 up-regulated wild type p53 after being exposed to cisplatin, while the expression of BCL2-associated X protein and cleaved caspase-3 simultaneously increased. Caspase-9 inhibitor reduced the efficacy of SOX17 in HEC-1B cells after cisplatin treatment. In the in vivo study, SOX17 overexpression clearly restrained the tumor growth and increased the cisplatin toxicity and apoptosis of tumor cells. SOX17 is involved in the p53-mediated apoptosis pathway, and increases the sensitivity of HEC-1B cells to cisplatin.

  6. Reduced methylation of the thromboxane synthase gene is correlated with its increased vascular expression in preeclampsia.

    PubMed

    Mousa, Ahmad A; Strauss, Jerome F; Walsh, Scott W

    2012-06-01

    Preeclampsia is characterized by increased thromboxane and decreased prostacyclin levels, which predate symptoms, and can explain some of the clinical manifestations of preeclampsia, including hypertension and thrombosis. In this study, we examined DNA methylation of the promoter region of the thromboxane synthase gene (TBXAS1) and the expression of thromboxane synthase in systemic blood vessels of normal pregnant and preeclamptic women. Thromboxane synthase is responsible for the synthesis of thromboxane A(2), a potent vasoconstrictor and activator of platelets. We also examined the effect of experimentally induced DNA hypomethylation on the expression of thromboxane synthase in a neutrophil-like cell line (HL-60 cells) and in cultured vascular smooth muscle and endothelial cells. We found that DNA methylation of the TBXAS1 promoter was decreased and thromboxane synthase expression was increased in omental arteries of preeclamptic women as compared with normal pregnant women. Increased thromboxane synthase expression was observed in vascular smooth muscles cells, endothelial cells, and infiltrating neutrophils. Experimentally induced DNA hypomethylation only increased expression of thromboxane synthase in the neutrophil-like cell line, whereas tumor necrosis factor-α, a neutrophil product, increased its expression in cultured vascular smooth muscle cells. Our study suggests that epigenetic mechanisms and release of tumor necrosis factor-α by infiltrating neutrophils could contribute to the increased expression of thromboxane synthase in maternal systemic blood vessels, contributing to the hypertension and coagulation abnormalities associated with preeclampsia.

  7. Increased glucocerebrosidase expression and activity in preeclamptic placenta.

    PubMed

    Jebbink, J M; Boot, R G; Keijser, R; Moerland, P D; Aten, J; Veenboer, G J M; van Wely, M; Buimer, M; Ver Loren van Themaat, E; Aerts, J M F G; van der Post, J A M; Afink, G B; Ris-Stalpers, C

    2015-02-01

    Lysosomal glucosidase beta acid (GBA) deficiency is inherent to Gaucher disease, Parkinsonism and Lewy-body dementia. Increased GBA expression has never been associated with human disease. We describe increased GBA expression and activity in placenta from preeclamptic pregnancies. 112 placenta biopsies were available for qPCR, analysis of GBA gene expression and activity. Microanalysis was performed on 20 placenta samples. Alternatively spliced placental GBA transcripts were cloned, expressed in HEK293 cells and analyzed by Western blot and activity assay. GBA is expressed in the syncytiotrophoblast layer of human placenta already at 5 weeks of gestation. We identified five novel GBA transcripts in placenta that enzymatically inactive when expressed in HEK293 cells. Both GBA RNA expression and enzymatic activity are upregulated in preeclamptic placenta. Microarray analysis of 20 placenta tissues identified 158 genes co-regulating with GBA expression and gene enrichment analysis highlights lysosomal function. In our micro-array data GBA expression does not correlate with FLT1 expression, currently the most powerful marker for preeclampsia. There are 89 transcripts that are negatively correlated with GBA expression of which BMP4 and TFEB are interesting as they are essential to early placenta function. Although very speculative, we hypothesize that increased GBA expression might relate to placentation through decreased BMP4 signaling or vascularization through downregulation of TFEB. Ceramide, the product of hydrolysis of glucosylceramide by GBA and involved in the regulation of cell differentiation, survival and apoptosis, is another putative candidate linking increased GBA activity to preeclampsia. Both pathways merit further investigation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Anticancer drug bortezomib increases interleukin-8 expression in human monocytes.

    PubMed

    Sanacora, Shannon; Urdinez, Joaquin; Chang, Tzu-Pei; Vancurova, Ivana

    2015-05-01

    Bortezomib (BZ) is the first clinically approved proteasome inhibitor that has shown remarkable anticancer activity in patients with hematological malignancies. However, many patients relapse and develop resistance; yet, the molecular mechanisms of BZ resistance are not fully understood. We have recently shown that in solid tumors, BZ unexpectedly increases expression of the pro-inflammatory and pro-angiogenic chemokine interleukin-8 (IL-8), while it inhibits expression of other NFκB-regulated genes. Since monocytes and macrophages are major producers of IL-8, the goal of this study was to test the hypothesis that BZ increases the IL-8 expression in human monocytes and macrophages. Here, we show that BZ dramatically increases the IL-8 expression in lipopolysaccharide (LPS)-stimulated U937 macrophages as well as in unstimulated U937 monocytes and peripheral blood mononuclear cells, while it inhibits expression of IL-6, IL-1 and tumor necrosis factor-α. In addition, our results show that the underlying mechanisms involve p38 mitogen-activated protein kinase, which is required for the BZ-induced IL-8 expression. Together, these data suggest that the BZ-increased IL-8 expression in monocytes and macrophages may represent one of the mechanisms responsible for the BZ resistance and indicate that targeting the p38-mediated IL-8 expression could enhance the BZ effectiveness in cancer treatment.

  9. Nuclear hormone receptor expression in mouse kidney and renal cell lines.

    PubMed

    Ogawa, Daisuke; Eguchi, Jun; Wada, Jun; Terami, Naoto; Hatanaka, Takashi; Tachibana, Hiromi; Nakatsuka, Atsuko; Horiguchi, Chikage Sato; Nishii, Naoko; Makino, Hirofumi

    2014-01-01

    Nuclear hormone receptors (NHRs) are transcription factors that regulate carbohydrate and lipid metabolism, immune responses, and inflammation. Although several NHRs, including peroxisome proliferator-activated receptor-γ (PPARγ) and PPARα, demonstrate a renoprotective effect in the context of diabetic nephropathy (DN), the expression and role of other NHRs in the kidney are still unrecognized. To investigate potential roles of NHRs in the biology of the kidney, we used quantitative real-time polymerase chain reaction to profile the expression of all 49 members of the mouse NHR superfamily in mouse kidney tissue (C57BL/6 and db/m), and cell lines of mesangial (MES13), podocyte (MPC), proximal tubular epithelial (mProx24) and collecting duct (mIMCD3) origins in both normal and high-glucose conditions. In C57BL/6 mouse kidney cells, hepatocyte nuclear factor 4α, chicken ovalbumin upstream promoter transcription factor II (COUP-TFII) and COUP-TFIII were highly expressed. During hyperglycemia, the expression of the NHR 4A subgroup including neuron-derived clone 77 (Nur77), nuclear receptor-related factor 1, and neuron-derived orphan receptor 1 significantly increased in diabetic C57BL/6 and db/db mice. In renal cell lines, PPARδ was highly expressed in mesangial and proximal tubular epithelial cells, while COUP-TFs were highly expressed in podocytes, proximal tubular epithelial cells, and collecting duct cells. High-glucose conditions increased the expression of Nur77 in mesangial and collecting duct cells, and liver x receptor α in podocytes. These data demonstrate NHR expression in mouse kidney cells and cultured renal cell lines and suggest potential therapeutic targets in the kidney for the treatment of DN.

  10. Increased expression of sphingosine kinase in the amnion during labor.

    PubMed

    Erkhembaatar, L O; Kotani, T; Sumigama, S; Tsuda, H; Mano, Y; Hua, L; Hasegawa, Y; Wang, J; Sugiyama, C; Nakahara, T; Iwase, A; Kikkawa, F

    2013-04-01

    Sphingosine-1-phosphate (S1P), a bioactive lipid, has been reported to regulate inflammation processes. The onset of labor is thought to be related to inflammation. We therefore hypothesized that S1P might be involved in the onset of labor. The expression of sphingosine kinase (SPHK)-1, which produces S1P, and S1P lyase (SPL)-1, which irreversibly inactivates S1P, were examined in the fetal membranes. The expression levels were compared between amnions from cases of elective Caesarean deliveries (pre-labor) and those from vaginal deliveries (post-labor). In primary cultured human amnion cells, the expression levels of prostaglandin-endoperoxide synthase (PTGS)-2 were examined in the presence or absence of S1P treatment. SPHK-1 and SPL-1 were both expressed in the amnion. The expression of SPHK-1 in the post-labor amnions increased compared with that in the pre-labor amnions. The expression of PTGS-2, a key regulator of labor, also increased in the post-labor amnion. However, the SPL-1 expression in the pre-labor amnion was not significantly different from that in the post-labor amnion. S1P1-3 and 5, which were coupled with Gi protein, were consistently found in the amnion cells. The treatment with S1P increased the expression of PTGS-2, and this was completely suppressed by a Gi inhibitor in the amnion cells. We are herein provide the first evidence of increased SPHK-1 expression in post-labor amnions, and that S1P increases the PTGS-2 expression in amnion cells. Our results suggest that S1P might play a role in the onset of labor via the induction of PTGS-2. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Elevated expression of artemis in human fibroblast cells is associated with cellular radiosensitivity and increased apoptosis.

    PubMed

    Ulus-Senguloglu, G; Arlett, C F; Plowman, P N; Parnell, J; Patel, N; Bourton, E C; Parris, C N

    2012-10-23

    The objective of this study was to determine the molecular mechanisms responsible for cellular radiosensitivity in two human fibroblast cell lines 84BR and 175BR derived from two cancer patients. Clonogenic assays were performed following exposure to increasing doses of gamma radiation to confirm radiosensitivity. γ-H2AX foci assays were used to determine the efficiency of DNA double-strand break (DSB) repair in cells. Quantitative PCR (Q-PCR) established the expression levels of key DNA DSB repair genes. Imaging flow cytometry using annexin V-FITC was used to compare artemis expression and apoptosis in cells. Clonogenic cellular hypersensitivity in the 84BR and 175BR cell lines was associated with a defect in DNA DSB repair measured by the γ-H2AX foci assay. The Q-PCR analysis and imaging flow cytometry revealed a two-fold overexpression of the artemis DNA repair gene, which was associated with an increased level of apoptosis in the cells before and after radiation exposure. Overexpression of normal artemis protein in a normal immortalised fibroblast cell line NB1-Tert resulted in increased radiosensitivity and apoptosis. We conclude that elevated expression of artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated apoptosis in two radio-hypersensitive cell lines. These data reveal a potentially novel mechanism responsible for radiosensitivity and show that increased artemis expression in cells can result in either radiation resistance or enhanced sensitivity.

  12. Elevated expression of artemis in human fibroblast cells is associated with cellular radiosensitivity and increased apoptosis

    PubMed Central

    Ulus-Senguloglu, G; Arlett, C F; Plowman, P N; Parnell, J; Patel, N; Bourton, E C; Parris, C N

    2012-01-01

    Background: The objective of this study was to determine the molecular mechanisms responsible for cellular radiosensitivity in two human fibroblast cell lines 84BR and 175BR derived from two cancer patients. Methods: Clonogenic assays were performed following exposure to increasing doses of gamma radiation to confirm radiosensitivity. γ-H2AX foci assays were used to determine the efficiency of DNA double-strand break (DSB) repair in cells. Quantitative PCR (Q-PCR) established the expression levels of key DNA DSB repair genes. Imaging flow cytometry using annexin V-FITC was used to compare artemis expression and apoptosis in cells. Results: Clonogenic cellular hypersensitivity in the 84BR and 175BR cell lines was associated with a defect in DNA DSB repair measured by the γ-H2AX foci assay. The Q-PCR analysis and imaging flow cytometry revealed a two-fold overexpression of the artemis DNA repair gene, which was associated with an increased level of apoptosis in the cells before and after radiation exposure. Overexpression of normal artemis protein in a normal immortalised fibroblast cell line NB1-Tert resulted in increased radiosensitivity and apoptosis. Conclusion: We conclude that elevated expression of artemis is associated with higher levels of DNA DSB, radiosensitivity and elevated apoptosis in two radio-hypersensitive cell lines. These data reveal a potentially novel mechanism responsible for radiosensitivity and show that increased artemis expression in cells can result in either radiation resistance or enhanced sensitivity. PMID:23093295

  13. Expression and initial promoter characterization of PCAN1 in retinal tissue and prostate cell lines.

    PubMed

    Cross, D; Reding, D J; Salzman, S A; Zhang, K Q; Catalona, W J; Burke, J; Burmester, J K

    2004-01-01

    Prostate cancer is the most frequently diagnosed neoplasia in men and one of the leading causes of cancer-related deaths in men over 60. In an effort to understand the molecular events leading to prostate cancer, we have identified PCAN1 (prostate cancer gene 1) (also known as GDEP), a gene that is highly expressed in prostate epithelial tissue and frequently mutated in prostate tumors. Here we demonstrate its expression in neural retina, and retinoblastoma cell culture but not retinal pigment epithelial cell culture. We further characterize PCAN1 expression in the prostate cell lines RWPE1, RWPE2, and LnCAP FGC. We demonstrate an increase in expression when the cells are grown in the presence of Matrigel, an artificial extracellular basement membrane. Expression was time dependent, with expression observed on d 6 and little or no expression on d 12. Testosterone was not found to increase PCAN1 expression in this culture system. In addition, normal prostate epithelial cells co-cultured with normal prostate stromal cells did not exhibit PCAN1 expression at any time. To definitively locate the transcription initiation sites, we performed restriction-ligase-mediated 5' RACE, to selectively amplify only mRNA with a 5' cap. An initial characterization of the sequence upstream of the initiation sites determined six possible binding sites for the prostate specific regulatory protein NKX3.1 and four potential binding sites for the PPAR/RXR heterodimer that is involved in the control of cell differentiation and apoptosis.

  14. An Empirical Expression for the Line Widths of Ammonia

    NASA Technical Reports Server (NTRS)

    Brown, Linda R.; Peterson, Dean B.

    1994-01-01

    The hydrogen-broadened line widths of 116 (sup 14)NH(sub 3) ground state transitions have been measured at 0.006 cm(sup -1) resolution using a Bruker spectrometer in the 24 to 210 cm(sup -1) region. The rotational variation of the experimental widths with J(sup '),K(sup ') = 1,0 to 10,10 has been reproduced to 2.4 % using an heuristically derived expression of the form

    gamma = a(sub 0) + a(sub 1) J(sup ') + a (sub 2) K(sup ') + a(sub 3) J(sup ')(sup 2) + a(sub 4) J(sup ') K(sup ')

    where J(sup ') and K(sup ') are the lower state symmetric top quantum numbers. This function has also been applied to the measured widths of the 58 transitions of nu(sub 1) at 3 (micro)m, each broadened by N(sub 2), O(sub 2), Ar, H(sub 2), and He. The rms of the observed minus calculated widths are 5% or better for the five foreign broadeners. The values of the fitted constants suggest that for some broadeners the expression might also be written as

    gamma = a(sub 0) + b(sub 1) J(sup ') + b(sub 2)(J(sup ' )- K(sup ')) + b(sub 3) J(sup ')(J(sup ') - K(sup '))

    .

  15. An Empirical Expression for the Line Widths of Ammonia

    NASA Technical Reports Server (NTRS)

    Brown, Linda R.; Peterson, Dean B.

    1994-01-01

    The hydrogen-broadened line widths of 116 (sup 14)NH(sub 3) ground state transitions have been measured at 0.006 cm(sup -1) resolution using a Bruker spectrometer in the 24 to 210 cm(sup -1) region. The rotational variation of the experimental widths with J(sup '),K(sup ') = 1,0 to 10,10 has been reproduced to 2.4 % using an heuristically derived expression of the form

    gamma = a(sub 0) + a(sub 1) J(sup ') + a (sub 2) K(sup ') + a(sub 3) J(sup ')(sup 2) + a(sub 4) J(sup ') K(sup ')

    where J(sup ') and K(sup ') are the lower state symmetric top quantum numbers. This function has also been applied to the measured widths of the 58 transitions of nu(sub 1) at 3 (micro)m, each broadened by N(sub 2), O(sub 2), Ar, H(sub 2), and He. The rms of the observed minus calculated widths are 5% or better for the five foreign broadeners. The values of the fitted constants suggest that for some broadeners the expression might also be written as

    gamma = a(sub 0) + b(sub 1) J(sup ') + b(sub 2)(J(sup ' )- K(sup ')) + b(sub 3) J(sup ')(J(sup ') - K(sup '))

    .

  16. Resistance of cell lines to prion toxicity aided by phospho-ERK expression.

    PubMed

    Uppington, Kay M; Brown, David R

    2008-05-01

    Prion diseases are fatal neurodegenerative disorders. They are characterised by neuronal loss and the accumulation of an abnormal protein in the CNS. Cell lines exist that express the toxic form of the prion protein (PrP) with little evidence of cell death. Other cell based models studying the mechanism by which cell death occurs employ exogenous application of peptides or fragments of PrP. In this study, we demonstrated that full-length recombinant PrP binding manganese was toxic to PrP-expressing cell lines and primary neuronal cultures but not to PrP-knockout neurones. This toxic form of PrP was also toxic to cell lines equivalently regardless of whether they were infected with scrapie or not. Both scrapie-infected cells and cells resistant to the toxicity of PrP showed increased levels of phosphorylated ERK protein. Scrapie-infected cells also showed elevated levels of caspase 12. Inhibition of phospho-ERK resulted in increased cell death suggesting the increased levels of phospho-ERK served a protective effect. These results suggest that scrapie-infected cell lines resist the toxicity of the prions they generate because they produce only low levels of abnormal protein and have increased resistance to apoptotic signs because of heightened activity of the MAP kinase pathway.

  17. Increased HOX C13 expression in metastatic melanoma progression

    PubMed Central

    2012-01-01

    Background The process of malignant transformation, progression and metastasis of melanoma is not completely understood. Recently, the microarray technology has been used to survey transcriptional differences that might provide insight into the metastatic process, but the validation of changing gene expression during metastatic transition period is poorly investigated. A large body of literature has been produced on the role of the HOX genes network in tumour evolution, suggesting the involvement of HOX genes in several types of human cancers. Deregulated paralogous group 13 HOX genes expression has been detected in melanoma, cervical cancer and odonthogenic tumors. Among these, Hox C13 is also involved in the expression control of the human keratin genes hHa5 and hHa2, and recently it was identified as a member of human DNA replication complexes. Methods In this study, to investigate HOX C13 expression in melanoma progression, we have compared its expression pattern between naevi, primary melanoma and metastasis. In addition HOXC13 profile pattern of expression has been evaluated in melanoma cell lines. Results Our results show the strong and progressive HOX C13 overexpression in metastatic melanoma tissues and cytological samples compared to nevi and primary melanoma tissues and cells. Conclusions The data presentated in the paper suggest a possible role of HOX C13 in metastatic melanoma switch. PMID:22583695

  18. Random Monoallelic Gene Expression Increases upon Embryonic Stem Cell Differentiation

    PubMed Central

    Eckersley-Maslin, Mélanie A.; Thybert, David; Bergmann, Jan H.; Marioni, John C.; Flicek, Paul; Spector, David L.

    2014-01-01

    Summary Random autosomal monoallelic gene expression refers to the transcription of a gene from one of two homologous alleles. We assessed the dynamics of monoallelic expression during development through an allele-specific RNA sequencing screen in clonal populations of hybrid mouse embryonic stem cells (ESCs) and neural progenitor cells (NPCs). We identified 67 and 376 inheritable autosomal random monoallelically expressed genes in ESCs and NPCs respectively, a 5.6-fold increase upon differentiation. While DNA methylation and nuclear positioning did not distinguish the active and inactive alleles, specific histone modifications were differentially enriched between the two alleles. Interestingly, expression levels of 8% of the monoallelically expressed genes remained similar between monoallelic and biallelic clones. These results support a model in which random monoallelic expression occurs stochastically during differentiation, and for some genes is compensated for by the cell to maintain the required transcriptional output of these genes. PMID:24576421

  19. Elevated expression of basic fibroblast growth factor in an immortalized rabbit smooth muscle cell line.

    PubMed

    Winkles, J A; Friesel, R; Alberts, G F; Janat, M F; Liau, G

    1993-08-01

    Intimal smooth muscle cell accumulation is regarded as an important component of atherosclerotic plaque formation, angioplasty-induced restenosis, and vascular graft occlusion. Vascular smooth muscle cells can both express and respond to acidic fibroblast growth factor (aFGF) and basic fibroblast growth factor (bFGF); therefore, under certain conditions these polypeptides may regulate smooth muscle cell growth in an autocrine manner. Previous studies using smooth muscle cells cultured in vitro have identified factors that can enhance aFGF and bFGF gene expression. In this study, we assayed fibroblast growth factor gene expression in a spontaneously immortalized rabbit smooth muscle cell line. In contrast to "normal" rabbit smooth muscle cells, these immortalized cells acquire an altered morphology and enhanced proliferative rate during; cell passaging in vitro. Both "normal" and immortalized rabbit smooth muscle cells express bFGF but not aFGF transcripts. RNA gel blot hybridization, reverse transcription/polymerase chain reaction amplification, and Western blotting techniques demonstrate that bFGF expression in the immortalized smooth muscle cell line increases as a function of passage level. This continuous cell line should prove valuable for studying both the regulation of bFGF synthesis and the control of vascular smooth muscle cell proliferation.

  20. PKCeta expression contributes to the resistance of Hodgkin's lymphoma cell lines to apoptosis.

    PubMed

    Abu-Ghanem, Sara; Oberkovitz, Galia; Benharroch, Daniel; Gopas, Jacob; Livneh, Etta

    2007-09-01

    The Hodgkin-Reed-Sternberg (HRS) malignant cells in Hodgkin's lymphoma (HL) originate from germinal center B lymphocytes that did not undergo apoptosis. Protein Kinase C (PKC), a family of serine/threonine kinases, plays a crucial role in signal transduction modulating cell growth, differentiation and apoptosis. Here, we report the expression of PKC isoforms in two HL-derived cell lines, L428 and KMH2 and their correlation with drug resistance to CPT and doxorubicin. Among the PKC isoforms examined, only PKCeta and PKCbetaII were preferentially expressed in the drug resistant L428 cells. We have shown correlation between the response to apoptosis of L428 and KMH2 cells and PKCeta expression in these cell lines. In order to directly demonstrate a role for PKCeta in apoptosis, its expression was knocked-down by siRNA in the resistant L428 cells. Downregulation of PKCeta rendered L428 cells more sensitive to doxorubicin and CPT. Furthermore, PKCeta knocked-down cells showed increased PARP-1 cleavage, cytochrome c release and caspase 7 activation. It appears that PKCeta functions as an anti-apoptotic protein in HL-derived cell lines, and as we show here that it is also expressed in HRS of HL biopsies, it may have therapeutic relevance in HL. Thus, PKCeta could provide a new target aimed to reduce resistance to anti-cancer treatments of HL and other cancer patients.

  1. Roles of histamine on the expression of aldehyde dehydrogenase 1 in endometrioid adenocarcinoma cell line.

    PubMed

    Wang, Yi; Jiang, Yang; Ikeda, Jun-Ichiro; Tian, Tian; Sato, Atsushi; Ohtsu, Hiroshi; Morii, Eiichi

    2014-10-01

    Cancer-initiating cells (CICs) are a limited number of cells that are essential for maintenance, recurrence, and metastasis of tumors. Aldehyde dehydrogenase 1 (ALDH1) has been recognized as a marker of CICs. We previously reported that ALDH1-high cases of uterine endometrioid adenocarcinoma showed poor prognosis, and that ALDH1 high population was more tumorigenic, invasive, and resistant to apoptosis than ALDH1 low population. Histamine plays a critical role in cancer cell proliferation, migration, and invasion. Here, we examined the effect of histamine on ALDH1 expression in endometrioid adenocarcinoma cell line. The addition of histamine increased ALDH1 high population, which was consistent with the result that histamine enhanced the invasive ability and the resistance to anticancer drug. Among 4 types of histamine receptors, histamine H1 and H2 receptor (H1R and H2R) were expressed in endometrioid adenocarcinoma cell line. The addition of H1R agonist but not H2R agonist increased ALDH1. The antagonist H1R but not H2R inhibited the effect of histamine on ALDH1 expression. These results indicated that histamine increased the expression of ALDH1 via H1R but not H2R. These findings may provide the evidence for exploring a new strategy to suppress CICs by inhibiting ALDH1 expression with histamine.

  2. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro.

    PubMed

    Frajese, Giovanni Vanni; Benvenuto, Monica; Fantini, Massimo; Ambrosin, Elena; Sacchetti, Pamela; Masuelli, Laura; Giganti, Maria Gabriella; Modesti, Andrea; Bei, Roberto

    2016-06-01

    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-κB. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro.

  3. Potassium increases the antitumor effects of ascorbic acid in breast cancer cell lines in vitro

    PubMed Central

    FRAJESE, GIOVANNI VANNI; BENVENUTO, MONICA; FANTINI, MASSIMO; AMBROSIN, ELENA; SACCHETTI, PAMELA; MASUELLI, LAURA; GIGANTI, MARIA GABRIELLA; MODESTI, ANDREA; BEI, ROBERTO

    2016-01-01

    Ascorbic acid (A) has been demonstrated to exhibit anti-cancer activity in association with chemotherapeutic agents. Potassium (K) is a regulator of cellular proliferation. In the present study, the biological effects of A and K bicarbonate, alone or in combination (A+K), on breast cancer cell lines were evaluated. The survival of cancer cells was determined by sulforhodamine B cell proliferation assay, while analysis of the cell cycle distribution was conducted via fluorescence-activated cell sorting. In addition, the expression of signaling proteins was analyzed upon treatment. The results indicated that there was a heterogeneous response of the different cell lines to A and K, and the best effects were achieved by A+K and A treatment. The interaction between A+K indicated an additive or synergistic effect. In addition, A+K increased the percentage of cells in the sub-G1 phase of the cell cycle, and was the most effective treatment in activating the degradation of poly(adenosine diphosphate-ribose) polymerase-1. In the breast cancer cell line MCF-7, A+K induced the appearance of the 18 kDa isoform of B-cell lymphoma-2-associated X protein (Bax), which is a more potent inducer of apoptosis than the full-length Bax-p21. The effects of A and K on the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 were heterogeneous. In addition, treatment with K, A and A+K inhibited the expression of nuclear factor-κB. Overall, the results of the present study indicated that K potentiated the anti-tumoral effects of A in breast cancer cells in vitro. PMID:27313770

  4. Significance of COX-2 expression in human renal cell carcinoma cell lines.

    PubMed

    Chen, Qinzhong; Shinohara, Nobuo; Abe, Takashige; Watanabe, Takafumi; Nonomura, Katsuya; Koyanagi, Tomohiko

    2004-03-01

    Accumulating evidences indicate that cyclooxygenase (COX)-2 plays an important role in tumorigenesis in many human cancers. Yet the relationship between COX-2 and human renal cell carcinoma (RCC) remains unclear. The aim of our study was to evaluate COX-2 expression in human RCC cell lines and its role in tumorigenesis of human RCC. Among the human RCC cell lines (SMKT-R4, OS-RC-2, ACHN) and normal renal cell line RPTEC, COX-2 overexpression was found in OS-RC-2 cells both at mRNA and protein levels. COX-2 sense- and antisense-orientated vectors were constructed and transferred into RCC cells. Significant suppression of cellular proliferation was demonstrated in OS-RC-2 antisense transfectants, whereas promotion was found in SMKT-R4 sense transfectants by colony-forming assay despite the observation that COX-2 specific inhibitor NS398 exhibited similar IC50 among RCC cell lines by MTT assay. In comparison with parent cells and sense transfectants, significant suppression of COX-2 expression and PGE2 production and increase in butyrate-induced apoptosis were observed in OS-RC-2 antisense transfectants by Western blot, ELISA assay and FACS analysis, respectively. Furthermore, tumor growth and angiogenesis of OS-RC-2 antisense transfectants in nude mice was significantly suppressed and the survival time of these mice was significantly prolonged. Our study demonstrates that COX-2 is overexpressed in OS-RC-2 RCC cell line and plays an important role in tumorigenesis of the cells in vivo, which implies that COX-2 may be a therapeutic target for COX-2-expressing RCC, and that suppression of COX-2 expression by antisense-based strategy may have potential utility in treatment of COX-2-expressing RCC. Copyright 2003 Wiley-Liss, Inc.

  5. Analysis of CCL5 expression in classical Hodgkin's lymphoma L428 cell line.

    PubMed

    Liu, Fanrong; Zhang, Yan; Wu, Zi-Qing; Zhao, Tong

    2011-01-01

    CCL5 is one of the chemoattractant cytokines involved in inflammatory observed in both diffuse large B-cell lymphoma (DLBCL) and classical Hodgkin's lymphoma (CHL). However, the pathological effects of CCL5 remain unclear. To gain a better understanding of the role of CCL5 in CHL and DLBCL, we examined the expression of CCL5 in the CHL cell line L428 and the DLBCL cell lines Ly1 and Ly8, as well as its chemotactic effect on CD4+ T cells. CCL5 mRNA expression was detected by real-time quantitative RT-PCR. Intracellular CCL5 protein expression was analyzed using confocal microscopy, and CCL5 protein secretion was detected by ELISA. The chemotactic function of CCL5 was assessed using a Transwell coculture system, and the number of migrated CD4+ T cells was counted. Moreover, the p-iкBα and p65 levels of NF-кB signaling molecules in these lymphoma cell lines were detected by Western blotting. The results showed that CCL5 mRNA and protein expression in the L428 cells was significantly higher than in Ly1 and Ly8 cells (p<0.05). L428 cells secreted more CCL5 than the Ly1 or Ly8 cells, and the secreted CCL5 was capable of inducing CD4+ T cell migration. The expression levels of the NF-кB transcription factors p65 and p-iкBα were examined in these lymphoma cells. L428, Ly1 and Ly8 cells expressed similar levels of p65, while p-iкBα expression was higher in the L428 cells than in the Ly1 or Ly8 cells, indicating that a high CCL5 expression may be related to the increased activity of the NF-кB signaling pathway in L428 cells.

  6. Improving expression of recombinant human IGF-1 using IGF-1R knockout CHO cell lines.

    PubMed

    Romand, Sandrine; Jostock, Thomas; Fornaro, Mara; Schmidt, Joerg; Ritter, Anett; Wilms, Burkhard; Laux, Holger

    2016-05-01

    Chinese Hamster Ovary (CHO) cells are widely used for the large-scale production of recombinant biopharmaceuticals. However, attempts to express IGF-1 (a mutated human Insulin-like growth factor 1 Ea peptide (hIGF-1Ea mut)) in CHO cells resulted in poor cell growth and low productivity (0.1-0.2 g/L). Human IGF-1 variants negatively impacted CHO cell growth via the IGF-1 receptor (IGF-1R). Therefore knockout (KO) of the IGF-1R gene in two different CHO cell lines as well as knockdown (KD) of IGF-1R in one CHO cell line were performed. These cell line engineering approaches decreased significantly the hIGF-1 mediated cell growth inhibition and increased productivity of both KO CHO cell lines as well as of the KD CHO cell line. A productivity increase of 10-fold at pool level and sevenfold at clone level was achieved, resulting in a titer of 1.3 g/L. This data illustrate that cell line engineering approaches are powerful tools to improve the yields of recombinant proteins which are difficult to produce in CHO cells.

  7. MiR-224 expression increases radiation sensitivity of glioblastoma cells

    SciTech Connect

    Upraity, Shailendra; Kazi, Sadaf; Padul, Vijay; Shirsat, Neelam Vishwanath

    2014-05-30

    Highlights: • MiR-224 expression in established glioblastoma cell lines and sporadic tumor tissues is low. • Exogenous miR-224 expression was found to increase radiation sensitivity of glioblastoma cells. • MiR-224 expression brought about 55–60% reduction in API5 expression levels. • Transfection with API5 siRNA increased radiation sensitivity of glioblastoma cells. • Low miR-224 and high API5 expression correlated with worse survival of GBM patients. - Abstract: Glioblastoma (GBM) is the most common and highly aggressive primary malignant brain tumor. The intrinsic resistance of this brain tumor limits the efficacy of administered treatment like radiation therapy. In the present study, effect of miR-224 expression on growth characteristics of established GBM cell lines was analyzed. MiR-224 expression in the cell lines as well as in primary GBM tumor tissues was found to be low. Exogenous transient expression of miR-224 using either synthetic mimics or stable inducible expression using doxycycline inducible lentiviral vector carrying miR-224 gene, was found to bring about 30–55% reduction in clonogenic potential of U87 MG cells. MiR-224 expression reduced clonogenic potential of U87 MG cells by 85–90% on irradiation at a dose of 6 Gy, a dose that brought about 50% reduction in clonogenic potential in the absence of miR-224 expression. MiR-224 expression in glioblastoma cells resulted in 55–65% reduction in the expression levels of API5 gene, a known target of miR-224. Further, siRNA mediated down-regulation of API5 was also found to have radiation sensitizing effect on glioblastoma cell lines. Analysis of the Cancer Genome Atlas data showed lower miR-224 expression levels in male GBM patients to correlate with poorer survival. Higher expression levels of miR-224 target API5 also showed significant correlation with poorer survival of GBM patients. Up-regulation of miR-224 or down-regulation of its target API5 in combination with radiation therapy

  8. Increased expression of senescence markers in cystic fibrosis airways

    PubMed Central

    Wong, Jessica K.; Degan, Simone; Kummarapurugu, Apparao B.; Zheng, Shuo; Haridass, Prashamsha; Voynow, Judith A.

    2013-01-01

    Cystic Fibrosis (CF) is a chronic lung disease characterized by chronic neutrophilic airway inflammation and increased levels of neutrophil elastase (NE) in the airways. We have previously reported that NE treatment triggers cell cycle arrest. Cell cycle arrest can lead to senescence, a complete loss of replicative capacity. Importantly, senescent cells can be proinflammatory and would perpetuate CF chronic inflammation. By immunohistochemistry, we evaluated whether airway sections from CF and control subjects expressed markers of senescence, including p16INK4a (p16), a cyclin-dependent kinase inhibitor, phospho-Histone H2A.X (γH2A.X), and phospho-checkpoint 2 kinase (phospho-Chk2), which are also DNA damage response markers. Compared with airway epithelium from control subjects, CF airway epithelium had increased levels of expression of all three senescence markers. We hypothesized that the high load of NE in the CF airway triggers epithelial senescence by upregulating expression of p16, which inhibits cyclin-dependent kinase 4 (CDK4). Normal human bronchial epithelial (NHBE) cells, cultured in air-liquid interface were treated with NE (0, 200, and 500 nM) to induce visible injury. Total cell lysates were collected and evaluated by Western analysis for p16 protein expression and CDK4 kinase activity. NE significantly increased p16 expression and decreased CDK4 kinase activity in NHBE cells. These results support the concept that NE triggers expression of senescence markers in CF airway epithelial cells. PMID:23316069

  9. 78 FR 76140 - Extension of Public Comment Period for the Champlain Hudson Power Express Transmission Line...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... Extension of Public Comment Period for the Champlain Hudson Power Express Transmission Line Project Draft... Hudson Power Express Transmission Line Project Draft Environmental Impact Statement (DOE/EIS-0447). The... permit to the Applicant, Champlain Hudson Power Express, Inc. (CHPEI), to construct, operate,...

  10. Unexpected expression of intermediate filament protein genes in human oligodendroglioma cell lines

    SciTech Connect

    Kashima, Tsuyoshi; Vinters, H.V.; Campagnoni, A.T.

    1995-01-01

    From a human oligodendroglioma cell line cDNA library, ten intermediate filament (IF) cDNA clones were isolated. Five clones corresponded to vimentin mRNA, two corresponded to cytokeratin K7 mRNA, and two corresponded to cytokeratin K8 mRNA. One clone encoded a novel IF mRNA. The expression of these and other IF protein genes was examined in five cell lines derived from human oligodendroglioma, astrocytoma and neuroblastoma tumors. Vimentin mRNA and K18 mRNA were expressed in all the cell lines. The K7 and K8 genes were expressed only in the oligodendroglioma cell lines. Surprisingly, nestin mRNA was expressed in the astrocytoma lines and the neuroblastoma line, but was not expressed in the oligodendroglioma lines. These results indicate that oligodendroglioma cell lines express Types I and II cytokeratin genes. This pattern of IF gene expression was different from that of the astrocytoma and neuroblastoma cell lines, which expressed IF genes usually associated with the mature cell types or with differentiating fetal neural precursor cells, i.e. GFAP and neurofilament-L. The results also suggest that the oligodendroglioma cell lines are more epithelial in character and do not reflect the gene expression of mature oligodendrocytes. 46 refs., 8 figs., 2 tabs.

  11. Increased TTS expression in patients with rheumatoid arthritis.

    PubMed

    Chen, Jiaxi; Jun, Li; Shiyong, Chen; Li, Hou; Zhu, Ming; Shen, Bo

    2015-02-01

    Immune system activation is known to be involved in the progression of rheumatoid arthritis (RA). The aim of this work was to study the imbalance expressions of indoleamine 2,3-dioxygenase (IDO) and tryptophanyl-tRNA synthetase (TTS) with RA patients. Forty-nine RA patients and 49 healthy controls were studied. The expressions of IDO and TTS were analyzed by real-time quantitative polymerase chain reaction and flow cytometry in peripheral blood mononuclear cells. The expression of TTS mRNA increased significantly in RA patients when compared with healthy controls and correlated with erythrocyte sedimentation rate (r = 0.424, P < 0.01). In addition, we found TTS increased significantly mainly in CD3(+) T cells in rheumatoid arthritis group. Increased TTS expressions from CD3(+) T cells might link to a pathogenic mechanism involved in increasing survival of autoreactive T cells in RA patients. Determination of expressions of TTS may provide a better understanding of progression of the disease.

  12. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression.

    PubMed

    Perazzoli, Gloria; Prados, Jose; Ortiz, Raul; Caba, Octavio; Cabeza, Laura; Berdasco, Maria; Gónzalez, Beatriz; Melguizo, Consolación

    2015-01-01

    The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated. Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2'-deoxycytidine was used to demethylate the MGMT promoter and O(6)-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed. Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229) and high (SF268 and SK-N-SH) basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines. These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma multiforme patients.

  13. Global gene expression analyses of hematopoietic stem cell-like cell lines with inducible Lhx2 expression

    PubMed Central

    Richter, Karin; Wirta, Valtteri; Dahl, Lina; Bruce, Sara; Lundeberg, Joakim; Carlsson, Leif; Williams, Cecilia

    2006-01-01

    Background Expression of the LIM-homeobox gene Lhx2 in murine hematopoietic cells allows for the generation of hematopoietic stem cell (HSC)-like cell lines. To address the molecular basis of Lhx2 function, we generated HSC-like cell lines where Lhx2 expression is regulated by a tet-on system and hence dependent on the presence of doxycyclin (dox). These cell lines efficiently down-regulate Lhx2 expression upon dox withdrawal leading to a rapid differentiation into various myeloid cell types. Results Global gene expression of these cell lines cultured in dox was compared to different time points after dox withdrawal using microarray technology. We identified 267 differentially expressed genes. The majority of the genes overlapping with HSC-specific databases were those down-regulated after turning off Lhx2 expression and a majority of the genes overlapping with those defined as late progenitor-specific genes were the up-regulated genes, suggesting that these cell lines represent a relevant model system for normal HSCs also at the level of global gene expression. Moreover, in situ hybridisations of several genes down-regulated after dox withdrawal showed overlapping expression patterns with Lhx2 in various tissues during embryonic development. Conclusion Global gene expression analysis of HSC-like cell lines with inducible Lhx2 expression has identified genes putatively linked to self-renewal / differentiation of HSCs, and function of Lhx2 in organ development and stem / progenitor cells of non-hematopoietic origin. PMID:16600034

  14. Increased Expression of Cannabinoid CB1 Receptors in Achilles Tendinosis

    PubMed Central

    Björklund, Emmelie; Forsgren, Sture; Alfredson, Håkan; Fowler, Christopher J.

    2011-01-01

    Background The endogenous cannabinoid system is involved in the control of pain. However, little is known as to the integrity of the cannabinoid system in human pain syndromes. Here we investigate the expression of the cannabinoid receptor 1 (CB1) in human Achilles tendons from healthy volunteers and from patients with Achilles tendinosis. Methodology Cannabinoid CB1 receptor immunoreactivity (CB1IR) was evaluated in formalin-fixed biopsies from individuals suffering from painful Achilles tendinosis in comparison with healthy human Achilles tendons. Principal Findings CB1IR was seen as a granular pattern in the tenocytes. CB1IR was also observed in the blood vessel wall and in the perineurium of the nerve. Quantification of the immunoreactivity in tenocytes showed an increase of CB1 receptor expression in tendinosis tissue compared to control tissue. Conclusion Expression of cannabinoid receptor 1 is increased in human Achilles tendinosis suggesting that the cannabinoid system may be dysregulated in this disorder. PMID:21931835

  15. Climbazole increases expression of cornified envelope proteins in primary keratinocytes.

    PubMed

    Pople, J E; Moore, A E; Talbot, D C S; Barrett, K E; Jones, D A; Lim, F L

    2014-10-01

    Dandruff is a troubling consumer problem characterized by flaking and pruritus of the scalp and is considered a multifactorial condition with sebum, individual susceptibility and the fungus Malassezia all thought to play a part. The condition is commonly treated with shampoo products containing antifungal ingredients such as zinc pyrithione and climbazole. It is hypothesized that these ingredients may be delivering additional scalp skin benefits besides their antifungal activity helping to relieve dandruff effectively. The objective of this study was to evaluate the anti-dandruff ingredient climbazole for potential skin benefits using genomics and in vitro assays. Microarray analysis was performed to profile gene expression changes in climbazole-treated primary human keratinocyte cells. Results were independently validated using qPCR and analysis of protein expression using ELISA and immunocytochemistry. Microarray analysis of climbazole-treated keratinocytes showed statistically significant expression changes in genes associated with the gene ontology groups encompassing epidermal differentiation, keratinization, cholesterol biosynthesis and immune response. Upregulated genes included a number encoding cornified envelope proteins such as group 3 late-cornified envelope proteins, LCE3 and group 2 small-proline-rich proteins, SPRR2. Protein analysis studies of climbazole-treated primary keratinocytes using ELISA and immunocytochemistry were able to demonstrate that the increase in gene transcripts translated into increased protein expression of these cornified envelope markers. Climbazole treatment of primary keratinocytes results in an upregulation in expression of a number of genes including those encoding proteins involved in cornified envelope formation with further studies demonstrating this did translate into increased protein expression. A climbazole-driven increase in cornified envelope proteins may improve the scalp skin barrier, which is known to be weaker

  16. Increased heat shock protein expression after stress in Japanese quail.

    PubMed

    Hoekstra, K A; Iwama, G K; Nichols, C R; Godin, D V; Cheng, K M

    1998-12-01

    Heat shock proteins (HSPs) have been shown to provide information on the biological impact of environmental stress to organisms, yet none have investigated the HSP response to stress in birds. Japanese quail were exposed to seven different stressors (mild restraint, loud noise, inescapable irritation, cold temperature, isolation in darkness, and two stressful social situations) and expression of HSP30, 60, 70, and 90 in heart, liver, lung, kidney and gonads was examined. Tonic Immobility (TI) tests were also conducted to assess whether the stressors increased fear response. Increased expression of HSP70 was found in the myocardial tissue of birds exposed to loud noise, inescapable irritation, cold temperature, and isolation in darkness. Increased expression of other HSPs was not apparent in the heart or any of the other all tissues examined. Longer TI was observed only in birds exposed to the noise stress. Evidence is presented that a fairly wide range of stressors caused increased expression of HSP70 in the Japanese quail myocardial tissue and that HSPs may provide useful biomarkers for the study of environmental stress in birds.

  17. Characterization of keratin and cell cycle protein expression in cell lines from squamous intraepithelial lesions progressing towards a malignant phenotype.

    PubMed Central

    Hietanen, S.; Syrjänen, K.; Syrjänen, S.

    1998-01-01

    Two cell lines derived from vaginal intraepithelial neoplasias (VAINs) expressing human papillomavirus (HPV) 33 (VAIN I, UT-DEC-1) and 16 (VAIN II, UT-DEC-2) E6-E7 mRNA were studied in organotypic culture for their keratins and cell cycle regulatory proteins in relation to replicative aging. Early-passage UT-DEC-1 and UT-DEC-2 cells reproduced epithelial patterns consistent with VAIN. Cells from later passages resembled full-thickness intraepithelial neoplasia (UT-DEC-1) and microinvasive cancer (UT-DEC-2). The morphological changes were compatible with these cell lines' ability for anchorage-independent growth at later passages. Simple epithelial keratins were aberrantly expressed in both cell lines. K18 (absent in normal vaginal keratinocytes) and K17 expression increased in UT-DEC-1 and UT-DEC-2 cells at late passages. No marked differences in expression of p53 (wild type in both cell lines), mdm-2 or PCNA were detected in parallel with progression. The expression of p21WAF1/cip1 localized mostly to the upper half of the epithelium at early passage and was more intense in the HPV 16-positive UT-DEC-2 cell line expressing K10. In Northern blot analyses, the transcription pattern of the HPV 33 E6-E7 of the UT-DEC-1 cell line changed during later passages, whereas that of the HPV 16 E6-E7 of the UT-DEC-2 cell line remained unaltered. The present characterization of the phenotype of these cell lines derived from natural squamous intraepithelial lesions shows an association between simple epithelial-type keratin expression and progressive changes in growth and morphology, but fails to demonstrate consistent changes in the expression of cell cycle regulatory proteins studied in parallel with progression. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:9514056

  18. Increased intra- and extracellular granzyme expression in patients with tuberculosis.

    PubMed

    Garcia-Laorden, M Isabel; Blok, Dana C; Kager, Liesbeth M; Hoogendijk, Arie J; van Mierlo, Gerard J; Lede, Ivar O; Rahman, Wahid; Afroz, Rumana; Ghose, Aniruddha; Visser, Caroline E; Md Zahed, Abu Shahed; Husain, Md Anwar; Alam, Khan Mashrequl; Chandra Barua, Pravat; Hassan, Mahtabuddin; Hossain, Ahmed; Tayab, Md Abu; Day, Nick; Dondorp, Arjen M; de Vos, Alex F; van der Poll, Tom

    2015-09-01

    Tuberculosis (TB) is an important cause of morbidity and mortality worldwide. Granzymes (gzms) are proteases mainly found in cytotoxic lymphocytes, but also extracellularly. While the role of gzms in target cell death has been widely characterized, considerable evidence points towards broader roles related to infectious and inflammatory responses. To investigate the expression of the gzms in TB, intracellular gzms A, B and K were measured by flow cytometry in lymphocyte populations from peripheral blood mononuclear cells from 18 TB patients and 12 healthy donors from Bangladesh, and extracellular levels of gzmA and B were measured in serum from 58 TB patients and 31 healthy controls. TB patients showed increased expression of gzmA in CD8(+) T, CD4(+) T and CD56(+) T, but not NK, cells, and of gzmB in CD8(+) T cells, when compared to controls. GzmK expression was not altered in TB patients in any lymphocyte subset. The extracellular levels of gzmA and, to a lesser extent, of gzmB, were increased in TB patients, but did not correlate with intracellular gzm expression in lymphocyte subsets. Our results reveal enhanced intra- and extracellular expression of gzmA and B in patients with pulmonary TB, suggesting that gzms are part of the host response to tuberculosis.

  19. Expression Status of UBE2Q2 in Colorectal Primary Tumors and Cell Lines

    PubMed Central

    Shafiee, Sayed Mohammad; Seghatoleslam, Atefeh; Nikseresht, Mohsen; Hosseini, Seyed Vahid; Alizadeh-Naeeni, Mahvash; Safaei, Akbar; Owji, Ali Akbar

    2014-01-01

    Background: Activation of the ubiquitin-proteasome pathway in various malignancies, including colorectal cancer, is established. This pathway mediates the degradation of damaged proteins and regulates growth and stress response. The novel human gene, UBE2Q2, with a putative ubiquitin-conjugating enzyme activity, is reported to be overexpressed in some malignancies. We sought to investigate the expression levels of the UBE2Q2 gene in colorectal cell lines as well as in cancerous and normal tissues from patients with colorectal cancer. Methods: Levels of UBE2Q2 mRNA in cell lines were assessed by Real-Time PCR. Western blotting was employed to investigate the levels of the UBE2Q2 protein in 8 colorectal cell lines and 43 colorectal tumor samples. Results: Expression of UBE2Q2 was observed at the level of both mRNA and protein in colorectal cell lines, HT29/219, LS180, SW742, Caco2, HTC116, SW48, SW480, and SW1116. Increased levels of UBE2Q2 immunoreactivity was observed in the 65.11% (28 out of 43) of the colorectal carcinoma tissues when compared with their corresponding normal tissues. Difference between the mean intensities of UBE2Q2 bands from cancerous and normal tissues was statistically significant at P<0.001 (paired t test). Conclusion: We showed the expression pattern of the novel human gene, UBE2Q2, in 8 colorectal cell lines. Overexpression of UBE2Q2 in the majority of the colorectal carcinoma samples denotes that it may have implications for the pathogenesis of colorectal cancer. PMID:24753643

  20. (-)-Epigallocatechin-3-gallate induces apoptosis in gastric cancer cell lines by down-regulating survivin expression.

    PubMed

    Onoda, Chihiro; Kuribayashi, Kageaki; Nirasawa, Shinya; Tsuji, Naoki; Tanaka, Maki; Kobayashi, Daisuke; Watanabe, Naoki

    2011-05-01

    The polyphenol (-)-epigallocatechin-3-gallate (EGCG) is a green tea constituent, which has been shown to inhibit cancer cell growth in vitro, in vivo and in epidemiological studies. In this study, we investigated its effects in gastric cancer cell lines. Five gastric cancer cell lines, the MKN-1, MKN-28, MKN-45, NUGC-3 and TMK-1, were found to be sensitive to EGCG treatment. Of all the cell lines tested, NUGC-3 was the most sensitive. EGCG treatment of NUGC-3 cells induced apoptosis, which was confirmed by sub-G1 analysis, caspase-Glo assay and Western blotting against cleaved PARP and cleaved caspase-3. EGCG treatment lowered survivin and increased Bax and TRAIL expression. Furthermore, EGCG induced p73 activation in NUGC-3 cells. Small interfering RNA against p73 diminished EGCG effects on survivin expression and cell viability. These results show that EGCG induces cell death in gastric cancer cells by apoptosis via inhibition of survivin expression downstream of p73. This study provides a novel mechanism whereby EGCG potentially inhibits cancer cell growth, concluding that EGCG may be a potential candidate in anti-survivin cancer therapy.

  1. Tetraspanin-8 promotes hepatocellular carcinoma metastasis by increasing ADAM12m expression

    PubMed Central

    Wang, Yanru; Chen, Guangnan; Huang, Jing; Chen, Jie; Zhao, Yan; Sun, Ruixia; Liang, Chunmin; Liu, Binbin

    2016-01-01

    Recent evidence indicates that tetraspanin-8 (TSPAN8) promotes tumor progression and metastasis. In this study, we explored the effects of TSPAN8 and the molecular mechanisms underlying hepatocellular carcinoma (HCC) metastasis using various HCC cell lines, tissues from 149 HCC patients, and animal models of HCC progression. We showed that elevated expression of TSPAN8 promoted HCC invasion in vitro and metastasis in vivo, but did not influence HCC cell proliferation in vitro. Increased TSPAN8 expression in human HCC was predictive of poor survival, and multivariate analyses indicated TSPAN8 expression to be an independent predictor for both postoperative overall survival and relapse-free survival. Importantly, TSPAN8 enhanced HCC invasion and metastasis by increasing ADAM12m expression. We therefore conclude that TSPAN8 and ADAM12m may be useful therapeutic targets for the prevention of HCC progression and metastasis. PMID:27270327

  2. Concurrent expression of heme oxygenase-1 and p53 in human retinal pigment epithelial cell line

    SciTech Connect

    Lee, Sang Yull; Jo, Hong Jae; Kim, Kang Mi; Song, Ju Dong; Chung, Hun Taeg; Park, Young Chul

    2008-01-25

    Heme oxygenase-1 (HO-1) is a stress-responsive protein that is known to regulate cellular functions such as cell proliferation, inflammation, and apoptosis. Here, we investigated the effects of HO activity on the expression of p53 in the human retinal pigment epithelium (RPE) cell line ARPE-19. Cobalt protoporphyrin (CoPP) induced the expression of both HO-1 and p53 without significant toxicity to the cells. In addition, the blockage of HO activity with the iron chelator DFO or with HO-1 siRNA inhibited the CoPP-induced expression of p53. Similarly, zinc protoporphyrin (ZnPP), an inhibitor of HO, suppressed p53 expression in ARPE-19 cells, although ZnPP increased the level of HO-1 protein while inhibiting HO activity. Also, CoPP-induced p53 expression was not affected by the formation of reactive oxygen species (ROS). Based on these results, we conclude that HO activity is involved in the regulation of p53 expression in a ROS-independent mechanism, and also suggest that the expression of p53 in ARPE-19 cells is associated with heme metabolites such as biliverdin/bilirubin, carbon monoxide, and iron produced by the activity of HO.

  3. Gene expression profiling of hematologic malignant cell lines resistant to oncolytic virus treatment

    PubMed Central

    Lee, Nam Hee; Kim, Mikyung; Oh, Sung Yong; Kim, Seong-Geun; Kwon, Hyuk-Chan; Hwang, Tae-Ho

    2017-01-01

    Pexa-Vec (pexastimogene devacirpvec; JX-594) has emerged as an attractive tool in oncolytic virotherapy. Pexa-Vec demonstrates oncolytic and immunotherapeutic mechanisms of action. But the determinants of resistance to Pexa-Vec are mostly unknown. We treated hemoatologic malignant cells with Pexa-Vec and examined the gene-expression pattern of sensitive and resistant cells. Human myeloid malignant cell lines (RPMI-8226, IM-9, K562, THP-1) and lymphoid cancer cell lines (MOLT4, CCRF-CEM, Ramos, U937) were treated with Pexa-Vec. Pexa-Vec was cytotoxic on myeloid cell lines in a dose-dependent manner, and fluorescent imaging and qPCR revealed that Pexa-Vec expression was low in RAMOS than IM-9 after 24 hrs and 48 hrs of infection. Gene expression profiles between two groups were analyzed by microarray. Genes with at least 2-fold increase or decrease in their expression were identified. A total of 660 genes were up-regulated and 776 genes were down-regulated in lymphoid cancer cell lines. The up- and down-regulated genes were categorized into 319 functional gene clusters. We identified the top 10 up-regulated genes in lymphoid cells. Among them three human genes (LEF1, STAMBPL1, and SLFN11) strongly correlated with viral replication. Up-regulation of PVRIG, LPP, CECR1, Arhgef6, IRX3, IGFBP2, CD1d were related to resistant to Pexa-Vec. In conclusion, lymphoid malignant cells are resistant to Pexa-Vec and displayed up-regulated genes associated with resistance to oncolytic viral therapy. These data provide potential targets to overcome resistance, and suggest that molecular assays may be useful in selecting patients for further clinical trials with Pexa-Vec. PMID:27901484

  4. Complexity of expression of the intermediate filaments of six new human ovarian carcinoma cell lines: new expression of cytokeratin 20.

    PubMed Central

    Yanagibashi, T.; Gorai, I.; Nakazawa, T.; Miyagi, E.; Hirahara, F.; Kitamura, H.; Minaguchi, H.

    1997-01-01

    Six permanent human ovarian carcinoma cell lines (OVISE, OVTOKO, OVMANA and OVSAYO from clear cell adenocarcinoma, and OVSAHO and OVKATE from serous papillary adenocarcinoma) were established from solid tumours. The cell lines have been in culture for 5-8 years, the passage number varying from 62 to 246. Immunohistochemical analysis has shown that five of the six cell lines express at least six cytokeratin (CK) polypeptides. OVISE and OVSAYO expressed CKs 6, 7, 8, 18, 19 and 15 and/or 16. OVTOKO was positive for CKs 7, 8, 18, 19 and 15 and/or 16. OVSAHO expressed CKs 6, 7, 8, 14, 18, 19 and 15 and/or 16. OVMANA expressed CKs 6, 7, 8, 18, 19, 20 and 15 and/or 16. OVKATE expressed CKs 6, 7, 8, 13, 17, 18, 19, 20 and 15 and/or 16. The expression of CK7, additional expression of vimentin, and clinical and histopathological findings enabled us to confirm that six cell lines had been established from primary ovarian cancers. Two of the six cell lines were positive for CK20, although CK20 was not expressed in the original tumours. The heterotransplanted tumours produced by CK20-positive cells also expressed CK20. This is the first report of ovarian carcinoma cell lines that express CK20 irrespective of their histological type. CK20 has been found in all colon carcinoma cell lines, but only in the mucinous type of ovarian tumours. These new ovarian carcinoma cell lines will therefore provide a relevant experimental system for elucidating the regulatory control mechanisms of intermediate filament expression. Images Figure 1 Figure 2 Figure 3 PMID:9328139

  5. Increased expression and aberrant localization of mucin 13 in metastatic colon cancer.

    PubMed

    Gupta, Brij K; Maher, Diane M; Ebeling, Mara C; Sundram, Vasudha; Koch, Michael D; Lynch, Douglas W; Bohlmeyer, Teresa; Watanabe, Akira; Aburatani, Hiroyuki; Puumala, Susan E; Jaggi, Meena; Chauhan, Subhash C

    2012-11-01

    MUC13 is a newly identified transmembrane mucin. Although MUC13 is known to be overexpressed in ovarian and gastric cancers, limited information is available regarding the expression of MUC13 in metastatic colon cancer. Herein, we investigated the expression profile of MUC13 in colon cancer using a novel anti-MUC13 monoclonal antibody (MAb, clone ppz0020) by immunohistochemical (IHC) analysis. A cohort of colon cancer samples and tissue microarrays containing adjacent normal, non-metastatic colon cancer, metastatic colon cancer, and liver metastasis tissues was used in this study to investigate the expression pattern of MUC13. IHC analysis revealed significantly higher (p<0.001) MUC13 expression in non-metastatic colon cancer samples compared with faint or very low expression in adjacent normal tissues. Interestingly, metastatic colon cancer and liver metastasis tissue samples demonstrated significantly (p<0.05) higher cytoplasmic and nuclear MUC13 expression compared with non-metastatic colon cancer and adjacent normal colon samples. Moreover, cytoplasmic and nuclear MUC13 expression correlated with larger and poorly differentiated tumors. Four of six tested colon cancer cell lines also expressed MUC13 at RNA and protein levels. These studies demonstrate a significant increase in MUC13 expression in metastatic colon cancer and suggest a correlation between aberrant MUC13 localization (cytoplasmic and nuclear expression) and metastatic colon cancer.

