Science.gov

Sample records for lines sy-5y neuroblastoma

  1. Differentiation of the SH-SY5Y Human Neuroblastoma Cell Line.

    PubMed

    Shipley, Mackenzie M; Mangold, Colleen A; Szpara, Moriah L

    2016-02-17

    Having appropriate in vivo and in vitro systems that provide translational models for human disease is an integral aspect of research in neurobiology and the neurosciences. Traditional in vitro experimental models used in neurobiology include primary neuronal cultures from rats and mice, neuroblastoma cell lines including rat B35 and mouse Neuro-2A cells, rat PC12 cells, and short-term slice cultures. While many researchers rely on these models, they lack a human component and observed experimental effects could be exclusive to the respective species and may not occur identically in humans. Additionally, although these cells are neurons, they may have unstable karyotypes, making their use problematic for studies of gene expression and reproducible studies of cell signaling. It is therefore important to develop more consistent models of human neurological disease. The following procedure describes an easy-to-follow, reproducible method to obtain homogenous and viable human neuronal cultures, by differentiating the chromosomally stable human neuroblastoma cell line, SH-SY5Y. This method integrates several previously described methods(1-4) and is based on sequential removal of serum from media. The timeline includes gradual serum-starvation, with introduction of extracellular matrix proteins and neurotrophic factors. This allows neurons to differentiate, while epithelial cells are selected against, resulting in a homogeneous neuronal culture. Representative results demonstrate the successful differentiation of SH-SY5Y neuroblastoma cells from an initial epithelial-like cell phenotype into a more expansive and branched neuronal phenotype. This protocol offers a reliable way to generate homogeneous populations of neuronal cultures that can be used for subsequent biochemical and molecular analyses, which provides researchers with a more accurate translational model of human infection and disease.

  2. Silicon as neuroprotector or neurotoxic in the human neuroblastoma SH-SY5Y cell line.

    PubMed

    Garcimartín, Alba; Merino, José Joaquín; Santos-López, Jorge Arturo; López-Oliva, María Elvira; González, María Pilar; Sánchez-Muniz, Francisco José; Benedí, Juana

    2015-09-01

    Silicon (Si) is a trace element that has been considered to be an environmental contaminant for many years, although different studies have recently reported it is an essential element for living cells. The present study tested the ability of different concentrations of Si G57™ to induce neuroprotection or neurotoxicity over 24 h in the SH-SY5Y human neuroblastoma cell line. Cell viability, cellular proliferation, LDH release, ROS, antioxidant capacity, TBARS, caspase-3, -8 and -9, DNA fragmentation, and TNF-α levels were evaluated. Low Si doses (50-250 ng mL(-1)) increased the cell viability and reduced caspase-3 and -8 activities and TNF-α level. The increase in cell viability was independent of any proliferative effect as there was no variation in cyclin E and PCNA levels. At higher concentrations, Si increased caspase-3, as well as TBARS, LDH, DNA fragmentation, and TNF-α releases. Altogether, these results suggest that Si could act either as a neuroprotector or a neurotoxic agent depending on the concentration tested. This study emphasizes the importance of developing new neuroprotective therapies based on low Si doses.

  3. Acrylamide affects proliferation and differentiation of the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y.

    PubMed

    Attoff, K; Kertika, D; Lundqvist, J; Oredsson, S; Forsby, A

    2016-09-01

    Acrylamide is a well-known neurotoxic compound and people get exposed to the compound by food consumption and environmental pollutants. Since acrylamide crosses the placenta barrier, the fetus is also being exposed resulting in a risk for developmental neurotoxicity. In this study, the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y were used to study proliferation and differentiation as alerting indicators for developmental neurotoxicity. For both cell lines, acrylamide reduced the number of viable cells by reducing proliferation and inducing cell death in undifferentiated cells. Acrylamide concentrations starting at 10fM attenuated the differentiation process in SH-SY5Y cells by sustaining cell proliferation and neurite outgrowth was reduced at concentrations from 10pM. Acrylamide significantly reduced the number of neurons starting at 1μM and altered the ratio between the different phenotypes in differentiating C17.2 cell cultures. Ten micromolar of acrylamide also reduced the expression of the neuronal and astrocyte biomarkers. Although the neurotoxic concentrations in the femtomolar range seem to be specific for the SH-SY5Y cell line, the fact that micromolar concentrations of acrylamide seem to attenuate the differentiation process in both cell lines raises the interest to further investigations on the possible developmental neurotoxicity of acrylamide.

  4. Bovine herpesvirus 1 can efficiently infect the human (SH-SY5Y) but not the mouse neuroblastoma cell line (Neuro-2A).

    PubMed

    Thunuguntla, Prasanth; El-Mayet, Fouad S; Jones, Clinton

    2017-03-15

    Bovine herpesvirus 1 (BoHV-1) is a significant bovine pathogen that establishes a life-long latent infection in sensory neurons. Previous attempts to develop immortalized bovine neuronal cells were unsuccessful. Consequently, our understanding of the BoHV-1 latency-reactivation cycle has relied on studying complex virus-host interactions in calves. In this study, we tested whether BoHV-1 can infect human (SH-SY5Y) or mouse (Neuro-2A) neuroblastoma cells. We provide new evidence that BoHV-1 efficiently infects SH-SY5Y cells and yields virus titers approximately 100 fold less than bovine kidney cells. Conversely, virus titers from productively infected Neuro-2A cells were approximately 10,000 fold less than bovine kidney cells. Using a β-Gal expressing virus (gC-Blue), we demonstrate that infection of Neuro-2A cells (actively dividing or differentiated) does not result in efficient virus spread, unlike bovine kidney or SH-SY5Y cells. Additional studies demonstrated that lytic cycle viral gene expression (bICP4 and gE) was readily detected in SH-SY5Y cells: conversely bICP4 was not readily detected in productively infected Neuro-2A cells. Finally, infection of SH-SY5Y and bovine kidney cells, but not Neuro-2A cells, led to rapid activation of the Akt protein kinase. These studies suggest that the Neuro-2A cell line may be a novel cell culture model to identify factors that regulate BoHV-1 productive infection in neuronal cells.

  5. N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents

    PubMed Central

    Mazzoccoli, Carmela; Ruggieri, Vitalba; Tataranni, Tiziana; Agriesti, Francesca; Laurenzana, Ilaria; Fratello, Angelo; Capitanio, Nazzareno; Piccoli, Claudia

    2016-01-01

    Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil. To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment. PMID:27036033

  6. Ferulic Acid Regulates the Nrf2/Heme Oxygenase-1 System and Counteracts Trimethyltin-Induced Neuronal Damage in the Human Neuroblastoma Cell Line SH-SY5Y

    PubMed Central

    Catino, Stefania; Paciello, Fabiola; Miceli, Fiorella; Rolesi, Rolando; Troiani, Diana; Calabrese, Vittorio; Santangelo, Rosaria; Mancuso, Cesare

    2016-01-01

    Over the past years, several lines of evidence have pointed out the efficacy of ferulic acid (FA) in counteracting oxidative stress elicited by β-amyloid or free radical initiators, based on the ability of this natural antioxidant to up-regulate the heme oxygenase-1 (HO-1) and biliverdin reductase (BVR) system. However, scarce results can be found in literature regarding the cytoprotective effects of FA in case of damage caused by neurotoxicants. The aim of this work is to investigate the mechanisms through which FA exerts neuroprotection in SH-SY5Y neuroblastoma cells exposed to the neurotoxin trimethyltin (TMT). FA (1–10 μM for 6 h) dose-dependently increased both basal and TMT (10 μM for 24 h)-induced HO-1 expression in SH-SY5Y cells by fostering the nuclear translocation of the transcriptional activator Nrf2. In particular, the co-treatment of FA (10 μM) with TMT was also responsible for the nuclear translocation of HO-1 in an attempt to further increase cell stress response in SH-SY5Y cells. In addition to HO-1, FA (1–10 μM for 6 h) dose-dependently increased the basal expression of BVR. The antioxidant and neuroprotective features of FA, through the increase of HO activity, were supported by the evidence that FA inhibited TMT (10 μM)-induced lipid peroxidation (evaluated by detecting 4-hydroxy-nonenal) and DNA fragmentation in SH-SY5Y cells and that this antioxidant effect was reversed by the HO inhibitor Zinc-protoporphyrin-IX (5 μM). Among the by-products of the HO/BVR system, carbon monoxide (CORM-2, 50 nM) and bilirubin (BR, 50 nM) significantly inhibited TMT-induced superoxide anion formation in SH-SY5Y cells. All together, these results corroborate the neuroprotective effect of FA through the up-regulation of the HO-1/BVR system, via carbon monoxide and BR formation, and provide the first evidence on the role of HO-1/Nrf2 axis in FA-related enhancement of cell stress response in human neurons. PMID:26779023

  7. Paullinia cupana Mart. var. Sorbilis protects human dopaminergic neuroblastoma SH-SY5Y cell line against rotenone-induced cytotoxicity.

    PubMed

    de Oliveira, Diêgo Madureira; Barreto, George; Galeano, Pablo; Romero, Juan Ignacio; Holubiec, Mariana Inés; Badorrey, Maria Sol; Capani, Francisco; Alvarez, Lisandro Diego Giraldez

    2011-09-01

    Paullinia cupana Mart. var. Sorbilis, commonly known as Guaraná, is a Brazilian plant frequently cited for its antioxidant properties and different pharmacological activities on the central nervous system. The potential beneficial uses of Guaraná in neurodegenerative disorders, such as in Parkinson's disease (PD), the pathogenesis of which is associated with mitochondrial dysfunction and oxidative stress, has not yet been assessed. Therefore, the main aim of the present study was to evaluate if an extract of commercial powdered seeds of Guaraná could protect human dopaminergic neuroblastoma SH-SY5Y cell line against rotenone-induced cytotoxicity. Two concentration of Guaraná dimethylsulfoxide extract (0.312 and 0.625 mg/mL) were added to SH-SY5Y cells treated with 300 nM rotenone for 48 h, and the cytoprotective effects were assessed by means of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, measuring lactate dehydrogenase (LDH) levels, and analyzing nuclear integrity with Hoechst33258 stain. Results showed that the addition of Guaraná extract significantly increased the cell viability of SH-SY5Y cells treated with rotenone, in a dose-dependent manner. On the other hand, LDH levels were significantly reduced by addition of 0.312 mg/mL of Guaraná, but unexpectedly, no changes were observed with the higher concentration. Moreover, chromatin condensation and nuclear fragmentation were significantly reduced by addition of any of both concentrations of the extract. The results obtained in this work could provide relevant information about the mechanisms underlying the degeneration of dopaminergic neurons in PD and precede in vivo experiments. Further studies are needed to investigate which active constituent is responsible for the cytoprotective effect produced by Paullinia cupana.

  8. Melatonin inhibits angiogenesis in SH-SY5Y human neuroblastoma cells by downregulation of VEGF.

    PubMed

    González, Alicia; González-González, Alicia; Alonso-González, Carolina; Menéndez-Menéndez, Javier; Martínez-Campa, Carlos; Cos, Samuel

    2017-04-01

    Vascular endothelial growth factor (VEGF) produced from tumor cells plays a crucial role in the pathogenesis and neovascularization of neuroblastoma. Inhibition of VEGF secretion by tumor cells, as well as VEGF-regulated signaling in endothelial cells, are important to reduce the angiogenesis and growth of neuroblastoma. Since melatonin has anti-angiogenic effects in tumor cell lines, the aim of the present study was to study melatonin modulation of the pro-angiogenic effects of VEGF in neuroblastoma cells (SH-SY5Y). We used co-cultures of SH-SY5Y and endothelial cells. VEGF expression and protein levels were analyzed by quantitative RT-PCR and ELISA, respectively. Endothelial cell migration was assessed by wound-healing assay and endothelial angiogenesis by a tube formation assay. Melatonin inhibited the pro-angiogenic effects of SH-SY5Y cells. The conditioned medium collected from the neuroblastoma cells was angiogenically active and stimulated proliferation, migration and tube formation in endothelial cells. This effect was significantly counteracted by the addition of either anti-VEGF or melatonin. Melatonin inhibited VEGF expression and secretion in SH-SY5Y cells, decreasing the levels of VEGF available for endothelial cells. Melatonin has anti-angiogenic effects at different steps of the angiogenic process in SH-SY5Y neuroblastoma cells, through the downregulation of VEGF.

  9. The effect of UV-filters on the viability of neuroblastoma (SH-SY5Y) cell line.

    PubMed

    Broniowska, Żaneta; Pomierny, Bartosz; Smaga, Irena; Filip, Małgorzata; Budziszewska, Bogusława

    2016-05-01

    Topical application of cosmetic products, containing ultraviolet filters (UV filters) are recommended as a protection against sunburns and in order to reduce the risk of skin cancer. However, some UV filters can be absorbed through skin and by consuming contaminated food. Among the chemical UV filters, benzophenone-3 (BP-3), 3-(4-methylbenzylidene)camphor (4-MBC) and 2-ethylhexyl-4-methoxycinnamate (OMC) are absorbed through the skin to the greatest extent. So far, these lipophilic compounds were demonstrated to influence the gonadal and thyroid hormone function, but their effect on central nervous system cells has not been investigated, yet. In the present study, we investigated the effect of some UV filters on cell viability and caspase-3 activity in SH-SY5Y cells. It has been found that benzophenone-2 (BP-2), BP-3, 4-methylbenzophenone (4-MBP) and OMC present in the culture medium for 72h in high concentration (10(-5) and 10(-4)M) and 4-MBC only 10(-4)M produced a significant cytotoxic effect, as determined both by the MTT reduction test and LDH release assay. In contrast to necrotic changes, all tested UV filters increased caspase-3 activity in much lower concentrations (from 10(-8) to 10(-7)M). Proapoptotic properties of the test compounds were positively verified by Hoechst staining. The obtained results indicated that UV filters adversely affected the viability of nerve cells, most likely by enhancing the process of apoptosis. The most potent effect was exerted by BP-3 and 4-MBC and at concentrations that may be reached in vivo. Since human exposure to UV filters is significant these compound should be taken into consideration as one of the possible factors involved in pathogenesis of neurodegenerative diseases.

  10. Se-methylselenocysteine inhibits apoptosis induced by clusterin knockdown in neuroblastoma N2a and SH-SY5Y cell lines.

    PubMed

    Wang, Chao; Zeng, Zhenyu; Liu, Qiong; Zhang, Renli; Ni, Jiazuan

    2014-11-18

    Apoptosis, as a programmed cell death process, is essential for the maintenance of tissue function in organisms. Alteration of this process is linked to many diseases. Over-expression of clusterin (Clu) can antagonize apoptosis in various cells. Selenium (Se) is an essential trace element for human health. Its biological function is also associated with cell apoptosis. To explore the function of Clu and the impact of Se in the process of apoptosis, several short-hairpin RNAs (shRNA) were designed for the construction of two sets of recombinant plasmids: one set for plasmid-transfection of mouse neuroblastoma N2a cells (N2a cells); and the other set for lentiviral infection of human neuroblastoma SH-SY5Y cells (SH-SY5Y cells). These shRNAs specifically and efficiently interfered with the intracellular expression of Clu at both the mRNA and protein levels. The Clu-knockdown cells showed apoptosis-related features, including down-regulation of antioxidative capacity and the Bcl-2/Bax ratio and up-regulation of caspase-8 activity. Se-methylselenocysteine (MSC) at an optimum concentration of 1 μM could reverse the alteration in antioxidative capacity, Bcl2/Bax ratio and caspase-8 activity caused by Clu-knockdown, thus inhibiting apoptosis and maintaining cell viability. The results hereby imply the potentiality of Clu and Se in neuroprotection.

  11. Se-Methylselenocysteine Inhibits Apoptosis Induced by Clusterin Knockdown in Neuroblastoma N2a and SH-SY5Y Cell Lines

    PubMed Central

    Wang, Chao; Zeng, Zhenyu; Liu, Qiong; Zhang, Renli; Ni, Jiazuan

    2014-01-01

    Apoptosis, as a programmed cell death process, is essential for the maintenance of tissue function in organisms. Alteration of this process is linked to many diseases. Over-expression of clusterin (Clu) can antagonize apoptosis in various cells. Selenium (Se) is an essential trace element for human health. Its biological function is also associated with cell apoptosis. To explore the function of Clu and the impact of Se in the process of apoptosis, several short-hairpin RNAs (shRNA) were designed for the construction of two sets of recombinant plasmids: one set for plasmid-transfection of mouse neuroblastoma N2a cells (N2a cells); and the other set for lentiviral infection of human neuroblastoma SH-SY5Y cells (SH-SY5Y cells). These shRNAs specifically and efficiently interfered with the intracellular expression of Clu at both the mRNA and protein levels. The Clu-knockdown cells showed apoptosis-related features, including down-regulation of antioxidative capacity and the Bcl-2/Bax ratio and up-regulation of caspase-8 activity. Se-methylselenocysteine (MSC) at an optimum concentration of 1 μM could reverse the alteration in antioxidative capacity, Bcl2/Bax ratio and caspase-8 activity caused by Clu-knockdown, thus inhibiting apoptosis and maintaining cell viability. The results hereby imply the potentiality of Clu and Se in neuroprotection. PMID:25411798

  12. Acidic substitution of the activation loop tyrosines in TrkA supports nerve growth factor-dependent, but not nerve growth factor-independent, differentiation and cell cycle arrest in the human neuroblastoma cell line, SY5Y.

    PubMed

    Gryz, Ela A; Meakin, Susan O

    2003-11-27

    TrkA is the receptor tyrosine kinase (RTK) for nerve growth factor (NGF) and stimulates NGF-dependent cell survival and differentiation in primary neurons and also differentiation of neuroblastomas and apoptosis of medulloblastomas. We have previously shown that aspartic acid and glutamic acid substitution (AspGlu and GluAsp) of the activation loop tyrosines in TrkA (Tyr(683) and Tyr(684)) supports NGF-independent neuritogenesis and cell survival in PC12 cell-derived nnr5 cells. In this study, the AspGlu and GluAsp mutant Trks have been analysed for their ability to support NGF-independent and NGF-dependent neuritogenesis, proliferation and cell signalling in the human neuroblastoma cell line, SY5Y. We find that the AspGlu and GluAsp mutant Trks support NGF-dependent, but not NGF-independent, autophosphorylation, neuritogenic responses and/or inhibit cell cycle progression. The NGF-dependent neuritogenic responses are lower for the mutant Trks (approximately 30-60% for AspGlu and 50-60% for GluAsp), relative to wild-type TrkA. While both the AspGlu and GluAsp mutant Trks support NGF-dependent transient phosphorylation of Shc, PLCgamma-1, AKT, FRS2, SH2B as well as prolonged MAP kinase activation, the GluAsp mutant induces stronger NGF-dependent tyrosine phosphorylation of FRS2 and SH2B, as well as a stronger reduction in bromodeoxyuridine (BrdU) incorporation. Collectively, these data suggest that neither absolute levels of receptor autophosphorylation, high levels of TrkA expression nor the activation of a specific signalling pathway is dominant and absolutely essential for neuritogenesis and cell cycle arrest of SY5Y cells.

  13. Propolis Inhibits Neurite Outgrowth in Differentiating SH-SY5Y Human Neuroblastoma Cells

    PubMed Central

    Kim, Han Bit; Yoo, Byung Sun

    2016-01-01

    Propolis is a multicomponent, active, complex resinous substance collected by honeybees from a variety of plant sources. We have studied the effect of propolis on neurite outgrowth of SH-SY5Y human neuroblastoma cells induced to differentiate by all-trans-retinoic acid (RA). Propolis, at a concentration of 3 μg/mL, had no significant effect on the viability of differentiating SH-SY5Y cells. However, the neurite outgrowth of the differentiating SH-SY5Y cells treated with propolis (0.3~3 μg/mL) for 48 hr was significantly inhibited in a dose-dependent manner. Treatment of RA-stimulated differentiating SH-SY5Y cells with 0.3 to 3 μg/mL propolis resulted in decreased level of transglutaminase and 43-kDa growth-associated protein (GAP-43) in a dose-dependent manner. The results indicate that propolis is able to inhibit neurite outgrowth of differentiating SH-SY5Y cells. PMID:27437091

  14. Comparative proteomic analysis of human SH-SY5Y neuroblastoma cells under simulated microgravity.

    PubMed

    Zhang, Yongqian; Wang, Hongbin; Lai, Chengjun; Wang, Lu; Deng, Yulin

    2013-02-01

    Microgravity is one of the most important features in spaceflight. Previous evidence has shown that neurophysiological impairment signs occurred under microgravity. The present study was undertaken to explore the change in protein abundance in human SH-SY5Y neuroblastoma cells that were grown in a microgravity environment. The comparative proteomic method based on the (18)O labeling technique was applied to investigate the up-regulated proteins and down-regulated proteins in SH-SY5Y under simulated microgravity. Twenty-two differentially abundant proteins were quantified in human SH-SY5Y neuroblastoma cells. The cell microfilament network was disrupted under simulated microgravity, which was determined by the immunocytochemistry. The concentration of reactive oxygen species, malondialdehyde, and free Ca2+ ion significantly increased, and the level of ATP significantly decreased under simulated microgravity. However, there was no obvious cell apoptosis observed under simulated microgravity. These results provide new molecular evidence for the change in protein abundance in SH-SY5Y cells under simulated microgravity, which might unfold biological mechanisms and the development of effective countermeasures to deal with microgravity-related neurological problems. We believe that the state-of-the-art proteomic assay may be a means by which aerospace scientists will begin to understand the underlying mechanisms of space life activities at the protein level.

  15. The effects of okra (Abelmoschus esculentus Linn.) on the cellular events associated with Alzheimer's disease in a stably expressed HFE neuroblastoma SH-SY5Y cell line.

    PubMed

    Mairuae, Nootchanat; Connor, James R; Lee, Sang Y; Cheepsunthorn, Poonlarp; Tongjaroenbuangam, Walaiporn

    2015-08-31

    It has been reported that persons carrying the H63D variant in their hemochromatosis (HFE) gene are at increased risk of Alzheimer's disease (AD). We investigated the possibility that okra (Abelmoschus esculentus) and quercetin could mitigate this risk factor by examining its effect on AD-associated cellular events in HFE stably expressing SH-SY5Y cells. Treatment of H63D HFE cells either with okra or quercetin significantly decreased reactive oxygen species (ROS), hydrogen peroxide (H2O2), and protein oxidation compared to untreated cells. The levels of tau phosphorylation at serine-199, serine-202, and serine-396 sites were also significantly decreased when cells were treated with okra. Exposure of the H63D and wild type (WT) cells to iron increased tau phosphorylation, but this response was decreased significantly when cells were treated with okra. The mechanism responsible for these changes appears to be related to decreased glycogen synthase kinase (GSK)-3β activity, an upstream signaling kinase of tau phosphorylation. We also established that okra treatment dramatically decreases intracellular iron levels in H63D cells compared to untreated cells. Our results provide important in vitro data on the effects of okra on various AD-associated cellular processes in H63D variant HFE cells. These results suggest okra may be beneficial in people expressing the H63D variant to reduce the risk of AD and other neurodegenerative diseases related to oxidative stress. Further in vivo studies would help confirm this.

  16. Weightlessness influences the cytoskeleton and ROS level in SH-SY5Y neuroblastoma cells

    NASA Astrophysics Data System (ADS)

    Bo, Wang; Lina, Qu; Yingxian, Li; Qi, Li; Lei, Bi; Yinghui, Li

    During Spaceflight the nerve system of astronauts was obviously influenced To investigate how gravity effects nerve system the SH-SY5Y neuroblastoma cells were taken as research object By utilizing clinostat and parabolic flight for the model of gravity changing the level of reactive oxygen species was assayed in different time under simulated microgravity the cytomorphology and cytoskeleton of SH-SY5Y neuroblastoma cells were also observed after parabolic flight and clinostat by the conventional and the confocal laser scanning microscope The data showed that ROS level was enhanced and the cytoskeleton was damaged which microfilaments and microtubules were highly disorganized the cell shape was deteriorated under simulated microgravity indicating the relativity between the ROS level fluctuating and cytoskeleton changing It illuminates signal transduction disturbed by oxidative stress also regulates the cytoskeleton changing in SH-SY5Y cells The results suggest the cytoskeleton which is the receptor for sensing gravity was also regulated by cellular redox state which clues on the complexity of cell for self-adjusting to gravity changing

  17. Characterisation of SH-SY5Y Human Neuroblastoma cell growth over glass and SU-8 substrates.

    PubMed

    Ajetunmobi, A; McAllister, D; Jain, Namrata; Brazil, Owen; Corvin, A; Volkov, Y; Tropea, D; Prina-Mello, A

    2017-03-28

    The physical properties of substrates can have profound effects on the structure and function of cultured cells. In this study we aimed to examine the viability, adherence and morphological and functional variations between SH-SY5Y human neuroblastoma cells cultured on SU-8 surfaces compared to control surfaces composed of borosilicate glass, which are routinely used for cell culture. The SU-8 polymer has been extensively studied for its biocompatibility but there has been little investigation into the characteristic differences between cells cultured on SU-8 when compared to glass. SH-SY5Y cells were cultured within Polydimethylsiloxane wells on both SU-8 and glass substrates for up to 72 hrs after which flow cytometry and ELISA analysis was performed to examine cell viability and neurotoxicity. Immunocytochemistry was also performed in order to analyse the morphological and functional characteristics of the cells. Atomic force microscopy was performed to measure surface roughness and to map cell-substrate interactions, Nanoindentation testing was used to characterise the mechanical properties of polymer surface. Results showed that SH-SY5Y cells grown on SU-8 have significantly improved viability and increased morphological and functional characteristics of neurodevelopment. The results from this study suggest that the mechanical properties of the polymer are optimal for the study of cultured cell lines, which could account for the increased viability, adherence and morphological and functional characteristics of neurodevelopment. This article is protected by copyright. All rights reserved.

  18. Identification of alpha 2-adrenergic receptor sites in human retinoblastoma (Y-79) and neuroblastoma (SH-SY5Y) cells

    SciTech Connect

    Kazmi, S.M.; Mishra, R.K.

    1989-02-15

    The existence of specific alpha 2-adrenergic receptor sites has been shown in human retinoblastoma (Y-79) and neuroblastoma (SH-SH5Y) cells using direct radioligand binding. (/sup 3/H)Rauwolscine, a selective alpha 2-adrenergic receptor antagonist, exhibited high affinity, saturable binding to both Y-79 and SH-SY5Y cell membranes. The binding of alpha 1 specific antagonist, (/sup 3/H)Prazocine, was not detectable in either cell type. Competition studies with antagonists yielded pharmacological characteristics typical of alpha 2-adrenergic receptors: rauwolscine greater than yohimbine greater than phentolamine greater than prazocine. Based on the affinity constants of prazocine and oxymetazoline, it appears that Y-79 cells contain alpha 2A receptor, whereas SH-SY5Y cells probably represent a mixture of alpha 2A and alpha 2B receptors. alpha 2-agonists clonidine and (-)epinephrine inhibition curves yielded high and low affinity states of the receptor in SH-SY5Y cells. Gpp(NH)p and sodium ions reduced the proportion of high affinity sites of alpha 2 receptors. These two neuronal cell lines of human origin would prove useful in elucidating the action and regulation of human alpha 2-adrenergic receptors and their interaction with other receptor systems.

  19. Acrylonitrile induced apoptosis via oxidative stress in neuroblastoma SH-SY5Y cell.

    PubMed

    Watcharasit, Piyajit; Suntararuks, Sumitra; Visitnonthachai, Daranee; Thiantanawat, Apinya; Satayavivad, Jutamaad

    2010-10-01

    Acrylonitrile (ACN) is a chemical that is widely used in the production of plastics, acrylic fibers, synthetic rubbers and resins. It has been reported that ACN can cause oxidative stress, a condition which is well recognized as an apoptotic initiator; however, information regarding ACN-induced apoptosis is limited. This present study investigated whether ACN induces apoptosis in human neuroblastoma SH-SY5Y cells, and whether its apoptotic induction involves oxidative stress. The results showed that ACN caused activation of caspase-3, a key enzyme involved in apoptosis, in a dose- and time-dependent manner. Detection of sub-G1 apoptotic cell death and apoptotic nuclear condensation revealed that ACN caused an increase in the number of apoptotic cells indicating ACN induces apoptosis in SH-SY5Y cells. ACN dose- and time-dependently increased the level of proapoptotic protein, Bax. Pretreatment with N-acetylcysteine (NAC), an antioxidant, attenuated caspase-3 activation by ACN, as evidenced by a reduction in proteolysis of PARP, a known caspase-3 substrate, as well as in the number of sub-G1 apoptotic cells. Moreover, induction of Bax by ACN was abolished by NAC. Taken together, the results indicate that ACN induces apoptosis in SH-SY5Y cells via a mechanism involving generation of oxidative stress-mediated Bax induction.

  20. Ginsenoside Re protects methamphetamine-induced mitochondrial burdens and proapoptosis via genetic inhibition of protein kinase C δ in human neuroblastoma dopaminergic SH-SY5Y cell lines.

    PubMed

    Nam, Yunsung; Wie, Myung Bok; Shin, Eun-Joo; Nguyen, Thuy-Ty Lan; Nah, Seung-Yeol; Ko, Sung Kwon; Jeong, Ji Hoon; Jang, Choon-Gon; Kim, Hyoung-Chun

    2015-08-01

    Recently, we have demonstrated that ginsenoside Re protects methamphetamine (MA)-induced dopaminergic toxicity in mice via genetic inhibition of PKCδ and attenuation of mitochondrial stress. In addition, we have reported that induction of mitochondrial glutathione peroxidase (GPx) is also important for neuroprotection mediated by ginsenoside Re. To extend our knowledge, we examined the effects of ginsenoside Re against MA toxicity in vitro condition using SH-SY5Y neuroblastoma cells. Treatment with ginsenoside Re resulted in significant attenuations against a decrease in the activity of GPx and an increase in the activity of superoxide dismutase (SOD) in the cytosolic and mitochondrial fraction. The changes in glutathione (GSH) paralleled those in GPx in the same experimental condition. Consistently, ginsenoside Re treatment exhibited significant protections against cytosolic and mitochondrial oxidative damage (i.e. lipid peroxidation and protein oxidation), mitochondrial translocation of PKCδ, mitochondrial dysfunction (mitochondrial transmembrane potential and intra-mitochondrial Ca(2+)), apoptotic events [i.e., cytochrome c release from mitochondria, cleavage of caspase-3 and poly(ADP-ribose)polymerase-1, nuclear condensation, terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL)-positive apoptotic cells], and a reduction in the tyrosine hydroxylase (TH) expression and TH activity induced by MA in SH-SY5Y neuroblastoma cells. These protective effects of ginsenoside Re were comparable to those of PKCδ antisense oligonucleotide (ASO). However, ginsenoside Re did not significantly provide additional protective effects mediated by genetic inhibition of PKCδ. Our results suggest that PKCδ is a specific target for ginsenoside Re-mediated protective activity against MA toxicity in SH-SY5Y neuroblastoma cells.

  1. Effects of dichlorobenzene on acetylcholine receptors in human neuroblastoma SH-SY5Y cells.

    PubMed

    Yan, Ren-Ming; Chiung, Yin-Mei; Pan, Chien-Yuan; Liu, Jenn-Hwa; Liu, Pei-Shan

    2008-11-20

    para-Dichlorobenzene (DCB), a deodorant and an industrial chemical, is a highly volatile compound and is known to be an indoor air contaminant. Because of its widespread use and volatility, the toxicity of DCB presents a concern to industrial workers and public. Some toxic aspects of DCB have already been focused but its effects on neuronal signal transduction have been hitherto unknown. The effects of DCB on the cytosolic calcium homeostasis are investigated in human neuroblastoma SH-SY5Y cells in this study. DCB, above 200 microM, was found to induce a rise in cytosolic calcium concentration that could not be counteracted by nicotinic acetylcholine receptor (nAChR) and muscarinic acetylcholine receptor (mAChR) antagonists but was partially inhibited by thapsigargin. To understand the actions of DCB on the acetylcholine receptors, we investigated its effects on the changes of cytosolic calcium concentration following nicotinic AChR stimulation with epibatidine and muscarinic AChR stimulation with methacholine in human neuroblastoma SH-SY5Y cells. DCB inhibited the cytosolic calcium concentration rise induced by epibatidine and methacholine with respective IC(50)s of 34 and 294 microM. The inhibitions of DCB were not the same as thapsigargin's inhibition. In the electrophysiological observations, DCB blocked the influx currents induced by epibatidine. Our findings suggest that DCB interferes with the functional activities of AChR, including its coupling influx currents and cytosolic calcium elevations.

  2. Calcium Signaling of Lysophosphatidylethanolamine through LPA1 in Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Lee, Jung-Min; Park, Soo-Jin; Im, Dong-Soon

    2017-01-01

    Lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, has been reported to be an intercellular signaling molecule. LPE mobilizes intracellular Ca2+ through G-protein-coupled receptor (GPCR) in some cells types. However, GPCRs for lysophosphatidic acid (LPA) were not implicated in the LPE-mediated activities in LPA GPCR overexpression systems or in SK-OV3 ovarian cancer cells. In the present study, in human SH-SY5Y neuroblastoma cells, experiments with LPA1 antagonists showed LPE induced intracellular Ca2+ increases in an LPA1 GPCR-dependent manner. Furthermore, LPE increased intracellular Ca2+ through pertussis-sensitive G proteins, edelfosine-sensitive-phospholipase C, 2-APB-sensitive IP3 receptors, Ca2+ release from intracellular Ca2+ stores, and subsequent Ca2+ influx across plasma membranes, and LPA acted on LPA1 and LPA2 receptors to induce Ca2+ response in a 2-APB-sensitive and insensitive manner. These findings suggest novel involvements for LPE and LPA in calcium signaling in human SH-SY5Y neuroblastoma cells. PMID:27302965

  3. Calcium Signaling of Lysophosphatidylethanolamine through LPA1 in Human SH-SY5Y Neuroblastoma Cells.

    PubMed

    Lee, Jung-Min; Park, Soo-Jin; Im, Dong-Soon

    2017-03-01

    Lysophosphatidylethanolamine (LPE), a lyso-type metabolite of phosphatidylethanolamine, has been reported to be an intercellular signaling molecule. LPE mobilizes intracellular Ca(2+) through G-protein-coupled receptor (GPCR) in some cells types. However, GPCRs for lysophosphatidic acid (LPA) were not implicated in the LPE-mediated activities in LPA GPCR overexpression systems or in SK-OV3 ovarian cancer cells. In the present study, in human SH-SY5Y neuroblastoma cells, experiments with LPA1 antagonists showed LPE induced intracellular Ca(2+) increases in an LPA1 GPCR-dependent manner. Furthermore, LPE increased intracellular Ca(2+) through pertussis-sensitive G proteins, edelfosine-sensitive-phospholipase C, 2-APB-sensitive IP3 receptors, Ca(2+) release from intracellular Ca(2+) stores, and subsequent Ca(2+) influx across plasma membranes, and LPA acted on LPA1 and LPA2 receptors to induce Ca(2+) response in a 2-APB-sensitive and insensitive manner. These findings suggest novel involvements for LPE and LPA in calcium signaling in human SH-SY5Y neuroblastoma cells.