  6. Increased Expression and Aberrant Localization of Mucin 13 in Metastatic Colon Cancer

    PubMed Central

    Gupta, Brij K.; Maher, Diane M.; Ebeling, Mara C.; Sundram, Vasudha; Koch, Michael D.; Lynch, Douglas W.; Bohlmeyer, Teresa; Watanabe, Akira; Aburatani, Hiroyuki; Puumala, Susan E.; Jaggi, Meena

    2012-01-01

    MUC13 is a newly identified transmembrane mucin. Although MUC13 is known to be overexpressed in ovarian and gastric cancers, limited information is available regarding the expression of MUC13 in metastatic colon cancer. Herein, we investigated the expression profile of MUC13 in colon cancer using a novel anti-MUC13 monoclonal antibody (MAb, clone ppz0020) by immunohistochemical (IHC) analysis. A cohort of colon cancer samples and tissue microarrays containing adjacent normal, non-metastatic colon cancer, metastatic colon cancer, and liver metastasis tissues was used in this study to investigate the expression pattern of MUC13. IHC analysis revealed significantly higher (p<0.001) MUC13 expression in non-metastatic colon cancer samples compared with faint or very low expression in adjacent normal tissues. Interestingly, metastatic colon cancer and liver metastasis tissue samples demonstrated significantly (p<0.05) higher cytoplasmic and nuclear MUC13 expression compared with non-metastatic colon cancer and adjacent normal colon samples. Moreover, cytoplasmic and nuclear MUC13 expression correlated with larger and poorly differentiated tumors. Four of six tested colon cancer cell lines also expressed MUC13 at RNA and protein levels. These studies demonstrate a significant increase in MUC13 expression in metastatic colon cancer and suggest a correlation between aberrant MUC13 localization (cytoplasmic and nuclear expression) and metastatic colon cancer. PMID:22914648

  7. Empowering Multi-Cohort Gene Expression Analysis to Increase Reproducibility

    PubMed Central

    Haynes, Winston A; Vallania, Francesco; Liu, Charles; Bongen, Erika; Tomczak, Aurelie; Andres-Terrè, Marta; Lofgren, Shane; Tam, Andrew; Deisseroth, Cole A; Li, Matthew D; Sweeney, Timothy E

    2016-01-01

    A major contributor to the scientific reproducibility crisis has been that the results from homogeneous, single-center studies do not generalize to heterogeneous, real world populations. Multi-cohort gene expression analysis has helped to increase reproducibility by aggregating data from diverse populations into a single analysis. To make the multi-cohort analysis process more feasible, we have assembled an analysis pipeline which implements rigorously studied meta-analysis best practices. We have compiled and made publicly available the results of our own multi-cohort gene expression analysis of 103 diseases, spanning 615 studies and 36,915 samples, through a novel and interactive web application. As a result, we have made both the process of and the results from multi-cohort gene expression analysis more approachable for non-technical users. PMID:27896970

  8. Bile acid increases expression of the histamine-producing enzyme, histidine decarboxylase, in gastric cells.

    PubMed

    Ku, Hye Jin; Kim, Hye Young; Kim, Hyeong Hoe; Park, Hee Ju; Cheong, Jae Hun

    2014-01-07

    To investigate the effect of bile acid on the expression of histidine decarboxylase (HDC), which is a major enzyme involved in histamine production, and gene expression of gastric transcription factors upon cooperative activation. HDC expression was examined by immunohistochemistry, reverse transcriptase polymerase chain reaction, and promoter assay in human gastric precancerous tissues, normal stomach tissue, and gastric cancer cell lines. The relationship between gastric precancerous state and HDC expression induced by bile acid was determined. The association between the expression of HDC and various specific transcription factors in gastric cells was also evaluated. MKN45 and AGS human gastric carcinoma cell lines were transfected with farnesoid X receptor (FXR), small heterodimer partner (SHP), and caudal-type homeodomain transcription factor (CDX)1 expression plasmids. The effects of various transcription factors on HDC expression were monitored by luciferase-reporter promoter assay. Histamine production and secretion in the stomach play critical roles in gastric acid secretion and in the pathogenesis of gastric diseases. Here, we show that bile acid increased the expression of HDC, which is a rate-limiting enzyme of the histamine production pathway. FXR was found to be a primary regulatory transcription factor for bile acid-induced HDC expression. In addition, the transcription factors CDX1 and SHP synergistically enhanced bile acid-induced elevation of HDC gene expression. We confirmed similar expression patterns for HDC, CDX1, and SHP in patient tissues. HDC production in the stomach is associated with bile acid exposure and its related transcriptional regulation network of FXR, SHP, and CDX1.

  9. Zinc transporter mRNA expression in the RWPE-1 human prostate epithelial cell line.

    PubMed

    Albrecht, Amy L; Somji, Seema; Sens, Mary Ann; Sens, Donald A; Garrett, Scott H

    2008-08-01

    The human prostate gland undergoes a prominent alteration in Zn+2 homeostasis during the development of prostate cancer. The goal of the present study was to determine if the immortalized human prostate cell line (RWPE-1) could serve as a model system to study the role of zinc in prostate cancer. The study examined the expression of mRNA for 19 members of the zinc transporter gene family in normal prostate tissue, the prostate RWPE-1 cell line, and the LNCaP, DU-145 and PC-3 prostate cancer cell lines. The study demonstrated that the expression of the 19 zinc transporters was similar between the RWPE-1 cell line and the in situ prostate gland. Of the 19 zinc transporters, only 5 had levels that were different between the RWPE-1 cells and the tissue samples; all five being increased (ZnT-6, Zip-1, Zip-3A, Zip-10, and Zip-14). The response of the 19 transporters was also determined when the cell lines were exposed to 75 microM Zn+2 for 24 h. It was shown for the RWPE-1 cells that only 5 transporters responded to Zn+2 with mRNA for ZnT-1 and ZnT-2 being increased while mRNA for ZnT-7, Zip-7 and Zip-10 transporters were decreased. It was shown for the LNCaP, DU-145 and PC-3 cells that Zn+2 had no effect on the mRNA levels of all 19 transporters except for an induction of ZnT-1 in PC-3 cells. Overall, the study suggests that the RWPE-1 cells could be a valuable model for the study of the zinc transporter gene family in the prostate.

  10. Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion.

    PubMed

    Whitt, Jason D; Keeton, Adam B; Gary, Bernard D; Sklar, Larry A; Sodani, Kamlesh; Chen, Zhe-Sheng; Piazza, Gary A

    2016-03-01

    ATP-binding cassette (ABC) transporters ABCC1 (MRP1), ABCB1 (P-gp), and ABCG2 (BCRP) contribute to chemotherapy failure. The primary goals of this study were to characterize the efficacy and mechanism of the nonsteroidal anti-inflammatory drug (NSAID), sulindac sulfide, to reverse ABCC1 mediated resistance to chemotherapeutic drugs and to determine if sulindac sulfide can influence sensitivity to chemotherapeutic drugs independently of drug efflux. Cytotoxicity assays were performed to measure resistance of ABC-expressing cell lines to doxorubicin and other chemotherapeutic drugs. NSAIDs were tested for the ability to restore sensitivity to resistance selected tumor cell lines, as well as a large panel of standard tumor cell lines. Other experiments characterized the mechanism by which sulindac sulfide inhibits ABCC1 substrate and co-substrate (GSH) transport in isolated membrane vesicles and intact cells. Selective reversal of multi-drug resistance (MDR), decreased efflux of doxorubicin, and fluorescent substrates were demonstrated by sulindac sulfide and a related NSAID, indomethacin, in resistance selected and engineered cell lines expressing ABCC1, but not ABCB1 or ABCG2. Sulindac sulfide also inhibited transport of leukotriene C4 into membrane vesicles. Sulindac sulfide enhanced the sensitivity to doxorubicin in 24 of 47 tumor cell lines, including all melanoma lines tested (7-7). Sulindac sulfide also decreased intracellular GSH in ABCC1 expressing cells, while the glutathione synthesis inhibitor, BSO, selectively increased sensitivity to sulindac sulfide induced cytotoxicity. Sulindac sulfide potently and selectively reverses ABCC1-mediated MDR at clinically achievable concentrations. ABCC1 expressing tumors may be highly sensitive to the direct cytotoxicity of sulindac sulfide, and in combination with chemotherapeutic drugs that induce oxidative stress.

  11. Sulindac sulfide selectively increases sensitivity of ABCC1 expressing tumor cells to doxorubicin and glutathione depletion

    PubMed Central

    Whitt, Jason D.; Keeton, Adam B.; Gary, Bernard D.; Sklar, Larry A.; Sodani, Kamlesh; Chen, Zhe-Sheng; Piazza, Gary A.

    2016-01-01

    Abstract ATP-binding cassette (ABC) transpo rters ABCC1 (MRP1), ABCB1 (P-gp), and ABCG2 (BCRP) contribute to chemotherapy failure. The primary goals of this study were to characterize the efficacy and mechanism of the non­steroidal anti-inflammatory drug (NSAID), sulindac sulfide, to reverse ABCC1 mediated resistance to chemother­apeutic drugs and to determine if sulindac sulfide can influence sensitivity to chemotherapeutic drugs independently of drug efflux. Cytotoxicity assays were performed to measure resistance of ABC-expressing cell lines to doxoru­bicin and other chemotherapeutic drugs. NSAIDs were tested for the ability to restore sensitivity to resistance selected tumor cell lines, as well as a large panel of standard tumor cell lines. Other experiments characterized the mechanism by which sulindac sulfide inhibits ABCC1 substrate and co-substrate (GSH) transport in isolated membrane vesicles and intact cells. Selective reversal of multi-drug resistance (MDR), decreased efflux of doxor­ubicin, and fluorescent substrates were demonstrated by sulindac sulfide and a related NSAID, indomethacin, in resistance selected and engineered cell lines expressing ABCC1, but not ABCB1 or ABCG2. Sulindac sulfide also inhibited transport of leukotriene C4 into membrane vesicles. Sulindac sulfide enhanced the sensitivity to doxoru­bicin in 24 of 47 tumor cell lines, including all melanoma lines tested (7-7). Sulindac sulfide also decreased intra­cellular GSH in ABCC1 expressing cells, while the glutathione synthesis inhibitor, BSO, selectively increased sensitivity to sulindac sulfide induced cytotoxicity. Sulindac sulfide potently and selectively reverses ABCC1-mediated MDR at clinically achievable concentrations. ABCC1 expressing tumors may be highly sensitive to the direct cytotoxicity of sulindac sulfide, and in combination with chemotherapeutic drugs that induce oxidative stress. PMID:28276667

  12. Differential gene expression in human hepatocyte cell lines exposed to the antiretroviral agent zidovudine.

    PubMed

    Fang, Jia-Long; Han, Tao; Wu, Qiangen; Beland, Frederick A; Chang, Ching-Wei; Guo, Lei; Fuscoe, James C

    2014-03-01

    Zidovudine (3'-azido-3'-deoxythymidine; AZT) is the most widely used nucleoside reverse transcriptase inhibitor for the treatment of AIDS patients and prevention of mother-to-child transmission of HIV-1. Previously, we demonstrated that AZT had significantly greater growth inhibitory effects upon the human liver carcinoma cell line HepG2 as compared to the immortalized human liver cell line THLE2. We have now used gene expression profiling to determine the molecular pathways associated with toxicity in both cell lines. HepG2 cells were incubated with 0, 2, 20, or 100 μM AZT for 2 weeks; THLE2 cells were treated with 0, 50, 500, or 2,500 μM AZT, concentrations that were equi-toxic to those used in the HepG2 cells. After the treatment, total RNA was isolated and subjected to microarray analysis. Global analysis of gene expression, with a false discovery rate ≤0.01 and a fold change ≥1.5, indicated that 6- to 70-fold more genes were differentially expressed in a significant concentration-dependent manner in HepG2 cells when compared to THLE2 cells. Comparative analysis indicated that 7 % of these genes were common to both cell lines. Among the common differentially expressed genes, 70 % changed in the same direction, most of which were associated with cell death and survival, cell cycle, cell growth and proliferation, and DNA replication, recombination, and repair. As determined by the uptake of [methyl-(3)H]AZT, the intracellular levels of total AZT were approximately twofold higher in THLE2 cells than in HepG2 cells. The expression of thymidine kinase 1 (TK1) and UDP-glucuronosyltransferase 2B7 (UGT2B7) genes that regulate the metabolic activation and deactivation of AZT, respectively, was increased in HepG2 cells but decreased in THLE2 cells after treatment with AZT. This differential response in AZT metabolism was confirmed by real-time PCR, western blotting, and/or enzymatic assays. These data indicate that molecular pathways involved with cell death and

  13. Aging increases CCN1 expression leading to muscle senescence.

    PubMed

    Du, Jie; Klein, Janet D; Hassounah, Faten; Zhang, Jin; Zhang, Cong; Wang, Xiaonan H

    2014-01-01

    Using microarray analysis, we found that aging sarcopenia is associated with a sharp increase in the mRNA of the matricellular protein CCN1 (Cyr61/CTGF/Nov). CCN1 mRNA was upregulated 113-fold in muscle of aged vs. young rats. CCN1 protein was increased in aging muscle in both rats (2.8-fold) and mice (3.8-fold). When muscle progenitor cells (MPCs) were treated with recombinant CCN1, cell proliferation was decreased but there was no change in the myogenic marker myoD. However, the CCN1-treated MPCs did express a senescence marker (SA-βgal). Interestingly, we found CCN1 increased p53, p16(Ink4A), and pRP (hypophosphorylated retinoblastoma protein) protein levels, all of which can arrest cell growth in MPCs. When MPCs were treated with aged rodent serum CCN1 mRNA increased by sevenfold and protein increased by threefold suggesting the presence of a circulating regulator. Therefore, we looked for a circulating regulator. Wnt-3a, a stimulator of CCN1 expression, was increased in serum from elderly humans (2.6-fold) and aged rodents (2.0-fold) compared with young controls. We transduced C2C12 myoblasts with wnt-3a and found that CCN1 protein was increased in a time- and dose-dependent manner. We conclude that in aging muscle, the circulating factor wnt-3a acts to increase CCN1 expression, prompting muscle senescence by activating cell arrest proteins.

  14. Expression and autoregulation of transforming growth factor beta receptor mRNA in small-cell lung cancer cell lines.

    PubMed Central

    Nørgaard, P.; Spang-Thomsen, M.; Poulsen, H. S.

    1996-01-01

    In small-cell lung cancer cell lines resistance to growth inhibition by transforming growth factor (TGF)-beta 1, was previously shown to correlate with lack of TGF-beta receptor I (RI) and II (RII) proteins. To further investigate the role of these receptors, the expression of mRNA for RI, RII and beta-glycan (RIII) was examined. The results showed that loss of RII mRNA correlated with TGF-beta 1 resistance. In contrast, RI-and beta-glycan mRNA was expressed by all cell lines, including those lacking expression of these proteins. According to Southern blot analysis, the loss of type II mRNA was not due to gross structural changes in the gene. The effect of TGF-beta 1 on expression of TGF-beta receptor mRNA (receptor autoregulation) was examined by quantitative Northern blotting in four cell lines with different expression of TGF-beta receptor proteins. In two cell lines expressing all three TGF-beta receptor proteins beta-glycan mRNA was rapidly down-regulated and this effect was sustained throughout the 24 h observation period. RI and RII mRNAs were slightly increased 24 h after treatment. In one cell line sensitive to growth inhibition by TGF-beta, 1 but lacking beta-glycan expression, and one cell line expressing only beta-glycan and thus TGF-beta 1 -resistant, no autoregulation of mRNA of either TGF-beta receptor was demonstrated. The results suggest that TGF-beta 1 regulates the expression of its receptors, in particular beta-glycan, and that this effect is dependent on co-expression of beta-glycan, RI and RII. Images Figure 1 Figure 2 Figure 4 PMID:8624260

  15. GABA selectively increases mucin-1 expression in isolated pig jejunum.

    PubMed

    Braun, Hannah-Sophie; Sponder, Gerhard; Pieper, Robert; Aschenbach, Jörg R; Deiner, Carolin

    2015-11-01

    The inhibitory neurotransmitter GABA (γ-aminobutyric acid) is synthesized by glutamic acid decarboxylase, which is expressed in the central nervous system and in various other tissues including the intestine. Moreover, GABA can be ingested in vegetarian diets or produced by bacterial commensals in the gastrointestinal tract. As previous studies in lung have suggested a link between locally increased GABA availability and mucin 5AC production, the present study sought to test whether the presence or lack of GABA (and its precursor glutamine) has an effect on intestinal mucin expression. Porcine jejunum epithelial preparations were incubated with two different amounts of GABA or glutamine on the mucosal side for 4 h, and changes in the relative gene expression of seven different mucins, enzymes involved in mucin shedding, GABA B receptor, enzymes involved in glutamine/GABA metabolism, glutathione peroxidase 2, and interleukin 10 were examined by quantitative PCR (TaqMan(®) assays). Protein expression of mucin-1 (MUC1) was analyzed by Western blot. On the RNA level, only MUC1 was significantly up-regulated by both GABA concentrations compared with the control. Glutamine-treated groups showed the same trend. On the protein level, all treatment groups showed a significantly higher MUC1 expression than the control group. We conclude that GABA selectively increases the expression of MUC1, a cell surface mucin that prevents the adhesion of microorganisms, because of its size and negative charge, and therefore propose that the well-described positive effects of glutamine on enterocytes and intestinal integrity are partly attributable to effects of its metabolite GABA.

  16. SFRP2 Is Associated with Increased Adiposity and VEGF Expression

    PubMed Central

    Crowley, Rachel K.; Bujalska, Iwona J.; Hassan-Smith, Zaki K.; Hazlehurst, Jonathan M.; Foucault, Danielle R.; Stewart, Paul M.; Tomlinson, Jeremy W.

    2016-01-01

    Aims The aim of this study was to assess depot-specific expression and secretion of secreted frizzled-related protein 2 (sFRP2) by adipose tissue and its effect on adipocyte biology. We measured serum sFRP2 concentrations in 106 patients in vivo to explore its relationship to fat mass, glycaemia and insulin resistance. Methods Expression of sFRP2 in mouse and human tissues was assessed using polymerase chain reaction and Western blot. Western blot confirmed secretion of sFRP2 by adipose tissue into cell culture medium. Effects of recombinant sFRP2 on lipogenesis and preadipocyte proliferation were measured. Preadipocyte expression of the angiogenic genes vascular endothelial growth factor (VEGF) and nuclear factor of activated T-cells 3 (NFATC3) was measured after recombinant sFRP2 exposure. Complementary clinical studies correlating human serum sFRP2 with age, gender, adiposity and insulin secretion were also performed. Results sFRP2 messenger RNA (mRNA) was expressed in mouse and human adipose tissue. In humans, sFRP2 mRNA expression was 4.2-fold higher in omental than subcutaneous adipose. Omental adipose tissue secreted 63% more sFRP2 protein than subcutaneous. Treatment with recombinant sFRP2 did not impact on lipogenesis or preadipocyte proliferation but was associated with increased VEGF mRNA expression. In human subjects, circulating insulin levels positively correlated with serum sFRP2, and levels were higher in patients with abnormal glucose tolerance (34.2ng/ml) compared to controls (29.5ng/ml). A positive correlation between sFRP2 and BMI was also observed. Conclusions Circulating sFRP2 is associated with adipose tissue mass and has a potential role to drive adipose angiogenesis through enhanced VEGF expression. PMID:27685706

  17. SFRP2 Is Associated with Increased Adiposity and VEGF Expression.

    PubMed

    Crowley, Rachel K; O'Reilly, Michael W; Bujalska, Iwona J; Hassan-Smith, Zaki K; Hazlehurst, Jonathan M; Foucault, Danielle R; Stewart, Paul M; Tomlinson, Jeremy W

    The aim of this study was to assess depot-specific expression and secretion of secreted frizzled-related protein 2 (sFRP2) by adipose tissue and its effect on adipocyte biology. We measured serum sFRP2 concentrations in 106 patients in vivo to explore its relationship to fat mass, glycaemia and insulin resistance. Expression of sFRP2 in mouse and human tissues was assessed using polymerase chain reaction and Western blot. Western blot confirmed secretion of sFRP2 by adipose tissue into cell culture medium. Effects of recombinant sFRP2 on lipogenesis and preadipocyte proliferation were measured. Preadipocyte expression of the angiogenic genes vascular endothelial growth factor (VEGF) and nuclear factor of activated T-cells 3 (NFATC3) was measured after recombinant sFRP2 exposure. Complementary clinical studies correlating human serum sFRP2 with age, gender, adiposity and insulin secretion were also performed. sFRP2 messenger RNA (mRNA) was expressed in mouse and human adipose tissue. In humans, sFRP2 mRNA expression was 4.2-fold higher in omental than subcutaneous adipose. Omental adipose tissue secreted 63% more sFRP2 protein than subcutaneous. Treatment with recombinant sFRP2 did not impact on lipogenesis or preadipocyte proliferation but was associated with increased VEGF mRNA expression. In human subjects, circulating insulin levels positively correlated with serum sFRP2, and levels were higher in patients with abnormal glucose tolerance (34.2ng/ml) compared to controls (29.5ng/ml). A positive correlation between sFRP2 and BMI was also observed. Circulating sFRP2 is associated with adipose tissue mass and has a potential role to drive adipose angiogenesis through enhanced VEGF expression.

  18. Increased expression of astrocyte markers in schizophrenia: Association with neuroinflammation.

    PubMed

    Catts, Vibeke Sørensen; Wong, Jenny; Fillman, Stu Gregory; Fung, Samantha Jane; Shannon Weickert, Cynthia

    2014-08-01

    While schizophrenia may have a progressive component, the evidence for neurodegenerative processes as indicated by reactive astrocytes is inconclusive. We recently identified a subgroup of individuals with schizophrenia with increased expression of inflammatory markers in prefrontal cortex, and hypothesized that this subgroup would also have reactive astrocytes. We measured glial fibrillary acidic protein (GFAP) mRNA by quantitative real-time reverse transcriptase polymerase chain reaction (RT-PCR) and protein levels by immunoblotting in grey matter homogenate from 37 individuals with schizophrenia and 37 unaffected controls. We examined the morphology of GFAP-positive astrocytes in immunostained sections of middle frontal gyrus. We tested if GFAP expression or astrocyte morphology were altered in people with schizophrenia with increased expression of inflammatory markers. We used RNA-Seq data on a subset of patients and controls (n=20/group) to ascertain whether mRNA transcripts associated with astrogliosis were elevated in the individuals with active neuroinflammation. GFAP (mRNA and protein) levels and astrocyte morphology were not significantly different between people with schizophrenia and controls overall. However, individuals with schizophrenia with neuroinflammation had increased expression of GFAP mRNA (t(33)=2.978, p=0.005), hypertrophic astrocyte morphology (χ(2)(2)=6.281, p=0.043), and statistically significant elevated expression of three mRNA transcripts previously associated with astrogliosis. We found clear evidence of astrogliosis in a subset of people with schizophrenia. We suggest that the lack of astrogliosis reported in previous studies may be due to cohort differences in aetiopathology, illness stage, treatment exposure, or a failure to examine subsets of people with schizophrenia. © The Royal Australian and New Zealand College of Psychiatrists 2014.

  19. Extracellular matrix proteins expression profiling in chemoresistant variants of the A2780 ovarian cancer cell line.

    PubMed

    Januchowski, Radosław; Zawierucha, Piotr; Ruciński, Marcin; Nowicki, Michał; Zabel, Maciej

    2014-01-01

    Ovarian cancer is the leading cause of death among gynaecological malignancies. Extracellular matrix (ECM) can affect drug resistance by preventing the penetration of the drug into cancer cells and increased resistance to apoptosis. This study demonstrates alterations in the expression levels of ECM components and related genes in cisplatin-, doxorubicin-, topotecan-, and paclitaxel-resistant variants of the A2780 ovarian cancer cell line. Affymetrix Gene Chip Human Genome Array Strips were used for hybridisations. The genes that had altered expression levels in drug-resistant sublines were selected and filtered by scatter plots. The genes that were up- or downregulated more than fivefold were selected and listed. Among the investigated genes, 28 genes were upregulated, 10 genes were downregulated, and two genes were down- or upregulated depending on the cell line. Between upregulated genes 12 were upregulated very significantly--over 20-fold. These genes included COL1A2, COL12A1, COL21A1, LOX, TGFBI, LAMB1, EFEMP1, GPC3, SDC2, MGP, MMP3, and TIMP3. Four genes were very significantly downregulated: COL11A1, LAMA2, GPC6, and LUM. The expression profiles of investigated genes provide a preliminary insight into the relationship between drug resistance and the expression of ECM components. Identifying correlations between investigated genes and drug resistance will require further analysis.

  20. Increased IL-33 expression in chronic obstructive pulmonary disease.

    PubMed

    Xia, Jie; Zhao, Junling; Shang, Jin; Li, Miao; Zeng, Zhilin; Zhao, Jianping; Wang, Jianmiao; Xu, Yongjian; Xie, Jungang

    2015-04-01

    Chronic obstructive pulmonary disease (COPD) is an inflammatory lung disease characterized by inflammatory cell activation and the release of inflammatory mediators. Interleukin-33 (IL-33) plays a critical role in various inflammatory and immunological pathologies, but evidence for its role in COPD is lacking. This study aimed to investigate the expression of IL-33 in COPD and to determine whether IL-33 participates in the initiation and progression of COPD. Levels of serum IL-33 and its receptors were measured by ELISA, and serum levels of IL-33, ST2, and IL-1 receptor accessory protein were elevated in patients with COPD compared with control subjects. Flow cytometry analysis further demonstrated an increase in peripheral blood lymphocytes (PBLs) expressing IL-33 in patients with COPD. Immunofluorescence analysis revealed that the main cellular source of IL-33 in lung tissue was human bronchial epithelial cells (HBEs). Cigarette smoke extract and lipopolysaccharide could enhance the ability of PBLs and HBEs to express IL-33. Furthermore, PBLs from patients with COPD showed greater IL-33 release in response to the stimulus. Collectively, these findings suggest that IL-33 expression levels are increased in COPD and related to airway and systemic inflammation. Therefore, IL-33 might contribute to the pathogenesis and progression of this disease. Copyright © 2015 the American Physiological Society.

  1. Analysis of MDR genes expression and cross-resistance in eight drug resistant ovarian cancer cell lines.

    PubMed

    Januchowski, Radosław; Sterzyńska, Karolina; Zaorska, Katarzyna; Sosińska, Patrycja; Klejewski, Andrzej; Brązert, Maciej; Nowicki, Michał; Zabel, Maciej

    2016-10-18

    Multiple drug resistance (MDR) of cancer cells is the main reason of intrinsic or acquired insensitivity to chemotherapy in many cancers. In this study we used ovarian cancer model of acquired drug resistance to study development of MDR. We have developed eight drug resistant cell lines from A2780 ovarian cancer cell line: two cell lines resistant to each drug commonly used in ovarian cancer chemotherapy: cisplatin (CIS), paclitaxel (PAC), doxorubicin (DOX) and topotecan (TOP). A chemosensitivity assay - MTT was performed to assess drug cross-resistance. Quantitative real-time polymerase chain reaction and immunofluorescence were also performed to determine mRNA and protein expression of genes/proteins involved in drug resistance (P-gp, BCRP, MRP1, MRP2, MVP). Flow cytometry was used to determine the activity of drug transporters. We could observe cross-resistance between PAC- and DOX-resistant cell lines. Additionally, both PAC-resistant cell lines were cross-resistant to TOP and both TOP-resistant cell lines were cross-resistant to DOX. We observed two different mechanisms of resistance to TOP related to P-gp and BCRP expression and activity. P-gp and BCRP were also involved in DOX resistance. Expression of MRP2 was increased in CIS-resistant cell lines and increased MVP expression was observed in CIS-, PAC- and TOP-, but not in DOX-resistant cell lines. Effectiveness of TOP and DOX in second line of chemotherapy in ovarian cancer can be limited because of their cross-resistance to PAC. Moreover, cross-resistance of PAC-resistant cell line to CIS suggests that such interaction between those drugs might also be probable in clinic.

  2. Lnc-CC3 increases metastasis in cervical cancer by increasing Slug expression

    PubMed Central

    Jiang, Binyuan; Sun, Ruili; Fang, Shujuan; Qin, Changfei; Pan, Xi; Peng, Li; Li, Yuehui; Li, Guancheng

    2016-01-01

    Although screening has reduced mortality rates, metastasis still results in poor survival and prognosis in cervical cancer patients. We compared cervical cancer ESTs libraries with other ESTs libraries to identify candidate genes and cloned a novel cervical cancer-associated lncRNA, lnc-CC3. Overexpression of lnc-CC3 promoted migration and invasion by SiHa cervical cancer cells in vitro and in vivo, increased Slug expression, and reduced the expression of the epithelial cell marker E-cadherin. Conversely, lnc-CC3 knockdown altered SiHa cell morphology and increased the expression of E-cadherin, thereby suppressing migration and invasion. These results suggest lnc-CC3 may be a useful marker of metastasis in cervical cancer. PMID:27223436

  3. Exercise-Mediated Increase in Nigral Tyrosine Hydroxylase Is Accompanied by Increased Nigral GFR-α1 and EAAC1 Expression in Aging Rats

    PubMed Central

    Arnold, Jennifer C.; Salvatore, Michael F.

    2016-01-01

    Exercise may alleviate locomotor impairment in Parkinson's disease (PD) or aging. Identifying molecular responses immediately engaged by exercise in the nigrostriatal pathway and allied tissue may reveal critical targets associated with its long-term benefits. In aging, there is loss of tyrosine hydroxylase (TH) and the glial cell line-derived neurotrophic factor (GDNF) receptor, GFR-α1, in the substantia nigra (SN). Exercise can increase GDNF expression, but its effect on GFR-α1 expression is unknown. Infusion of GDNF into striatum or GFR-α1 in SN, respectively, can increase locomotor activity and TH function in SN but not striatum in aged rats. GDNF may also increase glutamate transporter expression, which attenuates TH loss in PD models. We utilized a footshock-free treadmill exercise regimen to determine the immediate impact of short-term exercise on GFR-α1 expression, dopamine regulation, glutamate transporter expression, and glutamate uptake in 18 month old male Brown-Norway/Fischer 344 F1 hybrid rats. GFR-α1 and TH expression significantly increased in SN but not striatum. This exercise regimen did not affect glutamate uptake or glutamate transporter expression in striatum. However, EAAC1 expression increased in SN. These results indicate that nigral GFR-α1 and EAAC1 expression increased in conjunction with increased nigral TH expression following short-term exercise. PMID:26599339

  4. [Expression of the apomictic potential and selection for apomixis in sorghum line AS-1a].

    PubMed

    El'konin, L A; Beliaeva, E V; Fadeeva, I Iu

    2012-01-01

    Expression of elements of apomixis was studied for ten seasons in sorghum line AS-la and its backcross hybrids on the 9E and A3 sterile cytoplasms. Cytoembryological analysis revealed aposporous embryo sacks (apo-ESs), their initial cells, and, rare, parthenogeneic proembryos in ovules of line AS-la and its BC2 and BC3 hybrids on the 9E cytoplasm. The A3 sterile cytoplasm suppressed the development of parthenogenetic proembryos, but did not affect the apo-ES formation. The frequency of apomictic elements increased in seasons with high daily temperatures and total precipitation deficiency in the period when the ovule and megagametophyte developed (r = -0.805, P < 0.01). Selection was used to isolate the families where the frequency of ovules with apo-ESs was 28% and the frequency of parthenogenetic proembryos was 14%. Emasculated panicles of line AS-la were pollinated with pollen of line Volzhskoe-4v, which carried the Rs marker dominant gene, responsible for the anthocyan color of coleoptyles and leaves in seedlings. Plants of the maternal type were found in the progenies of these crosses at a frequency of 1.4-28.1%. The genetic structure of the endosperm in grains with maternal-type seedlings was inferred from the electrophoretic patterns of storage proteins (kafirins). The kafirin spectra of grains producing maternal-type seedlings was similar to the spectrum of line AS-la and differed from the spectra of grains producing hybrid seedlings, indicating that the endosperm developed independently when apomictic grains formed in line AS-1a. The results showed that lines with facultative apomixis can be constructed in functionally diploid plants.

  5. Chemoresistance of CD133(+) colon cancer may be related with increased survivin expression.

    PubMed

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133(+) colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133(-) cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133(+) and siRNA-induced CD133(-) cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133(+) cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133(+) cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133(+) cells at 96 h after siRNA transfection. From this study, we conclude that CD133(+) cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133(+) colon cancer.

  6. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  7. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation.

    PubMed

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G; Beazely, Michael A

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands.

  8. GLUT1 Expression Is Increased in Hepatocellular Carcinoma and Promotes Tumorigenesis

    PubMed Central

    Amann, Thomas; Maegdefrau, Ulrike; Hartmann, Arndt; Agaimy, Abbas; Marienhagen, Jörg; Weiss, Thomas S.; Stoeltzing, Oliver; Warnecke, Christina; Schölmerich, Jürgen; Oefner, Peter J.; Kreutz, Marina; Bosserhoff, Anja K.; Hellerbrand, Claus

    2009-01-01

    Accelerated glycolysis is one of the biochemical characteristics of cancer cells. The glucose transporter isoform 1 (GLUT1) gene encodes a key rate-limiting factor in glucose transport into cancer cells. However, its expression level and functional significance in hepatocellular cancer (HCC) are still disputed. Therefore, we aimed to analyze the expression and function of the GLUT1 gene in cases of HCC. We found significantly higher GLUT1 mRNA expression levels in HCC tissues and cell lines compared with primary human hepatocytes and matched nontumor tissue. Immunohistochemical analysis of a tissue microarray of 152 HCC cases revealed a significant correlation between Glut1 protein expression levels and a higher Ki-67 labeling index, advanced tumor stages, and poor differentiation. Accordingly, suppression of GLUT1 expression by siRNA significantly impaired both the growth and migratory potential of HCC cells. Furthermore, inhibition of GLUT1 expression reduced both glucose uptake and lactate secretion. Hypoxic conditions further increased GLUT1 expression levels in HCC cells, and this induction was dependent on the activation of the transcription factor hypoxia-inducible factor-1α. In summary, our findings suggest that increased GLUT1 expression levels in HCC cells functionally affect tumorigenicity, and thus, we propose GLUT1 as an innovative therapeutic target for this highly aggressive tumor. PMID:19286567

  9. Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI)

    PubMed Central

    Sandberg, Rickard; Ernberg, Ingemar

    2005-01-01

    The gene expression profiles of 60 cell lines, derived from nine different tissues, were compared with their corresponding in vivo tumors and tissues. Cell lines expressed few tissue-specific (2%) or tumor-specific (5%) genes when analyzed group-wise. A tissue similarity index (TSI) was designed based upon singular value decomposition that measured in vivo tumor characteristic gene expression in each cell line independently. Only 34 of the 60 cell lines received the highest TSI toward its tumor of origin. In addition, we identified the most appropriate cell lines to be used as model systems for different in vivo tumors. Seven cell lines were identified as being of another origin than the originally presumed one. The proposed TSI will likely become an important tool for the selection of the most appropriate cell lines in pharmaceutical screening programs and experimental and biomedical research. PMID:15671165

  10. Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI).

    PubMed

    Sandberg, Rickard; Ernberg, Ingemar

    2005-02-08

    The gene expression profiles of 60 cell lines, derived from nine different tissues, were compared with their corresponding in vivo tumors and tissues. Cell lines expressed few tissue-specific (2%) or tumor-specific (5%) genes when analyzed group-wise. A tissue similarity index (TSI) was designed based upon singular value decomposition that measured in vivo tumor characteristic gene expression in each cell line independently. Only 34 of the 60 cell lines received the highest TSI toward its tumor of origin. In addition, we identified the most appropriate cell lines to be used as model systems for different in vivo tumors. Seven cell lines were identified as being of another origin than the originally presumed one. The proposed TSI will likely become an important tool for the selection of the most appropriate cell lines in pharmaceutical screening programs and experimental and biomedical research.

  11. Characterization of MTAP Gene Expression in Breast Cancer Patients and Cell Lines.

    PubMed

    de Oliveira, Sarah Franco Vieira; Ganzinelli, Monica; Chilà, Rosaria; Serino, Leandro; Maciel, Marcos Euzébio; Urban, Cícero de Andrade; de Lima, Rubens Silveira; Cavalli, Iglenir João; Generali, Daniele; Broggini, Massimo; Damia, Giovanna; Ribeiro, Enilze Maria de Souza Fonseca

    2016-01-01

    MTAP is a ubiquitously expressed gene important for adenine and methionine salvage. The gene is located at 9p21, a chromosome region often deleted in breast carcinomas, similar to CDKN2A, a recognized tumor suppressor gene. Several research groups have shown that MTAP acts as a tumor suppressor, and some therapeutic approaches were proposed based on a tumors´ MTAP status. We analyzed MTAP and CDKN2A gene (RT-qPCR) and protein (western-blotting) expression in seven breast cancer cell lines and evaluated their promoter methylation patterns to better characterize the contribution of these genes to breast cancer. Cytotoxicity assays with inhibitors of de novo adenine synthesis (5-FU, AZA and MTX) after MTAP gene knockdown showed an increased sensitivity, mainly to 5-FU. MTAP expression was also evaluated in two groups of samples from breast cancer patients, fresh tumors and paired normal breast tissue, and from formalin-fixed paraffin embedded (FFPE) core breast cancer samples diagnosed as Luminal-A tumors and triple negative breast tumors (TNBC). The difference of MTAP expression between fresh tumors and normal tissues was not statistically significant. However, MTAP expression was significantly higher in Luminal-A breast tumors than in TNBC, suggesting the lack of expression in more aggressive breast tumors and the possibility of using the new approaches based on MTAP status in TNBC.

  12. High Dietary Fat Selectively Increases Catalase Expression within Cardiac Mitochondria*

    PubMed Central

    Rindler, Paul M.; Plafker, Scott M.; Szweda, Luke I.; Kinter, Michael

    2013-01-01

    Obesity is a predictor of diabetes and cardiovascular disease. One consequence of obesity is dyslipidemia characterized by high blood triglycerides. It has been proposed that oxidative stress, driven by utilization of lipids for energy, contributes to these diseases. The effects of oxidative stress are mitigated by an endogenous antioxidant enzyme network, but little is known about its response to high fat utilization. Our experiments used a multiplexed quantitative proteomics method to measure antioxidant enzyme expression in heart tissue in a mouse model of diet-induced obesity. This experiment showed a rapid and specific up-regulation of catalase protein, with subsequent assays showing increases in activity and mRNA. Catalase, traditionally considered a peroxisomal protein, was found to be present in cardiac mitochondria and significantly increased in content and activity during high fat feeding. These data, coupled with the fact that fatty acid oxidation enhances mitochondrial H2O2 production, suggest that a localized catalase increase is needed to consume excessive mitochondrial H2O2 produced by increased fat metabolism. To determine whether the catalase-specific response is a common feature of physiological conditions that increase blood triglycerides and fatty acid oxidation, we measured changes in antioxidant expression in fasted versus fed mice. Indeed, a similar specific catalase increase was observed in mice fasted for 24 h. Our findings suggest a fundamental metabolic process in which catalase expression is regulated to prevent damage while preserving an H2O2-mediated sensing of diet composition that appropriately adjusts insulin sensitivity in the short term as needed to prioritize lipid metabolism for complete utilization. PMID:23204527

  13. 48 CFR 52.217-7 - Option for Increased Quantity-Separately Priced Line Item.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Option for Increased... Text of Provisions and Clauses 52.217-7 Option for Increased Quantity—Separately Priced Line Item. As prescribed in 17.208(e), insert a clause substantially the same as the following: Option for Increased...

  14. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines

    SciTech Connect

    Nemoto, Kiyomitsu; Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki; Fujiwara, Hironori; Yokosuka, Akihito; Mimaki, Yoshihiro; Ohizumi, Yasushi; Degawa, Masakuni

    2013-02-15

    Highlights: ► Nobiletin-mediated alterations of gene expression were examined with DNA microarrays. ► Three organ-derived cell lines were treated with 100 μM nobiletin for 24 h. ► In all cell lines, 3 endoplasmic reticulum stress-responsive genes were up-regulated. ► Some cell cycle-regulating and oxidative stress-promoting genes were down-regulated. ► These alterations may contribute to nobiletin-mediated biological effects. -- Abstract: Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines – 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells – were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and

  15. Development of Species-Specific Ah Receptor-Responsive Third Generation CALUX Cell Lines with Increased Sensitivity and Responsiveness

    PubMed Central

    Brennan, Jennifer C.; He, Guochun; Tsutsumi, Tomoaki; Zhao, Jing; Wirth, Ed; Fulton, Michael H.; Denison, Michael S.

    2016-01-01

    The Ah receptor (AhR)-responsive CALUX (chemically-activated luciferase expression) cell bioassay is commonly used for rapid screening of samples for the presence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, dioxin), dioxin-like compounds, and AhR agonists/antagonists. By increasing the number of AhR DNA recognition sites (dioxin responsive elements), we previously generated a novel third generation (G3) recombinant AhR-responsive mouse CALUX cell line (H1L7.5c3) with significantly enhanced sensitivity and response to DLCs compared to existing AhR-CALUX cell bioassays. However, the elevated background luciferase activity of these cells and the absence of comparable G3 cell lines derived from other species have limited their utility for screening purposes. Here, we describe the development and characterization of species-specific G3 recombinant AhR-responsive CALUX cell lines (rat, human, and guinea pig) that exhibit significantly improved sensitivity and dramatically increased TCDD induction response. The low background luciferase activity, low minimal detection limit (0.1 pM TCDD) and enhanced induction response of the rat G3 cell line (H4L7.5c2) over the H1L7.5c3 mouse G3 cells, identifies them as a more optimal cell line for screening purposes. The utility of the new G3 CALUX cell lines were demonstrated by screening sediment extracts and a small chemical compound library for the presence of AhR agonists. The increased sensitivity and response of these new G3 CALUX cell lines will facilitate species-specific analysis of DLCs and AhR agonists in samples with low levels of contamination and/or in small sample volumes. PMID:26366531

  16. Increased expression of intelectin-1 in nasal polyps.

    PubMed

    Park, Il-Ho; Park, Se-Jin; Cho, Jung-Sun; Moon, You-Mi; Kim, Tae Hoon; Lee, Sang Hag; Lee, Heung-Man

    2012-01-01

    Intelectin-1 is a new type of Ca(2+)-dependant soluble lectin in humans that has affinity for galactofuranose in carbohydrate chains of bacterial cell walls, indicating that intelectin-1 may play a role in immune defense against bacteria. The purpose of the current study was to determine the expression of intelectin-1 mRNA and protein and to localize intelectin-1 protein in nasal polyps and tissues from control subjects. Normal sphenoid sinus mucosa was obtained from 10 patients undergoing surgery for pituitary tumor. Nasal polyp samples were obtained from 10 patients undergoing endoscopic sinus surgery for chronic polypoid rhinosinusitis. Real-time polymerase chain reaction (PCR) was performed for intelectin-1 mRNA. Immunofluorescent staining was done for localization of intelectin-1 and quantitatively analyzed using computer-based image analysis. Western blot analysis was performed. Real-time PCR and Western blot analysis showed that intelectin-1 expression in nasal polyps was increased compared with normal sinus mucosa. Using immunofluorescent staining, intelectin-1 was strongly stained in epithelium and submucosa of nasal polyps, and faint staining was found in normal sinus mucosa. Intelectin-1 is expressed in human sinus mucosa and is increased in patients with nasal polyps. These results suggest a possible contribution for intelectin-1 in the pathophysiology of nasal polyps.

  17. Heat shock protein (HSP70) RNA expression differs among rainbow trout (Oncorhynchus mykiss) clonal lines.

    PubMed

    Heredia-Middleton, Pilar; Brunelli, Joseph; Drew, Robert E; Thorgaard, Gary H

    2008-04-01

    Heat shock protein 70 (HSP70, 70 kDa) is the most commonly expressed protein in response to thermal stress. The extent of its expression is associated with differences in environmental temperatures. We investigated the heat shock response in red blood cells collected from one-year-old rainbow trout (Oncorhynchus mykiss). Three different clonal lines of rainbow trout (Arlee, OSU and Whale Rock) were utilized, originating from habitats that likely experienced different thermal profile. The relative expression of HSP70 from blood cells treated at 13 degrees C, 16 degrees C, 18 degrees C, 20 degrees C, 22 degrees C, and 24 degrees C was quantified using real-time PCR. The use of red blood cells allows for the control and replication of HSP70 expression patterns. Relative expression of HSP70 differed significantly among the three clonal lines. The Arlee line had the lowest HSP70 response of the three clonal lines at any temperature; indicating a heritable difference. Maximum expression of HSP70 occurred at 22 degrees C in the OSU line and at 24 degrees C in the Whale Rock line. The discovery of variation in HSP70 expression among the clonal lines indicates that future studies to map the genetic control of HSP70 expression differences are possible.

  18. Selective expression of myosin IC Isoform A in mouse and human cell lines and mouse prostate cancer tissues.

    PubMed

    Ihnatovych, Ivanna; Sielski, Neil L; Hofmann, Wilma A

    2014-01-01

    Myosin IC is a single headed member of the myosin superfamily. We recently identified a novel isoform and showed that the MYOIC gene in mammalian cells encodes three isoforms (isoforms A, B, and C). Furthermore, we demonstrated that myosin IC isoform A but not isoform B exhibits a tissue specific expression pattern. In this study, we extended our analysis of myosin IC isoform expression patterns by analyzing the protein and mRNA expression in various mammalian cell lines and in various prostate specimens and tumor tissues from the transgenic mouse prostate (TRAMP) model by immunoblotting, qRT-PCR, and by indirect immunohistochemical staining of paraffin embedded prostate specimen. Analysis of a panel of mammalian cell lines showed an increased mRNA and protein expression of specifically myosin IC isoform A in a panel of human and mouse prostate cancer cell lines but not in non-cancer prostate or other (non-prostate-) cancer cell lines. Furthermore, we demonstrate that myosin IC isoform A expression is significantly increased in TRAMP mouse prostate samples with prostatic intraepithelial neoplasia (PIN) lesions and in distant site metastases in lung and liver when compared to matched normal tissues. Our observations demonstrate specific changes in the expression of myosin IC isoform A that are concurrent with the occurrence of prostate cancer in the TRAMP mouse prostate cancer model that closely mimics clinical prostate cancer. These data suggest that elevated levels of myosin IC isoform A may be a potential marker for the detection of prostate cancer.

  19. [Silica induced α-SMA expression in HBE cell line by targeting the PI3K/Akt pathway].

    PubMed

    Li, Ai-ping; Hou, Zhi-guo; Fan, Jing-jing; Ji, Xiao-ming; Wang, Ting; Ni, Chun-hui

    2012-12-01

    To explore the role of the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway in silica-induced α-SMA (α smooth muscle actin) expression in HEB (human bronchial epithelial) cell. The cultured HBE cells were divided into 5 groups: control, silica, PI3K inhibitor (Ly294002), both PI3K inhibitor (Ly294002) and silica at the same time and the inhibitor 24 h ahead of silica. The final concentrations of PI3K inhibitor and silica were 10 µmol/L and 100 µg/ml, respectively. Western blots were used to detect protein expressions of Akt, p-Akt, TGF-β and α-SMA. The location and expression of α-SMA were measured by immunofluorescence assay. HBE cell line exposed to silica can induce Akt phosphorylation, in which expressions of p-Akt were up regulated 1 times at 48 and the highest at 72 h. The expressions of TGFβ increased remarkably at 12 h and the peak at 48 h after silica exposure, while the expressions of α-SMA increased at 24 h and the highest at 72 h. However, the PI3K inhibitor (Ly294002) significantly down regulated α-SMA expression. When the cell line exposed to the PI3K inhibitor ahead of silica 24 h, the expressions of p-Akt and α-SMA were more remarkably down regulated which were decreased 1.5 times and 7.6 times respectively compare to silica exposure group. But no significant changes were found for TGFβ expressions. The immunofluorescence assay showed that silica can induce α-SMA expression, which located in cytoplasma, and PI3K inhibitor can decrease the expression. Silica induced α-SMA expression in HBE cell line is by targeting the PI3K/Akt pathway and PI3K inhibitor can repress α-SMA expression.

  20. [Flavonoids contents and expression analysis of related genes in red cell line of Saussurea medusa].

    PubMed

    Wang, Yajie; Li, Houhua; Fu, Wanyi; Gao, Yan; Wang, Bingjie; Li, Ling

    2014-08-01

    Saussurea medusa is a rare traditional Chinese medicinal herb. Besides anti-inflammatory and analgesic activities, it has effects of disinhibiting cold, dispelling dampness and promoting blood circulation. Flavonoids are the main medicinal compounds in S. medusa. Contents of flavonoids and expression of flavonoids biosynthesis related genes in white and red (induced by low temperature, high sucrose and high light) callus were analyzed. The results showed that the total flavone in red line was 3.60 times higher compared to white line. The accumulation of rutin in red line (0.25% of dry weight) was 2.40 times higher compared to white line. Anthocyanins were abundant in red line, with the contents of cyanidin 3-O-glucosidechloride and cyanidin 3-O-succinyl glycoside 0.12% and 0.19% of dry weight respectively. CHS, F3'H, FNS, FLS, DFR and ANS genes were highly expressed in red line compared to white line. Expression of three transcription factors (MYB, bHLH and WD40) in red line was significantly higher than that in white line, especially the expression of MYB (19.70 times higher compared to white line). These results indicated that high expression levels of transcription factors induced high expression of structural genes in red line, thereby enhancing the flavonoids biosynthesis. The expression of bHLH and WD40 was similar, whereas it was significantly different from that of MYB, indicating that bHLH and WD40 could form a binary complex to regulate expression of structural genes and flavonoids biosynthesis.

  1. Increased SNAIL expression and low syndecan levels are associated with high Gleason grade in prostate cancer

    PubMed Central

    POBLETE, CRISTIAN E.; FULLA, JUAN; GALLARDO, MARCELA; MUÑOZ, VALENTINA; CASTELLÓN, ENRIQUE A.; GALLEGOS, IVAN; CONTRERAS, HECTOR R.

    2014-01-01

    Prostate cancer (PC) is a leading male oncologic malignancy wideworld. During malignant transformation, normal epithelial cells undergo genetic and morphological changes known as epithelial-mesenchymal transition (EMT). Several regulatory genes and specific marker proteins are involved in PC EMT. Recently, syndecans have been associated with malignancy grade and Gleason score in PC. Considering that SNAIL is mainly a gene repressor increased in PC and that syndecan promoters have putative binding sites for this repressor, we propose that SNAIL might regulate syndecan expression during PC EMT. The aim of this study was to analyze immunochemically the expression of SNAIL, syndecans 1 and 2 and other EMT markers in a tissue microarray (TMA) of PC samples and PC cell lines. The TMAs included PC samples of different Gleason grade and benign prostatic hyperplasia (BPH) samples, as non-malignant controls. PC3 and LNCaP cell lines were used as models of PC representing different tumorigenic capacities. Semi-quantitative immunohistochemistry was performed on TMAs and fluorescence immunocytochemistry and western blot analysis were conducted on cell cultures. Results show that SNAIL exhibits increased expression in high Gleason specimens compared to low histological grade and BPH samples. Accordingly, PC3 cells show higher SNAIL expression levels compared to LNCaP cells. Conversely, syndecan 1, similarly to E-cadherin (a known marker of EMT), shows a decreased expression in high Gleason grades samples and PC3 cells. Interestingly, syndecan 2 shows no changes associated to histological grade. It is concluded that increased SNAIL levels in advanced PC are associated with low expression of syndecan 1. The mechanism by which SNAIL regulates the expression of syndecan 1 remains to be investigated. PMID:24424718

  2. Trametes robiniophila may induce apoptosis and inhibit MMPs expression in the human gastric carcinoma cell line MKN-45

    PubMed Central

    Ji, Xuening; Pan, Chunxia; Li, Xiaowen; Gao, Yunbin; Xia, Lu; Quan, Xiulian; Lv, Jinyan; Wang, Ruoyu

    2017-01-01

    Gastric carcinoma (GC) is one of the most common malignant tumors and is mainly treated by invasive surgeries. The present study aimed to investigate the treatment potential of Trametes robiniophila on GC using the human GC cell line MKN-45. Cells were incubated with Trametes robiniophila at a concentration of 0, 5 and 10 mg/ml for 24 h. The apoptosis of the cell line was examined with acridine orange/ethidium bromide staining and flow cytometry. The expression of B-cell lymphoma (Bcl)-2, Fas, caspase-3, matrix metalloproteinase (MMP)-2 and MMP-9 was analyzed using reverse transcription-polymerase chain reaction and western blotting. With increasing drug concentrations, the proportion of apoptotic and necrotic cells increased. For a certain concentration, the apoptotic ratio also increased with increasing response times. Compared with the control group, the Bcl-2, MMP-2 and MMP-9 expression levels in the MKN-45 cell line decreased, while the expression levels of Fas and caspase-3 increased (P<0.05), and the expression patterns were strengthened with increasing drug concentrations. The present study revealed that Trametes robiniophila had treatment potential on GC, and it may act on gastric cells through apoptotic induction and MMPs expression inhibition. Based on the present results, Trametes robiniophila may be considered as an alternative approach for noninvasive therapy of GC. However, future studies should be performed to clarify this further. PMID:28356967

  3. Increased expression of differentiation markers can accompany laminin-induced attachment of small cell lung cancer cells.

    PubMed Central

    Giaccone, G.; Broers, J.; Jensen, S.; Fridman, R. I.; Linnoila, R.; Gazdar, A. F.

    1992-01-01

    We investigated the interaction between human lung cancer cells, laminin, and several differentiating agents. When grown on laminin coated substrate eight out of 11 small cell lung cancer (SCLC) cell lines exhibited attachment to laminin and three had extensive outgrowth of long neurite-like processes. Of seven non-small cell lung cancer cell lines, selected for their in vitro anchorage-independent growth, attachment was observed in only three cell lines, and process formation was far less extensive than in SCLC cell lines. Among several differentiating agents, only dcAMP, which alone induced attachment and some process formation, increased laminin-mediated attachment and process formation of two SCLC cell lines, NCI-N417 a variant cell line, and NCI-H345, a classic cell line. The expression of several neuroendocrine and neuronal markers was investigated in these two SCLC cell lines. The expression of the light subunit of neurofilaments increased in NCI-N417 within 3 to 4 days of seeding, while NCI-H345 exhibited approximately 5 fold increase in expression of the GRP gene and a 3 fold increase expression of the beta-actin gene. The expression of a number of other neuroendocrine and neuronal markers did not change following growth on laminin. The doubling times remained unchanged independent of the presence of and attachment to laminin while topoisomerase II gene expression levels in NCI-N417 cells decreased approximately 5 fold when cells were growing on laminin. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:1325826

  4. Expressing gait-line symmetry in able-bodied gait

    PubMed Central

    Jeleń, Piotr; Wit, Andrzej; Dudziński, Krzysztof; Nolan, Lee

    2008-01-01

    Background Gait-lines, or the co-ordinates of the progression of the point of application of the vertical ground reaction force, are a commonly reported parameter in most in-sole measuring systems. However, little is known about what is considered a "normal" or "abnormal" gait-line pattern or level of asymmetry. Furthermore, no reference databases on healthy young populations are available for this parameter. Thus the aim of this study is to provide such reference data in order to allow this tool to be better used in gait analysis. Methods Vertical ground reaction force data during several continuous gait cycles were collected using a Computer Dyno Graphy in-sole system® for 77 healthy young able-bodied subjects. A curve (termed gait-line) was obtained from the co-ordinates of the progression of the point of application of the force. An Asymmetry Coefficient Curve (AsC) was calculated between the mean gait-lines for the left and right foot for each subject. AsC limits of ± 1.96 and 3 standard deviations (SD) from the mean were then calculated. Gait-line data from 5 individual subjects displaying pathological gait due to disorders relating to the discopathy of the lumbar spine (three with considerable plantarflexor weakness, two with considerable dorsiflexor weakness) were compared to the AsC results from the able-bodied group. Results The ± 1.96 SD limit suggested that non-pathological gait falls within 12–16% asymmetry for gait-lines. Those exhibiting pathological gait fell outside both the ± 1.96 and ± 3SD limits at several points during stance. The subjects exhibiting considerable plantarflexor weakness all fell outside the ± 1.96SD limit from 30–50% of foot length to toe-off while those exhibiting considerable dorsiflexor weakness fell outside the ± 1.96SD limit between initial contact to 25–40% of foot length, and then surpassed the ± 3SD limit after 55–80% of foot length. Conclusion This analysis of gait-line asymmetry provides a reference

  5. Cathepsin K expression is increased in oral lichen planus.

    PubMed

    Siponen, Maria; Bitu, Carolina Cavalcante; Al-Samadi, Ahmed; Nieminen, Pentti; Salo, Tuula

    2016-11-01

    Oral lichen planus (OLP) is an idiopathic T-cell-mediated mucosal inflammatory disease. Cathepsin K (Cat K) is one of the lysosomal cysteine proteases. It is involved in many pathological conditions, including osteoporosis and cancer. The expression and role of Cat K in OLP are unknown. Twenty-five oral mucosal specimens diagnosed histopathologically as OLP and fourteen healthy controls (HC) were used to study the immunohistochemical (IHC) expression of Cat K. Colocalization of Cat K with CD1a, Melan-A, CD68, CD45, mast cell tryptase (MCT), and Toll-like receptors (TLRs) 4 and 9 were studied using double IHC and/or immunofluorescence (IF) staining. Expression of Cat K was also evaluated in OLP tissue samples before and after topical tacrolimus treatment. Cat K was expressed in a higher percentage of cells in the epithelial zone, and the staining intensity was stronger in the stroma in OLP compared to controls (P < 0.001). In OLP, Cat K was present mostly in melanocytes and macrophages and sporadically in basal keratinocytes, endothelial cells, and extracellularly. Cat K was found also in some fibroblasts in HC and OLP samples. Coexpression of Cat K and TLRs 4 and 9 was seen in some dendritic cells (presumably melanocytes) and macrophages. In OLP, tacrolimus treatment reduced the expression of Cat K in the epithelium but increased it in the stroma. These results suggest that Cat K is involved in the pathogenesis of OLP. Cat K possibly takes part in the modulation of matrix molecules and cellular receptors. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Increased expression of β-glucosidase A in Clostridium thermocellum 27405 significantly increases cellulase activity

    PubMed Central

    Maki, Miranda L.; Armstrong, Lachlan; Leung, Kam Tin; Qin, Wensheng

    2013-01-01

    β-glucosidase A (bglA) in Clostridium thermocellum 27405 was increased by expression from shuttle vector pIBglA in attempts to increase cellulase activity and ethanol titer by lowering the end product inhibition of cellulase. Through a modified electrotransformation protocol C. thermocellum transformant (+MCbglA) harbouring pIBglA was produced. The β-glucosidase activity of +MCbglA was 2.3- and 1.6-fold greater than wild-type (WT) during late log and stationary phases of growth. Similarly, total cellulase activity of +MCbglA was shown to be 1.7-, 2.3- and 1.6-fold greater than WT during, log, late log and stationary phases of growth. However, there was no significant correlation found between increased cellulase activity and increased ethanol titers for +MCbglA compared with the WT. C. thermocellum has industrial potential for consolidated bioprocessing (CBP) to make a more cost effective production of biofuels; however, the hydrolysis rate of the strain is still hindered by end product inhibition. We successfully increased total cellulase activity by increased expression of bglA and thereby increased the productivity of C. thermocellum during the hydrolysis stage in CBP. Our work also lends insights into the complex metabolism of C. thermocellum for future improvement of this strain. PMID:22922214

  7. Metabotropic glutamate receptor 5 in Down's syndrome hippocampus during development: increased expression in astrocytes.

    PubMed

    Iyer, A M; van Scheppingen, J; Milenkovic, I; Anink, J J; Lim, D; Genazzani, A A; Adle-Biassette, H; Kovacs, G G; Aronica, E

    2014-01-01

    Metabotropic glutamate receptor 5 (mGluR5) is highly expressed throughout the forebrain and hippocampus. Several lines of evidence support the role of this receptor in brain development and developmental disorders, as well as in neurodegenerative disorders like Alzheimer's disease (AD). In the present study, the expression pattern of mGluR5 was investigated by immunocytochemistry in the developing hippocampus from patients with Down's syndrome (DS) and in adults with DS and AD. mGluR5 was expressed in developing human hippocampus from the earliest stages tested (9 gestational weeks), with strong expression in the ventricular/subventricular zones. We observed a consistent similar temporal and spatial neuronal pattern of expression in DS hippocampus. However, in DS we detected increased prenatal mGluR5 expression in white matter astrocytes, which persisted postnatally. In addition, in adult DS patients with widespread ADassociated neurodegeneration (DS-AD) increased mGluR5 expression was detected in astrocytes around amyloid plaque. In vitro data confirm the existence of a modulatory crosstalk between amyloid-β and mGluR5 in human astrocytes. These findings demonstrate a developmental regulation of mGluR5 in human hippocampus and suggest a role for this receptor in astrocytes during early development in DS hippocampus, as well as a potential contribution to the pathogenesis of ADassociated pathology.

  8. Characteristics of nobiletin-mediated alteration of gene expression in cultured cell lines.

    PubMed

    Nemoto, Kiyomitsu; Ikeda, Ayaka; Yoshida, Chiaki; Kimura, Junko; Mori, Junki; Fujiwara, Hironori; Yokosuka, Akihito; Mimaki, Yoshihiro; Ohizumi, Yasushi; Degawa, Masakuni

    2013-02-15

    Nobiletin, a polymethoxylated flavonoid that is highly contained in the peels of citrus fruits, exerts a wide variety of beneficial effects, including anti-proliferative effects in cancer cells, repressive effects in hyperlipidemia and hyperglycemia, and ameliorative effects in dementia at in vitro and in vivo levels. In the present study, to further understand the mechanisms of these actions of nobiletin, the nobiletin-mediated alterations of gene expression in three organ-derived cell lines - 3Y1 rat fibroblasts, HuH-7 human hepatocarcinoma cells, and SK-N-SH human neuroblastoma cells - were first examined with DNA microarrays. In all three cell lines, treatments with nobiletin (100 μM) for 24 h resulted in more than 200% increases in the expression levels of five genes, including the endoplasmic reticulum stress-responsive genes Ddit3, Trib3, and Asns, and in less than 50% decreases in the expression levels of seven genes, including the cell cycle-regulating genes Ccna2, Ccne2, and E2f8 and the oxidative stress-promoting gene Txnip. It was also confirmed that in each nobiletin-treated cell line, the levels of the DDIT3 (DNA-damage-inducible transcript 3, also known as CHOP and GADD153) and ASNS (asparagine synthetase) proteins were increased, while the level of the TXNIP (thioredoxin-interacting protein, also known as VDUP1 and TBP-2) protein was decreased. All these findings suggest that nobiletin exerts a wide variety of biological effects, at least partly, through induction of endoplasmic reticulum stress and suppressions of oxidative stress and cell proliferation.

  9. Human UDP-Glucuronosyltransferases: Effects of altered expression in breast and pancreatic cancer cell lines.

    PubMed

    Dates, Centdrika R; Fahmi, Tariq; Pyrek, Sebastian J; Yao-Borengasser, Aiwei; Borowa-Mazgaj, Barbara; Bratton, Stacie M; Kadlubar, Susan A; Mackenzie, Peter I; Haun, Randy S; Radominska-Pandya, Anna

    2015-01-01

    Increased aerobic glycolysis and de novo lipid biosynthesis are common characteristics of invasive cancers. UDP-glucuronosyltransferases (UGTs) are phase II drug metabolizing enzymes that in normal cells possess the ability to glucuronidate these lipids and speed their excretion; however, de-regulation of these enzymes in cancer cells can lead to an accumulation of bioactive lipids, which further fuels cancer progression. We hypothesize that UGT2B isoform expression is down-regulated in cancer cells and that exogenous re-introduction of these enzymes will reduce lipid content, change the cellular phenotype, and inhibit cancer cell proliferation. In this study, steady-state mRNA levels of UGT isoforms from the 2B family were measured using qPCR in 4 breast cancer and 5 pancreatic cancer cell lines. Expression plasmids for UGT2B isoforms known to glucuronidate cellular lipids, UGT2B4, 2B7, and 2B15 were transfected into MCF-7 and Panc-1 cells, and the cytotoxic effects of these enzymes were analyzed using trypan blue exclusion, annexin V/PI staining, TUNEL assays, and caspase-3 immunohistochemistry. There was a significant decrease in cell proliferation and a significant increase in the number of dead cells after transfection with each of the 3 UGT isoforms in both cell lines. Cellular lipids were also found to be significantly decreased after transfection. The results presented here support our hypothesis and emphasize the important role UGTs can play in cellular proliferation and lipid homeostasis. Evaluating the effect of UGT expression on the lipid levels in cancer cell lines can be relevant to understanding the complex regulation of cancer cells, identifying the roles of UGTs as "lipid-controllers" in cellular homeostasis, and illustrating their suitability as targets for future clinical therapy development.

  10. Increased functional protein expression using nucleotide sequence features enriched in highly expressed genes in zebrafish.

    PubMed

    Horstick, Eric J; Jordan, Diana C; Bergeron, Sadie A; Tabor, Kathryn M; Serpe, Mihaela; Feldman, Benjamin; Burgess, Harold A

    2015-04-20

    Many genetic manipulations are limited by difficulty in obtaining adequate levels of protein expression. Bioinformatic and experimental studies have identified nucleotide sequence features that may increase expression, however it is difficult to assess the relative influence of these features. Zebrafish embryos are rapidly injected with calibrated doses of mRNA, enabling the effects of multiple sequence changes to be compared in vivo. Using RNAseq and microarray data, we identified a set of genes that are highly expressed in zebrafish embryos and systematically analyzed for enrichment of sequence features correlated with levels of protein expression. We then tested enriched features by embryo microinjection and functional tests of multiple protein reporters. Codon selection, releasing factor recognition sequence and specific introns and 3' untranslated regions each increased protein expression between 1.5- and 3-fold. These results suggested principles for increasing protein yield in zebrafish through biomolecular engineering. We implemented these principles for rational gene design in software for codon selection (CodonZ) and plasmid vectors incorporating the most active non-coding elements. Rational gene design thus significantly boosts expression in zebrafish, and a similar approach will likely elevate expression in other animal models.

  11. Reduced IL-37 Production Increases Spontaneous Chemokine Expressions in Colon Epithelial Cells.

    PubMed

    Günaltay, Sezin; Ghiboub, Mohammed; Hultgren, Olof; Hörnquist, Elisabeth Hultgren

    2017-05-01

    Microscopic colitis, comprising collagenous colitis and lymphocytic colitis, is a common cause of chronic diarrhea. Previously, we showed enhanced chemokine productions in microscopic colitis patients, indicating dysregulated immune cell chemotaxis in the immunopathogenesis. We also showed decreased mRNA of IL-37, mainly regarded as an anti-inflammatory cytokine, in the colonic mucosa of these patients, potentially an important factor for the chronicity of the colitis. Our aim in this study was to understand the possible role of IL-37 in chemokine production using a cell line model. A colon epithelial cell line, T84, was stimulated with the TLR5 ligand flagellin. IL-37 protein production was reduced 20% using the CRISPR/Cas9 system, and the changes in chemokine mRNA and protein expressions were compared to cells transfected with empty plasmid. The 20% reduction in IL-37 protein levels spontaneously increased CCL5, CXCL8, CXCL10, and CXCL11 mRNA and protein expressions. CCL2 mRNA and protein levels were enhanced upon TLR5 stimulation. CCL3, CCL20, and CX3CL1 mRNA expressions were increased either spontaneously or following TLR5 stimulation, whereas CCL4 and CCL22 mRNA expressions were significantly decreased. Even a minor decrease in the ability of colon epithelial cells to produce IL-37 results in altered chemokine expression, mainly an increase in the production of several chemokines. Our results indicate that a decreased IL-37 expression by colon epithelial cells may be an important factor for increasing the recruitment of immune cells and subsequently developing microscopic colitis.

  12. Heparanase overexpression down-regulates syndecan-1 expression in a gallbladder carcinoma cell line.

    PubMed

    Jin, Hao; Zhou, Shaobo; Yang, Song; Cao, Hai-Ming

    2017-04-01

    Objective To discuss the relevance of heparanase and syndecan-1 and regulation of the heparanase-syndecan1 axis in the invasiveness of gallbladder carcinoma cells. Methods 1. Generation of a gallbladder cancer cell line overexpressing a heparanase (GBD-SD) transgene. 2. Western blot analysis of syndecan-1 levels of GBD-SD and control gallbladder carcinoma (GBC-SD) cells. 3. RT-PCR analysis of syndecan-1 mRNA levels of GBD-SD and GBC-SD. 4. Evaluation of invasion and migration of GBD-SD and GBC-SD cells. Results 1. Heparanase expression in GBD-SD cells was significantly increased. 2. The syndecan-1 mRNA level of GBD-SD cells was significantly lower compared with that of GBC-SD cells. 3. The syndecan-1 DNA copy number in GBD-SD cells was significantly lower compared with that of GBC-SD. 4. The invasiveness and migration of GBD-SD cells were significantly higher compared with GBC-SD cells. Conclusions 1. The expression of heparanase negatively correlated with that of syndecan-1 in a gallbladder carcinoma cell line. 2. The expression of heparanase and syndecan-1 in gallbladder carcinomas negatively correlated, similar to other tumours. 3. The heparanase/syndecan1 axis in gallbladder carcinoma plays an important role in the invasion and metastasis, thus providing a new therapeutic target. 4. Further research is required to identify the detailed mechanisms.

  13. Comparison of Glucose and Lipid Metabolic Gene Expressions between Fat and Lean Lines of Rainbow Trout after a Glucose Load

    PubMed Central

    Jin, Junyan; Médale, Françoise; Kamalam, Biju Sam; Aguirre, Peyo; Véron, Vincent; Panserat, Stéphane

    2014-01-01

    Two experimental rainbow trout lines developed through divergent selection for low (Lean ‘L’ line) or high (Fat ‘F’ line) muscle fat content were used as models to study the genetic determinism of fat depots. Previous nutritional studies suggested that the F line had a better capability to use glucose than the L line during feeding trials. Based on that, we put forward the hypothesis that F line has a greater metabolic ability to clear a glucose load effectively, compared to L line. In order to test this hypothesis, 250 mg/kg glucose was intraperitoneally injected to the two rainbow trout lines fasted for 48 h. Hyperglycemia was observed after glucose treatment in both lines without affecting the phosphorylation of AMPK (cellular energy sensor) and Akt-TOR (insulin signaling) components. Liver glucokinase and glucose-6-phosphate dehydrogenase expression levels were increased by glucose, whereas mRNA levels of β-oxidation enzymes (CPT1a, CPT1b, HOAD and ACO) were down-regulated in the white skeletal muscle of both lines. Regarding the genotype effect, concordant with normoglycemia at 12 h after glucose treatment, higher muscle glycogen was found in F line compared to L line which exhibited hyperglycemia. Moreover, mRNA levels of hepatic glycolytic enzymes (GK, 6PFK and PK), gluconeogenic enzyme PEPCK and muscle fatty acid oxidation enzymes (CPT1a, CPT1b and HOAD) were concurrently higher in the F line. Overall, these findings suggest that F line may have a better ability to maintain glucose homeostasis than L line. PMID:25141351

  14. Increased Growth of a Newly Established Mouse Epithelial Cell Line Transformed with HPV-16 E7 in Diabetic Mice

    PubMed Central

    He, Lan; Law, Priscilla T. Y.; Boon, Siaw Shi; Zhang, Chuqing; Ho, Wendy C. S.; Banks, Lawrence; Wong, C. K.; Chan, Juliana C. N.; Chan, Paul K. S.

    2016-01-01

    Epidemiological evidence supports that infection with high-risk types of human papillomavirus (HPV) can interact with host and environmental risk factors to contribute to the development of cervical, oropharyngeal, and other anogenital cancers. In this study, we established a mouse epithelial cancer cell line, designated as Chinese University Papillomavirus-1 (CUP-1), from C57BL/KsJ mice through persistent expression of HPV-16 E7 oncogene. After continuous culturing of up to 200 days with over 60 passages, we showed that CUP-1 became an immortalized and transformed epithelial cell line with continuous E7 expression and persistent reduction of retinoblastoma protein (a known target of E7). This model allowed in-vivo study of interaction between HPV and co-factors of tumorigenesis in syngeneic mice. Diabetes has been shown to increase HPV pathogenicity in different pathological context. Herein, with this newly-established cell line, we uncovered that diabetes promoted CUP-1 xenograft growth in syngeneic db/db mice. In sum, we successfully established a HPV-16 E7 transformed mouse epithelial cell line, which allowed subsequent studies of co-factors in multistep HPV carcinogenesis in an immunocompetent host. More importantly, this study is the very first to demonstrate the promoting effect of diabetes on HPV-associated carcinogenesis in vivo, implicating the importance of cancer surveillance in diabetic environment. PMID:27749912

  15. Increased Growth of a Newly Established Mouse Epithelial Cell Line Transformed with HPV-16 E7 in Diabetic Mice.

    PubMed

    He, Lan; Law, Priscilla T Y; Boon, Siaw Shi; Zhang, Chuqing; Ho, Wendy C S; Banks, Lawrence; Wong, C K; Chan, Juliana C N; Chan, Paul K S

    2016-01-01

    Epidemiological evidence supports that infection with high-risk types of human papillomavirus (HPV) can interact with host and environmental risk factors to contribute to the development of cervical, oropharyngeal, and other anogenital cancers. In this study, we established a mouse epithelial cancer cell line, designated as Chinese University Papillomavirus-1 (CUP-1), from C57BL/KsJ mice through persistent expression of HPV-16 E7 oncogene. After continuous culturing of up to 200 days with over 60 passages, we showed that CUP-1 became an immortalized and transformed epithelial cell line with continuous E7 expression and persistent reduction of retinoblastoma protein (a known target of E7). This model allowed in-vivo study of interaction between HPV and co-factors of tumorigenesis in syngeneic mice. Diabetes has been shown to increase HPV pathogenicity in different pathological context. Herein, with this newly-established cell line, we uncovered that diabetes promoted CUP-1 xenograft growth in syngeneic db/db mice. In sum, we successfully established a HPV-16 E7 transformed mouse epithelial cell line, which allowed subsequent studies of co-factors in multistep HPV carcinogenesis in an immunocompetent host. More importantly, this study is the very first to demonstrate the promoting effect of diabetes on HPV-associated carcinogenesis in vivo, implicating the importance of cancer surveillance in diabetic environment.

  16. Placental matrix metalloproteinase--1 expression is increased in labor.

    PubMed

    Vu, Thanh-Danae; Yun Feng; Placido, Jessica; Reznik, Sandra E

    2008-04-01

    Matrix metalloproteinases (MMPs) are now known to process a broad spectrum of cell surface molecules and to function in several important biological processes. Testing for differences in gene expression in human placental chorionic villi in the absence or presence of labor, using cDNA microarray analysis, revealed that labor was associated with increased expression of MMP-1 gene expression in 5 placentas collected after term normal spontaneous deliveries compared with 5 placentas collected after term nonlaboring cesarean deliveries. Fibronectin 1 and collagen XVII, 2 other proteins involved in the homeostasis of the extracellular matrix, were also found to be upregulated in labor. MMP-1 was further tested in individual samples and found to be consistently overexpressed in labor. While previous microarray analyses have focused on either uterine tissue or the fetal membranes, the data presented here indicate for the first time that placental chorionic villus genes are likely to affect the initiation of parturition through altered processing of cell surface molecules by MMP-1.

  17. Increased expression of PIN1 gene in papillary thyroid carcinoma

    PubMed Central

    2011-01-01

    Background Peptidyl-prolyl cis/trans isomerase (Pin1), encoded by PIN1 gene with locus in chromosome 19p13, is an enzyme that catalytically induces conformational changes in proteins after phosphorylation on serine or threonine residues preceding proline (pSer/Thr-Pro motifs); in this way, it has an influence on protein interactions and intracellular localizations of proteins. The aim of the study were: 1) an assessment of PIN1 gene expression level in benign and malignant thyroid lesions; 2) the evaluation of possible correlations between gene expression and histopathological variants of papillary thyroid carcinoma (PTC) or tumour size, classified according to TNM classification of primary tumours (in case of PTC only); 3) the estimation of possible relationships between expression of the gene in question and patients' sex or age. Methods Seventy (70) tissue samples were analyzed: 32 cases of PTC, 7 cases of medullary thyroid carcinoma (MTC), 7 cases of follicular adenoma (FA), and 24 cases of nodular goitre (NG). In real-time polymerase chain reaction (real-time PCR), two-step RT-PCR (reverse transcriptase-polymerase chain reaction) in an ABI PRISM 7500 Sequence Detection System was employed. The PIN1 gene expression level was assessed, calculating the mean relative quantification rate (RQ rate) increase for each sample. Results The level of PIN1 gene expression (compared to that in macroscopically unchanged thyroid tissue) was higher in PTC group than those in FA, MTC and/or NG groups, but the statistical significance was noted for difference between PTC and NG groups only. On the other hand, the differences of RQ rate value between different PTC variants were statistically insignificant. No correlations were found between RQ values and tumour size, as well as between RQ values and patients' sex or age in PTC group. Conclusions The PIN1 gene expression may have - in future - an important meaning in the diagnostics of PTC and in understanding its pathogenesis

  18. Enhanced membrane protein expression by engineering increased intracellular membrane production

    PubMed Central

    2013-01-01

    Background Membrane protein research is frequently hampered by the low natural abundance of these proteins in cells and typically relies on recombinant gene expression. Different expression systems, like mammalian cells, insect cells, bacteria and yeast are being used, but very few research efforts have been directed towards specific host cell customization for enhanced expression of membrane proteins. Here we show that by increasing the intracellular membrane production by interfering with a key enzymatic step of lipid synthesis, enhanced expression of membrane proteins in yeast is achieved. Results We engineered the oleotrophic yeast, Yarrowia lipolytica, by deleting the phosphatidic acid phosphatase, PAH1, which led to massive proliferation of endoplasmic reticulum (ER) membranes. For all eight tested representatives of different integral membrane protein families, we obtained enhanced protein accumulation levels and in some cases enhanced proteolytic integrity in the ∆pah1 strain. We analysed the adenosine A2AR G-protein coupled receptor case in more detail and found that concomitant induction of the unfolded protein response in the ∆pah1 strain enhanced the specific ligand binding activity of the receptor. These data indicate an improved quality control mechanism for membrane proteins accumulating in yeast cells with proliferated ER. Conclusions We conclude that redirecting the metabolic flux of fatty acids away from triacylglycerol- and sterylester-storage towards membrane phospholipid synthesis by PAH1 gene inactivation, provides a valuable approach to enhance eukaryotic membrane protein production. Complementary to this improvement in membrane protein quantity, UPR co-induction further enhances the quality of the membrane protein in terms of its proper folding and biological activity. Importantly, since these pathways are conserved in all eukaryotes, it will be of interest to investigate similar engineering approaches in other cell types of

  19. Loss of RUNX3 increases osteopontin expression and promotes cell migration in gastric cancer.

    PubMed

    Cheng, Hui-Chuan; Liu, Yu-Peng; Shan, Yan-Shen; Huang, Chi-Ying; Lin, Forn-Chia; Lin, Li-Ching; Lee, Ling; Tsai, Chen-Hsun; Hsiao, Michael; Lu, Pei-Jung

    2013-11-01

    Loss of RUNX3 expression is frequently observed in gastric cancer and is highly associated with lymph node metastasis and poor prognosis. However, the underlying molecular mechanisms of gastric cancer remain unknown. In this study, we found that the protein levels of RUNX3 and osteopontin (OPN) are inversely correlated in gastric cancer clinical specimens and cell lines. Furthermore, similar inverse trends between RUNX3 and OPN messenger RNA (mRNA) expression were demonstrated in six out of seven normal-tumor-paired gastric cancer clinical specimens. In addition, low RUNX3 and high OPN expression were associated with poor prognosis in gastric cancer patients. Ectopic expression of green fluorescent protein-RUNX3 reduced OPN protein and mRNA expression in the AGS and SCM-1 gastric cancer cell lines. In contrast, knockdown of RUNX3 in GES-1, a normal gastric epithelial cell line, increased OPN expression. Although three RUNX3-binding sequences have been identified in the OPN promoter region, direct binding of RUNX3 to the specific binding site, -142 to -137bp, was demonstrated by chromatin immunoprecipitation assay. The binding of RUNX3 to the OPN promoter significantly decreased OPN promoter activity. The knockdown of OPN or overexpression of RUNX3 inhibited cell migration in AGS and SCM-1 cells; however, the coexpression of RUNX3 and OPN reversed the RUNX3-reduced migration ability in AGS and SCM-1 cells. In contrast, the knockdown of both RUNX3 and OPN inhibited RUNX3-knockdown-induced migration of GES-1 cells. Together, our data demonstrated that RUNX3 is a transcriptional repressor of OPN and that loss of RUNX3 upregulates OPN, which promotes migration in gastric cancer cells.

  20. Chemoresistance of CD133{sup +} colon cancer may be related with increased survivin expression

    SciTech Connect

    Lee, Mi-Ra; Ji, Sun-Young; Mia-Jan, Khalilullah; Cho, Mee-Yon

    2015-07-31

    CD133, putative cancer stem cell marker, deemed to aid chemoresistance. However, this claim has been challenged recently and we previously reported that patients with CD133{sup +} colon cancer have benefit from 5-fluorouracil (5-FU) chemotherapy incontrast to no benefit in patients with CD133{sup −} cancer. To elucidate the role of CD133 expression in chemoresistance, we silenced the CD133 expression in a colon cancer cell line and determined its effect on the biological characteristics downstream. We comparatively analyzed the sequential changes of MDR1, ABCG2, AKT1 and survivin expression and the result of proliferation assay (WST-1 assay) with 5-FU treatment in CD133{sup +} and siRNA-induced CD133{sup −} cells, derived from Caco-2 colon cancer cell line. 5-FU treatment induced significantly increase of the mRNA expression of MDR1, ABCG2 and AKT1genes, but not protein level. CD133 had little to no effect on the mRNA and protein expression of these genes. However, survivin expression at mRNA and protein level were significantly increased in CD133{sup +} cells compared with siRNA-induced CD133-cells and Mock (not sorted CD133{sup +} cells) at 96 h after siRNA transfection. The cytotoxicity assay demonstrated notable increase of chemoresistance to 5-FU treatment (10 μM) in CD133{sup +} cells at 96 h after siRNA transfection. From this study, we conclude that CD133{sup +} cells may have chemoresistance to 5-FU through the mechanism which is related with survivin expression, instead of MDR1, ABCG2 and AKT1 expression. Therefore a survivin inhibitor can be a new target for effective treatment of CD133{sup +} colon cancer. - Highlights: • We evaluate the role of CD133 in chemoresistance of colon cancer. • We compared the chemoresistance of CD133{sup +} cells and siRNA-induced CD133{sup −} cells. • CD133 had little to no effect on MDR1, ABCG2 and AKT1 expression. • Survivin expression and chemoresistance were increased in CD133{sup +} colon cancer cells.

  1. Vincristine-resistant erythroleukemia cell line has marked increased sensitivity to hexamethylenebisacetamide-induced differentiation.

    PubMed Central

    Melloni, E; Pontremoli, S; Damiani, G; Viotti, P; Weich, N; Rifkind, R A; Marks, P A

    1988-01-01

    Hexamethylenebisacetamide (HMBA)-induced murine erythroleukemia (MEL) differentiation is a multistep process. Commitment is the capacity to express terminal cell division and characteristics of the differentiated phenotype even after the cells are removed from culture with inducer. Culture of MEL cell line 745A.DS19 (DS19) with HMBA causes commitment to terminal differentiation after a latent period of about 10-12 hr. Previous studies have shown that during this latent period, HMBA causes a number of metabolic changes, including modulation in expression of certain protooncogenes. We now report the development of a MEL cell line (designated V3.17) derived from DS19 that is resistant to vincristine and is (i) markedly more sensitive to HMBA, (ii) induced to commitment without a detectable latent period, and (iii) resistant to the effects of phorbol ester and dexamethasone, which are potent inhibitors of HMBA-mediated DS19 differentiation. We suggest that this V3.17 MEL cell line may express a factor that circumvents HMBA-mediated early events, which prepare the cells for commitment to terminal differentiation. Images PMID:3163801

  2. Thrombin Increases Expression of Fibronectin Antigen on the Platelet Surface

    NASA Astrophysics Data System (ADS)

    Ginsberg, Mark H.; Painter, Richard G.; Forsyth, Jane; Birdwell, Charles; Plow, Edward F.

    1980-02-01

    Fibronectins (fn) are adhesive glycoproteins which bind to collagen and to fibrin and appear to be important in cellular adhesion to other cells or surfaces. Fn-related antigen is present in human platelets, suggesting a possible role for fn in the adhesive properties of platelets. We have studied the localization of fn in resting and thrombin-stimulated platelets by immunofluorescence and quantitative binding of radiolabeled antibody. In resting fixed platelets, variable light surface staining for fn was observed. When these cells were made permeable to antibody with detergent, staining for fn was markedly enhanced and was present in a punctate distribution, suggesting intracellular localization. Stimulation with thrombin, which is associated with increased platelet adhesiveness, resulted in increased staining for fn antigen on intact platelets. These stimulated cells did not leak 51Cr nor did they stain for F-actin, thus documenting that the increased fn staining was not due to loss of plasma membrane integrity. The thrombin-induced increase in accessible platelet fn antigen was confirmed by quantitative antibody binding studies in which thrombin-stimulated platelets specifically bound 15 times as much radiolabeled F(ab')2 anti-fn as did resting cells. Thus, thrombin stimulation results in increased expression of fn antigen on the platelet surface. Here it may participate in interactions with fibrin, connective tissue, or other cells.

  3. Increased caveolin-1 expression in Alzheimer's disease brain.

    PubMed

    Gaudreault, Sophie B; Dea, Doris; Poirier, Judes

    2004-07-01

    Increasing evidence suggests that cholesterol plays a central role in the pathophysiology of Alzheimer's disease (AD). Caveolin is a cholesterol-binding membrane protein involved in cellular cholesterol transport. We investigated the changes in the protein amount of hippocampal caveolin of autopsy-confirmed AD and aged-matched control subjects. Our results demonstrate that caveolin protein levels in the hippocampus and caveolin mRNA in the frontal cortex are up-regulated in AD by approximately two-fold, compared to control brains. These results suggest a relationship between caveolin-1 expression levels and a dysregulation of cholesterol homeostasis at the plasma membrane of brain cells. In support of this hypothesis, a significant increase in caveolin protein levels has also been observed in hippocampal tissue from ApoE-deficient (knockout) and aged wild-type mice; two situations associated with modifications of transbilayer distribution of cholesterol in brain synaptic plasma membranes. These results indicate that caveolin over-expression is linked to alterations of cholesterol distribution in the plasma membrane of brain cells and are consistent with the notion of a deterioration of cholesterol homeostasis in AD.

  4. Zinc pyrithione induces apoptosis and increases expression of Bim.

    PubMed

    Mann, J J; Fraker, P J

    2005-03-01

    We demonstrate herein that zinc pyrithione can induce apoptosis at nanomolar concentrations. Zinc pyrithione was a potent inducer of cell death causing greater than 40-60% apoptosis among murine thymocytes, murine splenic lymphocytes and human Ramos B and human Jurkat T cells. Conversely, the addition of a zinc chelator protected thymocytes against zinc pyrithione induced apoptosis indicating these responses were specific for zinc. Zinc-induced apoptosis was dependent on transcription and translation which suggested possible regulation by a proapoptotic protein. Indeed, zinc induced a 1.9 and 3.4 fold increase respectively in expression of the BimEL and BimL isoforms and also stimulated production of the most potent isoform, BimS. This increase in Bim isoform expression was dependent on transcription being blocked by treatment with actinomycin D. Overexpression of Bcl-2 or Bcl-xL provided substantial protection of Ramos B and Jurkat T cells against zinc-induced apoptosis. Zinc also activated the caspase cascade demonstrated by cleavage of caspase 9. Addition of specific inhibitors for caspase 9 and caspase 3 also blocked zinc-induced apoptosis. The data herein adds to the growing evidence that free or unbound zinc could be harmful to cells of the immune system.

  5. Hippocampal GR expression is increased in elderly depressed females.

    PubMed

    Wang, Q; Joels, M; Swaab, D F; Lucassen, P J

    2012-01-01

    Hyperactivity of the Hypthalamus-Pituitary-Adrenal (HPA)-axis is common in major depression and evident from e.g., a frequently exaggerated response to combined application of dexamethasone and CRH in this disorder. HPA-axis activity and hence the secretion of glucocorticoids (GC), the endpoint of the HPA-axis, depends to some extent on GC binding to glucocorticoid receptors (GR) that are abundantly expressed in the hippocampus. To assess whether differences in hippocampal GR expression occur in association with depression, we investigated GR-alpha protein immunoreactivity (ir) in postmortem hippocampal tissue of an elderly cohort of 9 well-characterized depressed patients and 9 control subjects that were pair-wise matched for age, sex, CSF-pH and postmortem delay. Abundant nuclear GR-ir was observed in neurons of the hippocampal Ammon's horn (CA) and dentate gyrus (DG) subregions. GR-ir in the DG correlated positively with age in the depressed but not the control group. Although no significant differences were found in GR-ir between the depressed and control groups, a significant increase in GR-ir was present in depressed females compared to depressed males. Whether this sex difference in hippocampal GR-ir in depression relates to the increased incidence of depression in females awaits further study. This article is part of a Special Issue entitled 'Anxiety and Depression'.

  6. Microarray-based detection and expression analysis of extracellular matrix proteins in drug‑resistant ovarian cancer cell lines.

    PubMed

    Januchowski, Radosław; Zawierucha, Piotr; Ruciński, Marcin; Zabel, Maciej

    2014-11-01

    Ovarian cancer is the most lethal gynecological malignancy. Multiple drug resistance (MDR) development leads to resistance of cancer cells to chemotherapy. Microarray methods can provide information regarding new candidate genes that can play a role in resistance to cytostatic drugs. Extracellular matrix (ECM) can influence drug resistance by inhibiting the penetration of the drug into cancer tissue as well as increased apoptosis resistance. In the present study, we report changes in the ECM and related gene expression pattern in methotrexate-, cisplatin-, doxorubicin-, vincristine-, topotecan- and paclitaxel-resistant variants of the W1 ovarian cancer cell line. The resistant variants of the W1 cell line were generated by stepwise selection of cells with an increasing concentration of the indicated drugs. Affymetrix GeneChip® Human Genome U219 Array Strips were used for hybridizations. Independent t-tests were used to determinate the statistical significance of results. Genes whose expression levels were higher than the assumed threshold (upregulated, >5-fold and downregulated, <5-fold) were visualized using the scatter plot method, selected and listed in the tables. Among the investigated genes, expression of 24 genes increased, expression of 14 genes decreased and expression of three genes increased or decreased depending on the cell line. Among the increased genes, expression of 10 increased very significantly, >20-fold. These genes were: ITGB1BP3, COL3A1, COL5A2, COL15A1, TGFBI, DCN, LUM, MATN2, POSTN and EGFL6. The expression of seven genes decreased very significantly: ITGA1, COL1A2, LAMA2, GPC3, KRT23, VIT and HMCN1. The expression pattern of ECM and related genes provided the preliminary view into the role of ECM components in cytostatic drug resistance of cancer cells. The exact role of the investigated genes in drug resistance requires further investigation.

  7. Epithelial Cell Damage Activates Bactericidal/Permeability Increasing-Protein (BPI) Expression in Intestinal Epithelium.

    PubMed

    Balakrishnan, Arjun; Chakravortty, Dipshikha

    2017-01-01

    As the first line of defense against invading pathogen, intestinal epithelium produces various antimicrobial proteins (AMP) that help in clearance of pathogen. Bactericidal/permeability-increasing protein (BPI) is a 55 kDa AMP that is expressed in intestinal epithelium. Dysregulation of BPI in intestinal epithelium is associated with various inflammatory diseases like Crohn's Disease, Ulcerative colitis, and Infectious enteritis's. In this paper, we report a direct correlation between intestinal damage and BPI expression. In Caco-2 cells, we see a significant increase in BPI levels upon membrane damage mediated by S. aureus infection and pore-forming toxins (Streptolysin and Listeriolysin). Cells detect changes in potassium level as a Danger-associated molecular pattern associated with cell damage and induce BPI expression in a p38 dependent manner. These results are further supported by in vivo findings that the BPI expression in murine intestinal epithelium is induced upon infection with bacteria which cause intestinal damage (Salmonella Typhimurium and Shigella flexneri) whereas mutants that do not cause intestinal damage (STM ΔfliC and STM ΔinvC) did not induce BPI expression. Our results suggest that epithelial damage associated with infection act as a signal to induce BPI expression.

  8. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    SciTech Connect

    Williams, K.; Chubb, C.; Huberman, E.; Giometti, C.S.

    1997-07-01

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteins were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.

  9. Gene expression signatures of seven individual human embryonic stem cell lines.

    PubMed

    Skottman, Heli; Mikkola, Milla; Lundin, Karolina; Olsson, Cia; Strömberg, Anne-Marie; Tuuri, Timo; Otonkoski, Timo; Hovatta, Outi; Lahesmaa, Riitta

    2005-10-01

    Identification of molecular components that define a pluripotent human embryonic stem cell (hESC) provides the basis for understanding the molecular mechanisms regulating the maintenance of pluripotency and induction of differentiation. We compared the gene expression profiles of seven genetically independent hESC lines with those of nonlineage-differentiated cells derived from each line. A total of 8,464 transcripts were expressed in all hESC lines. More than 45% of them have no yet-known biological function, which indicates that a high number of unknown factors contribute to hESC pluripotency. Among these 8,464 transcripts, 280 genes were specific for hESCs and 219 genes were more than twofold differentially expressed in all hESC lines compared with nonlineage-differentiated cells. They represent genes implicated in the maintenance of pluripotency and those involved in early differentiation. The chromosomal distribution of these hESC-enriched genes showed over-representation in chromosome 19 and under-representation in chromosome 18. Although the overall gene expression profiles of the seven hESC lines were markedly similar, each line also had a subset of differentially expressed genes reflecting their genetic variation and possibly preferential differentiation potential. Limited overlap between gene expression profiles illustrates the importance of cross-validation of results between different ESC lines.

  10. Systematic variation in gene expression patterns in human cancer cell lines

    SciTech Connect

    Ross, Douglas T.; Scherf, Uwe; Eisen, Michael B.; Perou, Charles M.; Rees, Christian; Spellman, Paul; Iyer, Vishwanath; Jeffrey, Stefanie S.; Van de Rijn, Matt; Waltham, Mark; Pergamenschikov, Alexander; Lee, Jeffrey C.F.; Lashkari, Deval; Shalon, Dari; Myers, Timothy G.; Weinstein, John N.; Botstein, David; Brown, Patrick O.

    2000-01-01

    We used cDNA micro arrays to explore the variation in expression of approximately 8,000 unique genes among the 60 cell lines used in the National Cancer Institute s screen for anti-cancer drugs. Classification of the cell lines based solely on the observed patterns of gene expression revealed a correspondence to the ostensible origins of the tumors from which the cell lines were derived. The consistent relationship between the gene expression patterns and the tissue of origin allowed us to recognize outliers whose previous classification appeared incorrect. Specific features of the gene expression patterns appeared to be related to physiological properties of the cell lines, such as their doubling time in culture, drug metabolism or the interferon response. Comparison of gene expression patterns in the cell lines to those observed in normal breast tissue or in breast tumor specimens revealed features of the expression patterns in the tumors that had recognizable counterparts in specific cell lines, reflecting the tumor, stromal and inflammatory components of the tumor tissue. These results provided a novel molecular characterization of this important group of human cell lines and their relationships to tumors in vivo.

  11. BHK cell lines with increased rates of gene amplification are hypersensitive to ultraviolet light

    SciTech Connect

    Giulotto, E.; Bertoni, L.; Attolini, C.; Rainaldi, G.; Anglana, M. )

    1991-04-15

    Four cell lines (MP1, -4, -5, -7), isolated from baby hamster kidney cells after simultaneous selection with N-(phosphonacetyl)-L-aspartate and methotrexate, have previously been shown to amplify their DNA at an increased rate. We now show that all four lines are hypersensitive to killing by UV light and mitomycin C. At high doses of UV light or mitomycin C, the MP lines survived less than 10% or less than 5% as well as parental cells, respectively. After UV irradiation, inhibition of DNA and RNA synthesis was greater in MP than in parental cells, and recovery was slower or absent. A 2- to 3.5-fold increase in the frequency of UV-induced sister chromatid exchange was also seen in the four cell lines. In MP5, unscheduled DNA replication after treatment with UV light was only approximately 70% as great as in parental cells and the other MP lines. In MP4 and MP7 cells S phase was elongated. Although their individual properties confirm that the four cell lines are independent, their common properties suggest a relationship between tolerance of DNA damage and gene amplification.

  12. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.

    PubMed

    Abid, Nabeela; Khatoon, Asia; Maqbool, Asma; Irfan, Muhammad; Bashir, Aftab; Asif, Irsa; Shahid, Muhammad; Saeed, Asma; Brinch-Pedersen, Henrik; Malik, Kauser A

    2017-02-01

    Phytate is a major constituent of wheat seeds and chelates metal ions, thus reducing their bioavailability and so the nutritional value of grains. Transgenic plants expressing heterologous phytase are expected to enhance degradation of phytic acid stored in seeds and are proposed to increase the in vitro bioavailability of mineral nutrients. Wheat transgenic plants expressing Aspergillus japonicus phytase gene (phyA) in wheat endosperm were developed till T3 generation. The transgenic lines exhibited 18-99 % increase in phytase activity and 12-76 % reduction of phytic acid content in seeds. The minimum phytic acid content was observed in chapatti (Asian bread) as compared to flour and dough. The transcript profiling of phyA mRNA indicated twofold to ninefold higher expression as compared to non transgenic controls. There was no significant difference in grain nutrient composition of transgenic and non-transgenic seeds. In vitro bioavailability assay for iron and zinc in dough and chapatti of transgenic lines revealed a significant increase in iron and zinc contents. The development of nutritionally enhanced cereals is a step forward to combat nutrition deficiency for iron and zinc in malnourished human population, especially women and children.

  13. Oncogenic relevant defensins: expression pattern and proliferation characteristics of human tumor cell lines.

    PubMed

    Winter, Jochen; Kraus, Dominik; Reckenbeil, Jan; Probstmeier, Rainer

    2016-06-01

    The objective of this study was to investigate gene expression levels of oncogenic relevant human defensins and their impact on proliferation rates of 29 cell lines derived from main types of different tumor origins. Differential gene expression analysis of human defensins was performed by real-time PCR experiments. The proliferation rate of tumor cells that had been cultivated in the absence or presence of biologically active peptides was analyzed with a lactate dehydrogenase assay kit. At least one member of the defensin family was expressed in each tumor cell line, whereby α-defensin (DEFA1), DEFA2, or DEFA3 transcripts could be ubiquitously detected. Cell lines of neural origin (glioma, neuroblastoma, and small-cell lung carcinoma) expressed far less human β-defensins (hBDs) in comparison to other tumor types. The expression level of a specific defensin in various cell lines could vary by more than five orders of magnitude. Compensatory mechanisms on the expression levels of the different defensins could not be strictly observed. Only in 3 out of 29 tumor cell lines the proliferation rate was affected after defensin stimulation. The variable appearance of defensins, as well as the cell line-restricted functional activity, argues for the integration of defensins in complex cellular and molecular networks that tolerate rather flexible expression patterns.

  14. Differentially expressed cytosolic proteins in human leukemia and lymphoma cell lines correlate with lineages and functions.

    PubMed

    Gez, Swetlana; Crossett, Ben; Christopherson, Richard I

    2007-09-01

    Identification of cytosolic proteins differentially expressed between types of leukemia and lymphoma may provide a molecular basis for classification and understanding their cellular properties. Two-dimensional fluorescence difference gel electrophoresis (DIGE) and mass spectrometry have been used to identify proteins that are differentially expressed in cytosolic extracts from four human leukemia and lymphoma cell lines: HL-60 (acute promyelocytic leukemia), MEC1 (B-cell chronic lymphocytic leukemia), CCRF-CEM (T-cell acute lymphoblastic leukemia) and Raji (B-cell Burkitt's lymphoma). A total of 247 differentially expressed proteins were identified between the four cell lines. Analysis of the data by principal component analysis identified 22 protein spots (17 different protein species) differentially expressed at more than a 95% variance level between these cell lines. Several of these proteins were differentially expressed in only one cell line: HL-60 (myeloperoxidase, phosphoprotein 32 family member A, ras related protein Rab-11B, protein disulfide-isomerase, ran-specific GTPase-activating protein, nucleophosmin and S-100 calcium binding protein A4), and Raji (ezrin). Several of these proteins were differentially expressed in two cell lines: Raji and MEC1 (C-1-tetrahydrofolate synthase, elongation factor 2, alpha- and beta-tubulin, transgelin-2 and stathmin). MEC1 and CCRF-CEM (gamma-enolase), HL-60 and CCRF-CEM (ubiquitin-conjugating enzyme E2 N). The differentially expressed proteins identified in these four cell lines correlate with cellular properties and provide insights into the molecular basis of these malignancies.

  15. Expression of leukemia inhibitory factor and its receptors is increased during differentiation of human embryonic stem cells.

    PubMed

    Aghajanova, Lusine; Skottman, Heli; Strömberg, Anne-Marie; Inzunza, José; Lahesmaa, Riitta; Hovatta, Outi

    2006-10-01

    To investigate gene expression profiles during the early spontaneous differentiation of human embryonic stem cells (hESCs), with particular emphasis on leukemia inhibitory factor (LIF)-induced pathways and the ultrastructural surface morphology of the undifferentiated and spontaneously differentiated hESCs. Prospective experimental study. University laboratory. Four hESC cell lines. The effect of LIF on receptor expression level was studied in cultures. Gene expression in the hESC line HS237 was analyzed using microarrays. Real-time reverse-transcription polymerase chain reaction was used to validate the microarray results in four hESC lines (HS181, HS235, HS237, HS293). Immunohistochemistry was used to assay LIF, LIF receptor, and gp130 protein expression. Cell surface morphology was studied using scanning electron microscopy. The expression of LIF, LIF receptor, and gp130 messenger RNA and protein was increased in spontaneously differentiated HS237 cells compared with undifferentiated cells, with high expression of an inhibitor of LIF-mediated signaling, suppressor of cytokine signaling-1, in undifferentiated hESCs. Genes, those expressed specifically and those shared in undifferentiated hESCs, differentiated cells, and in fibroblasts, were identified. Supplementation with LIF did not affect the LIF receptor expression. The expression of LIF and its receptors is low in undifferentiated hESCs but increases during differentiation. Added LIF does not prevent spontaneous differentiation. Suppressor of cytokine signaling-1 may prevent LIF signaling in hESCs.

  16. SATB2 expression increased anchorage-independent growth and cell migration in human bronchial epithelial cells

    PubMed Central

    Wu, Feng; Jordan, Ashley; Kluz, Thomas; Shen, Steven; Sun, Hong; Cartularo, Laura A; Costa, Max

    2016-01-01

    The special AT-rich sequence-binding protein 2 (SATB2) is a protein that binds to the nuclear matrix attachment region of the cell and regulates gene expression by altering chromatin structure. In our previous study, we reported that SATB2 gene expression was induced in human bronchial epithelial BEAS-2B cells transformed by arsenic, chromium, nickel and vanadium. In this study , we show that ectopic expression of SATB2 in the normal human bronchial epithelial cell-line BEAS-2B increased anchorage-independent growth and cell migration, meanwhile, shRNA – mediated knockdown of SATB2 significantly decreased anchorage-independent growth in Ni transformed BEAS-2B cells. RNA sequencing analyses of SATB2 regulated genes revealed the enrichment of those involved in cytoskeleton, cell adhesion and cell-movement pathways. Our evidence supports the hypothesis that SATB2 plays an important role in BEAS-2B cell transformation. PMID:26780400

  17. Snake venom causes apoptosis by increasing the reactive oxygen species in colorectal and breast cancer cell lines

    PubMed Central

    Al-Asmari, Abdulrahman Khazim; Riyasdeen, Anvarbatcha; Al-Shahrani, Mohammad Hamed; Islam, Mozaffarul

    2016-01-01

    Snake venom possesses various kinds of proteins and neurotoxic polypeptides, which can negatively interfere with the neurotransmitter signaling cascade. This phenomenon occurs mainly due to the blocking of ion channels in the body system. Envenomation prevents or severely interrupts nerve impulses from being transmitted, inhibition of adenosine triphosphate synthesis, and proper functioning of the cardiac muscles. However, some beneficial properties of venoms have also been reported. The aim of this study was to examine the snake venom as an anticancer agent due to its inhibitory effects on cancer progression such as cell motility, cell invasion, and colony formation. In this study, the effect of venoms on phenotypic changes and the change on molecular level in colorectal and breast cancer cell lines were examined. A reduction of 60%–90% in cell motility, colony formation, and cell invasion was observed when these cell lines were treated with different concentrations of snake venom. In addition, the increase in oxidative stress that results in an increase in the number of apoptotic cancer cells was significantly higher in the venom-treated cell lines. Further analysis showed that there was a decrease in the expression of pro-inflammatory cytokines and signaling proteins, strongly suggesting a promising role for snake venom against breast and colorectal cancer cell progression. In conclusion, the snake venoms used in this study showed significant anticancer properties against colorectal and breast cancer cell lines. PMID:27799796

  18. Joint line elevation in revision TKA leads to increased patellofemoral contact forces.

    PubMed

    König, Christian; Sharenkov, Alexey; Matziolis, Georg; Taylor, William R; Perka, Carsten; Duda, Georg N; Heller, Markus O

    2010-01-01

    One difficulty in revision total knee arthroplasty (TKA) is the management of distal femoral bone defects in which a joint line elevation (JLE) is likely to occur. Although JLE has been associated with inferior clinical results, the effect that an elevated joint line has on knee contact forces has not been investigated. To understand the clinical observations and elaborate the potential risk associated with a JLE, we performed a virtual TKA on the musculoskeletal models of four subjects. Tibio- and patellofemoral joint contact forces (JCF) were calculated for walking and stair climbing, varying the location of the joint line. An elevation of the joint line primarily affected the patellofemoral joint with JCF increases of as much as 60% of the patient's body weight (BW) at 10-mm JLE and 90% BW at 15-mm JLE, while the largest increase in tibiofemoral JCF was only 14% BW. This data demonstrates the importance of restoring the joint line, as it plays a critical role for the magnitudes of the JCFs, particularly for the patellofemoral joint. JLE caused by managing distal femoral defects with downsizing and proximalizing the femoral component could increase the patellofemoral contact forces, and may be a contributing factor to postoperative complications such as pain, polyethylene wear, and limited function.

  19. Immunodetection of Human LINE-1 Expression in Cultured Cells and Human Tissues.

    PubMed

    Sharma, Reema; Rodić, Nemanja; Burns, Kathleen H; Taylor, Martin S

    2016-01-01

    Long interspersed element-1 (LINE-1) is the only active protein-coding retrotransposon in humans. It is not expressed in somatic tissue but is aberrantly expressed in a wide variety of human cancers. ORF1p protein is the most robust indicator of LINE-1 expression; the protein accumulates in large quantities in cellular cytoplasm. Recently, monoclonal antibodies have allowed more complete characterizations of ORF1p expression and indicated potential for developing ORF1p as a clinical biomarker. Here, we describe a mouse monoclonal antibody specific for human LINE-1 ORF1p and its application in immunofluorescence and immunohistochemistry of both cells and human tissues. We also describe detection of tagged LINE-1 ORF2p via immunofluorescence. These general methods may be readily adapted to use with many other proteins and antibodies.

  20. Autonomous Bioluminescent Expression of the Bacterial Luciferase Gene Cassette (lux) in a Mammalian Cell Line

    PubMed Central

    Close, Dan M.; Patterson, Stacey S.; Ripp, Steven; Baek, Seung J.; Sanseverino, John; Sayler, Gary S.

    2010-01-01

    Background The bacterial luciferase (lux) gene cassette consists of five genes (luxCDABE) whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo. Methodology/Principal Findings Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH2) was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp) from Vibrio harveyi. FMNH2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background. Conclusions/Significance The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies. PMID:20805991

  1. Resistin and Visfatin Expression in HCT-116 Colorectal Cancer Cell Line

    PubMed Central

    Ghaemmaghami, Sara; Mohaddes, Seyed Mojtaba; Hedayati, Mehdi; Gorgian Mohammadi, Masumeh; Dehbashi, Golnoosh

    2013-01-01

    Adipocytokines, hormones secreted from adipose tissue, have been shown to be associated with many cancers such as breast, prostate and colorectal cancer. Recent studies have indicated that resistin and visfatin, two of these adipokines have high level plasma concentrations in colorectal cancer patients and may be promising biomarkers for colorectal cancer. The aim of this study was to identify whether the colorectal cancer cell line, HCT-116, itself is the source of these two adipokines secretion. Resistin and visfatin expression were investigated in HCT-116 by RT – PCR at mRNA level and confirmed by ELISA at protein level. Visfatin showed a high expression at both mRNA and protein levels in HCT-116. Conversely, resistin was not expressed in either cell lysate or supernatant. These results showed that HCT-116 colorectal cancer cells secrete and express visfatin endogenously. However, they are not the main source of resistin and the high level of resistin in colorectal cancer may be due to monocytes and other inflammatory cells which increase in proinflammation status of cancer. Taken together, visfatin may act on colorectal cancer cell in an autocrine manner while resistin may act in a paracrine manner. PMID:24551805

  2. The mechanosensitive cell line ND-C does not express functional thermoTRP channels.

    PubMed

    Rugiero, François; Wood, John N

    2009-06-01

    The molecular basis of mechanosensation in sensory neurons has yet to be defined. We found that ND-C cells, a hybrid cell line derived from neonatal rat DRG neurons, express mechanosensitive ion channels, and provide a useful expression system for testing candidate mechanosensitive ion channels. ND-C cells retain some important features of DRG neurons such as the expression of TTX-sensitive Na(+) and acid-activated currents as well as the ability to respond to mechanical stimulation with cationic currents sensitive to the analgesic peptide NMB1. ND-C cells do not respond to agonists of the 'thermoTRP' channels, suggesting that these channels are not responsible for MA currents in these cells and DRG neurons. Furthermore, transfecting ND-C cells with the candidate mechanotransducer channel TRPA1 does not increase MA current amplitudes, despite TRPA1 being functionally expressed at the plasma membrane. This correlates well with the fact that all types of MA currents can be recorded from TRPA1-negative DRG neurons.

  3. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines.

    PubMed

    Port, Matthias; Glaesener, Stephanie; Ruf, Christian; Riecke, Armin; Bokemeyer, Carsten; Meineke, Viktor; Honecker, Friedemann; Abend, Michael

    2011-05-15

    We compared microRNA expression patterns in three cisplatin resistant sublines derived from paternal cisplatin sensitive germ cell tumor cell lines in order to improve our understanding of the mechanisms of cisplatin resistance. Three cisplatin resistant sublines (NTERA-2-R, NCCIT-R, 2102EP-R) showing 2.7-11.3-fold increase in drug resistance after intermittent exposure to increasing doses of cisplatin were compared to their parental counterparts, three well established relatively cisplatin sensitive germ cell tumor cell lines (NTERA-2, NCCIT, 2102EP). Cells were cultured and total RNA was isolated from all 6 cell lines in three independent experiments. RNA was converted into cDNA and quantitative RT-PCR was run using 384 well low density arrays covering almost all (738) known microRNA species of human origin. Altogether 72 of 738 (9.8%) microRNAs appeared differentially expressed between sensitive and resistant cell line pairs (NTERA-2R/NTERA-2 = 43, NCCIT-R/NCCIT = 53, 2102EP-R/2102EP = 15) of which 46.7-95.3% were up-regulated (NTERA-2R/NTERA-2 = 95.3%, NCCIT-R/NCCIT = 62.3%, 2102EP-R/2102EP = 46.7%). The number of genes showing differential expression in more than one of the cell line pairs was 34 between NTERA-2R/NTERA-2 (79%) and NCCIT-R/NCCIT (64%), and 3 and 4, respectively, between these two cell lines and 2102EP-R/2102EP (about 27%). Only the has-miR-10b involved in breast cancer invasion and metastasis and has-miR-512-3p appeared to be up-regulated (2-3-fold) in all three cell lines. The hsa-miR-371-373 cluster (counteracting cellular senescence and linked with differentiation potency), as well as hsa-miR-520c/-520h (inhibiting the tumor suppressor p21) were 3.9-16.3 fold up-regulated in two of the three cisplatin resistant cell lines. Several new micro-RNA species missing an annotation towards cisplatin resistance could be identified. These were hsa-miR-512-3p/-515/-517/-518/-525 (up to 8.1-fold up-regulated) and hsa-miR-99a/-100/-145 (up to 10-fold

  4. miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression

    SciTech Connect

    Gao, Yong; Luo, Ling-hui; Li, Shuai; Yang, Cao

    2014-02-07

    Highlights: • miR-17 was increased in OS tissues and cell lines. • Inhibition of miR-17 suppressed OS cell proliferation. • Inhibition of miR-17 suppressed OS cell migration and invasion. • PTEN was a target of miR-17. • miR-17 was negatively correlated with PTEN in OS tissues. - Abstract: MicroRNAs (miRNAs) play essential roles in cancer development and progression. Here, we investigated the role of miR-17 in the progression and metastasis of osteosarcoma (OS). miR-17 was frequently increased in OS tissues and cell lines. Inhibition of miR-17 in OS cell lines substantially suppressed cell proliferation, migration, and invasion. Phosphatase and tensin homolog (PTEN) was identified as a target of miR-17, and ectopic expression of miR-17 inhibited PTEN by direct binding to its 3′-untranslated region (3′-UTR). Expression of miR-17 was negatively correlated with PTEN in OS tissues. Together, these findings indicate that miR-17 acts as an oncogenic miRNA and may contribute to the progression and metastasis of OS, suggesting miR-17 as a potential novel diagnostic and therapeutic target of OS.

  5. Weight gain increases human aromatase expression in mammary gland.

    PubMed

    Chen, Dong; Zhao, Hong; Coon, John S; Ono, Masanori; Pearson, Elizabeth K; Bulun, Serdar E

    2012-05-15

    Adulthood weight gain predicts estrogen receptor-positive breast cancer. Because local estrogen excess in the breast likely contributes to cancer development, and aromatase is the key enzyme in estrogen biosynthesis, we investigated the role of local aromatase expression in weight gain-associated breast cancer risk in a humanized aromatase (Arom(hum)) mouse model containing the coding region and the 5'-regulatory region of the human aromatase gene. Compared with littermates on normal chow, female Arom(hum) mice on a high fat diet gained more weight, and had a larger mammary gland mass with elevated total human aromatase mRNA levels via promoters I.4 and II associated with increased levels of their regulators TNFα and C/EBPβ. There was no difference in total human aromatase mRNA levels in gonadal white adipose tissue. Our data suggest that diet-induced weight gain preferentially stimulates local aromatase expression in the breast, which may lead to local estrogen excess and breast cancer risk.

  6. Increased expression of nestin in human pterygial epithelium

    PubMed Central

    Wen, Dan; Wang, Hua; Heng, Boon Chin; Liu, Hua

    2013-01-01

    AIM To investigate the distribution of nestin-positive cells in pterygium, as well as the relationship between nestin-positive cells and proliferative cells in the pathogenesis of pterygium. METHODS Nine pterygium specimens and 5 normal conjunctiva specimens were investigated. All explanted specimens were immediately immersed in 5-Ethynyl-2′-deoxyuridine, and were subjected to hematoxylin and eosin staining, as well as immunostaining to detect nestin. RESULTS Small sub-populations of nestin-expressing cells in both normal and pterygial conjunctiva epithelium were found. These were located at the superficial layer of the epithelium, and were significantly increased (P=0.007) and spread out in the pterygial conjunctiva epithelium, even though these cells were mitotically quiescent. CONCLUSION In pterygium, more nestin-positive cells were present at the superficial layer of the epithelium. With growing scientific evidence that nestin plays an important role in defining various specialized cell types, such as stem cells, cancer cells and angiogenic cells, further investigations on the roles of nestin-expressing cells in pterygium may help to uncover the mechanisms of initiation, development and the prognosis of this disease. PMID:23826515

  7. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment

    SciTech Connect

    Sustarsic, Elahu G.; Junnila, Riia K.; Kopchick, John J.

    2013-11-08

    Highlights: •Most cancer types of the NCI60 have sub-sets of cell lines with high GHR expression. •GHR is highly expressed in melanoma cell lines. •GHR is elevated in advanced stage IV metastatic tumors vs. stage III. •GH treatment of metastatic melanoma cell lines alters growth and cell signaling. -- Abstract: Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute’s NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on

  8. BACE2 expression increases in human neurodegenerative disease.

    PubMed

    Holler, Christopher J; Webb, Robin L; Laux, Ashley L; Beckett, Tina L; Niedowicz, Dana M; Ahmed, Rachel R; Liu, Yinxing; Simmons, Christopher R; Dowling, Amy L S; Spinelli, Angela; Khurgel, Moshe; Estus, Steven; Head, Elizabeth; Hersh, Louis B; Murphy, M Paul

    2012-01-01

    β-Secretase, the rate-limiting enzymatic activity in the production of the amyloid-β (Aβ) peptide, is a major target of Alzheimer's disease (AD) therapeutics. There are two forms of the enzyme: β-site Aβ precursor protein cleaving enzyme (BACE) 1 and BACE2. Although BACE1 increases in late-stage AD, little is known about BACE2. We conducted a detailed examination of BACE2 in patients with preclinical to late-stage AD, including amnestic mild cognitive impairment, and age-matched controls, cases of frontotemporal dementia, and Down's syndrome. BACE2 protein and enzymatic activity increased as early as preclinical AD and were found in neurons and astrocytes. Although the levels of total BACE2 mRNA were unchanged, the mRNA for BACE2 splice form C (missing exon 7) increased in parallel with BACE2 protein and activity. BACE1 and BACE2 were strongly correlated with each other at all levels, suggesting that their regulatory mechanisms may be largely shared. BACE2 was also elevated in frontotemporal dementia but not in Down's syndrome, even in patients with substantial Aβ deposition. Thus, expression of both forms of β-secretase are linked and may play a combined role in human neurologic disease. A better understanding of the normal functions of BACE1 and BACE2, and how these change in different disease states, is essential for the future development of AD therapeutics.

  9. Melatonin attenuates postmyocardial infarction injury via increasing Tom70 expression.

    PubMed

    Pei, Hai-Feng; Hou, Juan-Ni; Wei, Fei-Peng; Xue, Qiang; Zhang, Fan; Peng, Cheng-Fei; Yang, Yi; Tian, Yue; Feng, Juan; Du, Jin; He, Lei; Li, Xiu-Chuan; Gao, Er-He; Li, De; Yang, Yong-Jian

    2017-01-01

    Mitochondrial dysfunction leads to reactive oxygen species (ROS) overload, exacerbating injury in myocardial infarction (MI). As a receptor for translocases in the outer mitochondrial membrane (Tom) complex, Tom70 has an unknown function in MI, including melatonin-induced protection against MI injury. We delivered specific small interfering RNAs against Tom70 or lentivirus vectors carrying Tom70a sequences into the left ventricles of mice or to cultured neonatal murine ventricular myocytes (NMVMs). At 48 h post-transfection, the left anterior descending coronary arteries of mice were permanently ligated, while the NMVMs underwent continuous hypoxia. At 24 h after ischemia/hypoxia, oxidative stress was assessed by dihydroethidium and lucigenin-enhanced luminescence, mitochondrial damage by transmission electron microscopy and ATP content, and cell apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling and caspase-3 assay. At 4 weeks after ischemia, cardiac function and fibrosis were evaluated in mice by echocardiography and Masson's trichrome staining, respectively. Ischemic/hypoxic insult reduced Tom70 expression in cardiomyocytes. Tom70 downregulation aggravated post-MI injury, with increased mitochondrial fragmentation and ROS overload. In contrast, Tom70 upregulation alleviated post-MI injury, with improved mitochondrial integrity and decreased ROS production. PGC-1α/Tom70 expression in ischemic myocardium was increased with melatonin alone, but not when combined with luzindole. Melatonin attenuated post-MI injury in control but not in Tom70-deficient mice. N-acetylcysteine (NAC) reversed the adverse effects of Tom70 deficiency in mitochondria and cardiomyocytes, but at a much higher concentration than melatonin. Our findings showed that Tom70 is essential for melatonin-induced protection against post-MI injury, by breaking the cycle of mitochondrial impairment and ROS generation. © 2016 John Wiley & Sons A/S. Published by John Wiley

  10. Carnitine Palmitoyltransferase 1 Increases Lipolysis, UCP1 Protein Expression and Mitochondrial Activity in Brown Adipocytes

    PubMed Central

    Calderon-Dominguez, María; Sebastián, David; Fucho, Raquel; Weber, Minéia; Mir, Joan F.; García-Casarrubios, Ester; Obregón, María Jesús; Zorzano, Antonio; Valverde, Ángela M.; Serra, Dolors

    2016-01-01

    The discovery of active brown adipose tissue (BAT) in adult humans and the fact that it is reduced in obese and diabetic patients have put a spotlight on this tissue as a key player in obesity-induced metabolic disorders. BAT regulates energy expenditure through thermogenesis; therefore, harnessing its thermogenic fat-burning power is an attractive therapeutic approach. We aimed to enhance BAT thermogenesis by increasing its fatty acid oxidation (FAO) rate. Thus, we expressed carnitine palmitoyltransferase 1AM (CPT1AM), a permanently active mutant form of CPT1A (the rate-limiting enzyme in FAO), in a rat brown adipocyte (rBA) cell line through adenoviral infection. We found that CPT1AM-expressing rBA have increased FAO, lipolysis, UCP1 protein levels and mitochondrial activity. Additionally, enhanced FAO reduced the palmitate-induced increase in triglyceride content and the expression of obese and inflammatory markers. Thus, CPT1AM-expressing rBA had enhanced fat-burning capacity and improved lipid-induced derangements. This indicates that CPT1AM-mediated increase in brown adipocytes FAO may be a new approach to the treatment of obesity-induced disorders. PMID:27438137

  11. Calpain expression in lymphoid cells. Increased mRNA and protein levels after cell activation.

    PubMed

    Deshpande, R V; Goust, J M; Chakrabarti, A K; Barbosa, E; Hogan, E L; Banik, N L

    1995-02-10

    Although calpain is ubiquitously present in human tissues and is thought to play a role in demyelination, its activity is very low in resting normal lymphocytes. To determine the nature of calpain expression at the mRNA and protein levels in human lymphoid cells, we studied human T lymphocytic, B lymphocytic, and monocytic lines as well as peripheral blood mononuclear cells. Stimulation of cells with the phorbol ester phorbol myristate acetate and the calcium ionophore A23187 resulted in increased calpain mRNA and protein expression. Calpain mRNA expression is also increased in human T cells stimulated with anti-CD3. A dissociation between the increases of RNA and protein suggested that calpain could be released from the cells; the subsequent experiments showed its presence in the extracellular environment. 5,6-Dichloro-1b-D-ribofuranosylbenzimidazole, a reversible inhibitor of mRNA synthesis, reduced calpain mRNA levels by 50-67% and protein levels by 72-91%. Its removal resulted in resumption of both calpain mRNA and protein synthesis. Cycloheximide, a translational inhibitor, reduced calpain protein levels by 77-81% and calpain mRNA levels by 96% in activated THP-1 cells. Interferon-gamma induced calpain mRNA and protein in U-937 and THP-1 cells. Dexamethasone increased mRNA expression in THP-1 cells. Our results indicate that activation of lymphoid cells results in de novo synthesis and secretion of calpain.