  4. Recognition and identification of active components from Radix Bupleuri using human neuroblastoma SH-SY5Y cells.

    PubMed

    Zhang, Yan; Liu, Feihu; Zhang, Xiaohong; Xu, Tanghui; Quan, Wei; Wang, Hui; Shi, Jianguo; Dai, Zunxiao; Wu, Bin; Wu, Qiangju

    2016-03-01

    The aim of the study was to screen active components of Radix Bupleuri (a traditional Chinese herb) and discover novel anti-schizophrenic candidate drugs using human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were used for preparation of the stationary phase in the cell membrane chromatography model. Retention components by the SH-SY5Y/CMC model were collected and then analyzed by GC/MS under the optimized conditions in offline conditions. After investigating the suitability and reliability of the SH-SY5Y/CMC method using amisulpride and haloperidol as standard compounds, this method was applied to screening active components from the extracts of Radix Bupleuri. Retention components of SH-SY5Y/CMC model were saikosaponin A, saikosaponin B1, saikosaponin B2, saikosaponin C and saikosaponin D, which were identified by the GC/MS method. In vitro pharmacological trials-MTT, saikosaponin B1, saikosaponin B2 and saikosaponin C could protect SY5Y cells. The protective effects of saikosaponin B1 and saikosaponin C were concentration dependent. Saikosaponin A and saikosaponin D inhibited cell viability at concentrations >30 µg/mL (p < 0.05). Via SH-SY5Y/CMC method and SH-SY5Y MTT trial, we rapidly detected target components from Radix Bupleuri, accurately identified them and determined their different effects on SH-SY5Y cells. Saikosaponin B1, saikosaponin B2 and saikosaponin C may be anti-schizophrenic candidate drugs.

  5. TRPC1-mediated Inhibition of 1-Methyl-4-phenylpyridinium Ion Neurotoxicity in Human SH-SY5Y Neuroblastoma Cells*

    PubMed Central

    Bollimuntha, Sunitha; Singh, Brij B.; Shavali, Shaik; Sharma, Sushil K.; Ebadi, Manuchair

    2013-01-01

    Mammalian homologues of the Drosophila canonical transient receptor potential (TRP) proteins have been implicated to function as plasma membrane Ca2+ channels. This study examined the role of TRPC1 in human neuroblastoma (SH-SY5Y) cells. SH-SY5Y cells treated with an exogenous neurotoxin, 1-methyl-4-phenylpyridinium ion (MPP+) significantly decreased TRPC1 protein levels. Confocal microscopy on SH-SY5Y cells treatment with MPP+ showed decreased plasma membrane staining of TRPC1. Importantly, overexpression of TRPC1 reduced neurotoxicity induced by MPP+. MPP+-induced α-synuclein expression was also suppressed by TRPC1 overexpression. Protection of SH-SY5Y cells against MPP+ was significantly decreased upon the overexpression of antisense TRPC1 cDNA construct or the addition of a nonspecific transient receptor potential channel blocker lanthanum. Activation of TRPC1 by thapsigargin or carbachol decreased MPP+ neurotoxicity, which was partially dependent on external Ca2+. Staining of SH-SY5Y cells with an apoptotic marker (YO-PRO-1) showed that TRPC1 protects SH-SY5Y neuronal cells against apoptosis. Further, TRPC1 overexpression inhibited cytochrome c release and decreased Bax and Apaf-1 protein levels. Interpretation of the above data suggests that reduction in the cell surface expression of TRPC1 following MPP+ treatment may be involved in dopaminergic neurodegeneration. Furthermore, TRPC1 may inhibit degenerative apoptotic signaling to provide neuroprotection against Parkinson’s disease-inducing agents. PMID:15542611

  6. Rosiglitazone protects human neuroblastoma SH-SY5Y cells against acetaldehyde-induced cytotoxicity

    SciTech Connect

    Jung, Tae Woo; Lee, Ji Young; Shim, Wan Sub; Kang, Eun Seok; Kim, Soo Kyung; Ahn, Chul Woo; Lee, Hyun Chul; Cha, Bong Soo . E-mail: bscha@yumc.yonsei.ac.kr

    2006-02-03

    Acetaldehyde, an inhibitor of mitochondrial function, has been widely used as a neurotoxin because it elicits a severe Parkinson's disease-like syndrome with elevation of the intracellular reactive oxygen species level and apoptosis. Rosiglitazone, a peroxisome proliferator-activated receptor-{gamma} agonist, has been known to show various non-hypoglycemic effects, including anti-inflammatory, anti-atherogenic, and anti-apoptotic. In this study, we investigated the protective effects of rosiglitazone on acetaldehyde-induced apoptosis in human neuroblastoma SH-SY5Y cells and attempted to examine its mechanism. Acetaldehyde-induced apoptosis was moderately reversed by rosiglitazone treatment. Our results suggest that the protective effects of rosiglitazone on acetaldehyde-induced apoptosis may be ascribed to ability to induce the expression of anti-oxidant enzymes and to regulate Bcl-2 and Bax expression. These data indicate that rosiglitazone may provide a useful therapeutic strategy for the prevention of progressive neurodegenerative disease such as Parkinson's disease.

  7. JWH-133, a Selective Cannabinoid CB₂ Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells.

    PubMed

    Wojcieszak, Jakub; Krzemień, Wojciech; Zawilska, Jolanta B

    2016-04-01

    Endocannabinoid system plays an important role in the regulation of diverse physiological functions. Although cannabinoid type 2 receptors (CB2) are involved in the modulation of immune system in peripheral tissues, recent findings demonstrated that they are also expressed in the central nervous system and could constitute a new target for the treatment of neurodegenerative disorders. At present, very little is known about the potential effects of CB2-mimetic drugs on neuronal cells. This study aimed to examine whether JWH-133, a selective CB2 receptor agonist, affects the survival of SH-SY5Y neuroblastoma cell line, a widely used experimental in vitro model to study mechanisms of toxicity and protection in nigral dopaminergic neurons. Cell viability was assessed using two complementary methods: MTT test measuring mitochondrial activity and LDHe test indicating disruption of cell membrane integrity. In addition, cell proliferation was measured using BrdU incorporation assay. JWH-133 (10-40 μM) induced a concentration-dependent decrease of SH-SY5Y cell viability and proliferation rate. Using AM-630, a reverse agonist of CB2 receptors, as well as Z-VAD-FMK, a pan-caspase inhibitor, we demonstrated that the cytotoxic effect of JWH-133 presumably was not mediated by activation of CB2 receptors or by caspase pathway. Results of this work suggest that agonists of CB2 receptors when administered in multiple/high doses may induce neuronal damage.

  8. Cx43 Mediates Resistance against MPP+-Induced Apoptosis in SH-SY5Y Neuroblastoma Cells via Modulating the Mitochondrial Apoptosis Pathway

    PubMed Central

    Kim, In-Su; Ganesan, Palanivel; Choi, Dong-Kug

    2016-01-01

    Neuronal apoptosis in the substantia nigra par compacta (SNpc) appears to play an essential role in the pathogenesis of Parkinson’s disease. However, the mechanisms responsible for the death of dopaminergic neurons are not fully understood yet. To explore the apoptotic mechanisms, we used a well-known parkinsonian toxin, 1-methyl-4-phenylpyridine (MPP+), to induce neuronal apoptosis in the human dopaminergic SH-SY5Y cell line. The most common method of interaction between cells is gap junctional intercellular communication (GJIC) mediated by gap junctions (GJs) formed by transmembrane proteins called connexins (Cx). Modulation of GJIC affects cell viability or growth, implying that GJIC may have an important role in maintaining homeostasis in various organs. Here, we hypothesized that increasing the level of the gap junction protein Cx43 in SH-SY5Y neuroblastoma cells could provide neuroprotection. First, our experiments demonstrated that knocking down Cx43 protein by using Cx43-specific shRNA in SH-SY5Y neuroblastoma cells potentiated MPP+-induced neuronal apoptosis evident from decreased cell viability. In another experiment, we demonstrated that over-expression of Cx43 in the SH-SY5Y cell system decreased MPP+-induced apoptosis based on the MTT assay and reduced the Bax/Bcl-2 ratio and the release of cytochrome C based on Western blot analysis. Taken together, our results suggest that Cx43 could mediate resistance against MPP+-induced apoptosis in SH-SY5Y neuroblastoma cells via modulating the mitochondrial apoptosis pathway. PMID:27809287

  9. [Effect of alpha-conotoxin MII and its N-terminal derivatives on Ca2+ and Na+ signals induced by nicotine in neuroblastoma cell line SH-SY5Y].

    PubMed

    Surin, A M; Kriukova, E V; Strukov, A S; Zhmak, M N; Talka, R; Tuominen, R; Salminen, O; Khiroug, L; Kasheverov, I E; Tsetlin, V I

    2012-01-01

    Nicotinic acetylcholine receptors (nAChRs) are implicated in the regulation ofintracellular Ca2+-dependent processes in cells both in normal and pathological states, alpha-Conotoxins isolated from Conus snails venom are a valuable tool for the study of pharmacological properties and functional role of nAChRs. In the present study the alpha-conotoxin MII analogue with the additional tyrosine attached to the N terminus (Y0-MII) was prepared. Also we synthesized analogs with the N-terminal glycine residue labeled with the Bolton- Hunter reagent (BH-MII) or fluorestsein isothiocyanate (FITC-MII). Fluorescence microscopy studies of the neuroblastoma SH-SY5Y cells loaded with Ca2+ indicator Fura-2 or with Ca2+ and Na+ indicators Fluo-4 and SBFI were performed to examine effect of MII modification on its ability to inhibit nicotin-induced increases in intracellular free Ca2+ and Na+ concentrations ([Ca2+] and [Na+]i respectively). Monitoring of individual cell [Ca2+]i and [Na+]i signals revealed different kinetics of [Ca2+]i and [Na+]i rise and decay in responses to brief nicotine (Nic) applications (10-30 microM, 3-5 min), which indicates to different mechanisms of Ca2+ and Na+ homeostasis control in SH-SY5Y cells. MII inhibited in concentration-dependent manner the both [Ca2+]i and [Na+]i increase induced by Nic. Additional tyrosine in the Y0-MII or, especially, more sizeable label in FITC-MII significantly reduced the inhibitory effect of MII. Whereas the efficiency of the Ca2+ response inhibition by BH-MII was found to be close to the efficiency of its inhibition by natural alpha-conotoxin MII, radioiodinated derivatives BH-MII can be used in radioligand assay.

  10. Transcriptional profile of SH-SY5Y human neuroblastoma cells transfected by Toxoplasma rhoptry protein 16

    PubMed Central

    Fan, Weiwei; Chang, Shuang; Shan, Xiumei; Gao, Dejun; Zhang, Steven Qian; Zhang, Jin; Jiang, Nan; Ma, Duan; Mao, Zuohua

    2016-01-01

    Toxoplasma rhoptry protein 16 (ROP16) is crucial in the host-pathogen interaction by acting as a virulent factor during invasion. To improve understanding of the molecular function underlying the effect of ROP16 on host cells, the present study analyzed the transcriptional profile of genes in the ROP16-transfected SH-SY5Y human neuroblastoma cell line. The transcriptional profile of the SH-SY5Y human neuroblastoma cell line overexpressing ROP16 were determined by microarray analysis in order to determine the host neural cell response to the virulent factor. Functional analysis was performed using the Protein Analysis Through Evolutionary Relationships classification system. The ToppGene Suite was used to select candidate genes from the differentially expressed genes. A protein-protein interaction network was constructed using Cytoscape software according to the interaction associations determined using the Search Tool for the Retrieval of Interacting Genes/Proteins. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis of the selected genes confirmed the results of the microarray. The results showed that 383 genes were differentially expressed in response to ROP16 transfection, of which 138 genes were upregulated and 245 genes were downregulated. Functional analysis indicated that the differentially expressed genes (DEGs) were involved in several biological processes, including developmental process, biological regulation and apoptotic process. A total of 15 candidate genes from the DEGs were screened using the ToppGene Suite. No significant differences in expression were observed between the RT-qPCR data and the microarray data. Transfection with ROP16 resulted in alterations of several biological processes, including nervous system development, apoptosis and transcriptional regulation. Several genes, including CXCL12, BAI1, ZIC2, RBMX, RASSF6, MAGE-A6 and HOX, were identified as significant DEGs. Taken together, these results may

  11. Endoplasmic reticulum stress is involved in the lidocaine-induced apoptosis in SH-SY5Y neuroblastoma cells.

    PubMed

    Li, Kehan; Han, Xuechang

    2015-05-01

    Lidocaine has been indicated to promote apoptosis and to promote endoplasmic reticulum (ER) stress. However, the mechanism underlining ER stress-mediated apoptosis is unclear. In the present study, we investigated the promotion to ER stress in the lidocaine-induced apoptosis in human neuroblastoma SH-SY5Y cells. Firstly, we confirmed that lidocaine treatment induced apoptosis in SH-SY5Y cells, time-dependently and dose-dependently, via MTT cell viability assay and annexin V/FITC apoptosis detection with a FACScan flow cytometer. And the anti-apoptosis Bcl-2 and Bcl-xL were downregulated, whereas the apoptosis-executive caspase 3 was promoted through Western blot assay and caspase 3 activity assay. Moreover, the ER stress-associated binding immunoglobulin protein (BiP), PKR-like ER kinase (PERK), activating transcription factor 4 (ATF4) and CCAAT/enhancer-binding protein homologous protein (CHOP) were also upregulated at both mRNA and protein levels by lidocaine treatment. On the other hand, downregulation of the ER stress-associated BiP by RNAi method not only blocked the lidocaine-promoted ER stress but also attenuated the lidocaine-induced SH-SY5Y cell apoptosis. In conclusion, the present study confirmed the involvement of ER stress in the lidocaine-induced apoptosis in human neuroblastoma SH-SY5Y cells. Our study provides a better understanding on the mechanism of lidocaine's neurovirulence.

  12. Arsenic trioxide (As{sub 2}O{sub 3}) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK)

    SciTech Connect

    Florea, Ana-Maria; Splettstoesser, Frank; Buesselberg, Dietrich . E-mail: Dietrich.Buesselberg@uni-due.de

    2007-05-01

    Arsenic trioxide (As{sub 2}O{sub 3}) has anticancer properties; however, its use also leads to neuro-, hepato- or nephro-toxicity, and therefore, it is important to understand the mechanism of As{sub 2}O{sub 3} toxicity. We studied As{sub 2}O{sub 3} influence on intracellular calcium ([Ca{sup 2+}]{sub i}) homeostasis of human neuroblastoma SY-5Y and embryonic kidney cells (HEK 293).We also relate the As{sub 2}O{sub 3} induced [Ca{sup 2+}]{sub i} modifications with cytotoxicity. We used Ca{sup 2+} sensitive dyes (fluo-4 and rhod-2) combined with laser scanning microscopy or fluorescence activated cell sorting to measure Ca{sup 2+} changes during the application of As{sub 2}O{sub 3} and we approach evaluation of cytotoxicity. As{sub 2}O{sub 3} (1 {mu}M) increased [Ca{sup 2+}]{sub i} in SY-5Y and HEK 293 cells. Three forms of [Ca{sup 2+}]{sub i}-elevations were found: (1) steady-state increases (2) transient [Ca{sup 2+}]{sub i}-elevations and (3) Ca{sup 2+}-spikes. [Ca{sup 2+}]{sub i} modifications were independent from extracellular Ca{sup 2+} but dependent on internal calcium stores. The effect was not reversible. Inositol triphosphate (IP{sub 3}) and ryanodine (Ry) receptors are involved in regulation of signals induced by As{sub 2}O{sub 3}. 2-APB and dantrolene significantly reduced the [Ca{sup 2+}]{sub i}-rise (p < 0.001, t-test) but did not completely abolish [Ca{sup 2+}]{sub i}-elevation or spiking. This indicates that other Ca{sup 2+} regulating mechanisms are involved. In cytotoxicity tests As{sub 2}O{sub 3} significantly reduced cell viability in both cell types. Staining with Hoechst 33342 showed occurrence of apoptosis and DNA damage. Our data suggest that [Ca{sup 2+}]{sub i} is an important messenger in As{sub 2}O{sub 3} induced cell death.

  13. Polychlorinated Biphenyls Induce Mitochondrial Dysfunction in SH-SY5Y Neuroblastoma Cells.

    PubMed

    Cocco, Stefania; Secondo, Agnese; Del Viscovo, Adelaide; Procaccini, Claudio; Formisano, Luigi; Franco, Cristina; Esposito, Alba; Scorziello, Antonella; Matarese, Giuseppe; Di Renzo, Gianfranco; Canzoniero, Lorella Maria Teresa

    2015-01-01

    Chronic exposure to polychlorinated biphenyls (PCBs), ubiquitous environmental contaminants, can adversely affect the development and function of the nervous system. Here we evaluated the effect of PCB exposure on mitochondrial function using the PCB mixture Aroclor-1254 (A1254) in SH-SY5Y neuroblastoma cells. A 6-hour exposure to A1254 (5 μg/ml) reduced cellular ATP production by 45%±7, and mitochondrial membrane potential, detected by TMRE, by 49%±7. Consistently, A1254 significantly decreased oxidative phosphorylation and aerobic glycolysis measured by extracellular flux analyzer. Furthermore, the activity of mitochondrial protein complexes I, II, and IV, but not V (ATPase), measured by BN-PAGE technique, was significantly reduced after 6-hour exposure to A1254. The addition of pyruvic acid during exposure to A1254 significantly prevent A1254-induced cell injury, restoring resting mitochondrial membrane potential, ATP levels, oxidative phosphorylation and aerobic glycolysis. Furthermore, pyruvic acid significantly preserved the activity of mitochondrial complexes I, II and IV and increased basal activity of complex V. Collectively, the present results indicate that the neurotoxicity of A1254 depends on the impairment of oxidative phosphorylation, aerobic glycolysis, and mitochondrial complexes I, II, and IV activity and it was counteracted by pyruvic acid.

  14. Melatonin attenuates methamphetamine-induced disturbances in mitochondrial dynamics and degeneration in neuroblastoma SH-SY5Y cells.

    PubMed

    Parameyong, Arisa; Charngkaew, Komgrid; Govitrapong, Piyarat; Chetsawang, Banthit

    2013-10-01

    Methamphetamine (METH) is a psychostimulant drug that can cause toxicity and degeneration in the brain. The toxicity due to METH involves multiple pathways, including the mitochondrial-dependent death pathway. Several pieces of evidence have emphasized that the fragmentation of mitochondria into smaller structures plays some role in the cell-death process. In this study, we investigated the role of mitochondrial dynamics in METH-induced toxicity in human dopaminergic neuroblastoma SH-SY5Y cultured cell lines. In addition, the protective effect of melatonin against METH-induced toxicity was investigated. Our results show that METH significantly decreased cell viability and increased the levels of the mitochondrial fission protein, Fis1 and the Drp1 oligomer. However, the levels of the mitochondrial fusion proteins OPA1 and Mfn1 did not change in METH-treated cells. Melatonin can reverse the toxic effects of the METH-induced reduction in cell viability and the production of the Fis1 protein and the Drp1 oligomer. Moreover, the morphological alteration of mitochondria was investigated in METH-treated cells in the presence of melatonin using transmission electron microscopy (TEM). At 24 hr after METH exposure, typical cell shrinkage was observed in SH-SY5Y cells. Mitochondria were fragmented into small globular structures in a large proportion of METH-treated cells, but tubular networks of mitochondria were present in large proportions of control-untreated cells and METH-treated cells in the presence of melatonin. The results of the present study demonstrate the potential of melatonin to reduce cell death and restore mitochondrial function in neurons affected by METH-induced toxicity.

  15. Zinc oxide nanoparticles and SH-SY5Y cell line

    NASA Astrophysics Data System (ADS)

    Zheng, Jinghui

    The Arctic and sub-arctic regions are impacted by the growth of the global nanotechnology industry. Nanomaterials have unique chemical and physical properties that may lead to toxicological effects that interfere with normal cellular metabolism. Zinc oxide nanoparticles (ZnO NPs) are now very common and widely used in daily life. In industry, ZnO NPs are used to protect different materials from damage caused by UV exposure. The scientific literature suggests that ZnO NPs can have negative impacts on both living organisms and plants. However, there is a paucity of research on the mechanisms by which ZnO NPs may affect the neuronal cells. This study investigates how ZnO NPs interact with the neuroblastoma cell line SH-SY5Y. Using transmission electron microscopy, we observed that the ZnO NPs form 36 nm particles on average, and increase the level of vascular endothelial growth factor (VEGF) in extracellular fluid, as measured by an enzyme-linked immunosorbent assay (ELISA). Moreover, ZnO NPs, in presence of tumor necrosis factor-alpha (TNF-alpha), can also decrease the level of extracellular VEGF compared with TNF-alpha treatment alone. These findings suggest the basis for more studies on understanding the mechanism by which ZnO NPs impact cytokine signaling. Another direction is using ELISA technology to observe the interactions of NPs with different cell types such as neuronal stem cells.

  16. Different mechanisms of lysophosphatidylcholine-induced Ca(2+) mobilization in N2a mouse and SH-SY5Y human neuroblastoma cells.

    PubMed

    Li, Xiao-Hua; Long, Ding-Xin; Li, Wei; Wu, Yi-Jun

    2007-08-31

    In mice, lysophosphatidylcholine (LPC) was found to be a physiological substrate of neuropathy target esterase, which is also bound by organophosphates that cause a delayed neuropathy in human and some animals. However, the mechanism responsible for causing the different symptoms in mice and humans that are exposed to neuropathic organophosphates still remains unknown. In the present study, we examined and compared the effect of exogenous LPC on intracellular Ca(2+) overload in mouse N2a and human SH-SY5Y neuroblastoma cells. LPC caused an intracellular Ca(2+) level ([Ca(2+)](i)) increase in both N2a and SH-SY5Y cells; moreover, the amplitude was higher in N2a cells than that in SH-SY5Y cells. Preincubation of the cells with verapamil, an L-type Ca(2+) channel blocker, did not affect the LPC-induced Ca(2+) increase in N2a cells, verapamil inhibited the response by 23% in SH-SY5Y cells. In Ca(2+)-free medium, LPC produced a significant [Ca(2+)](i) decrease in N2a cells, while it caused 64% of total [Ca(2+)](i) increase in SH-SY5Y cells. The results of a cell viability test suggest that N2a cells were more sensitive to LPC than were SH-SY5Y cells. These data suggested that the LPC-induced [Ca(2+)](i) increase was produced in each cell line through different mechanisms. In particular, the [Ca(2+)](i) increase occurred via entry through a permeabilized membrane in N2a cells, but through L-type Ca(2+) channels as well as by Ca(2+) release from intracellular Ca(2+) stores in SH-SY5Y cells. Thus, the symptomatic differences of organophosphate-induced neurotoxicity between mice and humans are probably not related to the diverse amplitudes of intracellular Ca(2+) overload produced by LPC. Moreover, the demyelination effect induced by LPC in mice may be a consequence of its detergent effect on membranes.

  17. Cearoin Induces Autophagy, ERK Activation and Apoptosis via ROS Generation in SH-SY5Y Neuroblastoma Cells.

    PubMed

    Bastola, Tonking; An, Ren-Bo; Kim, Youn-Chul; Kim, Jaehyo; Seo, Jungwon

    2017-02-06

    Neuroblastomas are the most common solid extracranial tumors in childhood. We investigated the anticancer effect of cearoin isolated from Dalbergia odorifera in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were treated with various doses of cearoin. The viability was measured by MTT assay. DCFDA fluorescence assay and Griess assay were used for the measurement of intracellular reactive oxygen species (ROS) and nitric oxide (NO), respectively. Western blot analysis was performed to clarify the molecular pathway involved. Cearoin induced cell death in a dose-dependent manner. Cearoin increased the phosporylation of ERK, the conversion of LC3B-I to LC3B-II, decrease in Bcl2 expression, the activation of caspase-3, and the cleavage of PARP, indicating the induction of autophagy and apoptosis. Furthermore, cearoin treatment increased the production of ROS and NO. Co-treatment with the antioxidant N-acetylcysteine completely abolished cearoin-mediated autophagy, ERK activation and apoptosis, suggesting the critical role of ROS in cearoin-induced anticancer effects. Moreover, co-treatment with ERK inhibitor PD98059 partially reversed cearoin-induced cell death, indicating the involvement of ERK in cearoin anticancer effects. These data reveal that cearoin induces autophagy, ERK activation and apoptosis in neuroblastoma SH-SY5Y cells, which is mediated primarily by ROS generation, suggesting its therapeutic application for the treatment of neuroblastomas.

  18. Pathological effects of glyoxalase I inhibition in SH-SY5Y neuroblastoma cells.

    PubMed

    Kuhla, Björn; Lüth, Hans-Joachim; Haferburg, Dietrich; Weick, Michael; Reichenbach, Andreas; Arendt, Thomas; Münch, Gerald

    2006-06-01

    In Alzheimer's disease (AD), in aging, and under conditions of oxidative stress, the levels of reactive carbonyl compounds continuously increase. Accumulating carbonyl levels might be caused by an impaired enzymatic detoxification system. The major dicarbonyl detoxifying system is the glyoxalase system, which removes methylglyoxal in order to minimize cellular impairment. Although a reduced activity of glyoxalase I was evident in aging brains, it is not known how raising the intracellular methylglyoxal level influences neuronal function and the phosphorylation pattern of tau protein, which is known to be abnormally hyperphosphorylated in AD. To simulate a reduced glyoxalase I activity, we applied an inhibitor of glyoxalase I, p-bromobenzylglutathione cyclopentyl diester (pBrBzGSCp(2)), to SH-SY5Y neuroblastoma cells to induce chronically elevated methylglyoxal concentrations. We have shown that 10 microM pBrBzGSCp(2) leads to a fourfold elevation of the methylglyoxal level after 24 hr. In addition, glyoxalase I inhibition leads to reduced cell viability, strongly retracted neuritis, increase in [Ca(2+)](i), and activation of caspase-3. However, pBrBzGSCp(2) did not lead to tau "hyper"-phosphorylation despite activation of p38 mitogen-activated protein kinase and c-Jun NH(2)-terminal kinase but rather activated protein phosphatases 2 and induced tau dephosphorylation at the Ser(202)/Thr(205) and Ser(396)/Ser(404) epitopes. Preincubation with the carbonyl scavenger aminoguanidine prevented tau dephosphorylation, indicating the specific effect of methylglyoxal. Also, pretreatment with the inhibitor okadaic acid prevented tau dephosphorylation, indicating that methylglyoxal activates PP-2A. In summary, our data suggest that a reduced glyoxalase I activity mimics some changes associated with neurodegeneration, such as neurite retraction and apoptotic cell death.

  19. Inhibition of WNT signaling reduces differentiation and induces sensitivity to doxorubicin in human malignant neuroblastoma SH-SY5Y cells.

    PubMed

    Suebsoonthron, Junjira; Jaroonwitchawan, Thiranut; Yamabhai, Montarop; Noisa, Parinya

    2017-02-24

    Neuroblastoma is one of the most common cancers in infancy, arising from the neuroblasts during embryonic development. This cancer is difficult to treat and resistance to chemotherapy is often found; therefore, clinical trials of novel therapeutic approaches, such as targeted-cancer signaling, could be an alternative for a better treatment. WNT signaling plays significant roles in the survival, proliferation, and differentiation of human neuroblastoma. In this report, WNT signaling of a malignant human neuroblastoma cell line, SH-SY5Y cells, was inhibited by XAV939, a specific inhibitor of the Tankyrase enzyme. XAV939 treatment led to the reduction of β-catenin within the cells, confirming its inhibitory effect of WNT. The inhibition of WNT signaling by XAV939 did not affect cell morphology, survival, and proliferation; however, the differentiation and sensitivity to anticancer drugs of human neuroblastoma cells were altered. The treatment of XAV939 resulted in the downregulation of mature neuronal markers, including β-tubulin III, PHOX2A, and PHOX2B, whereas neural progenitor markers (PAX6, TFAP2α, and SLUG) were upregulated. In addition, the combination of XAV939 significantly enhanced the sensitivity of SH-SY5Y and IMR-32 cells to doxorubicin in both 2D and 3D culture systems. Microarray gene expression profiling suggested numbers of candidate target genes of WNT inhibition by XAV939, in particular, p21, p53, ubiquitin C, ZBED8, MDM2, CASP3, and FZD1, and this explained the enhanced sensitivity of SH-SY5Y cells to doxorubicin. Altogether, these results proposed that the altered differentiation of human malignant neuroblastoma cells by inhibiting WNT signaling sensitized the cells to anticancer drugs. This approach could thus serve as an effective treatment option for aggressive brain malignancy.

  20. Effect of 8-hydroxyquinoline and derivatives on human neuroblastoma SH-SY5Y cells under high glucose

    PubMed Central

    Suwanjang, Wilasinee; Prachayasittikul, Supaluk

    2016-01-01

    8-Hydroxyquinoline and derivatives exhibit multifunctional properties, including antioxidant, antineurodegenerative, anticancer, anti-inflammatory and antidiabetic activities. In biological systems, elevation of intracellular calcium can cause calpain activation, leading to cell death. Here, the effect of 8-hydroxyquinoline and derivatives (5-chloro-7-iodo-8-hydroxyquinoline or clioquinol and 8-hydroxy-5-nitroquinoline or nitroxoline) on calpain-dependent (calpain-calpastatin) pathways in human neuroblastoma (SH-SY5Y) cells was investigated. 8-Hydroxyquinoline and derivatives ameliorated high glucose toxicity in SH-SY5Y cells. The investigated compounds, particularly clioquinol, attenuated the increased expression of calpain, even under high-glucose conditions. 8-Hydroxyquinoline and derivatives thus adversely affected the promotion of neuronal cell death by high glucose via the calpain-calpastatin signaling pathways. These findings support the beneficial effects of 8-hydroxyquinolines for further therapeutic development. PMID:27635352

  1. Enhanced oxidative stress and aberrant mitochondrial biogenesis in human neuroblastoma SH-SY5Y cells during methamphetamine induced apoptosis

    SciTech Connect

    Wu, C.-W.; Ping, Y.-H.; Yen, J.-C.; Chang, C.-Y.; Wang, S.-F.; Yeh, C.-L.; Chi, C.-W.; Lee, H.-C. . E-mail: hclee2@ym.edu.tw

    2007-05-01

    Methamphetamine (METH) is an abused drug that may cause psychiatric and neurotoxic damage, including degeneration of monoaminergic terminals and apoptosis of non-monoaminergic cells in Brain. The cellular and molecular mechanisms underlying these METH-induced neurotoxic effects remain to be clarified. In this study, we performed a time course assessment to investigate the effects of METH on intracellular oxidative stress and mitochondrial alterations in a human dopaminergic neuroblastoma SH-SY5Y cell line. We characterized that METH induces a temporal sequence of several cellular events including, firstly, a decrease in mitochondrial membrane potential within 1 h of the METH treatment, secondly, an extensive decline in mitochondrial membrane potential and increase in the level of reactive oxygen species (ROS) after 8 h of the treatment, thirdly, an increase in mitochondrial mass after the drug treatment for 24 h, and finally, a decrease in mtDNA copy number and mitochondrial proteins per mitochondrion as well as the occurrence of apoptosis after 48 h of the treatment. Importantly, vitamin E attenuated the METH-induced increases in intracellular ROS level and mitochondrial mass, and prevented METH-induced cell death. Our observations suggest that enhanced oxidative stress and aberrant mitochondrial biogenesis may play critical roles in METH-induced neurotoxic effects.

  2. Profiling transcriptomes of human SH-SY5Y neuroblastoma cells exposed to maleic acid

    PubMed Central

    Wang, Chia-Chi; Lin, Yin-Chi; Cheng, Yin-Hua

    2017-01-01

    Background Maleic acid is a multi-functional chemical widely used in the field of industrial chemistry for producing food additives and food contact materials. As maleic acid may contaminate food by the release from food packages or intentional addition, it raises the concern about the effects of excessive dietary exposure to maleic acid on human health. However, the influence of maleic acid on human health has not been thoroughly studied. In silico toxicogenomics approaches have found the association between maleic acid and nervous system disease in human. The aim of this study is to experimentally explore the effects of maleic acid on human neuronal cells. Methods A microarray-based transcriptome profiling was performed to offer a better understanding of the effects of maleic acid on human health. Gene expression profiles of human neuroblastoma SH-SY5Y cells exposed to three concentrations of maleic acid (10, 50, and 100 μM) for 24 h were analyzed. Genes which were differentially expressed in dose-dependent manners were identified and further analyzed with an enrichment analysis. The expression profile of selected genes related to the inferred functional changes was validated using quantitative polymerase chain reaction (qPCR). Specific fluorescence probes were applied to observe the inferred functional changes in maleic acid-treated neuronal cells. Results A total of 316 differentially expressed genes (141 upregulated and 175 downregulated) were identified in response to the treatment of maleic acid. The enrichment analysis showed that DNA binding and metal ion binding were the significant molecular functions (MFs) of the neuronal cells affected by maleic acid. Maleic acid exposure decreased the expression of genes associated with calcium and thiol levels of the cells in a dose-dependent manner. The levels of intracellular calcium and thiol levels were also affected by maleic acid dose-dependent. Discussion The exposure to maleic acid is found to decrease the

  3. Celastrol protects human neuroblastoma SH-SY5Y cells from rotenone-induced injury through induction of autophagy.

    PubMed

    Deng, Yong-Ning; Shi, Jie; Liu, Jie; Qu, Qiu-Min

    2013-07-01

    Celastrol, an active component found in the Chinese herb tripterygium wilfordii has been identified as a neuroprotective agent for neurodegenerative diseases including Parkinson's disease (PD) through unknown mechanism. Celastrol can induce autophagy, which plays a neuroprotective role in PD. We tested the protective effect of celastrol on rotenone-induced injury and investigated the underlying mechanism using human neuroblastoma SH-SY5Y cells. The SH-SY5Y cells were treated with celastrol before rotenone exposure. The cells survival, apoptosis, accumulation of α-synuclein, oxidative stress and mitochondrial function, and autophagy production were analyzed. We found celastrol (500 nM) pre-treatment enhanced cell viability (by 28.99%, P<0.001), decreased cell apoptosis (by 54.38%, P<0.001), increased SOD and GSH (by 120.53% and 90.46%, P<0.01), reduced accumulation of α-synuclein (by 35.93%, P<0.001) and ROS generation (by 33.99%, P<0.001), preserved MMP (33.93±3.62%, vs. 15.10±0.71% of JC-1 monomer, P<0.001) and reduced the level of cytochrome C in cytosol (by 45.57%, P<0.001) in rotenone treated SH-SY5Y cells. Moreover, celastrol increased LC3-II/LC3 I ratio by 60.92% (P<0.001), indicating that celastrol activated autophagic pathways. Inhibiting autophagy by 3-methyladenine (3-MA) abolished the protective effects of celastrol. Our results suggested that celastrol protects SH-SY5Y cells from rotenone induced injuries and autophagic pathway is involved in celastrol neuroprotective effects.

  4. PA6 Stromal Cell Co-Culture Enhances SH-SY5Y and VSC4.1 Neuroblastoma Differentiation to Mature Phenotypes

    PubMed Central

    Ferguson, Ross; Subramanian, Vasanta

    2016-01-01

    Neuroblastoma cell lines such as SH-SY5Y have been used for modelling neurodegenerative diseases and for studying basic mechanisms in neuroscience. Since neuroblastoma cells proliferate and generally do not express markers of mature or functional neurons, we exploited a co-culture system with the stromal cell line PA6 to better induce differentiation to a more physiologically relevant status. We found that co-culture of the neuroblastoma cell lines in the presence of neural inducers such retinoic acid was able to generate a high proportion of quiescent neurons with very long neurites expressing differentiation markers. The co-culture system additionally cuts short the time taken to produce a more mature phenotype. We also show the application of this system to study proteins implicated in motor neuron disease. PMID:27391595

  5. Effect of graphene oxide on undifferentiated and retinoic acid-differentiated SH-SY5Y cells line

    NASA Astrophysics Data System (ADS)

    Lv, Min; Zhang, Yujie; Liang, Le; Wei, Min; Hu, Wenbing; Li, Xiaoming; Huang, Qing

    2012-06-01

    Graphene oxide (GO), has created an unprecedented opportunity for development and application in biology, due to its abundant functional groups and well water solubility. Recently, the potential toxicity of GO in the environment and in humans has garnered more and more attention. In this paper, we systematically studied the cytotoxicity of GO nanosheets via examining the effect of GO on the morphology, viability and differentiation of a human neuroblastoma SH-SY5Y cell line, which was an ideal model used to study neuronal disease in vitro. The results suggested that GO had no obvious cytotoxicity at low concentration (<80 μg mL-1) for 96 h, but the viability of cells exhibited dose- and time-dependent decreases at high concentration (>=80 μg mL-1). Moreover, GO did not induce apoptosis. Very interestingly, GO significantly enhanced the differentiation of SH-SY5Y induced-retinoic acid (RA) by evaluating neurite length and the expression of neuronal marker MAP2. These data provide a promising application for neurodegenerative diseases.