  12. Gene expression profile changes correlating with radioresistance in human cell lines

    SciTech Connect

    Ishikawa, Ken-ichi; Koyama-Saegusa, Kumiko; Otsuka, Yoshimi; Ishikawa, Atsuko; Kawai, Seiko; Yasuda, Kaori; Suga, Tomo; Michikawa, Yuichi; Suzuki, Masao; Iwakawa, Mayumi; Imai, Takashi . E-mail: imait@nirs.go.jp

    2006-05-01

    Purpose: To identify gene expression profiles specific to radioresistance of human cells. Methods and Materials: Global gene expression profiles of a total of 15 tumor and normal fibroblast cell lines were analyzed using DNA microarrays and statistical clustering methods. Initially, six of the cell lines were categorized into radioresistant (RG) or nonradioresistant (NRG) groups according to the radiation dose required to reduce their survival to 10% (D{sub 1}). Genes for which expression was specific to each group at 1 or 3 h after irradiation were identified using statistical procedures including analysis of variance and a two-dimensional hierarchical clustering method. The remaining nine cell lines were subjected to the k-nearest neighbor pattern classification. Results: The nine test cell lines were successfully classified by their D{sub 1} value using 46 and 44 genes for which transcription levels had significantly changed at 1 and 3 h after irradiation, respectively. Of these genes, 25 showed altered expression at both time points in the NRG or RG, but independently were unable to classify the test cell lines. Conclusions: Radioresistant cell lines analyzed in this study showed certain radiation-induced changes in gene expression profiles that are different from the profile changes of the more-sensitive cell lines.

  13. Temozolomide Resistance in Glioblastoma Cell Lines: Implication of MGMT, MMR, P-Glycoprotein and CD133 Expression

    PubMed Central

    Prados, Jose; Caba, Octavio; Cabeza, Laura; Berdasco, Maria; Gónzalez, Beatriz; Melguizo, Consolación

    2015-01-01

    Background The use of temozolomide (TMZ) has improved the prognosis for glioblastoma multiforme patients. However, TMZ resistance may be one of the main reasons why treatment fails. Although this resistance has frequently been linked to the expression of O6-methylguanine-DNA methyltransferase (MGMT) it seems that this enzyme is not the only molecular mechanism that may account for the appearance of drug resistance in glioblastoma multiforme patients as the mismatch repair (MMR) complex, P-glycoprotein, and/or the presence of cancer stem cells may also be implicated. Methods Four nervous system tumor cell lines were used to analyze the modulation of MGMT expression and MGMT promoter methylation by TMZ treatment. Furthermore, 5-aza-2’-deoxycytidine was used to demethylate the MGMT promoter and O(6)-benzylguanine to block GMT activity. In addition, MMR complex and P-glycoprotein expression were studied before and after TMZ exposure and correlated with MGMT expression. Finally, the effect of TMZ exposure on CD133 expression was analyzed. Results Our results showed two clearly differentiated groups of tumor cells characterized by low (A172 and LN229) and high (SF268 and SK-N-SH) basal MGMT expression. Interestingly, cell lines with no MGMT expression and low TMZ IC50 showed a high MMR complex expression, whereas cell lines with high MGMT expression and high TMZ IC50 did not express the MMR complex. In addition, modulation of MGMT expression in A172 and LN229 cell lines was accompanied by a significant increase in the TMZ IC50, whereas no differences were observed in SF268 and SK-N-SH cell lines. In contrast, P-glycoprotein and CD133 was found to be unrelated to TMZ resistance in these cell lines. Conclusions These results may be relevant in understanding the phenomenon of TMZ resistance, especially in glioblastoma multiforme patients laking MGMT expression, and may also aid in the design of new therapeutic strategies to improve the efficacy of TMZ in glioblastoma

  14. Human metastatic melanoma cell lines express high levels of growth hormone receptor and respond to GH treatment.

    PubMed

    Sustarsic, Elahu G; Junnila, Riia K; Kopchick, John J

    2013-11-08

    Accumulating evidence implicates the growth hormone receptor (GHR) in carcinogenesis. While multiple studies show evidence for expression of growth hormone (GH) and GHR mRNA in human cancer tissue, there is a lack of quantification and only a few cancer types have been investigated. The National Cancer Institute's NCI60 panel includes 60 cancer cell lines from nine types of human cancer: breast, CNS, colon, leukemia, melanoma, non-small cell lung, ovarian, prostate and renal. We utilized this panel to quantify expression of GHR, GH, prolactin receptor (PRLR) and prolactin (PRL) mRNA with real-time RT qPCR. Both GHR and PRLR show a broad range of expression within and among most cancer types. Strikingly, GHR expression is nearly 50-fold higher in melanoma than in the panel as a whole. Analysis of human metastatic melanoma biopsies confirmed GHR gene expression in melanoma tissue. In these human biopsies, the level of GHR mRNA is elevated in advanced stage IV tumor samples compared to stage III. Due to the novel finding of high GHR in melanoma, we examined the effect of GH treatment on three NCI60 melanoma lines (MDA-MB-435, UACC-62 and SK-MEL-5). GH increased proliferation in two out of three cell lines tested. Further analysis revealed GH-induced activation of STAT5 and mTOR in a cell line dependent manner. In conclusion, we have identified cell lines and cancer types that are ideal to study the role of GH and PRL in cancer, yet have been largely overlooked. Furthermore, we found that human metastatic melanoma tumors express GHR and cell lines possess active GHRs that can modulate multiple signaling pathways and alter cell proliferation. Based on this data, GH could be a new therapeutic target in melanoma. Published by Elsevier Inc.

  15. Reading Speed Does Not Benefit from Increased Line Spacing in AMD Patients

    PubMed Central

    CHUNG, SUSANA T. L.; JARVIS, SAMUEL H.; WOO, STANLEY Y.; HANSON, KARA; JOSE, RANDALL T.

    2009-01-01

    Purpose Crowding, the adverse spatial interaction due to the proximity of adjacent targets, has been suggested as an explanation for slow reading in peripheral vision. Previously, we showed that increased line spacing, which presumably reduces crowding between adjacent lines of text, improved reading speed in the normal periphery (Chung, Optom Vis Sci 2004;81:525–35). The purpose of this study was to examine whether or not individuals with age-related macular degeneration (AMD) would benefit from increased line spacing for reading. Methods Experiment 1: Eight subjects with AMD read aloud 100-word passages rendered at five line spacings: the standard single spacing, 1.5×, 2×, 3×, and 4× the standard spacing. Print sizes were 1× and 2× of the critical print size. Reading time and number of reading errors for each passage were measured to compute the reading speed. Experiment 2: Four subjects with AMD read aloud sequences of six 4-letter words, presented on a computer monitor using the rapid serial visual presentation (RSVP) paradigm. Target words were presented singly, or flanked above and below by two other words that changed in synchrony with the target word, at various vertical word separations. Print size was 2× the critical print size. Reading speed was calculated based on the RSVP exposure duration that yielded 80% of the words read correctly. Results Averaged across subjects, reading speeds for passages were virtually constant for the range of line spacings tested. For sequences of unrelated words, reading speeds were also virtually constant for the range of vertical word separations tested, except at the smallest (standard) separation at which reading speed was lower. Conclusions Contrary to the previous finding that reading speed improved in normal peripheral vision, increased line spacing in passages, or increased vertical separation between words in RSVP, did not lead to improved reading speed in people with AMD. PMID:18772718

  16. Transient HEXA expression in a transformed human fetal Tay-Sachs disease neuroglial cell line

    SciTech Connect

    Fernandes, M.J.; Hechtman, P.; Kaplan, F.

    1994-09-01

    Tay-Sachs disease (TSD) is a severe neurodegenerative disorder characterized by the accumulation of GM{sub 2} ganglioside in the neurons of the central cortex. The recessively inherited disorder results from deficiency of hexosaminidase A (Hex A), a heterodimer of an {alpha} and {beta} subunit encoded by the HEXA and HEXB genes. Expression of HEXA mutations in COS cells has several disadvantages including high endogenous hexosaminidase activity. We report a new transient expression system with very low endogenous Hex A activity. An SV40-transformed fetal TSD neuroglial cell line was assessed for transient expression of the HEXA gene. pCMV{alpha}, a vector incorporating the cytomegalovirus promoter with the human {alpha}-subunit cDNA insert, proved to be the most efficient expression vector. Transfection of 4x10{sup 6} cells with 5-20 {mu}g of plasmid resulted in 100 to 500-fold Hex A activity (4MUGS hydrolysis) relative to mock-transfected cells. Use of pCMV{beta}-Gal as a control for transfection efficiency indicated that 10-20% of cells were transfected. Hex A specific activity increased for at least 72 h post-transfection. This new transient expression system should greatly improve the characterization of mutations in which low levels of HEXA expression result in milder clinical phenotypes and permit studies on enzymatic properties of mutant forms of Hex A. Since the cells used are of CNS origin and synthesize gangliosides, it should also be possible to study, in culture, the metabolic phenotype associated with TSD.

  17. Gene and microRNA expression reveals sensitivity to paclitaxel in laryngeal cancer cell line

    PubMed Central

    Xu, Cheng-Zhi; Xie, Jin; Jin, Bin; Chen, Xin-Wei; Sun, Zhen-Feng; Wang, Bao-Xing; Dong, Pin

    2013-01-01

    Paclitaxel is a widely used chemotherapy drug for advanced laryngeal cancer patients. However, the fact that there are 20-40% of advanced laryngeal cancer patients do not response to paclitaxel makes it necessary to figure out potential biomarkers for paclitaxel sensitivity prediction. In this work, Hep2, a laryngeal cancer cell line, untreated or treated with lower dose of paclitaxel for 24 h, was applied to DNA microarray chips for gene and miR expression profile analysis. Expression of eight genes altered significantly following paclitaxel treatment, which was further validated by quantitative real-time PCR. Four up-regulated genes were ID2, BMP4, CCL4 and ACTG2, in which ID2 and BMP4 were implicated to be involved in several drugs sensitivity. While the down-regulated four genes, MAPK4, FASN, INSIG1 and SCD, were mainly linked to the endoplasmic reticulum and fatty acid biosynthesis, these two cell processes that are associated with drug sensitivity by increasing evidences. After paclitaxel treatment, expression of 49 miRs was significantly altered. Within these miRs, the most markedly expression-changed were miR-31-star, miR-1264, miR-3150b-5p and miR-210. While the miRs putatively modulated the mRNA expression of the most significantly expression-altered genes were miR-1264, miR-130a, miR-27b, miR-195, miR-1291, miR-214, miR-1277 and miR-1265, which were obtained by miR target prediction and miRNA target correlation. Collectively, our study might provide potential biomarkers for paclitaxel sensitivity prediction and drug resistance targets in laryngeal cancer patients. PMID:23826416

  18. Epigenetic regulation of proMMP-1 expression in the HT1080 human fibrosarcoma cell line.

    PubMed

    Poplineau, Mathilde; Dufer, Jean; Antonicelli, Frank; Trussardi-Regnier, Aurelie

    2011-06-01

    The matrix metalloproteinase (MMP) family members play an important role in various physiological and pathological processes. Although MMP-1 (collagenase-1) has been shown to be involved in tumor invasiveness, the regulation of its expression is still not fully elucidated and could implicate epigenetic mechanisms. The aim of this study was to analyze the effects of the Histone Deacetylase Inhibitor (HDI) trichostatin A (TSA) and the inhibitor of DNA methylation 5-aza-2'-deoxycytidine (5-azadC) on the proMMP-1 expression in the human HT1080 fibrosarcoma cell line. Real-time RT-PCR revealed that 5-azadC or 5-azadC + TSA but not TSA alone, despite global histone H4 hyperacetylation, increased proMMP-1 mRNA levels. This transcription activation was correlated with chromatin decondensation determined by nuclear texture image analysis technique. Western blot analysis of cell culture conditioned media revealed a significant increase in proMMP-1 secretion after 5-azadC or 5-azadC + TSA treatment compared to untreated cells. These results suggested that epigenetic mechanisms could be involved in proMMP-1 gene expression including chromatin supra-organization changes. Indeed, although the proMMP-1 gene promoter does not appear to contain CpG islands, its expression can be induced by the demethylating agent 5-azadC. Further experiments revealed that inhibition of protein neosynthesis by cycloheximide decreased 5-azadC-induced proMMP-1 mRNA, suggesting that epigenetically regulated intermediate molecules could be involved in proMMP-1 expression regulation in these cells.

  19. Caring On-Line: On-Line Empathy, Self-Disclosure, Emotional Expression, and Nurturing.

    ERIC Educational Resources Information Center

    Burford, Vicki Niemants; Gross, Daniel D.

    The purpose of this study was to analyze, categorize, and critique actual responses to expressed student confusion and frustration with online courses. Samplings of actual student messages from two courses were used to frame instructor responses, as well as a focus group survey of current college students. The focus of the study was the…

  20. Expression pattern of mda-7/IL-24 receptors in liver cancer cell lines.

    PubMed

    Zhu, Hong; Yang, Zhi-Bin

    2009-08-01

    The mda-7/IL-24 receptor belongs to the type II cytokine receptor family, and its two heterodimeric receptors are IL-22R1/IL-20R2 and IL-20R1/IL-20R2. Mda-7/IL-24 receptor expression in liver cancer cell lines has not yet been described. This information may be helpful for further clinical gene therapy. With normal skin total RNA as template, the cDNA sequences of IL-20R1, IL-20R2 and IL-22R were amplified by RT-PCR. Total RNA was extracted from cultured liver cancer cell lines and a normal liver cell line, then detected by northern blotting, and the expression of mda-7/IL-24 receptors was analyzed. PLC/PRF/5 and SMMC-7721 expressed IL-20R1; BEL-7402, Hep3B, HepG2, and PLC/PRF/5 expressed IL-20R2; and HepG2 and PLC/PRF/5 expressed IL-22R. Only HepG2 expressed the IL-22R/IL-20R2 receptor complex. PLC/PRF/5 completely expressed both heterodimeric receptors. Huh-7, QGY-7701 and WRL-68 did not express the IL-24 receptor. Complete mda-7/IL-24 receptors are seldom expressed in liver cancer cell lines.

  1. Wired: impacts of increasing power line use by a growing bird population

    NASA Astrophysics Data System (ADS)

    Moreira, Francisco; Encarnação, Vitor; Rosa, Gonçalo; Gilbert, Nathalie; Infante, Samuel; Costa, Julieta; D’Amico, Marcello; Martins, Ricardo C.; Catry, Inês

    2017-02-01

    Power lines are increasingly widespread across many regions of the planet. Although these linear infrastructures are known for their negative impacts on bird populations, through collision and electrocution, some species take advantage of electricity pylons for nesting. In this case, estimation of the net impact of these infrastructures at the population level requires an assessment of trade-offs between positive and negative impacts. We compiled historical information (1958–2014) of the Portuguese white stork Ciconia ciconia population to analyze long-term changes in numbers, distribution range and use of nesting structures. White stork population size increased 660% up to 12000 breeding pairs between 1984 and 2014. In the same period, the proportion of nests on electricity pylons increased from 1% to 25%, likely facilitated by the 60% increase in the length of the very high tension power line grid (holding the majority of the nests) in the stork’s distribution range. No differences in breeding success were registered for storks nesting on electricity pylons versus other structures, but a high risk of mortality by collision and electrocution with power lines was estimated. We discuss the implications of this behavioral change, and of the management responses by power line companies, both for stork populations and for managers.

  2. Increased Id-1 expression is significantly associated with poor survival of patients with prostate cancer.

    PubMed

    Forootan, Shiva S; Wong, Yong-Chuan; Dodson, Andrew; Wang, Xianghong; Lin, Ke; Smith, Paul H; Foster, Christopher S; Ke, Youqiang

    2007-09-01

    The levels of Id-1 (inhibitor of DNA binding or inhibitor of cell differentiation) expression in a series of prostate cell lines and in an archival set of prostate tissues were examined. Western blot analysis showed that the level of Id-1 expressed in the androgen sensitive cell line LNCaP was 1.2 +/- 0.2 times that detected in the benign cell line PNT-2. The level of Id-1 increased further to 1.8 +/- 0.2 and 2.9 +/- 0.3 in the androgen-insensitive cell lines Du-145 and PC-3, respectively. Immunohistochemical staining with Id-1 antibody performed on 113 cases of prostate tissues showed that among the 7 normal cases, 6 (86%) stained either negative or weakly positive whereas only 1 (14%) stained moderately positive. Among the 36 benign prostatic hyperplasia (BPH) samples, 34 (94%) stained either negative or weakly positive; only 1 (3%) stained moderately and 1 (3%) stained strongly. Of the 70 carcinomas, 8 (11.5%) stained weakly, 34 (48.5%) stained moderately, and 28 (40%) stained strongly positive. The intensity of Id-1 staining in carcinomas was significantly stronger than that detected in the normal prostate and BPH (chi(2) test, P < .001) and it was significantly increased as the increasing malignancy of carcinomas measured by Gleason score (chi(2) test, P < .001). The intensity of Id-1 staining was partially associated with the levels of prostate-specific antigen, but not related to the level of androgen receptor. Kaplan-Meier survival curve analysis showed that, similar to Gleason scores, overexpression of Id-1 was significantly associated with the reduced length of patient survival (log-rank test, P = .01). These results suggest that Id-1 is a useful prognostic marker to predict the outcomes of patients with prostate cancer.

  3. Iron increases HMOX1 and decreases hepatitis C viral expression in HCV-expressing cells

    PubMed Central

    Hou, Wei-Hong; Rossi, Lisa; Shan, Ying; Zheng, Jian-Yu; Lambrecht, Richard W; Bonkovsky, Herbert L

    2009-01-01

    AIM: To investigate effects of iron on oxidative stress, heme oxygenase-1 (HMOX1) and hepatitis C viral (HCV) expression in human hepatoma cells stably expressing HCV proteins. METHODS: Effects of iron on oxidative stress, HMOX1, and HCV expression were assessed in CON1 cells. Measurements included mRNA by quantitative reverse transcription-polymerase chain reaction, and protein levels by Western blots. RESULTS: Iron, in the form of ferric nitrilotriacetate, increased oxidative stress and up-regulated HMOX1 gene expression. Iron did not affect mRNA or protein levels of Bach1, a repressor of HMOX1. Silencing the up-regulation of HMOX1 nuclear factor-erythroid 2-related factor 2 (Nrf2) by Nrf2-siRNA decreased FeNTA-mediated up-regulation of HMOX1 mRNA levels. These iron effects were completely blocked by deferoxamine (DFO). Iron also significantly decreased levels of HCV core mRNA and protein by 80%-90%, nonstructural 5A mRNA by 90% and protein by about 50% in the Con1 full length HCV replicon cells, whereas DFO increased them. CONCLUSION: Excess iron up-regulates HMOX1 and down-regulates HCV gene expression in hepatoma cells. This probably mitigates liver injury caused by combined iron overload and HCV infection. PMID:19777608

  4. Cigarette smoke extract inhibits expression of peroxiredoxin V and increases airway epithelial permeability.

    PubMed

    Serikov, Vladimir B; Leutenegger, Christian; Krutilina, Raisa; Kropotov, Andrei; Pleskach, Nadezhda; Suh, Jung H; Tomilin, Nikolay V

    2006-01-01

    Inhaled cigarette smoke induces oxidative stress in the epithelium of airways. Peroxiredoxin V (PRXV) is a potent antioxidant protein, highly expressed in cells of the airway epithelium. The goal of our study was to determine whether cigarette smoke extract (CSE) influenced expression of this protein in airway epithelia in vivo and in vitro. In Sprague-Dawley rats, we determined effects of CSE on airway epithelial permeability, mRNA levels and expression of PRXV protein. Exposure of isolated tracheal segment in vitro to 20% CSE for 4 h resulted in development of increased permeability to albumin, significantly reduced mRNA levels for PRXV, and reduced amounts of PRXV protein in the epithelium. In cultures of the airway epithelial cell lines (Calu-3, JME), primary airway cell culture (cow), and alveolar epithelial cells A549, CSE also significantly decreased transepithelial electrical resistance and expression of PRXV protein, and induced glutathione and protein oxidation. To demonstrate functional importance of PRXV, we exposed clones of HeLa cells with siRNA-downregulated PRXV to hydrogen peroxide, which resulted in increased rate of cell death and protein oxidation. CSE directly downregulates expression of functionally important antioxidant enzyme PRXV in the epithelial cells of airways, which represents one pathophysiological mechanism of cigarette smoke toxicity.

  5. Increased expression of the C3b receptor by neutrophils and complement activation during haemodialysis.

    PubMed Central

    Lee, J; Hakim, R M; Fearon, D T

    1984-01-01

    Activation of complement and the relative number of C3b receptors expressed by neutrophils was assessed in patients undergoing haemodialysis with new and reused cellulosic membranes, and with polymethylmethacrylate (PMMA) membranes. Activation of complement was assessed by radioimmunoassay of plasma C3adesArg, and neutrophil C3b receptors were measured by fluorescent flow cytometry of cells indirectly stained with F(ab')2 anti-C3b receptor. During first use of cellulosic dialysis membranes by four patients, the mean expression of C3b receptors by neutrophils in blood taken from the afferent line of the extra-corporeal system after 10, 20, 60 and 120 min of dialysis increased to 127, 189, 255 and 296%, respectively. The mean plasma C3adesArg concentrations in the corresponding samples of blood were 225, 320, 236 and 160% of the pre-dialysis levels. During third and fifth use of the same membranes by these patients, the mean C3b receptor expression by neutrophils did not exceed 150% of the predialysis determination, and correspondingly minimal increases in plasma C3adesArg were observed. Analysis of blood taken simultaneously from the afferent and efferent lines of the first use cellulosic dialysis system indicated that the increase in C3b receptor expression by neutrophils and generation of C3adesArg occurred when blood came in contact with the dialysis membrane. Haemodialysis of four additional patients with the non-complement activating PMMA membrane caused only modest or no increases in neutrophil C3b receptors. Thus, complement activation in vivo is associated with up-regulation of neutrophilic C3b receptors, indicating that this cellular response previously described only in model, in vitro systems, is a physiological mechanism by which this cell can augment its capacity for responding to C3b opsonized material. PMID:6232024

  6. ClC-3 expression enhances etoposide resistance by increasing acidification of the late endocytic compartment.

    PubMed

    Weylandt, Karsten H; Nebrig, Maxim; Jansen-Rosseck, Nils; Amey, Joanna S; Carmena, David; Wiedenmann, Bertram; Higgins, Christopher F; Sardini, Alessandro

    2007-03-01

    Resistance to anticancer drugs and consequent failure of chemotherapy is a complex problem severely limiting therapeutic options in metastatic cancer. Many studies have shown a role for drug efflux pumps of the ATP-binding cassette transporters family in the development of drug resistance. ClC-3, a member of the CLC family of chloride channels and transporters, is expressed in intracellular compartments of neuronal cells and involved in vesicular acidification. It has previously been suggested that acidification of intracellular organelles can promote drug resistance by increasing drug sequestration. Therefore, we hypothesized a role for ClC-3 in drug resistance. Here, we show that ClC-3 is expressed in neuroendocrine tumor cell lines, such as BON, LCC-18, and QGP-1, and localized in intracellular vesicles co-labeled with the late endosomal/lysosomal marker LAMP-1. ClC-3 overexpression increased the acidity of intracellular vesicles, as assessed by acridine orange staining, and enhanced resistance to the chemotherapeutic drug etoposide by almost doubling the IC(50) in either BON or HEK293 cell lines. Prevention of organellar acidification, by inhibition of the vacuolar H(+)-ATPase, reduced etoposide resistance. No expression of common multidrug resistance transporters, such as P-glycoprotein or multidrug-related protein-1, was detected in either the BON parental cell line or the derivative clone overexpressing ClC-3. The probable mechanism of enhanced etoposide resistance can be attributed to the increase of vesicular acidification as consequence of ClC-3 overexpression. This study therefore provides first evidence for a role of intracellular CLC proteins in the modulation of cancer drug resistance.

  7. Baicalin increases VEGF expression and angiogenesis by activating the ERRα/PGC-1α pathway

    PubMed Central

    Zhang, Keqiang; Lu, Jianming; Mori, Taisuke; Smith-Powell, Leslie; Synold, Timothy W.; Chen, Shiuan; Wen, Wei

    2011-01-01

    Aims Baicalin is the major component found in Scutellaria baicalensis root, a widely used herb in traditional Chinese medicine. Although it has been used for thousands of years to treat stroke, the mechanisms of action of S. baicalensis have not been clearly elucidated. In this report, we studied the modulation of angiogenesis as one possible mechanism by investigating the effects of these agents on expression of vascular endothelial growth factor (VEGF), a critical factor for angiogenesis. Methods and results The effects of baicalin and an extract of S. baicalensis on VEGF expression were tested in several cell lines. Both agents induced VEGF expression in all cells without increasing expression of hypoxia-inducible factor-1α (HIF-1α). The expression of reporter genes was also activated under the control of the VEGF promoter containing either a functional or a defective HIF response element (HRE). Only minimal effects were observed on reporter activation under the HRE promoter. Instead, both agents significantly induced oestrogen-related receptor (ERRα) expression as well as the activity of reporter genes under the control of ERRα-binding element. Their ability to induce VEGF expression was suppressed once ERRα expression was knocked down by siRNA or ERRα-binding sites were deleted in the VEGF promoter. We also found that both agents stimulated cell migration and vessel sprout formation from the aorta. Conclusion Our results implicate baicalin and S. baicalensis in angiogenesis by inducing VEGF expression through the activation of the ERRα pathway. These data may facilitate a better understanding of the potential health benefits of these agents in the treatment of cardiovascular diseases. PMID:20851810

  8. Generation of hepatocytes expressing functional cytochromes P450 from a pancreatic progenitor cell line in vitro.

    PubMed Central

    Marek, Carylyn J; Cameron, Gary A; Elrick, Lucy J; Hawksworth, Gabrielle M; Wright, Matthew C

    2003-01-01

    The proliferating AR42J-B13 pancreatic cell line is known to respond to glucocorticoid treatment by producing foci of cells that express the liver-specific albumin gene. We demonstrate that this cell line also expresses liver-specific or liver-enriched functional cytochrome P450 proteins when stimulated to trans-differentiate into hepatocytes by glucocorticoid. These data suggest that this cell line has an unusual ability to trans-differentiate into functional hepatocytes and that it could be possible to generate a limitless supply of functional hepatocyte-like cells in vitro. PMID:12542397

  9. Acrolein increases 5-lipoxygenase expression in murine macrophages through activation of ERK pathway

    SciTech Connect

    Kim, Chae E.; Lee, Seung J.; Seo, Kyo W.; Park, Hye M.; Yun, Jung W.; Bae, Jin U.; Bae, Sun S.; Kim, Chi D.

    2010-05-15

    Episodic exposure to acrolein-rich pollutants has been linked to acute myocardial infarction, and 5-lipoxygenase (5-LO) is involved in the production of matrix metalloproteinase-9 (MMP-9), which destabilizes atherosclerotic plaques. Thus, the present study determined the effect of acrolein on 5-LO/leukotriene B{sub 4} (LTB{sub 4}) production in murine macrophages. Stimulation of J774A.1 cells with acrolein led to increased LTB{sub 4} production in association with increased 5-LO expression. Acrolein-evoked 5-LO expression was blocked by pharmacological inhibition of the ERK pathway, but not by inhibitors for JNK and p38 MAPK pathways. In line with these results, acrolein exclusively increased the phosphorylation of ERK among these MAPK, suggesting a role for the ERK pathway in acrolein-induced 5-LO expression with subsequent production of LTB{sub 4}. Among the receptor tyrosine kinases including epidermal growth factor receptor (EGFR) and platelet derived growth factor receptor (PDGFR), acrolein-evoked ERK phosphorylation was attenuated by AG1478, an EGFR inhibitor, but not by AG1295, a PDGFR inhibitor. In addition, acrolein-evoked 5-LO expression was also inhibited by inhibition of EGFR pathway, but not by inhibition of PDGFR pathway. These observations suggest that acrolein has a profound effect on the 5-LO pathway via an EGFR-mediated activation of ERK pathway, leading to acute ischemic syndromes through the generation of LTB{sub 4}, subsequent MMP-9 production and plaque rupture.

  10. Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor.

    PubMed

    Cervellini, Ilaria; Annenkov, Alexander; Brenton, Thomas; Chernajovsky, Yuti; Ghezzi, Pietro; Mengozzi, Manuela

    2013-08-28

    Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in nonhematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein [MOG] and myelin basic protein [MBP]). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by Western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects.

  11. A Transgenic Mouse Line Expressing the Red Fluorescent Protein tdTomato in GABAergic Neurons

    PubMed Central

    Besser, Stefanie; Sicker, Marit; Marx, Grit; Winkler, Ulrike; Eulenburg, Volker; Hülsmann, Swen; Hirrlinger, Johannes

    2015-01-01

    GABAergic inhibitory neurons are a large population of neurons in the central nervous system (CNS) of mammals and crucially contribute to the function of the circuitry of the brain. To identify specific cell types and investigate their functions labelling of cell populations by transgenic expression of fluorescent proteins is a powerful approach. While a number of mouse lines expressing the green fluorescent protein (GFP) in different subpopulations of GABAergic cells are available, GFP expressing mouse lines are not suitable for either crossbreeding to other mouse lines expressing GFP in other cell types or for Ca2+-imaging using the superior green Ca2+-indicator dyes. Therefore, we have generated a novel transgenic mouse line expressing the red fluorescent protein tdTomato in GABAergic neurons using a bacterial artificial chromosome based strategy and inserting the tdTomato open reading frame at the start codon within exon 1 of the GAD2 gene encoding glutamic acid decarboxylase 65 (GAD65). TdTomato expression was observed in all expected brain regions; however, the fluorescence intensity was highest in the olfactory bulb and the striatum. Robust expression was also observed in cortical and hippocampal neurons, Purkinje cells in the cerebellum, amacrine cells in the retina as well as in cells migrating along the rostral migratory stream. In cortex, hippocampus, olfactory bulb and brainstem, 80% to 90% of neurons expressing endogenous GAD65 also expressed the fluorescent protein. Moreover, almost all tdTomato-expressing cells coexpressed GAD65, indicating that indeed only GABAergic neurons are labelled by tdTomato expression. This mouse line with its unique spectral properties for labelling GABAergic neurons will therefore be a valuable new tool for research addressing this fascinating cell type. PMID:26076353

  12. Prevalent expression of fibroblast growth factor (FGF) receptors and FGF2 in human tumor cell lines.

    PubMed

    Chandler, L A; Sosnowski, B A; Greenlees, L; Aukerman, S L; Baird, A; Pierce, G F

    1999-05-05

    Basic fibroblast growth factor (FGF2) has potent mitogenic and angiogenic activities that have been implicated in tumor development and malignant progression. The biological effects of FGF2 and other members of the FGF ligand family are mediated by 4 transmembrane tyrosine kinase receptors (FGFRs). To better understand the roles of FGFRs in cancer, the expression of FGF2 and each of the 4 FGFRs was assessed by RNase protection analysis of 60 human tumor cell lines, representing 9 tumor types. Expression of at least one FGFR isoform was detected in 90% and FGF2 mRNA in 35% of the cell lines. Our comprehensive analysis of FGF2 and FGFR expression in human tumor cell lines provides evidence that FGF signaling pathways are active in a majority of human tumor cell lines, and lends support to the development of anti-tumor strategies that target FGFRs.

  13. Absence of keratins 8 and 18 expression in rodent epithelial cell lines associates with keratin gene mutation and DNA methylation: cell line selective effects on cell invasion

    PubMed Central

    Omary, M. Bishr

    2016-01-01

    Epithelial-mesenchymal transition (EMT) in carcinoma is associated with dramatic up-regulation of vimentin and down-regulation of the simple-type keratins 8 and 18 (K8/K18), but the mechanisms of these changes are poorly understood. We demonstrate that two commonly-studied murine (CT26) and rat (IEC-6) intestinal cell lines have negligible K8/K18 but high vimentin protein expression. Proteasome inhibition led to a limited increase in K18 but not K8 stabilization, thereby indicating that K8/K18 absence is not due, in large part, to increased protein turnover. CT26 and IEC-6 cells had <10% of normal K8/K18 mRNA and exhibited decreased mRNA stability, with K8 being higher in IEC-6 versus CT26 and K18 being higher in CT26 versus IEC-6 cells. Keratin gene sequencing showed that KRT8 in CT26 cells had a 21-nucleotide deletion while K18 in IEC-6 cells had a 9-amino acid in-frame insertion. Furthermore, the KRT8 promoter in CT26 and the KRT18 promoter in IEC-6 are hypermethylated. Inhibition of DNA methylation using 5-azacytidine increased K8 or K18 in some but all the tested rodent epithelial cell lines. Restoring K8 and K18 by lentiviral transduction reduced CT26 but not IEC-6 cell matrigel invasion. K8/K18 re-introduction also decreased E-cadherin expression in IEC-6 but not CT26 cells, suggesting that the effect of keratin expression on epithelial to mesenchymal transition is cell-line dependent. Therefore, some commonly utilized rodent epithelial cell lines, unexpectedly, manifest barely detectable keratin expression but have high levels of vimentin. In the CT26 and IEC-6 intestinal cell lines, keratin expression correlates with keratin gene insertion or deletion and with promoter methylation, which likely suppress keratin transcription or mRNA stability. PMID:25882495

  14. Expression of thirty-six drug transporter genes in human intestine, liver, kidney, and organotypic cell lines.

    PubMed

    Hilgendorf, Constanze; Ahlin, Gustav; Seithel, Annick; Artursson, Per; Ungell, Anna-Lena; Karlsson, Johan

    2007-08-01

    This study was designed to quantitatively assess the mRNA expression of 36 important drug transporters in human jejunum, colon, liver, and kidney. Expression of these transporters in human organs was compared with expression in commonly used cell lines (Caco-2, HepG2, and Caki-1) originating from these organs to assess their value as in vitro transporter system models, and was also compared with data obtained from the literature on expression in rat tissues to assess species differences. Transporters that were highly expressed in the intestine included HPT1, PEPT1, BCRP, MRP2, and MDR1, whereas, in the liver, OCT1, MRP2, OATP-C, NTCP and BSEP were the main transporters. In the kidney, OAT1 was expressed at the highest levels, followed by OAT3, OAT4, MCT5, MDR1, MRP2, OCT2, and OCTN2. The best agreement between human tissue and the representative cell line was observed for human jejunum and Caco-2 cells. Expression in liver and kidney ortholog cell lines was not correlated with that in the associated tissue. Comparisons with rat transporter gene expression revealed significant species differences. Our results allowed a comprehensive quantitative comparison of drug transporter expression in human intestine, liver, and kidney. We suggest that it would be beneficial for predictive pharmacokinetic research to focus on the most highly expressed transporters. We hope that our comparison of rat and human tissue will help to explain the observed species differences in in vivo models, increase understanding of the impact of active transport processes on pharmacokinetics and distribution, and improve the quality of predictions from animal studies to humans.

  15. Stromal p16 expression is significantly increased in endometrial carcinoma

    PubMed Central

    Yoon, Nara; Kim, Ji-Ye; Kim, Hyun-Soo

    2017-01-01

    p16 is a negative regulator of cell proliferation and is considered a tumor suppressor protein. Alterations in p16 protein expression are associated with tumor development and progression. However, the p16 expression status in the peritumoral stroma has not been investigated in the endometrium. Therefore, we evaluated stromal p16 expression in different types of endometrial lesions using immunohistochemistry. Differences in the p16 expression status according to the degree of malignancy and histological type were analyzed. This study included 62, 26, and 36 cases of benign, precancerous, and malignant endometrial lesions, respectively. Most benign lesions showed negative or weak expression, whereas precancerous lesions showed a variable degree of staining proportion and intensity. Atypical hyperplasia/endometrial intraepithelial neoplasia (AH/EIN) and serous endometrial intraepithelial carcinoma (SEIC) had significantly higher stromal p16 expression levels than benign lesions. Endometrioid carcinoma (EC), serous carcinoma (SC), and carcinosarcoma showed significantly elevated stromal p16 expression levels compared with benign and precancerous lesions. In addition, there were significant differences in stromal p16 expression between AH/EIN and SEIC and between EC and SC. In contrast, differences in stromal p16 expression among nonpathological endometrium, atrophic endometrium, endometrial polyp, and hyperplasia without atypia were not statistically significant. Our observations suggest that stromal p16 expression is involved in the development and progression of endometrial carcinoma, and raise the possibility that p16 overexpression in the peritumoral stroma is associated with aggressive oncogenic behavior of endometrial SC. PMID:27902476

  16. Stromal p16 expression is significantly increased in endometrial carcinoma.

    PubMed

    Yoon, Gun; Koh, Chang Won; Yoon, Nara; Kim, Ji-Ye; Kim, Hyun-Soo

    2017-01-17

    p16 is a negative regulator of cell proliferation and is considered a tumor suppressor protein. Alterations in p16 protein expression are associated with tumor development and progression. However, the p16 expression status in the peritumoral stroma has not been investigated in the endometrium. Therefore, we evaluated stromal p16 expression in different types of endometrial lesions using immunohistochemistry. Differences in the p16 expression status according to the degree of malignancy and histological type were analyzed. This study included 62, 26, and 36 cases of benign, precancerous, and malignant endometrial lesions, respectively. Most benign lesions showed negative or weak expression, whereas precancerous lesions showed a variable degree of staining proportion and intensity. Atypical hyperplasia/endometrial intraepithelial neoplasia (AH/EIN) and serous endometrial intraepithelial carcinoma (SEIC) had significantly higher stromal p16 expression levels than benign lesions. Endometrioid carcinoma (EC), serous carcinoma (SC), and carcinosarcoma showed significantly elevated stromal p16 expression levels compared with benign and precancerous lesions. In addition, there were significant differences in stromal p16 expression between AH/EIN and SEIC and between EC and SC. In contrast, differences in stromal p16 expression among nonpathological endometrium, atrophic endometrium, endometrial polyp, and hyperplasia without atypia were not statistically significant. Our observations suggest that stromal p16 expression is involved in the development and progression of endometrial carcinoma, and raise the possibility that p16 overexpression in the peritumoral stroma is associated with aggressive oncogenic behavior of endometrial SC.

  17. Increased Sensitivity to Cisplatin in Non-Small Cell Lung Cancer Cell Lines after FHIT Gene Transfer1

    PubMed Central

    Andriani, F; Perego, P; Carenini, N; Sozzi, G; Roz, L

    2006-01-01

    Abstract To evaluate the relevance of fragile histidine triad (FHIT) status in relation to drug treatment, we analyzed the sensitivity of the Fhit-negative non-small cell lung cancer (NSCLC) cell line NCI-H460 to different drugs, after treatment with an adenoviral vector expressing the FHIT transgene. Expression of Fhit resulted in reduced sensitivity to etoposide, doxorubicin, and topotecan. This feature was associated with Fhit-induced downregulation of DNA topoisomerases I and II. In contrast, expression of Fhit did not modulate sensitivity to Taxol, but produced a slight increase in sensitivity to cisplatin, as shown by colony-forming assays. Analysis of apoptosis revealed that, after cisplatin exposure, the number of apoptotic cells was two-fold higher in Fhit-expressing H460 cells. Moreover, it appeared that wild-type p53 was required for sensitization to cisplatin because the effect was marginal in A549 and Calu-1 cells, where the p53 pathway is altered and simultaneous restoration of p53 and Fhit in Calu-1 cells increased cisplatin sensitivity. Fhit could also partially restore sensitivity to cisplatin in Bcl-2- and Bcl-xL-overexpressing H460 cells that are normally resistant to this drug. Our results support the possible relevance of FHIT in cisplatin-based chemotherapy as well as in the reversal of drug resistance in NSCLC. PMID:16533421

  18. Inhibition of hypothalamic MCT1 expression increases food intake and alters orexigenic and anorexigenic neuropeptide expression

    PubMed Central

    Elizondo-Vega, Roberto; Cortés-Campos, Christian; Barahona, María José; Carril, Claudio; Ordenes, Patricio; Salgado, Magdiel; Oyarce, Karina; García-Robles, María de los Angeles

    2016-01-01

    Hypothalamic glucosensing, which involves the detection of glucose concentration changes by brain cells and subsequent release of orexigenic or anorexigenic neuropeptides, is a crucial process that regulates feeding behavior. Arcuate nucleus (AN) neurons are classically thought to be responsible for hypothalamic glucosensing through a direct sensing mechanism; however, recent data has shown a metabolic interaction between tanycytes and AN neurons through lactate that may also be contributing to this process. Monocarboxylate transporter 1 (MCT1) is the main isoform expressed by tanycytes, which could facilitate lactate release to hypothalamic AN neurons. We hypothesize that MCT1 inhibition could alter the metabolic coupling between tanycytes and AN neurons, altering feeding behavior. To test this, we inhibited MCT1 expression using adenovirus-mediated transfection of a shRNA into the third ventricle, transducing ependymal wall cells and tanycytes. Neuropeptide expression and feeding behavior were measured in MCT1-inhibited animals after intracerebroventricular glucose administration following a fasting period. Results showed a loss in glucose regulation of orexigenic neuropeptides and an abnormal expression of anorexigenic neuropeptides in response to fasting. This was accompanied by an increase in food intake and in body weight gain. Taken together, these results indicate that MCT1 expression in tanycytes plays a role in feeding behavior regulation. PMID:27677351

  19. LINE-1 retrotransposition events regulate gene expression after X-ray irradiation.

    PubMed

    Banaz-Yaşar, Ferya; Gedik, Nilgün; Karahan, Selda; Diaz-Carballo, David; Bongartz, Birthe M; Ergün, Süleyman

    2012-09-01

    Long interspersed nuclear element-1 (LINE-1) retrotransposons are mobile elements that insert into new genomic locations via reverse transcription of an RNA intermediate. The mechanism of retrotransposition is not entirely understood. The integration of these elements occurs by target-primed reverse transcription (TPRT), which initiates double-strand breaks (DSBs) during the LINE-1 integration. Also, X-ray is known to induce DNA damage. The aim of this study was to evaluate the potential effects of LINE-1 de novo retrotransposition on the expression of different genes after X-ray irradiation in human endothelial cells. After stable transfection of the human hybrid endothelial cell line EA.hy926 with the human LINE-1 element, we analyzed the expression of different genes after irradiation with 5 Gy X-rays by reverse transcription-polymerase chain reaction (RT-PCR). We determine the expression level of phosphorylated p53 and γ-histone H2AX protein levels upon X-ray irradiation with 5 Gy for 24 h. Our results showed that EA.hy926 LINE-1 cell clones react with a strong upregulation of phosphorylated p53 protein, already 15 min after irradiation compared to the wild type (WT) cells. Also, the expression of γ-histone H2AX protein was elevated in the cell clones with retrotransposition events 15 min after irradiation, whereas the WT cells have a delayed expression of phosphorylated histone H2AX protein. Taken together, our findings provide that LINE-1 retrotransposition events regulate different gene expression after irradiation in the EA.hy926 cell line.

  20. Inhibition of Enhancer of Zeste Homolog 2 (EZH2) expression is associated with decreased tumor cell proliferation, migration and invasion in endometrial cancer cell lines

    PubMed Central

    Eskander, Ramez N.; Ji, Tao; Huynh, Be; Wardeh, Rooba; Randall, Leslie M; Hoang, Bang

    2013-01-01

    Objective To investigate the impact of Enhancer of Zeste Homolog 2 (EZH2) expression on endometrial cancer cell line behavior. Methods/materials EZH2 expression levels were compared between the non-malignant endometrial cell line T-HESC, and 3 endometrial cancer cell lines, ECC-1, RL95-2 and HEC1-A. Stable EZH2 knockdown cell lines were created and the impact on cellular proliferation, migration and invasion were determined. Fluorescent activated cell sorting was used to examine effects of EZH2 silencing on cell cycle progression. EZH2 expression in endometrial cancer tissue specimens was examined using immunohistochemistry. Comparison of differences between control and shEZH2 cell lines was performed using student's t test and Fischer's exact test. Results EZH2 protein expression was increased in all 3 cancer cell lines, and human endometrial cancer tissue specimens relative to control. RNA interference of EZH2 expression in ECC-1, RL95-2, and HEC1-A significantly decreased cell proliferation, migration and invasion. Down regulation of EZH2 expression resulted in a significant increase in the proportion of cells arrested in G2/M. RNA interference of EZH2 expression was associated with an increase in the expression of Wnt pathway inhibitors sFRP1 and DKK3, and a concomitant decrease in β-catenin. EZH2 expression in human tissue samples was significantly associated with increased stage, grade, depth of invasion and nodal metastasis. Conclusions EZH2 expression is associated with tumor cell proliferation, migration and invasion in 3 endometrial cancer cell lines, as well as increased stage, grade, depth of invasion and nodal metastasis in human cancer tissue specimens. Further investigation into this potential therapeutic target is warranted. PMID:23792601

  1. Insights into gene expression profiling of natural resistance to coccidiosis in contrasting chicken lines

    PubMed Central

    2011-01-01

    Coccidiosis is a parasitic disease with major economic impact, one of whose main causative agents is Eimeria tenella. Chicken breeds display variable natural resistance to this disease. Unravelling the genetic bases of such variations could provide new clues for protection strategies. Transcriptomic experiments were conducted comparing resistant (Fayoumi) and susceptible (Leghorn) lines. Caecum and caecal tonsils were analysed. A global increase in differential gene expression following infection was observed for caecum comparisons, whereas a global decrease following infection was observed for caecal tonsils. Gene lists for infected tissues display 40 genes in common across breeds, 20 of which were specific to infected tissues. Among these specific genes, 9 belong to the 100 more differentially expressed genes of the infected caecum comparison. Gene expression networks were constructed in parallel, identifying highly connected genes. Comparing information from differential gene lists and gene network analysis allows one to highlight potential pivotal genes in the infection process, one of which was located in a putative significant QTL region for infection associated lesions. PMID:21645306

  2. Expression of xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1.

    PubMed

    Aschauer, Lydia; Carta, Giada; Vogelsang, Nadine; Schlatter, Eberhard; Jennings, Paul

    2015-12-25

    The kidney is a major target for drug-induced injury, primarily due the fact that it transports a wide variety of chemical entities into and out of the tubular lumen. Here, we investigated the expression of the main xenobiotic transporters in the human renal proximal tubule cell line RPTEC/TERT1 at an mRNA and/or protein level. RPTEC/TERT1 cells expressed OCT2, OCT3, OCTN2, MATE1, MATE2, OAT1, OAT3 and OAT4. The functionality of the OCTs was demonstrated by directional transport of the fluorescent dye 4-Di-1-ASP. In addition, P-glycoprotein activity in RPTEC/TERT1 cells was verified by fluorescent dye retention in presence of various P-glycoprotein inhibitors. In comparison to proliferating cells, contact inhibited RPTEC/TERT1 cells expressed increased mRNA levels of several ABC transporter family members and were less sensitive to cyclosporine A. We conclude that differentiated RPTEC/TERT1 cells are well suited for utilisation in xenobiotic transport and pharmacokinetic studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. [Establishment of a human laryngeal carcinoma Hep-2/5-Fu cell line and the screening of differentially expressed genes].

    PubMed

    Chen, Jie; Wang, Jiadong

    2012-12-01

    To establish a Hep-2/5-Fu of human drug-resistant laryngeal carcinoma cell line, and to screen the possible drug resistance-associated genes. Hep-2/5-Fu of a human drug resistant laryngeal carcinoma cell line was induced by continuously exposing human laryngeal carcinoma cells to gradually increasing concentrations of 5-Fu. The growth law was observed and the growth curve was protracted. The drug resistance of Hep-2/5-Fu was measured by MTT assay and the drug resistant index RI was calculated. Genes expressed differentially between Hep-2/5-Fu and its parent cell line Hep-2 were screened using a gene chip, and several selected drug resistance associated genes were confirmed by reverse transcription-polymerase chain reaction (RT-PCR). Compared with its parental cells, the drug resistance cell line had slower growth rate and larger size. The Hep-2/5-Fu cell line showed cross drug resistance to 5-Fu, cisplatin and vincristine. There were 1210 differentially expressed genes possibly associated with drug resistance by the gene chip screening method. The possible drug resistance-related genes included Cyclin D, IGF-BP3, CASP9, and CDK4/6. The expression of Cyclin D in the Hep-2/5-Fu cell line was 6.5997 times of that in the parent cell line. RT-PCR results were consistent with the gene chip results. The altered biological properties of Hep-2/5-Fu may be related to its drug resistance phenotype. Several genes, such as Cyclin D, are possibly involved in the mechanism of drug resistance in this cell line.

  4. Silencing of LINE-1 retrotransposons contributes to variation in small noncoding RNA expression in human cancer cells

    PubMed Central

    Ohms, Stephen; Rangasamy, Danny

    2014-01-01

    Noncoding RNAs are key players in the maintenance of genomic integrity, particularly in silencing the expression of repetitive elements, some of which are retrotransposable and capable of causing genomic instability. Recent computational studies suggest an association between L1 expression and the generation of small RNAs. However, whether L1 expression has a role in the activation of small RNA expression has yet to be determined experimentally.; Here we report a global analysis of small RNAs in deep sequencing from L1-active and L1-silenced breast cancer cells. We found that cells in which L1 expression was silenced exhibited greatly increased expression of a number of miRNAs and in particular, members of the let-7 family. In addition, we found differential expression of a few piRNAs that might potentially regulate gene expression. We also report the identification of several repeat RNAs against LTRs, LINEs and SINE elements. Although most of the repeat RNAs mapped to L1 elements, in general we found no significant differences in the expression levels of repeat RNAs in the presence or absence of L1 expression except for a few RNAs targeting subclasses of L1 elements. These differentially expressed small RNAs may function in human genome defence responses. PMID:24980824

  5. Growth dynamics and cyclin expression in cutaneous T-cell lymphoma cell lines

    PubMed Central

    Biskup, Edyta; Manfé, Valentina; Kamstrup, Maria R.; Gniadecki, Robert

    2010-01-01

    We have investigated cell growth dynamics and cyclins B1 and E expression in cell lines derived from mycosis fungoides (MyLa), Sézary syndrome (SeAx), and CD30+ lympho-proliferative diseases (Mac1, Mac2a, JK). Mac1 and Mac2a had the highest growth rate (doubling time 18–28 h, >90% cycling cells) whereas SeAx was proliferating slowly (doubling time 55 h, approximately 35% cycling cells). Expression of cyclin B1 correlated positively with doubling time whereas expression of cyclin E was unscheduled and constant across the investigated cell lines. All cell lines exhibited high expression of PCNA. Thus, we concluded that cyclin B1 could be used for rapid screening of cell proliferation in malignant lymphocytes derived from cutaneous T-cell lymphoma. PMID:25386244

  6. Sensitivity of malignant rhabdoid tumor cell lines to PD 0332991 is inversely correlated with p16 expression

    SciTech Connect

    Katsumi, Yoshiki; Iehara, Tomoko; Miyachi, Mitsuru; Yagyu, Shigeki; Tsubai-Shimizu, Satoko; Kikuchi, Ken; Tamura, Shinichi; Kuwahara, Yasumichi; Tsuchiya, Kunihiko; Kuroda, Hiroshi; Sugimoto, Tohru; Houghton, Peter J.; Hosoi, Hajime

    2011-09-16

    Highlights: {yields} PD 0332991 (PD) could suppress four of five malignant rhabdoid tumor (MRT) cell lines. {yields} The sensitivity of the MRT cell lines to PD was inversely correlated with p16 expression (r = 0.951). {yields} p16 expression in MRT could be used to predict its sensitivity to PD. {yields} PD may be an attractive agent for patients with MRT whose tumors express low levels of p16. -- Abstract: Malignant rhabdoid tumor (MRT) is a rare and highly aggressive neoplasm of young children. MRT is characterized by inactivation of integrase interactor 1 (INI1). Cyclin-dependent kinase 4 (CDK4), which acts downstream of INI1, is required for the proliferation of MRT cells. Here we investigated the effects of PD 0332991 (PD), a potent inhibitor of CDK4, against five human MRT cell lines (MP-MRT-AN, KP-MRT-RY, G401, KP-MRT-NS, KP-MRT-YM). In all of the cell lines except KP-MRT-YM, PD inhibited cell proliferation >50%, (IC{sub 50} values 0.01 to 0.6 {mu}M) by WST-8 assay, and induced G1-phase cell cycle arrest, as shown by flow cytometry and BrdU incorporation assay. The sensitivity of the MRT cell lines to PD was inversely correlated with p16 expression (r = 0.951). KP-MRT-YM cells overexpress p16 and were resistant to the growth inhibitory effect of PD. Small interfering RNA against p16 significantly increased the sensitivity of KP-MRT-YM cells to PD (p < 0.05). These results suggest that p16 expression in MRT could be used to predict its sensitivity to PD. PD may be an attractive agent for patients with MRT whose tumors express low levels of p16.

  7. Increased expression of BDNF and proliferation of dentate granule cells after bacterial meningitis.

    PubMed

    Tauber, Simone C; Stadelmann, Christine; Spreer, Annette; Brück, Wolfgang; Nau, Roland; Gerber, Joachim

    2005-09-01

    Proliferation and differentiation of neural progenitor cells is increased after bacterial meningitis. To identify endogenous factors involved in neurogenesis, expression of brain-derived neurotrophic factor (BDNF), TrkB, nerve growth factor (NGF), and glial cell line-derived neurotrophic factor (GDNF) was investigated. C57BL/6 mice were infected by intracerebral injection of Streptococcus pneumoniae. Mice were killed 30 hours later or treated with ceftriaxone and killed 4 days after infection. Hippocampal BDNF mRNA levels were increased 2.4-fold 4 days after infection (p = 0.026). Similarly, BDNF protein levels in the hippocampal formation were higher in infected mice than in control animals (p = 0.0003). This was accompanied by an elevated proliferation of dentate granule cells (p = 0.0002). BDNF protein was located predominantly in the hippocampal CA3/4 area and the hilus of the dentate gyrus. The density of dentate granule cells expressing the BDNF receptor TrkB as well as mRNA levels of TrkB in the hippocampal formation were increased 4 days after infection (p = 0.027 and 0.0048, respectively). Conversely, NGF mRNA levels at 30 hours after infection were reduced by approximately 50% (p = 0.004). No significant changes in GDNF expression were observed. In conclusion, increased synthesis of BDNF and TrkB suggests a contribution of this neurotrophic factor to neurogenesis after bacterial meningitis.

  8. Ectopic expression of new alternative splice variant of Smac/DIABLO increases mammospheres formation

    PubMed Central

    Martinez-Ruiz, Gustavo U; Victoria-Acosta, Georgina; Vazquez-Santillan, Karla I; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Ceballos-Cancino, Gisela; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2014-01-01

    Smac-α is a mitochondrial protein that, during apoptosis, is translocated to the cytoplasm, where it negatively regulates members of the inhibitor of apoptosis (IAP) family via the IAP-binding motif (IBM) contained within its amino-terminus. Here, we describe a new alternative splice variant from Smac gene, which we have named Smac-ε. Smac-ε lacks both an IBM and a mitochondrial-targeting signal (MTS) element. Smac-ε mRNA exhibits a tissue-specific expression pattern in healthy human tissues as well as in several cancer cell lines. The steady-state levels of endogenous Smac-ε protein is regulated by the proteasomal pathway. When ectopically expressed, this isoform presents a cytosolic localization and is unable to associate with or to regulate the expression of X-linked Inhibitor of apoptosis protein, the best-studied member of IAP family. Nevertheless, over-expression of Smac-ε increases mammosphere formation. Whole genome expression analyses from these mammospheres show activation of several pro-survival and growth pathways, including Estrogen-Receptor signaling. In conclusion, our results support the functionality of this new Smac isoform. PMID:25337193

  9. Ectopic expression of new alternative splice variant of Smac/DIABLO increases mammospheres formation.

    PubMed

    Martinez-Ruiz, Gustavo U; Victoria-Acosta, Georgina; Vazquez-Santillan, Karla I; Jimenez-Hernandez, Luis; Muñoz-Galindo, Laura; Ceballos-Cancino, Gisela; Maldonado, Vilma; Melendez-Zajgla, Jorge

    2014-01-01

    Smac-α is a mitochondrial protein that, during apoptosis, is translocated to the cytoplasm, where it negatively regulates members of the inhibitor of apoptosis (IAP) family via the IAP-binding motif (IBM) contained within its amino-terminus. Here, we describe a new alternative splice variant from Smac gene, which we have named Smac-ε. Smac-ε lacks both an IBM and a mitochondrial-targeting signal (MTS) element. Smac-ε mRNA exhibits a tissue-specific expression pattern in healthy human tissues as well as in several cancer cell lines. The steady-state levels of endogenous Smac-ε protein is regulated by the proteasomal pathway. When ectopically expressed, this isoform presents a cytosolic localization and is unable to associate with or to regulate the expression of X-linked Inhibitor of apoptosis protein, the best-studied member of IAP family. Nevertheless, over-expression of Smac-ε increases mammosphere formation. Whole genome expression analyses from these mammospheres show activation of several pro-survival and growth pathways, including Estrogen-Receptor signaling. In conclusion, our results support the functionality of this new Smac isoform.

  10. Antisense bcl-2 treatment increases programmed cell death in non-small cell lung cancer cell lines.

    PubMed

    Koty, P P; Zhang, H; Levitt, M L

    1999-02-01

    Programmed cell death (PCD) is a genetically regulated pathway that is altered in many cancers. This process is, in part, regulated by the ratio of PCD inducers (Bax) or inhibitors (Bcl-2). An abnormally high ratio of Bcl-2 to Bax prevents PCD, thus contributing to resistance to chemotherapeutic agents, many of which are capable of inducing PCD. Non-small cell lung cancer (NSCLC) cells demonstrate resistance to these PCD-inducing agents. If Bcl-2 prevents NSCLC cells from entering the PCD pathway, then reducing the amount of endogenous Bcl-2 product may allow these cells to spontaneously enter the PCD pathway. Our purpose was to determine the effects of bcl-2 antisense treatment on the levels of programmed cell death in NSCLC cells. First, we determined whether bcl-2 and bax mRNA were expressed in three morphologically distinct NSCLC cell lines: NCI-H226 (squamous), NCI-H358 (adenocarcinoma), and NCI-H596 (adenosquamous). Cells were then exposed to synthetic antisense bcl-2 oligonucleotide treatment, after which programmed cell death was determined, as evidenced by DNA fragmentation. Bcl-2 protein expression was detected immunohistochemically. All three NSCLC cell lines expressed both bcl-2 and bax mRNA and had functional PCD pathways. Synthetic antisense bcl-2 oligonucleotide treatment resulted in decreased Bcl-2 levels, reduced cell proliferation, decreased cell viability, and increased levels of spontaneous PCD. This represents the first evidence that decreasing Bcl-2 in three morphologically distinct NSCLC cell lines allows the cells to spontaneously enter a PCD pathway. It also indicates the potential therapeutic use of antisense bcl-2 in the treatment of NSCLC.