  6. delta- and mu-opioid receptor mobilization of intracellular calcium in SH-SY5Y human neuroblastoma cells.

    PubMed Central

    Connor, M.; Henderson, G.

    1996-01-01

    1. In this study we have investigated delta and mu opioid receptor-mediated elevation of intracellular Ca2+ concentration ([Ca2+]i) in the human neuroblastoma cell line, SH-SY5Y. 2. The Ca(2+)-sensitive dye, fura-2, was used to measure [Ca2+]i in confluent monolayers of SH-SY5Y cells. Neither the delta-opioid agonist, DPDPE ([D-Pen2,5]-enkephalin) nor the mu-opioid agonist, DAMGO (Tyr-D-Ala-Gly-N-Me-Phe-Gly-ol enkephalin) elevated [Ca2+]i when applied alone. However, when either DPDPE or DAMGO was applied in the presence of the cholinoceptor agonist, carbachol (100 nM-1 mM) they evoked an elevation of [Ca2+]i above that caused by carbachol alone. 3. In the presence of 1 microM or 100 microM carbachol, DPDPE elevated [Ca2+]i with an EC50 of 10 nM. The elevation of [Ca2+]i was independent of the concentration of carbachol. The EC50 for DAMGO elevating [Ca2+]i in the presence of 1 microM and 100 microM carbachol was 270 nM and 145 nM respectively. 4. The delta-receptor antagonist, naltrindole (30 nM), blocked the elevations of [Ca2+]i by DPDPE (100 nM) without affecting those caused by DAMGO while the mu-receptor antagonist, CTAP (D-Phe-Cys-Tyr-D-Trp-Arg-Pen-Thr-NH2) (100 nM-1 microM) blocked the elevations of [Ca2+]i caused by DAMGO (1 microM) without affecting those caused by DPDPE. 5. Block of carbachol activation of muscarinic receptors with atropine (10 microM) abolished the elevation of [Ca2+]i by the opioids. The nicotinic receptor antagonist, mecamylamine (10 microM), did not affect the elevations of [Ca2+]i caused by opioids in the presence of carbachol. 6. Muscarinic receptor activation, not a rise in [Ca2+]i, was required to reveal the opioid response. The Ca2+ channel activator, maitotoxin (3 ng ml-1), also elevated [Ca2+]i but subsequent application of opioid in the presence of maitotoxin caused no further changes in [Ca2+]i. 7. The elevations of [Ca2+]i by DPDPE and DAMGO were abolished by pretreatment of the cells with pertussis toxin (200 ng ml-1, 16 h

  7. Neuroprotective role of sphingosine-1-phosphate in L-BMAA treated neuroblastoma cells (SH-SY5Y).

    PubMed

    Muñoz-Sáez, Emma; de Munck García, Estefanía; Arahuetes Portero, Rosa María; Vicente, Francisca; Ortiz-López, Francisco Javier; Cantizani, Juan; Gómez Miguel, Begoña

    2015-04-23

    Sphingosine-1-phosphate (S1P) is a bioactive lipid which regulates proliferation, cell migration, survival and differentiation by specific receptors activation. We studied its effects on L-BMAA treated neuroblastoma cells (SH-SY5Y), an amino acid that can trigger neurodegenerative diseases such as amyotrophic lateral sclerosis/Parkinson dementia complex (ALS/PDC). We found that S1P protects from necrosis and prevents the GSK3 increasing as long as the PI3K/AKT pathway is active. Moreover, GSK3 inhibition protects against neuronal death caused by L-BMAA.

  8. Melatonin attenuates methamphetamine-induced neuroinflammation through the melatonin receptor in the SH-SY5Y cell line.

    PubMed

    Wongprayoon, Pawaris; Govitrapong, Piyarat

    2015-09-01

    Methamphetamine is a well-known psychostimulant drug, the abuse of which is a serious worldwide public health issue. In addition to its addictive effect, methamphetamine exposure has been shown to be associated with neuroinflammation in several brain areas. Several lines of evidence indicate that TNFα plays an important role in the methamphetamine-induced neuroinflammatory processes that result in apoptotic cell death. Many investigators have demonstrated the anti-neuroinflammatory effects of melatonin, but the mechanism by which this occurs still needs to be explored. In this study, we investigated the effect of methamphetamine on TNFα expression and NFκB activation in the neuroblastoma cell line SH-SY5Y. We demonstrated the time-dependent effect of methamphetamine on the induction of TNFα expression as well as IκB degradation and NFκB nuclear translocation. Furthermore, we investigated the effect of melatonin on methamphetamine-induced TNFα overexpression and NFκB activation. The results showed that pretreatment with 100nM melatonin could prevent the TNFα overexpression caused by methamphetamine exposure. This attenuating effect was prevented by pre-incubation with luzindole, an antagonist of the melatonin MT1/MT2 receptors. Furthermore, methamphetamine-induced IκB degradation and NFκB nuclear translocation were also suppressed by pretreatment with melatonin, and pretreatment with luzindole diminished these protective effects. MT2 knockdown by siRNA abrogated the anti-inflammatory effect exerted by melatonin. From these findings, we propose that melatonin exerts its protective effects on methamphetamine-induced neuroinflammation through the membrane receptor, at least in part MT2 subtype, in the SH-SY5Y neuroblastoma cell line.

  9. Force spectroscopy of membrane hardness of SH-SY5Y neuroblastoma cells before and after differentiation

    NASA Astrophysics Data System (ADS)

    Kwon, Sangwoo; Yang, Woochul; Choi, Yun Kyong; Park, Jung Keuck

    2014-05-01

    Atomic force microscopy (AFM) is utilized in many studies for measuring the structure and the physical characteristics of soft and bio materials. In particular, the force spectroscopy function in the AFM system allows us to explore the mechanical properties of bio cells. In this study, we probe the variation in the membrane hardness of human neuroblastoma SH-SY5Y cells (SH-cells) before and after differentiation by using force spectroscopy. The SH-cell, which is usually differentiated by using a chemical treatment with retinoic acid (RA), is a neuronal cell line employed widely as an in-vitro model for neuroscience research. In force spectroscopy, the force-distance curves are obtained from both the original and the RA-treated cells while the AFM tip approaches and pushes on the cell membranes. The slope deduced from linear region in the force-distance curve is the spring constant and corresponds to the hardness of the cell membrane. The spring constant of the RA-treated cells (0.597 ± 0.010 nN/nm) was smaller than that of the original cells (0.794 ± 0.010 nN/nm), reflecting a hardness decrease in the cells differentiated with the RA treatments. The results clearly demonstrated that the differentiated cells are softer than the original cells. The change in the elasticity of the differentiated cells might be caused by morphological modification during differentiation process. We suggest that force spectroscopy can be employed as a novel method to determine the degree of differentiation of stem cells into various functional cells.

  10. Survivin knockdown increased anti-cancer effects of (-)-epigallocatechin-3-gallate in human malignant neuroblastoma SK-N-BE2 and SH-SY5Y cells

    SciTech Connect

    Hossain, Md. Motarab; Banik, Naren L.; Ray, Swapan K.

    2012-08-01

    Neuroblastoma is a solid tumor that mostly occurs in children. Malignant neuroblastomas have poor prognosis because conventional chemotherapeutic agents are hardly effective. Survivin, which is highly expressed in some malignant neuroblastomas, plays a significant role in inhibiting differentiation and apoptosis and promoting cell proliferation, invasion, and angiogenesis. We examined consequences of survivin knockdown by survivin short hairpin RNA (shRNA) plasmid and then treatment with (-)-epigallocatechin-3-gallate (EGCG), a green tea flavonoid, in malignant neuroblastoma cells. Our Western blotting and laser scanning confocal immunofluorescence microscopy showed that survivin was highly expressed in malignant neuroblastoma SK-N-BE2 and SH-SY5Y cell lines and slightly in SK-N-DZ cell line. Expression of survivin was very faint in malignant neuroblastoma IMR32 cell line. We transfected SK-N-BE2 and SH-SY-5Y cells with survivin shRNA, treated with EGCG, and confirmed knockdown of survivin at mRNA and protein levels. Survivin knockdown induced morphological features of neuronal differentiation, as we observed following in situ methylene blue staining. Combination of survivin shRNA and EGCG promoted neuronal differentiation biochemically by increases in the expression of NFP, NSE, and e-cadherin and also decreases in the expression of Notch-1, ID2, hTERT, and PCNA. Our in situ Wright staining and Annexin V-FITC/PI staining showed that combination therapy was highly effective in inducing, respectively, morphological and biochemical features of apoptosis. Apoptosis occurred with activation of caspase-8 and cleavage of Bid to tBid, increase in Bax:Bcl-2 ratio, mitochondrial release of cytochrome c, and increases in the expression and activity of calpain and caspase-3. Combination therapy decreased migration of cells through matrigel and inhibited proliferative (p-Akt and NF-{kappa}B), invasive (MMP-2 and MMP-9), and angiogenic (VEGF and b-FGF) factors. Also, in vitro

  11. Activation of phospholipase C in SH-SY5Y neuroblastoma cells by potassium-induced calcium entry.

    PubMed Central

    Smart, D.; Wandless, A.; Lambert, D. G.

    1995-01-01

    1. We used SH-SY5Y human neuroblastoma cells to investigate whether depolarization with high K+ could stimulate inositol (1,4,5)trisphosphate (Ins(1,4,5)P3) formation and, if so, the mechanism involved. 2. Ins(1,4,5)P3 was measured by a specific radioreceptor mass assay, whilst [Ca2+]i was measured fluorimetrically with the Ca2+ indicator dye, Fura-2. 3. Depolarization with K+ caused a time- and dose-dependent increase in [Ca2+]i (peak at 27 s, EC50 of 50.0 +/- 9.0 mM) and Ins(1,4,5)P3 formation (peak at 30 s, EC50 of 47.4 +/- 1.1 mM). 4. Both the K(+)-induced Ins(1,4,5)P3 formation and increase in [Ca2+]i were inhibited dose-dependently by the L-type voltage-sensitive Ca2+ channel closer, (R+)-BayK8644, with IC50 values of 53.4 nM and 87.9 nM respectively. 5. These data show a close temporal and dose-response relationship between Ca2+ entry via L-type voltage-sensitive Ca2+ channels and Ins(1,4,5)P3 formation following depolarization with K+, indicating that Ca2+ influx can activate phospholipase C in SH-SY5Y cells. PMID:8528562

  12. Internalization and down-regulation of mu opioid receptors by endomorphins and morphine in SH-SY5Y human neuroblastoma cells.

    PubMed

    Horner, Kristen A; Zadina, James E

    2004-12-03

    The human neuroblastoma cell line, SH-SY5Y, was used to examine the effects of morphine and the endogenous opioid peptides, endomorphin-1 (EM-1) and endomorphin-2 (EM-2), on mu opioid receptor (MOR) internalization and down-regulation. Treatment for 24 h with EM-1, EM-2 or morphine at 100 nM, 1 microM and 10 microM resulted in a dose-dependent down-regulation of mu receptors. Exposure of cells to 10 microM EM-1 for 2.5, 5 and 24 h resulted in a time-dependent down-regulation of mu receptors. Down-regulation of mu receptors by morphine and EM-1 was blocked by treatment with hypertonic sucrose, consistent with an endocytosis-dependent mechanism. Sensitive cell-surface binding studies with a radiolabeled mu antagonist revealed that morphine was able to induce internalization of mu receptors naturally expressed in SH-SY5Y cells. EM-1 produced a more rapid internalization of mu receptors than morphine, but hypertonic sucrose blocked the internalization induced by each of these agonists. This study demonstrates that, like morphine, the endomorphins down-regulate mu opioid receptors in a dose- and time-dependent manner. This study also demonstrates that morphine, as well as EM-1, can induce rapid, endocytosis-dependent internalization of mu opioid receptors in SH-SY5Y cells. These results may help elucidate the ability of mu agonists to regulate the number and responsiveness of their receptors.

  13. Flavonoids from Potentilla parvifolia Fisch. and Their Neuroprotective Effects in Human Neuroblastoma SH-SY5Y cells In Vitro.

    PubMed

    Yuan, Zhenzhen; Luan, Guangxiang; Wang, Zhenhua; Hao, Xueyan; Li, Ji; Suo, Yourui; Li, Gang; Wang, Honglun

    2017-03-11

    Potentilla parvifolia Fisch. (Rosaceae) is a traditional medicinal plant in China. In this study, seven flavonoids, ayanin (1), tricin (2), quercetin (3), tiliroside (4), miquelianin (5), isoquercitrin (6), and astragalin (7), were separated and purified from ethanol extractive fractions from ethanol extracts of P. parvifolia using a combination of sevaral chromatographic methods. The human neuroblastoma SH-SY5Y cells were differentiated with all trans-retinoic acid and treated with okadaic acid to induce tau protein phosphorylation and synaptic atrophy, which could establish an Alzheimer's disease cell model. The neuroprotective effects of these flavonoids in cellular were evaluated in vitro by this cell model. Results from the western blot and morphology analysis suggested that compounds 3 and 4 had the better neuroprotective effects. This article is protected by copyright. All rights reserved.

  14. Protective Effects of Bacopa Monnieri on Hydrogen Peroxide and Staurosporine: Induced Damage of Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Łojewski, Maciej; Pomierny, Bartosz; Muszyńska, Bożena; Krzyżanowska, Weronika; Budziszewska, Bogusława; Szewczyk, Agnieszka

    2016-02-01

    Many herbs, and recently their biomass from in vitro cultures, are essential for the treatment of diseases. The aim of this study was to determine the optimal growth of Bacopa monnieri (water hyssop) in an in vitro culture and to examine if extracts of the B. monnieri biomass from the in vitro culture would affect hydrogen peroxide- and staurosporine-induced injury of the human neuroblastoma SH-SY5Y cell line. It has been found that B. monnieri at concentrations of 25, 50, and 100 µg/mL inhibited both hydrogen peroxide-induced efflux of lactate dehydrogenase from damaged cells to culture medium and increased cell viability determined by an MTT assay. Moreover, B. monnieri at concentrations of 10, 25, and 50 µg/mL decreased staurosporine-induced activity of an executive apoptotic enzyme-caspase-3 and protected mitochondrial membrane potential. The obtained data indicate that the biomass from the in vitro culture of B. monnieri prevented SH-SY5Y cell damage related to oxidative stress and had the ability to inhibit the apoptotic process. Thus, this study supports the traditional use of B. monnieri as a neuroprotective therapy, and further in vivo studies on the effects of this preparation on morphology and function of nerve cells could lead to its wider application.

  15. Involvement of Mu Opioid Receptor Signaling in the Protective Effect of Opioid against 6-Hydroxydopamine-Induced SH-SY5Y Human Neuroblastoma Cells Apoptosis

    PubMed Central

    Eftekhar-Vaghefi, Shahrzad; Esmaeili-Mahani, Saeed; Elyasi, Leila; Abbasnejad, Mehdi

    2015-01-01

    Introduction: The neuroprotective role of opioid morphine against 6-hydroxydopamine-induced cell death has been demonstrated. However, the exact mechanism(s) underlying such neuroprotection, especially the role of subtype receptors, has not yet been fully clarified. Methods: Here, we investigated the effects of different opioid agonists on 6-OHDA-induced neurotoxicity in human neuroblastoma SH-SY5Y cell line as an in vitro model of Parkinson’s disease. Cell damage was induced by 150 μM 6-OHDA and the cells viability was examined by MTT assay. Intracellular calcium, reactive oxygen species and mitochondrial membrane potential were assessed by fluorescence spectrophotometry method. Immunoblot technique was used to evaluate cytochrome-c and activated caspase-3 as biochemical markers of apoptosis induction. Results: The data showed that 6-OHDA caused significant cell damage, loss of mitochondrial membrane potential and increase in intracellular reactive oxygen species and calcium levels as well as activated caspase-3 and cytochrome-c release. Incubation of SH-SY5Y cells with μ-opioid agonists, morphine and DAMGO, but not with δ-opioid agonist, DADLE, elicited protective effect and reduced biochemical markers of cell damage and death. Discussion: The results suggest that μ-opioid receptors signaling participate in the opioid neuroprotective effects against 6-OHDA-induced neurotoxicity. PMID:26904174

  16. Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway.

    PubMed

    Rahman, Md Ataur; Bishayee, Kausik; Huh, Sung-Oh

    2016-02-01

    Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-3β activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy.

  17. Estradiol and testosterone regulate arginine-vasopressin expression in SH-SY5Y human female neuroblastoma cells through estrogen receptors-α and -β.

    PubMed

    Grassi, Daniela; Bellini, Maria Jose; Acaz-Fonseca, Estefania; Panzica, Giancarlo; Garcia-Segura, Luis M

    2013-06-01

    The expression of arginine-vasopressin (AVP) is regulated by estradiol and testosterone (T) in different neuronal populations by mechanisms that are not yet fully understood. Estrogen receptors (ERs) have been shown to participate in the regulation of AVP neurons by estradiol. In addition, there is evidence of the participation of ERβ in the regulation of AVP expression exerted by T via its metabolite 5α-dihydrotestosterone (5α-DHT) and its further conversion in the androgen metabolite and ERβ ligand 3β-diol. In this study we have explored the role of ERs in the regulation exerted by estradiol and T on AVP expression, using the human neuroblastoma cell line SH-SY5Y. Estradiol treatment increased AVP mRNA levels in SH-SY5Y cells in comparison with cells treated with vehicle. The stimulatory effect of estradiol on AVP expression was imitated by the ERα agonist 4,4',4',-(4-propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol and blocked by the ER antagonist, ICI 182,780, and the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1hpyrazoledihydrochloride. In contrast, the ERβ agonist 2,3-bis(4-hydroxyphenyl)-propionitrile reduced AVP expression, whereas the ERβ antagonist 4-[2-phenyl-5,7-bis(trifluoromethyl) pyrazolo[1,5-a]pyrimidin-3-yl]phenol enhanced the action of estradiol on AVP expression. T increased AVP expression in SH-SY5Y cells by a mechanism that was dependent on aromatase but not on 5α-reductase activity. The T effect was not affected by blocking the androgen receptor, was not imitated by the T metabolite 5α-DHT, and was blocked by the ERα antagonist 1,3-bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)phenol]-1hpyrazoledihydrochloride. In contrast, 5α-DHT had a similar effect as the ERβ agonists 2,3-bis(4-hydroxyphenyl)-propionitrile and 3β-diol, reducing AVP expression. These findings suggest that estradiol and T regulate AVP expression in SH-SY5Y cells through ERs, exerting a stimulatory action via ERα and

  18. Role of D-Limonene in autophagy induced by bergamot essential oil in SH-SY5Y neuroblastoma cells.

    PubMed

    Russo, Rossella; Cassiano, Maria Gilda Valentina; Ciociaro, Antonella; Adornetto, Annagrazia; Varano, Giuseppe Pasquale; Chiappini, Carlotta; Berliocchi, Laura; Tassorelli, Cristina; Bagetta, Giacinto; Corasaniti, Maria Tiziana

    2014-01-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a well characterized, widely used plant extract. BEO exerts anxiolytic, analgesic and neuroprotective activities in rodents through mechanisms that are only partly known and need to be further investigated. To gain more insight into the biological effects of this essential oil, we tested the ability of BEO (0.005-0.03%) to modulate autophagic pathways in human SH-SY5Y neuroblastoma cells. BEO-treated cells show increased LC3II levels and appearance of dot-like formations of endogenous LC3 protein that colocalize with the lysosome marker LAMP-1. Autophagic flux assay using bafilomycin A1 and degradation of the specific autophagy substrate p62 confirmed that the observed increase of LC3II levels in BEO-exposed cells is due to autophagy induction rather than to a decreased autophagosomal turnover. Induction of autophagy is an early and not cell-line specific response to BEO. Beside basal autophagy, BEO also enhanced autophagy triggered by serum starvation and rapamycin indicating that the underlying mechanism is mTOR independent. Accordingly, BEO did not affect the phosphorylation of ULK1 (Ser757) and p70(S6K) (Thr389), two downstream targets of mTOR. Furthermore, induction of autophagy by BEO is beclin-1 independent, occurs in a concentration-dependent manner and is unrelated to the ability of BEO to induce cell death. In order to identify the active constituents responsible for these effects, the two most abundant monoterpenes found in the essential oil, d-limonene (125-750 µM) and linalyl acetate (62.5-375 µM), were individually tested at concentrations comparable to those found in 0.005-0.03% BEO. The same features of stimulated autophagy elicited by BEO were reproduced by D-limonene, which rapidly increases LC3II and reduces p62 levels in a concentration-dependent manner. Linalyl acetate was ineffective in replicating BEO effects; however, it greatly enhanced LC3 lipidation triggered by D-limonene.

  19. Role of D-Limonene in Autophagy Induced by Bergamot Essential Oil in SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Russo, Rossella; Cassiano, Maria Gilda Valentina; Ciociaro, Antonella; Adornetto, Annagrazia; Varano, Giuseppe Pasquale; Chiappini, Carlotta; Berliocchi, Laura; Tassorelli, Cristina; Bagetta, Giacinto; Corasaniti, Maria Tiziana

    2014-01-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a well characterized, widely used plant extract. BEO exerts anxiolytic, analgesic and neuroprotective activities in rodents through mechanisms that are only partly known and need to be further investigated. To gain more insight into the biological effects of this essential oil, we tested the ability of BEO (0.005–0.03%) to modulate autophagic pathways in human SH-SY5Y neuroblastoma cells. BEO-treated cells show increased LC3II levels and appearance of dot-like formations of endogenous LC3 protein that colocalize with the lysosome marker LAMP-1. Autophagic flux assay using bafilomycin A1 and degradation of the specific autophagy substrate p62 confirmed that the observed increase of LC3II levels in BEO-exposed cells is due to autophagy induction rather than to a decreased autophagosomal turnover. Induction of autophagy is an early and not cell-line specific response to BEO. Beside basal autophagy, BEO also enhanced autophagy triggered by serum starvation and rapamycin indicating that the underlying mechanism is mTOR independent. Accordingly, BEO did not affect the phosphorylation of ULK1 (Ser757) and p70S6K (Thr389), two downstream targets of mTOR. Furthermore, induction of autophagy by BEO is beclin-1 independent, occurs in a concentration-dependent manner and is unrelated to the ability of BEO to induce cell death. In order to identify the active constituents responsible for these effects, the two most abundant monoterpenes found in the essential oil, d-limonene (125–750 µM) and linalyl acetate (62.5–375 µM), were individually tested at concentrations comparable to those found in 0.005–0.03% BEO. The same features of stimulated autophagy elicited by BEO were reproduced by d-limonene, which rapidly increases LC3II and reduces p62 levels in a concentration-dependent manner. Linalyl acetate was ineffective in replicating BEO effects; however, it greatly enhanced LC3 lipidation triggered by d

  20. Quinolinic acid induces neuritogenesis in SH-SY5Y neuroblastoma cells independently of NMDA receptor activation.

    PubMed

    Hernandez-Martinez, Juan-Manuel; Forrest, Caroline M; Darlington, L Gail; Smith, Robert A; Stone, Trevor W

    2017-03-01

    Glutamate and nicotinamide adenine dinucleotide (NAD(+) ) have been implicated in neuronal development and several types of cancer. The kynurenine pathway of tryptophan metabolism includes quinolinic acid (QA) which is both a selective agonist at N-methyl-D-aspartate (NMDA) receptors and also a precursor for the formation of NAD(+) . The effect of QA on cell survival and differentiation has therefore been examined on SH-SY5Y human neuroblastoma cells. Retinoic acid (RA, 10 μm) induced differentiation of SH-SY5Y cells into a neuronal phenotype showing neurite growth. QA (50-150 nm) also caused a concentration-dependent increase in the neurite/soma ratio, indicating differentiation. Both RA and QA increased expression of the neuronal marker β3-tubulin in whole-cell homogenates and in the neuritic fraction assessed using a neurite outgrowth assay. Expression of the neuronal proliferation marker doublecortin revealed that, unlike RA, QA did not decrease the number of mitotic cells. QA-induced neuritogenesis coincided with an increase in the generation of reactive oxygen species. Neuritogenesis was prevented by diphenylene-iodonium (an inhibitor of NADPH oxidase) and superoxide dismutase, supporting the involvement of reactive oxygen species. NMDA itself did not promote neuritogenesis and the NMDA antagonist dizocilpine (MK-801) did not prevent quinolinate-induced neuritogenesis, indicating that the effects of QA were independent of NMDA receptors. Nicotinamide caused a significant increase in the neurite/soma ratio and the expression of β3-tubulin in the neuritic fraction. Taken together, these results suggest that QA induces neuritogenesis by promoting oxidizing conditions and affecting the availability of NAD(+) , independently of NMDA receptors.

  1. 2,2',4,4'-Tetrabromodiphenyl ether promotes human neuroblastoma SH-SY5Y cells migration via the GPER/PI3K/Akt signal pathway.

    PubMed

    Tian, P-C; Wang, H-L; Chen, G-H; Luo, Q; Chen, Z; Wang, Y; Liu, Y-F

    2016-02-01

    Neuroblastoma is the predominant tumor of early childhood. 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47) has the highest concentration among all polybrominated diphenyl ether (PBDE) congeners in human body, particularly for children. Considering that accumulating evidences showed developmental neurotoxicity of PBDE, there is an urgent need to investigate the effects of BDE-47 on the development of neuroblastoma. This study revealed that BDE-47 had limited effects on the cytotoxicity while significantly increased the in vitro migration and invasion of human neuroblastoma SH-SY5Y cells. This was further confirmed by the results that BDE-47 treatment significantly downregulated the expression of E-cadherin and zona occludin-1 and upregulated the expression of matrix metalloproteinase-9 (MMP-9). Silencing of MMP-9 by specific small interfering RNA significantly abolished the BDE-47-induced migration and invasion of SH-SY5Y cells. Further, the signals G protein-coupled estrogen receptor 1 (GPER)/phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (Akt) mediated the BDE-47-induced upregulation of MMP-9 and in vitro migration of SH-SY5Y cells since G15 (GPER inhibitor) and LY 294002 (PI3K/Akt inhibitor) significantly abolished the effects of BDE-47. Our results revealed that BDE-47 significantly triggered the metastasis of human neuroblastoma SH-SY5Y cells via upregulation of MMP-9 by the GPER/PI3K/Akt signal pathway. This study revealed for the first time that BDE-47 can promote the migration of SH-SY5Y cells. It also provided a better understanding about the metastasis of human neuroblastoma induced by environmental endocrine disruptors.

  2. Neuroprotective effect of arctigenin via upregulation of P-CREB in mouse primary neurons and human SH-SY5Y neuroblastoma cells.

    PubMed

    Zhang, Nan; Wen, Qingping; Ren, Lu; Liang, Wenbo; Xia, Yang; Zhang, Xiaodan; Zhao, Dan; Sun, Dong; Hu, Yv; Hao, Haiguang; Yan, Yaping; Zhang, Guangxian; Yang, Jingxian; Kang, Tingguo

    2013-09-10

    Arctigenin (Arc) has been shown to act on scopolamine-induced memory deficit mice and to provide a neuroprotective effect on cultured cortical neurons from glutamate-induced neurodegeneration through mechanisms not completely defined. Here, we investigated the neuroprotective effect of Arc on H89-induced cell damage and its potential mechanisms in mouse cortical neurons and human SH-SY5Y neuroblastoma cells. We found that Arc prevented cell viability loss induced by H89 in human SH-SY5Y cells. Moreover, Arc reduced intracellular beta amyloid (Aβ) production induced by H89 in neurons and human SH-SY5Y cells, and Arc also inhibited the presenilin 1(PS1) protein level in neurons. In addition, neural apoptosis in both types of cells, inhibition of neurite outgrowth in human SH-SY5Y cells and reduction of synaptic marker synaptophysin (SYN) expression in neurons were also observed after H89 exposure. All these effects induced by H89 were markedly reversed by Arc treatment. Arc also significantly attenuated downregulation of the phosphorylation of CREB (p-CREB) induced by H89, which may contribute to the neuroprotective effects of Arc. These results demonstrated that Arc exerted the ability to protect neurons and SH-SY5Y cells against H89-induced cell injury via upregulation of p-CREB.

  3. Toxic profile of bergamot essential oil on survival and proliferation of SH-SY5Y neuroblastoma cells.

    PubMed

    Berliocchi, Laura; Ciociaro, Antonella; Russo, Rossella; Cassiano, Maria Gilda Valentina; Blandini, Fabio; Rotiroti, Domenicantonio; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana

    2011-11-01

    Cosmetic, pharmaceutical, food and confectionary industries make increasing use of plant extracts in their products. Despite the widespread use of products containing plant extracts, the mechanisms of their effects are not fully characterized. Bergamot essential oil (BEO; Citrus bergamia, Risso) is a well-known plant extract used in aromatherapy and it has analgesic, anxiolytic and neuroprotective effects in rodents. To elicit neuroprotection, BEO recruits Akt prosurvival pathways. However, Akt stimulates cell proliferation, which may also pose risks for health in case of prolonged use. To study the potential effects of BEO on survival and proliferation of dividing cells, we selected human SH-SY5Y neuroblastoma cells. BEO triggered concentration-dependent mitochondrial dysfunction, cytoskeletal reorganization, cell shrinkage, DNA fragmentation and both caspase-dependent and independent cell death. Analysis of cleavage products of poly-(ADP-ribose) polymerase (PARP) revealed caspase-3 activation, but also activation of additional protease families. As result of increased proteolytic activity, Akt protein levels decreased in BEO-treated cells. Our data show that BEO can be lethal for dividing cells by activating multiple pathways. While this may reduce the risk of unwanted cell proliferation after prolonged use, it does suggest a cautionary approach to the use of inappropriate dilutions of the oil that may cause cell death.

  4. Protection against oxidant-induced apoptosis by mitochondrial thioredoxin in SH-SY5Y neuroblastoma cells

    SciTech Connect

    Chen Yan; Yu Min; Jones, Dean P.; Greenamyre, J. Timothy; Cai Jiyang . E-mail: jiyang.cai@vanderbilt.edu

    2006-10-15

    Mitochondrial oxidative stress plays important roles in aging and age-related degenerative disorders. The newly identified mitochondrial thioredoxin (mtTrx; Trx2) is a key component of the mitochondrial antioxidant system which is responsible for the clearance of reactive intermediates and repairs proteins with oxidative damage. Here, we show that in cultured SH-SY5Y human neuroblastoma 1cells, overexpression of mtTrx inhibited apoptosis and loss of mitochondrial membrane potential induced by a chemical oxidant, tert-butylhydroperoxide (tBH). The effects of calcium ionophore (Br-A23187) were not affected by mtTrx, suggesting the protection was specific against oxidative injury. The mitochondrial glutathione pool was oxidized by tBH, and this oxidation was not inhibited by increased mtTrx. Consequently, the antioxidant function of mtTrx is not redundant, but rather in addition, to that of GSH. Mutations of Cys90 and Cys93 to serines rendered mtTrx ineffective in protection against tBH-induced cytoxicity. These data indicate that mtTrx controls the mitochondrial redox status independently of GSH and is a key component of the defensive mechanism against oxidative stress in cultured neuronal cells.

  5. Quantitative proteomic analysis of HIV-1 Tat-induced dysregulation in SH-SY5Y neuroblastoma cells.

    PubMed

    Ganief, Tariq; Gqamana, Putuma; Garnett, Shaun; Hoare, Jackie; Stein, Dan J; Joska, John; Soares, Nelson; Blackburn, Jonathan M

    2017-03-01

    Despite affecting up to 70% of HIV-positive patients and being the leading cause of dementia in patients under 40 years, the molecular mechanisms involved in the onset of HIV-associated neurocognitive disorders (HAND) are not well understood. To address this, we performed SILAC-based quantitative proteomic analysis on HIV-Tat treated SH-SY5Y neuroblastoma cells. Isolated protein was fractionated by SDS-PAGE and analyzed by nLC-MS/MS on an Orbitrap Velos. Using MaxQuant, we identified and quantified 3077 unique protein groups, of which 407 were differentially regulated. After applying an additional standard deviation-based cutoff, 29 of these were identified as highly significantly and stably dysregulated. GO term analysis shows dysregulation in both protein translation machinery as well as cytoskeletal regulation that have both been implicated in other dementias. In addition, several key cytoskeletal regulatory proteins such as ARHGEF17, the Rho GTPase, SHROOM3, and CMRP1 are downregulated. Together, these data demonstrate that HIV-Tat can dysregulate neuronal cytoskeletal regulatory proteins that could lead to the major HAND clinical manifestation-synapse loss.

  6. Tris (1,3-dichloro-2-propyl) phosphate-induced apoptotic signaling pathways in SH-SY5Y neuroblastoma cells.

    PubMed

    Li, Ruiwen; Zhou, Peijiang; Guo, Yongyong; Lee, Jae-Seong; Zhou, Bingsheng

    2017-01-01

    Tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP, also known as TDCPP), an extensively used flame retardant, is frequently detected in the environment and biota. Recent studies have shown that TDCIPP has neurotoxic effects. In this study, we determined the mechanisms of TDCIPP-induced neurotoxicity in human neuroblastoma (SH-SY5Y) cells. By using morphological examination, flow cytometry, and mitochondrial membrane potential (ΔYm) measurement, we confirmed that exposure to TDCIPP caused apoptosis accompanied by the activation of apoptosis-related genes (e.g. Bax and Bcl-2) and caspase 3 protein in SH-SY5Y cells. Increased reactive oxygen species (ROS) formation and intracellular calcium ions ([Ca(2+)]i) were also observed in TDCIPP-treated SH-SY5Y cells. Exposure to TDCIPP led to the activation of protein markers of endoplasmic reticulum (ER) stress, including eukaryotic translation initiation factor 2a subunit (p-EIF2a), activation transcription factor (ATF4), glucose-regulated protein (GRP78), and the proapoptotic factor C/EBP homologous protein (CHOP). To determine the role of the ER in apoptosis, phenyl butyric acid (PBA), an ER stress inhibitor, was applied. Treatment with PBA effectively attenuated TDCIPP-induced ER stress and protected against apoptotic death in SH-SY5Y cells by inhibition of Bax expression and promotion of Bcl-2 expression. Furthermore, we found that pretreatment of the cells with the ROS scavenger N-acetyl cysteine (NAC) inhibited the ER stress response and prevented apoptosis. The combination of PBA and NAC pretreatment could further prevent TDCIPP induced ER-stress and apoptotic death compared with PBA or NAC pretreatment alone. Thus, in the present study, we demonstrated that TDCIPP induces cytotoxicity through a ROS-dependent mechanism involving ER stress and activation of mitochondrial apoptotic pathways in SH-SY5Y cells.

  7. Neuroprotective effect of Rosmarinus officinalis extract on human dopaminergic cell line, SH-SY5Y.

    PubMed

    Park, Se-Eun; Kim, Seung; Sapkota, Kumar; Kim, Sung-Jun

    2010-07-01

    Hydrogen peroxide (H2O2) is a major Reactive Oxygen Species (ROS), which has been implicated in many neurodegenerative conditions including Parkinson's disease (PD). Rosmarinus officinalis (R. officinalis) has been reported to have various pharmacological properties including anti-oxidant activity. In this study, we investigated the neuroprotective effects of R. officinalis extract on H2O2-induced apoptosis in human dopaminergic cells, SH-SY5Y. Our results showed that H2O2-induced cytotoxicity in SH-SY5Y cells was suppressed by treatment with R. officinalis. Moreover, R. officinalis was very effective in attenuating the disruption of mitochondrial membrane potential and apoptotic cell death induced by H2O2. R. officinalis extract effectively suppressed the up-regulation of Bax, Bak, Caspase-3 and -9, and down-regulation of Bcl-2. Pretreatment with R. officinalis significantly attenuated the down-regulation of tyrosine hydroxylase (TH), and aromatic amino acid decarboxylase (AADC) gene in SH-SY5Y cells. These findings indicate that R. officinalis is able to protect the neuronal cells against H2O2-induced injury and suggest that R. officinalis might potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress and apoptosis.