  11. Lectin array and glycogene expression analyses of ovarian cancer cell line A2780 and its cisplatin-resistant derivate cell line A2780-cp.

    PubMed

    Zhao, Ran; Qin, Wenjun; Qin, Ruihuan; Han, Jing; Li, Can; Wang, Yisheng; Xu, Congjian

    2017-01-01

    Ovarian cancer is one of the most lethal gynecological malignancies, in which platinum resistance is a common cause of its relapse and death. Glycosylation has been reported to be involved in drug resistance, and glycomic analyses of ovarian cancer may improve our understanding of the mechanisms underlying cancer cell drug resistance and provide potential biomarkers and therapeutic targets. The serous ovarian cancer cell line A2780 and its platinum-resistant counterpart A2780-cp were used in this study. We performed a lectin array analysis to compare the glycosylation patterns of the two cell lines, a gene expression array was employed to probe the differences in glycogenes. Furthermore, the results were verified by lectin blots. A2780-cp cell exhibited stronger intensities of Lens culinaris (LCA) Canavalia ensiformis (ConA), and Lycopersicon esculentum (LEL) and weaker intensities of Sambucus nigra (SNA) lectins. The gene expression array analysis revealed increased expression of Fut8, B3gnt4, B3gnt5, B4galt2 and decreased expression of Fut1 and ST6GalNAc 6 expression were evident in the A2780-cp cells. The lectin blot confirmed the differences in LCA, ConA, SNA and LEL between the A2780 and A2780-cp cells. The combination of the lectin and gene expression analyses showed that the levels of core fucosylation and poly-LacNAc were increased in the A2780-cp cells and the levels of Fuc α1-2(gal β1-4) GlcNAc and α2-6-linked sialic structures were decreased in the A2780-cp cells. These glycans represent potential biomarkers and might be involved in the mechanism of drug resistance in ovarian cancer.

  12. Cytoplasmic BRMS1 expression in malignant melanoma is associated with increased disease-free survival.

    PubMed

    Slipicevic, Ana; Holm, Ruth; Emilsen, Elisabeth; Ree Rosnes, Anne Katrine; Welch, Danny R; Mælandsmo, Gunhild M; Flørenes, Vivi Ann

    2012-02-22

    Breast cancer metastasis suppressor 1 (BRMS1) blocks metastasis in melanoma xenografts; however, its usefulness as a biomarker in human melanomas has not been widely studied. The goal was to measure BRMS1 expression in benign nevi, primary and metastatic melanomas and evaluate its impact on disease progression and prognosis. Paraffin-embedded tissue from 155 primary melanomas, 69 metastases and 15 nevi was examined for BRMS1 expression using immunohistochemistry. siRNA mediated BRMS1 down-regulation was used to study impact on invasion and migration in melanoma cell lines. A significantly higher percentage of nevi (87%), compared to primary melanomas (20%) and metastases (48%), expressed BRMS1 in the nucelus (p < 0.0001). Strong nuclear staining intensity was observed in 67% of nevi, and in 9% and 24% of the primary and metastatic melanomas, respectively (p < 0.0001). Comparable cytoplasmic expression was observed (nevi; 87%, primaries; 86%, metastases; 72%). However, a decline in cytoplasmic staining intensity was observed in metastases compared to nevi and primary tumors (26%, 47%, and 58%, respectively, p < 0.0001). Score index (percentage immunopositive celles multiplied with staining intensity) revealed that high cytoplasmic score index (≥ 4) was associated with thinner tumors (p = 0.04), lack of ulceration (p = 0.02) and increased disease-free survival (p = 0.036). When intensity and percentage BRMS1 positive cells were analyzed separately, intensity remained associated with tumor thickness (p = 0.024) and ulceration (p = 0.004) but was inversely associated with expression of proliferation markers (cyclin D3 (p = 0.008), cyclin A (p = 0.007), and p21Waf1/Cip1 (p = 0.009)). Cytoplasmic score index was inversely associated with nuclear p-Akt (p = 0.013) and positively associated with cytoplasmic p-ERK1/2 expression (p = 0.033). Nuclear BRMS1 expression in ≥ 10% of primary melanoma cells was associated with thicker tumors (p = 0.016) and decreased relapse

  13. Cytoplasmic BRMS1 expression in malignant melanoma is associated with increased disease-free survival

    PubMed Central

    2012-01-01

    Background/aims Breast cancer metastasis suppressor 1 (BRMS1) blocks metastasis in melanoma xenografts; however, its usefulness as a biomarker in human melanomas has not been widely studied. The goal was to measure BRMS1 expression in benign nevi, primary and metastatic melanomas and evaluate its impact on disease progression and prognosis. Methods Paraffin-embedded tissue from 155 primary melanomas, 69 metastases and 15 nevi was examined for BRMS1 expression using immunohistochemistry. siRNA mediated BRMS1 down-regulation was used to study impact on invasion and migration in melanoma cell lines. Results A significantly higher percentage of nevi (87%), compared to primary melanomas (20%) and metastases (48%), expressed BRMS1 in the nucelus (p < 0.0001). Strong nuclear staining intensity was observed in 67% of nevi, and in 9% and 24% of the primary and metastatic melanomas, respectively (p < 0.0001). Comparable cytoplasmic expression was observed (nevi; 87%, primaries; 86%, metastases; 72%). However, a decline in cytoplasmic staining intensity was observed in metastases compared to nevi and primary tumors (26%, 47%, and 58%, respectively, p < 0.0001). Score index (percentage immunopositive celles multiplied with staining intensity) revealed that high cytoplasmic score index (≥ 4) was associated with thinner tumors (p = 0.04), lack of ulceration (p = 0.02) and increased disease-free survival (p = 0.036). When intensity and percentage BRMS1 positive cells were analyzed separately, intensity remained associated with tumor thickness (p = 0.024) and ulceration (p = 0.004) but was inversely associated with expression of proliferation markers (cyclin D3 (p = 0.008), cyclin A (p = 0.007), and p21Waf1/Cip1 (p = 0.009)). Cytoplasmic score index was inversely associated with nuclear p-Akt (p = 0.013) and positively associated with cytoplasmic p-ERK1/2 expression (p = 0.033). Nuclear BRMS1 expression in ≥ 10% of primary melanoma cells was associated with thicker tumors (p

  14. Expression profile of hypothalamic neuropeptides in chicken lines selected for high or low residual feed intake.

    PubMed

    Sintubin, P; Greene, E; Collin, A; Bordas, A; Zerjal, T; Tesseraud, S; Buyse, J; Dridi, S

    2014-08-01

    The R(+) and R(-) chicken lines have been divergently selected for high (R(+)) or low (R(-)) residual feed intake. For the same body weight and egg production, the R(+) chickens consume 40% more food than their counterparts R(-) lines. In the present study we sought to determine the hypothalamic expression profile of feeding-related neuropeptides in these lines maintained under fed or food-deprived conditions. In the fed condition, the suppressor of cytokine signaling 3 (SOCS3) was 17-fold lower (P<0.05) and the ghrelin receptor was 7-fold higher (P<0.05) in R(+) compared to R(-) chicken lines. The hypothalamic expression of the other studied genes remained unchanged between the two lines. In the fasted state, orexigenic neuropeptide Y and agouti-related peptide were more responsive, with higher significant levels in the R(+) compared to R(-) chickens, while no significant differences were seen for the anorexigenic neuropeptides pro-opiomelanocortin and corticotropin releasing hormone. Interestingly, C-reactive protein, adiponectin receptor 1 and ghrelin receptor gene expression were significantly higher (12-, 2- and 3-folds, respectively), however ghrelin and melanocortin 5 receptor mRNA levels were lower (4- and 2-folds, P=0.05 and P=0.03, respectively) in R(+) compared to R(-) animals. We identified several key feeding-related genes that are differently expressed in the hypothalamus of R(+) and R(-) chickens and that might explain the difference in feed intake observed between the two lines. Published by Elsevier Ltd.

  15. ADAM-10 over-expression increases cortical synaptogenesis.

    PubMed

    Bell, Karen F S; Zheng, Luyu; Fahrenholz, Falk; Cuello, A Claudio

    2008-04-01

    Cortical cholinergic, glutamatergic and GABAergic terminals become upregulated during early stages of the transgenic amyloid pathology. Abundant evidence suggests that sAPP alpha, the product of the non-amyloidogenic alpha-secretase pathway, is neurotrophic both in vitro and when exogenously applied in vivo. The disintegrin metalloprotease ADAM-10 has been shown to have alpha-secretase activity in vivo. To determine whether sAPP alpha has an endogenous biological influence on cortical presynaptic boutons in vivo, we quantified cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities in either ADAM-10 moderate expressing (ADAM-10 mo) transgenic mice, which moderately overexpress ADAM-10, or age-matched non-transgenic controls. Both early and late ontogenic time points were investigated. ADAM-10 mo transgenic mice display significantly elevated cortical cholinergic, glutamatergic and GABAergic presynaptic bouton densities at the early time point (8 months). Only the cholinergic presynaptic bouton density remains significantly elevated in late-staged ADAM-10 mo transgenic animals (18 months). To confirm that the observed elevations were due to increased levels of endogenous murine sAPP alpha, exogenous human sAPP alpha was infused into the cortex of non-transgenic control animals for 1 week. Exogenous infusion of sAPP alpha led to significant elevations in the cholinergic, glutamatergic and GABAergic cortical presynaptic bouton populations. These results are the first to demonstrate an in vivo influence of ADAM-10 on neurotransmitter-specific cortical synaptic plasticity and further confirm the neurotrophic influence of sAPP alpha on cortical synaptogenesis.

  16. Lipopolysaccharide induces multinuclear cell from RAW264.7 line with increased phagocytosis activity

    SciTech Connect

    Nakanishi-Matsui, Mayumi; Yano, Shio; Matsumoto, Naomi; Futai, Masamitsu

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer LPS induces multinuclear cells from murine macrophage-derived RAW264.7 cells. Black-Right-Pointing-Pointer The multinuclear cells are formed through cell-cell fusion in the presence of Ca{sup 2+}. Black-Right-Pointing-Pointer The multinuclear cells do not express osteoclast-specific enzymes. Black-Right-Pointing-Pointer They internalized more and larger beads than mononuclear cells and osteoclasts. -- Abstract: Lipopolysaccharide (LPS), an outer membrane component of Gram-negative bacteria, induces strong proinflammatory responses, including the release of cytokines and nitric oxide from macrophage. In this study, we found that a murine macrophage-derived line, RAW264.7, became multinuclear through cell-cell fusion after incubation with highly purified LPS or synthetic lipid A in the presence of Ca{sup 2+}. The same cell line is known to differentiate into multinuclear osteoclast, which expresses a specific proton pumping ATPase together with osteoclast markers on stimulation by the extracellular domain of receptor activator of nuclear factor {kappa}B ligand (Toyomura, T., Murata, Y., Yamamoto, A., Oka, T., Sun-Wada, G.-H., Wada, Y. and Futai, M., 2003). The LPS-induced multinuclear cells did not express osteoclast-specific enzymes including tartrate-resistant acid phosphatase and cathepsin K. During multinuclear cell formation, the cells internalized more and larger polystyrene beads (diameter 6-15 {mu}m) than mononuclear cells and osteoclasts. The internalized beads were located in lysosome-marker positive organelles, which were probably phagolysosomes. The LPS-induced multinuclear cell could be a good model system to study phagocytosis of large foreign bodies.

  17. [Expression of aquaporins and its significance in human pulmonary adenocarcinoma cell line SPC-A-1].

    PubMed

    Chen, Jie; Bai, Chunxue; Zhang, Min; Ren, Zhenyi; Hu, Jie

    2004-06-20

    To investigate the expression of aquaporins in human pulmonary adenocarcinoma cell line SPC-A-1. The expressions of aquaporin 1, aquaporin 3, aquaporin 4, and aquaporin 5 in mRNA level and their locations were determined in cell line SPC-A-1 respectively by RT-PCR and immunohistochemistry. The immunohistochemical stain showed aquaporin 3 and aquaporin 5 located on the membrane of SPC-A-1 cell, but no positive stain of aquaporin 1 and aquaporin 4 was observed. Both aquaporin 3 and aquaporin 5 mRNA expressed in SPC-A-1 cell line, and the expression level of aquaporin 5 mRNA was significantly higher than that of aquaporin 3 mRNA ( P < 0.01). Aquaporin 1 and aquaporin 4 mRNA did not express in SPC-A-1 cell line. Aquaporin 3 and aquaporin 5 express in SPC-A-1 cell, and their roles in water transport of SPC-A-1 cell should be further investigated.

  18. [MYETS1 recombinant expression in prokaryotic cells and deletion analysis in multiple myeloma cell lines].

    PubMed

    Wang, Jianjun; Hong, Liping; Pan, Yi; Liu, Shuiping; Wu, Kunlu; Tang, Lijun

    2012-01-01

    To explore the down-expression mechanism of MYETS1 gene in multiple myeloma cell lines ARH-77 or KM3, and express MYETS1 gene in prokaryotic express system. The region of chromosome 13q14.3 in ARH-77 and KM3 was detected by FISH. MYETS1 gene was amplified by RT-PCR and cloned into prokaryotic expression vector pGEX-4T. Positive consequence was acquired in 13q14.3 where MYETS1 located by FISH in ARH- 77 and KM3 cell lines. Bioinformatics indicated highly sequence homology between MYETS1 and LECT1, but excluded the homology of open reading frame between MYETS1 and that of LECT1 by RT-PCR. Myets1 protein was expressed and harvested successfully. The region of chromosome 13q14.3 ,where MYETS1 gene located, was not defected in ARH-77 and KM3 cell lines. Down-expression of MYETS1 might be regulated by other mechanisms in multiple myeloma cell lines.

  19. Increased expression of Zinc finger protein 267 in non-alcoholic fatty liver disease

    PubMed Central

    Schnabl, Bernd; Czech, Barbara; Valletta, Daniela; Weiss, Thomas S; Kirovski, Georgi; Hellerbrand, Claus

    2011-01-01

    Hepatocellular lipid accumulation is a hallmark of non-alcoholic fatty liver disease (NAFLD), which encompasses a spectrum ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and ultimately cirrhosis. Zinc finger protein 267 (ZNF267) belongs to the family of Kruppel-like transcription factors, which regulate diverse biological processes that include development, proliferation, and differentiation. We have previously demonstrated that ZNF267 expression is up-regulated in liver cirrhosis and is further increased in hepatocellular carcinoma (HCC). Here, we analyzed the expression of ZNF267 in tissue specimens of NAFLD patients and found a significant up-regulation compared to normal liver tissue. Noteworthy, ZNF267 mRNA was already significantly increased in steatotic liver tissue without inflammation. In line with this, incubation of primary human hepatocytes with palmitic acid induced a dose-dependent lipid accumulation and corresponding dose-dependent ZNF267 induction in vitro. Furthermore, hepatocellular lipid accumulation induced formation of reactive oxygen species (ROS), and also chemically induced ROS formation increased ZNF267 mRNA expression. In summary with previous findings, which revealed ZNF267 as pro-fibrogenic and pro-cancerogenic factor in chronic liver disease, the present study further suggests ZNF267 as promising therapeutic target particularly for NAFLD patients. In addition, it further indicates that hepatic steatosis per se has pathophysiological relevance and should not be considered as benign. PMID:22076166

  20. HIV Infection of Hepatocytes Results in a Modest Increase in Hepatitis C Virus Expression In Vitro

    PubMed Central

    Kong, Ling; Welge, Jeffrey A.; Powell, Eleanor A.; Blackard, Jason T.

    2014-01-01

    Previous studies demonstrate that soluble HIV proteins impact both hepatocyte function and HCV replication in vitro. It has also been reported that HIV can productively infect hepatocytes. We therefore investigated the impact of HIV infection of hepatocytes on HCV expression. The Huh7.5JFH1 cell line that constitutively expresses infectious HCV was infected with the lab-adapted strains HIVNL4-3 or HIVYK-JRCSF. HCV expression was quantified via HCV core antigen ELISA, Western blot, and strand-specific real-time PCR for positive-sense and negative-sense HCV RNA. After HIVNL4-3 infection of Huh7.5JFH1 cells, positive-sense and negative-sense HCV RNA levels were elevated compared to HIV uninfected cells. Increased HCV RNA synthesis was also observed after infection of Huh7.5JFH1 cells with HIVYK-JRCSF. HIV-induced HCV core production was decreased in the presence of the anti-HIV drugs AZT, T20, and raltegravir, although these medications had a minimal effect on HCV expression in the absence of HIV. HCV core, NS3, and NS5A protein expression were increased after HIV infection of Huh7.5JFH1 cells. Chemically inactivated HIV had a minimal effect on HCV expression in Huh7.5JFH1 cells suggesting that ongoing viral replication was critical. These data demonstrate that HIV induces HCV RNA synthesis and protein production in vitro and complement previous in vivo reports that HCV RNA levels are elevated in individuals with HIV/HCV co-infection compared to those with HCV mono-infection. These findings suggest that HIV suppression may be a critical factor in controlling liver disease, particularly if the underlying liver disease is not treated. PMID:24586227

  1. Increased expression of Gem after rat sciatic nerve injury.

    PubMed

    Wang, Youhua; Cheng, Xinghai; Zhou, Zhengming; Wu, Hao; Long, Long; Gu, Xingxing; Xu, Guangfei

    2013-02-01

    Gem belongs to the Rad/Gem/Kir subfamily of Ras-related GTPases, whose expression is induced in several cell types upon activation by extracellular stimuli. Two functions of Gem have been demonstrated, including regulation of voltage-gated calcium channel activity and inhibition of Rho kinase-mediated cytoskeletal reorganization, such as stress fiber formation and neurite retraction. Because of the essential relationship between actin reorganization and peripheral nerve regeneration, we investigated the spatiotemporal expression of Gem in a rat sciatic nerve crush (SNC) model. After never injury, we observed that Gem had a significant up-regulation from 1 day, peaked at day 5 and then gradually decreased to the normal level. At its peak expression, Gem expressed mainly in Schwann cells (SCs) and macrophages of the distal sciatic nerve segment, but had few colocalization in axons. In addition, the peak expression of Gem was in parallel with PCNA, and numerous SCs expressing Gem were PCNA positive. Thus, all of our findings suggested that Gem may be involved in the pathophysiology of sciatic nerve after SNC.

  2. Increasing estrus expression in the lactating dairy cow.

    PubMed

    Sauls, J A; Voelz, B E; Hill, S L; Mendonça, L G D; Stevenson, J S

    2017-01-01

    Using an activity monitoring system (AMS) equipped with an accelerometer, 2 experiments were conducted to test the hypotheses that (1) enhancing progesterone before inducing luteolysis or (2) exposing cows to estradiol cypionate (ECP) or testosterone propionate (TP) after luteolysis would increase occurrence and intensity of estrus. Our goal was to determine if more cows could be detected in estrus by an AMS compared with other estrus-detection aids. In experiment 1, cows (n=154) were fitted with both an AMS collar and a pressure-sensitive, rump-mounted device (HeatWatch; HW) and assigned to 3 treatments: (1) no CL + progesterone insert (CIDR) for 5d, (2) CL only, or (3) CL + 2 CIDR inserts for 5d to achieve a range in concentrations of progesterone. Prostaglandin F2α was administered to all cows upon CIDR insert removal or its equivalent. Progesterone concentration up to 72h posttreatment was greatest in CL + 2 CIDR, followed by CL only, and no CL + CIDR cows. Estrus occurred 14 to 28h earlier in no CL + CIDR compared with CL-bearing cows. Estrus intensity was greater for CL + 2 CIDR than for CL-only cows. The AMS and HW detected 70 and 59% of cows defined to be in estrus, respectively. In experiment 2, cows (n=203) were equipped with both an AMS and a friction-activated, rump-mounted patch (Estrotect patch) and assigned to receive 1mg of ECP, 2mg of TP, or control 24h after PGF2α. Concentrations of estradiol 24 and 48h after treatment were greater in ECP cows compared with controls. Estrus expression detected by AMS or patches in cows defined to be in estrus tended to be greater or was greater for ECP compared with controls, respectively. Compared with controls and in response to TP or ECP, estrus occurred 8 to 18h earlier and was of greater intensity for ECP cows, respectively. The AMS and patches determined 73 and 76% of cows defined to be in estrus, respectively. Of cows exposed to the AMS, HW, or patches, 70, 61, and 75%, respectively, were detected in

  3. Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance.

    PubMed

    Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-06-01

    Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.

  4. Urotensin-II receptor is over-expressed in colon cancer cell lines and in colon carcinoma in humans.

    PubMed

    Federico, Alessandro; Zappavigna, Silvia; Romano, Marco; Grieco, Paolo; Luce, Amalia; Marra, Monica; Gravina, Antonietta Gerarda; Stiuso, Paola; D'Armiento, Francesco Paolo; Vitale, Giovanni; Tuccillo, Concetta; Novellino, Ettore; Loguercio, Carmela; Caraglia, Michele

    2014-01-01

    Urotensin (U)-II receptor (UTR) has been previously reported to be over-expressed in a number of tumours. Whether UTR-related pathway plays a role in colon carcinogenesis is unknown. We evaluated UTR protein and mRNA expression in human epithelial colon cancer cell lines and in normal colon tissue, adenomatous polyps and colon cancer. U-II protein expression was assessed in cancer cell lines. Moreover, we evaluated the effects of U-II(4-11) (an UTR agonist), antagonists and knockdown of UTR protein expression through a specific shRNA, on proliferation, invasion and motility of human colon cancer cells. Cancer cell lines expressed U-II protein and UTR protein and mRNA. By immunohistochemistry, UTR was expressed in 5-30% of epithelial cells in 45 normal controls, in 30-48% in 21 adenomatous polyps and in 65-90% in 48 colon adenocarcinomas. UTR mRNA expression was increased by threefold in adenomatous polyps and eightfold in colon cancer, compared with normal colon. U-II(4-11) induced a 20-40% increase in cell growth while the blockade of the receptor with specific antagonists caused growth inhibition of 20-40%. Moreover, the knock down of UTR with a shRNA or the inhibition of UTR with the antagonist urantide induced an approximately 50% inhibition of both motility and invasion. UTR appears to be involved in the regulation of colon cancer cell invasion and motility. These data suggest that UTR-related pathway may play a role in colon carcinogenesis and that UTR may function as a target for therapeutic intervention in colon cancer. © 2013 Stichting European Society for Clinical Investigation Journal Foundation.

  5. Increased chemosensitivity and radiosensitivity of human breast cancer cell lines treated with novel functionalized single-walled carbon nanotubes

    PubMed Central

    Jia, Yijun; Weng, Ziyi; Wang, Chuanying; Zhu, Mingjie; Lu, Yunshu; Ding, Longlong; Wang, Yongkun; Cheng, Xianhua; Lin, Qing; Wu, Kejin

    2017-01-01

    Hypoxia is a major cause of treatment resistance in breast cancer. Single-walled carbon nanotubes (SWCNTs) exhibit unique properties that make them promising candidates for breast cancer treatment. In the present study, a new functionalized single-walled carbon nanotube carrying oxygen was synthesized; it was determined whether this material could increase chemosensitivity and radiosensitivity of human breast cancer cell lines, and the underlying mechanisms were investigated. MDA-MB-231 cells growing in folic acid (FA) free medium, MDA-MB-231 cells growing in medium containing FA and ZR-75-1 cells were treated with chemotherapy drugs or radiotherapy with or without tombarthite-modified-FA-chitosan (R-O2-FA-CHI)-SWCNTs under hypoxic conditions, and the cell viability was determined by water-soluble tetrazolium salts-1 assay. The cell surviving fractions were determined by colony forming assay. Cell apoptosis induction was monitored by flow cytometry. Expression of B-cell lymphoma 2 (Bcl-2), survivin, hypoxia-inducible factor 1-α (HIF-1α), multidrug resistance-associated protein 1 (MRP-1), P-glycoprotein (P-gp), RAD51 and Ku80 was monitored by western blotting. The novel synthesized R-O2-FA-CHI-SWCNTs were able to significantly enhance the chemosensitivity and radiosensitivity of human breast cancer cell lines and the material exhibited its expected function by downregulating the expression of Bcl-2, survivin, HIF-1α, P-gp, MRP-1, RAD51 and Ku80. PMID:28123543

  6. Increased chemosensitivity and radiosensitivity of human breast cancer cell lines treated with novel functionalized single-walled carbon nanotubes.

    PubMed

    Jia, Yijun; Weng, Ziyi; Wang, Chuanying; Zhu, Mingjie; Lu, Yunshu; Ding, Longlong; Wang, Yongkun; Cheng, Xianhua; Lin, Qing; Wu, Kejin

    2017-01-01

    Hypoxia is a major cause of treatment resistance in breast cancer. Single-walled carbon nanotubes (SWCNTs) exhibit unique properties that make them promising candidates for breast cancer treatment. In the present study, a new functionalized single-walled carbon nanotube carrying oxygen was synthesized; it was determined whether this material could increase chemosensitivity and radiosensitivity of human breast cancer cell lines, and the underlying mechanisms were investigated. MDA-MB-231 cells growing in folic acid (FA) free medium, MDA-MB-231 cells growing in medium containing FA and ZR-75-1 cells were treated with chemotherapy drugs or radiotherapy with or without tombarthite-modified-FA-chitosan (R-O2-FA-CHI)-SWCNTs under hypoxic conditions, and the cell viability was determined by water-soluble tetrazolium salts-1 assay. The cell surviving fractions were determined by colony forming assay. Cell apoptosis induction was monitored by flow cytometry. Expression of B-cell lymphoma 2 (Bcl-2), survivin, hypoxia-inducible factor 1-α (HIF-1α), multidrug resistance-associated protein 1 (MRP-1), P-glycoprotein (P-gp), RAD51 and Ku80 was monitored by western blotting. The novel synthesized R-O2-FA-CHI-SWCNTs were able to significantly enhance the chemosensitivity and radiosensitivity of human breast cancer cell lines and the material exhibited its expected function by downregulating the expression of Bcl-2, survivin, HIF-1α, P-gp, MRP-1, RAD51 and Ku80.

  7. Increased FNDC5/Irisin expression in human hepatocellular carcinoma.

    PubMed

    Gaggini, Melania; Cabiati, Manuela; Del Turco, Serena; Navarra, Teresa; De Simone, Paolo; Filipponi, Franco; Del Ry, Silvia; Gastaldelli, Amalia; Basta, Giuseppina

    2017-02-01

    The fibronectin type III domain containing 5 (FNDC5)/Irisin, a novel energy-regulating hormone, is associated with lipid and carbohydrate metabolism. It is produced in low amounts by normal hepatic tissue, while in human hepatocellular carcinoma (HCC), in which aberrant de novo lipogenesis (DNL) occurs, the hepatic expression of FNDC5/Irisin is still unknown. The gene expression of FNDC5/Irisin, associated to key regulators of DNL, inflammation and cancer progression was evaluated in liver tissue of 18 patients with HCC undergoing liver transplantation and of 18 deceased donors. Hepatic mRNA expression of FNDC5/Irisin and stearoyl-CoA desaturase (SCD-1), main enzymatic regulator of DNL, were significantly higher in HCC patients than in donors (p<0.0001 and p=0.015, respectively). The hepatic mRNA expression of the neurogenic locus notch homolog protein 1 (NOTCH1) tended to be higher in HCC patients than in donors (p=0.06). Only in HCC patients, hepatic FNDC5/Irisin strongly correlated with the transcription factor sterol regulatory element-binding factor 1, SCD-1, NOTCH1, tumor necrosis factor-α and Interleukin-6 mRNA expression. Further, in HCC patients, FNDC5/Irisin mRNA tended to correlate to plasma lipid profile namely triglycerides, palmitic/linoleic acid and polyunsaturated fatty acid/saturated fatty acid ratios. In conclusion, HCC-liver tissue over-expressed FNDC5/Irisin in association with gene expression of mediators involved in lipogenesis, inflammation and cancer, suggesting a possible protective role of the hormone from the liver damage.

  8. Silencing of CerS6 increases the invasion and glycolysis of melanoma WM35, WM451 and SK28 cell lines via increased GLUT1-induced downregulation of WNT5A.

    PubMed

    Tang, Yuanyuan; Cao, Ke; Wang, Qi; Chen, Jia; Liu, Rui; Wang, Shaohua; Zhou, Jianda; Xie, Huiqing

    2016-05-01

    Ceramide synthases (CerSs) have been shown to regulate numerous aspects of cancer development. CerS6 has been suggested to be involved in cancer etiology. However, little is known concerning the exact effect of CerS6 on the malignant behavior of melanoma, including glycolysis, proliferation and invasion. In the present study, we found that the expression of CerS6 was low in the melanoma cell lines, including WM35, WM451 and SK-28, and the expression level was related to the malignanct behavior of the melanoma cell lines. We constructed overexpression and silencing models of CerS6 in three melanoma cell lines and found that silencing of CerS6 promoted the ability of proliferation and invasion in the melanoma cell lines. Additionally, downregulation of CerS6 upregulated the activity of glycolysis-related enzyme, and enhanced the expression of glycolysis-related genes, including GLUT1 and MCT1. Furthermore, we identified the genes whose expression levels were changed after silencing of CerS6 by gene microarray. The expression of glycolysis-related gene SLC2A1 (also known as GLUT1) was found to be upregulated, while notably WNT5A was downregulated. The altered expression of GLUT1 and WNT5A was verified by qPCR and western blotting. Furthermore, silencing of GLUT1 in the melanoma cells resulted in the increased expression of WNT5A and the decreased ability of invasion and proliferation in the melanoma cells. Collectively, silencing of CerS6 induced the increased expression of GLUT1, which downregulated the expression of WNT5A and enhanced the invasion and proliferation of melanoma cells. Thus, CerS6 may provide a novel therapeutic target for melanoma treatment.

  9. Cancer-initiating cells derived from established cervical cell lines exhibit stem-cell markers and increased radioresistance

    PubMed Central

    2012-01-01

    Background Cancer-initiating cells (CICs) are proposed to be responsible for the generation of metastasis and resistance to therapy. Accumulating evidences indicates CICs are found among different human cancers and cell lines derived from them. Few studies address the characteristics of CICs in cervical cancer. We identify biological features of CICs from four of the best-know human cell lines from uterine cervix tumors. (HeLa, SiHa, Ca Ski, C-4 I). Methods Cells were cultured as spheres under stem-cell conditions. Flow cytometry was used to detect expression of CD34, CD49f and CD133 antigens and Hoechst 33342 staining to identify side population (SP). Magnetic and fluorescence-activated cell sorting was applied to enrich and purify populations used to evaluate tumorigenicity in nude mice. cDNA microarray analysis and in vitro radioresistance assay were carried out under standard conditions. Results CICs, enriched as spheroids, were capable to generate reproducible tumor phenotypes in nu-nu mice and serial propagation. Injection of 1 × 103 dissociated spheroid cells induced tumors in the majority of animals, whereas injection of 1 × 105 monolayer cells remained nontumorigenic. Sphere-derived CICs expressed CD49f surface marker. Gene profiling analysis of HeLa and SiHa spheroid cells showed up-regulation of CICs markers characteristic of the female reproductive system. Importantly, epithelial to mesenchymal (EMT) transition-associated markers were found highly expressed in spheroid cells. More importantly, gene expression analysis indicated that genes required for radioresistance were also up-regulated, including components of the double-strand break (DSB) DNA repair machinery and the metabolism of reactive oxygen species (ROS). Dose-dependent radiation assay indicated indeed that CICs-enriched populations exhibit an increased resistance to ionizing radiation (IR). Conclusions We characterized a self-renewing subpopulation of CICs found among four well known human

  10. Initial Molecular-Level Response to Artificial Selection for Increased Aerobic Metabolism Occurs Primarily through Changes in Gene Expression.

    PubMed

    Konczal, Mateusz; Babik, Wiesław; Radwan, Jacek; Sadowska, Edyta T; Koteja, Paweł

    2015-06-01

    Experimental evolution combined with genome or transcriptome resequencing (Evolve and Resequence) represents a promising approach for advancing our understanding of the genetic basis of adaptation. Here, we applied this strategy to investigate the effect of selection on a complex trait in lines derived from a natural population of a small mammal. We analyzed the liver and heart transcriptomes of bank voles (Myodes [=Clethrionomys] glareolus) that had been selected for increased aerobic metabolism. The organs were sampled from 13th generation voles; at that point, the voles from four replicate selected lines had 48% higher maximum rates of oxygen consumption than those from four control lines. At the molecular level, the response to selection was primarily observed in gene expression: Over 300 genes were found to be differentially expressed between the selected and control lines and the transcriptome-wide pattern of expression distinguished selected lines from controls. No evidence for selection-driven changes of allele frequencies at coding sites was found: No single nucleotide polymorphism (SNP) changed frequency more than expected under drift alone and frequency changes aggregated over all SNPs did not separate selected and control lines. Nevertheless, among genes which showed highest differentiation in allele frequencies between selected and control lines we identified, using information about gene functions and the biology of the selected phenotype, plausible targets of selection; these genes, together with those identified in expression analysis, have been prioritized for further studies. Because our selection lines were derived from a natural population, the amount and the spectrum of variation available for selection probably closely approximated that typically found in populations of small mammals. Therefore, our results are relevant to the understanding of the molecular basis of complex adaptations occurring in natural vertebrate populations.

  11. [Expression and clinical significance of Pin1 and Cyclin D1 in cervical cancer cell lines and cervical epithelial tissues].

    PubMed

    Li, Hong-Yu; Xu, Qian; Zhu, Tao; Zhou, Jin-Hua; Deng, Dong-Rui; Wang, Shi-Xuan; Lu, Yun-Ping; Ma, Ding

    2006-03-01

    Peptidyl-prolyl cis/trans isomerase Pin1 is prevalently overexpressed in human cancers. Up-regulation of Pin1 elevates the expression of Cyclin D1, and plays an important role in tumorigenesis and tumor progression. This study was to investigate the expression and clinical significance of Pin1 and Cyclin D1 in cervical cancer cell lines and cervical epithelial tissues. The expression of Pin1 and Cyclin D1 in cervical cancer cell lines HeLa, SiHa, C33a and Caski were detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot. Their expression in 88 samples of cervical tissues, including 10 samples of normal cervix, 21 samples of cervical intraepithelial neoplasia (CIN), and 57 samples of invasive cervical cancer, were detected by immunohistochemistry. The mRNA and protein levels of Pin1 were significantly higher in HeLa, SiHa, C33a, and Caski cells than in normal cervical epithelial tissues (P<0.05). The expression of Pin1 increased progressively along with the disease process from normal cervix to CIN, and to invasive cervical cancer (0%, 47.62%, 64.91%, P<0.05). Pin1 expression had no relation to disease stage (FIGO), pathologic grade, and pelvic lymph node metastasis status (P>0.05). The positive rate of Pin1 was significantly higher in cervical adenocarcinoma than in cervical squamous cell carcinoma (100% vs. 60.0%, P<0.05). In cervical cancer tissues, the overexpression of Pin1 was positively correlated to that of Cyclin D1 (P<0.05). Pin1 is overexpressed in HeLa, SiHa, C33a and Caski cell lines as well as in cervical cancer tissues. The overexpression of Pin1 is closely related to Cyclin D1 expression in cervical cancer. The aberrant expression of Pin1 and Cyclin D1 might contribute to tumorigenesis of cervical cancer.

  12. Strategy for increased efficiency of transfection in human cell lines using radio frequency electroporation.

    PubMed

    Zald, P B; Cotter, M A; Robertso, E S

    2001-02-01

    Traditional electroporation devices use direct current electric fields to stimulate the uptake of oligonucleotides, plasmids, short peptides, and proteins into a variety of cell types. A variation of this widely used technique is now available which relies on radio frequency (RF) electrical pulses. This oscillating type of electrical field reportedly elicits greater uptake of plasmid DNA across the plasma membrane. We evaluated a protocol for RF electroporation of the a human embryonic kidney cell line and a Burkitt's lymphoma (BL) cell line for effeciency of transfection by RF electroporation. The plasmid EGFP, which codes for the widely used fusion protein, enhanced green fluorescent protein (EGFP), was used as a reporter of plasmid uptake after transfections. Transfection efficiency consistently increased approximately 30% from that typically obtained with conventional DC type electroporation and was accompanied by greater survivability of cells. Additionally, in some instances, percent transfection efficiency increased to over 70%. Thus, RF electroporation represents an improved methodology for transfection of human cell lines. Moreover, the RF protocol is simple to incorporate in laboratories already utilizing conventional electroporation devices and techniques.

  13. Constitutive suppressor of cytokine signaling 3 expression confers a growth advantage to a human melanoma cell line.

    PubMed

    Komyod, Waraporn; Böhm, Markus; Metze, Dieter; Heinrich, Peter C; Behrmann, Iris

    2007-03-01

    The growth of melanocytes and many early stage melanoma cells can be inhibited by cytokines, whereas late stage melanoma cells have often been reported to be "multi-cytokine-resistant." Here, we analyzed the melanoma cell line 1286, resistant towards the growth-inhibitory effects of interleukin 6 (IL-6), and oncostatin M (OSM), to better understand the mechanisms underlying cytokine resistance. Although the relevant receptors gp130 and OSMR are expressed at the cell surface of these cells, cytokine stimulation hardly led to the activation of Janus kinase 1 and signal transducer and activator of transcription (STAT)3 and STAT1. We found a high-level constitutive expression of suppressors of cytokine signaling 3 (SOCS3) that did not further increase after cytokine treatment. Importantly, upon suppression of SOCS3 by short interfering RNA, cells became susceptible towards OSM and IL-6: they showed an enhanced STAT3 phosphorylation and a dramatically increased STAT1 phosphorylation. Moreover, suppression of SOCS3 rendered 1286 cells sensitive to the antiproliferative action of IL-6 and OSM, but not of IFN-alpha. Interestingly, SOCS3-short interfering RNA treatment also increased the growth-inhibitory effect in cytokine-sensitive WM239 cells expressing SOCS3 in an inducible way. Thus, SOCS3 expression confers a growth advantage to these cell lines. Constitutive SOCS3 mRNA expression, although at lower levels than in 1286 cells, was found in nine additional human melanoma cell lines and in normal human melanocytes, although at the protein level, SOCS3 expression was marginal at best. However, in situ analysis of human melanoma specimens revealed SOCS3 immunoreactivity in 3 out of 10 samples, suggesting that in vivo SOCS3 may possibly play a role in IL-6 resistance in at least a fraction of tumors.

  14. Expression of human LINE-1 elements in enhanced by isochromosome 12p; evidence from testicular germ cell tumors and the Pallister-Killian syndrome

    SciTech Connect

    Swergold, D.

    1994-09-01

    Expression of the human LINE-1 (L1Hs) transposable element is restricted to a narrow range of cell types. Specific expression of either endogenous elements or transfected recombinant elements has been reported primarily in tumors and cell lines of germ cell origin, including the NTera2D1, 2102EP, and JEG3 cell lines. These tumors and cell lines often contain one or more copies of isochromosome 12p, or translocations of 12p. Another human condition, the Pallister-Killian syndrome, is also characterized by the mosaic presence of an isochromosome 12p in patient`s cells. M28, a previously described somatic hybrid cell line, contains a human isochromosone 12p derived from fibroblasts of a patient with Pallister-Killian syndrome in a mouse LMTK-background. I asked whether the M28 cell line would exhibit enhanced expression of endogenous or transfected L1Hs elements. Expression of transfected recombinant L1Hs elements was 10-20 fold higher in M28 than in LMTK-cells. Expression of L1Hs elements was not increased in the GM10868A somatic cell hybrid line which contains a complete human chromosome 12 in a Chinese Hamster Ovary background. Somatic cell hybrid lines containing various human chromosomes in a LMTK-background also exhibited no enhanced L1Hs expression. P40, the protein encoded by the L1Hs first open reading frame, was detected in NTera2D1 but not in non-transfected M28 cells. Preliminary promoter deletion experiments indicate that similar, but non-identical regions of the L1Hs 5{prime} UTR, contribute to high level expression in the NTera2D1 and the M28 cell lines. These data suggest that the enhanced expression of human LINE-1 elements in tumors of germ cell origin is due in part to the presence of the isochromosome 12p.

  15. Increasing the yield of middle silk gland expression system through transgenic knock-down of endogenous sericin-1.

    PubMed

    Ma, Sanyuan; Xia, Xiaojuan; Li, Yufeng; Sun, Le; Liu, Yue; Liu, Yuanyuan; Wang, Xiaogang; Shi, Run; Chang, Jiasong; Zhao, Ping; Xia, Qingyou

    2017-08-01

    Various genetically modified bioreactor systems have been developed to meet the increasing demands of recombinant proteins. Silk gland of Bombyx mori holds great potential to be a cost-effective bioreactor for commercial-scale production of recombinant proteins. However, the actual yields of proteins obtained from the current silk gland expression systems are too low for the proteins to be dissolved and purified in a large scale. Here, we proposed a strategy that reducing endogenous sericin proteins would increase the expression yield of foreign proteins. Using transgenic RNA interference, we successfully reduced the expression of BmSer1 to 50%. A total 26 transgenic lines expressing Discosoma sp. red fluorescent protein (DsRed) in the middle silk gland (MSG) under the control of BmSer1 promoter were established to analyze the expression of recombinant. qRT-PCR and western blotting showed that in BmSer1 knock-down lines, the expression of DsRed had significantly increased both at mRNA and protein levels. We did an additional analysis of DsRed/BmSer1 distribution in cocoon and effect of DsRed protein accumulation on the silk fiber formation process. This study describes not only a novel method to enhance recombinant protein expression in MSG bioreactor, but also a strategy to optimize other bioreactor systems.

  16. TLR7 and TLR8 expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer

    PubMed Central

    GRIMMIG, TANJA; MATTHES, NIELS; HOELAND, KATHARINA; TRIPATHI, SUDIPTA; CHANDRAKER, ANIL; GRIMM, MARTIN; MOENCH, ROMANA; MOLL, EVA-MARIA; FRIESS, HELMUT; TSAUR, IGOR; BLAHETA, ROMAN A.; GERMER, CRISTOPH T.; WAAGA-GASSER, ANA MARIA; GASSER, MARTIN

    2015-01-01

    Chronic inflammation as an important epigenetic and environmental factor for putative tumorigenesis and tumor progression may be associated with specific activation of Toll-like receptors (TLR). Recently, carcinogenesis has been suggested to be dependent on TLR7 signaling. In the present study, we determined the role of both TLR7 and TLR8 expression and signaling in tumor cell proliferation and chemoresistance in pancreatic cancer. Expression of TLR7/TLR8 in UICC stage I–IV pancreatic cancer, chronic pancreatitis, normal pancreatic tissue and human pancreatic (PANC1) cancer cell line was examined. For in vitro/in vivo studies TLR7/TLR8 overexpressing PANC1 cell lines were generated and analyzed for effects of (un-)stimulated TLR expression on tumor cell proliferation and chemoresistance. TLR expression was increased in pancreatic cancer, with stage-dependent upregulation in advanced tumors, compared to earlier stages and chronic pancreatitis. Stimulation of TLR7/TLR8 overexpressing PANC1 cells resulted in elevated NF-κB and COX-2 expression, increased cancer cell proliferation and reduced chemosensitivity. More importantly, TLR7/TLR8 expression increased tumor growth in vivo. Our data demonstrate a stage-dependent upregulation of both TLR7 and TLR8 expression in pancreatic cancer. Functional analysis in human pancreatic cancer cells point to a significant role of both TLRs in chronic inflammation-mediated TLR7/TLR8 signaling leading to tumor cell proliferation and chemoresistance. PMID:26134824

  17. Expression heterogeneity research of ITGB3 and BCL-2 in lung adenocarcinoma tissue and adenocarcinoma cell line.

    PubMed

    Xia, Zong-Jiang; Hu, Wei; Wang, Yue-Bin; Zhou, Kun; Sun, Guo-Ju

    2014-06-01

    To analyze expression heterogeneity of Integrin beta 3 (ITGB3) and B-cell lymphoma 2 (BCL-2) in lung adenocarcinoma tissue and adenocarcinoma cell line and further provide theoretical direction for molecular biological research of lung adenocarcinoma. Tissue microarray was used to observe relation among expression, heterogeneitpy and clinical characteristics of ITGB3 and BCL-2 in lung cancer. ITGB3 and BCL-2 increased significantly in A549 cells in CAFs group withβ-actin as control; the expression level of BCL-2 also increased in ITGB3 transfected cells with GFP plasmid transfected A549 cells as control; immunohistochemistry staining showed that positive rates of ITGB3, ITGB1 and BCL-2 in normal lung tissues were 0, the positive rates in lung adenocarcinoma were 7.04%, 84.51% and 4.23%, respectively; in the results of immunohistochemistry staining, the expression of Girdin protein in lung adenocarcinoma was homogeneous, however protein expression of ITGB3, ITGB1 and BCL-2 showed different patterns in the same location with significant heterogeneity; majority of ITGB3, ITGB1 or BCL-2 positive tissue showed heterogeneity that expression in trailing edge was higher than that of trailing edge in lung adenocarcinoma tissue, the patients with BCL-2 heterogeneity showed higher lymph node metastasis ratio and lower clinical stage (P<0.05); and the expression of ITGB3 and the clinical characteristics of patients were not significant related (P>0.05). Expression of ITGB3 and BCL-2 in lung adenocarcinoma and adenocarcinoma cell line showed heterogeneity that expression in trailing edge was higher than that of trailing edge, which may play an important role in promoting tumor lymph node metastasis and vascular invasion, and provides a new research direction for exploration of lung adenocarcinoma metastasis mechanism. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  18. Expression of P2Y receptors in cell lines derived from the human lung.

    PubMed

    Communi, D; Paindavoine, P; Place, G A; Parmentier, M; Boeynaems, J M

    1999-05-01

    1. Northern blotting experiments have been performed with RNA extracted from several cell lines derived from the human lung in order to detect P2Y1, P2Y2, P2Y4 and P2Y6 mRNA. We have investigated the 1HAEo- and 16HBE14o- epithelial cell lines derived from the airway epithelium, the A549 cell line displaying properties of type II alveolar epithelial cells, the CALU-3 serous cells, the 6CFSMEo- submucosal cells and the HASMSC1 airway smooth muscle cells. We have also evaluated one pancreatic epithelial cell line called CFPAC-1. These experiments revealed that P2Y2 and P2Y6 mRNA are co-expressed in the IHAEo-, 16HBE14o- and A549 epithelial cell lines. The CFPAC-1 pancreatic cell line was strongly positive for the P2Y2 receptor. No signal was obtained for the P2Y1 and P2Y4 receptors. 2. We have then performed RT-PCR experiments with specific oligonucleotides of these last two P2Y receptors with the RNA used for the Northern blotting experiments. P2Y4 mRNA was detected in five cell lines: 1HAEo-, 16HBE14o-, 6CFSMEo-, HASMSC1 and CFPAC-1. P2Y1 mRNA was only detected in the CALU-3 cell line. 3. Inositol trisphosphates assays have identified a response typical of the P2Y2 receptor in the 1HAEo- and the 16HBE14o- airway epithelial cell lines which co-express P2Y2 and P2Y6 mRNA. By contrast, the 6CFSMEo- submucosal cells expressed a UTP-specific response which displayed pharmacological characteristics compatible with the human P2Y4 receptor: in particular, there was no response to UDP or ATP and the UTP effect was totally inhibited by pertussis toxin.

  19. The expression and functional characterization of sigma (sigma) 1 receptors in breast cancer cell lines.

    PubMed

    Aydar, Ebru; Onganer, Pinar; Perrett, Rebecca; Djamgoz, Mustafa B; Palmer, Christopher P

    2006-10-28

    Sigma (sigma) receptors have been implicated in cancer. However, to date there is little molecular data demonstrating the role of sigma1 receptors in cancer. Expression of sigma1 receptors in various human cancer cell lines in comparison to non-cancerous cell lines was investigated, using real time RT-PCR and by western blotting with a sigma1 receptor specific antibody. Our results indicate that cancer cells express higher levels of sigma1 receptors than corresponding non-cancerous cells. Localization of the sigma1 receptor was investigated in MDA-MB-231 cells by immunocytochemistry and confocal microscopy, expression was visualized predominantly at the cell periphery. We have tested the effect of sigma1 and sigma2 drugs and a sigma1 receptor silencing construct on various aspects of the metastatic process on two breast cell lines of different metastatic potential and a normal breast cell line. Both sigma1 and sigma2 drugs and the sigma1 receptor silencing construct had effects on proliferation and adhesion for breast cancer cell lines, compared to a non-cancerous breast cell line. This data suggests sigma1 receptor plays a role in proliferation and adhesion of breast cancer cells. Therefore, it is likely to be a potential target for the diagnosis and therapy of breast cancer.

  20. Establishment of enhancer detection lines expressing GFP in the gut of the ascidian Ciona intestinalis.

    PubMed

    Yoshida, Reiko; Sasakura, Yasunori

    2012-01-01

    The gut is a tubular, endodermal organ for digesting food and absorbing nutrients. In this study, we characterized eight enhancer detection lines that express green fluorescent protein (GFP) in the whole or part of the digestive tube of the ascidian Ciona intestinalis. Three enhancer detection lines for the pyloric gland, a structure associated with the digestive tube, were also analyzed. These lines are valuable markers for analyzing the mechanisms of development of the gut. Based on the GFP expression of the enhancer detection lines together with morphological characteristics, the digestive tube of Ciona can be subdivided into at least 10 compartments in which different genetic cascades operate. Causal insertion sites of the enhancer detection lines were identified, and the expression pattern of the genes near the insertion sites were characterized by means of whole-mount in situ hybridization. We have characterized four and two genes that were specifically or strongly expressed in the digestive tube and pyloric gland, respectively. The present data provide the basic information and useful resources for studying gut formation in Ciona.

  1. A nanoemulsion formulation of tamoxifen increases its efficacy in a breast cancer cell line.

    PubMed

    Tagne, Jean-Bosco; Kakumanu, Srikanth; Ortiz, Daniela; Shea, Thomas; Nicolosi, Robert J

    2008-01-01

    This paper reports on the preparation of a water-soluble nanoemulsion of the highly lipid-soluble drug tamoxifen (TAM). In addition, relative to a suspension of TAM, the nanoemulsion preparation demonstrated a greater zeta potential (increased negative charge) which has previously been associated with increasing drug/membrane permeability. This study also reports that relative to suspensions of TAM with particle sizes greater than 6000 nm, nanoemulsions of TAM, having mean particle sizes of 47 nm, inhibited cell proliferation 20-fold greater and increased cell apoptosis 4-fold greater in the HTB-20 breast cancer cell line. Thus, this work suggests that a nanoemulsion compared to a suspension preparation of TAM increases its anticancer properties relative to breast cancer.

  2. Heparin treatment increases thioredoxin interacting protein expression in hepatocellular carcinoma cells.

    PubMed

    Gunes, Aysim; Iscan, Evin; Topel, Hande; Avci, Sanem Tercan; Gumustekin, Mukaddes; Erdal, Esra; Atabey, Nese

    2015-08-01

    Heparins play an important role in cell growth, differentiation, migration and invasion. However, the molecular mechanisms of heparin mediated cellular behaviors are not well defined. To determine the effect of heparin on gene expression, we performed a cDNA microarray in a hepatocellular carcinoma cell line and found that heparin regulates transcription of genes involved in glucose metabolism. In this study, we showed a new role of heparin in the regulation of thioredoxin interacting protein, which is a major regulator of glucose metabolism, in hepatocellular carcinoma cell lines. We determined the importance of a unique carbohydrate response element located on its promoter for the heparin-induced activation of thioredoxin-interacting protein and the modulatory role of heparin on nuclear accumulation of carbohydrate response element associated proteins. We showed the importance of heparin mediated histone modifications and down-regulation of Enhancer of zeste 2 polycomb repressive complex 2 expression for heparin mediated overexpression of thioredoxin-interacting protein. When we tested biological significance of these data; we observed that cells overexpressing thioredoxin-interacting protein are less adhesive and proliferative, however they have a higher migration and invasion ability. Interestingly, heparin treatment increased thioredoxin-interacting protein expression in liver of diabetic rats. In conclusion, our results show that heparin activates thioredoxin-interacting protein expression in liver and hepatocellular carcinoma cells and provide the first evidences of regulatory roles of heparin on carbohydrate response element associated factors. This study will contribute future understanding of the effect of heparin on glucose metabolism and glucose independent overexpression of thioredoxin-interacting protein during hepatocarcinogenesis.

  3. Integration of cell line and process development to overcome the challenge of a difficult to express protein.

    PubMed

    Alves, Christina S; Gilbert, Alan; Dalvi, Swati; St Germain, Bryan; Xie, Wenqi; Estes, Scott; Kshirsagar, Rashmi; Ryll, Thomas

    2015-01-01

    This case study addresses the difficulty in achieving high level expression and production of a small, very positively charged recombinant protein. The novel challenges with this protein include the protein's adherence to the cell surface and its inhibitory effects on Chinese hamster ovary (CHO) cell growth. To overcome these challenges, we utilized a multi-prong approach. We identified dextran sulfate as a way to simultaneously extract the protein from the cell surface and boost cellular productivity. In addition, host cells were adapted to grow in the presence of this protein to improve growth and production characteristics. To achieve an increase in productivity, new cell lines from three different CHO host lines were created and evaluated in parallel with new process development workflows. Instead of a traditional screen of only four to six cell lines in bioreactors, over 130 cell lines were screened by utilization of 15 mL automated bioreactors (AMBR) in an optimal production process specifically developed for this protein. Using the automation, far less manual intervention is required than in traditional bench-top bioreactors, and much more control is achieved than typical plate or shake flask based screens. By utilizing an integrated cell line and process development incorporating medium optimized for this protein, we were able to increase titer more than 10-fold while obtaining desirable product quality. Finally, Monte Carlo simulations were performed to predict the optimal number of cell lines to screen in future cell line development work with the goal of systematically increasing titer through enhanced cell line screening. © 2015 American Institute of Chemical Engineers.

  4. Agouti expression in human adipose tissue: functional consequences and increased expression in type 2 diabetes.

    PubMed

    Smith, Steven R; Gawronska-Kozak, Barbara; Janderová, Lenka; Nguyen, Taylor; Murrell, Angela; Stephens, Jacqueline M; Mynatt, Randall L

    2003-12-01

    It is well recognized that the agouti/melanocortin system is an important regulator of body weight homeostasis. Given that agouti is expressed in human adipose tissue and that the ectopic expression of agouti in adipose tissue results in moderately obese mice, the link between agouti expression in human adipose tissue and obesity/type 2 diabetes was investigated. Although there was no apparent relationship between agouti mRNA levels and BMI, agouti mRNA levels were significantly elevated in subjects with type 2 diabetes. The regulation of agouti in cultured human adipocytes revealed that insulin did not regulate agouti mRNA, whereas dexamethasone treatment potently increased the levels of agouti mRNA. Experiments with cultured human preadipocytes and with cells obtained from transgenic mice that overexpress agouti demonstrated that melanocortin receptor (MCR) signaling in adipose tissue can regulate both preadipocyte proliferation and differentiation. Taken together, these results reveal that agouti can regulate adipogenesis at several levels and suggest that there are functional consequences of elevated agouti levels in human adipose tissue. The influence of MCR signaling on adipogenesis combined with the well-established role of MCR signaling in the hypothalamus suggest that adipogenesis is coordinately regulated with food intake and energy expenditure.

  5. Induction of matrix metalloprotease-1 gene expression by retinoic acid in the human pancreatic tumour cell line Dan-G

    PubMed Central

    Marschall, Z von; Riecken, E-O; Rosewicz, S

    1999-01-01

    We have investigated the effects of retinoic acid (RA) on matrix metalloprotease-1 (MMP-1) gene expression in the human pancreatic tumour cell line Dan-G. 13-cis RA results in a time- and dose-dependent increase of MMP-1 protein concentration. These stimulatory effects were paralleled by a time- and dose-dependent increase of MMP-1 mRNA steady-state concentrations. Nuclear run-on analysis revealed that the increase of MMP-1 mRNA was partially due to an increase of MMP-1 gene transcription. In addition, 13-cis RA treatment results in an increase of MMP-1 mRNA stability. These data demonstrate that RA stimulates MMP-1 gene expression in human pancreatic carcinoma cells by transcriptional and post-transcriptional mechanisms. © 1999 Cancer Research Campaign PMID:10362099

  6. Cisplatin-resistant cells express increased levels of a factor that recognizes damaged DNA

    SciTech Connect

    Chu, G.; Chang, E. )

    1990-05-01

    Cancer treatment with the drug cisplatin is often thwarted by the emergence of drug-resistant cells. To study this phenomenon, the authors identified two independent cellular factors that recognize cisplatin-damaged DNA. One of the two factors, designated XPE binding factor, is deficient in complementation group E of xeroderma pigmentosum, an inherited disease characterized by defective repair of DNA damaged by ultraviolet radiation, cisplatin, and other agents. Human tumor cell lines selected for resistance to cisplatin showed more efficient DNA repair and increased expression of XPE binding factor. These results suggest that XPE binding factor may be responsible, at least in part, for the development of cisplatin resistance in human tumors and that the mechanism may be increased DNA repair.

  7. Ascites Increases Expression/Function of Multidrug Resistance Proteins in Ovarian Cancer Cells

    PubMed Central

    Huang, Zhiqing; Murphy, Susan K.; Payne, Sturgis; Wang, Fang; Kennedy, Margaret; Cianciolo, George J.; Bryja, Vitezslav; Pizzo, Salvatore V.; Bachelder, Robin E.

    2015-01-01

    Chemotherapy resistance is the major reason for the failure of ovarian cancer treatment. One mechanism behind chemo-resistance involves the upregulation of multidrug resistance (MDR) genes (ABC transporters) that effectively transport (efflux) drugs out of the tumor cells. As a common symptom in stage III/IV ovarian cancer patients, ascites is associated with cancer progression. However, whether ascites drives multidrug resistance in ovarian cancer cells awaits elucidation. Here, we demonstrate that when cultured with ascites derived from ovarian cancer-bearing mice, a murine ovarian cancer cell line became less sensitive to paclitaxel, a first line chemotherapeutic agent for ovarian cancer patients. Moreover, incubation of murine ovarian cancer cells in vitro with ascites drives efflux function in these cells. Functional studies show ascites-driven efflux is suppressible by specific inhibitors of either of two ABC transporters [Multidrug Related Protein (MRP1); Breast Cancer Related Protein (BCRP)]. To demonstrate relevance of our findings to ovarian cancer patients, we studied relative efflux in human ovarian cancer cells obtained from either patient ascites or from primary tumor. Immortalized cell lines developed from human ascites show increased susceptibility to efflux inhibitors (MRP1, BCRP) compared to a cell line derived from a primary ovarian cancer, suggesting an association between ascites and efflux function in human ovarian cancer. Efflux in ascites-derived human ovarian cancer cells is associated with increased expression of ABC transporters compared to that in primary tumor-derived human ovarian cancer cells. Collectively, our findings identify a novel activity for ascites in promoting ovarian cancer multidrug resistance. PMID:26148191

  8. The expression of S100P increases and promotes cellular proliferation by increasing nuclear translocation of β-catenin in endometrial cancer.

    PubMed

    Guo, Luyan; Chen, Shuqin; Jiang, Hongye; Huang, Jiaming; Jin, Wenyan; Yao, Shuzhong

    2014-01-01

    There is increasing evidence suggesting that S100P has a significant role in cancer, and is associated with poor clinical outcomes. The expression of S100P mRNA and protein in endometrial cancer and normal endometrium tissues was detected by real-time quantitative RT-PCR and immunohistochemistry. Moreover, we reduced the expression of S100P in HEC-1A and Ishikawa endometrial cancer cell lines by siRNA transfection. Based on the reduced S100P mRNA expression, we measured the effects of S100P on cellular proliferation by the cell-counting kit-8. Nuclear β-catenin protein level was detected by western blotting. Cyclin D1 and c-myc mRNA expression regulated by β-catenin was detected by real-time quantitative RT-PCR. We found that the expression of S100P mRNA and protein increased in endometrial cancer tissues compared with the normal endometrium. Local S100P expression progressively increased from pathologic differenciation grade 1 to 3. After reducing the S100P expression, the cellular proliferation ability, nuclear β-catenin protein level, cyclin D1 and c-myc mRNA levels reduced. It indicated that S100P could promote cell proliferation by increasing nuclear translocation of β-catenin. The expression of S100P mRNA and protein in endometrial cancer significantly increased and is associated with pathologic differenciation grade. S100P may promote endometrial cell proliferation by increasing nuclear translocation of β-catenin.