  8. Neurofunctional endpoints assessed in human neuroblastoma SH-SY5Y cells for estimation of acute systemic toxicity

    SciTech Connect

    Gustafsson, Helena; Runesson, Johan; Lundqvist, Jessica; Lindegren, Helene; Axelsson, Viktoria; Forsby, Anna

    2010-06-01

    The objective of the EU-funded integrated project ACuteTox is to develop a strategy in which general cytotoxicity, together with organ-specific toxicity and biokinetic features, are used for the estimation of human acute systemic toxicity. Our role in the project is to characterise the effect of reference chemicals with regard to neurotoxicity. We studied cell membrane potential (CMP), noradrenalin (NA) uptake, acetylcholine esterase (AChE) activity, acetylcholine receptor (AChR) signalling and voltage-operated calcium channel (VOCC) function in human neuroblastoma SH-SY5Y cells after exposure to 23 pharmaceuticals, pesticides or industrial chemicals. Neurotoxic alert chemicals were identified by comparing the obtained data with cytotoxicity data from the neutral red uptake assay in 3T3 mouse fibroblasts. Furthermore, neurotoxic concentrations were correlated with estimated human lethal blood concentrations (LC50). The CMP assay was the most sensitive assay, identifying eight chemicals as neurotoxic alerts and improving the LC50 correlation for nicotine, lindane, atropine and methadone. The NA uptake assay identified five neurotoxic alert chemicals and improved the LC50 correlation for atropine, diazepam, verapamil and methadone. The AChE, AChR and VOCC assays showed limited potential for detection of acute toxicity. The CMP assay was further evaluated by testing 36 additional reference chemicals. Five neurotoxic alert chemicals were generated and orphendrine and amitriptyline showed improved LC50 correlation. Due to the high sensitivity and the simplicity of the test protocol, the CMP assay constitutes a good candidate assay to be included in an in vitro test strategy for prediction of acute systemic toxicity.

  9. Mu and Delta opioid receptors activate the same G proteins in human neuroblastoma SH-SY5Y cells

    PubMed Central

    Alt, A; Clark, M J; Woods, J H; Traynor, J R

    2002-01-01

    There is evidence for interactions between mu and delta opioid systems both in vitro and in vivo. This work examines the hypothesis that interaction between these two receptors can occur intracellularly at the level of G protein in human neuroblastoma SH-SY5Y cells.The [35S]GTPγS binding assay was used to measure G protein activation following agonist occupation of opioid receptors. The agonists DAMGO (EC50, 45 nM) and SNC80 (EC50, 32 nM) were found to be completely selective for stimulation of [35S]-GTPγS binding through mu and delta opioid receptors respectively. Maximal stimulation of [35S]-GTPγS binding produced by SNC80 was 57% of that seen with DAMGO. When combined with a maximally effective concentration of DAMGO, SNC80 caused no additional [35S]-GTPγS binding. This effect was also seen when measured at the level of adenylyl cyclase.Receptor activation increased the dissociation of pre-bound [35S]-GTPγS. In addition, the delta agonist SNC80 promoted the dissociation of [35S]-GTPγS from G proteins initially labelled using the mu agonist DAMGO. Conversely, DAMGO promoted the dissociation of [35S]-GTPγS from G proteins initially labelled using SNC80.Tolerance to DAMGO and SNC80 in membranes from cells exposed to agonist for 18 h was homologous and there was no evidence for alteration in G protein activity.The findings support the hypothesis that mu- and delta-opioid receptors share a common G protein pool, possibly through a close organization of the two receptors and G protein at the plasma membrane. PMID:11786497

  10. Effect of toluene diisocyanate on homeostasis of intracellular-free calcium in human neuroblastoma SH-SY5Y Cells

    SciTech Connect

    Liu, P.-S. . E-mail: psliu@mail.scu.edu.tw; Chiung, Y.-M.; Kao, Y.-Y.

    2006-03-01

    The mechanisms of TDI (2,4-toluene diisocyanate)-induced occupational asthma are not fully established. Previous studies have indicated that TDI induces non-specific bronchial hyperreactivity to methacholine and induces contraction of smooth muscle tissue by activating 'capsaicin-sensitive' nerves resulting asthma. Cytosolic-free calcium ion concentrations ([Ca{sup 2+}]{sub c}) are elevated when either capsaicin acts at vanilloid receptors, or methacholine at muscarinic receptors. This study therefore investigated the effects of TDI on Ca{sup 2+} mobilization in human neuroblastoma SH-SY5Y cells. TDI was found to elevate [Ca{sup 2+}]{sub c} by releasing Ca{sup 2+} from the intracellular stores and extracellular Ca{sup 2+} influx. 500 {mu}M TDI induced a net [Ca{sup 2+}]{sub c} increase of 112 {+-} 8 and 78 {+-} 6 nM in the presence and absence of extracellular Ca{sup 2+}, respectively. In Ca{sup 2+}-free buffer, TDI induced Ca{sup 2+} release from internal stores to reduce their Ca{sup 2+} content and this reduction was evidenced by a suppression occurring on the [Ca{sup 2+}]{sub c} rise induced by thapsigargin, ionomycin, and methacholine after TDI incubation. In the presence of extracellular Ca{sup 2+}, simultaneous exposure to TDI and methacholine led a higher level of [Ca{sup 2+}]{sub c} compared to single methacholine stimulation, that might explain that TDI induces bronchial hyperreactivity to methacholine. We conclude that TDI is capable of interfering the [Ca{sup 2+}]{sub c} homeostasis including releasing Ca{sup 2+} from internal stores and inducing extracellular Ca{sup 2+} influx. The interaction of this novel character and bronchial hyperreactivity need further investigation.

  11. Carvacrol protects neuroblastoma SH-SY5Y cells against Fe2+-induced apoptosis by suppressing activation of MAPK/JNK-NF-κB signaling pathway

    PubMed Central

    Cui, Zhen-wen; Xie, Zheng-xing; Wang, Bao-feng; Zhong, Zhi-hong; Chen, Xiao-yan; Sun, Yu-hao; Sun, Qing-fang; Yang, Guo-yuan; Bian, Liu-guan

    2015-01-01

    Aim: Carvacrol (2-methyl-5-isopropylphenol), a phenolic monoterpene in the essential oils of the genera Origanum and Thymus, has been shown to exert a variety of therapeutic effects. Here we examined whether carvacrol protected neuroblastoma SH-SY5Y cells against Fe2+-induced apoptosis and explored the underlying mechanisms. Methods: Neuroblastoma SH-SY5Y cells were incubated with Fe2+ for 24 h, and the cell viability was assessed with CCK-8 assay. TUNEL assay and flow cytometric analysis were performed to evaluate cell apoptosis. The mRNA levels of pro-inflammatory cytokines and NF-κB p65 were determined using qPCR. The expression of relevant proteins was determined using Western blot analysis or immunofluorescence staining. Results: Treatment of SH-SY5Y cells with Fe2+ (50–200 μmol/L) dose-dependently decreased the cell viability, which was significantly attenuated by pretreatment with carvacrol (164 and 333 μmol/L). Treatment with Fe2+ increased the Bax level and caspase-3 activity, and decreased the Bcl-2 level, resulting in cell apoptosis. Furthermore, treatment with Fe2+ significantly increased the gene expression of IL-1β, IL-6 and TNF-α, and induced the nuclear translocation of NF-κB. Treatment with Fe2+ also significantly increased the phosphorylation of p38, ERK, JNK and IKK in the cells. Pretreatment with carvacrol significantly inhibited Fe2+-induced activation of NF-κB, expression of the pro-inflammatory cytokines, and cell apoptosis. Moreover, pretreatment with carvacrol inhibited Fe2+-induced phosphorylation of JNK and IKK, but not p38 and ERK in the cells. Conclusion: Carvacrol protects neuroblastoma SH-SY5Y cells against Fe2+-induced apoptosis, which may result from suppressing the MAPK/JNK-NF-κB signaling pathways. PMID:26592517

  12. Cellular Stress and p53-Associated Apoptosis by Juniperus communis L. Berry Extract Treatment in the Human SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Lantto, Tiina A.; Laakso, Into; Dorman, H. J. Damien; Mauriala, Timo; Hiltunen, Raimo; Kõks, Sulev; Raasmaja, Atso

    2016-01-01

    Plant phenolics have shown to activate apoptotic cell death in different tumourigenic cell lines. In this study, we evaluated the effects of juniper berry extract (Juniperus communis L.) on p53 protein, gene expression and DNA fragmentation in human neuroblastoma SH-SY5Y cells. In addition, we analyzed the phenolic composition of the extract. We found that juniper berry extract activated cellular relocalization of p53 and DNA fragmentation-dependent cell death. Differentially expressed genes between treated and non-treated cells were evaluated with the cDNA-RDA (representational difference analysis) method at the early time point of apoptotic process when p53 started to be activated and no caspase activity was detected. Twenty one overexpressed genes related to cellular stress, protein synthesis, cell survival and death were detected. Interestingly, they included endoplasmic reticulum (ER) stress inducer and sensor HSPA5 and other ER stress-related genes CALM2 and YKT6 indicating that ER stress response was involved in juniper berry extract mediated cell death. In composition analysis, we identified and quantified low concentrations of fifteen phenolic compounds. The main groups of them were flavones, flavonols, phenolic acids, flavanol and biflavonoid including glycosides of quercetin, apigenin, isoscutellarein and hypolaetin. It is suggested that juniper berry extract induced the p53-associated apoptosis through the potentiation and synergism by several phenolic compounds. PMID:27420050

  13. Modulation of chemotherapy-induced cytotoxicity in SH-SY5Y neuroblastoma cells by caffeine and chlorogenic acid.

    PubMed

    Hall, Susan; Anoopkumar-Dukie, Shailendra; Grant, Gary D; Desbrow, Ben; Lai, Richard; Arora, Devinder; Hong, Yinna

    2017-03-06

    Chemotherapy is an important treatment modality for malignancy but is limited by significant toxicity and it susceptibility to numerous drug interactions. While the interacting effects with medications are well known, there is limited evidence on the interaction with commonly consumed food and natural products. The aim of this study was to evaluate the bioactive constituents of coffee (caffeine and chlorogenic acid) on the cytotoxicity of doxorubicin, gemcitabine, and paclitaxel in vitro. Pretreatment with caffeine (100 nM and 10 μM) sensitized SH-SY5Y cells to doxorubicin-induced toxicity and increased apoptosis and sensitized PC3 cells to gemcitabine-induced toxicity. Pretreatment with 10 μM caffeine decreased total cell reactive oxygen species (ROS) production but increased mitochondrial ROS production. In contrast, caffeine (10 nM and 10 μM) protected cells against gemcitabine-induced toxicity and apoptosis. Similarly, 1 μM and 10 μM caffeine protected cells against paclitaxel-induced toxicity and mitochondrial ROS production. Chlorogenic acid had no effect on chemotherapy-induced toxicity in SH-SY5Y cells. In conclusion, this study provides preliminary evidence that caffeine, not chlorogenic acid, modulates the cytotoxicity of doxorubicin, gemcitabine, and paclitaxel in SH-SY5Y cells via different mechanisms.

  14. A "classical" homodimeric erythropoietin receptor is essential for the antiapoptotic effects of erythropoietin on differentiated neuroblastoma SH-SY5Y and pheochromocytoma PC-12 cells.

    PubMed

    Um, Moonkyoung; Gross, Alec W; Lodish, Harvey F

    2007-03-01

    The hematopoietic cytokine erythropoietin (Epo) exerts cytoprotective effects on several types of neuronal cells both in vivo and in culture. Detailed molecular mechanisms underlying this phenomenon have not been elucidated and even the identity of the cytoprotective Epo receptors in neuronal cells is controversial. Here we show that Epo prevents staurosporine-induced apoptosis of differentiated human neuroblastoma SH-SY5Y cells, and activates the STAT5, AKT and MAPK signaling pathways. Differentiated SH-SY5Y cells have fewer than 50 high affinity Epo surface binding sites per cell, which could not be detected by standard assays measuring binding of 125I-labeled Epo. However, by measuring endocytosis of 125I-Epo, we could reliably quantify very small numbers of high-affinity Epo surface binding sites. Using SH-SY5Y cells stably expressing an Epo receptor (EpoR) shRNA and thus lacking detectable EpoR expression, we show that high affinity binding of Epo to these neuronal cells is mediated by the hematopoietic EpoR, and that this EpoR is also essential for the antiapoptotic activity of Epo. In contrast, a mutant Epo that has an intact binding site 1 but a non-functional binding site 2 and hence binds only to one cell surface EpoR molecule ("site 2" Epo mutant) displays significantly lower antiapoptotic activity than wild-type Epo. Furthermore, expression of the GM-CSF/IL-3/IL-5 receptor common beta chain, which was proposed to be responsible for the cytoprotective activity of Epo on certain types of neuronal cells, was undetectable in differentiated SH-SY5Y cells. Epo also alleviated staurosporine-induced apoptosis of rat PC-12 pheochromocytoma cells while the R103A "site 2" Epo mutant did not, and we could not detect expression of the common beta chain in PC-12 cells. Together our results indicate that Epo exerts its antiapoptotic effects on differentiated SH-SY5Y and PC-12 cells through the standard stoichiometry of one molecule of Epo binding to two EpoR subunits

  15. MLIF Alleviates SH-SY5Y Neuroblastoma Injury Induced by Oxygen-Glucose Deprivation by Targeting Eukaryotic Translation Elongation Factor 1A2

    PubMed Central

    Liu, Yulan; Cheng, Hao; Wang, Jing; Zhang, Yue; Rui, Yaocheng; Li, Tiejun

    2016-01-01

    Monocyte locomotion inhibitory factor (MLIF), a heat-stable pentapeptide, has been shown to exert potent anti-inflammatory effects in ischemic brain injury. In this study, we investigated the neuroprotective action of MLIF against oxygen-glucose deprivation (OGD)-induced injury in human neuroblastoma SH-SY5Y cells. MTT assay was used to assess cell viability, and flow cytometry assay and Hoechst staining were used to evaluate apoptosis. LDH assay was used to exam necrosis. The release of inflammatory cytokines was detected by ELISA. Levels of the apoptosis associated proteins were measured by western blot analysis. To identify the protein target of MLIF, pull-down assay and mass spectrometry were performed. We observed that MLIF enhanced cell survival and inhibited apoptosis and necrosis by inhibiting p-JNK, p53, c-caspase9 and c-caspase3 expression. In the microglia, OGD-induced secretion of inflammatory cytokines was markedly reduced in the presence of MLIF. Furthermore, we found that eukaryotic translation elongation factor 1A2 (eEF1A2) is a downstream target of MLIF. Knockdown eEF1A2 using short interfering RNA (siRNA) almost completely abrogated the anti-apoptotic effect of MLIF in SH-SY5Y cells subjected to OGD, with an associated decrease in cell survival and an increase in expression of p-JNK and p53. These results indicate that MLIF ameliorates OGD-induced SH-SY5Y neuroblastoma injury by inhibiting the p-JNK/p53 apoptotic signaling pathway via eEF1A2. Our findings suggest that eEF1A2 may be a new therapeutic target for ischemic brain injury. PMID:26918757

  16. U18666A, an Activator of Sterol Regulatory Element Binding Protein (SREBP) Pathway Modulates Presynaptic Dopaminergic Phenotype of SH-SY5Y Neuroblastoma Cells.

    PubMed

    Schmitt, Mathieu; Dehay, Benjamin; Bezard, Erwan; Garcia-Ladona, F Javier

    2017-04-13

    The therapeutic use of statins has been associated to a reduced risk of Parkinson's disease (PD) and may hold neuroprotective potential by counteracting the degeneration of dopaminergic neurons. Transcriptional activation of the sterol regulatory element-binding protein (SREBP) is one of the major downstream signalling pathways triggered by the cholesterol-lowering effect of statins. In a previous study in neuroblastoma cells, we have shown that statins consistently induce the up-regulation of presynaptic dopaminergic proteins as well as changes of their function and these effects were accompanied by downstream activation of SREBP. In current study, we aimed to determine the direct role of SREBP pathway in the modulation of dopaminergic phenotype. We demonstrate that treatment of SH-SY5Y cells with U18666A, a SREBP activator, increases the translocation of SREBPs into the nucleus, increases expression of SREBP-1, SREBP-2 and of the presynaptic dopaminergic markers such as vesicular monoamine transporter 2, synaptic vesicle glycoprotein 2A and 2C, synaptogyrin-3 and tyrosine hydroxylase. The addition of SREBP inhibitor, PF-429242, blocks the increase of U18666A-induced expression of SREBPs and of presynaptic markers. Our results, in line with previously reported effects of statins, demonstrate that direct stimulation of SREBP translocation is associated to differentiation towards a dopaminergic-like phenotype and suggest that SREBP-mediated transcriptional activity may lead to the restoration of the presynaptic dopamine markers and may contribute to neuroprotection of dopaminergic neurons. These findings further support the potential protective role of statin in PD and shed light upon SREBP as a potential new target for developing disease-modifying treatment in PD. This article is protected by copyright. All rights reserved.

  17. Effects of antidepressants on DSP4/CPT-induced DNA damage response in neuroblastoma SH-SY5Y cells

    PubMed Central

    Wang, Yan; Hilton, Benjamin A.; Cui, Kui; Zhu, Meng-Yang

    2015-01-01

    DNA damage is a form of cell stress and injury. Increased systemic DNA damage is related to the pathogenic development of neurodegenerative diseases. Depression occurs in a relatively high percentage of patients suffering from degenerative diseases, for whom antidepressants are often used to relieve depressive symptoms. However, few studies have attempted to elucidate why different groups of antidepressants have similar effects on relieving symptoms of depression. Previously, we demonstrated that neurotoxins N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP4)- and camptothecin (CPT)-induced the DNA damage response in SH-SY5Y cells, and DSP4 caused cell cycle arrest which was predominately in the S-phase. The present study shows that CPT treatment also resulted in similar cell cycle arrest. Some classic antidepressants could reduce the DNA damage response induced by DSP4 or CPT in SH-SY5Y cells. Cell viability examination demonstrated that both DSP4 and CPT caused cell death, which was prevented by spontaneous administration of some tested antidepressants. Flow cytometric analysis demonstrated that a majority of the tested antidepressants protect cells from being arrested in S-phase. These results suggest that blocking the DNA damage response may be an important pharmacologic characteristic of antidepressants. Exploring the underlying mechanisms may allow for advances in the effort to improve therapeutic strategies for depression appearing in degenerative and psychiatric diseases. PMID:26038195

  18. Opioid receptors in human neuroblastoma SH-SY5Y cells: evidence for distinct morphine (. mu. ) and enkephalin (delta) binding sites

    SciTech Connect

    Kazmi, S.M.I.; Mishra, R.K.

    1986-06-13

    Human neuroblastoma SH-SY5Y cells exhibited a heterogeneous population of ..mu.. and delta types of opioid binding sites. These specific binding sites displayed the characteristic saturability, stereospecificity and reversibility, expected of a receptor. Scatchard analysis of (/sup 3/H)-D-Ala/sup 2/-D-Leu/sup 5/-enkephalin (DADLE) in the presence of 10/sup -5/M D-Pro/sup 4/-morphiceptin (to block the ..mu.. receptors) and the competitive displacement by various highly selective ligands yielded the binding parameters of delta sites which closely resemble those of the delta receptors in brain and mouse neuroblastoma clones. Similarly, the high affinity binding of (/sup 3/H)-dihydromorphine, together with the higher potency of morphine analogues to displace (/sup 3/H)-naloxone binding established the presence of ..mu.. sites. Guanine nucleotides and NaCl significantly inhibited the association and increased the dissociation of (/sup 3/H)-DADLE binding.

  19. Phosphoproteome Profiling of SH-SY5y Neuroblastoma Cells Treated with Anesthetics: Sevoflurane and Isoflurane Affect the Phosphorylation of Proteins Involved in Cytoskeletal Regulation

    PubMed Central

    Lee, Joomin; Ahn, Eunsook; Park, Wyun Kon; Park, Seyeon

    2016-01-01

    Inhalation anesthetics are used to decrease the spinal cord transmission of painful stimuli. However, the molecular or biochemical processes within cells that regulate anesthetic-induced responses at the cellular level are largely unknown. Here, we report the phosphoproteome profile of SH-SY5y human neuroblastoma cells treated with sevoflurane, a clinically used anesthetic. Phosphoproteins were isolated from cell lysates and analyzed using two-dimensional gel electrophoresis. The phosphorylation of putative anesthetic-responsive marker proteins was validated using western blot analysis in cells treated with both sevoflurane and isoflurane. A total of 25 phosphoproteins were identified as differentially phosphorylated proteins. These included key regulators that signal cytoskeletal remodeling steps in pathways related to vesicle trafficking, axonal growth, and cell migration. These proteins included the Rho GTPase, Ras-GAP SH3 binding protein, Rho GTPase activating protein, actin-related protein, and actin. Sevoflurane and isoflurane also resulted in the dissolution of F-actin fibers in SH-SY5y cells. Our results show that anesthetics affect the phosphorylation of proteins involved in cytoskeletal remodeling pathways. PMID:27611435

  20. Alternatively Spliced Methionine Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH Dependence and Inhibitory Effects of Neurotoxic Metals and Thimerosal

    PubMed Central

    Power-Charnitsky, Verna-Ann; Sharma, Alok; Audhya, Tapan; Zhang, Yiting

    2016-01-01

    The folate and cobalamin (Cbl-) dependent enzyme methionine synthase (MS) is highly sensitive to oxidation and its activity affects all methylation reactions. Recent studies have revealed alternative splicing of MS mRNA in human brain and patient-derived fibroblasts. Here we show that MS mRNA in SH-SY5Y human neuroblastoma cells is alternatively spliced, resulting in three primary protein species, thus providing a useful model to examine cofactor dependence of these variant enzymes. MS activity was dependent upon methylcobalamin (MeCbl) or the combination of hydroxocobalamin (OHCbl) and S-adenosylmethionine (SAM). OHCbl-based activity was eliminated by depletion of the antioxidant glutathione (GSH) but could be rescued by provision of either glutathionylcobalamin (GSCbl) or MeCbl. Pretreatment of cells with lead, arsenic, aluminum, mercury, or the ethylmercury-containing preservative thimerosal lowered GSH levels and inhibited MS activity in association with decreased uptake of cysteine, which is rate-limiting for GSH synthesis. Thimerosal treatment decreased cellular levels of GSCbl and MeCbl. These findings indicate that the alternatively spliced form of MS expressed in SH-SY5Y human neuronal cells is sensitive to inhibition by thimerosal and neurotoxic metals, and lower GSH levels contribute to their inhibitory action. PMID:26989453

  1. Alternatively Spliced Methionine Synthase in SH-SY5Y Neuroblastoma Cells: Cobalamin and GSH Dependence and Inhibitory Effects of Neurotoxic Metals and Thimerosal.

    PubMed

    Waly, Mostafa; Power-Charnitsky, Verna-Ann; Hodgson, Nathaniel; Sharma, Alok; Audhya, Tapan; Zhang, Yiting; Deth, Richard

    2016-01-01

    The folate and cobalamin (Cbl-) dependent enzyme methionine synthase (MS) is highly sensitive to oxidation and its activity affects all methylation reactions. Recent studies have revealed alternative splicing of MS mRNA in human brain and patient-derived fibroblasts. Here we show that MS mRNA in SH-SY5Y human neuroblastoma cells is alternatively spliced, resulting in three primary protein species, thus providing a useful model to examine cofactor dependence of these variant enzymes. MS activity was dependent upon methylcobalamin (MeCbl) or the combination of hydroxocobalamin (OHCbl) and S-adenosylmethionine (SAM). OHCbl-based activity was eliminated by depletion of the antioxidant glutathione (GSH) but could be rescued by provision of either glutathionylcobalamin (GSCbl) or MeCbl. Pretreatment of cells with lead, arsenic, aluminum, mercury, or the ethylmercury-containing preservative thimerosal lowered GSH levels and inhibited MS activity in association with decreased uptake of cysteine, which is rate-limiting for GSH synthesis. Thimerosal treatment decreased cellular levels of GSCbl and MeCbl. These findings indicate that the alternatively spliced form of MS expressed in SH-SY5Y human neuronal cells is sensitive to inhibition by thimerosal and neurotoxic metals, and lower GSH levels contribute to their inhibitory action.

  2. Neuroprotective Effects of Bioavailable Polyphenol-Derived Metabolites against Oxidative Stress-Induced Cytotoxicity in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    González-Sarrías, Antonio; Núñez-Sánchez, María Ángeles; Tomás-Barberán, Francisco A; Espín, Juan Carlos

    2017-02-01

    Oxidative stress is involved in cell death in neurodegenerative diseases. Dietary polyphenols can exert health benefits, but their direct effects on neuronal cells are debatable because most phenolics are metabolized and do not reach the brain as they occur in the dietary sources. Herein, we evaluate the effects of a panel of bioavailable polyphenols and derived metabolites at physiologically relevant conditions against H2O2-induced apoptosis in human neuroblastoma SH-SY5Y cells. Among the 19 metabolites tested, 3,4-dihydroxyphenylpropionic acid, 3,4-dihydroxyphenylacetic acid, gallic acid, ellagic acid, and urolithins prevented neuronal apoptosis via attenuation of ROS levels, increased REDOX activity, and decreased oxidative stress-induced apoptosis by preventing the caspase-3 activation via the mitochondrial apoptotic pathway in SH-SY5Y cells. This suggests that dietary sources containing the polyphenol precursors of these molecules such as cocoa, berries, walnuts, and tea could be potential functional foods to reduce oxidative stress associated with the onset and progress of neurodegenerative diseases.

  3. Mu-opioids activate phospholipase C in SH-SY5Y human neuroblastoma cells via calcium-channel opening.

    PubMed Central

    Smart, D; Smith, G; Lambert, D G

    1995-01-01

    We have recently reported that, in SH-SY5Y cells, mu-opioid receptor occupancy activates phospholipase C via a pertussis toxin-sensitive G-protein. In the present study we have further characterized the mechanisms involved in this process. Fentanyl (0.1 microM) caused a monophasic increase in inositol 1,4,5-trisphosphate mass formation, with a peak (20.5 +/- 3.6 pmol/mg of protein) at 15 s. Incubation in Ca(2+)-free buffer abolished this response, while Ca2+ replacement 1 min later restored the stimulation of inositol 1,4,5-trisphosphate formation (20.1 +/- 0.6 pmol/mg of protein). In addition, nifedipine (1 nM-0.1 mM), an L-type Ca(2+)-channel antagonist, caused a dose-dependent inhibition of inositol 1,4,5-trisphosphate formation, with an IC50 of 60.3 +/- 1.1 nM. Elevation of endogenous beta/gamma subunits by selective activation of delta-opioid and alpha 2 adrenoceptors failed to stimulate phospholipase C. Fentanyl also caused a dose-dependent (EC50 of 16.2 +/- 1.0 nM), additive enhancement of carbachol-induced inositol 1,4,5-trisphosphate formation. In summary, we have demonstrated that in SH-SY5Y cells activation of the mu-opioid receptor allows Ca2+ influx to activate phospholipase C. However, the possible role of this mechanism in the process of analgesia remains to be elucidated. PMID:7832776

  4. Silencing of Y-box binding protein-1 by RNA interference inhibits proliferation, invasion, and metastasis, and enhances sensitivity to cisplatin through NF-κB signaling pathway in human neuroblastoma SH-SY5Y cells.

    PubMed

    Wang, Hong; Sun, Ruowen; Chi, Zuofei; Li, Shuang; Hao, Liangchun

    2017-04-05

    Y-box binding protein-1 (YB-1), a member of Y-box protein family binding DNA and RNA, has been proposed as a novel marker in multiple malignant tumors and found to be associated with tumor malignancy. Neuroblastoma is an embryonal tumor arising from neuroblast cells of the autonomic nervous system, which is the most common cancer diagnosed in infants. It has been reported that YB-1 is highly expressing in various human tumors including nasopharynx, thyroid, lung, breast, colon, ovary, and prostate cancers. This study aimed to investigate the functional role of YB-1 in neuroblastoma by silencing YB-1 using RNA interference (shRNA) in neuroblastoma SH-SY5Y cells. We found that silencing of YB-1 decreased the proliferation, migration, and invasion of SH-SY5Y cells. At molecular level, inhibition of YB-1 decreased the expression level of PCNA as well as MMP-2 in neuroblastoma SH-SY5Y cells. Also, we discovered that YB-1 silencing sensitized SH-SY5Y cells to cisplatin and promoted the apoptosis induced by cisplatin due to down-regulation of multidrug resistance (MDR) 1 protein via NF-κB signaling pathway. Therefore, we consider that targeting YB-1 is promising for neuroblastoma treatment and for overcoming its cisplatin resistance in the development of new neuroblastoma therapeutic strategies.

  5. Spirafolide from bay leaf (Laurus nobilis) prevents dopamine-induced apoptosis by decreasing reactive oxygen species production in human neuroblastoma SH-SY5Y cells.

    PubMed

    Ham, Ahrom; Kim, Bora; Koo, Uk; Nam, Kung-Woo; Lee, Sung-Jin; Kim, Kyeong Ho; Shin, Jongheon; Mar, Woongchon

    2010-12-01

    Reactive oxygen species (ROS) are important mediators in many neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. This study tested the neuroprotective effects of spirafolide, a compound purified from the leaves of Laurus nobilis L. (Lauraceae), against dopamine (DA)-induced apoptosis in human neuroblastoma SH-SY5Y cells. Following a 24-h exposure of cells to DA (final conc., 0.6 mM), we observed a marked increase in apoptosis, increased generation of ROS and decreased cell viability. Pretreatment of the cells for 24 h with spirafolide (0.4, 2, and 10 μM) before exposure to DA notably increased cell survival (p < 0.01) and lowered intracellular ROS levels (p < 0.01). These results indicate that spirafolide has neuroprotective effects against DA toxicity. These effects may contribute to the treatment of neurodegenerative diseases.

  6. Morphine induces Beclin 1- and ATG5-dependent autophagy in human neuroblastoma SH-SY5Y cells and in the rat hippocampus.

    PubMed

    Zhao, Lixia; Zhu, Yushan; Wang, Dongmei; Chen, Ming; Gao, Ping; Xiao, Weiming; Rao, Guanhua; Wang, Xiaohui; Jin, Haijing; Xu, Lin; Sui, Nan; Chen, Quan

    2010-04-01

    Chronic exposure to morphine can induce drug addiction and neural injury, but the exact mechanism is not fully understood. Here we show that morphine induces autophagy in neuroblastoma SH-SY5Y cells and in the rat hippocampus. Pharmacological approach shows that this effect appears to be mediated by PTX-sensitive G protein-coupled receptors signaling cascade. Morphine increases Beclin 1 expression and reduces the interaction between Beclin 1 and Bcl-2, thus releasing Beclin 1 for its pro-autophagic activity. Bcl-2 overexpression inhibits morphine-induced autophagy, whereas knockdown of Beclin 1 or knockout of ATG5 prevents morphine-induced autophagy. In addition, chronic treatment with morphine induces cell death, which is increased by autophagy inhibition through Beclin 1 RNAi. Our data are the first to reveal that Beclin 1 and ATG5 play key roles in morphine-induced autophagy, which may contribute to morphine-induced neuronal injury.

  7. Agaricus blazei extract attenuates rotenone-induced apoptosis through its mitochondrial protective and antioxidant properties in SH-SY5Y neuroblastoma cells.

    PubMed

    Venkatesh Gobi, Veerappan; Rajasankar, Srinivasagam; Ramkumar, Muthu; Dhanalakshmi, Chinnasamy; Manivasagam, Thamilarasan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed; Chidambaram, Ranganathan

    2016-09-20

    The present study was aimed to find out the effect of Agaricus blazei mushroom extract against rotenone-induced cellular model. SH-SY5Y neuroblastoma cells are divided into four experimental groups (control, rotenone (100 nM), A. blazei (5 μg/ml) + rotenone (100 nM), and A. blazei alone treated) based on MTT assay, cells were allowed to measure the ROS, TBARS levels, and antioxidants activities. Finally, mitochondrial transmembrane potential (MMP) and expressions of apoptotic proteins were also analyzed. Pre-treatment with A. blazei significantly enhanced cell viability, attenuated rotenone-induced ROS, MMP, and apoptosis. Our results indicated that anti-apoptotic properties of this natural compound due to its antioxidant and mitochondrial protective function protect rotenone-induced cytotoxicity. Therefore, it may be concluded that A. blazei can be further developed as a promising drug for the treatment of Parkinson's disease (PD).

  8. Synergistic anti-proliferative effects of vitamin D derivatives and 9-cis retinoic acid in SH-SY5Y human neuroblastoma cells.

    PubMed

    Stio, M; Celli, A; Treves, C

    2001-06-01

    This study examines the effect of 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], 24,25-dihydroxyvitamin D(3) [24,25(OH)(2)D(3)], two vitamin D analogues (KH 1060 and EB 1089, which are 20-epi-22-oxa and 22,24-diene-analogues, respectively), 9-cis retinoic acid and all-trans retinoic acid on proliferation of SH-SY5Y human neuroblastoma cells, after treatment for 7 days. Cell number did not change when the cells were incubated with 1, 10 or 100 nM 1,25(OH)(2)D(3) or its derivatives, but significantly decreased in the presence of the two retinoids (0.001--10 microM final concentration). A synergistic inhibition was observed, when SH-SY5Y cells were treated combining 0.1 microM 9-cis retinoic acid and 10 nM 1,25(OH)(2)D(3) or 10 nM KH 1060, and 1 microM 9-cis retinoic acid and 10 nM 1,25(OH)(2)D(3) or 10 nM EB 1089. Acetylcholinesterase activity showed a significant increase, in comparison with controls, after treatment of the cells for 7 days with 0.1 or 1 microM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)(2)D(3) or 10 nM KH 1060 or 10 nM EB 1089. This increase was synergistic, combining 1 microM 9-cis retinoic acid and 10 nM 1,25(OH)(2)D(3) or EB 1089. The levels of the c-myc encoded protein remarkably decreased after treatment of SH-SY5Y cells for 1, 3, 7 days with 0.1 and 1 microM 9-cis retinoic acid, alone or combined with 10 nM 1,25(OH)(2)D(3) or 10 nM KH 1060 or 10 nM EB 1089. In particular, the association of 1 microM 9-cis retinoic acid and 10 nM 1,25(OH)(2)D(3) or 10 nM EB 1089 resulted in a synergistic c-myc inhibition, in comparison with that obtained in the presence of the retinoid alone. These findings may have therapeutic implications in human neuroblastoma.

  9. Decline in c-myc mRNA expression but not the induction of c-fos mRNA expression is associated with differentiation of SH-SY5Y human neuroblastoma cells

    SciTech Connect

    Jalava, A.M.; Heikkilae, J.E.; Akerman, K.E.O. )

    1988-11-01

    The induction of differentiation in SH-SY5Y human neuroblastoma cells with 12-O-tetradecanoylphorbol-13-acetate (TPA) is accompanied by a rapid and a transient expression of c-fos mRNA and a down-regulation of c-myc RNA. The TPA-induced expression of c-fos mRNA was inhibited by H-7, a specific inhibitor of protein kinase C (PK-C). Dioctanoylglycerol (DiC{sub 8}) failed to induce differentiation of SH-SY5Y cells or to down-regulate c-myc mRNA but it did induce the expression of c-fos mRNA. Treatment of IMR-32 human neuroblastoma cells with TPA did not cause differentiation although c-fos mRNA was induced. Since PK-C in SH-SY5Y cells was activated by both TPA and DiC{sub 8} it is suggested that the activation of PK-C alone is not sufficient to induce differentiation in SH-SY5Y cells. The down-regulation of c-myc mRNA rather than the induction of c-fos mRNA seems to be associated with differentiation process in SH-SY5Y cells.

  10. Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells.

    PubMed

    Dhanalakshmi, Chinnasamy; Manivasagam, Thamilarasan; Nataraj, Jagatheesan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed

    2015-01-01

    Vanillin, a phenolic compound, has been reported to offer neuroprotection against experimental Huntington's disease and global ischemia by virtue of its antioxidant, anti-inflammatory, and antiapoptotic properties. The present study aims to elucidate the underlying neuroprotective mechanism of vanillin in rotenone induced neurotoxicity. Cell viability was assessed by exposing SH-SY5Y cells to various concentrations of rotenone (5-200 nM) for 24 h. The therapeutic effectiveness of vanillin against rotenone was measured by pretreatment of vanillin at various concentrations (5-200 nM) and then incubation with rotenone (100 nM). Using effective dose of vanillin (100 nM), mitochondrial membrane potential, levels of reactive oxygen species (ROS), and expression patterns of apoptotic markers were assessed. Toxicity of rotenone was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, release of cyt-c, and enhanced expressions of proapoptotic and downregulation of antiapoptotic indices via the upregulation of p38 and JNK-MAPK pathway proteins. Our results indicated that the pretreatment of vanillin attenuated rotenone induced mitochondrial dysfunction, oxidative stress, and apoptosis. Thus, vanillin may serve as a potent therapeutic agent in the future by virtue of its multiple pharmacological properties in the treatment of neurodegenerative diseases including PD.

  11. Neurosupportive Role of Vanillin, a Natural Phenolic Compound, on Rotenone Induced Neurotoxicity in SH-SY5Y Neuroblastoma Cells

    PubMed Central

    Dhanalakshmi, Chinnasamy; Manivasagam, Thamilarasan; Nataraj, Jagatheesan; Justin Thenmozhi, Arokiasamy; Essa, Musthafa Mohamed

    2015-01-01

    Vanillin, a phenolic compound, has been reported to offer neuroprotection against experimental Huntington's disease and global ischemia by virtue of its antioxidant, anti-inflammatory, and antiapoptotic properties. The present study aims to elucidate the underlying neuroprotective mechanism of vanillin in rotenone induced neurotoxicity. Cell viability was assessed by exposing SH-SY5Y cells to various concentrations of rotenone (5–200 nM) for 24 h. The therapeutic effectiveness of vanillin against rotenone was measured by pretreatment of vanillin at various concentrations (5–200 nM) and then incubation with rotenone (100 nM). Using effective dose of vanillin (100 nM), mitochondrial membrane potential, levels of reactive oxygen species (ROS), and expression patterns of apoptotic markers were assessed. Toxicity of rotenone was accompanied by the loss of mitochondrial membrane potential, increased ROS generation, release of cyt-c, and enhanced expressions of proapoptotic and downregulation of antiapoptotic indices via the upregulation of p38 and JNK-MAPK pathway proteins. Our results indicated that the pretreatment of vanillin attenuated rotenone induced mitochondrial dysfunction, oxidative stress, and apoptosis. Thus, vanillin may serve as a potent therapeutic agent in the future by virtue of its multiple pharmacological properties in the treatment of neurodegenerative diseases including PD. PMID:26664453

  12. Pinocembrin Attenuates Mitochondrial Dysfunction in Human Neuroblastoma SH-SY5Y Cells Exposed to Methylglyoxal: Role for the Erk1/2-Nrf2 Signaling Pathway.

    PubMed

    de Oliveira, Marcos Roberto; Peres, Alessandra; Ferreira, Gustavo Costa

    2017-04-01

    Pinocembrin (PB; 5,7-dihydroxyflavanone) is found in propolis and exhibits antioxidant activity in several experimental models. The antioxidant capacity of PB is associated with the activation of the nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE) signaling pathway. The Nrf2/ARE axis mediates the expression of antioxidant and detoxifying enzymes, such as glutathione peroxidase (GPx), glutathione reductase (GR), heme oxygenase-1 (HO-1), and the catalytic (GCLC) and regulatory (GCLM) subunits of the rate-limiting enzyme in the synthesis of glutathione (GSH), γ-glutamate-cysteine ligase (γ-GCL). Nonetheless, it is not clear how PB exerts mitochondrial protection in mammalian cells. Human neuroblastoma SH-SY5Y cells were pretreated (4 h) with PB (0-25 µM) and then exposed to methylglyoxal (MG; 500 µM) for further 24 h. Mitochondria were isolated by differential centrifugation. PB (25 µM) provided mitochondrial protection (decreased lipid peroxidation, protein carbonylation, and protein nitration in mitochondrial membranes; decreased mitochondrial free radical production; enhanced the content of GSH in mitochondria; rescued mitochondrial membrane potential-MMP) and blocked MG-triggered cell death by a mechanism dependent on the activation of the extracellular-related kinase (Erk1/2) and consequent upregulation of Nrf2. PB increased the levels of GPx, GR, HO-1, and mitochondrial GSH. The PB-induced effects were suppressed by silencing of Nrf2 with siRNA. Therefore, PB activated the Erk1/2-Nrf2 signaling pathway resulting in mitochondrial protection in SH-SY5Y cells exposed to MG. Our work shows that PB is a strong candidate to figure among mitochondria-focusing agents with pharmacological potential.

  13. Impact of inhomogeneous static magnetic field (31.7-232.0 mT) exposure on human neuroblastoma SH-SY5Y cells during cisplatin administration.

    PubMed

    Vergallo, Cristian; Ahmadi, Meysam; Mobasheri, Hamid; Dini, Luciana

    2014-01-01

    Beneficial or adverse effects of Static Magnetic Fields (SMFs) are a large concern for the scientific community. In particular, the effect of SMF exposure during anticancer therapies still needs to be fully elucidated. Here, we evaluate the effects of SMF at induction levels that cisPt-treated cancer patients experience during the imaging process conducted in Low field (200-500 mT), Open field (300-700 mT) and/or inhomogeneous High field (1.5-3 T) Magnetic Resonance Imaging (MRI) machines. Human adrenergic neuroblastoma SH-SY5Y cells treated with 0.1 µM cisPt (i.e. the lowest concentration capable of inducing apoptosis) were exposed to SMF and their response was studied in vitro. Exposure of 0.1 µM cisPt-treated cells to SMF for 2 h decreased cell viability (30%) and caused overexpression of the apoptosis-related cleaved caspase-3 protein (46%). Furthermore, increase in ROS (Reactive Oxygen Species) production (23%) and reduction in the number of mitochondria vs controls were seen. The sole exposure of SMF for up to 24 h had no effect on cell viability but increased ROS production and modified cellular shape. On the other hand, the toxicity of cisPt was significantly prevented during 24 h exposure to SMF as shown by the levels of cell viability, cleaved caspase-3 and ROS production. In conclusion, due to the cytoprotective effect of 31.7-232.0 mT SMF on low-cisPt-concentration-treated SH-SY5Y cells, our data suggest that exposure to various sources of SMF in cancer patients under a cisPt regimen should be strictly controlled.

  14. L-BMAA induced ER stress and enhanced caspase 12 cleavage in human neuroblastoma SH-SY5Y cells at low nonexcitotoxic concentrations.

    PubMed

    Okle, Oliver; Stemmer, Kerstin; Deschl, Ulrich; Dietrich, Daniel R

    2013-01-01

    The cyanobacterial β-N-methylamino-L-alanine (L-BMAA) is described as a low-potency excitotoxin, possibly a factor in the increased incidence of amyotrophic lateral sclerosis (ALS) and Parkinsonism-dementia complex (PDC) in Guam. The latter association is intensively disputed, as L-BMAA concentrations required for toxic effects exceed those assumed to occur via food. The question thus was raised whether L-BMAA leads to neurodegeneration at nonexcitotoxic conditions. Using human SH-SY5Y neuroblastoma cells, L-BMAA-transport, incorporation into proteins, and subsequent impairment of cellular protein homeostasis were investigated. Binding of L-BMAA to intracellular proteins, but no clear protein incorporation was detected in response to (14)C-L-BMAA exposures. Nevertheless, low L-BMAA concentrations (≥ 0.1mM, 48 h) increased protein ubiquitination, 20S proteasomal and caspase 12 activity, expression of the endoplasmic reticulum (ER) stress marker CHOP, and enhanced phosphorylation of elf2α in SH-SY5Y cells. In contrast, high L-BMAA concentrations (≥ 1mM, 48 h) increased reactive oxygen species and protein oxidization, which were partially ameliorated by coincubation with vitamin E. L-BMAA-mediated cytotoxicity was observable 48 h following ≥ 2mM L-BMAA treatment. Consequently, the data presented here suggest that low L-BMAA concentrations result in a dysregulation of the cellular protein homeostasis with ensuing ER stress that is independent from high-concentration effects such as excitotoxicity and oxidative stress. Thus, the latter could be a contributing factor in the onset and slow progression of ALS/PDC in Guam.

  15. Phytochemical Ginkgolide B Attenuates Amyloid-β1-42 Induced Oxidative Damage and Altered Cellular Responses in Human Neuroblastoma SH-SY5Y Cells.

    PubMed

    Gill, Iqbal; Kaur, Sukhchain; Kaur, Navrattan; Dhiman, Monisha; Mantha, Anil K

    2017-02-20

    Oxidative stress is an upsurge in reactive oxygen/nitrogen species (ROS/RNS), which aggravates damage to cellular components viz. lipids, proteins, and nucleic acids resulting in impaired cellular functions and neurological pathologies including Alzheimer's disease (AD). In the present study, we have examined amyloid-β (Aβ)-induced oxidative stress responses, a major cause for AD, in the undifferentiated and differentiated human neuroblastoma SH-SY5Y cells. Aβ1 - 42-induced oxidative damage was evaluated on lipids by lipid peroxidation; proteins by protein carbonyls; antioxidant status by SOD and GSH enzyme activities; and DNA and RNA damage levels by evaluating the number of AP sites and 8-oxo-G base damages produced. In addition, the neuro-protective role of the phytochemical ginkgolide B (GB) in countering Aβ1 - 42-induced oxidative stress was assessed. We report that the differentiated cells are highly vulnerable to Aβ1 - 42-induced oxidative stress events as exerted by the deposition of Aβ in AD. Results of the current study suggest that the pre-treatment of GB, followed by Aβ1 - 42 treatment for 24 h, displayed neuro-protective potential, which countered Aβ1 - 42-induced oxidative stress responses in both undifferentiated and differentiated SH-SY5Y neuronal cells by: 1) hampering production of ROS and RNS; 2) reducing lipid peroxidation; 3) decreasing protein carbonyl content; 4) restoring antioxidant activities of SOD and GSH enzymes; and 5) maintaining genome integrity by reducing the oxidative DNA and RNA base damages. In conclusion, Aβ1 - 42 induces oxidative damage to the cellular biomolecules, which are associated with AD pathology, and are protected by the pre-treatment of GB against Aβ-toxicity. Taken together, this study advocates for phytochemical-based therapeutic interventions against AD.

  16. Antiapoptotic effects of erythropoietin in differentiated neuroblastoma SH-SY5Y cells require activation of both the STAT5 and AKT signaling pathways.

    PubMed

    Um, Moonkyoung; Lodish, Harvey F

    2006-03-03

    The hematopoietic cytokine erythropoietin (Epo) prevents neuronal death during ischemic events in the brain and in neurodegenerative diseases, presumably through its antiapoptotic effects. To explore the role of different signaling pathways in Epo-mediated antiapoptotic effects in differentiated human neuroblastoma SH-SY5Y cells, we employed a prolactin receptor (PrlR)/erythropoietin receptor (EpoR) chimera system, in which binding of prolactin (Prl) to the extracellular domain activates EpoR signaling in the cytosol. On induction of apoptosis by staurosporine, Prl supports survival of the SH-SY5Y cells expressing the wild-type PrlR/EpoR chimera. In these cells Prl treatment strongly activates the STAT5, AKT, and MAPK signaling pathways and induces weak activation of the p65 NF-kappaB factor. Selective mutation of the eight tyrosine residues of the EpoR cytoplasmic domain results in impaired or absent activation of either STAT5 (mutation of Tyr(343)) or AKT (mutation of Tyr(479)) or both (mutation of all eight tyrosine residues). Most interestingly, Prl treatment does not prevent apoptosis in cells expressing mutant PrlR/EpoR chimeras in which either the STAT5 or the AKT signaling pathways are not activated. In contrast, ERK 1/2 is fully activated by all mutant PrlR/EpoR chimeras, comparable with the level seen with the wild-type PrlR/EpoR chimera, implying that activation of the MAPK signaling pathway per se is not sufficient for antiapoptotic activity. Therefore, the antiapoptotic effects of Epo in neuronal cells require the combinatorial activation of multiple signaling pathways, including STAT5, AKT, and potentially MAPK as well, in a manner similar to that observed in hematopoietic cells.

  17. Does MW Radiation Affect Gene Expression, Apoptotic Level, and Cell Cycle Progression of Human SH-SY5Y Neuroblastoma Cells?

    PubMed

    Kayhan, Handan; Esmekaya, Meric Arda; Saglam, Atiye Seda Yar; Tuysuz, Mehmed Zahid; Canseven, Ayşe Gulnihal; Yagci, Abdullah Munci; Seyhan, Nesrin

    2016-06-01

    Neuroblastoma (NB) is a cancer that occurs in sympathetic nervous system arising from neuroblasts and nerve tissue of the adrenal gland, neck, chest, or spinal cord. It is an embryonal malignancy and affects infants and children. In this study, we investigated the effects of microwave (MW) radiation on apoptotic activity, cell viability, and cell cycle progression in human SH-SY5Y NB cells which can give information about MW radiation effects on neural cells covering the period from the embryonic stages to infants. SH-SY5Y NB cells were exposed to 2.1 GHz W-CDMA modulated MW radiation for 24 h at a specific absorption rate of 0.491 W/kg. Control samples were in the same conditions with MW-exposed samples but they were not exposed to MW radiation. The apoptotic activity of cells was measured by Annexin-V-FITC and propidium iodide staining. Moreover, mRNA levels of proliferative and cell cycle proteins were determined by real-time RT-PCR. The change in cell cycle progression was observed by using CycleTest-Plus DNA reagent. No significant change was observed in apoptotic activity of MW-exposed cells compared to control cells. The mRNA levels of c-myc and cyclin D1 were significantly reduced in MW group (p < 0.05). The percentage of MW-exposed cells in G1 phase was significantly higher than the percentage of control cells in G1 phase. MW radiation caused cell cycle arrest in G1 phase. These results showed that 2.1 GHz W-CDMA modulated MW radiation did not cause apoptotic cell death but changed cell cycle progression.

  18. Lycopene protects human SH-SY5Y neuroblastoma cells against hydrogen peroxide-induced death via inhibition of oxidative stress and mitochondria-associated apoptotic pathways

    PubMed Central

    FENG, CHUNSHENG; LUO, TIANFEI; ZHANG, SHUYAN; LIU, KAI; ZHANG, YANHONG; LUO, YINAN; GE, PENGFEI

    2016-01-01

    Oxidative stress, which is characterized by excessive production of reactive oxygen species (ROS), is a common pathway that results in neuronal injury or death due to various types of pathological stress. Although lycopene has been identified as a potent antioxidant, its effect on hydrogen peroxide (H2O2)-induced neuronal damage remains unclear. In the present study, pretreatment with lycopene was observed to protect SH-SY5Y neuroblastoma cells against H2O2-induced death via inhibition of apoptosis resulting from activation of caspase-3 and translocation of apoptosis inducing factor (AIF) to the nucleus. Furthermore, the over-produced ROS, as well as the reduced activities of anti-oxidative enzymes, superoxide dismutase and catalase, were demonstrated to be alleviated by lycopene. Additionally, lycopene counteracted H2O2-induced mitochondrial dysfunction, which was evidenced by suppression of mitochondrial permeability transition pore opening, attenuation of the decline of the mitochondrial membrane potential, and inhibition of the increase of Bax and decrease of Bcl-2 levels within the mitochondria. The release of cytochrome c and AIF from the mitochondria was also reduced. These results indicate that lycopene is a potent neuroprotectant against apoptosis, oxidative stress and mitochondrial dysfunction, and could be administered to prevent neuronal injury or death. PMID:27035331

  19. Modulation of voltage-gated ion channels on SH-SY5Y neuroblastoma by non-ionic surfactant, Cremophor EL.

    PubMed

    Noguchi, Tomohiro; Kamiyama, Naoya; Kashiwayanagi, Makoto

    2010-01-01

    Cremophor EL (CrEL) is a non-ionic surfactant widely used as a vehicle for insoluble drugs, including immunosuppressive and anticancer agents. Although CrEL has often been reported to induce sensory neuropathies, its action on voltage-gated ion channels remains unknown. We show here that CrEL modulates voltage-gated sodium current (INa) and potassium current (IK) of human neuroblastoma cells (SH-SY5Y). First, CrEL suppressed the amplitude of INa and that of IK. The suppression-concentration curve for INa was gradual but that for IK was steeper, indicating that INa remains incompletely blocked by high concentrations of CrEL, which greatly reduce IK. Thus, it is possible that CrEL paradoxically increases neuronal excitability at higher concentrations. Next, CrEL accelerated IK's inactivation process. The voltage-dependent inactivation of IK showed two time constants, τ(f) of 322±49 ms and τ(s) of 2925±184 ms, under the control condition. By applying 1000 ppm CrEL, three time constants-τ(u) of 23±2 ms, τ(f) of 196±19 ms, and τ(s) of 1396±127 ms-appeared in the inactivation process. This modified inactivation of IK probably disturbs the repolarizing phases of action potentials. These modulations of voltage-gated ion channels by CrEL may cause abnormal excitability involved in neuropathies.

  20. TIRFM and pH-sensitive GFP-probes to evaluate neurotransmitter vesicle dynamics in SH-SY5Y neuroblastoma cells: cell imaging and data analysis.

    PubMed

    Daniele, Federica; Di Cairano, Eliana S; Moretti, Stefania; Piccoli, Giovanni; Perego, Carla

    2015-01-29

    Synaptic vesicles release neurotransmitters at chemical synapses through a dynamic cycle of fusion and retrieval. Monitoring synaptic activity in real time and dissecting the different steps of exo-endocytosis at the single-vesicle level are crucial for understanding synaptic functions in health and disease. Genetically-encoded pH-sensitive probes directly targeted to synaptic vesicles and Total Internal Reflection Fluorescence Microscopy (TIRFM) provide the spatio-temporal resolution necessary to follow vesicle dynamics. The evanescent field generated by total internal reflection can only excite fluorophores placed in a thin layer (<150 nm) above the glass cover on which cells adhere, exactly where the processes of exo-endocytosis take place. The resulting high-contrast images are ideally suited for vesicles tracking and quantitative analysis of fusion events. In this protocol, SH-SY5Y human neuroblastoma cells are proposed as a valuable model for studying neurotransmitter release at the single-vesicle level by TIRFM, because of their flat surface and the presence of dispersed vesicles. The methods for growing SH-SY5Y as adherent cells and for transfecting them with synapto-pHluorin are provided, as well as the technique to perform TIRFM and imaging. Finally, a strategy aiming to select, count, and analyze fusion events at whole-cell and single-vesicle levels is presented. To validate the imaging procedure and data analysis approach, the dynamics of pHluorin-tagged vesicles are analyzed under resting and stimulated (depolarizing potassium concentrations) conditions. Membrane depolarization increases the frequency of fusion events and causes a parallel raise of the net fluorescence signal recorded in whole cell. Single-vesicle analysis reveals modifications of fusion-event behavior (increased peak height and width). These data suggest that potassium depolarization not only induces a massive neurotransmitter release but also modifies the mechanism of vesicle

  1. The large conductance Ca2+ -activated K+ (BKCa) channel regulates cell proliferation in SH-SY5Y neuroblastoma cells by activating the staurosporine-sensitive protein kinases

    PubMed Central

    Curci, Angela; Mele, Antonietta; Camerino, Giulia Maria; Dinardo, Maria Maddalena; Tricarico, Domenico

    2014-01-01

    Here we investigated on the role of the calcium activated K+-channels(BKCa) on the regulation of the neuronal viability. Recordings of the K+-channel current were performed using patch-clamp technique in human neuroblastoma cells (SH-SY5Y) in parallel with measurements of the cell viability in the absence or presence of the BKCa channel blockers iberiotoxin(IbTX) and tetraethylammonium (TEA) and the BKCa channel opener NS1619. Protein kinase C/A (PKC, PKA) activities in the cell lysate were investigated in the presence/absence of drugs. The whole-cell K+-current showed a slope conductance calculated at negative membrane potentials of 126.3 pS and 1.717 nS(n = 46) following depolarization. The intercept of the I/V curve was −33 mV. IbTX(10−8 – 4 × 10−7 M) reduced the K+-current at +30 mV with an IC50 of 1.85 × 10−7 M and an Imax of −46% (slope = 2.198) (n = 21). NS1619(10–100 × 10−6 M) enhanced the K+-current of +141% (n = 6), at −10 mV(Vm). TEA(10−5–10−3 M) reduced the K+-current with an IC50 of 3.54 × 10−5 M and an Imax of −90% (slope = 0.95) (n = 5). A concentration-dependent increase of cell proliferation was observed with TEA showing a maximal proliferative effect(MPE) of +38% (10−4 M). IbTX showed an MPE of +42% at 10−8 M concentration, reducing it at higher concentrations. The MPE of the NS1619(100 × 10−6 M) was +42%. The PKC inhibitor staurosporine (0.2–2 × 10−6 M) antagonized the proliferative actions of IbTX and TEA. IbTX (10 × 10−9 M), TEA (100 × 10−6 M), and the NS1619 significantly enhanced the PKC and PKA activities in the cell lysate with respect to the controls. These results suggest that BKCa channel regulates proliferation of the SH-SY5Y cells through PKC and PKA protein kinases. PMID:25538629

  2. The large conductance Ca(2+) -activated K(+) (BKCa) channel regulates cell proliferation in SH-SY5Y neuroblastoma cells by activating the staurosporine-sensitive protein kinases.

    PubMed

    Curci, Angela; Mele, Antonietta; Camerino, Giulia Maria; Dinardo, Maria Maddalena; Tricarico, Domenico

    2014-01-01

    Here we investigated on the role of the calcium activated K(+)-channels(BKCa) on the regulation of the neuronal viability. Recordings of the K(+)-channel current were performed using patch-clamp technique in human neuroblastoma cells (SH-SY5Y) in parallel with measurements of the cell viability in the absence or presence of the BKCa channel blockers iberiotoxin(IbTX) and tetraethylammonium (TEA) and the BKCa channel opener NS1619. Protein kinase C/A (PKC, PKA) activities in the cell lysate were investigated in the presence/absence of drugs. The whole-cell K(+)-current showed a slope conductance calculated at negative membrane potentials of 126.3 pS and 1.717 nS(n = 46) following depolarization. The intercept of the I/V curve was -33 mV. IbTX(10(-8) - 4 × 10(-7) M) reduced the K(+)-current at +30 mV with an IC50 of 1.85 × 10(-7) M and an Imax of -46% (slope = 2.198) (n = 21). NS1619(10-100 × 10(-6) M) enhanced the K(+)-current of +141% (n = 6), at -10 mV(Vm). TEA(10(-5)-10(-3) M) reduced the K(+)-current with an IC50 of 3.54 × 10(-5) M and an Imax of -90% (slope = 0.95) (n = 5). A concentration-dependent increase of cell proliferation was observed with TEA showing a maximal proliferative effect(MPE) of +38% (10(-4) M). IbTX showed an MPE of +42% at 10(-8) M concentration, reducing it at higher concentrations. The MPE of the NS1619(100 × 10(-6) M) was +42%. The PKC inhibitor staurosporine (0.2-2 × 10(-6) M) antagonized the proliferative actions of IbTX and TEA. IbTX (10 × 10(-9) M), TEA (100 × 10(-6) M), and the NS1619 significantly enhanced the PKC and PKA activities in the cell lysate with respect to the controls. These results suggest that BKCa channel regulates proliferation of the SH-SY5Y cells through PKC and PKA protein kinases.

  3. Calcipotriol inhibits α-synuclein aggregation in SH-SY5Y neuroblastoma cells by a Calbindin-D28k-dependent mechanism.

    PubMed

    Rcom-H'cheo-Gauthier, Alexandre N; Meedeniya, Adrian C B; Pountney, Dean L

    2017-04-01

    Many neurodegenerative diseases are characterized by the formation of microscopically visible intracellular protein aggregates. α-Synuclein is the key aggregating protein in Parkinson's disease which is characterized by neuronal cytoplasmic Lewy body inclusions. Previous studies have shown relative sparing of neurons in Parkinson's disease and dementia with Lewy bodies that are positive for the vitamin D-dependent calcium-buffering protein, calbindin-D28k, and that α-synuclein aggregates are excluded from calbindin-D28k-positive neurons. Recent cell culture studies have shown that α-synuclein aggregation can be induced by raised intracellular-free Ca(II) and demonstrated that raised intracellular calcium and oxidative stress can act synergistically to promote α-synuclein aggregation. We hypothesized that calcipotriol, a potent vitamin D analogue used pharmaceutically, may be able to suppress calcium-dependent α-synuclein aggregation by inducing calbindin-D28k expression. Immunofluorescence and western blot analysis showed that calcipotriol potently induced calbindin-D28k in a dose-dependent manner in SH-SY5Y human neuroblastoma cells. Calcipotriol significantly decreased the frequency of α-synuclein aggregate positive cells subjected to treatments that cause raised intracellular-free Ca(II) (potassium depolarization, KCl/H2 O2 combined treatment, and rotenone) in a dose-dependent manner and increased viability. Suppression of calbindin-D28k expression in calcipotriol-treated cells using calbindin-D28k-specific siRNA showed significantly higher α-synuclein aggregation levels, indicating that calcipotriol-mediated blocking of calcium-dependent α-synuclein aggregation was dependent on the induction of calbindin-D28k expression. These data indicate that targeting raised intraneuronal-free Ca(II) in the brain by promoting the expression of calbindin-D28k at the transcriptional level using calcipotriol could prevent α-synuclein aggregate formation and ameliorate

  4. Induction of genomic instability, oxidative processes, and mitochondrial activity by 50Hz magnetic fields in human SH-SY5Y neuroblastoma cells.

    PubMed

    Luukkonen, Jukka; Liimatainen, Anu; Juutilainen, Jukka; Naarala, Jonne

    2014-02-01

    Epidemiological studies have suggested that exposure to 50Hz magnetic fields (MF) increases the risk of childhood leukemia, but there is no mechanistic explanation for carcinogenic effects. In two previous studies we have observed that a 24-h pre-exposure to MF alters cellular responses to menadione-induced DNA damage. The aim of this study was to investigate the cellular changes that must occur already during the first 24h of exposure to MF, and to explore whether the MF-induced changes in DNA damage response can lead to genomic instability in the progeny of the exposed cells. In order to answer these questions, human SH-SY5Y neuroblastoma cells were exposed to a 50-Hz, 100-μT MF for 24h, followed by 3-h exposure to menadione. The main finding was that MF exposure was associated with increased level of micronuclei, used as an indicator of induced genomic instability, at 8 and 15d after the exposures. Other delayed effects in MF-exposed cells included increased mitochondrial activity at 8d, and increased reactive oxygen species (ROS) production and lipid peroxidation at 15d after the exposures. Oxidative processes (ROS production, reduced glutathione level, and mitochondrial superoxide level) were affected by MF immediately after the exposure. In conclusion, the present results suggest that MF exposure disturbs oxidative balance immediately after the exposure, which might explain our previous findings on MF altered cellular responses to menadione-induced DNA damage. Persistently elevated levels of micronuclei were found in the progeny of MF-exposed cells, indicating induction of genomic instability.

  5. P(VDF-TrFE)/BaTiO3 Nanoparticle Composite Films Mediate Piezoelectric Stimulation and Promote Differentiation of SH-SY5Y Neuroblastoma Cells.

    PubMed

    Genchi, Giada Graziana; Ceseracciu, Luca; Marino, Attilio; Labardi, Massimiliano; Marras, Sergio; Pignatelli, Francesca; Bruschini, Luca; Mattoli, Virgilio; Ciofani, Gianni

    2016-07-01

    Poly(vinylidene fluoride-trifluoroethylene, P(VDF-TrFE)) and P(VDF-TrFE)/barium titanate nanoparticle (BTNP) films are prepared and tested as substrates for neuronal stimulation through direct piezoelectric effect. Films are characterized in terms of surface, mechanical, and piezoelectric features before in vitro testing on SH-SY5Y cells. In particular, BTNPs significantly improve piezoelectric properties of the films (4.5-fold increased d31 ). Both kinds of films support good SH-SY5Y viability and differentiation. Ultrasound (US) stimulation is proven to elicit Ca(2+) transients and to enhance differentiation in cells grown on the piezoelectric substrates. For the first time in the literature, this study demonstrates the suitability of polymer/ceramic composite films and US for neuronal stimulation through direct piezoelectric effect.

  6. Phosphorylation of amyloid precursor protein at threonine 668 is essential for its copper-responsive trafficking in SH-SY5Y neuroblastoma cells.

    PubMed

    Acevedo, Karla M; Opazo, Carlos M; Norrish, David; Challis, Leesa M; Li, Qiao-Xin; White, Anthony R; Bush, Ashley I; Camakaris, James

    2014-04-18

    Amyloid precursor protein (APP) undergoes post-translational modification, including O- and N-glycosylation, ubiquitination, and phosphorylation as it traffics through the secretory pathway. We have previously reported that copper promotes a change in the cellular localization of APP. We now report that copper increases the phosphorylation of endogenous APP at threonine 668 (Thr-668) in SH-SY5Y neuronal cells. The level of APPT668-p (detected using a phospho-site-specific antibody) exhibited a copper-dependent increase. Using confocal microscopy imaging we demonstrate that the phospho-deficient mutant, Thr-668 to alanine (T668A), does not exhibit detectable copper-responsive APP trafficking. In contrast, mutating a serine to an alanine at residue 655 does not affect copper-responsive trafficking. We further investigated the importance of the Thr-668 residue in copper-responsive trafficking by treating SH-SY5Y cells with inhibitors for glycogen synthase kinase 3-β (GSK3β) and cyclin-dependent kinases (Cdk), the main kinases that phosphorylate APP at Thr-668 in neurons. Our results show that the GSK3β kinase inhibitors LiCl, SB 216763, and SB 415286 prevent copper-responsive APP trafficking. In contrast, the Cdk inhibitors Purvalanol A and B had no significant effect on copper-responsive trafficking in SH-SY5Y cells. In cultured primary hippocampal neurons, copper promoted APP re-localization to the axon, and this effect was inhibited by the addition of LiCl, indicating that a lithium-sensitive kinase(s) is involved in copper-responsive trafficking in hippocampal neurons. This is consistent with APP axonal transport to the synapse, where APP is involved in a number of functions. We conclude that copper promotes APP trafficking by promoting a GSK3β-dependent phosphorylation in SH-SY5Y cells.

  7. Phosphorylation of Amyloid Precursor Protein at Threonine 668 Is Essential for Its Copper-responsive Trafficking in SH-SY5Y Neuroblastoma Cells*

    PubMed Central

    Acevedo, Karla M.; Opazo, Carlos M.; Norrish, David; Challis, Leesa M.; Li, Qiao-Xin; White, Anthony R.; Bush, Ashley I.; Camakaris, James

    2014-01-01

    Amyloid precursor protein (APP) undergoes post-translational modification, including O- and N-glycosylation, ubiquitination, and phosphorylation as it traffics through the secretory pathway. We have previously reported that copper promotes a change in the cellular localization of APP. We now report that copper increases the phosphorylation of endogenous APP at threonine 668 (Thr-668) in SH-SY5Y neuronal cells. The level of APPT668-p (detected using a phospho-site-specific antibody) exhibited a copper-dependent increase. Using confocal microscopy imaging we demonstrate that the phospho-deficient mutant, Thr-668 to alanine (T668A), does not exhibit detectable copper-responsive APP trafficking. In contrast, mutating a serine to an alanine at residue 655 does not affect copper-responsive trafficking. We further investigated the importance of the Thr-668 residue in copper-responsive trafficking by treating SH-SY5Y cells with inhibitors for glycogen synthase kinase 3-β (GSK3β) and cyclin-dependent kinases (Cdk), the main kinases that phosphorylate APP at Thr-668 in neurons. Our results show that the GSK3β kinase inhibitors LiCl, SB 216763, and SB 415286 prevent copper-responsive APP trafficking. In contrast, the Cdk inhibitors Purvalanol A and B had no significant effect on copper-responsive trafficking in SH-SY5Y cells. In cultured primary hippocampal neurons, copper promoted APP re-localization to the axon, and this effect was inhibited by the addition of LiCl, indicating that a lithium-sensitive kinase(s) is involved in copper-responsive trafficking in hippocampal neurons. This is consistent with APP axonal transport to the synapse, where APP is involved in a number of functions. We conclude that copper promotes APP trafficking by promoting a GSK3β-dependent phosphorylation in SH-SY5Y cells. PMID:24610780

  8. The anti-inflammatory effect of melatonin in SH-SY5Y neuroblastoma cells exposed to sublethal dose of hydrogen peroxide.

    PubMed

    Nopparat, Chutikorn; Chantadul, Varunya; Permpoonputtana, Kannika; Govitrapong, Piyarat

    2017-04-10

    Brain inflammaging is considered as one of the underlying factors of neurodegenerative diseases. The present study aimed to investigate the effects of melatonin, an endogenous indoleamine mainly synthesized by the pineal gland, on hydrogen peroxide (H2O2)-induced inflammaging state in SH-SY5Y cells. Our data showed that p21(Cip1) and p16(INK4a), cell cycle arrest markers, and the number of senescence-associated β-galactosidase (SA-βgal) staining increased significantly in H2O2-treated cells. Melatonin treatment could reverse this effect. Flow cytometry analysis showed a significantly higher percentage in the G0/G1 phase and a lower proportion in the S phase of H2O2 treated cells. Cells pretreated with H2O2 showed a dramatic decrease in the formation of Ki67 immunoactivity while the treatment with melatonin increased Ki67-positive cell. Both mRNA and protein expression levels of the pro-inflammatory cytokines, interleukin-1β (IL-1β), IL-6 and, tumor necrosis factor-α (TNF-α) which were increased after induction with H2O2, could be attenuated by melatonin. In addition, melatonin decreased the phospho-nuclear factor kappa B (pNF-κB) expression and prevented its nuclear translocation, as well as abrogated the reduction of nuclear factor erythroid 2-related factor 2 (Nrf2) in SH-SY5Y cells exposed to H2O2. The present data suggested the importance of melatonin on ameliorating inflammation in SH-SY5Y cells.

  9. An apolar Pistacia lentiscus L. leaf extract: GC-MS metabolic profiling and evaluation of cytotoxicity and apoptosis inducing effects on SH-SY5Y and SK-N-BE(2)C cell lines.