  9. Correct developmental expression of a cloned alcohol dehydrogenase gene transduced into the Drosophila germ line.

    PubMed

    Goldberg, D A; Posakony, J W; Maniatis, T

    1983-08-01

    We have used P-element-mediated transformation to introduce a cloned Drosophila alcohol dehydrogenase (Adh) gene into the germ line of ADH null flies. Six independent transformants expressing ADH were identified by their acquired resistance to ethanol. Each transformant carries a single copy of the cloned Adh gene in a different chromosomal location. Four of the six transformant lines exhibit normal Adh expression by the following criteria: quantitative levels of ADH enzyme activity in larvae and adults; qualitative tissue specificity; the size of stable Adh mRNA; and the characteristic developmental switch in utilization of two different Adh promoters. The remaining two transformants express ADH enzyme activity with the correct tissue specificity, but at a lower level than wild type. These results demonstrate that an 11.8 kb chromosomal fragment containing the Adh gene includes the cis-acting sequences necessary for its correct developmental expression, and that a variety of chromosomal sites permit proper Adh gene function.

  10. Lenalidomide affect expression level of cereblon protein in multiple myeloma cell line RPMI8226.

    PubMed

    Yang, D Y; Ren, J H; Guo, X N; Guo, X L; Cai, X Y; Guo, X F; Zhang, J N

    2015-10-29

    We investigated the mechanisms of action of immuno-modulatory drug (lenalidomide) on the protein expression of cereblon (CRBN) and their therapeutic targets in the multiple myeloma cell line RPMI8226. The multiple myeloma cell line RPMI8226 was cultured and treated with different concentrations of lenalidomide and bortezomib to determine the proliferation inhibition rate, apoptosis rate, and protein expression of CRBN. The results revealed that both lenalidomide and bortezomib inhibited the proliferation of RPMI8226 and promoted cell apoptosis. However, the protein expression of CRBN decreased signifi-cantly after treatment with lenalidomide, while bortezomib had no effect on the expression of CRBN. We confirmed that CRBN may be a target of lenalidomide.

  11. The increased expression of fatty acid-binding protein 9 in prostate cancer and its prognostic significance

    PubMed Central

    Al Fayi, Majed Saad; Gou, Xiaojun; Forootan, Shiva S.; Al-Jameel, Waseem; Bao, Zhengzheng; Rudland, Philip R.; Cornford, Philip A.; Hussain, Syed A.; Ke, Youqiang

    2016-01-01

    In contrast to numerous studies conducted to investigate the crucial role of fatty acid binding protein 5 (FABP5) in prostate cancer, investigations on the possible involvement of other FABPs are rare. Here we first measured the mRNA levels of 10 FABPs in benign and malignant prostate cell lines and identified the differentially expressed FABP6 and FABP9 mRNAs whose levels in all malignant cell lines were higher than those in the benign cells. Thereafter we assessed the expression status of FABP6 and FABP9 in both prostate cell lines and in human tissues. FABP6 protein was overexpressed only in 1 of the 5 malignant cell lines and its immunostaining intensities were not significantly different between benign and malignant prostate tissues. In contrast, FABP9 protein was highly expressed in highly malignant cell lines PC-3 and PC3-M, but its level in the benign PNT-2 and other malignant cell lines was not detectable. When analysed in an archival set of human prostate tissues, immunohistochemical staining intensity for FABP9 was significantly higher in carcinomas than in benign cases and the increase in FABP9 was significantly correlated with reduced patient survival times. Moreover, the increased level of staining for FABP9 was significantly associated with the increased joint Gleason scores (GS) and androgen receptor index (AR). Suppression of FABP9 expression in highly malignant PC3-M cells inhibited their invasive potential. Our results suggest that FABP9 is a valuable prognostic marker to predict the outcomes of prostate cancer patients, perhaps by playing an important role in prostate cancer cell invasion. PMID:27779102

  12. Regulation of metallothionein gene expression and cellular zinc accumulation in a rat small intestinal cell line

    SciTech Connect

    Carlson, J.M.; Cousins, R.J. )

    1991-03-15

    The effects of extracellular zinc concentration on metallothionein gene expression and cellular zinc accumulation were studied in IRD-98 cells. This is a non-transformed clonal line established by Negrel, et al. from fetal rat small intestine which possess characteristics of small bowel epithelial cells. Cells were maintained in DMEM and grown to confluent monolayers. The response to media zinc concentrations over the range of 5-150 {mu}mol/L was assessed. After 24 h in culture, cell zinc and metallothionein protein concentrations were significantly increased in cells provided higher levels of media zinc. Subsequent time course experiments showed that cells exposed to higher zinc levels had significant elevations in both metallothionein mRNA, peaking at 24 h, and metallothionein protein increasing through 48 h. Furthermore, cell zinc concentrations were significantly increased. At 48 h of culture, greater than 50% of the additional cellular zinc accumulated could be attributed to elevated metallothionein protein levels. These cells represent a zinc-responsive model to examine the mechanism of zinc uptake and transcellular transport by intestinal cells and the regulatory factors involved.

  13. Regret Expression and Social Learning Increases Delay to Sexual Gratification

    PubMed Central

    Quisenberry, Amanda J.; Eddy, Celia R.; Patterson, David L.; Franck, Christopher T.; Bickel, Warren K.

    2015-01-01

    Objective Modification and prevention of risky sexual behavior is important to individuals’ health and public health policy. This study employed a novel sexual discounting task to elucidate the effects of social learning and regret expression on delay to sexual gratification in a behavioral task. Methods Amazon Mechanical Turk Workers were assigned to hear one of three scenarios about a friend who engages in similar sexual behavior. The scenarios included a positive health consequence, a negative health consequence or a negative health consequence with the expression of regret. After reading one scenario, participants were asked to select from 60 images, those with whom they would have casual sex. Of the selected images, participants chose one image each for the person they most and least want to have sex with and person most and least likely to have a sexually transmitted infection. They then answered questions about engaging in unprotected sex now or waiting some delay for condom-protected sex in each partner condition. Results Results indicate that the negative health outcome scenario with regret expression resulted in delayed sexual gratification in the most attractive and least STI partner conditions, whereas in the least attractive and most STI partner conditions the negative health outcome with and without regret resulted in delayed sexual gratification. Conclusions Results suggest that the sexual discounting task is a relevant laboratory measure and the framing of information to include regret expression may be relevant for prevention of risky sexual behavior. PMID:26280349

  14. Increased Ubqln2 expression causes neuron death in transgenic rats.

    PubMed

    Huang, Bo; Wu, Qinxue; Zhou, Hongxia; Huang, Cao; Xia, Xu-Gang

    2016-10-01

    Pathogenic mutation of ubiquilin 2 (UBQLN2) causes neurodegeneration in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. How UBQLN2 mutations cause the diseases is not clear. While over-expression of UBQLN2 with pathogenic mutation causes neuron death in rodent models, deletion of the Ubqln2 in rats has no effect on neuronal function. Previous findings in animal models suggest that UBQLN2 mutations cause the diseases mainly through a gain rather than a loss of functions. To examine whether the toxic gain in UBQLN2 mutation is related to the enhancement of UBQLN2 functions, we created new transgenic rats over-expressing wild-type human UBQLN2. Considering that human UBQLN2 may not function properly in the rat genome, we also created transgenic rats over-expressing rat's own Ubqln2. When over-expressed in rats, both human and rat wild-type Ubqln2 caused neuronal death and spatial learning deficits, the pathologies that were indistinguishable from those observed in mutant UBQLN2 transgenic rats. Over-expressed wild-type UBQLN2 formed protein inclusions attracting the autophagy substrate sequestosome-1 and the proteasome component 26S proteasome regulatory subunit 7. These findings suggest that excess UBQLN2 is toxic rather than protective to neurons and that the enhancement of UBQLN2 functions is involved in UBQLN2 pathogenesis. Pathogenic mutation in ubiquilin 2 (UBQLN2) causes neurodegeneration in ALS and FTLD. Studies in rodent models suggest a gain of toxic function in mutant UBQLN2. We created new transgenic rats as a relevant model and examined whether enhancing wild-type UBQLN2 expression is implicated in the pathogenesis of mutant UBQLN2. We observed that over-expression of human or rat wild-type Ubqln2 caused protein aggregation and neuronal death in transgenic rats. Our findings suggest that excess UBQLN2 is toxic rather than protective to neurons and that uncontrolled enhancement of UBQLN2 function is involved in UBQLN2 pathogenesis

  15. Increased hepcidin in transferrin-treated thalassemic mice correlates with increased liver BMP2 expression and decreased hepatocyte ERK activation.

    PubMed

    Chen, Huiyong; Choesang, Tenzin; Li, Huihui; Sun, Shuming; Pham, Petra; Bao, Weili; Feola, Maria; Westerman, Mark; Li, Guiyuan; Follenzi, Antonia; Blanc, Lionel; Rivella, Stefano; Fleming, Robert E; Ginzburg, Yelena Z

    2016-03-01

    Iron overload results in significant morbidity and mortality in β-thalassemic patients. Insufficient hepcidin is implicated in parenchymal iron overload in β-thalassemia and approaches to increase hepcidin have therapeutic potential. We have previously shown that exogenous apo-transferrin markedly ameliorates ineffective erythropoiesis and increases hepcidin expression in Hbb(th1/th1) (thalassemic) mice. We utilize in vivo and in vitro systems to investigate effects of exogenous apo-transferrin on Smad and ERK1/2 signaling, pathways that participate in hepcidin regulation. Our results demonstrate that apo-transferrin increases hepcidin expression in vivo despite decreased circulating and parenchymal iron concentrations and unchanged liver Bmp6 mRNA expression in thalassemic mice. Hepatocytes from apo-transferrin-treated mice demonstrate decreased ERK1/2 pathway and increased serum BMP2 concentration and hepatocyte BMP2 expression. Furthermore, hepatocyte ERK1/2 phosphorylation is enhanced by neutralizing anti-BMP2/4 antibodies and suppressed in vitro in a dose-dependent manner by BMP2, resulting in converse effects on hepcidin expression, and hepatocytes treated with MEK/ERK1/2 inhibitor U0126 in combination with BMP2 exhibit an additive increase in hepcidin expression. Lastly, bone marrow erythroferrone expression is normalized in apo-transferrin treated thalassemic mice but increased in apo-transferrin injected wild-type mice. These findings suggest that increased hepcidin expression after exogenous apo-transferrin is in part independent of erythroferrone and support a model in which apo-transferrin treatment in thalassemic mice increases BMP2 expression in the liver and other organs, decreases hepatocellular ERK1/2 activation, and increases nuclear Smad to increase hepcidin expression in hepatocytes.

  16. IFN-γ, IL-21, and IL-10 co-expression in evolving autoimmune vitiligo lesions of Smyth line chickens.

    PubMed

    Shi, Fengying; Erf, Gisela F

    2012-03-01

    The Smyth line (SL) of chicken is an excellent animal model for human autoimmune vitiligo. In SL vitiligo (SLV), postnatal loss of melanocytes in feathers appears to be due to cell-mediated immunity. In this study, leukocyte infiltration and associated expression (RNA) of immune function-related cytokines in growing feathers were investigated throughout SLV development and progression. Both leukocyte infiltration and cytokine expression levels started to increase near visible SLV onset (early SLV), reached peak levels during active SLV, and decreased to near pre-vitiligo levels after complete loss of melanocytes. Specifically, significant increases were noticed in relative proportions of T cells, B cells, and major histocompatibility complex (MHC) II-expressing cells during active SLV. Levels of T-cell infiltration were higher than those of B cells, with more CD8+ than CD4+ cells throughout SLV. Elevated leukocyte infiltration in early and active SLV was accompanied by increased levels of cytokine expression, especially in IFN-γ, IL-10, and IL-21. Low expression of IL-4 and IL-17 did not suggest important roles of Th2 and Th17 cells in SLV pathogenesis. Taken together, SLV appears to be a Th1-polarized autoimmune disease, whereby IFN-γ expression is strongly associated with parallel increases in IL-10 and IL-21, particularly during early and active stages of SLV.

  17. Differential pattern of integrin receptor expression in differentiated and anaplastic thyroid cancer cell lines.

    PubMed

    Hoffmann, S; Maschuw, K; Hassan, I; Reckzeh, B; Wunderlich, A; Lingelbach, S; Zielke, A

    2005-09-01

    Adhesion of tumor cells to the extracellular matrix (ECM) is a crucial step for the development of metastatic disease and is mediated by specific integrin receptor molecules (IRM). The pattern of metastatic spread differs substantially among the various histotypes of thyroid cancer (TC). However, IRM have only occasionally been characterized in TC until now. IRM expression was investigated in 10 differentiated (FTC133, 236, 238, HTC, HTC TSHr, XTC, PTC4.0/4.2, TPC1, Kat5) and two anaplastic TC cell lines (ATC, C643, Hth74), primary cultures of normal thyroid tissue (Thy1,3), and thyroid cancer specimens (TCS). Expression of 16 IRM (beta1-4, beta7, alpha1-6, alphaV, alphaIIb, alphaL, alphaM, alphaX) and of four IRM heterodimers (alpha2beta1, alpha5beta1, alphaVbeta3, alphaVbeta5), was analyzed by fluorescent-activated cell sorter (FACS) and immunohistochemical staining. Thyroid tumor cell adhesion to ECM proteins and their IRM expression in response to thyrotropin (TSH) was assessed. Follicular TC cell lines presented high levels of integrins alpha2, alpha3, alpha5, beta1, beta3 and low levels of alpha1, whereas papillary lines expressed a heterogenous pattern of IRM, dominated by alpha5 and beta1. ATC mainly displayed integrins alpha2, alpha3, alpha5, alpha6, beta1 and low levels of alpha1, alpha4 and alphaV. Integrin heterodimers correlated with monomer expression. Evaluation of TCS largely confirmed these results with few exceptions, namely alpha4, alpha6, and beta3. The ability of TC cell lines to adhere to purified ECM proteins correlated with IRM expression. TSH induced TC cell adhesion in a dose-dependent fashion, despite an unchanged array of IRM expression or level of a particular IRM. Thyroid carcinoma cell lines of different histogenetic background display profoundly different patterns of IRM expression that appear to correlate with tumor aggressiveness. In vitro adhesion to ECM proteins and IRM expression concur. Finally, TSH-stimulated adhesion of

  18. Ectopic over-expression of oncogene Pim-2 induce malignant transformation of nontumorous human liver cell line L02.

    PubMed

    Ren, Ke; Duan, Wentao; Shi, Yujun; Li, Bo; Liu, Zuojin; Gong, Jiangping

    2010-07-01

    In order to prove that ectopic over-expression of Pim-2 could induce malignant transformation of human liver cell line L02, three groups of cells were set up including human liver cell line L02 (L02), L02 cells transfected with Pim-2 gene (L02/Pim-2) and L02 cells transfected with empty-vector (L02/Vector). Pim-2 expression levels were detected. The morphology, proliferation level, apoptosis rate and migration ability of the cells were detected respectively. Then the cells were subcutaneously inoculated into athymic mice and the microstructures of the neoplasm were observed. Compared with the controls, Pim-2 expression levels were significantly higher in L02/Pim-2 cells (P<0.05), and their morphology had obvious malignant changes. They also showed a significantly increased proliferation rate (P<0.05) and migration capacity (P<0.05), as well as a significantly decreased apoptosis rate (P<0.05). Only the athymic mice inoculated with L02/Pim-2 cells could generate neoplasm, and the morphology of the neoplasm coincided with that of the hepatoma. The results manifest that ectopic Pim-2 gene could be stably expressed in L02/Pim-2 cells. Both the morphological and biological changes of L02/Pim-2 cells demonstrate the trend of malignant transformation. L02/Pim-2 cells could generate hepatoma in athymic mice. In conclusion, Pim-2 could induce malignant transformation of human liver cell line L02.

  19. Zidovudine, abacavir and lamivudine increase the radiosensitivity of human esophageal squamous cancer cell lines.

    PubMed

    Chen, Xuan; Wang, Cong; Guan, Shanghui; Liu, Yuan; Han, Lihui; Cheng, Yufeng

    2016-07-01

    Telomerase is a type of reverse transcriptase that is overexpressed in almost all human tumor cells, but not in normal tissues, which provides an opportunity for radiosensitization targeting telomerase. Zidovudine, abacavir and lamivudine are reverse transcriptase inhibitors that have been applied in clinical practice for several years. We sought to explore the radiosensitization effect of these three drugs on human esophageal cancer cell lines. Eca109 and Eca9706 cells were treated with zidovudine, abacavir and lamivudine for 48 h before irradiation was administered. Samples were collected 1 h after irradiation. Clonal efficiency assay was used to evaluate the effect of the combination of these drugs with radiation doses of 2, 4, 6 and 8 Gy. DNA damage was measured by comet assay. Telomerase activity (TA) and relative telomere length (TL) were detected and evaluated by real-time PCR. Apoptosis rates were assessed by flow cytometric analysis. The results showed that all the drugs tested sensitized the esophageal squamous cell carcinoma (ESCC) cell lines to radiation through an increase in radiation-induced DNA damage and cell apoptosis, deregulation of TA and decreasing the shortened TL caused by radiation. Each of the drugs investigated (zidovudine, abacavir and lamivudine) could be used for sensitizing human esophageal cancer cell lines to radiation. Consequently, the present study supports the potential of these three drugs as therapeutic agents for the radiosensitization of esophageal squamous cell cancer.

  20. Gastrointestinal hormone mRNA expression in human colonic adenocarcinomas, hepatic metastases and cell lines

    PubMed Central

    Monges, G; Biagini, P; Cantaloube, J F; De Micco, P; Parriaux, D; Seitz, J F; Delpero, J R; Hassoun, J

    1996-01-01

    Aims—(1) To investigate the expression of the four main hormones of the digestive tract by performing reverse transcription polymerase chain reaction (RT-PCR) on a series of samples, comprising tumoral and healthy colonic tissues, hepatic metastases and colonic cell line samples; and (2) to study the patterns of labelling obtained with serological and morphological markers. Methods—After extraction and reverse transcription, gastrin, somatostatin, cholecystokinin (CCK) and transforming growth factor α (TGFα) mRNAs were detected by PCR and nested PCR using specific primers. The corresponding proteins were detected by immunohistochemistry. Results—The cell lines expressed all four mRNAs. Gastrin mRNA was present in most tumoral and metastatic samples, while the somatostatin transcript was detected in all samples and was frequently overexpressed in the normal colon. TGFα mRNA was expressed systematically in tumours of the right and transverse colon, but not in those located in the left colon; the expression of CCK mRNA was systematically absent in the left colon. Conclusions—The data presented here shed some light on the transcriptional events involved in the production of the various hormones present in the gastrointestinal tract, in both healthy and tumoral tissues. The various mRNAs expressed in cell lines are therefore not systematically expressed in the human pathology. Images PMID:16696065

  1. Differential expression and cytoplasm/membrane distribution of endoglin (CD105) in human tumour cell lines: Implications in the modulation of cell proliferation.

    PubMed

    Postiglione, L; Di Domenico, G; Caraglia, M; Marra, M; Giuberti, G; Del Vecchio, L; Montagnani, S; Macri, M; Bruno, E M; Abbruzzese, A; Rossi, G

    2005-05-01

    Endoglin (CD105, an accessory component of the TGF-beta receptor complex) expression and distribution on different human tumour cells and its role in cellular proliferation were evaluated. We examined: 1) sixteen human carcinoma cell lines, 2) eight human sarcoma cell lines, 3) five miscellaneous tumour cell lines. HECV (endothelial cells) were employed as a positive control for endoglin expression. Normal Human Dermal Fibroblasts (NHDF) and 293 cells (epithelial kidney cells) were used as normal controls for connective and epithelial tissues, respectively. The results showed that CD105 was poorly expressed in the majority of human carcinoma cells (10/16), whereas it was highly expressed in most human sarcoma cells (7/8), and differently expressed by miscellaneous tumour cell lines. These data reflect endoglin expression by the normal counterparts of tumour cell lines, i.e. NHDF and 293 cells. However, CD105 levels in sarcoma cell lines, even though consistently lower than in NHDF, were significantly higher than those observed in carcinoma cells. Interestingly, CD105 presented a strong expression in the cytoplasm of MDA-MB-453 (breast carcinoma), NPA (papillary thyroid carcinoma), COLO-853 (melanoma) and SaOS-2 (osteosarcoma), but was weakly expressed on their cell membrane. This differential expression in the cytoplasm and on the membrane of some tumour cells, suggests a complex mechanism of translocation for this protein. The analysis of clonal growth in soft agar of some cell lines, characterized by high CD105 expression, showed an increased colony formation potential that was antagonized by the addition of anti-CD105 blocking mAb. The results indicated that endoglin is differentially expressed in human carcinoma and sarcoma cells and its overexpression modulates the proliferative rate of human solid tumour cells. Moreover, these data suggest that CD105 is involved in the regulation of TGF-beta effects in human solid malignancies, and therefore it could play an

  2. Drosophila enhancer-Gal4 lines show ectopic expression during development

    PubMed Central

    Arnés, Mercedes; Ferrús, Alberto

    2017-01-01

    In Drosophila melanogaster the most widely used technique to drive gene expression is the binary UAS/Gal4 system. We show here that a set of nervous system specific enhancers (elav, D42/Toll-6, OK6/RapGAP1) display ectopic activity in epithelial tissues during development, which is seldom considered in experimental studies. This ectopic activity is variable, unstable and influenced by the primary sequence of the enhancer and the insertion site in the chromosome. In addition, the ectopic activity is independent of the protein expressed, Gal4, as it is reproduced also with the expression of Gal80. Another enhancer, LN2 from the sex lethal (Sxl) gene, shows sex-dependent features in its ectopic expression. Feminization of LN2 expressing males does not alter the male specific pattern indicating that the sexual dimorphism of LN2 expression is an intrinsic feature of this enhancer. Other X chromosome enhancers corresponding to genes not related to sex determination do not show sexual dimorphism in their ectopic expressions. Although variable and unstable, the ectopic activation of enhancer-Gal4 lines seems to be regulated in terms of tissue and intensity. To characterize the full domain of expression of enhancer-Gal4 constructs is relevant for the design of transgenic animal models and biotechnology tools, as well as for the correct interpretation of developmental and behavioural studies in which Gal4 lines are used. PMID:28405401

  3. Generation and characterization of transgenic plum lines expressing gafp-1 with the bul409 promoter

    USDA-ARS?s Scientific Manuscript database

    The Gastrodia anti fungal protein (GAFP-1) is a mannose-binding lectin that can confer increased disease resistance in transgenic tobacco and plum. In all previously-generated transgenic lines, the gene was under the control of the 35SCaMV promoter. In this study, transgenic plum lines were create...

  4. Effect of ABCG2/BCRP Expression on Efflux and Uptake of Gefitinib in NSCLC Cell Lines

    PubMed Central

    Galetti, Maricla; Petronini, Pier Giorgio; Fumarola, Claudia; Cretella, Daniele; La Monica, Silvia; Bonelli, Mara; Cavazzoni, Andrea; Saccani, Francesca; Caffarra, Cristina; Andreoli, Roberta; Mutti, Antonio; Tiseo, Marcello; Ardizzoni, Andrea; Alfieri, Roberta R.

    2015-01-01

    Background BCRP/ABCG2 emerged as an important multidrug resistance protein, because it confers resistance to several classes of cancer chemotherapeutic agents and to a number of novel molecularly-targeted therapeutics such as tyrosine kinase inhibitors. Gefitinib is an orally active, selective EGFR tyrosine kinase inhibitor used in the treatment of patients with advanced non small cell lung cancer (NSCLC) carrying activating EGFR mutations. Membrane transporters may affect the distribution and accumulation of gefitinib in tumour cells; in particular a reduced intracellular level of the drug may result from poor uptake, enhanced efflux or increased metabolism. Aim The present study, performed in a panel of NSCLC cell lines expressing different ABCG2 plasma membrane levels, was designed to investigate the effect of the efflux transporter ABCG2 on intracellular gefitinib accumulation, by dissecting the contribution of uptake and efflux processes. Methods and Results Our findings indicate that gefitinib, in lung cancer cells, inhibits ABCG2 activity, as previously reported. In addition, we suggest that ABCG2 silencing or overexpression affects intracellular gefitinib content by modulating the uptake rather than the efflux. Similarly, overexpression of ABCG2 affected the expression of a number of drug transporters, altering the functional activities of nutrient and drug transport systems, in particular inhibiting MPP, glucose and glutamine uptake. Conclusions Therefore, we conclude that gefitinib is an inhibitor but not a substrate for ABCG2 and that ABCG2 overexpression may modulate the expression and activity of other transporters involved in the uptake of different substrates into the cells. PMID:26536031

  5. Gamma knife irradiation increases cerebral endothelial expression of intercellular adhesion molecule 1 and E-selectin.

    PubMed

    Sharp, Christopher D; Jawahar, Ajay; Warren, April C; Elrod, John W; Nanda, Anil; Alexander, J Steven

    2003-07-01

    Alterations in multiple functions of the microvasculature occur in response to gamma irradiation and are thought to contribute to radiation-induced end organ damage by inducing inflammatory responses, particularly leukocyte infiltration into the affected area. Endothelial cell adhesion molecules (ECAMs) mediate leukocyte adhesion and migration. Here, we validate a method to study the effect of Leksell gamma knife stereotactic radiosurgery on the expression of ECAMs on human cerebral endothelium at 0, 24, 48, and 72 hours after irradiation. A human brain endothelial cell line (IHEC) was cultured on 12-mm coverslips and subjected to 50 Gy of collimated gamma irradiation with the Leksell gamma knife (Elekta Instruments, Inc., Atlanta, GA). Lactate dehydrogenase release was measured at 24, 48, and 72 hours after irradiation and caspase-3 at 24, 48, 72, 96, and 120 hours. ECAM expression was measured at postirradiation intervals of 0, 24, 48, and 72 hours by cell enzyme-linked immunoabsorbent assay. We used a cell irradiator composed of two chambers. The upper chamber holds the coverslips firmly in place while they are immersed in media. The lower chamber is connected to a peristaltic pump, which pumps water into the chamber and maintains the media in the upper chamber at 37 degrees C through convection. None of the ECAMs tested was significantly elevated compared with the control basally. Twenty-four hours after irradiation, intercellular adhesion molecule 1 was significantly elevated on brain endothelial cells but there was no significant elevation of E-selectin. Vascular cell adhesion molecule 1 was increased slightly but not significantly and decreased at 48 hours. At 72 hours, E-selectin expression was significantly increased; intercellular adhesion molecule 1 and vascular cell adhesion molecule 1 were not altered relative to sham controls. Increased ECAM expression and lactate dehydrogenase release support the idea that the cerebral microvasculature undergoes an

  6. Hypothalamic and amygdalar cell lines differ markedly in mitochondrial rather than nuclear encoded gene expression

    PubMed Central

    2013-01-01

    Background Corticotropin-releasing hormone (CRH) plays an important role in regulating the mammalian stress response. Two of the most extensively studied neuronal populations that express CRH are in the hypothalamus and amygdala. Both regions are involved in the stress response, but the amygdala is also involved in mediating response to fear and anxiety. Given that both hypothalamus and amygdala have overlapping functions, but their CRH-expressing neurons may respond differently to a given perturbation, we sought to identify differentially expressed genes between two neuronal cell types, amygdalar AR-5 and hypothalamic IVB cells. Thus, we performed a microarray analysis. Our hypothesis was that we would identify differentially expressed transcription factors, coregulators and chromatin-modifying enzymes. Results A total of 31,042 genes were analyzed, 10,572 of which were consistently expressed in both cell lines at a 95% confidence level. Of the 10,572 genes, 2,320 genes in AR-5 were expressed at ≥ 2-fold relative to IVBs, 1,104 genes were expressed at ≥2-fold in IVB relative to AR-5 and 7,148 genes were expressed at similar levels between the two cell lines. The greatest difference was in six mitochondrial DNA-encoded genes, which were highly abundant in AR-5 relative to IVB cells. The relative abundance of these genes ranged from 413 to 885-fold according to the microarray results. Differential expression of these genes was verified by RTqPCR. The differentially expressed mitochondrial genes were cytochrome b (MT-CYB), cytochrome c oxidase subunit 1 and 2 (MT-CO1 and MT-CO2) and NADH-ubiquinone oxidoreductase chain 1, 2, and 3 (MT-ND1, MT-ND2, MT-ND3). Conclusion As expected, the array revealed differential expression of transcription factors and coregulators; however the greatest difference between the two cell lines was in genes encoded by the mitochondrial genome. These genes were abundant in AR-5 relative to IVBs. At present, the reason for the marked

  7. Frequent Attenuation of the WWOX Tumor Suppressor in Osteosarcoma is Associated with Increased Tumorigenicity and Aberrant RUNX2 Expression

    PubMed Central

    Kurek, Kyle; Del Mare, Sara; Salah, Zaidoun; Abdeen, Suhaib; Sadiq, Hussain; Lee, Sukhee; Gaudio, Eugenio; Zanesi, Nicola; Jones, Kevin B.; DeYoung, Barry; Amir, Gail; Gebhardt, Mark; Warman, Matthew; Stein, Gary S.; Stein, Janet L.; Lian, Jane B.; Aqeilan, Rami I.

    2011-01-01

    The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma (OS), an aggressive bone tumor with poor prognosis that often metastasizes to lung. On the basis of these observations, we examined the status of WWOX in human OS specimens and cell lines. In human OS clinical samples, WWOX expression was absent or reduced in 58% of tumors examined (P< 0.0001). Compared to the primary tumors, WWOX levels frequently increased in tumors resected following chemotherapy. In contrast, tumor metastases to lung often exhibited reduced WWOX levels, relative to the primary tumor. In human OS cell lines having reduced WWOX expression, ectopic expression of WWOX inhibited proliferation and attenuated invasion in vitro, and suppressed tumorgenicity in nude mice. Expression of WWOX was associated with reduced RUNX2 expression in OS cell lines, whereas Runx2 levels were elevated in femurs of Wwox-deficient mice. Furthermore, WWOX reconstitution in HOS cells was associated with downregulation of RUNX2 levels and RUNX2 target genes, consistent with the ability of WWOX to suppress RUNX2 transactivation activity. In clinical samples, RUNX2 was expressed in the majority of primary tumors and undetectable in most tumors resected following chemotherapy, whereas most metastases were RUNX2 positive. Our results deepen the evidence of a tumor suppressor role for WWOX in OS, furthering its prognostic and therapeutic significance in this disease. PMID:20530675

  8. Frequent attenuation of the WWOX tumor suppressor in osteosarcoma is associated with increased tumorigenicity and aberrant RUNX2 expression.

    PubMed

    Kurek, Kyle C; Del Mare, Sara; Salah, Zaidoun; Abdeen, Suhaib; Sadiq, Hussain; Lee, Suk-Hee; Gaudio, Eugenio; Zanesi, Nicola; Jones, Kevin B; DeYoung, Barry; Amir, Gail; Gebhardt, Mark; Warman, Matthew; Stein, Gary S; Stein, Janet L; Lian, Jane B; Aqeilan, Rami I

    2010-07-01

    The WW domain-containing oxidoreductase (WWOX) is a tumor suppressor that is deleted or attenuated in most human tumors. Wwox-deficient mice develop osteosarcoma (OS), an aggressive bone tumor with poor prognosis that often metastasizes to lung. On the basis of these observations, we examined the status of WWOX in human OS specimens and cell lines. In human OS clinical samples, WWOX expression was absent or reduced in 58% of tumors examined (P < 0.0001). Compared with the primary tumors, WWOX levels frequently increased in tumors resected following chemotherapy. In contrast, tumor metastases to lung often exhibited reduced WWOX levels relative to the primary tumor. In human OS cell lines having reduced WWOX expression, ectopic expression of WWOX inhibited proliferation and attenuated invasion in vitro, and suppressed tumorigenicity in nude mice. Expression of WWOX was associated with reduced RUNX2 expression in OS cell lines, whereas RUNX2 levels were elevated in femurs of Wwox-deficient mice. Furthermore, WWOX reconstitution in HOS cells was associated with downregulation of RUNX2 levels and RUNX2 target genes, consistent with the ability of WWOX to suppress RUNX2 transactivation activity. In clinical samples, RUNX2 was expressed in the majority of primary tumors and undetectable in most tumors resected following chemotherapy, whereas most metastases were RUNX2 positive. Our results deepen the evidence of a tumor suppressor role for WWOX in OS, furthering its prognostic and therapeutic significance in this disease.

  9. Using the Tg(nrd:egfp)/albino Zebrafish Line to Characterize In Vivo Expression of neurod

    PubMed Central

    Thomas, Jennifer L.; Ochocinska, Margaret J.; Hitchcock, Peter F.; Thummel, Ryan

    2012-01-01

    In this study, we used a newly-created transgenic zebrafish, Tg(nrd:egfp)/albino, to further characterize the expression of neurod in the developing and adult retina and to determine neurod expression during adult photoreceptor regeneration. We also provide observations regarding the expression of neurod in a variety of other tissues. In this line, EGFP is found in cells of the developing and adult retina, pineal gland, cerebellum, olfactory bulbs, midbrain, hindbrain, neural tube, lateral line, inner ear, pancreas, gut, and fin. Using immunohistochemistry and in situ hybridization, we compare the expression of the nrd:egfp transgene to that of endogenous neurod and to known retinal cell types. Consistent with previous data based on in situ hybridizations, we show that during retinal development, the nrd:egfp transgene is not expressed in proliferating retinal neuroepithelium, and is expressed in a subset of retinal neurons. In contrast to previous studies, nrd:egfp is gradually re-expressed in all rod photoreceptors. During photoreceptor regeneration in adult zebrafish, in situ hybridization reveals that neurod is not expressed in Müller glial-derived neuronal progenitors, but is expressed in photoreceptor progenitors as they migrate to the outer nuclear layer and differentiate into new rod photoreceptors. During photoreceptor regeneration, expression of the nrd:egfp matches that of neurod. We conclude that Tg(nrd:egfp)/albino is a good representation of endogenous neurod expression, is a useful tool to visualize neurod expression in a variety of tissues and will aid investigating the fundamental processes that govern photoreceptor regeneration in adults. PMID:22235264

  10. Activation of the Farnesoid X-receptor in breast cancer cell lines results in cytotoxicity but not increased migration potential.

    PubMed

    Alasmael, Noura; Mohan, Rati; Meira, Lisiane B; Swales, Karen E; Plant, Nick J

    2016-01-28

    Breast cancer is the commonest form of cancer in women, but successful treatment is confounded by the heterogeneous nature of breast tumours: Effective treatments exist for hormone-sensitive tumours, but triple-negative breast cancer results in poor survival. An area of increasing interest is metabolic reprogramming, whereby drug-induced alterations in the metabolic landscape of a tumour slow tumour growth and/or increase sensitivity to existing therapeutics. Nuclear receptors are transcription factors central to the expression of metabolic and transport proteins, and thus represent potential targets for metabolic reprogramming. We show that activation of the nuclear receptor FXR, either by its endogenous ligand CDCA or the synthetic GW4064, leads to cell death in four breast cancer cell lines with distinct phenotypes: MCF-10A (normal), MCF-7 (receptor positive), MDA-MB-231 and MDA-MB-468 (triple negative). Furthermore, we show that the mechanism of cell death is predominantly through the intrinsic apoptotic pathway. Finally, we demonstrate that FXR agonists do not stimulate migration in breast cancer cell lines, an important potential adverse effect. Together, our data support the continued examination of FXR agonists as a novel class of therapeutics for the treatment of breast cancer.

  11. [Cloning of flavone synthase (FNSII) gene and expression in three cell lines of Saussurea medusa].

    PubMed

    Wang, Bingjie; Li, Houhua; Wang, Yajie; Gaol, Yan; Fu, Wany; Weil, Xincui

    2015-12-01

    Saussurea medusa is a rare traditional Chinese medicinal herb, of which luteolin is the niain active medicinal compound for cancer prevention and treatment. A full-length FNSII gene, namely SmFNSII (GenBank Accession No. KF170286), was obtained from green cell line of Saussurea medusa by RT-PCR and RACE-PCR. Sequence analysis indicated that SmFNSII is 1 710 bp in full length, containing a 34 bp 5'-untranslated region (5'-UTR), a 125 bp 3'-UTR, and a 1 551 bp open reading frame (ORF) encoding 516 amino acid residues. Amino acid sequence analysis indicated that SmFNSII belonged to subfamily CYP93B of plant cytochrome P450. Sequence alignment and phylogenetic analysis revealed that amino acid sequences of SmFNSII shared 87% homology with the protein in Hieracium pilosella. Quantitative real-time PCR analysis indicated that SmFNSII expression is the highest in red cell line and the lowest in white cell line, corresponding to quantitative analysis of luteolin concentration. pET-SmFNSII, a prokaryotic expression recombinant plasmid, was constructed and transferred into Escherichia coli, and the expressed protein band was the same size with predicted protein. Saussurea medusa cultivars with high anti-inflammatory, anti-cancer activities and health care function would be cultivated through filtering cell lines and plants with high expression level of FNSII gene and luteolin accumulation.

  12. MYMIV-AC2, a geminiviral RNAi suppressor protein, has potential to increase the transgene expression.

    PubMed

    Rahman, Jamilur; Karjee, Sumona; Mukherjee, Sunil Kumar

    2012-06-01

    Gene silencing is one of the limiting factors for transgene expression in plants. But the plant viruses have learnt to suppress gene silencing by encoding the protein(s), called RNA silencing suppressor(s) (RSS). Hence, these proteins could be used to overcome the limitation for transgene expression. The RNAi suppressors, namely HC-Pro and P19, have been shown to enhance the transgene expression but other RSS proteins have not been screened for similar role. Moreover, none of RSSs from the DNA viruses are known for enhancing the expression of transgenes. The Mungbean Yellow Mosaic India Virus (MYMIV) belonging to the genus Begomovirus within the family of Geminiviridae encodes an RSS called the AC2 protein. Here, we used AC2 to elevate the expression of the transgenes. Upon introduction of MYMIV-AC2 in the silenced GFP transgenic tobacco lines, by either genetic hybridisation or transgenesis, the GFP expression was enhanced several fold in F1 and T0 lines. The GFP-siRNA levels were much reduced in F1 and T0 lines compared with those of the initial parental silenced lines. The enhanced GFP expression was also observed at the cellular level. This approach was also successful in enhancing the expression of another transgene, namely topoisomeraseII.

  13. Human hedgehog interacting protein expression and promoter methylation in medulloblastoma cell lines and primary tumor samples

    PubMed Central

    Shahi, Mehdi H.; Afzal, Mohammad; Sinha, Subrata; Eberhart, Charles G.; Rey, Juan A.; Fan, Xing

    2015-01-01

    Medulloblastoma is the most common pediatric brain tumor and its development is affected by genetic and epigenetic factors. In this study we found there is low or no expression of the hedgehog interacting protein (HHIP), a negative regulator of the sonic hedgehog pathway, in most medulloblastoma cell lines and primary samples explored. We proceeded to promoter methylation assays of this gene by MCA-Meth, and found that HHIP was hypermethylated in all medulloblastoma cell lines, but only in 2 out of 14 (14%) primary tumor samples. Methylation correlated with low or unexpressed HHIP in cell lines but not in primary tumor samples. These results suggest the possibility of epigenetic regulation of HHIP in medulloblastoma, similarly to gastric, hepatic and pancreatic cancer. However, HHIP seems to be not only under regulation of promoter methylation, but under other factors involved in the control of its low levels of expression in medulloblastoma. PMID:20853133

  14. Metallothionein-3 Increases Triple-Negative Breast Cancer Cell Invasiveness via Induction of Metalloproteinase Expression

    PubMed Central

    Suchanski, Jaroslaw; Olbromski, Mateusz; Gomulkiewicz, Agnieszka; Owczarek, Tomasz; Kruczak, Anna; Ambicka, Aleksandra; Rys, Janusz; Ugorski, Maciej; Podhorska-Okolow, Marzena; Dziegiel, Piotr

    2015-01-01

    It has been recently found that metallothionein-3 (MT3) enhances the invasiveness and tumorigenesis of prostate cancer cells. This finding is in contrast to those of earlier studies, which indicated that overexpression of MT3 in breast cancer and prostate cancer cell lines inhibits their growth in vitro. Therefore, to clarify the role of MT3 in breast cancer progression, we analyzed the effect of MT3-overexpression on proliferation, invasiveness, migration, and tumorigenesis of breast cancer MDA-MB-231/BO2 cells. It was found that MDA-MB-231/BO2 cells overexpressing MT3 were characterized by increased invasiveness in vitro, compared to the control cells. Interestingly, this increased invasiveness correlated with a highly increased concentration of MMP3 in the culture supernatants (p<0.0001). Our data suggest that MT3 may regulate breast cancer cell invasiveness by modulating the expression of MMP3. These experimental results, obtained using triple-negative MDA-MB-231/BO2 cells, were further supported by clinical data. It was found that, in triple-negative breast cancer (TNBC), nuclear MT3 immunoreactivity in cancer cells tended to be associated with patients’ shorter disease-specific survival, suggesting that nuclear MT3 expression may be a potential marker of poor prognosis of triple-negative TNBC cases. PMID:25933064

  15. Retinoic acid enhances lactoferrin-induced IgA responses by increasing betaglycan expression.

    PubMed

    Lee, Jeong-Min; Jang, Young-Saeng; Jin, Bo-Ra; Kim, Sun-Jin; Kim, Hyeon-Jin; Kwon, Bo-Eun; Ko, Hyun-Jeong; Yoon, Sung-Il; Lee, Geun-Shik; Kim, Woan-Sub; Seo, Goo-Young; Kim, Pyeung-Hyeun

    2016-11-01

    Lactoferrin (LF) and retinoic acid (RA) are enriched in colostrum, milk, and mucosal tissues. We recently showed that LF-induced IgA class switching through binding to betaglycan (transforming growth factor-beta receptor III, TβRIII) and activation of canonical TGF-β signaling. We investigated the combined effect of LF and RA on the overall IgA response. An increase in IgA production by LF was further augmented by RA. This combination effect was also evident in Ig germ-line α (GLα) transcription and GLα promoter activity, indicating that LF in cooperation with RA increased IgA isotype switching. We subsequently found that RA enhanced TβRIII expression and that this increase contributed to LF-stimulated IgA production. In addition to the IgA response, LF and RA in combination also enhanced the expression of the gut-homing molecules C-C chemokine receptor 9 (CCR9) and α4β7 on B cells. Finally, peroral administration of LF and RA enhanced the frequency of CCR9(+)IgA(+) plasma cells in the lamina propria. Taken together, these results suggest that LF in cooperation with RA can contribute to the establishment of gut IgA responses.

  16. Activation of 5-HT7 receptors increases neuronal platelet-derived growth factor β receptor expression.

    PubMed

    Vasefi, Maryam S; Kruk, Jeff S; Liu, Hui; Heikkila, John J; Beazely, Michael A

    2012-03-09

    Several antipsychotics have a high affinity for 5-HT7 receptors yet despite intense interest in the 5-HT7 receptor as a potential drug target to treat psychosis, the function and signaling properties of 5-HT7 receptors in neurons remain largely uncharacterized. In primary mouse hippocampal and cortical neurons, as well as in the SH-SY5Y cell line, incubation with 5-HT, 5-carboxamidotryptamine (5-CT), or 5-HT7 receptor-selective agonists increases the expression of platelet-derived growth factor (PDGF)β receptors. The increased PDGFβ receptor expression is cyclic AMP-dependent protein kinase (PKA)-dependent, suggesting that 5-HT7 receptors couple to Gα(s) in primary neurons. Interestingly, up-regulated PDGFβ receptors display an increased basal phosphorylation state at the phospholipase Cγ-activating tyrosine 1021. This novel linkage between the 5-HT7 receptor and the PDGF system may be an important GPCR-neurotrophic factor signaling pathway in neurons.

  17. Expression of the Arabidopsis thaliana BBX32 Gene in Soybean Increases Grain Yield

    PubMed Central

    Preuss, Sasha B.; Meister, Robert; Xu, Qingzhang; Urwin, Carl P.; Tripodi, Federico A.; Screen, Steven E.; Anil, Veena S.; Zhu, Shuquan; Morrell, James A.; Liu, Grace; Ratcliffe, Oliver J.; Reuber, T. Lynne; Khanna, Rajnish; Goldman, Barry S.; Bell, Erin; Ziegler, Todd E.; McClerren, Amanda L.; Ruff, Thomas G.; Petracek, Marie E.

    2012-01-01

    Crop yield is a highly complex quantitative trait. Historically, successful breeding for improved grain yield has led to crop plants with improved source capacity, altered plant architecture, and increased resistance to abiotic and biotic stresses. To date, transgenic approaches towards improving crop grain yield have primarily focused on protecting plants from herbicide, insects, or disease. In contrast, we have focused on identifying genes that, when expressed in soybean, improve the intrinsic ability of the plant to yield more. Through the large scale screening of candidate genes in transgenic soybean, we identified an Arabidopsis thaliana B-box domain gene (AtBBX32) that significantly increases soybean grain yield year after year in multiple transgenic events in multi-location field trials. In order to understand the underlying physiological changes that are associated with increased yield in transgenic soybean, we examined phenotypic differences in two AtBBX32-expressing lines and found increases in plant height and node, flower, pod, and seed number. We propose that these phenotypic changes are likely the result of changes in the timing of reproductive development in transgenic soybean that lead to the increased duration of the pod and seed development period. Consistent with the role of BBX32 in A. thaliana in regulating light signaling, we show that the constitutive expression of AtBBX32 in soybean alters the abundance of a subset of gene transcripts in the early morning hours. In particular, AtBBX32 alters transcript levels of the soybean clock genes GmTOC1 and LHY-CCA1-like2 (GmLCL2). We propose that through the expression of AtBBX32 and modulation of the abundance of circadian clock genes during the transition from dark to light, the timing of critical phases of reproductive development are altered. These findings demonstrate a specific role for AtBBX32 in modulating soybean development, and demonstrate the validity of expressing single genes in crops to

  18. Artemin growth factor increases nicotinic cholinergic receptor subunit expression and activity in nociceptive sensory neurons

    PubMed Central

    2014-01-01

    Background Artemin (Artn), a member of the glial cell line-derived growth factor (GDNF) family, supports the development and function of a subpopulation of peptidergic, TRPV1-positive sensory neurons. Artn (enovin, neublastin) is elevated in inflamed tissue and its injection in skin causes transient thermal hyperalgesia. A genome wide expression analysis of trigeminal ganglia of mice that overexpress Artn in the skin (ART-OE mice) showed elevation in nicotinic acetylcholine receptor (nAChR) subunits, suggesting these ion channels contribute to Artn-induced sensitivity. Here we have used gene expression, immunolabeling, patch clamp electrophysiology and behavioral testing assays to investigate the link between Artn, nicotinic subunit expression and thermal hypersensitivity. Results Reverse transcriptase-PCR validation showed increased levels of mRNAs encoding the nAChR subunits α3 (13.3-fold), β3 (4-fold) and β4 (7.7-fold) in trigeminal ganglia and α3 (4-fold) and β4 (2.8-fold) in dorsal root ganglia (DRG) of ART-OE mice. Sensory ganglia of ART-OE mice had increased immunoreactivity for nAChRα3 and exhibited increased overlap in labeling with GFRα3-positive neurons. Patch clamp analysis of back-labeled cutaneous afferents showed that while the majority of nicotine-evoked currents in DRG neurons had biophysical and pharmacological properties of α7-subunit containing nAChRs, the Artn-induced increase in α3 and β4 subunits resulted in functional channels. Behavioral analysis of ART-OE and wildtype mice showed that Artn-induced thermal hyperalgesia can be blocked by mecamylamine or hexamethonium. Complete Freund’s adjuvant (CFA) inflammation of paw skin, which causes an increase in Artn in the skin, also increased the level of nAChR mRNAs in DRG. Finally, the increase in nAChRs transcription was not dependent on the Artn-induced increase in TRPV1 or TRPA1 in ART-OE mice since nAChRs were elevated in ganglia of TRPV1/TRPA1 double knockout mice. Conclusions

  19. Matrigel Basement Membrane Matrix influences expression of microRNAs in cancer cell lines

    SciTech Connect

    Price, Karina J.; Tsykin, Anna; Giles, Keith M.; Sladic, Rosemary T.; Epis, Michael R.; Ganss, Ruth; Goodall, Gregory J.; Leedman, Peter J.

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Matrigel alters cancer cell line miRNA expression relative to culture on plastic. Black-Right-Pointing-Pointer Many identified Matrigel-regulated miRNAs are implicated in cancer. Black-Right-Pointing-Pointer miR-1290, -210, -32 and -29b represent a Matrigel-induced miRNA signature. Black-Right-Pointing-Pointer miR-32 down-regulates Integrin alpha 5 (ITGA5) mRNA. -- Abstract: Matrigel is a medium rich in extracellular matrix (ECM) components used for three-dimensional cell culture and is known to alter cellular phenotypes and gene expression. microRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression and have roles in cancer. While miRNA profiles of numerous cell lines cultured on plastic have been reported, the influence of Matrigel-based culture on cancer cell miRNA expression is largely unknown. This study investigated the influence of Matrigel on the expression of miRNAs that might facilitate ECM-associated cancer cell growth. We performed miRNA profiling by microarray using two colon cancer cell lines (SW480 and SW620), identifying significant differential expression of miRNAs between cells cultured in Matrigel and on plastic. Many of these miRNAs have previously been implicated in cancer-related processes. A common Matrigel-induced miRNA signature comprised of up-regulated miR-1290 and miR-210 and down-regulated miR-29b and miR-32 was identified using RT-qPCR across five epithelial cancer cell lines (SW480, SW620, HT-29, A549 and MDA-MB-231). Experimental modulation of these miRNAs altered expression of their known target mRNAs involved in cell adhesion, proliferation and invasion, in colon cancer cell lines. Furthermore, ITGA5 was identified as a novel putative target of miR-32 that may facilitate cancer cell interactions with the ECM. We propose that culture of cancer cell lines in Matrigel more accurately recapitulates miRNA expression and function in cancer than culture on plastic and thus is a

  20. Diversity of Reporter Expression Patterns in Transgenic Mouse Lines Targeting Corticotropin-Releasing Hormone-Expressing Neurons

    PubMed Central

    Molet, Jenny; Gunn, Benjamin G.; Ressler, Kerry

    2015-01-01

    Transgenic mice, including lines targeting corticotropin-releasing factor (CRF or CRH), have been extensively employed to study stress neurobiology. These powerful tools are poised to revolutionize our understanding of the localization and connectivity of CRH-expressing neurons, and the crucial roles of CRH in normal and pathological conditions. Accurate interpretation of studies using cell type-specific transgenic mice vitally depends on congruence between expression of the endogenous peptide and reporter. If reporter expression does not faithfully reproduce native gene expression, then effects of manipulating unintentionally targeted cells may be misattributed. Here, we studied CRH and reporter expression patterns in 3 adult transgenic mice: Crh-IRES-Cre;Ai14 (tdTomato mouse), Crfp3.0CreGFP, and Crh-GFP BAC. We employed the CRH antiserum generated by Vale after validating its specificity using CRH-null mice. We focused the analyses on stress-salient regions, including hypothalamus, amygdala, bed nucleus of the stria terminalis, and hippocampus. Expression patterns of endogenous CRH were consistent among wild-type and transgenic mice. In tdTomato mice, most CRH-expressing neurons coexpressed the reporter, yet the reporter identified a few non-CRH-expressing pyramidal-like cells in hippocampal CA1 and CA3. In Crfp3.0CreGFP mice, coexpression of CRH and the reporter was found in central amygdala and, less commonly, in other evaluated regions. In Crh-GFP BAC mice, the large majority of neurons expressed either CRH or reporter, with little overlap. These data highlight significant diversity in concordant expression of reporter and endogenous CRH among 3 available transgenic mice. These findings should be instrumental in interpreting important scientific findings emerging from the use of these potent neurobiological tools. PMID:26402844

  1. [Establishment of a stable and regulable 293 cell line expressing mycoplasma hyorhinis protein P37].

    PubMed

    Gong, Man-man; Meng, Lin; Liu, Wen-bin; Zhang, Jian-zhi; Shou, Cheng-chao

    2005-12-18

    To establish a stable cell line, which can express P37 protein of mycoplasma hyorhinis and be regulated by tetracycline, for investigating the effect of p37 on phenotype of cells and its mechanism. Recombinant plasmid PcDNA5/FRT/TO-p37 was constructed and cotransfected with pOG44 into Flp-In-T-REx-293 cells by lipofectamine. Positive clones were screened with Hygromycin and Blasticidin. RT-PCR and Western blot were used to exam the mRNA and protein expression in selected clones. The expression level at different inducing times and concentrations of tetracycline were examined. MTT assay was used to observe the effect of P37 on proliferation of 293 cells. P37 protein, which is 43.5x10(3), was expressed in the selected clone as well as secreted from cells. Tetracycline showed a good regulation on the expression of P37 protein, which was not detectable without tetracycline induction. When induced with 2 mg/L tetracycline for 60 hours, the P37 protein expression reached maximum level. Cell growth was promoted after being transfected with p37. A stable cell line expressing P37 regularly was established, which provides a good cell model for studying p37 function and its molecular mechanism.

  2. Assessment of a systematic expression profiling approach in ENU-induced mouse mutant lines.

    PubMed

    Seltmann, Matthias; Horsch, Marion; Drobyshev, Alexei; Chen, Yali; de Angelis, Martin Hrabé; Beckers, Johannes

    2005-01-01

    Comparative genomewide expression profiling is a powerful tool in the effort to annotate the mouse genome with biological function. The systematic analysis of RNA expression data of mouse lines from the Munich ENU mutagenesis screen might support the understanding of the molecular biology of such mutants and provide new insights into mammalian gene function. In a direct comparison of DNA microarray experiments of individual versus pooled RNA samples of organs from ENU-induced mouse mutants, we provide evidence that individual RNA samples may outperform pools in some aspects. Genes with high biological variability in their expression levels (noisy genes) are identified as false positives in pooled samples. Evidence suggests that highly stringent housing conditions and standardized procedures for the isolation of organs significantly reduce biological variability in gene expression profiling experiments. Data on wild-type individuals demonstrate the positive effect of controlling variables such as social status, food intake before organ sampling, and stress with regard to reproducibility of gene expression patterns. Analyses of several organs from various ENU-induced mutant lines in general show low numbers of differentially expressed genes. We demonstrate the feasibility to detect transcriptionally affected organs employing RNA expression profiling as a tool for molecular phenotyping.

  3. Genetic variation and expression diversity between grain and sweet sorghum lines

    PubMed Central

    2013-01-01

    Background Biological scientists have long sought after understanding how genes and their structural/functional changes contribute to morphological diversity. Though both grain (BT×623) and sweet (Keller) sorghum lines originated from the same species Sorghum bicolor L., they exhibit obvious phenotypic variations. However, the genome re-sequencing data revealed that they exhibited limited functional diversity in their encoding genes in a genome-wide level. The result raises the question how the obvious morphological variations between grain and sweet sorghum occurred in a relatively short evolutionary or domesticated period. Results We implemented an integrative approach by using computational and experimental analyses to provide a detail insight into phenotypic, genetic variation and expression diversity between BT×623 and Keller lines. We have investigated genome-wide expression divergence between BT×623 and Keller under normal and sucrose treatment. Through the data analysis, we detected more than 3,000 differentially expressed genes between these two varieties. Such expression divergence was partially contributed by differential cis-regulatory elements or DNA methylation, which was genetically determined by functionally divergent genes between these two varieties. Both tandem and segmental duplication played important roles in the genome evolution and expression divergence. Conclusion Substantial differences in gene expression patterns between these two varieties have been observed. Such an expression divergence is genetically determined by the divergence in genome level. PMID:23324212

  4. Increasing morphinan alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum.

    PubMed

    Larkin, Philip J; Miller, James A C; Allen, Robert S; Chitty, Julie A; Gerlach, Wayne L; Frick, Susanne; Kutchan, Toni M; Fist, Anthony J

    2007-01-01

    Only plants of the Papaver genus (poppies) are able to synthesize morphinan alkaloids, and cultivation of P. somniferum, opium poppy, remains critical for the production and supply of morphine, codeine and various semi-synthetic analgesics. Opium poppy was transformed with constitutively expressed cDNA of codeinone reductase (PsCor1.1), the penultimate step in morphine synthesis. Most transgenic lines showed significant increases in capsule alkaloid content in replicated glasshouse and field trials over 4 years. The morphinan alkaloid contents on a dry weight basis were between 15% and 30% greater than those in control high-yielding genotypes and control non-transgenic segregants. Transgenic leaves had approximately 10-fold greater levels of Cor transcript compared with non-transgenic controls. Two cycles of crossing of the best transgenic line into an elite high-morphine genotype resulted in significant increases in morphine and total alkaloids relative to the elite recurrent parent. No significant changes in alkaloid profiles or quantities were observed in leaf, roots, pollen and seed.

  5. 'Fluorescent Cell Chip' for immunotoxicity testing: Development of the c-fos expression reporter cell lines

    SciTech Connect

    Trzaska, Dominika; Zembek, Patrycja; Olszewski, Maciej; Adamczewska, Violetta; Ulleras, Erik; Dastych, JarosIaw . E-mail: jdastych@cbm.pan.pl

    2005-09-01

    The Fluorescent Cell Chip for in vitro immunotoxicity testing employs cell lines derived from lymphocytes, mast cells, and monocytes-macrophages transfected with various EGFP cytokine reporter gene constructs. While cytokine expression is a valid endpoint for in vitro immunotoxicity screening, additional marker for the immediate-early response gene expression level could be of interest for further development and refinement of the Fluorescent Cell Chip. We have used BW.5147.3 murine thymoma transfected with c-fos reporter constructs to obtain reporter cell lines expressing ECFP under the control of murine c-fos promoter. These cells upon serum withdrawal and readdition and incubation with heavy metal compounds showed paralleled induction of c-Fos expression as evidenced by Real-Time PCR and ECFP fluorescence as evidenced by computer-supported fluorescence microscopy. In conclusion, we developed fluorescent reporter cell lines that could be employed in a simple and time-efficient screening assay for possible action of chemicals on c-Fos expression in lymphocytes. The evaluation of usefulness of these cells for the Fluorescent Cell Chip-based detection of immunotoxicity will require additional testing with a larger number of chemicals.

  6. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  7. Caffeine increases the expression of cystatin SN in human submandibular acinar-like HSG cells.

    PubMed

    Dsamou, Micheline; Morzel, Martine; Le Corre, Ludovic; Séverin, Isabelle; Chagnon, Marie-Christine

    2013-10-01

    The study aimed at evaluating in vitro the effect of caffeine on expression of cystatin SN, a potential marker of sensitivity to bitterness in humans. Differentiation of human submandibular gland (HSG) cells was induced by culturing cells on Matrigel. Caffeine cytotoxicity was assessed over 3 days by the Resazurin test. Finally, effects of 5, 50 and 100μM caffeine exposure on cystatin SN expression were explored over 3 days by ELISA. At concentrations relevant to human adult plasma levels (5, 50 and 100μM), caffeine did not affect cell viability whether cells were differentiated or not. Cystatin SN levels were overall higher in differentiated cells and increased with time in both conditions. There was a significant (p<0.001) effect of caffeine on cystatin SN expression specifically in differentiated cells. The HSG cell line proved to be a relevant tool to study in vitro the effect of caffeine at concentrations consistent with dietary intake in human subjects. The results suggest that salivary cystatin SN abundance may depend on caffeine intake, with possible consequences on taste sensitivity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. [Effect of zedoary oil for cat D and cat K expression in A549 cell line].

    PubMed

    Yang, Changfu; Huang, Chunfang; Sun, Xiaofang; Niu, Jianzhao; Wang, Jifeng

    2012-03-01

    To explore the Zedoary oil on A549 cell line of collagen deposition cat D and cat K expression. The A549 cell line were treat by Zedoary oil on four different concentrations (0, 40, 80, 120 mg x L(-1)) in different time. Dynamic changes of collagen in A549 cell using Picric-sirius red method. Cat D and Cat K expression of level were detected by using western blot. The collagen content showed that Zedoary oil had an inhibitory effect on the deposition of A549 cells. The results of western blot showed that the expression of cat D and cat K were up-regulated significangly in A549 cells of Zedoary oil groups compared with that in controls. A549 cell of collagen deposition were reduced by Zedoary oil. The effects may due to the up-regulation of cat D and cat K.