    PubMed

    Piccolella, Simona; Nocera, Paola; Carillo, Petronia; Woodrow, Pasqualina; Greco, Vincenza; Manti, Lorenzo; Fiorentino, Antonio; Pacifico, Severina

    2016-09-01

    In the course of a cytotoxicity screening of Mediterranean plants vs. neuroblastoma cells, Pistacia lentiscus was of interest. Pl-C extract, prepared from dried leaves by ultrasound assisted maceration (UAM) in chloroform, was profiled through using GC-MS techniques. To evaluate Pl-C cytotoxicity towards SH-SY5Y and SK-N-BE(2)-C cell lines, MTT, SRB and LDH assays were performed. The caspase-3 activation, DNA fragmentation, as well as micronucleation, were also evaluated. The Pl-C oxidant/antioxidant ability was estimated using different methods. The extract, rich in pentacyclic triterpenes, inhibited mitochondrial redox activity and cell viability of the tested cell lines. LDH assay established that Pl-C did not affect the cell membrane integrity. Indeed, it was able to activate caspase-3 and to cause a ladder pattern of DNA. Western blotting analysis showed that Pl-C processed caspase-3 providing two cleavage products of approximately 20 and 17-kDa, whose densitometric evaluation highlighted that Pl-C was more effective than vinblastine by 3-fold. The pro-apoptotic effect could be related to a disturbance in cell redox balance. In fact, it increased intracellular ROS production, GSSG/GSH ratio and the formation of lipoperoxidation products. The data obtained prompted to further investigate and assess the in vivo efficacy of Pl-C to prevent and/or treat neuroblastoma.

  10. Caffeoylquinic Acid Derivatives Protect SH-SY5Y Neuroblastoma Cells from Hydrogen Peroxide-Induced Injury Through Modulating Oxidative Status.

    PubMed

    Jiang, Xiao-Wen; Bai, Jun-Peng; Zhang, Qiao; Hu, Xiao-Long; Tian, Xing; Zhu, Jun; Liu, Jia; Meng, Wei-Hong; Zhao, Qing-Chun

    2017-04-01

    Oxidative stress has been confirmed as a contribution to the pathogenesis and pathophysiology of many neurological disorders such as Alzheimer's disease and Parkinson's disease. Caffeoylquinic acids (CQAs) are considered to have anti-oxidative stress ability in a previous study, but the structure-activity relationships (SARs) of CQAs in neuroprotective effects are still unclear. In the present study, we primarily expound the SARs of CQAs in counteracting H2O2-induced injury in SH-SY5Y cells. We found that CQAs (1-10) represented the protection of SH-SY5Y cells against H2O2-induced injury in varying degrees and malonyl groups could obviously increase the anti-oxidative stress ability of CQAs. Intensive studies of 4,5-O-dicaffeoyl-1-O-(malic acid methyl ester)-quinic acid (MDCQA) indicated that the mechanisms could potentially involve activation of endogenous antioxidant enzymes and the regulation of the phosphorylation of MAPKs and AKT. In conclusion, MDCQA could serve as a neuroprotective agent with a potential to attenuate oxidative stress.

  11. Palmitic Acid-Induced Neuron Cell Cycle G2/M Arrest and Endoplasmic Reticular Stress through Protein Palmitoylation in SH-SY5Y Human Neuroblastoma Cells

    PubMed Central

    Hsiao, Yung-Hsuan; Lin, Ching-I; Liao, Hsiang; Chen, Yue-Hua; Lin, Shyh-Hsiang

    2014-01-01

    Obesity-related neurodegenerative diseases are associated with elevated saturated fatty acids (SFAs) in the brain. An increase in SFAs, especially palmitic acid (PA), triggers neuron cell apoptosis, causing cognitive function to deteriorate. In the present study, we focused on the specific mechanism by which PA triggers SH-SY5Y neuron cell apoptosis. We found that PA induces significant neuron cell cycle arrest in the G2/M phase in SH-SY5Y cells. Our data further showed that G2/M arrest is involved in elevation of endoplasmic reticular (ER) stress according to an increase in p-eukaryotic translation inhibition factor 2α, an ER stress marker. Chronic exposure to PA also accelerates beta-amyloid accumulation, a pathological characteristic of Alzheimer’s disease. Interestingly, SFA-induced ER stress, G2/M arrest and cell apoptosis were reversed by treatment with 2-bromopalmitate, a protein palmitoylation inhibitor. These findings suggest that protein palmitoylation plays a crucial role in SFA-induced neuron cell cycle G2/M arrest, ER stress and apoptosis; this provides a novel strategy for preventing SFA-induced neuron cell dysfunction. PMID:25402647

  12. TRAIL induces pro-apoptotic crosstalk between the TRAIL-receptor signaling pathway and TrkAIII in SH-SY5Y cells, unveiling a potential therapeutic “Achilles heel” for the TrkAIII oncoprotein in neuroblastoma

    PubMed Central

    Cappabianca, Lucia; Farina, Antonietta Rosella; Ianni, Natalia Di; Mackay, Andrew Reay

    2016-01-01

    TrkAIII expression in neuroblastoma (NB) associates with advanced stage disease, worse prognosis, post therapeutic relapse, and in NB models TrkAIII exhibits oncogenic activity and promotes chemotherapeutic-resistance. Here, we report a potential therapeutic “Achilles heel” for the TrkAIII oncoprotein in a SH-SY5Y NB model that is characterised by one-way TRAIL-induced, pro-apoptotic crosstalk between the TRAIL receptor signaling pathway and TrkAIII that results in the delayed induction of apoptosis. In TrkAIII SH-SY5Y cells, blocked in the intrinsic apoptosis pathway by elevated constitutive Bcl-2, Bcl-xL and Mcl-1 expression, TRAIL induced delayed caspase-dependent apoptosis via the extrinsic pathway and completely abrogated tumourigenic capacity in vitro. This effect was initiated by TRAIL-induced SHP-dependent c-Src activation, the induction of TrkAIII/SHP-1/c-Src complexing leading to SHP-mediated TrkAIII de-phosphorylation, subsequent induction of complexing between de-phosphorylated TrkAIII and cFLIP associated with a time-dependent increase the caspase-8 to cFLIP ratio at activated death receptors, resulting in delayed caspase cleavage and caspase-dependent apoptosis. We also confirm rate-limiting roles for c-FLIP and Mcl-1 in regulating the sensitivity of TrkAIII SH-SY5Y cells to TRAIL-induced apoptosis via the extrinsic and intrinsic pathways, respectively. Our study unveils a novel mechanism for the TRAIL-induced apoptosis of TrkAIII expressing NB cells that depends upon SHP/Src-mediated crosstalk between the TRAIL-receptor signaling pathway and TrkAIII, and supports a novel potential pro-apoptotic therapeutic use for TRAIL in TrkAIII expressing NB. PMID:27821809

  13. Relative expression of the p75 neurotrophin receptor, tyrosine receptor kinase A, and insulin receptor in SH-SY5Y neuroblastoma cells and hippocampi from Alzheimer's disease patients.

    PubMed

    Ito, Shingo; Ménard, Michel; Atkinson, Trevor; Brown, Leslie; Whitfield, James; Chakravarthy, Balu

    2016-12-01

    We have previously shown in SH-SY5Y human neuroblastoma cells that the expressions of basal (75 kDa) and high molecular weight (HMW; 85 kDa) isoforms of the p75 neurotrophic receptor (p75NTR) are stimulated by amyloid-β peptide1-42 oligomers (AβOs) via the insulin-like growth factor-1 receptor (IGF-1R). On the other hand, it is known that AβOs inhibit insulin receptor (IR) signaling. The purpose of the present study was to determine the involvement of IR signaling in the regulation of p75 neurotrophin receptor (p75NTR) protein isoform expression in cultured SH-SY5Y cells and in hippocampi from late-stage human Alzheimer's disease (AD) brains. Interestingly, insulin induced the expression of basal and HMW p75NTR isoforms in SH-SY5Y cells, suggesting the presence of cross-talk between the IR and IGF-1R for the regulation of p75NTR expression. Reducing IR signaling with an IR kinase inhibitor (AG 1024) or IR-targeted siRNAs increased HMW p75NTR expression and reduced tyrosine receptor kinase-A (Trk-A) expression as well as postsynaptic density protein 95 (PSD95) expression in SH-SY5Y cells. Both basal and HMW p75NTR isoforms were increased in the hippocampi of post-mortem late-stage human AD brains (relative to non-AD brains), and the protein expression of HMW p75NTR was negatively associated with Trk-A expression, PSD95 expression, and IR expression. Thus, increased p75NTR expression, specifically an increased p75NTR-to-Trk-A ratio, is likely to play a role in synaptic loss and neuronal cell death in late-stage AD. Collectively, these findings suggest that increased expression of the p75NTR due to IR signaling inhibition by AβOs might be involved in the pathology of AD.

  14. SAG protects human neuroblastoma SH-SY5Y cells against 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity via the downregulation of ROS generation and JNK signaling.

    PubMed

    Kim, Sun-Yee; Kim, Mi-Yeon; Mo, Jung-Soon; Park, Jeen-Woo; Park, Hee-Sae

    2007-02-14

    Sensitive to apoptosis gene (SAG), a novel zinc RING finger protein, exhibits anti-apoptotic and antioxidant activity against a variety of redox reagents. In the present study, we have determined that SAG suppresses 1-methyl-4-phenylpyridinium ion (MPP(+))-induced neurotoxicity via the downregulation of ROS generation and c-Jun N-terminal kinase 1 (JNK1) activity. Both transient and constitutively overexpressed SAG were found to inhibit the MPP(+)-induced neurotoxicity of SH-SY5Y neuroblastoma cells. In the SAG-expressing cells, MPP(+) induced ROS generation was suppressed to a significant degree as compared to the cells treated only with MPP(+). MPP(+)-induced JNK1 activation was also determined to be suppressed markedly by SAG. Furthermore, SAG inhibits MEKK1 dependent c-Jun transcription activity in SH-SY5Y cells. Thus, we concluded that SAG is a cellular protective molecule, which appears to function as an antioxidant, suppressing MPP(+)-induced neurotoxicity.

  15. Alpha-synuclein-induced oxidative stress correlates with altered superoxide dismutase and glutathione synthesis in human neuroblastoma SH-SY5Y cells.

    PubMed

    Perfeito, Rita; Ribeiro, Márcio; Rego, A Cristina

    2017-03-01

    Alpha-synuclein (α-syn) is a major component of Lewy bodies found in sporadic and inherited forms of Parkinson's disease (PD). Mutations in the gene encoding α-syn and duplications and triplications of wild-type (WT) α-syn have been associated with PD. Several mechanisms have been implicated in the degeneration of dopaminergic neurons in PD, including oxidative stress and mitochondrial dysfunction. Here we defined the occurrence of oxidative stress in SH-SY5Y cells overexpressing WT α-syn in a doxycycline (Dox) regulated manner, before and after exposure to iron (500 µM), and determined the changes in proteins involved in the intracellular antioxidant defense system. Data evidenced an increase in caspase-3 activation and diminished reducing capacity of -Dox cells, associated with decreased activity of mitochondria complex I and reduced mitochondrial transcription factor A (TFAM) levels in these cells. Furthermore, total and mitochondrial reactive oxygen species levels were higher under basal conditions in cells overexpressing α-syn (-Dox) and this increase was apparently correlated with diminished levels and activities of SOD1 and SOD2 in -Dox cells. Moreover, both reduced and oxidized glutathione levels were diminished in -Dox cells under basal conditions, concomitantly with decreased activity of GCL and reduced protein levels of GCLc. The effects caused by iron (500 µM) were mostly independent of α-syn expression and triggered different antioxidant responses to possibly counterbalance higher levels of free radicals. Overall, data suggest that overexpression of α-syn modifies the antioxidant capacity of SH-SY5Y cells due to altered activity and protein levels of SOD1 and SOD2, and decreased glutathione pool.

  16. Vitamin D3 protects against Aβ peptide cytotoxicity in differentiated human neuroblastoma SH- SY5Y cells: A role for S1P1/p38MAPK/ATF4 axis.

    PubMed

    Pierucci, Federica; Garcia-Gil, Mercedes; Frati, Alessia; Bini, Francesca; Martinesi, Maria; Vannini, Eleonora; Mainardi, Marco; Luzzati, Federico; Peretto, Paolo; Caleo, Matteo; Meacci, Elisabetta

    2017-04-01

    Besides its classical function of bone metabolism regulation, 1alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D3), acts on a variety of tissues including the nervous system, where the hormone plays an important role as neuroprotective, antiproliferating and differentiating agent. Sphingolipids are bioactive lipids that play critical and complex roles in regulating cell fate. In the present paper we have investigated whether sphingolipids are involved in the protective action of 1,25(OH)2D3. We have found that 1,25(OH)2D3 prevents amyloid-β peptide (Aβ(1-42)) cytotoxicity both in differentiated SH-SY5Y human neuroblastoma cells and in vivo. In differentiated SH-SY5Y cells, Aβ(1-42) strongly reduces the sphingosine-1-phosphate (S1P)/ceramide (Cer) ratio while 1,25(OH)2D3 partially reverts this effect. 1,25(OH)2D3 reverts also the Aβ(1-42)-induced reduction of sphingosine kinase activity. We have also studied the crosstalk between 1,25(OH)2D3 and S1P signaling pathways downstream to the activation of S1P receptor subtype S1P1. Notably, we found that 1,25(OH)2D3 prevents the reduction of S1P1 expression promoted by Aβ(1-42) and thereby it modulates the downstream signaling leading to ER stress damage (p38MAPK/ATF4). Similar effects were observed by using ZK191784. In addition, chronic treatment with 1,25(OH)2D3 protects from aggregated Aβ(1-42)-induced damage in the CA1 region of the rat hippocampus and promotes cell proliferation in the hippocampal dentate gyrus of adult mice. In conclusion, these results represent the first evidence of the role of 1,25(OH)2D3 and its structural analogue ZK191784 in counteracting the Aβ(1-42) peptide-induced toxicity through the modulation of S1P/S1P1/p38MAPK/ATF4 pathway in differentiated SH-SY5Y cells.

  17. Orexin-A Protects Human Neuroblastoma SH-SY5Y Cells Against 6-Hydroxydopamine-Induced Neurotoxicity: Involvement of PKC and PI3K Signaling Pathways.

    PubMed

    Pasban-Aliabadi, Hamzeh; Esmaeili-Mahani, Saeed; Abbasnejad, Mehdi

    2017-04-01

    Parkinson's disease (PD) is a common neurodegenerative disorder that is characterized by progressive and selective death of dopaminergic neurons. Multifunctional neuropeptide orexin-A is involved in many biological events of the body. It has been shown that orexin-A has protective effects in neurodegenerative disease such as PD. However, its cellular mechanisms have not yet been fully clarified. Here, we investigated the intracellular signaling pathway of orexin-A neuroprotection in 6-hydroxydopamine (6-OHDA)-induced SH-SY5H cells damage as an in vitro model of PD. The cells were incubated with 150 μM 6-OHDA, and the viability was examined by 3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2-tetrazolium bromide (MTT) assay. Mitochondrial membrane potential and intracellular calcium were measured by fluorescent probes. Western blotting was also used to determine cyclooxygenase type 2 (COX-2), nuclear factor erythroid 2 related factor 2 (Nrf2), and HSP70 protein levels. The data showed that 6-OHDA has decreasing effects on cell viability, Nrf2, and HSP70 protein expression and increases the level of mitochondrial membrane potential, intracellular calcium, and COX-2 protein. Orexin-A (500 pM) significantly attenuated the 6-OHDA-induced cell damage. Furthermore, Orexin-A significantly prevented the mentioned effects of 6-OHDA on SH-SY5Y cells. Orexin 1 receptor antagonist (SB3344867), PKC, and PI3-kinase (PI3K) inhibitors (chelerythrin and LY294002, respectively) could suppress the orexin-A neuroprotective effect. In contrast, blockage of PKA by a selective inhibitor (KT5720) had no effects on the orexin protection. The results suggest that orexin-A protective effects against 6-OHDA-induced neurotoxicity are performed via its receptors, PKC and PI3K signaling pathways.

  18. Responsiveness of voltage-gated calcium channels in SH-SY5Y human neuroblastoma cells on quasi-three-dimensional micropatterns formed with poly (l-lactic acid)

    PubMed Central

    Wu, Ze-Zhi; Wang, Zheng-Wei; Zhang, Li-Guang; An, Zhi-Xing; Zhong, Dong-Huo; Huang, Qi-Ping; Luo, Mei-Rong; Liao, Yan-Jian; Jin, Liang; Li, Chen-Zhong; Kisaalita, William S

    2013-01-01

    Introduction In this study, quasi-three-dimensional (3D) microwell patterns were fabricated with poly (l-lactic acid) for the development of cell-based assays, targeting voltage-gated calcium channels (VGCCs). Methods and materials SH-SY5Y human neuroblastoma cells were interfaced with the microwell patterns and found to grow as two dimensional (2D), 3D, and near two dimensional (N2D), categorized on the basis of the cells’ location in the pattern. The capability of the microwell patterns to support 3D cell growth was evaluated in terms of the percentage of the cells in each growth category. Cell spreading was analyzed in terms of projection areas under light microscopy. SH-SY5Y cells’ VGCC responsiveness was evaluated with confocal microscopy and a calcium fluorescent indicator, Calcium Green™-1. The expression of L-type calcium channels was evaluated using immunofluorescence staining with DM-BODIPY. Results It was found that cells within the microwells, either N2D or 3D, showed more rounded shapes and less projection areas than 2D cells on flat poly (l-lactic acid) substrates. Also, cells in microwells showed a significantly lower VGCC responsiveness than cells on flat substrates, in terms of both response magnitudes and percentages of responsive cells, upon depolarization with 50 mM K+. This lower VGCC responsiveness could not be explained by the difference in L-type calcium channel expression. For the two patterns addressed in this study, N2D cells consistently exhibited an intermediate value of either projection areas or VGCC responsiveness between those for 2D and 3D cells, suggesting a correlative relation between cell morphology and VGCC responsiveness. Conclusion These results suggest that the pattern structure and therefore the cell growth characteristics were critical factors in determining cell VGCC responsiveness and thus provide an approach for engineering cell functionality in cell-based assay systems and tissue engineering scaffolds. PMID

  19. Melatonin attenuates the mitochondrial translocation of mitochondrial fission proteins and Bax, cytosolic calcium overload and cell death in methamphetamine-induced toxicity in neuroblastoma SH-SY5Y cells.

    PubMed

    Parameyong, Arisa; Govitrapong, Piyarat; Chetsawang, Banthit

    2015-09-01

    Methamphetamine (METH) is an addictive drug that can cause toxicity and degeneration in the brain. Several pieces of evidence have demonstrated that METH toxicity results in increases in oxidative stress that regulate an intracellular signaling cascade that leads to cell death. Recently, several studies have emphasized that the overload of cytosolic calcium levels and mitochondrial fission into a small mitochondrial structure is involved in cell death processes. In the present study, we aimed to investigate the effects of METH toxicity on cytosolic calcium overload and mitochondrial fission in neuroblastoma SH-SY5Y cells. Additionally, the protective effect of melatonin against METH-induced toxicity was also investigated. The results of the present study demonstrated that METH significantly decreases cell viability and increases the levels of mitochondrial fission (Fis1 and Drp1) proteins and pro-apoptotic protein, Bax in isolated mitochondria. The levels of Drp1 in the cytosol of METH-treated cells had no significant differences compared to the control untreated cells. METH also significantly increased the cytosolic calcium levels. Melatonin reversed the toxic effects of METH by restoring cell viability and inhibiting the increase in mitochondrial Fis1 levels and the mitochondrial translocation of Drp1 and Bax. Additionally, melatonin was able to reduce the METH-induced increase in cytosolic calcium levels and fragmented mitochondria into small globular structures in SH-SY5Y cells. The results of the present study demonstrate the potential abilities of melatonin to maintain the homeostasis of mitochondrial dynamics and cytosolic calcium levels in METH-induced toxicity in neuronal cells.

  20. Impact of Inhomogeneous Static Magnetic Field (31.7–232.0 mT) Exposure on Human Neuroblastoma SH-SY5Y Cells during Cisplatin Administration

    PubMed Central

    Mobasheri, Hamid; Dini, Luciana

    2014-01-01

    Beneficial or adverse effects of Static Magnetic Fields (SMFs) are a large concern for the scientific community. In particular, the effect of SMF exposure during anticancer therapies still needs to be fully elucidated. Here, we evaluate the effects of SMF at induction levels that cisPt-treated cancer patients experience during the imaging process conducted in Low field (200–500 mT), Open field (300–700 mT) and/or inhomogeneous High field (1.5–3 T) Magnetic Resonance Imaging (MRI) machines. Human adrenergic neuroblastoma SH-SY5Y cells treated with 0.1 µM cisPt (i.e. the lowest concentration capable of inducing apoptosis) were exposed to SMF and their response was studied in vitro. Exposure of 0.1 µM cisPt-treated cells to SMF for 2 h decreased cell viability (30%) and caused overexpression of the apoptosis-related cleaved caspase-3 protein (46%). Furthermore, increase in ROS (Reactive Oxygen Species) production (23%) and reduction in the number of mitochondria vs controls were seen. The sole exposure of SMF for up to 24 h had no effect on cell viability but increased ROS production and modified cellular shape. On the other hand, the toxicity of cisPt was significantly prevented during 24 h exposure to SMF as shown by the levels of cell viability, cleaved caspase-3 and ROS production. In conclusion, due to the cytoprotective effect of 31.7–232.0 mT SMF on low-cisPt-concentration-treated SH-SY5Y cells, our data suggest that exposure to various sources of SMF in cancer patients under a cisPt regimen should be strictly controlled. PMID:25423171

  1. Neuroprotective Effects of Selected Microbial-Derived Phenolic Metabolites and Aroma Compounds from Wine in Human SH-SY5Y Neuroblastoma Cells and Their Putative Mechanisms of Action

    PubMed Central

    Esteban-Fernández, A.; Rendeiro, C.; Spencer, J. P. E.; del Coso, D. Gigorro; de Llano, M. D. González; Bartolomé, B.; Moreno-Arribas, M. V.

    2017-01-01

    Moderate wine consumption has shown the potential to delay the onset of neurodegenerative diseases. This study investigates the molecular mechanisms underlying the protective effects of wine-derived phenolic and aroma compounds in a neuroinflammation model based on SIN-1 stress-induced injury in SH-SY5Y neuroblastoma cells. Cell pretreatment with microbial metabolites found in blood after wine consumption, 3,4-dihydroxyphenylacetic (3,4-DHPA), 3-hydroxyphenylacetic acids and salicylic β-d-O-glucuronide, at physiologically concentrations (0.1–10 μM) resulted in increased cell viability versus SIN-1 control group (p < 0.05). Results also showed significant decreases in mitogen-activated protein kinase (MAPK) p38 and ERK1/2 activation as well as in downstream pro-apoptotic caspase-3 activity by some of the studied compounds. Moreover, pretreatment with p38, MEK, and ERK1/2-specific inhibitors, which have a phenolic-like structure, also resulted in an increase on cell survival and a reduction on caspase-3 activity levels. Overall, these results contribute with new evidences related to the neuroprotective actions of wine, pointing out that wine-derived human metabolites and aroma compounds may be effective at protecting neuroblastoma cells from nitrosative stress injury by inhibiting neuronal MAPK p38 and ERK1/2, as well as downstream caspase 3 activity. PMID:28352628

  2. Neuroprotective Effects of Selected Microbial-Derived Phenolic Metabolites and Aroma Compounds from Wine in Human SH-SY5Y Neuroblastoma Cells and Their Putative Mechanisms of Action.

    PubMed

    Esteban-Fernández, A; Rendeiro, C; Spencer, J P E; Del Coso, D Gigorro; de Llano, M D González; Bartolomé, B; Moreno-Arribas, M V

    2017-01-01

    Moderate wine consumption has shown the potential to delay the onset of neurodegenerative diseases. This study investigates the molecular mechanisms underlying the protective effects of wine-derived phenolic and aroma compounds in a neuroinflammation model based on SIN-1 stress-induced injury in SH-SY5Y neuroblastoma cells. Cell pretreatment with microbial metabolites found in blood after wine consumption, 3,4-dihydroxyphenylacetic (3,4-DHPA), 3-hydroxyphenylacetic acids and salicylic β-d-O-glucuronide, at physiologically concentrations (0.1-10 μM) resulted in increased cell viability versus SIN-1 control group (p < 0.05). Results also showed significant decreases in mitogen-activated protein kinase (MAPK) p38 and ERK1/2 activation as well as in downstream pro-apoptotic caspase-3 activity by some of the studied compounds. Moreover, pretreatment with p38, MEK, and ERK1/2-specific inhibitors, which have a phenolic-like structure, also resulted in an increase on cell survival and a reduction on caspase-3 activity levels. Overall, these results contribute with new evidences related to the neuroprotective actions of wine, pointing out that wine-derived human metabolites and aroma compounds may be effective at protecting neuroblastoma cells from nitrosative stress injury by inhibiting neuronal MAPK p38 and ERK1/2, as well as downstream caspase 3 activity.

  3. Isatin inhibits SH-SY5Y neuroblastoma cell invasion and metastasis through MAO/HIF-1α/CXCR4 signaling.

    PubMed

    Sun, Wenyan; Zhang, Li; Hou, Lin; Ju, Chuanxia; Zhao, Shengmin; Wei, Yaoyue

    2017-04-04

    Isatin was reported to possess anticancer activities through its effect on tumor proliferation, apoptosis, and metastasis in vitro and in vivo. This study aimed to elucidate the underlying mechanism behind isatin's ability to inhibit neuroblastoma cell metastasis. Our results demonstrated that isatin could inhibit neuroblastoma cell proliferation, invasion, and migration in a dose-dependent manner. Moreover, isatin inhibited the expression level of monoamine oxidase A as well as that of its downstream protein hypoxia-inducible factor 1α. Further study indicated that isatin inhibited reactive oxygen species production, extracellular signal-regulated kinase activation, vascular endothelial growth factor receptor-1 phosphorylation, and chemokine receptor type 4 expression. All results support the potential antimetastatic effect of isatin in neuroblatoma cells.

  4. Protective effects of flavonoids against oxidative stress induced by simulated microgravity in SH-SY5Y cells.

    PubMed

    Qu, Lina; Chen, Hailong; Liu, Xinmin; Bi, Lei; Xiong, Jianghui; Mao, Zebin; Li, Yinghui

    2010-09-01

    Many lines of evidence suggest that microgravity results in increased oxidative stress in the nervous system. In order to protect neuronal cells from oxidative damage induced by microgravity, we selected some flavonoids that might prevent oxidative stress because of their antioxidant activities. Among the 20 flavonoids we examined, we found that isorhamnetin and luteolin had the best protective effects against H(2)O(2) or SIN-1-induced cytotoxicity in SH-SY5Y cells. Using a clinostat to simulate microgravity, we found that isorhamnetin and luteolin treatment protected SH-SY5Y cells by preventing microgravity-induced increases in reactive oxygen species (ROS), nitric oxide (NO) and 3-nitrotyrosine (3-NT) levels, and a decrease in antioxidant power (AP). Moreover, isorhamnetin and luteolin treatment downregulated the expression of inducible nitric oxide synthase (iNOS), and oxidative stress was significantly inhibited by an iNOS inhibitor in SH-SY5Y cells exposed to simulated microgravity (SMG). These results indicate that isorhamnetin and luteolin could protect against microgravity-induced oxidative stress in neuroblastoma SH-SY5Y cells by inhibiting the ROS-NO pathway. These two flavonoids may have potential for preventing oxidative stress induced by space flight or microgravity.

  5. Treatment with the neurotoxic Aβ (25-35) peptide modulates the expression of neuroprotective factors Pin1, Sirtuin 1, and brain-derived neurotrophic factor in SH-SY5Y human neuroblastoma cells.

    PubMed

    Lattanzio, Francesca; Carboni, Lucia; Carretta, Donatella; Candeletti, Sanzio; Romualdi, Patrizia

    2016-05-01

    The deposition of Amyloid β peptide plaques is a pathological hallmark of Alzheimer's disease (AD). The Aβ (25-35) peptide is regarded as the toxic fragment of full-length Aβ (1-42). The mechanism of its toxicity is not completely understood, along with its contribution to AD pathological processes. The aim of this study was to investigate the effect of the neurotoxic Aβ (25-35) peptide on the expression of the neuroprotective factors Pin1, Sirtuin1, and Bdnf in human neuroblastoma cells. Levels of Pin1, Sirtuin 1, and Bdnf were compared by real-time PCR and Western blotting in SH-SY5Y cells treated with Aβ (25-35) or administration vehicle. The level of Pin1 gene and protein expression was significantly decreased in cells exposed to 25 μM Aβ (25-35) compared to vehicle-treated controls. Similarly, Sirtuin1 expression was significantly reduced by Aβ (25-35) exposure. In contrast, both Bdnf mRNA and protein levels were significantly increased by Aβ (25-35) treatment, suggesting the activation of a compensatory response to the insult. Both Pin1 and Sirtuin 1 exert a protective role by reducing the probability of plaque deposition, since they promote amyloid precursor protein processing through non-amyloidogenic pathways. The present results show that Aβ (25-35) peptide reduced the production of these neuroprotective proteins, thus further increasing Aβ generation.

  6. Chikusetsu saponin V attenuates H2O2-induced oxidative stress in human neuroblastoma SH-SY5Y cells through Sirt1/PGC-1α/Mn-SOD signaling pathways.

    PubMed

    Wan, Jingzhi; Deng, Lili; Zhang, Changcheng; Yuan, Qin; Liu, Jing; Dun, Yaoyan; Zhou, Zhiyong; Zhao, Haixia; Liu, Chaoqi; Yuan, Ding; Wang, Ting

    2016-09-01

    Oxidative stress plays a vital role in the pathogenesis of neurodegenerative diseases. Chikusetsu saponin V (CsV), the most abundant member of saponins from Panax japonicus (SPJ), has attracted increasing attention for its potential to treat neurodegenerative diseases. However, the mechanisms are unclear. Our study intended to investigate the antioxidative effects of CsV in human neuroblastoma SH-SY5Y cells. Our data showed that CsV attenuated H2O2-induced cytotoxicity, inhibited ROS accumulation, increased the activities of superoxide dismutase (SOD) and GSH, and increased mitochondrial membrane potential dose-dependently. Further exploration of the mechanisms showed that CsV exhibited these effects through increasing the activation of oxidative-stress-associated factors including Sirt1, PGC-1α, and Mn-SOD. Moreover, CsV inhibited H2O2-induced down-regulation of Bcl-2 and up-regulation of Bax in a dose-dependent manner and, thus, increased the ratio of Bcl-2/Bax. In conclusion, our study demonstrated that CsV exhibited neuroprotective effects possibly through Sirt1/PGC-1α/Mn-SOD signaling pathways.

  7. Time-dependent effects of lithium on the agonist-stimulated accumulation of second messenger inositol 1,4,5-trisphosphate in SH-SY5Y human neuroblastoma cells.

    PubMed

    Los, G V; Artemenko, I P; Hokin, L E

    1995-10-01

    In order to approach the molecular mechanism of Li+'s mood-stabilizing action, the effect of Li+ (LiCl) on inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] mass was investigated in human neuroblastoma SH-SY5Y cells, which express muscarinic M3 receptors, coupled to PtdIns hydrolysis. Stimulation of these cells, with the cholinergic agonist acetylcholine, resulted in a rapid and transient increase in Ins(1,4,5)P3 with a maximum at 10 s. This was followed by a rapid decline in Ins(1,4,5)P3 within 30 s to a plateau level above baseline, which gradually declined to reach a new steady state, which was significantly higher than resting Ins(1,4,5)P3 at 30 min. Li+ had no effect on Ins(1,4,5)P3 in resting cells, as well as on the acetylcholine-dependent peak of Ins(1,4,5)P3. However, Li+ caused a transient reduction (at 45 s), followed by a long lasting increase in the Ins(1,4,5)P3 (30 min), as compared with controls. The Li+ effects were dose-dependent and were observed at concentrations used in the treatment of bipolar disorders. Supplementation with inositol had no effect on the level of Ins(1,4,5)P3, at least over the time periods studied. Stimulation of muscarinic receptors with consequent activation of phospholipase C were necessary for the manifestation of Li+ effects in SH-SY5Y cells, Li+ did not interfere with degradation of Ins(1,4,5)P3 after receptor-blockade with atropine, suggesting that Li+ has no direct effect on the Ins(1,4,5)P3-metabolizing enzymes. A direct effect of Li+ on the phospholipase C also is unlikely. Blockade of Ca2+ entry into the cells by Ni2+, or incubation with EGTA, which reduces agonist-stimulated accumulation of Ins(1,4,5)P3, had no effect on the Li(+)-dependent increase in Ins(1,4,5)P3.

  8. Mitogen-activated protein kinases regulate expression of neuronal nitric oxide synthase and neurite outgrowth via non-classical retinoic acid receptor signaling in human neuroblastoma SH-SY5Y cells.

    PubMed

    Fujibayashi, Tatsuya; Kurauchi, Yuki; Hisatsune, Akinori; Seki, Takahiro; Shudo, Koichi; Katsuki, Hiroshi

    2015-10-01

    We have previously shown that retinoic acid receptor (RAR) stimulation by an agonist Am80 recruits nitric oxide-dependent signaling via increased expression of neuronal nitric oxide synthase (nNOS) in rat midbrain slice cultures. Using neuroblastoma SH-SY5Y cells, here we investigated the mechanisms of RAR-induced nNOS expression, together with relationship between nNOS expression and neurite outgrowth. Am80 promoted neurite outgrowth, which was attenuated by inhibitors of phosphoinositide 3-kinase (PI3K; LY294002), c-Jun N-terminal kinase (JNK; SP600125) and p38 mitogen-activated protein kinase (p38 MAPK; SB203580). A selective nNOS inhibitor 3-bromo-nitroindazole also suppressed Am80-induced neurite outgrowth. Am80-induced increase in nNOS protein expression was attenuated by LY294002, SP600125 and SB203580, whereas increase in nNOS mRNA expression was attenuated only by LY294002. Am80-induced activation of JNK and p38 MAPK was blocked by LY294002, suggesting that these kinases acted downstream of PI3K. We also confirmed that DAX1, a nuclear receptor reported to regulate nNOS expression, was up-regulated in response to Am80. siRNA-mediated knockdown of DAX1 abrogated Am80-induced nNOS expression and neurite outgrowth. These results reveal for the first time that nNOS expression is crucial for RAR-mediated neurite outgrowth, and that non-genomic signaling such as JNK and p38 MAPK is involved in RAR-mediated nNOS expression.

  9. Modulation of basal nitric oxide-dependent cyclic-GMP production by ambient glucose, myo-inositol, and protein kinase C in SH-SY5Y human neuroblastoma cells.

    PubMed Central

    Shindo, H; Thomas, T P; Larkin, D D; Karihaloo, A K; Inada, H; Onaya, T; Stevens, M J; Greene, D A

    1996-01-01

    Defective tissue perfusion and nitric oxide production and altered myo-inositol metabolism and protein kinase C activation have been invoked in the pathogenesis of diabetic complications including neuropathy. The precise cellular compartmentalization and mechanistic interrelationships of these abnormalities remain obscure, and nitric oxide possesses both neurotransmitter and vasodilator activity. Therefore the effects of ambient glucose and myo-inositol on nitric oxide-dependent cGMP production and protein kinase C activity were studied in SH-SY5Y human neuroblastoma cells, a cell culture model for peripheral cholinergic neurons. D-Glucose lowered cellular myo-inositol content, phosphatidylinositol synthesis, and phosphorylation of an endogenous protein kinase C substrate, and specifically reduced nitric oxide-dependent cGMP production a time- and dose-dependent manner with an apparent IC50 of approximately 30 mM. The near maximal decrease in cGMP induced by 50 mM D-glucose was corrected by the addition of protein kinase C agonists or 500 microM myo-inositol to the culture medium, and was reproduced by protein kinase C inhibition or downregulation, or by myo-inositol deficient medium. Sodium nitroprusside increased cGMP in a dose-dependent fashion, with low concentrations (1 microM) counteracting the effects of 50 mM D-glucose or protein kinase C inhibition. The demonstration that elevated D-glucose diminishes basal nitric oxide-dependent cGMP production by myo-inositol depletion and protein kinase C inhibition in peripheral cholinergic neurons provides a potential metabolic basis for impaired nitric oxide production, nerve blood flow, and nerve impulse conduction in diabetes. PMID:8609230

  10. Opioid agonists binding and responses in SH-SY5Y cells

    NASA Technical Reports Server (NTRS)

    Costa, E. M.; Hoffmann, B. B.; Loew, G. H.