  9. Differential Expression of OCT4 Pseudogenes in Pluripotent and Tumor Cell Lines

    PubMed Central

    Poursani, Ensieh M.; Mohammad Soltani, Bahram; Mowla, Seyed Javad

    2016-01-01

    Objective The human OCT4 gene, the most important pluripotency marker, can generate at least three different transcripts (OCT4A, OCT4B, and OCT4B1) by alternative splicing. OCT4A is the main isoform responsible for the stemness property of embryonic stem (ES) cells. There also exist eight processed OCT4 pseudogenes in the human genome with high homology to the OCT4A, some of which are transcribed in various cancers. Recent conflicting reports on OCT4 expression in tumor cells and tissues emphasize the need to discriminate the expression of OCT4A from other variants as well as OCT4 pseudogenes. Materials and Methods In this experimental study, DNA sequencing confirmed the authenticity of transcripts of OCT4 pseudogenes and their expression patterns were investigated in a panel of different human cell lines by reverse transcription-polymerase chain reaction (RT-PCR). Results Differential expression of OCT4 pseudogenes in various human cancer and pluripotent cell lines was observed. Moreover, the expression pattern of OCT4-pseudogene 3 (OCT4-pg3) followed that of OCT4A during neural differentiation of the pluripotent cell line of NTERA-2 (NT2). Although OCT4-pg3 was highly expressed in undifferentiated NT2 cells, its expression was rapidly down-regulated upon induction of neural differentiation. Analysis of protein expression of OCT4A, OCT4-pg1, OCT4-pg3, and OCT4-pg4 by Western blotting indicated that OCT4 pseudogenes cannot produce stable proteins. Consistent with a newly proposed competitive role of pseudogene microRNA docking sites, we detected miR-145 binding sites on all transcripts of OCT4 and OCT4 pseudogenes. Conclusion Our study suggests a potential coding-independent function for OCT4 pseudogenes during differentiation or tumorigenesis. PMID:27054116

  10. Naringenin enhances NK cell lysis activity by increasing the expression of NKG2D ligands on Burkitt's lymphoma cells.

    PubMed

    Kim, Jeong Hwa; Lee, Jae Kwon

    2015-11-01

    Natural killer (NK) cells are capable of identifying and killing tumor cells as well as virus infected cells without pre-sensitization. NK cells express activating and inhibitory receptors, and can distinguish between normal and tumor cells. The present study was designed to demonstrate the importance of the expression level of NKG2D ligands on the Burkitt's lymphoma cell line, Raji, in enhancing NK cell cytolytic activity. Various flavonoids were used as stimulants to enhance the expression of NKG2D ligands. NK cell lysis activity against Raji was not changed by pre-treatment of Raji with luteolin, kaempferol, taxifolin and hesperetin. However, treatment of Raji with naringenin showed increased sensitivity to NK cell lysis than untreated control cells. The activity of naringenin was due to enhanced NKG2D ligand expression. These results provide evidence that narigenin's antitumor activity may be due to targeting of NKG2D ligand expression and suggests a possible immunotherapeutic role for cancer treatment.

  11. Neuropeptide TLQP-21, a VGF internal fragment, modulates hormonal gene expression and secretion in GH3 cell line.

    PubMed

    Petrocchi Passeri, Pamela; Biondini, Laura; Mongiardi, Maria Patrizia; Mordini, Nadia; Quaresima, Stefania; Frank, Claudio; Baratta, Mario; Bartolomucci, Alessandro; Levi, Andrea; Severini, Cinzia; Possenti, Roberta

    2013-01-01

    In the present study we demonstrated that TLQP-21, a biologically active peptide derived from the processing of the larger pro-VGF granin, plays a role in mammotrophic cell differentiation. We used an established in vitro model, the GH3 cell line, which upon treatment with epidermal growth factor develops a mammotrophic phenotype consisting of induction of prolactin expression and secretion, and inhibition of growth hormone. Here we determined for the first time that during mammotrophic differentiation, epidermal growth factor also induces Vgf gene expression and increases VGF protein precursor processing and peptide secretion. After this initial observation we set out to determine the specific role of the VGF encoded TLQP-21 peptide on this model. TLQP-21 induced a trophic effect on GH3 cells and increased prolactin expression and its own gene transcription without affecting growth hormone expression. TLQP-21 was also able to induce a significant rise of cytoplasmic calcium, as measured by Fura2AM, due to the release from a thapsigargin-sensitive store. TLQP-21-dependent rise in cytoplasmic calcium was, at least in part, dependent on the activation of phospholipase followed by phosphorylation of PKC and ERK. Taken together, the present results demonstrate that TLQP-21 contributes to differentiation of the GH3 cell line toward a mammotrophic phenotype and suggest that it may exert a neuroendocrine role in vivo on lactotroph cells in the pituitary gland.

  12. Coordinated steroid hormone-dependent and independent expression of multiple kallikreins in breast cancer cell lines.

    PubMed

    Paliouras, Miltiadis; Diamandis, Eleftherios P

    2007-03-01

    The regulation of gene expression by steroid hormones plays an important role in the normal development and function of many organs, as well in the pathogenesis of endocrine-related cancers. Previous experiments have shown that many kallikrein genes are under steroid hormone regulation in breast cancer cell lines. We here examine the coordinated expression of multiple kallikrein genes in several breast cancer cell lines after steroid hormone stimulation. Breast cancer cell lines were treated with various steroid hormones and kallikrein (KLK/hK) expression of hK3 (prostate-specific antigen, PSA), hK5, hK6, hK7, hK8, hK10, hK11, hK13, and hK14 was analyzed at the RNA level via RT-PCR and at the protein level by immunofluorometric ELISA assays. We identified several distinct hK hormone-dependent and hormone-independent expression patterns. Hormone-specific modulation of expression was seen for several kallikreins in BT-474, MCF-7, and T-47D cell lines. hK6 was specifically up-regulated upon estradiol treatment in all three cell lines whereas PSA expression was induced by dihydrotestosterone (DHT) and norgestrel stimulation in BT-474 and T-47D. hK10, hK11, hK13, and hK14 were specifically up-regulated by DHT in T-47D and by estradiol in BT-474 cells. Bioinformatic analysis of upstream proximal promoter sequences for these hKs did not identify any recognizable hormone-response elements (HREs), suggesting that the coordinated activation of these four hKs represents a unique expression "cassette", utilizing a common hormone-dependent mechanism. We conclude that groups of human hKs are coordinately expressed in a steroid hormone-dependent manner. Our data supports clinical observations linking expression of multiple hKs with breast cancer prognosis.

  13. mRNA expression profiles of primary high-grade central osteosarcoma are preserved in cell lines and xenografts

    PubMed Central

    2011-01-01

    Background Conventional high-grade osteosarcoma is a primary malignant bone tumor, which is most prevalent in adolescence. Survival rates of osteosarcoma patients have not improved significantly in the last 25 years. Aiming to increase this survival rate, a variety of model systems are used to study osteosarcomagenesis and to test new therapeutic agents. Such model systems are typically generated from an osteosarcoma primary tumor, but undergo many changes due to culturing or interactions with a different host species, which may result in differences in gene expression between primary tumor cells, and tumor cells from the model system. We aimed to investigate whether gene expression profiles of osteosarcoma cell lines and xenografts are still comparable to those of the primary tumor. Methods We performed genome-wide mRNA expression profiling on osteosarcoma biopsies (n = 76), cell lines (n = 13), and xenografts (n = 18). Osteosarcoma can be subdivided into several histological subtypes, of which osteoblastic, chondroblastic, and fibroblastic osteosarcoma are the most frequent ones. Using nearest shrunken centroids classification, we generated an expression signature that can predict the histological subtype of osteosarcoma biopsies. Results The expression signature, which consisted of 24 probes encoding for 22 genes, predicted the histological subtype of osteosarcoma biopsies with a misclassification error of 15%. Histological subtypes of the two osteosarcoma model systems, i.e. osteosarcoma cell lines and xenografts, were predicted with similar misclassification error rates (15% and 11%, respectively). Conclusions Based on the preservation of mRNA expression profiles that are characteristic for the histological subtype we propose that these model systems are representative for the primary tumor from which they are derived. PMID:21933437

  14. Glucocorticoid pretreatment increases toxicity due to peroxides in alveolar epithelial-like cell lines.

    PubMed

    Walther, Udo I; Stets, Regine

    2009-02-04

    In previous experiments an increase in zinc-mediated toxicity was found after pretreatment of alveolar epithelial type II-like cells with glucocorticoids. In this work toxicity of two peroxides (tertiary butyl hydroperoxide [tBHP], hydrogene peroxide [HP]) was assessed in L2 and A549 cells compared to dexamethasone (DEX) pretreated cells. Pretreatment of cells with 7.5micromol/l DEX for 72h decreased cellular glutathione content in both cell lines. Furthermore compared to not pretreated cells toxicity of both peroxides was increased in A549 cells, while in L2 cells only toxicity of tBHP was significantly increased by the glucocorticoid pretreatment. HP toxicity only showed a tendency to be increased in L2 cells after DEX pretreatment. The results point to a glucocorticoid-dependent increased oxidative stress of alveolar epithelial type II cells as antagonised by antioxidative enzymes such as catalase and/or preferentially by the glutathione system. This furthermore should be considered for all glucocorticoid applications in vivo as well.

  15. Cloning of intronic sequence within DsRed2 increased the number of cells expressing red fluorescent protein.

    PubMed

    Pisal, Rishikaysh V; Hrebikova, Hana; Chvatalova, Jana; Soukup, Tomas; Stanislav, Filip; Mokry, Jaroslav

    2017-08-24

    Cloning of artificial intronic sequence within the open reading frame (ORF) of DsRed2 gene. Splice prediction software was used to analyze DsRed2 sequence to find an ideal site for cloning artificial intronic sequence. Intron was cloned within DsRed2 using cyclic ligation assembly. Flow cytometry was used to quantify the number of cells expressing red fluorescence. Sequencing data confirmed precise cloning of intron at the desired position using cyclic ligation assembly. Successful expression of red fluorescence after cloning of intron confirmed successful intron recognition and splicing by host cell line. Cloning of intron increased the number of cells expressing red fluorescent protein. Cloning of intronic sequence within DsRed2 has helped to increase the number of cells expressing red fluorescence by approximately four percent.

  16. Conceptus development during blastocyst elongation in lines of pigs selected for increased uterine capacity or ovulation rate

    USDA-ARS?s Scientific Manuscript database

    Lines of pigs selected for increased uterine capacity (UC) have improved conceptus survival while pigs selected for increased ovulation rate (OR) have decreased conceptus survival relative to an unselected control (CO) line. The objective of this study was to evaluate conceptus development during em...

  17. Morphine-Induced Constipation Develops With Increased Aquaporin-3 Expression in the Colon via Increased Serotonin Secretion.

    PubMed

    Kon, Risako; Ikarashi, Nobutomo; Hayakawa, Akio; Haga, Yusuke; Fueki, Aika; Kusunoki, Yoshiki; Tajima, Masataka; Ochiai, Wataru; Machida, Yoshiaki; Sugiyama, Kiyoshi

    2015-06-01

    Aquaporin-3 (AQP3) is a water channel that is predominantly expressed in the colon, where it plays a critical role in the regulation of fecal water content. This study investigated the role of AQP3 in the colon in morphine-induced constipation. AQP3 expression levels in the colon were analyzed after oral morphine administration to rats. The degree of constipation was analyzed after the combined administration of HgCl(2) (AQP3 inhibitor) or fluoxetine (5-HT reuptake transporter [SERT] inhibitor) and morphine. The mechanism by which morphine increased AQP3 expression was examined in HT-29 cells. AQP3 expression levels in rat colon were increased during morphine-induced constipation. The combination of HgCl(2) and morphine improved morphine-induced constipation. Treatment with morphine in HT-29 cells did not change AQP3 expression. However, 5-HT treatment significantly increased the AQP3 expression level and the nuclear translocation of peroxisome proliferator-activated receptor gamma (PPARγ) 1 h after treatment. Pretreatment with fluoxetine significantly suppressed these increases. Fluoxetine pretreatment suppressed the development of morphine-induced constipation and the associated increase in AQP3 expression in the colon. The results suggest that morphine increases the AQP3 expression level in the colon, which promotes water absorption from the luminal side to the vascular side and causes constipation. This study also showed that morphine-induced 5-HT secreted from the colon was taken into cells by SERT and activated PPARγ, which subsequently increased AQP3 expression levels.

  18. Highly Synchronized Expression of Lineage-Specific Genes during In Vitro Hepatic Differentiation of Human Pluripotent Stem Cell Lines

    PubMed Central

    Ghosheh, Nidal; Olsson, Björn; Edsbagge, Josefina; Küppers-Munther, Barbara; Van Giezen, Mariska; Asplund, Annika; Andersson, Tommy B.; Björquist, Petter; Carén, Helena; Simonsson, Stina; Sartipy, Peter; Synnergren, Jane

    2016-01-01

    Human pluripotent stem cells- (hPSCs-) derived hepatocytes have the potential to replace many hepatic models in drug discovery and provide a cell source for regenerative medicine applications. However, the generation of fully functional hPSC-derived hepatocytes is still a challenge. Towards gaining better understanding of the differentiation and maturation process, we employed a standardized protocol to differentiate six hPSC lines into hepatocytes and investigated the synchronicity of the hPSC lines by applying RT-qPCR to assess the expression of lineage-specific genes (OCT4, NANOG, T, SOX17, CXCR4, CER1, HHEX, TBX3, PROX1, HNF6, AFP, HNF4a, KRT18, ALB, AAT, and CYP3A4) which serve as markers for different stages during liver development. The data was evaluated using correlation and clustering analysis, demonstrating that the expression of these markers is highly synchronized and correlated well across all cell lines. The analysis also revealed a distribution of the markers in groups reflecting the developmental stages of hepatocytes. Functional analysis of the differentiated cells further confirmed their hepatic phenotype. Taken together, these results demonstrate, on the molecular level, the highly synchronized differentiation pattern across multiple hPSC lines. Moreover, this study provides additional understanding for future efforts to improve the functionality of hPSC-derived hepatocytes and thereby increase the value of related models. PMID:26949401

  19. Slow inbred lines of Drosophila melanogaster express as much inbreeding depression as fast inbred lines under semi-natural conditions.

    PubMed

    Kristensen, Torsten Nygaard; Knudsen, Morten Ravn; Loeschcke, Volker

    2011-04-01

    Selection may reduce the deleterious consequences of inbreeding. This may be due to purging of recessive deleterious alleles or balancing selection favouring heterozygote offspring. Such selection is expected to be more efficient at slower compared to at faster rates of inbreeding. In this study we tested the impact of inbreeding and the rate of inbreeding on fitness related traits (egg productivity, egg-to-adult viability, developmental time and behaviour) under cold and benign semi-natural thermal conditions using Drosophila melanogaster as a model organism. We used non-inbred control and slow and fast inbred lines (both with an expected inbreeding level of 0.25). The results show that contrary to expectations the slow inbred lines do not maintain higher average fitness than the fast inbred lines. Furthermore, we found that stressful environmental conditions increased the level of inbreeding depression but the impact of inbreeding rate on the level of inbreeding depression was not affected by the environmental conditions. The results do not support the hypothesis that inbreeding depression is less severe with slow compared to fast rates of inbreeding and illustrate that although selection may be more efficient with slower rates of inbreeding this does not necessary lead to less inbreeding depression.

  20. CD24 Expression Is Increased in 5-Fluorouracil-Treated Esophageal Adenocarcinoma Cells

    PubMed Central

    Jiménez, Pilar; Chueca, Eduardo; Arruebo, María; Strunk, Mark; Solanas, Estela; Serrano, Trinidad; García-González, María A.; Lanas, Ángel

    2017-01-01

    The cancer stem cell (CSC) model suggests that there are subsets of cells within a tumor with increased proliferation and self-renewal capacity, which play a key role in therapeutic resistance. The importance of cyclooxygenase-2 (COX-2) in carcinogenesis has been previously established and the use of COX-2 inhibitors as celecoxib has been shown to exert antitumor effects. The present study investigated whether treatment of esophageal adenocarcinoma (EAC) cells with 5-fluorouracil (5-FU) or the growth of tumor spheres increased the proportion of CSCs and also if treatment with celecoxib was able to reduce the putative CSC markers in this tumor. OE19 and OE33 EAC cells surviving 5-FU exposure exhibited an increase in CSC markers CD24 and ABCG2 and also an increased resistance to apoptosis. EAC cell lines had the capacity to form multiple spheres displaying typical CSC functionalities such as self-renewal and increased CD24 levels. In addition, after the induction of differentiation, cancer cells reached levels of CD24 similar to those observed in the parental cells. Treatment with celecoxib alone or in combination with 5-FU also resulted in a reduction of CD24 expression. Moreover, celecoxib inhibited the growth of tumor spheres. These findings showing a reduction in CSC markers induced by celecoxib suggest that the COX-2 inhibitor might be a candidate for combined chemotherapy in the treatment of EAC. However, additional clinical and experimental studies are needed. PMID:28611669

  1. CD24 Expression Is Increased in 5-Fluorouracil-Treated Esophageal Adenocarcinoma Cells.

    PubMed

    Jiménez, Pilar; Chueca, Eduardo; Arruebo, María; Strunk, Mark; Solanas, Estela; Serrano, Trinidad; García-González, María A; Lanas, Ángel

    2017-01-01

    The cancer stem cell (CSC) model suggests that there are subsets of cells within a tumor with increased proliferation and self-renewal capacity, which play a key role in therapeutic resistance. The importance of cyclooxygenase-2 (COX-2) in carcinogenesis has been previously established and the use of COX-2 inhibitors as celecoxib has been shown to exert antitumor effects. The present study investigated whether treatment of esophageal adenocarcinoma (EAC) cells with 5-fluorouracil (5-FU) or the growth of tumor spheres increased the proportion of CSCs and also if treatment with celecoxib was able to reduce the putative CSC markers in this tumor. OE19 and OE33 EAC cells surviving 5-FU exposure exhibited an increase in CSC markers CD24 and ABCG2 and also an increased resistance to apoptosis. EAC cell lines had the capacity to form multiple spheres displaying typical CSC functionalities such as self-renewal and increased CD24 levels. In addition, after the induction of differentiation, cancer cells reached levels of CD24 similar to those observed in the parental cells. Treatment with celecoxib alone or in combination with 5-FU also resulted in a reduction of CD24 expression. Moreover, celecoxib inhibited the growth of tumor spheres. These findings showing a reduction in CSC markers induced by celecoxib suggest that the COX-2 inhibitor might be a candidate for combined chemotherapy in the treatment of EAC. However, additional clinical and experimental studies are needed.

  2. The expression of TIPE1 in murine tissues and human cell lines.

    PubMed

    Cui, Jian; Zhang, Guizhong; Hao, Chunyan; Wang, Yan; Lou, Yunwei; Zhang, Wenqian; Wang, Juan; Liu, Suxia

    2011-07-01

    Members of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8 or TIPE) family play important roles in immune homeostasis and cancer. TIPE1 (TNFAIP8-like 1) is a new member of the TIPE family that may regulate cell death. However, due to the lack of a suitable antibody, the nature of cells and tissues that express TIPE1 protein has not been determined. In this study, we generated a highly specific antibody to TIPE1 and examined TIPE1 expression in various murine tissues and human cell lines by immunohistochemistry, reverse transcription real-time PCR, and Western blot. We found that TIPE1 protein was detected in a wide variety of tissues in C57BL/6 mice, such as neurons in brain, hepatocytes, germ cells of female and male reproductive organs, muscular tissues, and a variety of cells of the epithelial origin, particularly those with secretory functions. TIPE1 protein was not expressed in mature T or B lymphocytes, but detectable in human B lymphoblast cell line HMy2.CIR and murine T cell line EL4. Furthermore, high levels of TIPE1 mRNA were detected in most human carcinoma cell lines, especially in cells transformed with viral genomes. These results indicate that TIPE1 may perform functions in cell secretion and carcinogenesis, but not in immunity.

  3. Amyloid-beta increases acetylcholinesterase expression in neuroblastoma cells by reducing enzyme degradation.

    PubMed

    Hu, William; Gray, Noah W; Brimijoin, Stephen

    2003-07-01

    Amyloid-beta (Abeta) is the principal protein constituent of 'senile plaques' and is a suspected mediator in Alzheimer's disease (AD). Senile plaques also contain acetylcholinesterase (AChE; EC 3.1.1.7), which may have a role in promoting Alphabeta-toxicity. We have found that Alphabeta can affect AChE expression in a neuron-like line, the N1E.115 neuroblastoma cell. When 1 micro mAlphabeta 1-42 or 25-35 was added for 24 h to differentiating N1E.115 in culture, AChE activity increased 30-40% in adherent cells, and 100% or more in nonadherent cells. The changes in both tetrameric (G4) and monomeric (G1) AChE forms were comparable. Turnover studies indicated that the elevation of AChE activity reflected slowed AChE degradation rather than accelerated synthesis. With a similar time course, Alphabeta also increased the quantity of muscarinic receptors on the plasma membrane. Immunocytochemistry for a lysosomal membrane protein (LAMP-1) indicated no change in abundance or localization of lysosomes in treated cells. But decreased labeling by pH-sensitive fluorescent dye pointed to an impairment of lysosomal acidification. We consider that the alteration of AChE expression after Alphabeta-exposure could reflect lysosomal dysfunction, and might itself enhance Alphabeta-toxicity.

  4. Cerium oxide nanoparticles inhibit the migration and proliferation of gastric cancer by increasing DHX15 expression.

    PubMed

    Xiao, Yu-Feng; Li, Jian-Mei; Wang, Su-Min; Yong, Xin; Tang, Bo; Jie, Meng-Meng; Dong, Hui; Yang, Xiao-Chao; Yang, Shi-Ming

    2016-01-01

    Gastric cancer is one of the leading causes of tumor-related deaths in the world. Current treatment options do not satisfy doctors and patients, and new therapies are therefore needed. Cerium oxide nanoparticles (CNPs) have been studied as a potential therapeutic approach for treating many diseases. However, their effects on human gastric cancer are currently unknown. Therefore, in this study, we aimed to characterize the effects of CNPs on human gastric cancer cell lines (MKN28 and BGC823). Gastric cancer cells were cocultured with different concentrations of CNPs, and proliferation and migration were measured both in vitro and in vivo. We found that CNPs inhibited the migration of gastric cancer cells when applied at different concentrations, but only a relatively high concentration (10 µg/mL) of CNPs suppressed proliferation. Furthermore, we found that CNPs increased the expression of DHX15 and its downstream signaling pathways. We therefore provide evidence showing that CNPs may be a promising approach to suppress malignant activity of gastric cancer by increasing the expression of DHX15.

  5. Berberine lowers blood glucose in type 2 diabetes mellitus patients through increasing insulin receptor expression.

    PubMed

    Zhang, Hao; Wei, Jing; Xue, Rong; Wu, Jin-Dan; Zhao, Wei; Wang, Zi-Zheng; Wang, Shu-Kui; Zhou, Zheng-Xian; Song, Dan-Qing; Wang, Yue-Ming; Pan, Huai-Ning; Kong, Wei-Jia; Jiang, Jian-Dong

    2010-02-01

    Our previous work demonstrated that berberine (BBR) increases insulin receptor (InsR) expression and improves glucose utility both in vitro and in animal models. Here, we study the InsR-up-regulating and glucose-lowering activities of BBR in humans. Our results showed that BBR increased InsR messenger RNA and protein expression in a variety of human cell lines, including CEM, HCT-116, SW1990, HT1080, 293T, and hepatitis B virus-transfected human liver cells. Accordingly, insulin-stimulated phosphorylations of InsR beta-subunit and Akt were increased after BBR treatment in cultured cells. In the clinical study, BBR significantly lowered fasting blood glucose (FBG), hemoglobin A(1c), triglyceride, and insulin levels in patients with type 2 diabetes mellitus (T2DM). The FBG- and hemoglobin A(1c)-lowering efficacies of BBR were similar to those of metformin and rosiglitazone. In the BBR-treated patients, the percentages of peripheral blood lymphocytes that express InsR were significantly elevated after therapy. Berberine also lowered FBG effectively in chronic hepatitis B and hepatitis C patients with T2DM or impaired fasting glucose. Liver function was improved greatly in these patients by showing reduction of liver enzymes. Our results confirmed the activity of BBR on InsR in humans and its relationship with the glucose-lowering effect. Together with our previous report, we strongly suggest BBR as an ideal medicine for T2DM with a mechanism different from metformin and rosiglitazone.

  6. Expressing genes do not forget their LINEs: transposable elements and gene expression

    PubMed Central

    Kines, Kristine J.; Belancio, Victoria P.

    2012-01-01

    1. ABSTRACT Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue-or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored. PMID:22201807

  7. Expressing genes do not forget their LINEs: transposable elements and gene expression.

    PubMed

    Kines, Kristine J; Belancio, Victoria P

    2012-01-01

    Historically the accumulated mass of mammalian transposable elements (TEs), particularly those located within gene boundaries, was viewed as a genetic burden potentially detrimental to the genomic landscape. This notion has been strengthened by the discovery that transposable sequences can alter the architecture of the transcriptome, not only through insertion, but also long after the integration process is completed. Insertions previously considered harmless are now known to impact the expression of host genes via modification of the transcript quality or quantity, transcriptional interference, or by the control of pathways that affect the mRNA life-cycle. Conversely, several examples of the evolutionary advantageous impact of TEs on the host gene structure that diversified the cellular transcriptome are reported. TE-induced changes in gene expression can be tissue- or disease-specific, raising the possibility that the impact of TE sequences may vary during development, among normal cell types, and between normal and disease-affected tissues. The understanding of the rules and abundance of TE-interference with gene expression is in its infancy, and its contribution to human disease and/or evolution remains largely unexplored.

  8. PTH-C1: a rat continuous cell line expressing the parathyroid phenotype.

    PubMed

    Fabbri, Sergio; Ciuffi, Simone; Nardone, Valeria; Gomes, Ana Rita; Mavilia, Carmelo; Zonefrati, Roberto; Galli, Gianna; Luzi, Ettore; Tanini, Annalisa; Brandi, Maria Luisa

    2014-09-01

    The lack of a continuous cell line of epithelial parathyroid cells able to produce parathyroid hormone (PTH) has hampered the studies on in vitro evaluation of the mechanisms involved in the control of parathyroid cell function and proliferation. The PT-r cell line was first established from rat parathyroid tissue in 1987, but these cells were known to express the parathyroid hormone-related peptide (Pthrp) gene, but not the Pth gene. In an attempt to subclone the PT-r cell line, a rat parathyroid cell strain was isolated and named PTH-C1. During 3 years, in culture, PTH-C1 cells maintained an epithelioid morphology, displaying a diploid chromosome number, a doubling time around 15 h during the exponential phase of growth, and parathyroid functional features. PTH-C1 cell line produces PTH and expresses the calcium sensing receptor (Casr) gene and other genes known to be involved in parathyroid function. Most importantly, the PTH-C1 cells also exhibit an in vitro secretory response to calcium. Altogether these findings indicate the uniqueness of the PTH-C1 cell line as an in vitro model for cellular and molecular studies on parathyroid physiopathology.

  9. Cell line specific modulation of connexin43 expression after exposure to ionizing radiation.

    PubMed

    Banaz-Yaşar, Ferya; Tischka, Rabea; Iliakis, George; Winterhager, Elke; Gellhaus, Alexandra

    2005-01-01

    Gap junctional intercellular communication plays a significant role in mediating radiation-induced bystander effects. However, the level of Cx43 itself is influenced by ionizing radiation, which could modify the bystander effect. Here we have investigated several cell lines for the modulation of Cx43 expression 24 h after irradiation with 5 Gy X-rays. The mouse endothelial cell line bEnd3 revealed a significantly elevated level of Cx43 already 15 min after exposure to X-rays, whereas human hybrid endothelial cells (EA.hy926) exhibited a transient downregulation of Cx43 mRNA. No obvious changes in the communication properties of the different cell lines could be observed after irradiation. The communication-deficient malignant human trophoblast cell line Jeg3 stably transfected with Cx43 did not reveal any induction of endogenous nor alteration in the exogenous Cx43 transcript level upon exposure to 5 Gy. Taken together, our data show a cell line specific modulation of Cx43 expression after exposure to X-rays.

  10. HPV 5 and 8 E6 Expression Reduces ATM Protein Levels and Attenuates LINE-1 Retrotransposition

    PubMed Central

    Wallace, Nicholas A.; Gasior, Stephen L.; Faber, Zachary J.; Howie, Heather L.; Deininger, Prescott L.; Galloway, Denise A.

    2013-01-01

    The expression of the E6 protein from certain members of the HPV genus β (β HPV 5 and 8 E6) can disrupt p53 signaling by diminishing the steady state levels of two p53 modifying enzymes, ATR and p300. Here, we show that β-HPV 5 and 8 E6 are also capable of reducing the steady state levels of another p53 modifying enzyme, ATM, and as a result restrict LINE-1 retrotransposition. Furthermore, we show that the reduction of both ATM and LINE-1 retrotransposition is dependent upon the ability of β-HPV 8 E6 to bind and degrade p300. We use inhibitors and dominant negative mutants to confirm that ATM is needed for efficient LINE-1 retrotransposition. Furthermore, neither sensitivity to LINE-1 expression nor LINE-1 induced DSB formation is altered in an ATM deficient background. Together, these data illustrate the broad impact some β-HPVs have on DNA damage signaling by promoting p300 degradation. PMID:23706308

  11. Exogenous ACE2 Expression Allows Refractory Cell Lines To Support Severe Acute Respiratory Syndrome Coronavirus Replication

    PubMed Central

    Mossel, Eric C.; Huang, Cheng; Narayanan, Krishna; Makino, Shinji; Tesh, Robert B.; Peters, C. J.

    2005-01-01

    Of 30 cell lines and primary cells examined, productive severe acute respiratory syndrome coronavirus (Urbani strain) (SARS-CoV) infection after low-multiplicity inoculation was detected in only six: three African green monkey kidney epithelial cell lines (Vero, Vero E6, and MA104), a human colon epithelial line (CaCo-2), a porcine kidney epithelial line [PK(15)], and mink lung epithelial cells (Mv 1 Lu). SARS-CoV produced a lytic infection in Vero, Vero E6, and MA104 cells, but there was no visible cytopathic effect in Caco-2, Mv 1 Lu, or PK(15) cells. Multistep growth kinetics were identical in Vero E6 and MA104 cells, with maximum titer reached 24 h postinoculation (hpi). Virus titer was maximal 96 hpi in CaCo-2 cells, and virus was continually produced from infected CaCo-2 cells for at least 6 weeks after infection. CaCo-2 was the only human cell type of 13 tested that supported efficient SARS-CoV replication. Expression of the SARS-CoV receptor, angiotensin-converting enzyme 2 (ACE2), resulted in SARS-CoV replication in all refractory cell lines examined. Titers achieved were variable and dependent upon the method of ACE2 expression. PMID:15731278

  12. Defective Major Histocompatibility Complex Class I Expression in a Sarcomatoid Renal Cell Carcinoma Cell Line

    PubMed Central

    Jakobsen, Michael K.; Restifo, Nicholas P.; Cohen, Peter A.; Marincola, Francesco M.; Cheshire, L. Bryan; Linehan, W. Marston; Rosenberg, Steven A.; Alexander, Richard B.

    2008-01-01

    Summary We studied major histocompatibility complex (MHC) class I expression in 12 tumor cell culture lines established from patients with metastatic renal cell carcinoma (RCC). In one of these cell culture lines, UOK 123, we found no surface expression of β2-microglobulin (β2m) and MHC class I by flow cytometry. Immunofluorescence staining using three different monoclonal antibodies to β2m revealed no detectable β2m in the endoplasmic reticulum (ER), Golgi apparatus, cytoplasm, or on the cell surface. There was no evidence of folded class I molecules inside or on the surface of the cells; however, the ER stained intensively for unfolded class I molecules. Transient expression of β2m by UOK 123 after infection with a recombinant vaccinia virus containing the gene for β2m resulted in normal expression of both β2m and class I (HLA-A, B, C) determinants assessed by flow cytometry analysis. No expression of class I or β2m was seen with the recombinant vaccinia vector carrying a control gene. The inability of class I molecules to reach the cell surface is due to the requirement of β2m for proper folding and presentation of the class I MHC complex. The failure to assemble and express MHC class I complex on the cell surface renders these cells incapable of antigen presentation to cyto-toxic T cells and provides a mechanism for escape from immune recognition by the tumor. PMID:7582258

  13. High levels of protein expression using different mammalian CMV promoters in several cell lines.

    PubMed

    Xia, Wei; Bringmann, Peter; McClary, John; Jones, Patrick P; Manzana, Warren; Zhu, Ying; Wang, Soujuan; Liu, Yi; Harvey, Susan; Madlansacay, Mary Rose; McLean, Kirk; Rosser, Mary P; MacRobbie, Jean; Olsen, Catherine L; Cobb, Ronald R

    2006-01-01

    With the recent completion of the human genome sequencing project, scientists are faced with the daunting challenge of deciphering the function of these newly found genes quickly and efficiently. Equally as important is to produce milligram quantities of the therapeutically relevant gene products as quickly as possible. Mammalian expression systems provide many advantages to aid in this task. Mammalian cell lines have the capacity for proper post-translational modifications including proper protein folding and glycosylation. In response to the needs described above, we investigated the protein expression levels driven by the human CMV in the presence or absence of intron A, the mouse and rat CMV promoters with intron A, and the MPSV promoter in plasmid expression vectors. We evaluated the different promoters using an in-house plasmid vector backbone. The protein expression levels of four genes of interest driven by these promoters were evaluated in HEK293EBNA and CHO-K1 cells. Stable and transient transfected cells were utilized. In general, the full-length human CMV, in the presence of intron A, gave the highest levels of protein expression in transient transfections in both cell lines. However, the MPSV promoter resulted in the highest levels of stable protein expression in CHO-K1 cells. Using the CMV driven constitutive promoters in the presence of intron A, we have been able to generate >10 microg/ml of recombinant protein using transient transfections.

  14. Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability

    SciTech Connect

    Zhou Huimin; Jia Li; Wang Shujing; Wang Hongmei; Chu Haiying; Hu Yichuan; Cao Jun; Zhang Jianing . E-mail: jnzhang@dlmedu.edu.cn

    2006-06-23

    Caveolin-1 is the major component protein of caveolae and associated with a lot of cellular events such as endocytosis, cholesterol homeostasis, signal transduction, and tumorigenesis. The majority of results suggest that caveolin-1 might not only act as a tumor suppressor gene but also a promoting metastasis gene. In this study, the divergent expression and roles of caveolin-1 were investigated in mouse hepatocarcinoma cell lines Hca-F, Hca-P, and Hepa1-6, which have high, low, and no metastatic potential in the lymph nodes, as compared with normal mouse liver cell line IAR-20. The results showed that expression of caveolin-1 mRNA and protein along with the amount of caveolae number in Hca-F cells was higher than that in Hca-P cells, but was not detectable in Hepa1-6 cells. When caveolin-1 expression in Hca-F cells was down-regulated by RNAi approach, Hca-F cells proliferation rate in vitro declined and the expression of lymphangiogenic factor VEGFA in Hca-F decreased as well. Furthermore, in vivo implantation assay indicated that reduction of caveolin-1 expression in Hca-F prevented the lymphatic metastasis tumor burden of Hca-F cells in 615 mice. These results suggest that caveolin-1 facilities the lymphatic metastasis ability of mouse hepatocarcinoma cells via regulation tumor cell growth and VEGFA expression.

  15. Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Ye, C.; Vassilev, P. M.; Sanders, J. L.; Brown, E. M.

    2001-01-01

    We have previously shown the expression of the extracellular calcium (Ca2+o)-sensing receptor (CaR) in osteoblast-like cell lines, and others have documented its expression in sections of murine, bovine, and rat bone. The existence of the CaR in osteoblasts remains controversial, however, since some studies have failed to document its expression in the same osteoblast-like cell lines. The goals of the present study were twofold. 1) We sought to determine whether the CaR is expressed in the human osteoblast-like cell line, MG-63, which has recently been reported by others not to express this receptor. 2) We investigated whether the CaR, if present in MG-63 cells, is functionally active, since most previous studies have not proven the role of the CaR in mediating known actions of Ca2+o on osteoblast-like cells. We used immunocytochemistry and Western blotting with the specific, affinity-purified anti-CaR antiserum 4637 as well as Northern blot analysis and RT-PCR using a riboprobe and PCR primers specific for the human CaR, respectively, to show readily detectable CaR protein and mRNA expression in MG-63 cells. Finally, we employed the patch-clamp technique to show that an elevation in Ca2+o as well as the specific, allosteric CaR activator NPS R-467 (0.5 microM), but not its less active stereoisomer NPS S-467 (0.5 microM), activate an outward K+ channel in MG-63 cells, strongly suggesting that the CaR in MG-63 cells is not only expressed but is functionally active.

  16. Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line

    NASA Technical Reports Server (NTRS)

    Yamaguchi, T.; Chattopadhyay, N.; Kifor, O.; Ye, C.; Vassilev, P. M.; Sanders, J. L.; Brown, E. M.

    2001-01-01

    We have previously shown the expression of the extracellular calcium (Ca2+o)-sensing receptor (CaR) in osteoblast-like cell lines, and others have documented its expression in sections of murine, bovine, and rat bone. The existence of the CaR in osteoblasts remains controversial, however, since some studies have failed to document its expression in the same osteoblast-like cell lines. The goals of the present study were twofold. 1) We sought to determine whether the CaR is expressed in the human osteoblast-like cell line, MG-63, which has recently been reported by others not to express this receptor. 2) We investigated whether the CaR, if present in MG-63 cells, is functionally active, since most previous studies have not proven the role of the CaR in mediating known actions of Ca2+o on osteoblast-like cells. We used immunocytochemistry and Western blotting with the specific, affinity-purified anti-CaR antiserum 4637 as well as Northern blot analysis and RT-PCR using a riboprobe and PCR primers specific for the human CaR, respectively, to show readily detectable CaR protein and mRNA expression in MG-63 cells. Finally, we employed the patch-clamp technique to show that an elevation in Ca2+o as well as the specific, allosteric CaR activator NPS R-467 (0.5 microM), but not its less active stereoisomer NPS S-467 (0.5 microM), activate an outward K+ channel in MG-63 cells, strongly suggesting that the CaR in MG-63 cells is not only expressed but is functionally active.

  17. Differential expression of the ufo/axl oncogene in human leukemia-lymphoma cell lines.

    PubMed

    Challier, C; Uphoff, C C; Janssen, J W; Drexler, H G

    1996-05-01

    The ufo protein (also termed axl) is a member of a new family of receptor tyrosine kinases and is encoded by a transforming gene that was initially isolated from primary human myeloid leukemia cells by DNA-mediated transformation of NIH/3T3 cells. The ligand, Gas6, a protein S-related molecule lacking any known function yet, has recently been identified. We report the expression pattern of ufo mRNA in a panel of 76 human continuous leukemia-lymphoma cell lines. The gene was not expressed in cell lines derived from lymphoid malignancies (n=28), but transcription was seen in 3/11 myeloid, 0/6 monocytic, 9/13 erythroid and 11/18 megakaryocytic cell lines. Several cell lines were treated with phorbol ester leading to significant upregulation of the ufo message in constitutively positive cells. An apparent ufo mRNA overexpression was not found in any of the positive leukemia cell lines, but was identified in the drug-resistant subclones of the cervix carcinoma cell line HeLa. Southern blot analysis of restriction enzyme-digested genomic DNA did not provide evidence for gene amplification, but the HeLa subclones showed banding patterns suggestive of gene rearrangement. Two main ufo mRNA bands of 3.2 and 5.0 kb were identified; no differences in the half-lives (t1/2 = 2.5 h) of these two mRNA species could be identified. In summary, ufo, representing a novel type of receptor tyrosine kinase, is expressed solely in myeloid and erythro-megakaryocytic leukemias but not in lymphoid malignancies. These and previous data suggest an involvement of the ufo receptor tyrosine kinase in normal and malignant myelopoiesis; however, its exact role, if any, and mode of operation in leukemogenesis remains to be determined.

  18. Increased hydrophobicity in Malassezia species correlates with increased proinflammatory cytokine expression in human keratinocytes.

    PubMed

    Akaza, Narifumi; Akamatsu, Hirohiko; Takeoka, Shiori; Mizutani, Hiroshi; Nakata, Satoru; Matsunaga, Kayoko

    2012-11-01

    Malassezia cells stimulate cytokine production by keratinocytes, although this ability differs among Malassezia species for unknown reasons. The aim of this study was to clarify the factors determining the ability to induce cytokine production by human keratinocytes in response to Malassezia species. M. furfur NBRC 0656, M. sympodialis CBS 7222, M. dermatis JCM 11348, M. globosa CBS 7966, M. restricta CBS 7877, and three strains each of M. globosa, M. restricta, M. dermatis, M. sympodialis, and M. furfur maintained under various culture conditions were used. Normal human epidermal keratinocytes (NHEKs) (1 × 10(5) cells) and the Malassezia species (1 × 10(6) cells) were co-cultured, and IL-1α, IL-6, and IL-8 mRNA levels were determined. Moreover, the hydrophobicity and β-1,3-glucan expression at the surface of Malassezia cells were analyzed. The ability of Malassezia cells to trigger the mRNA expression of proinflammatory cytokines in NHEKs differed with the species and conditions and was dependent upon the hydrophobicity of Malassezia cells not β-1,3-glucan expression.

  19. The pan-deacetylase inhibitor panobinostat suppresses the expression of oncogenic miRNAs in hepatocellular carcinoma cell lines.

    PubMed

    Henrici, Alexander; Montalbano, Roberta; Neureiter, Daniel; Krause, Michael; Stiewe, Thorsten; Slater, Emily Prentice; Quint, Karl; Ocker, Matthias; Di Fazio, Pietro

    2015-08-01

    Deacetylase inhibitors (DACi) are a new class of drugs with a broad spectrum of mechanisms that favor their application in cancer therapy. Currently, the exact mechanisms and cellular effects of DACi have not been fully elucidated. In addition to their effects on histone acetylation, DACi can interfere with gene expression via miRNA pathways. Treatment with panobinostat (LBH589), a novel potent DACi, led to the highly aberrant modulation of several miRNAs in hepatocellular carcinoma (HCC) cell lines as shown by miRNA array analysis. Among them, hsa-miR-19a, hsa-miR-19b1 and the corresponding precursors were down-regulated by panobinostat in TP53(-/-) Hep3B and TP53(+/+) HepG2 cell lines; hsa-miR30a-5p mature form only was suppressed in both HCC cell lines, as confirmed by further RT-qPCR analysis. In HCC cell lines, panobinostat caused the upregulation of the predicted miRNA targets APAF1 and Beclin1 protein levels. Transfection with oligonucleotides mimicking these miRNAs led to an increase in the viability rate of both cell lines as analyzed by impedance-based real-time cell analysis. In addition, transfecting miRNA mimicking oligonucleotides resulted in the decrease of APAF1, Beclin1 and PAK6 at the protein level, proving the regulating influence of the investigated miRNAs on gene final products. The overexpression of the above mentioned oncomiRs in Hep3B and HepG2 cell lines leads to cell proliferation and downregulation of cell death associated proteins. In our model, panobinostat exerts its anti-cancer effect by suppressing these miRNAs and restoring the expression of their corresponding tumor suppressor targets. © 2013 Wiley Periodicals, Inc.

  20. Creation and characterization of an airway epithelial cell line for stable expression of CFTR variants

    PubMed Central

    Gottschalk, Laura B.; Vecchio-Pagan, Briana; Sharma, Neeraj; Han, Sangwoo T.; Franca, Arianna; Wohler, Elizabeth S.; Batista, Denise A.S.; Goff, Loyal A.; Cutting, Garry R.

    2016-01-01

    Background Analysis of the functional consequences and treatment response of rare CFTR variants is challenging due to the limited availability of primary airways cells. Methods A Flp recombination target (FRT) site for stable expression of CFTR was incorporated into an immortalized CF bronchial epithelial cell line (CFBE41o−). CFTR cDNA was integrated into the FRT site. Expression was evaluated by western blotting and confocal microscopy and function measured by short circuit current. RNA sequencing was used to compare the transcriptional profile of the resulting CF8Flp cell line to primary cells and tissues. Results Functional CFTR was expressed from integrated cDNA at the FRT site of the CF8Flp cell line at levels comparable to that seen in native airway cells. CF8Flp cells expressing WT-CFTR have a stable transcriptome comparable to that of primary cultured airway epithelial cells, including genes that play key roles in CFTR pathways. Conclusion CF8Flp cells provide a viable substitute for primary CF airway cells for the analysis of CFTR variants in a native context. PMID:26694805

  1. Deciphering causal and statistical relations of molecular aberrations and gene expressions in NCI-60 cell lines

    PubMed Central

    2011-01-01

    Background Cancer cells harbor a large number of molecular alterations such as mutations, amplifications and deletions on DNA sequences and epigenetic changes on DNA methylations. These aberrations may dysregulate gene expressions, which in turn drive the malignancy of tumors. Deciphering the causal and statistical relations of molecular aberrations and gene expressions is critical for understanding the molecular mechanisms of clinical phenotypes. Results In this work, we proposed a computational method to reconstruct association modules containing driver aberrations, passenger mRNA or microRNA expressions, and putative regulators that mediate the effects from drivers to passengers. By applying the module-finding algorithm to the integrated datasets of NCI-60 cancer cell lines, we found that gene expressions were driven by diverse molecular aberrations including chromosomal segments' copy number variations, gene mutations and DNA methylations, microRNA expressions, and the expressions of transcription factors. In-silico validation indicated that passenger genes were enriched with the regulator binding motifs, functional categories or pathways where the drivers were involved, and co-citations with the driver/regulator genes. Moreover, 6 of 11 predicted MYB targets were down-regulated in an MYB-siRNA treated leukemia cell line. In addition, microRNA expressions were driven by distinct mechanisms from mRNA expressions. Conclusions The results provide rich mechanistic information regarding molecular aberrations and gene expressions in cancer genomes. This kind of integrative analysis will become an important tool for the diagnosis and treatment of cancer in the era of personalized medicine. PMID:22051105

  2. Ficus carica latex prevents invasion through induction of let-7d expression in GBM cell lines.

    PubMed

    Tezcan, Gulcin; Tunca, Berrin; Bekar, Ahmet; Yalcin, Murat; Sahin, Saliha; Budak, Ferah; Cecener, Gulsah; Egeli, Unal; Demir, Cevdet; Guvenc, Gokcen; Yilmaz, Gozde; Erkan, Leman Gizem; Malyer, Hulusi; Taskapilioglu, Mevlut Ozgur; Evrensel, Turkkan; Bilir, Ayhan

    2015-03-01

    Glioblastoma multiforme (GBM) is one of the deadliest human malignancies. A cure for GBM remains elusive, and the overall survival time is less than 1 year. Thus, the development of more efficient therapeutic approaches for the treatment of these patients is required. Induction of tumor cell death by certain phytochemicals derived from medicinal herbs and dietary plants has become a new frontier for cancer therapy research. Although the cancer suppressive effect of Ficus carica (fig) latex (FCL) has been determined in a few cancer types, the effect of this latex on GBM tumors has not been investigated. Therefore, in the current study, the anti-proliferative activity of FCL and the effect of the FCL-temozolomide (TMZ) combination were tested in the T98G, U-138 MG, and U-87 MG GBM cell lines using the WST-1 assay. The mechanism of cell death was analyzed using Annexin-V/FITC and TUNEL assays, and the effect of FCL on invasion was tested using the chick chorioallantoic membrane assay. To determine the effect of FCL on GBM progression, the expression levels of 40 GBM associated miRNAs were analyzed in T98G cells using RT-qPCR. According to the obtained data, FCL causes cell death in GBM cells with different responses to TMZ, and this effect is synergistically increased in combination with TMZ. In addition, the current study is the first to demonstrate the effect of FCL on modulation of let-7d expression, which may be an important underlying mechanism of the anti-invasive effect of this extract.

  3. Coinfection of Hepatic Cell Lines with Human Immunodeficiency Virus and Hepatitis B Virus Leads to an Increase in Intracellular Hepatitis B Surface Antigen▿

    PubMed Central

    Iser, David M.; Warner, Nadia; Revill, Peter A.; Solomon, Ajantha; Wightman, Fiona; Saleh, Suha; Crane, Megan; Cameron, Paul U.; Bowden, Scott; Nguyen, Tin; Pereira, Cândida F.; Desmond, Paul V.; Locarnini, Stephen A.; Lewin, Sharon R.

    2010-01-01

    Liver-related mortality is increased in the setting of HIV-hepatitis B virus (HBV) coinfection. However, interactions between HIV and HBV to explain this observation have not been described. We hypothesized that HIV infection of hepatocytes directly affects the life cycle of HBV. We infected human hepatic cell lines expressing HBV (Hep3B and AD38 cells) or not expressing HBV (Huh7, HepG2, and AD43 cells) with laboratory strains of HIV (NL4-3 and AD8), as well as a vesicular stomatitis virus (VSV)-pseudotyped HIV expressing enhanced green fluorescent protein (EGFP). Following HIV infection with NL4-3 or AD8 in hepatic cell lines, we observed a significant increase in HIV reverse transcriptase activity which was infectious. Despite no detection of surface CD4, CCR5, and CXCR4 by flow cytometry, AD8 infection of AD38 cells was inhibited by maraviroc and NL4-3 was inhibited by AMD3100, demonstrating that HIV enters AD38 hepatic cell lines via CCR5 or CXCR4. High-level infection of AD38 cells (50%) was achieved using VSV-pseudotyped HIV. Coinfection of the AD38 cell line with HIV did not alter the HBV DNA amount or species as determined by Southern blotting or nucleic acid signal amplification. However, coinfection with HIV was associated with a significant increase in intracellular HBsAg when measured by Western blotting, quantitative HBsAg, and fluorescence microscopy. We conclude that HIV infection of HBV-infected hepatic cell lines significantly increased intracellular HBsAg but not HBV DNA synthesis and that increased intrahepatic HBsAg secondary to direct infection by HIV may contribute to accelerated liver disease in HIV-HBV-coinfected individuals. PMID:20357083

  4. Coinfection of hepatic cell lines with human immunodeficiency virus and hepatitis B virus leads to an increase in intracellular hepatitis B surface antigen.

    PubMed

    Iser, David M; Warner, Nadia; Revill, Peter A; Solomon, Ajantha; Wightman, Fiona; Saleh, Suha; Crane, Megan; Cameron, Paul U; Bowden, Scott; Nguyen, Tin; Pereira, Cândida F; Desmond, Paul V; Locarnini, Stephen A; Lewin, Sharon R

    2010-06-01

    Liver-related mortality is increased in the setting of HIV-hepatitis B virus (HBV) coinfection. However, interactions between HIV and HBV to explain this observation have not been described. We hypothesized that HIV infection of hepatocytes directly affects the life cycle of HBV. We infected human hepatic cell lines expressing HBV (Hep3B and AD38 cells) or not expressing HBV (Huh7, HepG2, and AD43 cells) with laboratory strains of HIV (NL4-3 and AD8), as well as a vesicular stomatitis virus (VSV)-pseudotyped HIV expressing enhanced green fluorescent protein (EGFP). Following HIV infection with NL4-3 or AD8 in hepatic cell lines, we observed a significant increase in HIV reverse transcriptase activity which was infectious. Despite no detection of surface CD4, CCR5, and CXCR4 by flow cytometry, AD8 infection of AD38 cells was inhibited by maraviroc and NL4-3 was inhibited by AMD3100, demonstrating that HIV enters AD38 hepatic cell lines via CCR5 or CXCR4. High-level infection of AD38 cells (50%) was achieved using VSV-pseudotyped HIV. Coinfection of the AD38 cell line with HIV did not alter the HBV DNA amount or species as determined by Southern blotting or nucleic acid signal amplification. However, coinfection with HIV was associated with a significant increase in intracellular HBsAg when measured by Western blotting, quantitative HBsAg, and fluorescence microscopy. We conclude that HIV infection of HBV-infected hepatic cell lines significantly increased intracellular HBsAg but not HBV DNA synthesis and that increased intrahepatic HBsAg secondary to direct infection by HIV may contribute to accelerated liver disease in HIV-HBV-coinfected individuals.

  5. Human immunodeficiency virus type 1 infection of H9 cells induces increased glucose transporter expression.

    PubMed Central

    Sorbara, L R; Maldarelli, F; Chamoun, G; Schilling, B; Chokekijcahi, S; Staudt, L; Mitsuya, H; Simpson, I A; Zeichner, S L

    1996-01-01

    A clone obtained from a differential display screen for cellular genes with altered expression during human immunodeficiency virus (HIV) infection matched the sequence for the human GLUT3 facilitative glucose transporter, a high-velocity-high-affinity facilitative transporter commonly expressed in neurons of the central nervous system. Northern (RNA) analysis showed that GLUT3 expression increased during infection. Flow cytometry showed that GLUT3 protein expression increased specifically in the HIV-infected cells; this increase correlated with increased 2-deoxyglucose transport in the HIV-infected culture. HIV infection therefore leads to increased expression of a glucose transporter normally expressed at high levels in other cell types and a corresponding increase in glucose transport activity. If HIV infection places increased metabolic demands on the host cell, changes in the expression of a cellular gene that plays an important role in cellular metabolism might provide a more favorable environment for viral replication. PMID:8794382

  6. Downregulated Chibby in laryngeal squamous cell carcinoma with increased expression in laryngeal carcinoma Hep-2 cells.

    PubMed

    Xu, Jue; Ren, Gang; Zhao, De-An; Li, Bo-An; Cai, Cheng-Fu; Zhou, Yi; Luo, Xian-Yang

    2014-11-01

    Chibby (Cby) inhibits Wnt/β-catenin-mediated transcriptional activation by competing with Lef-1 (the transcription factor and target of β-catenin) to bind to β-catenin. This suggests that Cby could be a tumor suppressor protein. In the present study, we examined Cby expression in laryngeal squamous cell carcinoma (LSCC) and its function and mechanism in laryngeal carcinoma cell lines. Cby expression levels were investigated by immunohistochemistry in a panel of 36 LSCC patient cases. The expression of β-catenin, c-myc and cyclin D1 in Hep-2 were determined through RT-PCR and western blot analysis. Activity of Wnt/β-catenin signaling pathway after overexpression of Cby was measured by TCF/LEF luciferase reporter gene assay. Proliferation, clone forming ability, cell cycle distribution and cell apoptosis of Hep-2 cells were detected by MTT assay, plate colony forming assay, flow cytometry and TUNEL assay, respectively. This study showed that expression of Cby protein was strongly downregulated in LSCC tumor tissues in comparison to normal laryngeal mucosa samples. No significant correlation was found between the expression of Cby in tumor tissue and gender, age, clinical stage and tumor differentiation of laryngeal cancer patients. When Cby was overexpressed in Hep-2 cells, the expression of cyclin D1 was reduced and β-catenin activity was inhibited. Proliferation and plate colony forming assays revealed a significant inhibitory effect of Cby on growth and colony formation ability of Hep-2 cells after Cby overexpression in comparison to control and mock-infected cells. In addition, we also found that upregulated expression of Cby resulted in accumulation of numbers of cells in G0/G1 phase with concomitant decrease in S phase by cell cycle assay. TUNEL staining demonstrated that, compared with the control group, the rate of apoptosis in the plv-cs2.0-Cby group was significantly increased. Taken together, downregulation of Cby was observed in LSCC, but with no

  7. Suppression of laminin-5 expression leads to increased motility, tumorigenicity, and invasion

    SciTech Connect

    Yuen Hengwai; Ziober, Amy F.; Gopal, Pallavi; Nasrallah, Ilya; Falls, Erica M.; Meneguzzi, Guerrino; Ang, Hwee-Quan; Ziober, Barry L. . E-mail: bziober@mail.med.upenn.edu

    2005-09-10

    Laminin-5 (Ln-5) is expressed in several human carcinomas and hypothesized to contribute to tumor invasion. To understand the role of Ln-5 in human cancers, we stably delivered small interfering RNAs (siRNAs) directed against the Ln-5 {gamma}2 chain into JHU-022-SCC cells (022), a non-invasive oral squamous cell carcinoma (OSCC) cell line which secretes Ln-5. Lysates from {gamma}2 siRNA cells (022-si{gamma}2) had nearly undetectable levels of the {gamma}2 chain while the {alpha}3 and {beta}3 subunits of Ln-5 remained unchanged compared to parental and control. In conditioned medium from 022-si{gamma}2 cells, the {gamma}2 chain and the Ln-5 heterotrimer were barely detectable, similar to an invasive OSCC cell line. Conditioned medium from 022-si{gamma}2 cells contained less {alpha}3 and {beta}3 subunits than both parental and control. Although the proliferation and adhesive properties of the 022-si{gamma}2 cells remained similar to parental and control cells, 022-si{gamma}2 cells showed increased detachment and a fibroblastic morphology similar to invasive cells. Moreover, migration, in vitro invasion, and in vivo tumorigenicity were enhanced in 022-si{gamma}2 cells. Our results suggest that the Ln-5 {gamma}2 chain regulates the secretion of the {alpha}3 and {beta}3 subunits. More importantly, suppression of Ln-5 results in a phenotype that is representative of invasive tumor cells.

  8. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    PubMed Central

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  9. Redox-modulating agents target NOX2-dependent IKKε oncogenic kinase expression and proliferation in human breast cancer cell lines

    PubMed Central

    Mukawera, Espérance; Chartier, Stefany; Williams, Virginie; Pagano, Patrick J.; Lapointe, Réjean; Grandvaux, Nathalie

    2015-01-01

    Oxidative stress is considered a causative factor in carcinogenesis, but also in the development of resistance to current chemotherapies. The appropriate usage of redox-modulating compounds is limited by the lack of knowledge of their impact on specific molecular pathways. Increased levels of the IKKε kinase, as a result of gene amplification or aberrant expression, are observed in a substantial number of breast carcinomas. IKKε not only plays a key role in cell transformation and invasiveness, but also in the development of resistance to tamoxifen. Here, we studied the effect of in vitro treatment with the redox-modulating triphenylmethane dyes, Gentian Violet and Brilliant Green, and nitroxide Tempol on IKKε expression and cell proliferation in the human breast cancer epithelial cell lines exhibiting amplification of IKKε, MCF-7 and ZR75.1. We show that Gentian Violet, Brilliant Green and Tempol significantly decrease intracellular superoxide anion levels and inhibit IKKε expression and cell viability. Treatment with Gentian Violet and Brilliant Green was associated with a reduced cyclin D1 expression and activation of caspase 3 and/or 7. Tempol decreased cyclin D1 expression in both cell lines, while activation of caspase 7 was only observed in MCF-7 cells. Silencing of the superoxide-generating NOX2 NADPH oxidase expressed in breast cancer cells resulted in the significant reduction of IKKε expression. Taken together, our results suggest that redox-modulating compounds targeting NOX2 could present a particular therapeutic interest in combination therapy against breast carcinomas exhibiting IKKε amplification. PMID:26177467

  10. Increased catalase expression improves muscle function in mdx mice.

    PubMed

    Selsby, Joshua T

    2011-02-01

    It has been well established that oxidative stress contributes to pathology associated with Duchenne muscular dystrophy (DMD). I hypothesized that overexpression of the antioxidant enzyme catalase would improve muscle function in the mdx mouse, the mouse model of DMD. To test this hypothesis, neonatal mdx mice were injected with a recombinant adeno-associated virus driving the catalase transgene. Animals were killed 4 or 6 weeks or 6 months following injection. Muscle function was generally improved by catalase overexpression. Four weeks following injection, extensor digitorum longus specific tension was improved twofold, while soleus was similar between groups. Resistance to contraction-induced injury was similar between groups; however, resistance to fatigue was increased 25% in catalase-treated soleus compared with control muscle. Six weeks following injection, extensor digitorum longus specific tension was increased 15%, while soleus specific tension was similar between treated and untreated limbs. Catalase overexpression reduced contraction-induced injury by 30-45% and fatigue by 20% compared with control limbs. Six months following injection, diaphragm specific tension was similar between groups, but resistance to contraction-induced injury was improved by 35% and fatigue by 25%. Taken together, these data indicate that catalase can improve a subset of parameters of muscle function in dystrophin-deficient skeletal muscle.

  11. The ectopic expression of a pectin methyl esterase inhibitor increases pectin methyl esterification and limits fungal diseases in wheat.

    PubMed

    Volpi, Chiara; Janni, Michela; Lionetti, Vincenzo; Bellincampi, Daniela; Favaron, Francesco; D'Ovidio, Renato

    2011-09-01

    Cell wall pectin methyl esterification can influence plant resistance because highly methyl-esterified pectin can be less susceptible to the hydrolysis by pectic enzymes such as fungal endopolygalacturonases (PG). Pectin is secreted into the cell wall in a highly methyl-esterified form and, here, is de-methyl esterified by pectin methyl esterase (PME). The activity of PME is controlled by specific protein inhibitors called PMEI; consequently, an increased inhibition of PME by PMEI might modify the pectin methyl esterification. In order to test the possibility of improving wheat resistance by modifying the methyl esterification of pectin cell wall, we have produced durum wheat transgenic lines expressing the PMEI from Actinidia chinensis (AcPMEI). The expression of AcPMEI endows wheat with a reduced endogenous PME activity, and transgenic lines expressing a high level of the inhibitor showed a significant increase in the degree of methyl esterification. These lines showed a significant reduction of disease symptoms caused by the fungal pathogens Bipolaris sorokiniana or Fusarium graminearum. This increased resistance was related to the impaired ability of these fungal pathogens to grow on methyl-esterified pectin and to a reduced activity of the fungal PG to hydrolyze methyl-esterified pectin. In addition to their importance for wheat improvement, these results highlight the primary role of pectin despite its low content in the wheat cell wall.

  12. Sow line differences in heat stress tolerance expressed in reproductive performance traits.

    PubMed

    Bloemhof, S; van der Waaij, E H; Merks, J W M; Knol, E F

    2008-12-01

    farrowing rate, 21.7 degrees C for litter size, and 19.6 degrees C for total number born per first insemination. The decrease in reproductive performance of I-line sows with increasing outside temperature was less than in D-line sows. From this study it can be concluded that there are differences in heat stress tolerance between sow lines as measured by the differences in reproductive performance. These differences are an indication of genetic differences in heat stress tolerance in sow lines.

  13. Monitoring of the effects of transfection with baculovirus on Sf9 cell line and expression of human dipeptidyl peptidase IV.

    PubMed

    Ustün-Aytekin, Ozlem; Gürhan, Ismet Deliloğlu; Ohura, Kayoko; Imai, Teruko; Ongen, Gaye

    2014-01-01

    Human dipeptidylpeptidase IV (hDPPIV) is an enzyme that is in hydrolase class and has various roles in different parts of human body. Its deficiency may cause some disorders in the gastrointestinal, neurologic, endocrinological and immunological systems of humans. In the present study, hDPPIV enzyme was expressed on Spodoptera frugiperda (Sf9) cell lines as a host cell, and the expression of hDPPIV was obtained by a baculoviral expression system. The enzyme production, optimum multiplicity of infection, optimum transfection time, infected and uninfected cell size and cell behavior during transfection were also determined. For maximum hDPPIV (269 mU mL(-1)) enzyme, optimum multiplicity of infection (MOI) and time were 0.1 and 72 h, respectively. The size of infected cells increased significantly (P < 0.001) after 24 h post infection. The results indicated that Sf9 cell line was applicable to the large scale for hDPPIV expression by using optimized parameters (infection time and MOI) because of its high productivity (4.03 mU m L(-1) h(-1)).

  14. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  15. Lines

    ERIC Educational Resources Information Center

    Mires, Peter B.

    2006-01-01

    National Geography Standards for the middle school years generally stress the teaching of latitude and longitude. There are many creative ways to explain the great grid that encircles our planet, but the author has found that students in his college-level geography courses especially enjoy human-interest stories associated with lines of latitude…

  16. Galectin-7 acts as an adhesion molecule during implantation and increased expression is associated with miscarriage.

    PubMed

    Menkhorst, E M; Gamage, T; Cuman, C; Kaitu'u-Lino, T J; Tong, S; Dimitriadis, E

    2014-03-01

    Galectins are expressed at the fetal-maternal interface and have multiple roles including during blastocyst implantation. The expression of galectin-7 however has not been investigated in the uterus. We aimed to localise galectin-7 to the endometrium of women with normal fertility and with a history of miscarriage and prospectively determine whether serum levels are altered in women who subsequently miscarry. We also investigated the role of galectin-7 on trophoblast-endometrial epithelial cell adhesion. Immunohistochemistry localised galectin-7 to endometrium throughout the menstrual cycle in women (normal fertility or with history of miscarriage) and in first trimester implantation sites. Galectin-7 serum levels were determined by ELISA. We used both endometrial epithelial-trophoblast cell lines and primary cells for cell-cell adhesion experiments. Galectin-7 immunolocalized to endometrial luminal and glandular epithelium in normally fertile women and was upregulated in epithelium and stroma of women with a history of miscarriage. Similarly, galectin-7 serum levels were elevated at 6 weeks gestation in women who subsequently miscarried compared to gestation matched controls. Exogenous galectin-7 reduced endometrial epithelial-trophoblast adhesion in cell-line and primary cell assays. However, when endometrial epithelial cells were isolated from women with endometrial disorders, galectin-7 increased epithelial-trophoblast adhesion. Galectin-7 is produced by endometrial epithelium and is abnormally elevated in the endometrium of women with a history of miscarriage. Serum levels may be useful as a predictive biomarker of miscarriage. Our data suggests that galectin-7 facilitates adhesion of the embryo to the endometrium and elevated galectin-7 may result in abnormal adhesion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation.

    PubMed

    Stanga, Serena; Zanou, Nadège; Audouard, Emilie; Tasiaux, Bernadette; Contino, Sabrina; Vandermeulen, Gaëlle; René, Frédérique; Loeffler, Jean-Philippe; Clotman, Frédéric; Gailly, Philippe; Dewachter, Ilse; Octave, Jean-Noël; Kienlen-Campard, Pascal

    2016-05-01

    Besides its crucial role in the pathogenesis of Alzheimer's disease, the knowledge of amyloid precursor protein (APP) physiologic functions remains surprisingly scarce. Here, we show that APP regulates the transcription of the glial cell line-derived neurotrophic factor (GDNF). APP-dependent regulation of GDNF expression affects muscle strength, muscular trophy, and both neuronal and muscular differentiation fundamental for neuromuscular junction (NMJ) maturation in vivo In a nerve-muscle coculture model set up to modelize NMJ formation in vitro, silencing of muscular APP induces a 30% decrease in secreted GDNF levels and a 40% decrease in the total number of NMJs together with a significant reduction in the density of acetylcholine vesicles at the presynaptic site and in neuronal maturation. These defects are rescued by GDNF expression in muscle cells in the conditions where muscular APP has been previously silenced. Expression of GDNF in muscles of amyloid precursor protein null mice corrected the aberrant synaptic morphology of NMJs. Our findings highlight for the first time that APP-dependent GDNF expression drives the process of NMJ formation, providing new insights into the link between APP gene regulatory network and physiologic functions.-Stanga, S., Zanou, N., Audouard, E., Tasiaux, B., Contino, S., Vandermeulen, G., René, F., Loeffler, J.-P., Clotman, F., Gailly, P., Dewachter, I., Octave, J.-N., Kienlen-Campard, P. APP-dependent glial cell line-derived neurotrophic factor gene expression drives neuromuscular junction formation. © FASEB.

  18. Cell surface expression of hepatitis B surface and core antigens in transfected rat fibroblast cell lines.

    PubMed

    Gholson, C F; Siddiqui, A; Vierling, J M

    1990-04-01

    Hepatocellular necrosis during hepatitis B virus infection is hypothesized to result from host immune responses against either hepatitis B surface antigen or hepatitis B core antigen expressed on the surface membrane of infected hepatocytes. To study the capacity of hepatitis B deoxyribonucleic acid to induce membrane expression of either hepatitis B surface antigen or hepatitis B core antigen in vitro, we assessed transfected rat fibroblast cell lines by indirect immunofluorescence. Rat fibroblasts were transfected with plasmid vectors containing the natural promoters, native enhancer, and uninterrupted sequences of either the Pre S/S gene or core gene. Resulting cell lines produced hepatitis B surface antigen and hepatitis B core antigen/hepatitis B e antigen, respectively. Immunofluorescence microscopy or flow cytometry showed that hepatitis B surface antigen and hepatitis B core antigen were expressed in a granular pattern in the surface membrane of transfected cells. We conclude that surface membrane expression of both hepatitis B surface antigen and hepatitis B core antigen is an intrinsic consequence of expression of either the Pre S/S or core gene.

  19. Hepatitis B virus down-regulates expressions of MHC class I molecules on hepatoplastoma cell line.

    PubMed

    Chen, Yongyan; Cheng, Min; Tian, Zhigang

    2006-10-01

    Chronic HBV infection is associated with a 100-fold high risk of developing hepatocellular carcinoma. Tumor recognition is of the most importance during the immune surveillance process that prevents cancer development in humans. In the present study, the expressions of MHC class I molecules on hepatoplastoma cell line HepG2.2.15 were investigated to indicate the possible effects of HBV on the immune recognition during HBV-associated hepatocellular carcinoma. It was found that the expressions of MHC class I molecules HLA-ABC, HLA-E and MICA were much lower in HepG2.2.15 cells compared with HepG2 cells. The expressing HBV in human hepatoplastoma cell line significantly down-regulated the expressions of MHC class I molecules. Additionally, it was observed that in murine chronic HBsAg carriers the expression of classical MHC-I molecule on hepatocytes was down-regulated. These results demonstrated that HBV might affect the immune recognition during HBV-associated hepatocellular carcinoma such as the recognition of CD8+ T, NK-CTL and NK cells and prevent the immune surveillance against tumors. However, the effects of HBV down-regulation of MHC class I molecules on the target cells in vivo should be further studied.

  20. LOX-1 expression and oxidized LDL uptake and toxicity in the HN33 neuronal cell line.

    PubMed

    Mao, Xiaoou; Xie, Lin; Greenberg, David A

    2014-09-19

    Cardiovascular risk factors appear to influence the risk and progression of neurodegenerative disease, but the mechanisms involved are poorly understood. We investigated the possible involvement of oxidized low-density lipoprotein receptor (LOX-1) and oxidized low-density lipoprotein (Ox-LDL) in neurodegeneration by studying the expression of LOX-1 and the effects of Ox-LDL in HN33 cells, a neuronal cell line of central nervous system origin. HN33 cells showed LOX-1 protein expression, hypoxic induction of LOX-1, Ox-LDL uptake and Ox-LDL toxicity. LOX-1/Ox-LDL signaling may contribute to the association between cardiovascular risk factors and neurodegenerative disease.

  1. Downregulation of vimentin expression increased drug resistance in ovarian cancer cells.

    PubMed

    Huo, Yi; Zheng, Zhiguo; Chen, Yuling; Wang, Qingtao; Zhang, Zhenyu; Deng, Haiteng

    2016-07-19

    Cisplatin and other platinum-based drugs have been widely used in the treatment of ovarian cancer, but most patients acquire the drug resistance that greatly compromises the efficacy of drugs. Understanding the mechanism of drug resistance is important for finding new therapeutic approaches. In the present study, we found that the expression of vimentin was downregulated in drug-resistant ovarian cancer cell lines A2780-DR and HO-8910 as compared to their respective control cells. Overexpression of vimentin in A2780-DR cells markedly increased their sensitivity to cisplatin, whereas knockdown of vimentin in A2780, HO-8910-PM and HO-8910 cells increased the resistance to cisplatin, demonstrating that vimentin silencing enhanced cisplatin resistance in ovarian cancer cells. Quantitative proteomic analysis identified 95 differentially expressed proteins between the vimentin silenced A2780 cells (A2780-VIM-KN) and the control cells, in which downregulation of endocytic proteins and the upregulation of exocytotic proteins CHMP2B and PDZK1 were proposed to contribute the decreased cisplatin accumulation in vimentin knockdown cells. Silencing of vimentin induced upregulation of cancer stem cell markers and both A2780-DR and A2780-VIM-KN cells were more facile to form spheroids than control cells under serum-free culture condition. Our results also revealed that vimentin knockdown increased the 14-3-3 mediated retention of Cdc25C in the cytoplasm, leading to inactivation of Cdk1 and the prolonged G2 phase arrest that allowed the longer period of time for cells to repair cisplatin-damaged DNA. Taken together, we demonstrated that vimentin silencing enhanced cells' resistance to cisplatin via prolonged G2 arrest and increased exocytosis, suggesting that vimentin is a potential target for treatment of drug resistant ovarian cancer.

  2. Downregulation of vimentin expression increased drug resistance in ovarian cancer cells

    PubMed Central

    Huo, Yi; Zheng, Zhiguo; Chen, Yuling; Wang, Qingtao; Zhang, Zhenyu; Deng, Haiteng

    2016-01-01

    Cisplatin and other platinum-based drugs have been widely used in the treatment of ovarian cancer, but most patients acquire the drug resistance that greatly compromises the efficacy of drugs. Understanding the mechanism of drug resistance is important for finding new therapeutic approaches. In the present study, we found that the expression of vimentin was downregulated in drug-resistant ovarian cancer cell lines A2780-DR and HO-8910 as compared to their respective control cells. Overexpression of vimentin in A2780-DR cells markedly increased their sensitivity to cisplatin, whereas knockdown of vimentin in A2780, HO-8910-PM and HO-8910 cells increased the resistance to cisplatin, demonstrating that vimentin silencing enhanced cisplatin resistance in ovarian cancer cells. Quantitative proteomic analysis identified 95 differentially expressed proteins between the vimentin silenced A2780 cells (A2780-VIM-KN) and the control cells, in which downregulation of endocytic proteins and the upregulation of exocytotic proteins CHMP2B and PDZK1 were proposed to contribute the decreased cisplatin accumulation in vimentin knockdown cells. Silencing of vimentin induced upregulation of cancer stem cell markers and both A2780-DR and A2780-VIM-KN cells were more facile to form spheroids than control cells under serum-free culture condition. Our results also revealed that vimentin knockdown increased the 14-3-3 mediated retention of Cdc25C in the cytoplasm, leading to inactivation of Cdk1 and the prolonged G2 phase arrest that allowed the longer period of time for cells to repair cisplatin-damaged DNA. Taken together, we demonstrated that vimentin silencing enhanced cells' resistance to cisplatin via prolonged G2 arrest and increased exocytosis, suggesting that vimentin is a potential target for treatment of drug resistant ovarian cancer. PMID:27322682

  3. Over-Expression of SlSHN1 Gene Improves Drought Tolerance by Increasing Cuticular Wax Accumulation in Tomato

    PubMed Central

    Al-Abdallat, Ayed M.; Al-Debei, Hmoud S.; Ayad, Jamal Y.; Hasan, Shireen

    2014-01-01

    Increasing cuticular wax accumulation in plants has been associated with improving drought tolerance in plants. In this study, a cDNA clone encoding the SlSHN1 transcription factor, the closest ortholog to WIN/SHN1 gene in Arabidopsis, was isolated from tomato plant. Expression analysis of SlSHN1 indicated that it is induced in response to drought conditions. The over-expression of SlSHN1 in tomato under the control of the constitutive CaMV 35S promoter produced plants that showed mild growth retardation phenotype with shiny and dark green leaves. Scanning electron microscopy showed that the over-expression of SlSHN1 in tomato resulted in higher cuticular wax deposition on leaf epidermial tissue when compared to non-transformed plants. Expression analysis in transgenic lines over-expressing SlSHN1 indicated that several wax-related synthesis genes were induced. Transgenic tomato plants over-expressing SlSHN1 showed higher drought tolerance when compared with wild type plants; this was reflected in delayed wilting of transgenic lines, improved water status and reduced water loss rate when compared with wild type plants. In conclusion, the SlSHN1 gene can modulate wax accumulation and could be utilized to enhance drought tolerance in tomato plant. PMID:25350113

  4. Successful Reconstruction of Tooth Germ with Cell Lines Requires Coordinated Gene Expressions from the Initiation Stage

    PubMed Central

    Komine, Akihiko; Tomooka, Yasuhiro

    2012-01-01

    Tooth morphogenesis is carried out by a series of reciprocal interactions between the epithelium and mesenchyme in embryonic germs. Previously clonal dental epithelial cell (epithelium of molar tooth germ (emtg)) lines were established from an embryonic germ. They were odontogenic when combined with a dental mesenchymal tissue, although the odontogenesis was quantitatively imperfect. To improve the microenvironment in the germs, freshly isolated dental epithelial cells were mixed with cells of lines, and germs were reconstructed in various combinations. The results demonstrated that successful tooth construction depends on the mixing ratio, the age of dental epithelial cells and the combination with cell lines. Analyses of gene expression in these germs suggest that some signal(s) from dental epithelial cells makes emtg cells competent to communicate with mesenchymal cells and the epithelial and mesenchymal compartments are able to progress odontogenesis from the initiation stage. PMID:24710535

  5. The hESC line Envy expresses high levels of GFP in all differentiated progeny.

    PubMed

    Costa, Magdaline; Dottori, Mirella; Ng, Elizabeth; Hawes, Susan M; Sourris, Koula; Jamshidi, Pegah; Pera, Martin F; Elefanty, Andrew G; Stanley, Edouard G

    2005-04-01

    Human embryonic stem cells (hESCs) have been advanced as a potential source of cells for use in cell replacement therapies. The ability to identify hESCs and their differentiated progeny readily in transplantation experiments will facilitate the analysis of hESC potential and function in vivo. We have generated a hESC line designated 'Envy', in which robust levels of green fluorescent protein (GFP) are expressed in stem cells and all differentiated progeny.

  6. Effect of Thymoquinone on P53 Gene Expression and Consequence Apoptosis in Breast Cancer Cell Line

    PubMed Central

    Dastjerdi, Mehdi Nikbakht; Mehdiabady, Ebrahim Momeni; Iranpour, Farhad Golshan; Bahramian, Hamid

    2016-01-01

    Background: Nigella sativa has been a nutritional flavoring factor and natural treatment for many ailments for so many years in medical science. Earlier studies have been reported that thymoquinone (TQ), an active compound of its seed, contains anticancer properties. Previous studies have shown that TQ induces apoptosis in breast cancer cells but it is unclear the role of P53 in the apoptotic pathway. Hereby, this study reports the potency of TQ on expression of tumor suppressor gene P53 and apoptosis induction in breast cancer cell line Michigan Cancer Foundation-7 (MCF-7). Methods: MCF-7 cell line was cultured and treated with TQ, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was carried out for evaluating the half-maximal inhibitory concentration (IC50) values after 24 h of treatment. The percentage of apoptotic cells was measured by flow cytometry. Real-time polymerase chain reaction (PCR) was performed to estimate the messenger RNA expression of P53 in MCF-7 cell line at different times. Results: The IC50 value for the TQ in MCF-7 cells was 25 μM that determined using MTT assay. The flow cytometry and real-time PCR results showed that TQ could induce apoptosis in MCF-7 cells, and the P53 gene expression was dramatically up-regulated by ascending time, respectively. Hence, there was significant difference in 48 and 72 h. Conclusions: Our results demonstrated that TQ could induce apoptosis in MCF-7 cells through up-regulation of P53 expression in breast cancer cell line (MCF-7) by time-dependent manner. PMID:27141285

  7. Identification of circadian-related gene expression profiles in entrained breast cancer cell lines.

    PubMed

    Gutiérrez-Monreal, Miguel A; Treviño, Victor; Moreno-Cuevas, Jorge E; Scott, Sean-Patrick

    2016-01-01

    Cancer cells have broken circadian clocks when compared to their normal tissue counterparts. Moreover, it has been shown in breast cancer that disruption of common circadian oscillations is associated with a more negative prognosis. Numerous studies, focused on canonical circadian genes in breast cancer cell lines, have suggested that there are no mRNA circadian-like oscillations. Nevertheless, cancer cell lines have not been extensively characterized and it is unknown to what extent the circadian oscillations are disrupted. We have chosen representative non-cancerous and cancerous breast cell lines (MCF-10A, MCF-7, ZR-75-30, MDA-MB-231 and HCC-1954) in order to determine the degree to which the circadian clock is damaged. We used serum shock to synchronize the circadian clocks in culture. Our aim was to initially observe the time course of gene expression using cDNA microarrays in the non-cancerous MCF-10A and the cancerous MCF-7 cells for screening and then to characterize specific genes in other cell lines. We used a cosine function to select highly correlated profiles. Some of the identified genes were validated by quantitative polymerase chain reaction (qPCR) and further evaluated in the other breast cancer cell lines. Interestingly, we observed that breast cancer and non-cancerous cultured cells are able to generate specific circadian expression profiles in response to the serum shock. The rhythmic genes, suggested via microarray and measured in each particular subtype, suggest that each breast cancer cell type responds differently to the circadian synchronization. Future results could identify circadian-like genes that are altered in breast cancer and non-cancerous cells, which can be used to propose novel treatments. Breast cell lines are potential models for in vitro studies of circadian clocks and clock-controlled pathways.

  8. Increased range of ultrasonic guided wave testing of overhead transmission line cables using dispersion compensation.

    PubMed

    Legg, Mathew; Yücel, Mehmet K; Kappatos, Vassilios; Selcuk, Cem; Gan, Tat-Hean

    2015-09-01

    Overhead Transmission Line (OVTL) cables can experience structural defects and are, therefore, inspected using Non-Destructive Testing (NDT) techniques. Ultrasonic Guided Waves (UGW) is one NDT technique that has been investigated for inspection of these cables. For practical use, it is desirable to be able to inspect as long a section of cable as possible from a single location. This paper investigates increasing the UGW inspection range on Aluminium Conductor Steel Reinforced (ACSR) cables by compensating for dispersion using dispersion curve data. For ACSR cables, it was considered to be difficult to obtain accurate dispersion curves using modelling due to the complex geometry and unknown coupling between wire strands. Group velocity dispersion curves were, therefore, measured experimentally on an untensioned, 26.5m long cable and a method of calculating theoretical dispersion curves was obtained. Attenuation and dispersion compensation were then performed for a broadband Maximum Length Sequence (MLS) excitation signal. An increase in the Signal to Noise Ratio (SNR) of about 4-8dB compared to that of the dispersed signal was obtained. However, the main benefit was the increased ability to resolve the individual echoes from the end of the cable and an introduced defect in the form of a cut, which was 7 to at least 13dB greater than that of the dispersed signal. Five echoes were able to be clearly detected using MLS excitation signal, indicating the potential for an inspection range of up to 130m in each direction. To the best of the authors knowledge, this is the longest inspection range for ACSR cables reported in the literature, where typically cables, which were only one or two meter long, have been investigated previously. Narrow band tone burst and Hann windowed tone burst excitation signal also showed increased SNR and ability to resolve closely spaced echoes. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Hyperoxia increases hepatic arginase expression and ornithine production in mice

    SciTech Connect

    Malleske, Daniel T.; Rogers, Lynette K.; Velluci, Sean M.; Young, Tamara L.; Park, Min S.; Long, Donald W.; Welty, Stephen E.; Smith, Charles V.; Nelin, Leif D. . E-mail: NelinL@pediatrics.ohio-state.edu

    2006-08-15

    Hyperoxic exposure affects the levels and activities of some hepatic proteins. We tested the hypothesis that hyperoxic exposure would result in greater hepatic .NO concentrations. C3H/HeN mice were exposed to >95% O{sub 2} for 72 or 96 h and compared to room air-breathing controls. In contrast to our working hypothesis, exposure to >95% O{sub 2} for 96 h decreased hepatic nitrite/nitrate NO {sub X} concentrations (10.9 {+-} 2.2 nmol/g liver versus 19.3 {+-} 2.4 nmol/g liver in room air, P < 0.05). The hepatic levels of endothelial NO synthase (eNOS) and inducible NOS (iNOS) proteins were not different among the groups. The arginases, which convert L-arginine to urea and L-ornithine, may affect hepatic NOS activities by decreasing L-arginine bioavailability. Hepatic ornithine concentrations were greater in hyperoxic animals than in controls (318 {+-} 18 nmol/g liver in room air, and 539 {+-} 64, and 475 {+-} 40 at 72 and 96 h of hyperoxia, respectively, P < 0.01). Hepatic arginase I protein levels were greater in hyperoxic animals than in controls. Hepatic carbamoyl phosphate synthetase (CPS) protein levels and activities were not different among groups. These results indicate that increases in hepatic levels of arginase I in mice exposed to hyperoxia may diminish .NO production, as reflected by lower liver levels of NO {sub X}. The resultant greater hepatic ornithine concentrations may represent a mechanism to facilitate tissue repair, by favoring the production of polyamines and/or proline.

  10. [Application of the human hepatoblastoma cell lines inducibly expressing peroxisome proliferator-activated receptors (PPARs)].

    PubMed

    Tachibana, Keisuke

    2007-08-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors and commonly play an important role in the regulation of lipid homeostasis. Although three PPAR subtypes, alpha, delta and gamma show a relatively close amino acid sequence homology, the functions of each PPAR are distinct. For example, PPARalpha and PPARdelta induce lipid oxidation, while PPARgamma activates lipid storage and adipogenesis. To analyze the detail functions of human PPARs, we previously established tetracycline-regulated human hepatoblastoma cell lines that can be induced to express each human PPAR subtype. The expression of each PPAR subtype in established cell line was tightly controlled by the concentration of doxycycline. DNA microarray analyses using these cell lines were performed with or without adding ligand and provided the important information on the PPAR target genes. Furthermore, we analyzed the 5'-flanking region of the human adipose differentiation-related protein (adrp) gene that responded to all subtypes of PPARs, and determined the functional PPRE of the human adrp gene. Here we discuss the usefulness of these cell lines.

  11. Murine bone cell lines as models for spaceflight induced effects on differentiation and gene expression

    NASA Astrophysics Data System (ADS)

    Lau, P.; Hellweg, C. E.; Baumstark-Khan, C.; Reitz, G.

    Critical health factors for space crews especially on long-term missions are radiation exposure and the absence of gravity DNA double strand breaks DSB are presumed to be the most deleterious DNA lesions after radiation as they disrupt both DNA strands in close proximity Besides radiation risk the absence of gravity influences the complex skeletal apparatus concerning muscle and especially bone remodelling which results from mechanical forces exerting on the body Bone is a dynamic tissue which is life-long remodelled by cells from the osteoblast and osteoclast lineage Any imbalance of this system leads to pathological conditions such as osteoporosis or osteopetrosis Osteoblastic cells play a crucial role in bone matrix synthesis and differentiate either into bone-lining cells or into osteocytes Premature terminal differentiation has been reported to be induced by a number of DNA damaging or cell stress inducing agents including ionising and ultraviolet radiation as well as treatment with mitomycin C In the present study we compare the effects of sequential differentiation by adding osteoinductive substances ss -glycerophosphate and ascorbic acid Radiation-induced premature differentiation was investigated regarding the biosynthesis of specific osteogenic marker molecules and the differentiation dependent expression of marker genes The bone cell model established in our laboratory consists of the osteocyte cell line MLO-Y4 the osteoblast cell line OCT-1 and the subclones 4 and 24 of the osteoblast cell line MC3T3-E1 expressing several

  12. Increased efficiency for beyond line-of-sight in airborne ISR operations

    NASA Astrophysics Data System (ADS)

    Frayter, Slava; Willems, Koen

    2013-05-01

    Airborne platforms are increasingly being used as vehicles to capture intelligence data for defense, state and civil applications. The aerial vehicles are equipped with technology for both video and sensor data collection; the data is then sent to a ground mission control center for further processing. When the airborne platform is outside the reach of direct data relay due to distance or environment, satellite communications is used for Beyond Line of Sight (BLoS) communication. It is a key requirement for the satellite link in ISR (Intelligence, Surveillance and Reconnaissance) operations to get as much data and video as possible through the available bandwidth. The satellite link also needs to be available at all times during operations to insure mission critical communications and not endanger ground operations. Only by using robust satellite technology can the demand for more data and highest efficiency be satisfied while keeping OPEX costs under control. This paper will highlight both technical and practical challenges of operators in the airborne ISR missions, going from technical requirements to efficiency-driven solutions. It will also look at what the final results in the field are when transmitting ISR data and video from the airborne platform over satellite in highly adaptive environments. The existing qualified and deployed BLoS airborne solution already achieves over 20Mbps from the aircraft to the ground in active operations, but requirements and capabilities continue to increase as more comprehensive ISR data is being transmitted.

  13. LINE1 family member is negative regulator of HLA-G expression

    PubMed Central

    Ikeno, Masashi; Suzuki, Nobutaka; Kamiya, Megumi; Takahashi, Yuji; Kudoh, Jun; Okazaki, Tsuneko

    2012-01-01

    Class Ia molecules of human leucocyte antigen (HLA-A, -B and -C) are widely expressed and play a central role in the immune system by presenting peptides derived from the lumen of the endoplasmic reticulum. In contrast, class Ib molecules such as HLA-G serve novel functions. The distribution of HLA-G is mostly limited to foetal trophoblastic tissues and some tumour tissues. The mechanism required for the tissue-specific regulation of the HLA-G gene has not been well understood. Here, we investigated the genomic regulation of HLA-G by manipulating one copy of a genomic DNA fragment on a human artificial chromosome. We identified a potential negative regulator of gene expression in a sequence upstream of HLA-G that overlapped with the long interspersed element (LINE1); silencing of HLA-G involved a DNA secondary structure generated in LINE1. The presence of a LINE1 gene silencer may explain the limited expression of HLA-G compared with other class I genes. PMID:23002136

  14. Differential expression of multidrug resistance‑related proteins in adriamycin‑resistant (pumc‑91/ADM) and parental (pumc‑91) human bladder cancer cell lines.

    PubMed

    Zhao, Man; Yu, Shuliang; Zhang, Man

    2016-11-01

    Multidrug resistance (MDR) is the major obstacle to bladder cancer chemotherapy. Several mechanisms have been implicated in the development of MDR, including extrusion of the drug by cell membrane pumps, associated with P‑glycoprotein (P‑gp) and multidrug resistance‑associated protein (MRP); increased DNA damage repair, associated with topoisomerase II (Topo II); suppression of drug‑induced apoptosis, associated with p53; and regulation of cancer cell growth, associated with vascular endothelial growth factor (VEGF). In the present study, the expression levels of these five markers were detected in an adriamycin (ADM)‑resistant human bladder cancer cell line (pumc‑91/ADM) and its parental cell line (pumc‑91), in order to determine which marker is more important, or whether all of them participate in drug resistance. The expression levels of P‑gp, MRP, Topo II, VEGF and p53 were measured in the two cell lines by reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemistry. A significant increase in P‑gp, MRP and VEGF, and a decrease in Topo II mRNA expression were detected in the pumc‑91/ADM drug‑resistant cell line compared with the pumc‑91 cell line; however, no difference in p53 mRNA expression was detected between the cells. In pumc‑91/ADM cells, the protein expression levels of P‑gp and MRP were upregulated, whereas Topo II was significantly decreased. However, no marked differences in p53 or VEGF expression were detected between the two cell lines at the protein level. The cytoplasmic and cell membrane localization of P‑gp and MRP, the cytoplasmic localization of VEGF, and the nuclear localization of p53 and Topo II were confirmed in the two cell lines. The present study detected increased P‑gp and MRP, and reduced Topo II expression in pumc‑91/ADM cells compared with pumc‑91 cells; however, no difference was detected in p53 and VEGF expression between the cell lines. In

  15. Ectopic expression of anthocyanin 5-o-glucosyltransferase in potato tuber causes increased resistance to bacteria.

    PubMed

    Lorenc-Kukuła, Katarzyna; Jafra, Sylwia; Oszmiański, Jan; Szopa, Jan

    2005-01-26

    The principal goal of this paper was to investigate the significance of anthocyanin 5-O-glucosyltransferase (5-UGT) for potato tuber metabolism. The ectopic expression of a 5-UGT cDNA in the tuber improved the plant's defense against pathogen infection. The resistance of transgenic lines against Erwinia carotovora subsp. carotovora was about 2-fold higher than for nontransformed plants. In most cases the pathogen resistance was accompanied by a significant increase in tuber yield. To investigate the molecular basis of transgenic potato resistance, metabolic profiling of the plant was performed. In tuber extracts, the anthocyanin 3,5-O-substituted level was significantly increased when compared to that of the control plant. Of six anthocyanin compounds identified, the highest quantity for pelargonidin 3-rutinoside-5-glucoside acylated with p-coumaric acid and peonidin 3-rutinoside-5-glucoside acylated with p-coumaric acid was detected. A significant increase in starch and a decrease in sucrose level in transgenic tubers have been detected. The level of all other metabolites (amino acids, organic acids, polyamines, and fatty acids) was quite the same as in nontransformants. The plant resistance to bacterial infection correlates with anthocyanin content and sucrose level. The properties of recombinant glucosyltransferase were analyzed in in vitro experiments. The enzyme kinetics and its biochemical properties were similar to those from other sources.

  16. Profiling of differential expression of messenger RNA in normal, benign, and metastatic prostate cell lines.

    PubMed

    Chakrabarti, Ratna; Robles, Liza D; Gibson, Jane; Muroski, Megan

    2002-12-01

    To understand the phenotypic changes associated with prostate cancer development and metastasis, we investigated differential gene expression in primary and established prostate cell lines used as models. We have used a differential display of messenger RNA (DDRT-PCR) technique using 168 primer combinations and total RNA from BPH-1, LNCaP, and PC3 cells to identify filter-based cDNA microarrays containing 18,376 nonredundant clones of genes and expressed sequence tags (EST) using mRNA from PrEC and MDAPCa2a cells to identify genes that are differentially expressed in normal, benign, and cancerous prostate cell lines. Twenty-five cDNA with a significant difference in expression of 76 candidate cDNA, as identified by DDRT-PCR and confirmed by slot-blot analysis, were selected for sequence analysis. Of these, 14 cDNA were further confirmed by Northern blot analysis. Analysis of the cDNA microarray data showed that a variety of genes/EST were up- or down-regulated in the metastatic prostate tumor cells and a majority of these genes encode cytoskeletal proteins and proteins with regulatory function. Expression profile of two EST was confirmed by reverse transcription polymerase chain reaction. We also have identified a number of genes exhibiting differential expression in prostate cancer cells, which were not known earlier to be involved in prostate cancer. This report provides a comparative analysis of differential gene expression between normal prostatic epithelial cells and prostate cancer cells, and a foundation to facilitate in-depth studies on the mechanism of prostate cancer development and metastasis.

  17. Osmotic Stress Regulates Mineralocorticoid Receptor Expression in a Novel Aldosterone-Sensitive Cortical Collecting Duct Cell Line

    PubMed Central

    Viengchareun, Say; Kamenicky, Peter; Teixeira, Marie; Butlen, Daniel; Meduri, Geri; Blanchard-Gutton, Nicolas; Kurschat, Christine; Lanel, Aurélie; Martinerie, Laetitia; Sztal-Mazer, Shoshana; Blot-Chabaud, Marcel; Ferrary, Evelyne; Cherradi, Nadia; Lombès, Marc

    2009-01-01

    Aldosterone effects are mediated by the mineralocorticoid receptor (MR), a transcription factor highly expressed in the distal nephron. Given that MR expression level constitutes a key element controlling hormone responsiveness, there is much interest in elucidating the molecular mechanisms governing MR expression. To investigate whether hyper- or hypotonicity could affect MR abundance, we established by targeted oncogenesis a novel immortalized cortical collecting duct (CCD) cell line and examined the impact of osmotic stress on MR expression. KC3AC1 cells form domes, exhibit a high transepithelial resistance, express 11β-hydroxysteroid dehydrogenase 2 and functional endogenous MR, which mediates aldosterone-stimulated Na+ reabsorption through the epithelial sodium channel activation. MR expression is tightly regulated by osmotic stress. Hypertonic conditions induce expression of tonicity-responsive enhancer binding protein, an osmoregulatory transcription factor capable of binding tonicity-responsive enhancer response elements located in MR regulatory sequences. Surprisingly, hypertonicity leads to a severe reduction in MR transcript and protein levels. This is accompanied by a concomitant tonicity-induced expression of Tis11b, a mRNA-destabilizing protein that, by binding to the AU-rich sequences of the 3′-untranslated region of MR mRNA, may favor hypertonicity-dependent degradation of labile MR transcripts. In sharp contrast, hypotonicity causes a strong increase in MR transcript and protein levels. Collectively, we demonstrate for the first time that optimal adaptation of CCD cells to changes in extracellular fluid composition is accompanied by drastic modification in MR abundance via transcriptional and posttranscriptional mechanisms. Osmotic stress-regulated MR expression may represent an important molecular determinant for cell-specific MR action, most notably in renal failure, hypertension, or mineralocorticoid resistance. PMID:19846540

  18. Osmotic stress regulates mineralocorticoid receptor expression in a novel aldosterone-sensitive cortical collecting duct cell line.

    PubMed

    Viengchareun, Say; Kamenicky, Peter; Teixeira, Marie; Butlen, Daniel; Meduri, Geri; Blanchard-Gutton, Nicolas; Kurschat, Christine; Lanel, Aurélie; Martinerie, Laetitia; Sztal-Mazer, Shoshana; Blot-Chabaud, Marcel; Ferrary, Evelyne; Cherradi, Nadia; Lombès, Marc

    2009-12-01

    Aldosterone effects are mediated by the mineralocorticoid receptor (MR), a transcription factor highly expressed in the distal nephron. Given that MR expression level constitutes a key element controlling hormone responsiveness, there is much interest in elucidating the molecular mechanisms governing MR expression. To investigate whether hyper- or hypotonicity could affect MR abundance, we established by targeted oncogenesis a novel immortalized cortical collecting duct (CCD) cell line and examined the impact of osmotic stress on MR expression. KC3AC1 cells form domes, exhibit a high transepithelial resistance, express 11beta-hydroxysteroid dehydrogenase 2 and functional endogenous MR, which mediates aldosterone-stimulated Na(+) reabsorption through the epithelial sodium channel activation. MR expression is tightly regulated by osmotic stress. Hypertonic conditions induce expression of tonicity-responsive enhancer binding protein, an osmoregulatory transcription factor capable of binding tonicity-responsive enhancer response elements located in MR regulatory sequences. Surprisingly, hypertonicity leads to a severe reduction in MR transcript and protein levels. This is accompanied by a concomitant tonicity-induced expression of Tis11b, a mRNA-destabilizing protein that, by binding to the AU-rich sequences of the 3'-untranslated region of MR mRNA, may favor hypertonicity-dependent degradation of labile MR transcripts. In sharp contrast, hypotonicity causes a strong increase in MR transcript and protein levels. Collectively, we demonstrate for the first time that optimal adaptation of CCD cells to changes in extracellular fluid composition is accompanied by drastic modification in MR abundance via transcriptional and posttranscriptional mechanisms. Osmotic stress-regulated MR expression may represent an important molecular determinant for cell-specific MR action, most notably in renal failure, hypertension, or mineralocorticoid resistance.

  19. Loss of N-Cadherin Expression in Tumor Transplants Produced From As+3- and Cd+2-Transformed Human Urothelial (UROtsa) Cell Lines

    PubMed Central

    Sandquist, Elizabeth J.; Somji, Seema; Dunlevy, Jane R.; Garrett, Scott H.; Zhou, Xu Dong; Slusser-Nore, Andrea

    2016-01-01

    Background Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. Methods Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. Results This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. Conclusions The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth

  20. Hyperketonemia increases monocyte adhesion to endothelial cells and is mediated by LFA-1 expression in monocytes and ICAM-1 expression in endothelial cells

    PubMed Central

    Rains, Justin L.

    2011-01-01

    Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. The objective of this study was to examine the hypothesis that hyperketonemia increases monocyte-endothelial cell (EC) adhesion and the development of vascular disease in diabetes. Human U937 and THP-1 monocyte cell lines and human umbilical vein endothelial cells (HUVECs) were cultured with acetoacetate (AA) (0–10 mM) or β-hydroxybutyrate (BHB) (0–10 mM) for 24 h prior to evaluating adhesion and adhesion molecule expression. The results demonstrate a significant (P < 0.01) increase in both U937 and THP-1 adhesion to HUVEC monolayers treated with 4 mM AA compared with control. Equal concentrations of BHB resulted in similar increases in monocyte-EC adhesion. Similarly, treatments of AA or BHB to isolated monocytes from human blood also show increases in adhesion to endothelial cells. intercellular adhesion molecule-1 (ICAM-1) was significantly increased on the surface of HUVECs and an increase in total protein expression with AA treatment compared with control. The expression level of lymphocyte function-associated antigen-1 (LFA-1) was increased in monocytes treated with AA, and LFA-1 affinity was altered from low to high affinity following treatment with both AA and BHB. Monocyte adhesion could be blocked when cells were preincubated with an antibody to ICAM-1 or LFA-1. Results also show a significant increase in IL-8 and MCP-1 secretion in monocytes and HUVECs treated with 0–10 mM AA. These results suggest that hyperketonemia can induce monocyte adhesion to endothelial cells and that it is mediated via increased ICAM-1 expression in endothelial cells and increased expression and affinity of LFA-1 in monocytes. PMID:21540444

  1. Hyperketonemia increases monocyte adhesion to endothelial cells and is mediated by LFA-1 expression in monocytes and ICAM-1 expression in endothelial cells.

    PubMed

    Rains, Justin L; Jain, Sushil K

    2011-08-01

    Frequent episodes of hyperketonemia are associated with a higher incidence of vascular disease. The objective of this study was to examine the hypothesis that hyperketonemia increases monocyte-endothelial cell (EC) adhesion and the development of vascular disease in diabetes. Human U937 and THP-1 monocyte cell lines and human umbilical vein endothelial cells (HUVECs) were cultured with acetoacetate (AA) (0-10 mM) or β-hydroxybutyrate (BHB) (0-10 mM) for 24 h prior to evaluating adhesion and adhesion molecule expression. The results demonstrate a significant (P < 0.01) increase in both U937 and THP-1 adhesion to HUVEC monolayers treated with 4 mM AA compared with control. Equal concentrations of BHB resulted in similar increases in monocyte-EC adhesion. Similarly, treatments of AA or BHB to isolated monocytes from human blood also show increases in adhesion to endothelial cells. intercellular adhesion molecule-1 (ICAM-1) was significantly increased on the surface of HUVECs and an increase in total protein expression with AA treatment compared with control. The expression level of lymphocyte function-associated antigen-1 (LFA-1) was increased in monocytes treated with AA, and LFA-1 affinity was altered from low to high affinity following treatment with both AA and BHB. Monocyte adhesion could be blocked when cells were preincubated with an antibody to ICAM-1 or LFA-1. Results also show a significant increase in IL-8 and MCP-1 secretion in monocytes and HUVECs treated with 0-10 mM AA. These results suggest that hyperketonemia can induce monocyte adhesion to endothelial cells and that it is mediated via increased ICAM-1 expression in endothelial cells and increased expression and affinity of LFA-1 in monocytes.

  2. Characterization of a new human melanoma cell line with CD133 expression.

    PubMed

    Gil-Benso, Rosario; Monteagudo, Carlos; Cerdá-Nicolás, Miguel; Callaghan, Robert C; Pinto, Sandra; Martínez-Romero, Alicia; Pellín-Carcelén, Ana; San-Miguel, Teresa; Cigudosa, Juan C; López-Ginés, Concha

    2012-06-01

    A novel human malignant melanoma cell line, designated MEL-RC08, was established from a pericranial metastasis of a malignant melanoma of the skin. The cell line has been subcultured for more than 150 passages and is tumorigenic in nude mice. Growth kinetics, cytogenetics, flow cytometry, and molecular techniques for analysis of the genes implicated in cell cycle control; mutations in BRAF, NRAS, C-KiT, RB, and TP53 genes; and amplification of MDM2, CDK4, and cyclin D1 have been studied. Cytogenetically, the tumor and the cell line showed a hypertriploid karyotype with many clonal numeric and structural abnormalities. DNA flow cytometry showed an aneuploid peak with a DNA index value of 1.5. Mutations in TP53 and BRAF genes were demonstrated in both tumor and cell line. Furthermore, stem cell marker CD133 expression was detected in most cells, together with other stem cell markers, suggesting the presence of cells with tumor-initiating potential in this cell line.

  3. Functional expression of the serotonin 5-HT7 receptor in human glioblastoma cell lines

    PubMed Central

    Mahé, Cécile; Bernhard, Michel; Bobirnac, Ionel; Keser, Corinna; Loetscher, Erika; Feuerbach, Dominik; Dev, Kumlesh K; Schoeffter, Philippe

    2004-01-01

    Serotonin 5-HT7 receptors are present in astrocytes. Understanding their role in this type of cell would greatly benefit from the identification of astroglial cell lines expressing this receptor type. The aim of the present study was to assess the expression of native 5-HT7 receptors and 5-HT7 receptor mRNA in a number of human glioblastoma cell lines, by means of cAMP measurements, Western blot analysis and reverse transcriptase–polymerase chain reaction (RT–PCR) analysis. 5-Hydroxytryptamine (5-HT), 5-carboxamidotryptamine (5-CT), 5-methoxytryptamine (5-MeOT) and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) induced concentration-dependent stimulations of cAMP accumulation in the human glioblastoma cell lines, U-373 MG, U-138 MG, U-87 MG, DBTRG-05MG, T98G, H4, CCF-STTG1 and Hs 683. The rank order of potency was 5-CT>5-HT=5-MeOT≫8-OH-DPAT. The effect of 5-CT was inhibited in a concentration-dependent manner by the selective 5-HT7 receptor antagonist SB-269970 in all human glioblastoma cells. Schild analyses yielded slope factors close to unity (0.89–1.13) and pA2 values of 8.69–9.05. Western blot analysis revealed the presence of immunoreactive bands corresponding to the human 5-HT7 receptor in extracts of all human glioblastoma cell lines. The presence of the three splice variants of the 5-HT7 receptor (5-HT7(a/b/d)) was visualized by RT–PCR analysis with specific primers in all human glioblastoma cell lines. In conclusion, human glioblastoma cell lines express functional 5-HT7 receptors and the three splice variants of the corresponding mRNA. These cell lines could serve as model systems of native 5-HT7 receptors in glial cells to investigate their putative role in processes like release of neurotrophic factors or inflammatory cytokines. PMID:15339860

  4. Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line.

    PubMed

    Steiner, Aaron B; Kim, Taeryn; Cabot, Victoria; Hudspeth, A J

    2014-04-08

    Hearing loss is most commonly caused by the destruction of mechanosensory hair cells in the ear. This condition is usually permanent: Despite the presence of putative hair-cell progenitors in the cochlea, hair cells are not naturally replenished in adult mammals. Unlike those of the mammalian ear, the progenitor cells of nonmammalian vertebrates can regenerate hair cells throughout life. The basis of this difference remains largely unexplored but may lie in molecular dissimilarities that affect how progenitors respond to hair-cell death. To approach this issue, we analyzed gene expression in hair-cell progenitors of the lateral-line system. We developed a transgenic line of zebrafish that expresses a red fluorescent protein in the presumptive hair-cell progenitors known as mantle cells. Fluorescence-activated cell sorting from the skins of transgenic larvae, followed by microarray-based expression analysis, revealed a constellation of transcripts that are specifically enriched in these cells. Gene expression analysis after hair-cell ablation uncovered a cohort of genes that are differentially regulated early in regeneration, suggesting possible roles in the response of progenitors to hair-cell death. These results provide a resource for studying hair-cell regeneration and the biology of sensory progenitor cells.

  5. Dynamic gene expression by putative hair-cell progenitors during regeneration in the zebrafish lateral line

    PubMed Central

    Kim, Taeryn; Cabot, Victoria; Hudspeth, A. J.

    2014-01-01

    Hearing loss is most commonly caused by the destruction of mechanosensory hair cells in the ear. This condition is usually permanent: Despite the presence of putative hair-cell progenitors in the cochlea, hair cells are not naturally replenished in adult mammals. Unlike those of the mammalian ear, the progenitor cells of nonmammalian vertebrates can regenerate hair cells throughout life. The basis of this difference remains largely unexplored but may lie in molecular dissimilarities that affect how progenitors respond to hair-cell death. To approach this issue, we analyzed gene expression in hair-cell progenitors of the lateral-line system. We developed a transgenic line of zebrafish that expresses a red fluorescent protein in the presumptive hair-cell progenitors known as mantle cells. Fluorescence-activated cell sorting from the skins of transgenic larvae, followed by microarray-based expression analysis, revealed a constellation of transcripts that are specifically enriched in these cells. Gene expression analysis after hair-cell ablation uncovered a cohort of genes that are differentially regulated early in regeneration, suggesting possible roles in the response of progenitors to hair-cell death. These results provide a resource for studying hair-cell regeneration and the biology of sensory progenitor cells. PMID:24706895

  6. Overexpression of the microRNA hsa-miR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin.

    PubMed

    Hurteau, Gregory J; Carlson, J Andrew; Spivack, Simon D; Brock, Graham J

    2007-09-01

    MicroRNAs are approximately 22-nucleotide sequences thought to interact with multiple mRNAs resulting in either translational repression or degradation. We previously reported that several microRNAs had variable expression in mammalian cell lines, and we examined one, miR-200c, in more detail. A combination of bioinformatics and quantitative reverse transcription-PCR was used to identify potential targets and revealed that the zinc finger transcription factor transcription factor 8 (TCF8; also termed ZEB1, deltaEF1, Nil-2-alpha) had inversely proportional expression levels to miR-200c. Knockout experiments using anti-microRNA oligonucleotides increased TCF8 levels but with nonspecific effects. Therefore, to investigate target predictions, we overexpressed miR-200c in select cells lines. Ordinarily, the expression level of miR-200c in non-small-cell lung cancer A549 cells is low in contrast to normal human bronchial epithelial cells. Stable overexpression of miR-200c in A549 cells results in a loss of TCF8, an increase in expression of its regulatory target, E-cadherin, and altered cell morphology. In MCF7 (estrogen receptor-positive breast cancer) cells, there is endogenous expression of miR-200c and E-cadherin but TCF8 is absent. Conversely, MDA-MB-231 (estrogen receptor-negative) cells lack detectable miR-200c and E-cadherin (the latter reportedly due to promoter region methylation) but express TCF8. The ectopic expression of miR-200c in this cell line also reduced levels of TCF8, restored E-cadherin expression, and altered cell morphology. Because the down-regulation of E-cadherin is a crucial event in epithelial-to-mesenchymal transition, loss of miR-200c expression could play a significant role in the initiation of an invasive phenotype, and, equally, miR-200c overexpression holds potential for its reversal.

  7. Increased expression of protein kinase CK2α correlates with poor patient prognosis in epithelial ovarian cancer

    PubMed Central

    Ma, Zebiao; Wang, Xiaojing; He, Jiehua

    2017-01-01

    Epithelial ovarian cancer (EOC) is one of the deadly gynecological malignancies. The function of protein kinase CK2α (CK2α) in EOC is still unknown. Our study aimed to investigate the relationship between the protein expression of CK2α and the tumor progression, the prognosis of human EOC. In this study, we analyzed the expression levels of CK2α through Western blot, using EOC cell lines like A2780, HO8910, COV644, OVCAR3, SKOV3, and the primary normal ovarian surface epithelial (NOSE) cells. Furthermore, OVCAR3 and SKOV3 EOC cells were employed as a cellular model to study the role of CK2α on cell growth, migration, invasion, apoptosis, and cell cycle distribution. In addition, we investigated CK2α protein expression in tumor tissues from patients with EOC by immunohistochemistry and analyzed the association between CK2α expression and clinicopathologic parameters and prognosis of EOC patients. And we found that compared with NOSE cells, CK2α protein expression was increased in A2780, HO8910, OVCAR3, and SKOV3 ovarian cancer cell lines. Decreased CK2α expression suppressed OVCAR3 and SKOV3 cell growth and induced more apoptosis. CK2α knockdown using specific siRNAs inhibited migration and invasion ability of OVCAR3 and SKOV3 cells. In addition, high CK2α protein expression was found in 68.4% (80/117) of EOC patients. Increased CK2α expression of was significantly correlated with FIGO staging and peritoneal cytology. Patients with higher CK2α expression had a significantly poorer overall survival compared with those with lower CK2α expression. Multi-variate Cox regression analysis proved that increased CK2α expression was an independent prognostic marker for EOC. Taken together, our data displayed that CK2α may play a role in tumor aggressive behavior of EOC and could be used as a marker for predicting prognosis of EOC patient. High CK2α expression might predict poor patient survival. PMID:28355289

  8. Ectopic expression of catalase in Drosophila mitochondria increases stress resistance but not longevity.

    PubMed

    Mockett, Robin J; Bayne, Anne Cécile V; Kwong, Linda K; Orr, William C; Sohal, Rajindar S

    2003-01-15

    The goal of this study was to test the hypothesis that the rate of mitochondrial oxidant production governs the aging process of the fruit fly, Drosophila melanogaster. Catalase, an antioxidative enzyme expressed in the cytosol and peroxisomes of Drosophila, was targetted ectopically to the mitochondrial matrix by fusion of a leader peptide derived from ornithine aminotransferase with its N-terminus. The presence of the transgene encoding this fusion protein was associated with moderate (35 +/- 13%) increases in total catalase activity in most lines, and measurable levels of catalase activity in the mitochondria (30-140 U/mg protein). There was no impact on the life span of the flies at 25 degrees C, even in an exceptional line with a 149% increase in total catalase activity, and there was a small decrease in longevity at 29 degrees C. There were no compensatory changes in the rate of metabolism or physical activity, or in the levels of other major antioxidants, suggesting that the aging process was largely unaffected. Resistance to exogenous hydrogen peroxide, paraquat, and cold stress was enhanced, but there was no appreciable effect on resistance to hyperoxia. The results demonstrate the importance of mitochondrial antioxidant levels in the resistance to oxidative stress at the organismal level, and illustrate that different effects on aging and stress resistance may ensue from a single treatment. The main inferences drawn are that: (i) levels of stress resistance may neither be a cause nor a reliable indicator of the rate of aging, and (ii) bolstering antioxidant levels in Drosophila may not delay or slow down the aging process.

  9. Highly and moderately aggressive mouse ovarian cancer cell lines exhibit differential gene expression

    PubMed Central

    Zhang, Wensheng; Kale, Shubha P.; McFerrin, Harris; Davenport, Ian; Wang, Guangdi; Skripnikova, Elena; Li, Xiao-Lin; Bowen, Nathan J.; McDaniels, Leticia B; Meng, Yuan-Xiang; Polk, Paula; Liu, Yong-Yu; Zhang, Qian-Jin

    2017-01-01

    Patients with advanced epithelial ovarian cancer often experience disease recurrence after standard therapies, a critical factor in determining their five-year survival rate. Recent reports indicated that long-term or short-term survival is associated with varied gene expression of cancer cells. Thus, identification of novel prognostic biomarkers should be considered. Since the mouse genome is similar to the human genome, we explored potential prognostic biomarkers using two groups of mouse ovarian cancer cell lines (group 1: IG-10, IG-10pw, and IG-10pw/agar; group 2: IG-10 clones 2, 3, and 11) which display highly and moderately aggressive phenotypes in vivo. Mice injected with these cell lines have different survival time and rates, capacities of tumor, and ascites formations, reflecting different prognostic potentials. Using an Affymetrix Mouse Genome 430 2.0 Array, a total of 181 genes were differentially expressed (P<0.01) by at least twofold between two groups of the cell lines. Of the 181 genes, 109 and 72 genes were overexpressed in highly and moderately aggressive cell lines, respectively. Analysis of the 109 and 72 genes using Ingenuity Pathway Analysis (IPA) tool revealed two cancer-related gene networks. One was associated with the highly aggressive cell lines and affiliated with MYC gene, and another was associated with the moderately aggressive cell lines and affiliated with the androgen receptor (AR). Finally, the gene enrichment analysis indicated that the overexpressed 89 genes (out of 109 genes) in highly aggressive cell lines had a function annotation in the David database. The cancer-relevant significant gene ontology (GO) terms included Cell cycle, DNA metabolic process, and Programmed cell death. None of the genes from a set of the 72 genes overexpressed in the moderately aggressive cell lines had a function annotation in the David database. Our results suggested that the overexpressed MYC and 109 gene set represented highly aggressive ovarian

  10. Expression of a bioactive recombinant human interleukin-11 in chicken HD11 cell line.

    PubMed

    Léon, Arnaud; Wang, Xiao-Ming; Champion-Arnaud, Patrick; Sobczyk, André; Pain, Bertrand; Content, Jean; Jacques, Yannick; Valarché, Isabelle

    2005-06-21

    To direct the synthesis and secretion of recombinant human interleukin-11 (rhIL-11) in chicken HD11 cells, a plasmid targeting the c-lysozyme gene has been constructed which contains the mature cytokine cDNA in frame with the lysozyme leader sequence. The upregulation of rhIL-11 mediated by LPS proves the knock-in of hIL-11 cDNA in the lysozyme gene. The bioactivity of the expressed protein is demonstrated and quantified with the hIL-11 dependent 7TD1 and B9 cell lines. The electrophoretic mobility, receptor binding properties and growth promoting effect of the chicken-derived cytokine are identical to those of a rhIL-11 expressed in Escherichia coli. These results describe the secretion of a biologically active rhIL-11 expressed by an avian cellular machinery.

  11. Effect of fixation time on breast biomarker expression: a controlled study using cell line-derived xenografted (CDX) tumours.

    PubMed

    Kao, K R; Hasan, T; Baptista, A; Truong, T; Gai, L; Smith, A C; Li, S; Gonzales, P; Voisey, K; Erivwo, P; Power, J; Denic, N

    2017-03-23

    Altering the length of time specimens are placed in fixative without compromising analytical testing accuracy is a continuous challenge in the anatomical pathology lab. The aim of this study was to determine under controlled conditions the effects of variable fixation time on breast biomarker expression in human breast cancer cell line-derived xenografted (CDX) tumours. CDX tumours using strong oestrogen receptor (ER)-positive, Her2-negative (MCF7) and weak ER-positive, Her2 equivocal (T47D) breast cancer cell lines were fixed for various times ranging from 1 to 336 hours in 10% neutral buffered formalin. CDX tumours were processed according to routine biomarker testing protocols and stained for ER and Her2 immunohistochemistry (IHC) and processed for HER2 fluorescence in situ hybridisation (FISH). The tumours were evaluated using Allred scoring for ER and current ASCO/CAP guidelines for Her2, and by objective cell counting methodology. No differences were found in expression of ER in either MCF7 or T47D CDX tumours under variable fixation. T47D tumours displayed variably equivocal Her2 staining when fixed for 24 hours, but fixation for ≤8 hours resulted in consistently negative staining while tumours fixed for >72 hours demonstrated consistent equivocal staining (p<0.01). Cell counting assays revealed only a significant increase in sensitivity in tumours fixed for >72 hours (p<0.01). As expected, FISH results were unaffected by variable fixation. Neither shortened nor prolonged fixation affects ER expression, consistent with previous findings. In equivocal Her2-expressing tumours, however, increasing fixation increased the sensitivity of Her2 IHC reporting while not affecting FISH. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  12. Marinobufagenin induces increases in procollagen expression in a process involving protein kinase C and Fli-1: implications for uremic cardiomyopathy.

    PubMed

    Elkareh, Jihad; Periyasamy, Sankaridrug M; Shidyak, Amjad; Vetteth, Sandeep; Schroeder, Jeremy; Raju, Vanamala; Hariri, Imad M; El-Okdi, Nasser; Gupta, Shalini; Fedorova, Larisa; Liu, Jiang; Fedorova, Olga V; Kahaleh, M Bashar; Xie, Zijian; Malhotra, Deepak; Watson, Dennis K; Bagrov, Alexei Y; Shapiro, Joseph I

    2009-05-01

    The cardiotonic steroid marinobufagenin (MBG) has been implicated in the pathogenesis of experimental uremic cardiomyopathy, which is characterized by progressive cardiac fibrosis. We examined whether the transcription factor Friend leukemia integration-1 (Fli-1) might be involved in this process. Fli-1-knockdown mice demonstrated greater cardiac collagen-1 expression and fibrosis compared with wild-type mice; both developed increased cardiac collagen expression and fibrosis after 5/6 nephrectomy. There was a strong inverse relationship between the expressions of Fli-1 and procollagen in primary culture of rat cardiac and human dermal fibroblasts as well as a cell line derived from renal fibroblasts and MBG-induced decreases in nuclear Fli-1 as well as increases in procollagen-1 expression in these cells. Transfection of a Fli-1 expression vector prevented increased procollagen-1 expression from MBG. MBG exposure induced a rapid translocation of the delta-isoform of protein kinase C (PKCdelta) to the nucleus. This translocation was prevented by pharmacological inhibition of phospholipase C, and MBG-induced