    1992-01-01

    SH-SY5Y (human neuroblastoma) cultured cells, known to have mu-opioid receptors, have been used to assess and compare the ability of eight representative mu-selective compounds from diverse opioid families to recognize and activate these receptors. A wide range of receptor affinities spanning a factor of 10,000 was found between the highest affinity fentanyl analogs (Ki = 0.1nM) and the lowest affinity analog, meperidine (Ki = 1 microM). A similar range was found for inhibition of PGE1-stimulated cAMP accumulation with a rank order of activities that closely paralleled binding affinities. Maximum inhibition of cAMP accumulation by each compound was about 80%. Maximum stimulation of GTPase activity (approximately 50%) was also similar for all compounds except the lowest affinity meperidine. Both effects were naloxone reversible. These results provide further evidence that mu-receptors are coupled to inhibition of adenylate cyclase and that the SH-SY5Y cell line is a good system for assessment of mu-agonists functional responses.

  11. Arctigenin Confers Neuroprotection Against Mechanical Trauma Injury in Human Neuroblastoma SH-SY5Y Cells by Regulating miRNA-16 and miRNA-199a Expression to Alleviate Inflammation.

    PubMed

    Song, Jie; Li, Na; Xia, Yang; Gao, Zhong; Zou, Sa-Feng; Yan, Yu-Hui; Li, Shao-Heng; Wang, Yue; Meng, Ya-Kun; Yang, Jing-Xian; Kang, Ting-Guo

    2016-09-01

    Mechanical trauma injury is a severe insult to neural cells. Subsequent secondary injury involves the release of inflammatory factors that have dramatic consequences for undamaged cells, leading to normal cell death after the initial injury. The present study investigated the capacity for arctigenin (ARC) to prevent secondary effects and evaluated the mechanism underlying the action of microRNA (miRNA)-199a and miRNA-16 in a mechanical trauma injury (MTI) model using SH-SY5Y cells in vitro. SH-SY5Y cells are often applied to in vitro models of neuronal function and differentiation. Recently, miRNAs have been demonstrated to play a crucial role in NF-κB and cholinergic signaling, which can regulate inflammation. The cell model was established by scratch-induced injury of human SH-SY5Y cells, which mimics the characteristics of MTI. A cell counting kit-8 (CCK-8), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and immunocytochemistry were used to measure cell viability. Enzyme-linked immunosorbent assay (ELISA) was used to evaluate the inflammatory cytokine and cholinesterase (CHE) content. The lactate dehydrogenase (LDH) content was measured to assess the degree of cell injury. The mRNA levels were measured by RT-PCR to analyze ARC's mechanism of action. miRNA inhibitors and mimics were used to inhibit and strengthen the expression of miRNAs. Protein expression was detected by western blotting analysis. ARC treatment reduced the TNF-α and IL-6 levels as well as the number of TUNEL+ apoptotic SH-SY5Y cells surrounding the scratch and increased the IL-10 level compared to the controls. ARC attenuated the increase of the cell damage degree and LDH content induced by scratching, indicating increased cell survival. Mechanistic studies showed that ARC upregulated the miRNA-16 and miRNA-199a levels to reduce upstream protein (IKKα and IKKβ) expression and inhibit NF-κB signaling pathway activity; moreover, the increased miRNA-199a suppresses

  12. The toxic effect of ketamine on SH-SY5Y neuroblastoma cell line and human neuron.

    PubMed

    Mak, Ying T; Lam, Wai P; Lü, Lanhai; Wong, Yeuk W; Yew, David T

    2010-03-01

    Ketamine used as an injectable anesthetic in human and animal medicine is also a recreational drug used primarily by young adults often at all night dance parties in nightclubs. The percentage of ketamine users has grown very fast in the last 5 years worldwide. However, this leads to the serious question of the long-term adverse effects of ketamine on our nervous system, particularly the brain, because ketamine as an NMDA antagonist could cause neurons to commit apoptosis. Our study therefore aimed to find out the chronic effect of ketamine on neuron using prolonged incubation (48 h) of neuronal cells with ketamine in culture. Our results showed that differentiated neuronal cells were prone to the toxicity of ketamine but probably less susceptible than undifferentiated neuronal cells and fibroblasts. This suggested that the ketamine abuse would be harmful to many other organs as well as the brain. Our results also confirmed that the toxicity of ketamine is related to apoptosis via the Bax/Bcl-2 ratio pathway and caspase-3 in the differentiated neuronal cells. Therefore, long-term ketamine treated cell or animal models should be sought to study this multiorgan effects of ketamine.

  13. Emulsion-core and polyelectrolyte-shell nanocapsules: biocompatibility and neuroprotection against SH-SY5Y cells

    NASA Astrophysics Data System (ADS)

    Piotrowski, Marek; Szczepanowicz, Krzysztof; Jantas, Danuta; Leśkiewicz, Monika; Lasoń, Władysław; Warszyński, Piotr

    2013-11-01

    The emulsion-core and polyelectrolyte-coated nanocapsules, designed as water-insoluble neuroprotective drug delivery system, were synthesized using layer-by-layer saturation method. The isopropyl myristate was used as oil phase and docusate sodium salt as emulsifier. For the polyelectrolyte shell preparation, synthetic polyelectrolytes, cationic (PDADMAC, PAH, and PLL) and anionic (PGA) were used. The particle size and zeta potential of nanocapsules were characterized by the dynamic light scattering. The average size of synthesized nanocapsules ranged from 80 to 100 nm. Zeta potential values ranged from less than approximately -30 mV for the polyanion layers to greater than approximately +30 mV for the polycation layers. Biocompatibilities of the synthesized nanocarriers were evaluated against SH-SY5Y human neuroblastoma cells using various biochemical assays. The results obtained show that synthesized nanocapsules coated with PLL and PGA were nontoxic to SH-SY5Y cells, and they were used as nanocarriers for model neuroprotective drug (a calpain inhibitor MDL 28170). The neuroprotective action of the encapsulated MDL 28170 against hydrogen peroxide-induced oxidative stress cytotoxicity was evaluated in the same cell line. The results showed that nanoencapsulated form of MDL 28170 were biocompatible and protected SH-SY5Y cells against the H2O2 (0.5 mM/24 h)-induced damage in 20-40 times lower concentrations than those of the same drug added directly to the culture medium. These data suggest that the nanoscale carriers of neuroprotective drugs might serve as novel promising therapeutic agents for oxidative stress-related neurodegenerative processes.

  14. Role for the PI3K/Akt/Nrf2 signaling pathway in the protective effects of carnosic acid against methylglyoxal-induced neurotoxicity in SH-SY5Y neuroblastoma cells.

    PubMed

    de Oliveira, Marcos Roberto; Ferreira, Gustavo Costa; Schuck, Patrícia Fernanda; Dal Bosco, Simone Morelo

    2015-12-05

    Glycation, a process that occurs endogenously and generates advanced glycation end products (AGEs), presents an important role in cases of neurodegeneration, as for instance Alzheimer's disease (AD). Methylglyoxal (MG), a dicarbonyl compound, is the most potent inducer of AGEs, whose levels have been found increased in samples obtained from subjects suffering from AD. Moreover, MG induces protein cross-linking and redox impairment in vitro and in vivo. Carnosic acid (CA), a phenolic diterpene isolated from Rosmarinus officinalis, exerts protective effects in neuronal cells by increasing antioxidant defenses and detoxification systems. In the present work, we aimed to investigate whether there is a role for CA against MG-induced neurotoxicity. Data obtained here clearly demonstrate that CA pretreatment (1 μM for 12 h) caused cytoprotective effects and counteracted the damage elicited by MG in SH-SY5Y cells. CA inhibited loss of mitochondrial membrane polarity (MMP) and cytochrome c release from mitochondria, consequently blocking activation of pro-apoptotic caspase enzymes. Furthermore, CA alleviated MG-induced oxidative and nitrosative damage. CA prevented MG-dependent neurotoxicity by activating the PI3K/Akt/Nrf2 signaling pathway and the antioxidant enzymes modulated by Nrf2 transcription factor. Overall, the data presented here show the protective role of CA by its ability to counteract MG negative effects.

  15. A natural product from Cannabis sativa subsp. sativa inhibits homeodomain-interacting protein kinase 2 (HIPK2), attenuating MPP(+)-induced apoptosis in human neuroblastoma SH-SY5Y cells.

    PubMed

    Wang, Guan; Zhu, Lingjuan; Zhao, Yuqian; Gao, Suyu; Sun, Dejuan; Yuan, Jingquan; Huang, Yuxin; Zhang, Xue; Yao, Xinsheng

    2017-03-30

    Homeodomain-interacting protein kinase 2 (HIPK2) is a conserved serine/threonine kinase, which regulate transcription, cell differentiation, proliferation and apoptosis. Previous evidences indicated that HIPK2 could be involved in the pathogenesis of neurodegenerative diseases, suggesting as a novel target for Parkinson's disease (PD) therapeutic development. Herein, gene microarray analysis was performed to verify the key regulatory function of HIPK2 in PD. (Z)-methylp-hydroxycinnamate (ZMHC, 7) with other eighteen compounds were isolated from Cannabis sativa subsp. sativa, growing in Bama Yao Autonomous County, one of the five largest longevity regions of the world. Intriguingly, ZMHC was identified to bind HIPK2 with high affinity through molecular modeling and molecular dynamics (MD) simulations. Moreover, cell morphology, flow cytometry and western blot assay suggested that ZMHC inhibited HIPK2, which attenuated MPP(+)-induced apoptosis in SH-SY5Y cells. In conclusion, these findings discovered a natural product that inhibited HIPK2, and highlighted that ZMHC could be a potential precursor agent for future PD therapy.

  16. The TrkAIII oncoprotein inhibits mitochondrial free radical ROS-induced death of SH-SY5Y neuroblastoma cells by augmenting SOD2 expression and activity at the mitochondria, within the context of a tumour stem cell-like phenotype.

    PubMed

    Ruggeri, Pierdomenico; Farina, Antonietta R; Di Ianni, Natalia; Cappabianca, Lucia; Ragone, Marzia; Ianni, Giulia; Gulino, Alberto; Mackay, Andrew R

    2014-01-01

    The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs), correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS)-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB.

  17. N-linked glycan profiling in neuroblastoma cell lines.

    PubMed

    Hu, Yunli; Mayampurath, Anoop; Khan, Saira; Cohen, Joanna K; Mechref, Yehia; Volchenboum, Samuel L

    2015-05-01

    Although MYCN amplification has been associated with aggressive neuroblastoma, the molecular mechanisms that differentiate low-risk, MYCN-nonamplified neuroblastoma from high-risk, MYCN-amplified disease are largely unknown. Genomic and proteomic studies have been limited in discerning differences in signaling pathways that account for this heterogeneity. N-Linked glycosylation is a common protein modification resulting from the attachment of sugars to protein residues and is important in cell signaling and immune response. Aberrant N-linked glycosylation has been routinely linked to various cancers. In particular, glycomic markers have often proven to be useful in distinguishing cancers from precancerous conditions. Here, we perform a systematic comparison of N-linked glycomic variation between MYCN-nonamplified SY5Y and MYCN-amplified NLF cell lines with the aim of identifying changes in sugar abundance linked to high-risk neuroblastoma. Through a combination of liquid chromatography-mass spectrometry and bioinformatics analysis, we identified 16 glycans that show a statistically significant change in abundance between NLF and SY5Y samples. Closer examination revealed the preference for larger (in terms of total monosaccharide count) and more sialylated glycan structures in the MYCN-amplified samples in comparison to smaller, nonsialylated glycans that are more dominant in the MYCN-nonamplified samples. These results offer clues for deriving marker candidates for accurate neuroblastoma risk diagnosis.

  18. Manganese-Induced Oxidative DNA Damage in Neuronal SH-SY5Y Cells: Attenuation of thymine base lesions by glutathione and N-acetylcysteine

    PubMed Central

    Stephenson, Adrienne P.; Schneider, Jeffrey A.; Nelson, Bryant C.; Atha, Donald H.; Jain, Ashok; Soliman, Karam F. A.; Aschner, Michael; Mazzio, Elizabeth; Reams, R. Renee

    2013-01-01

    Manganese (Mn) is an essential trace element required for normal function and development. However, exposure to this metal at elevated levels may cause manganism, a progressive neurodegenerative disorder with neurological symptoms similar to idiopathic Parkinson’s disease (IPD). Elevated body burdens of Mn from exposure to parental nutrition, vapors in mines and smelters and welding fumes have been associated with neurological health concerns. The underlying mechanism of Mn neurotoxicity remains unclear. Accordingly, the present study was designed to investigate the toxic effects of Mn2+ in human neuroblastoma SH-SY5Y cells. Mn2+ caused a concentration dependent decrease in SH-SY5Y cellular viability compared to controls. The LD50 value was 12.98 μM Mn2+ (p <0.001 for control vs. 24h Mn treatment). Both TUNEL and annexin V/propidium iodide apoptosis assays confirmed the induction of apoptosis in the cells following exposure to Mn2+ (2 μM, 62 μM or 125 μM). In addition, Mn2+ induced both the formation and accumulation of DNA single strand breaks (via alkaline comet assay analysis) and oxidatively modified thymine bases (via gas chromatography/mass spectrometry analysis). Pre-incubation of the cells with characteristic antioxidants, either 1 mM N-acetylcysteine or 1 mM glutathione reduced the level of DNA strand breaks and the formation of thymine base lesions, suggesting protection against oxidative cellular damage. Our findings indicate that 1) exposure of SH-SY5Y cells to Mn promotes both the formation and accumulation of oxidative DNA nucleotide base damage, 2) SH-SY5Y cells with accumulated DNA damage are more likely to die via an apoptotic pathway and 3) the accumulated levels of DNA damage can be abrogated by the addition of exogenous chemical antioxidants. This is the first known report of Mn2+-induction and antioxidant protection of thymine lesions in this SH-SY5Y cell line and contributes new information to the potential use of antioxidants as a

  19. Hyperosmotic Stress Induces Tau Proteolysis by Caspase-3 Activation in SH-SY5Y Cells.

    PubMed

    Olivera-Santa Catalina, Marta; Caballero-Bermejo, Montaña; Argent, Ricardo; Alonso, Juan C; Cuenda, Ana; Lorenzo, María J; Centeno, Francisco

    2016-12-01

    Tau is a microtubule-associated protein implicated in the pathogenesis of Alzheimer's disease and other related tauopathies. In this subset of neurodegenerative disorders, Tau auto-assembles into insoluble fibrils that accumulate in neurons as paired helical filaments (PHFs), promoting cellular dysfunction and cytotoxic effects. Growing evidence suggests that abnormal post-translational regulation, mainly hyperphosphorylation and aberrant cleavage, drives Tau to this pathological state. In this work we show that sorbitol-induced hyperosmotic stress promotes Tau proteolysis in SH-SY5Y neuroblastoma cells. The appearance of cleaved Tau was preceded by the activation of μ-calpain, the proteasome system and caspase-3. Tau proteolysis was completely prevented by caspase-3 inhibition but unaffected by neither the proteasome system nor μ-calpain activity blockade. Concomitantly, hyperosmotic stress induced apoptosis in SH-SY5Y cells, which was efficiently avoided by the inhibition of caspase-3 activity. Altogether, our results provide the first evidence that Tau protein is susceptible to caspase-3 proteolysis under hyperosmotic stress and suggest a positive relationship between Tau proteolysis and apoptosis in SH-SY5Y cells. J. Cell. Biochem. 117: 2781-2790, 2016. © 2016 Wiley Periodicals, Inc.

  20. MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells

    PubMed Central

    Ito, Keisuke; Eguchi, Yutaka; Imagawa, Yusuke; Akai, Shuji; Mochizuki, Hideki; Tsujimoto, Yoshihide

    2017-01-01

    Regulation of cell death is potentially a powerful treatment modality for intractable diseases such as neurodegenerative diseases. Although there have been many reports about the possible involvement of various types of cell death in neurodegenerative diseases, it is still unclear exactly how neurons die in patients with these diseases, thus treatment strategies based on cell death regulation have not been established yet. To obtain some insight into the mechanisms of cell death involved in neurodegenerative diseases, we studied the effect of 1-methyl-4-phenylpyridinium (MPP+) on the human neuroblastoma cell line SH-SY5Y (a widely used model of Parkinson’s disease). We found that MPP+ predominantly induced non-apoptotic death of neuronally differentiated SH-SY5Y cells. This cell death was strongly inhibited by necrostatin-1 (Nec-1), a necroptosis inhibitor, and by an indole-containing compound (3,3′-diindolylmethane: DIM). However, it occurred independently of receptor-interacting serine/threonine-protein kinase 1/3 (RIP1/RIP3), indicating that this form of cell death was not necroptosis. MPP+-induced cell death was also inhibited by several inhibitors of ferroptosis, including ferrostatin-1 (Fer-1). Although MPP+-induced death and ferroptosis shared some features, such as occurrence of lipid peroxidation and inhibition by Fer-1, MPP+-induced death seemed to be distinct from ferroptosis because MPP+-induced death (but not ferroptosis) was inhibited by Nec-1, was independent of p53, and was accompanied by ATP depletion and mitochondrial swelling. Further investigation of MPP+-induced non-apoptotic cell death may be useful for understanding the mechanisms of neuronal loss and for treatment of neurodegenerative diseases such as Parkinson’s disease. PMID:28250973

  1. MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells.

    PubMed

    Ito, Keisuke; Eguchi, Yutaka; Imagawa, Yusuke; Akai, Shuji; Mochizuki, Hideki; Tsujimoto, Yoshihide

    2017-01-01

    Regulation of cell death is potentially a powerful treatment modality for intractable diseases such as neurodegenerative diseases. Although there have been many reports about the possible involvement of various types of cell death in neurodegenerative diseases, it is still unclear exactly how neurons die in patients with these diseases, thus treatment strategies based on cell death regulation have not been established yet. To obtain some insight into the mechanisms of cell death involved in neurodegenerative diseases, we studied the effect of 1-methyl-4-phenylpyridinium (MPP+) on the human neuroblastoma cell line SH-SY5Y (a widely used model of Parkinson's disease). We found that MPP+ predominantly induced non-apoptotic death of neuronally differentiated SH-SY5Y cells. This cell death was strongly inhibited by necrostatin-1 (Nec-1), a necroptosis inhibitor, and by an indole-containing compound (3,3'-diindolylmethane: DIM). However, it occurred independently of receptor-interacting serine/threonine-protein kinase 1/3 (RIP1/RIP3), indicating that this form of cell death was not necroptosis. MPP+-induced cell death was also inhibited by several inhibitors of ferroptosis, including ferrostatin-1 (Fer-1). Although MPP+-induced death and ferroptosis shared some features, such as occurrence of lipid peroxidation and inhibition by Fer-1, MPP+-induced death seemed to be distinct from ferroptosis because MPP+-induced death (but not ferroptosis) was inhibited by Nec-1, was independent of p53, and was accompanied by ATP depletion and mitochondrial swelling. Further investigation of MPP+-induced non-apoptotic cell death may be useful for understanding the mechanisms of neuronal loss and for treatment of neurodegenerative diseases such as Parkinson's disease.

  2. Particulate matter cytotoxicity in cultured SH-SY5Y cells is modulated by simvastatin: Toxicological assessment for oxidative damage.

    PubMed

    Ferraro, S A; Astort, F; Yakisich, J S; Tasat, D R

    2016-03-01

    Epidemiological studies have shown a positive correlation between environmental particulate matter and adverse health effects. In particular, residual oil fly ash (ROFA) induces inflammation and reactive oxygen species (ROS), exerting not only local, but also systemic adverse effects. Previously, in an experimental animal model, we found that simvastatin (Sv) pretreatment was effective in preventing ROFA induced lung inflammation. Herein, using the human neuroblastoma SH-SY5Y cell line as a neurotoxicity in vitro model, we studied the potential Sv protective effect on ROFA cytotoxicity. We evaluated cell viability by the MTT assay, superoxide anion generation by NBT test, Nrf2 activation by immunofluorescence, apoptosis by cleaved-PARP and active-caspase 3 expressions, and senescence by β-galactosidase activity. SH-SY5Y cells exposed to ROFA (10 and 50μg/ml) for 24h showed decreased cell viability, increased superoxide anion generation, apoptosis and senescence. Pretreatment with Sv (1μM) for 6 days, restored cell viability to basal levels, reduced ROFA-induced O2(-) generation as well as the number of apoptotic and senescent cells. Sv pretreatment stimulated the basal and ROFA-induced levels of Nrf2 nuclear translocation suggesting that activation of the cellular antioxidant defense system prevented particle-induced oxidative stress. In parallel, rescue experiments with mevalonate did not modify the effects of SV pretreatment in any of the parameters evaluated in this study. We conclude that simvastatin may provide neuroprotection against air particulate matter-induced neurotoxicity independently of its ability to inhibit cholesterol synthesis.

  3. Neuroprotective Effects of Germinated Brown Rice against Hydrogen Peroxide Induced Cell Death in Human SH-SY5Y Cells

    PubMed Central

    Ismail, Norsharina; Ismail, Maznah; Fathy, Siti Farhana; Musa, Siti Nor Asma; Imam, Mustapha Umar; Foo, Jhi Biau; Iqbal, Shahid

    2012-01-01

    The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H2O2) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H2O2-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis. PMID:22949825

  4. Neuroprotective effects of germinated brown rice against hydrogen peroxide induced cell death in human SH-SY5Y cells.

    PubMed

    Ismail, Norsharina; Ismail, Maznah; Fathy, Siti Farhana; Musa, Siti Nor Asma; Imam, Mustapha Umar; Foo, Jhi Biau; Iqbal, Shahid

    2012-01-01

    The neuroprotective and antioxidative effects of germinated brown rice (GBR), brown rice (BR) and commercially available γ-aminobutyric acid (GABA) against cell death induced by hydrogen peroxide (H(2)O(2)) in human neuroblastoma SH-SY5Y cells have been investigated. Results show that GBR suppressed H(2)O(2)-mediated cytotoxicity and induced G0/G1 phase cell cycle arrest in SH-SY5Y cells. Moreover, GBR reduced mitochondrial membrane potential (MMP) and prevented phosphatidylserine (PS) translocation in SH-SY5Y cells, key features of apoptosis, and subsequent cell death. GBR exhibited better neuroprotective and antioxidative activities as compared to BR and GABA. These results indicate that GBR possesses high antioxidative activities and suppressed cell death in SH-SY5Y cells by blocking the cell cycle re-entry and apoptotic mechanisms. Therefore, GBR could be developed as a value added functional food to prevent neurodegenerative diseases caused by oxidative stress and apoptosis.

  5. Methylglyoxal increases dopamine level and leads to oxidative stress in SH-SY5Y cells.

    PubMed

    Xie, Bingjie; Lin, Fankai; Peng, Lei; Ullah, Kaleem; Wu, Hanyan; Qing, Hong; Deng, Yulin

    2014-11-01

    More and more studies have suggested that methylglyoxal (MGO) induced by type-2 diabetes is related to Parkinson's disease (PD). However, little is known about the molecular mechanism. In this study, we explored the MGO toxicity in neuroblastoma SH-SY5Y cells. Neurotoxicity of MGO was measured by mitochondrial membrane potential, malondialdehyde, and methylthiazoletetrazolium assays. The levels of dopamine, 3,4-dihydroxyphenylacetic acid (DOPAC), and 1-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) were detected by liquid chromatography-mass spectrometry/mass spectrometry. The expressions of tyrosine hydroxylase (TH) and dopamine transporter (DAT) were detected by reverse transcriptase polymerase chain reaction and western blot analysis. The results showed that MGO induced an increase in TH and DAT expressions in SH-SY5Y neuroblastoma cells, while the levels of dopamine, DOPAC, and endogenous neurotoxin salsolinol also increased. Aminoguanidine (AG) is an inhibitor of MGO. It was found that AG could decrease the reactive oxygen species (ROS) level induced by MGO, but could not inhibit an increase of TH, DAT and dopamine. The increase of dopamine, DOPAC and salsolinol levels could lead to high ROS and mitochondrial damage. This study suggests that ROS caused by dopamine could contribute to the damage of dopaminergic neurons when MGO is increased during the course of diabetes.

  6. Silencing of SIAH1 in SH-SY5Y affects α-synuclein degradation pathway

    PubMed Central

    Xu, Jing; Zhang, Xin-Zhi; Zhang, Yong-Jin; Li, Xiu-Ming; Cai, Zeng-Lin; Li, Xiao-Min

    2015-01-01

    Seven in absentia homolog (SIAH) is a ubiquitin ligase that monoubiquitinates α-synuclein. Lewy bodies are characteristically rich in monoubiquitinated α-synuclein. We aimed to determine the effect of siRNA-SIAH1 on α-synuclein autophagy and UPS degradation in SH-SY5Y. SIAH1 expression was measured with real-time quantitative PCR and Western Blot. Cell proliferation was measured by CCK-8 assay; cell apoptosis assayed by flow cytometry. Relative protein expressions were measured by Western Blot. mRNA levels of relative protein were measured by real-time quantitative PCR. The expression of α-synuclein, LC3-II and SIAH1 were observed by confocal microscopy. We found: (1) Transfection efficiency of SIAH1-siRNA into SH-SY5 measured approximately 89% by flow cytometry. (2) siRNA silencing of SIAH1 promoted cellular proliferation and suppressed apoptosis. (3) Protein and mRNA expression of α-synuclein, LC3-II and p53 decreased after SIAH1 knockdown. E1 protein and mRNA levels increased after SIAH1 siRNA. These data show silencing SIAH1 increased cell proliferation and inhibited apoptosis in SH-SY5Y neuroblastoma cells. SIAH1 knockdown enhanced the clearance of non-aggregated α-synuclein by UPS. SIAH1 is a potential target for treatment of Parkinson’s disease. PMID:26722480

  7. Modulation of heat shock protein response in SH-SY5Y by mobile phone microwaves

    PubMed Central

    Calabrò, Emanuele; Condello, Salvatore; Currò, Monica; Ferlazzo, Nadia; Caccamo, Daniela; Magazù, Salvatore; Ientile, Riccardo

    2012-01-01

    AIM: To investigate putative biological damage caused by GSM mobile phone frequencies by assessing electromagnetic fields during mobile phone working. METHODS: Neuron-like cells, obtained by retinoic-acid-induced differentiation of human neuroblastoma SH-SY5Y cells, were exposed for 2 h and 4 h to microwaves at 1800 MHz frequency bands. RESULTS: Cell stress response was evaluated by MTT assay as well as changes in the heat shock protein expression (Hsp20, Hsp27 and Hsp70) and caspase-3 activity levels, as biomarkers of apoptotic pathway. Under our experimental conditions, neither cell viability nor Hsp27 expression nor caspase-3 activity was significantly changed. Interestingly, a significant decrease in Hsp20 expression was observed at both times of exposure, whereas Hsp70 levels were significantly increased only after 4 h exposure. CONCLUSION: The modulation of the expression of Hsps in neuronal cells can be an early response to radiofrequency microwaves. PMID:22371824

  8. ∆(9)-Tetrahydrocannabinol decreases NOP receptor density and mRNA levels in human SH-SY5Y cells.

    PubMed

    Cannarsa, Rosalia; Carretta, Donatella; Lattanzio, Francesca; Candeletti, Sanzio; Romualdi, Patrizia

    2012-02-01

    Several studies demonstrated a cross-talk between the opioid and cannabinoid system. The NOP receptor and its endogenous ligand nociceptin/orphanin FQ represent an opioid-related functional entity that mediates some non-classical opioid effects. The relationship between cannabinoid and nociceptin/NOP system is yet poorly explored. In this study, we used the neuroblastoma SH-SY5Y cell line to investigate the effect of delta-9-tetrahydrocannabinol (∆(9)-THC) on nociceptin/NOP system. Results revealed that the exposure to ∆(9)-THC (100, 150, and 200 nM) for 24 h produces a dose-dependent NOP receptor B (max) down-regulation. Moreover, ∆(9)-THC caused a dose-dependent decrease in NOP mRNA levels. The selective cannabinoid receptor CB1 antagonist AM251 (1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide) reduces both effects, suggesting that ∆(9)-THC activation of CB1 receptor is involved in the observed effects. These data show evidence of a cross-talk between NOP and CB1 receptors, thus suggesting a possible interplay between cannabinoid and nociceptin/NOP system.

  9. Attenuation of rotenone toxicity in SY5Y cells by taurine and N-acetyl cysteine alone or in combination.

    PubMed

    Alkholifi, Faisal K; Albers, David S

    2015-10-05

    There is accumulating evidence that supports the involvement of reactive oxygen species (ROS), mitochondrial dysfunction and inflammation in the pathogenesis of neurodegenerative diseases. Thus, it is plausible that a multi-targeted therapeutic approach may be a more effective strategy to retard or even potentially halt the progression of the disease. Taurine is an organic acid that has a role in the regulation of oxidative stress and promoting mitochondrial normal functions, and N-Acetyl cysteine (NAC) is a well-known anti-oxidant and glutathione precursor. The main purpose of this study was to examine the cytoprotective effects of taurine alone or in combination with NAC against rotenone-induced toxicity in the SH-SY5Y neuroblastoma cell line. Taurine treatment produced a concentration-dependent reduction in rotenone-induced cell death. From this, we tested sub-effective concentrations of taurine in combination with low, sub-effective concentrations of NAC against rotenone toxicity, and found the combined treatment afforded greater cytoprotection than either treatment alone. The combined taurine/NAC treatment also attenuated rotenone-induced reductions in aconitase activity suggesting the cytoprotection afforded by the combined treatment may be associated with anti-oxidative mechanisms. Together, our data suggest that a multi-targeted approach may yield new avenues of research exploring the utility of combining therapeutic agents with different mechanisms of actions at concentrations lower than previously tested and shown to be cytoprotective.

  10. The Neuroprotective Effects of Brazilian Green Propolis on Neurodegenerative Damage in Human Neuronal SH-SY5Y Cells.

    PubMed

    Ni, Junjun; Wu, Zhou; Meng, Jie; Zhu, Aiqin; Zhong, Xin; Wu, Shizheng; Nakanishi, Hiroshi

    2017-01-01

    Oxidative stress and synapse dysfunction are the major neurodegenerative damage correlated to cognitive impairment in Alzheimer's disease (AD). We have found that Brazilian green propolis (propolis) improves the cognitive functions of mild cognitive impairment patients living at high altitude; however, mechanism underlying the effects of propolis is unknown. In the present study, we investigated the effects of propolis on oxidative stress, expression of brain-derived neurotrophic factor (BDNF), and activity-regulated cytoskeleton-associated protein (Arc), the critical factors of synapse efficacy, using human neuroblastoma SH-SY5Y cells. Pretreatment with propolis significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity in SH-SY5Y cells. Furthermore, propolis significantly reduced the H2O2-generated reactive oxygen species (ROS) derived from mitochondria and 8-oxo-2'-deoxyguanosine (8-oxo-dG, the DNA oxidative damage marker) but significantly reversed the fibrillar β-amyloid and IL-1β-impaired BDNF-induced Arc expression in SH-SY5Y cells. Furthermore, propolis significantly upregulated BDNF mRNA expression in time- and dose-dependent manners. In addition, propolis induced Arc mRNA and protein expression via phosphoinositide-3 kinase (PI3K). These observations strongly suggest that propolis protects from the neurodegenerative damage in neurons through the properties of various antioxidants. The present study provides a potential molecular mechanism of Brazilian green propolis in prevention of cognitive impairment in AD as well as aging.

  11. Nicotinamide N-methyltransferase increases complex I activity in SH-SY5Y cells via sirtuin 3.

    PubMed

    Liu, Karolina Y; Mistry, Rakhee J; Aguirre, Carlos A; Fasouli, Eirini S; Thomas, Martin G; Klamt, Fábio; Ramsden, David B; Parsons, Richard B

    2015-11-20

    Nicotinamide N-methyltransferase (NNMT, E.C. 2.1.1.1) N-methylates nicotinamide to 1-methylnicotinamide. We have previously shown that NNMT is significantly overexpressed in the brains of patients who have died of Parkinson's disease, and others have shown that NNMT is significantly overexpressed in a variety of diseases ranging from cancer to hepatic cirrhosis. In vitro overexpression has revealed many cytoprotective effects of NNMT, in particular increased complex I activity and ATP synthesis. Although this appears to be mediated by an increase in 1-methylnicotinamide production, the molecular mechanisms involved remain unclear. In the present study, we have investigated the role that sirtuins 1, 2 and 3, class III DNA deacetylase enzymes known to regulate mitochondrial energy production and cell cycle, have in mediating the effects of NNMT upon complex I activity. Expression of NNMT in SH-SY5Y human neuroblastoma cells, which have no endogenous expression of NNMT, significantly increased the expression of all three sirtuins. siRNA-mediated silencing of sirtuin 3 expression decreased complex I activity in NNMT-expressing SH-SY5Y cells to that observed in wild-type SH-SY5Y, and significantly reduced cellular ATP content also. These results demonstrate that sirtuin 3 is a key mediator of NNMT-induced complex I activity and ATP synthesis. These results further reinforce a central role for NNMT in the regulation of energy homeostasis and provide further mechanistic insight into the consequences of enhanced NNMT expression.

  12. The Neuroprotective Effects of Brazilian Green Propolis on Neurodegenerative Damage in Human Neuronal SH-SY5Y Cells

    PubMed Central

    Ni, Junjun; Meng, Jie; Zhu, Aiqin; Zhong, Xin; Wu, Shizheng; Nakanishi, Hiroshi

    2017-01-01

    Oxidative stress and synapse dysfunction are the major neurodegenerative damage correlated to cognitive impairment in Alzheimer's disease (AD). We have found that Brazilian green propolis (propolis) improves the cognitive functions of mild cognitive impairment patients living at high altitude; however, mechanism underlying the effects of propolis is unknown. In the present study, we investigated the effects of propolis on oxidative stress, expression of brain-derived neurotrophic factor (BDNF), and activity-regulated cytoskeleton-associated protein (Arc), the critical factors of synapse efficacy, using human neuroblastoma SH-SY5Y cells. Pretreatment with propolis significantly ameliorated the hydrogen peroxide- (H2O2-) induced cytotoxicity in SH-SY5Y cells. Furthermore, propolis significantly reduced the H2O2-generated reactive oxygen species (ROS) derived from mitochondria and 8-oxo-2′-deoxyguanosine (8-oxo-dG, the DNA oxidative damage marker) but significantly reversed the fibrillar β-amyloid and IL-1β-impaired BDNF-induced Arc expression in SH-SY5Y cells. Furthermore, propolis significantly upregulated BDNF mRNA expression in time- and dose-dependent manners. In addition, propolis induced Arc mRNA and protein expression via phosphoinositide-3 kinase (PI3K). These observations strongly suggest that propolis protects from the neurodegenerative damage in neurons through the properties of various antioxidants. The present study provides a potential molecular mechanism of Brazilian green propolis in prevention of cognitive impairment in AD as well as aging. PMID:28265338

  13. Internalization and Down-Regulation of the ALK Receptor in Neuroblastoma Cell Lines upon Monoclonal Antibodies Treatment

    PubMed Central

    Mazot, Pierre; Cazes, Alex; Dingli, Florent; Degoutin, Joffrey; Irinopoulou, Théano; Boutterin, Marie-Claude; Lombard, Bérangère; Loew, Damarys; Hallberg, Bengt; Palmer, Ruth Helen; Delattre, Olivier

    2012-01-01

    Recently, activating mutations of the full length ALK receptor, with two hot spots at positions F1174 and R1275, have been characterized in sporadic cases of neuroblastoma. Here, we report similar basal patterns of ALK phosphorylation between the neuroblastoma IMR-32 cell line, which expresses only the wild-type receptor (ALKWT), and the SH-SY5Y cell line, which exhibits a heterozygous ALK F1174L mutation and expresses both ALKWT and ALKF1174L receptors. We demonstrate that this lack of detectable increased phosphorylation in SH-SY5Y cells is a result of intracellular retention and proteasomal degradation of the mutated receptor. As a consequence, in SH-SY5Y cells, plasma membrane appears strongly enriched for ALKWT whereas both ALKWT and ALKF1174L were present in intracellular compartments. We further explored ALK receptor trafficking by investigating the effect of agonist and antagonist mAb (monoclonal antibodies) on ALK internalization and down-regulation, either in SH-SY5Y cells or in cells expressing only ALKWT. We observe that treatment with agonist mAbs resulted in ALK internalization and lysosomal targeting for receptor degradation. In contrast, antagonist mAb induced ALK internalization and recycling to the plasma membrane. Importantly, we correlate this differential trafficking of ALK in response to mAb with the recruitment of the ubiquitin ligase Cbl and ALK ubiquitylation only after agonist stimulation. This study provides novel insights into the mechanisms regulating ALK trafficking and degradation, showing that various ALK receptor pools are regulated by proteasome or lysosome pathways according to their intracellular localization. PMID:22479414

  14. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines

    PubMed Central

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-01-01

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells. PMID:27916824

  15. Graphene Oxide Nanoribbons Induce Autophagic Vacuoles in Neuroblastoma Cell Lines.

    PubMed

    Mari, Emanuela; Mardente, Stefania; Morgante, Emanuela; Tafani, Marco; Lococo, Emanuela; Fico, Flavia; Valentini, Federica; Zicari, Alessandra

    2016-11-29

    Since graphene nanoparticles are attracting increasing interest in relation to medical applications, it is important to understand their potential effects on humans. In the present study, we prepared graphene oxide (GO) nanoribbons by oxidative unzipping of single-wall carbon nanotubes (SWCNTs) and analyzed their toxicity in two human neuroblastoma cell lines. Neuroblastoma is the most common solid neoplasia in children. The hallmark of these tumors is the high number of different clinical variables, ranging from highly metastatic, rapid progression and resistance to therapy to spontaneous regression or change into benign ganglioneuromas. Patients with neuroblastoma are grouped into different risk groups that are characterized by different prognosis and different clinical behavior. Relapse and mortality in high risk patients is very high in spite of new advances in chemotherapy. Cell lines, obtained from neuroblastomas have different genotypic and phenotypic features. The cell lines SK-N-BE(2) and SH-SY5Y have different genetic mutations and tumorigenicity. Cells were exposed to low doses of GO for different times in order to investigate whether GO was a good vehicle for biological molecules delivering individualized therapy. Cytotoxicity in both cell lines was studied by measuring cellular oxidative stress (ROS), mitochondria membrane potential, expression of lysosomial proteins and cell growth. GO uptake and cytoplasmic distribution of particles were studied by Transmission Electron Microscopy (TEM) for up to 72 h. The results show that GO at low concentrations increased ROS production and induced autophagy in both neuroblastoma cell lines within a few hours of exposure, events that, however, are not followed by growth arrest or death. For this reason, we suggest that the GO nanoparticle can be used for therapeutic delivery to the brain tissue with minimal effects on healthy cells.

  16. Biologically synthesized silver nanoparticles induce neuronal differentiation of SH-SY5Y cells via modulation of reactive oxygen species, phosphatases, and kinase signaling pathways.

    PubMed

    Dayem, Ahmed Abdal; Kim, BongWoo; Gurunathan, Sangiliyandi; Choi, Hye Yeon; Yang, Gwangmo; Saha, Subbroto Kumar; Han, Dawoon; Han, Jihae; Kim, Kyeongseok; Kim, Jin-Hoi; Cho, Ssang-Goo

    2014-07-01

    Nano-scale materials are noted for unique properties, distinct from those of their bulk material equivalents. In this study, we prepared spherical silver nanoparticles (AgNPs) with an average size of about 30 nm and tested their potency to induce neuronal differentiation of SH-SY5Y cells. Human neuroblastoma SH-SY5Y cells are considered an ideal in vitro model for studying neurogenesis, as they can be maintained in an undifferentiated state or be induced to differentiate into neuron-like phenotypes in vitro by several differentiation-inducing agents. Treatment of SH-SY5Y cells by biologically synthesized AgNPs led to cell morphological changes and significant increase in neurite length and enhanced the expression of neuronal differentiation markers such as Map-2, β-tubulin III, synaptophysin, neurogenin-1, Gap-43, and Drd-2. Furthermore, we observed an increase in generation of intracellular reactive oxygen species (ROS), activation of several kinases such as ERK and AKT, and downregulation of expression of dual-specificity phosphatases (DUSPs) in AgNPs-exposed SH-SY5Y cells. Our results suggest that AgNPs modulate the intracellular signaling pathways, leading to neuronal differentiation, and could be applied as promising nanomaterials for stem cell research and therapy.

  17. Fluoxetine Increases the Expression of miR-572 and miR-663a in Human Neuroblastoma Cell Lines

    PubMed Central

    Mundalil Vasu, Mahesh; Anitha, Ayyappan; Takahashi, Taro; Thanseem, Ismail; Iwata, Keiko; Asakawa, Tetsuya; Suzuki, Katsuaki

    2016-01-01

    Evidence suggests neuroprotective effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on the developed neurons in the adult brain. In contrast, the drug may be deleterious to immature or undifferentiated neural cells, although the mechanism is unclear. Recent investigations have suggested that microRNAs (miRNA) may be critical for effectiveness of psychotropic drugs including SSRI. We investigated whether fluoxetine could modulate expressions of neurologically relevant miRNAs in two neuroblastoma SK-N-SH and SH-SY5Y cell lines. Initial screening results revealed that three (miR-489, miR-572 and miR-663a) and four (miR-320a, miR-489, miR-572 and miR-663a) miRNAs were up-regulated in SK-N-SH cells and SH-SY5Y cells, respectively, after 24 hours treatment of fluoxetine (1–25 μM). Cell viability was reduced according to the dose of fluoxetine. The upregulation of miR-572 and miR-663a was consistent in both the SH-SY5Y and SK-N-SH cells, confirmed by a larger scale culture condition. Our data is the first in vitro evidence that fluoxetine could increase the expression of miRNAs in undifferentiated neural cells, and that putative target genes of those miRNAs have been shown to be involved in fundamental neurodevelopmental processes. PMID:27716787

  18. Metabolic oxidative stress elicited by the copper(II) complex [Cu(isaepy)2] triggers apoptosis in SH-SY5Y cells through the induction of the AMP-activated protein kinase/p38MAPK/p53 signalling axis: evidence for a combined use with 3-bromopyruvate in neuroblastoma treatment.

    PubMed

    Filomeni, Giuseppe; Cardaci, Simone; Da Costa Ferreira, Ana Maria; Rotilio, Giuseppe; Ciriolo, Maria Rosa

    2011-08-01

    We have demonstrated previously that the complex bis[(2-oxindol-3-ylimino)-2-(2-aminoethyl)pyridine-N,N']copper(II), named [Cu(isaepy)(2)], induces AMPK (AMP-activated protein kinase)-dependent/p53-mediated apoptosis in tumour cells by targeting mitochondria. In the present study, we found that p38(MAPK) (p38 mitogen-activated protein kinase) is the molecular link in the phosphorylation cascade connecting AMPK to p53. Transfection of SH-SY5Y cells with a dominant-negative mutant of AMPK resulted in a decrease in apoptosis and a significant reduction in phospho-active p38(MAPK) and p53. Similarly, reverse genetics of p38(MAPK) yielded a reduction in p53 and a decrease in the extent of apoptosis, confirming an exclusive hierarchy of activation that proceeds via AMPK/p38(MAPK)/p53. Fuel supplies counteracted [Cu(isaepy)(2)]-induced apoptosis and AMPK/p38(MAPK)/p53 activation, with glucose being the most effective, suggesting a role for energetic imbalance in [Cu(isaepy)(2)] toxicity. Co-administration of 3BrPA (3-bromopyruvate), a well-known inhibitor of glycolysis, and succinate dehydrogenase, enhanced apoptosis and AMPK/p38(MAPK)/p53 signalling pathway activation. Under these conditions, no toxic effect was observed in SOD (superoxide dismutase)-overexpressing SH-SY5Y cells or in PCNs (primary cortical neurons), which are, conversely, sensitized to the combined treatment with [Cu(isaepy)(2)] and 3BrPA only if grown in low-glucose medium or incubated with the glucose-6-phosphate dehydrogenase inhibitor dehydroepiandrosterone. Overall, the results suggest that NADPH deriving from the pentose phosphate pathway contributes to PCN resistance to [Cu(isaepy)(2)] toxicity and propose its employment in combination with 3BrPA as possible tool for cancer treatment.

  19. Notch activation induces neurite remodeling and functional modifications in SH-SY5Y neuronal cells.

    PubMed

    Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Uberti, Daniela; Napolitano, Francesco; Stante, Maria; Santoro, Federica; Minopoli, Giuseppina; Zambrano, Nicola; Russo, Tommaso; Memo, Maurizio

    2009-05-01

    Notch proteins are definitely recognized as key regulators of the neuronal fate during embryo development, but their function in the adult brain is still largely unknown. We have previously demonstrated that Notch pathway stimulation increases microtubules stability followed by the remodeling of neuronal morphology with neurite varicosities loss, thicker neuritis, and enlarged growth cones. Here we show that the neurite remodeling is a dynamic event, dependent on transcription and translation, and with functional implications. Exposure of differentiated human SH-SY5Y neuroblastoma cells to the Notch ligand Jagged1 induces varicosities loss all along the neurites, accompanied by the redistribution of presynaptic vesicles and the decrease in neurotransmitters release. As evaluated by time lapse digital imaging, dynamic changes in neurite morphology were rapidly reversible and dependent on the activation of the Notch signaling pathway. In fact, it was prevented by the inhibition of the proteolytic gamma-secretase enzyme or the transcription machinery, and was mimicked by the transfection of the intracellular domain of Notch. One hour after treatment with Jagged1, several genes were downregulated. Many of these genes encode proteins that are known to be involved in protein synthesis. These data suggest that in adult neurons, Notch pathway activates a transcriptional program that regulates the equilibrium between varicosities formation and varicosities loss in the neuronal presynaptic compartment involving the expression and redistribution of both structural and functional proteins.

  20. Salvianolic acid B, an antioxidant from Salvia miltiorrhiza, prevents 6-hydroxydopamine induced apoptosis in SH-SY5Y cells.

    PubMed

    Tian, Lin-Lin; Wang, Xue-Jun; Sun, Yu-Ning; Li, Chun-Rong; Xing, Ya-Ling; Zhao, Hai-Bao; Duan, Ming; Zhou, Zhe; Wang, Sheng-Qi

    2008-01-01

    Oxidative stress caused by dopamine may play an important role in the pathogenesis of Parkinson's disease. Salvianolic acid B is an antioxidant derived from the Chinese herb, Salvia miltiorrhiza. In this study, we investigated the neuroprotective effect of salvianolic acid B against 6-hydroxydopamine-induced cell death in human neuroblastoma SH-SY5Y cells. Pretreatment of SH-SY5Y cells with salvianolic acid B significantly reduced 6-hydroxydopamine-induced generation of reactive oxygen species, and prevented 6-hydroxydopamine-induced increases in intracellular calcium. Our data demonstrated that 6-hydroxydopamine-induced apoptosis was reversed by salvianolic acid B treatment. Salvianolic acid B reduced the 6-hydroxydopamine-induced increase of caspase-3 activity, and reduced cytochrome C translocation into the cytosol from mitochondria. The 6-hydroxydopamine-induced decrease in the Bcl-x/Bax ratio was prevented by salvianolic acid B. Additionally, salvianolic acid B decreased the activation of extracellular signal-regulated kinase and induced the activation of 6-hydroxydopamine-suppressed protein kinase C. These results indicate that the protective function of salvianolic acid B is dependent upon its antioxidative potential. Our results strongly suggest that salvianolic acid B may be effective in treating neurodegenerative diseases associated with oxidative stress.

  1. Alteration in MARCKS phosphorylation and expression by methylmercury in SH-SY5Y cells and rat brain.

    PubMed

    Shiraishi, Mitsuya; Hangai, Makoto; Yamamoto, Megumi; Sasaki, Masanori; Tanabe, Atsuhiro; Sasaki, Yasuharu; Miyamoto, Atsushi

    2014-05-01

    The molecular mechanisms mediating methylmercury (MeHg)-induced neurotoxicity are not completely understood. Because myristoylated alanine-rich C kinase substrate (MARCKS) plays an essential role in the differentiation and development of neuronal cells, we studied the alteration of MARCKS expression and phosphorylation in MeHg-induced neurotoxicity of neuroblastoma SH-SY5Y cells and in the rat brain. Exposure to MeHg induced a decrease in cell viability of SH-SY5Y cells, which was accompanied by a significant increase in phosphorylation and a reduction in MARCKS expression. Pretreatment of cells with a protein kinase C inhibitor or an extracellular Ca(2+) chelator suppressed MeHg-induced MARCKS phosphorylation. In MARCKS knock-down cells, MeHg-induced cell death was significantly augmented in comparison to control siRNA. In brain tissue from MeHg-treated rats, MARCKS phosphorylation was enhanced in the olfactory bulb in comparison to control rats. The present study may indicate that alteration in MARCKS expression or phosphorylation has consequences for MeHg-induced neurotoxicity.

  2. Protection of seven dibenzocyclooctadiene lignans from Schisandra chinensis against serum and glucose deprivation injury in SH-SY5Y cells.

    PubMed

    E, Qun; Tang, Miao; Zhang, XiaoChuan; Shi, YunWei; Wang, DanDan; Gu, Yun; Li, ShiYing; Liang, XinMiao; Wang, ZhiWei; Wang, CaiPing

    2015-12-01

    Dibenzocyclooctadiene lignans, the major active components of fruit of Schisandra chinensis (Turcz.) Baill., have been found to have activities that could prevent prostate and thyroid cancer, hepatotoxicity, oxidative stress-induced cerebral injury, etc. This study was conducted to evaluate the effects of seven dibenzocyclooctadiene lignans of Schisandra chinensis and explore the possible mechanisms in the human neuroblastoma SH-SY5Y cells exposed on serum and glucose deprivation (SGD) injury. The structure-activity relationships were also analyzed. Cell viability and lactate dehydrogenase (LDH) release were determined to evaluate cell injury. Inflammation and apoptosis-related protein levels were detected to elucidate the possible mechanisms. Schisantherin A, schizandrin C, and schizandrol B were found to have stronger protective effects than schizandrin A, schizandrin B, and schisanhenol in SH-SY5Y cells against SGD injury. Moreover, the protective effects of these lignans were possibly exhibited by regulating inflammation and apoptosis-related proteins in SH-SY5Y cells after SGD injury, supporting their beneficial effects for the prevention of cell injury in the pathogenesis of the central nervous system diseases, including ischemia stroke. The number and position of hydroxyl group and methylenedioxy in these lignans may be required for their effects.

  3. Comparative non-cholinergic neurotoxic effects of paraoxon and diisopropyl fluorophosphate (DFP) on human neuroblastoma and astrocytoma cell lines

    SciTech Connect

    Qian Yongchang; Venkatraj, Jijayanagaram; Barhoumi, Rola; Pal, Ranadip; Datta, Aniruddha; Wild, James R.; Tiffany-Castiglioni, Evelyn . E-mail: ecastiglioni@cvm.tamu.edu

    2007-03-15

    The objective of this study was to evaluate the comparative non-cholinergic neurotoxic effects of paraoxon, which is acutely neurotoxic, and diisopropyl fluorophosphate (DFP), which induces OPIDN, in the human neuroblastoma SY5Y and the human astrocytoma cell line CCF-STTG1. SY5Y cells have been studied extensively as a model for OP-induced neurotoxicity, but CCF cells have not previously been studied. We conducted a preliminary human gene array assay of OP-treated SY5Y cells in order to assess at the gene level whether these cells can distinguish between OP compounds that do and do not cause OPIDN. Paraoxon and DFP induced dramatically different profiles of gene expression. Two genes were upregulated and 13 downregulated by at least 2-fold in paraoxon-treated cells. In contrast, one gene was upregulated by DFP and none was downregulated at the 2-fold threshold. This finding is consistent with current and previous observations that SY5Y cells can distinguish between OPs that do or do not induce OPIDN. We also examined gene array results for possible novel target proteins or metabolic pathways for OP neurotoxicity. Protein levels of glucose regulated protein 78 (GRP78) revealed that paraoxon exposure at 3 {mu}M for 24 h significantly reduced GRP78 levels by 30% in neuroblastoma cells, whereas DFP treatment had no effect. In comparison with SY5Y neuroblastoma cells, paraoxon and DFP (3 {mu}M for 24 h) each significantly increased GRP78 levels by 23-24% in CCF astrocytoma cells. As we have previously evaluated intracellular changes in Ca{sup 2+} levels in SY5Y cells, we investigated the effects of paraoxon and DFP on cellular Ca{sup 2+} homeostasis in CCF by studying cytosolic and mitochondrial basal calcium levels. A significant decrease in the ratio of mitochondrial to cytosolic Ca{sup 2+} fluorescence was detected in CCF cultures treated for either 1 or 3 days with 1, 3, 10, or 30 {mu}M paraoxon. In contrast, treatment with DFP for 1 day had no significant effect

  4. ROS production is essential for the apoptotic function of E2F1 in pheochromocytoma and neuroblastoma cell lines.

    PubMed

    Espada, Lilia; Meo-Evoli, Nathalie; Sancho, Patricia; Real, Sebastian; Fabregat, Isabel; Ambrosio, Santiago; Tauler, Albert

    2012-01-01

    In this study we demonstrate that accumulation of reactive oxygen species (ROS) is essential for E2F1 mediated apoptosis in ER-E2F1 PC12 pheochromocytoma, and SH-SY5Y and SK-N-JD neuroblastoma stable cell lines. In these cells, the ER-E2F1 fusion protein is expressed in the cytosol; the addition of 4-hydroxytamoxifen (OHT) induces its translocation to the nucleus and activation of E2F1target genes. Previously we demonstrated that, in ER-E2F1 PC12 cells, OHT treatment induced apoptosis through activation of caspase-3. Here we show that caspase-8 activity did not change upon treatment with OHT. Moreover, over-expression of Bcl-xL arrested OHT-induced apoptosis; by contrast, over-expression of c-FLIP, did not have any effect on OHT-induced apoptosis. OHT addition induces BimL expression, its translocation to mitochondria and activation of Bax, which is paralleled by diminished mitochondrial enrichment of Bcl-xL. Treatment with a Bax-inhibitory peptide reduced OHT-induced apoptosis. These results point out the essential role of mitochondria on the apoptotic process driven by E2F1. ROS accumulation followed E2F1 induction and treatment with the antioxidant N-acetylcysteine, inhibited E2F1-induced Bax translocation to mitochondria and subsequent apoptosis. The role of ROS in mediating OHT-induced apoptosis was also studied in two neuroblastoma cell lines, SH-SY5Y and SK-N-JD. In SH-SY5Y cells, activation of E2F1 by the addition of OHT induced ROS production and apoptosis, whereas over-expression of E2F1 in SK-N-JD cells failed to induce either response. Transcriptional profiling revealed that many of the genes responsible for scavenging ROS were down-regulated following E2F1-induction in SH-SY5Y, but not in SK-N-JD cells. Finally, inhibition of GSK3β blocked ROS production, Bax activation and the down regulation of ROS scavenging genes. These findings provide an explanation for the apparent contradictory role of E2F1 as an apoptotic agent versus a cell cycle activator.

  5. Action of HMGB1 on miR-221/222 cluster in neuroblastoma cell lines

    PubMed Central

    Mari, Emanuela; Zicari, Alessandra; Fico, Flavia; Massimi, Isabella; Martina, Lolli; Mardente, Stefania

    2016-01-01

    microRNA (miR/miRNA) are small non-coding RNAs that control gene expression at the post-transcriptional level by targeting mRNAs. Aberrant expression of miRNAs is often observed in different types of cancer. Specific miRNAs function as tumor suppressors or oncogenes and interfere with various aspects of carcinogenesis, including differentiation, proliferation and invasion. Upregulation of miRNAs 221 and 222 has been shown to induce a malignant phenotype in numerous human cancers via inhibition of phosphatase and tensin homolog (PTEN) expression. Neuroblastoma is the most common extracranial solid malignancy in children, which is characterized by cellular heterogeneity that corresponds to different clinical outcomes. The different cellular phenotypes are associated with different gene mutations and miRs that control genetic and epigenetic factors. For this reason miRs are considered a potential therapeutic target in neuroblastoma. The aim of the present study was to investigate the mechanisms by which extracellular high mobility group box 1 (HMGB1) promotes cell growth in neuroblastoma. SK-N-BE(2) and SH-SY5Y neuroblastoma derived cell lines were transfected with the antisense oligonucleotides, anti-miR-221 and −222, followed by treatment with HMGB1 to investigate the expression of the oncosuppressor PTEN. In this study, it was demonstrated that HMGB1, which is released by damaged cells and tumor cells, upregulates miR-221/222 oncogenic clusters in the two human neuroblastoma derived cell lines. The results revealed that the oncogenic cluster miRs 221/222 were more highly expressed by the most undifferentiated cell line [SK-N-BE(2)] compared with the the less tumorigenic cell line (SH-SY5Y) and that exogenous HMGB1 increases this expression. In addition, HMGB1 modulates PTEN expression via miR-221/222, as demonstrated by transiently blocking miR-221/222 with anti-sense oligonucleotides. These results may lead to the development of novel therapeutic strategies for

  6. Action of HMGB1 on miR-221/222 cluster in neuroblastoma cell lines.

    PubMed

    Mari, Emanuela; Zicari, Alessandra; Fico, Flavia; Massimi, Isabella; Martina, Lolli; Mardente, Stefania

    2016-09-01

    microRNA (miR/miRNA) are small non-coding RNAs that control gene expression at the post-transcriptional level by targeting mRNAs. Aberrant expression of miRNAs is often observed in different types of cancer. Specific miRNAs function as tumor suppressors or oncogenes and interfere with various aspects of carcinogenesis, including differentiation, proliferation and invasion. Upregulation of miRNAs 221 and 222 has been shown to induce a malignant phenotype in numerous human cancers via inhibition of phosphatase and tensin homolog (PTEN) expression. Neuroblastoma is the most common extracranial solid malignancy in children, which is characterized by cellular heterogeneity that corresponds to different clinical outcomes. The different cellular phenotypes are associated with different gene mutations and miRs that control genetic and epigenetic factors. For this reason miRs are considered a potential therapeutic target in neuroblastoma. The aim of the present study was to investigate the mechanisms by which extracellular high mobility group box 1 (HMGB1) promotes cell growth in neuroblastoma. SK-N-BE(2) and SH-SY5Y neuroblastoma derived cell lines were transfected with the antisense oligonucleotides, anti-miR-221 and -222, followed by treatment with HMGB1 to investigate the expression of the oncosuppressor PTEN. In this study, it was demonstrated that HMGB1, which is released by damaged cells and tumor cells, upregulates miR-221/222 oncogenic clusters in the two human neuroblastoma derived cell lines. The results revealed that the oncogenic cluster miRs 221/222 were more highly expressed by the most undifferentiated cell line [SK-N-BE(2)] compared with the the less tumorigenic cell line (SH-SY5Y) and that exogenous HMGB1 increases this expression. In addition, HMGB1 modulates PTEN expression via miR-221/222, as demonstrated by transiently blocking miR-221/222 with anti-sense oligonucleotides. These results may lead to the development of novel therapeutic strategies for

  7. Block of human voltage-sensitive Na+ currents in differentiated SH-SY5Y cells by lifarizine.

    PubMed Central

    Brown, N A; Kemp, J A; Seabrook, G R

    1994-01-01

    1. The ability of lifarizine (RS-87476) to block human voltage-sensitive Na+ channel currents was studied by use of whole cell patch clamp recording from differentiated neuroblastoma cells (SH-SY5Y). 2. The Na+ conductance in differentiated SH-SY5Y cells (24.0 +/- 2.4 nS, n = 11) was half-maximally activated by 10 ms depolarizations to -37 +/- 2 mV and was half-maximally inactivated by predepolarizing pulses of 200 ms duration to -86 +/- 3 mV (n = 11). 3. At low stimulus frequencies (0.1 to 0.33 Hz) voltage-dependent sodium currents were completely blocked, in a concentration-dependent manner, by extracellular application of either tetrodotoxin (EC50 = 4 +/- 1 nM, n = 12) or by lifarizine (EC50 = 783 +/- 67 nM, n = 9). The onset of block by lifarizine (tau = 91 +/- 14 s at 10 microM) was considerably slower than that of tetrodotoxin (tau = 16 +/- 3 s at 100 nM). 4. Lifarizine (1 microM) reduced the peak sodium conductance in each cell (from 26.4 +/- 2.0 nS to 15.1 +/- 2.7 nS, n = 4) without changing the macroscopic kinetics of sodium current activation or inactivation (V1/2 = -35 1 mV and -87 +/- 4 mV respectively, n = 4). Similarly, lifarizine (1 microM) did not affect the reversal potential of the macroscopic sodium current (+14 +/- 5 mV in control and +16 +/- 2 mV in 1 microM lifarizine; n = 4) or reactivation time-constant (tau = 14.0 +/- 4.4 ms).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7834213

  8. Characterization of multidrug transporter-mediated efflux of avermectins in human and mouse neuroblastoma cell lines.

    PubMed

    Dalzell, Abigail M; Mistry, Pratibha; Wright, Jayne; Williams, Faith M; Brown, Colin D A

    2015-06-15

    ABC transporters play an important role in the disposition of avermectins in several animal species. In this study the interactions of three key avermectins, abamectin, emamectin and ivermectin, with human and mouse homologues of MDR1 (ABCB1/Abcb1a) and MRP (ABCC/Abcc), transporters endogenously expressed by human SH-SY5Y and mouse N2a neuroblastoma cells were investigated. In both cell lines, retention of the fluorescent dye H33342 was found to be significantly increased in the presence of avermectins and cyclosporin A. These effects were shown to be unresponsive to the BCRP inhibitor Ko-143 and therefore MDR1/Mdr1-dependent. Avermectins inhibited MDR1/Mdr1a-mediated H33342 dye efflux, with apparent Ki values of 0.24±0.08 and 0.18±0.02μM (ivermectin); 0.60±0.07 and 0.56±0.02μM (emamectin) and 0.95±0.08 and 0.77±0.25μM (abamectin) in SH-SY5Y and N2a cells, respectively. There were some apparent affinity differences for MDR1 and Mdr1a within each cell line (affinity for ivermectin>emamectin≥abamectin, P<0.05 by One-Way ANOVA), but importantly, the Ki values for individual avermectins for human MDR1 or mouse Mdr1a were not significantly different. MK571-sensitive retention of GSMF confirmed the expression of MRP/Mrp efflux transporters in both cell lines. Avermectins inhibited MRP/Mrp-mediated dye efflux with IC50 values of 1.58±0.51 and 1.94±0.72μM (ivermectin); 1.87±0.57 and 2.74±1.01μM (emamectin) and 2.25±0.01 and 1.68±0.63μM (abamectin) in SH-SY5Y and N2a cells, respectively. There were no significant differences in IC50 values between individual avermectins or between human MRP and mouse Mrp. Kinetic data for endogenous human MDR1/MRP isoforms in SH-SY5Y cells and mouse Mdr1a/b/Mrp isoforms in N2a cells are comparable for the selected avermectins. All are effluxed at concentrations well above 0.05-0.1μM ivermectin detected in plasma (Ottesen and Campbell, 1994; Ottesen and Campbell, 1994) This is an important finding in the light of

  9. Discovery of a benzofuran derivative (MBPTA) as a novel ROCK inhibitor that protects against MPP⁺-induced oxidative stress and cell death in SH-SY5Y cells.

    PubMed

    Chong, Cheong-Meng; Shen, Mingyun; Zhou, Zhong-Yan; Pan, Peichen; Hoi, Pui-Man; Li, Shang; Liang, Wang; Ai, Nana; Zhang, Lun-Qing; Li, Cheuk-Wing; Yu, Huidong; Hou, Tingjun; Lee, Simon Ming-Yuen

    2014-09-01

    Parkinson disease (PD) is a neurodegenerative disease with multifactorial etiopathogenesis. The discovery of drug candidates that act on new targets of PD is required to address the varied pathological aspects and modify the disease process. In this study, a small compound, 2-(5-methyl-1-benzofuran-3-yl)-N-(5-propylsulfanyl-1,3,4-thiadiazol-2-yl) acetamide (MBPTA) was identified as a novel Rho-associated protein kinase inhibitor with significant protective effects against 1-methyl-4-phenylpyridinium ion (MPP(+))-induced damage in SH-SY5Y neuroblastoma cells. Further investigation showed that pretreatment of SH-SY5Y cells with MBPTA significantly suppressed MPP(+)-induced cell death by restoring abnormal changes in nuclear morphology, mitochondrial membrane potential, and numerous apoptotic regulators. MBPTA was able to inhibit MPP(+)-induced reactive oxygen species (ROS)/NO generation, overexpression of inducible NO synthase, and activation of NF-κB, indicating the critical role of MBPTA in regulating ROS/NO-mediated cell death. Furthermore, MBPTA was shown to activate PI3K/Akt survival signaling, and its cytoprotective effect was abolished by PI3K and Akt inhibitors. The structural comparison of a series of MBPTA analogs revealed that the benzofuran moiety probably plays a crucial role in the anti-oxidative stress action. Taken together, these results suggest that MBPTA protects against MPP(+)-induced apoptosis in a neuronal cell line through inhibition of ROS/NO generation and activation of PI3K/Akt signaling.

  10. Phenotypic Characterization of Retinoic Acid Differentiated SH-SY5Y Cells by Transcriptional Profiling

    PubMed Central

    Korecka, Joanna A.; van Kesteren, Ronald E.; Blaas, Eva; Spitzer, Sonia O.; Kamstra, Jorke H.; Smit, August B.; Swaab, Dick F.; Verhaagen, Joost; Bossers, Koen

    2013-01-01

    Multiple genetic and environmental factors play a role in the development and progression of Parkinson’s disease (PD). The main neuropathological hallmark of PD is the degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. To study genetic and molecular contributors to the disease process, there is a great need for readily accessible cells with prominent DAergic features that can be used for reproducible in vitro cellular screening. Here, we investigated the molecular phenotype of retinoic acid (RA) differentiated SH-SY5Y cells using genome wide transcriptional profiling combined with gene ontology, transcription factor and molecular pathway analysis. We demonstrated that RA induces a general neuronal differentiation program in SH-SY5Y cells and that these cells develop a predominantly mature DAergic-like neurotransmitter phenotype. This phenotype is characterized by increased dopamine levels together with a substantial suppression of other neurotransmitter phenotypes, such as those for noradrenaline, acetylcholine, glutamate, serotonin and histamine. In addition, we show that RA differentiated SH-SY5Y cells express the dopamine and noradrenalin neurotransmitter transporters that are responsible for uptake of MPP(+), a well known DAergic cell toxicant. MPP(+) treatment alters mitochondrial activity according to its proposed cytotoxic effect in DAergic neurons. Taken together, RA differentiated SH-SY5Y cells have a DAergic-like phenotype, and provide a good cellular screening tool to find novel genes or compounds that affect cytotoxic processes that are associated with PD. PMID:23724009

  11. 17β-estradiol-induced regulation of the novel 5-HT1A-related transcription factors NUDR and Freud-1 in SH SY5Y cells.

    PubMed

    Adeosun, Samuel O; Albert, Paul R; Austin, Mark C; Iyo, Abiye H

    2012-05-01

    Nuclear deformed epidermal autoregulatory factor-1 (NUDR/Deaf-1) and five prime repressor element under dual repression (Freud-1) are novel transcriptional regulators of the 5-HT(1A) receptor, a receptor that has been implicated in the pathophysiology of various psychiatric illnesses. The antidepressant effect of 17β-Estradiol (17βE(2)) is purported to involve the downregulation of this receptor. We investigated the possible role of NUDR and Freud-1 in 17βE(2)-induced downregulation of the 5-HT(1A) receptor in the neuroblastoma cell line SH SY5Y. Cells were treated with 10 nM of 17βE(2) for 3 or 48 h, followed by a 24-h withdrawal period. Proteins were isolated and analyzed by western blotting. 17βE(2) treatment increased NUDR immunoreactivity while Freud-1 and the 5-HT(1A) receptor showed significant decreases. Upon withdrawal of 17βE(2), protein expression returned to control levels, except for NUDR, which remained significantly elevated in the 3-h treatment. Taken together, these data support a non-genomic downregulation of 5-HT(1A) receptor protein by 17βE(2), which does not involve NUDR and Freud-1. Rather, changes in both transcription factors seem to be compensatory/homeostatic responses to changes in 5-HT(1A) receptor induced by 17βE(2). These observations further highlight the importance of NUDR and Freud-1 in regulating 5-HT(1A) receptor expression.

  12. Extreme sensitivity of gene expression in human SH-SY5Y neurocytes to ultra-low doses of Gelsemium sempervirens

    PubMed Central

    2014-01-01

    Background Gelsemium sempervirens L. (Gelsemium s.) is a traditional medicinal plant, employed as an anxiolytic at ultra-low doses and animal models recently confirmed this activity. However the mechanisms by which it might operate on the nervous system are largely unknown. This work investigates the gene expression of a human neurocyte cell line treated with increasing dilutions of Gelsemium s. extract. Methods Starting from the crude extract, six 100 × (centesimal, c) dilutions of Gelsemium s. (2c, 3c, 4c, 5c, 9c and 30c) were prepared according to the French homeopathic pharmacopoeia. Human SH-SY5Y neuroblastoma cells were exposed for 24 h to test dilutions, and their transcriptome compared by microarray to that of cells treated with control vehicle solutions. Results Exposure to the Gelsemium s. 2c dilution (the highest dose employed, corresponding to a gelsemine concentration of 6.5 × 10-9 M) significantly changed the expression of 56 genes, of which 49 were down-regulated and 7 were overexpressed. Several of the down-regulated genes belonged to G-protein coupled receptor signaling pathways, calcium homeostasis, inflammatory response and neuropeptide receptors. Fisher exact test, applied to the group of 49 genes down-regulated by Gelsemium s. 2c, showed that the direction of effects was significantly maintained across the treatment with high homeopathic dilutions, even though the size of the differences was distributed in a small range. Conclusions The study shows that Gelsemium s., a medicinal plant used in traditional remedies and homeopathy, modulates a series of genes involved in neuronal function. A small, but statistically significant, response was detected even to very low doses/high dilutions (up to 30c), indicating that the human neurocyte genome is extremely sensitive to this regulation. PMID:24642002

  13. PACAP Protects Against Salsolinol-Induced Toxicity in Dopaminergic SH-SY5Y Cells: Implication for Parkinson’s Disease

    PubMed Central

    Brown, Dwayne; Tamas, Andrea; Reglodi, Dora; Tizabi, Yousef

    2013-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is an endogenous 38 amino acid containing neuropeptide with various cytoprotective functions including neuroprotection. Administration of PACAP has been shown to reduce damage induced by ischemia, trauma or exogenous toxic substances. Moreover, mice deficient in PACAP are more vulnerable to damaging insults. In this study we sought to determine whether PACAP may also be protective against salsolinol-induced toxicity in SH-SY5Y cells and if so, elucidate its mechanism(s) of action. Salsolinol (SALS) is an endogenous dopamine metabolite with selective toxicity to nigral dopaminergic neurons, which are directly implicated in Parkinson’s disease (PD). SH-SY5Y cells, derived from human neuroblastoma cells express high levels of dopaminergic activity and are used extensively as a model to study these neurons. Exposure of SH-SY5Y cells to 400uM SALS for 24 h resulted in approximately 50% cell death that was mediated by apoptosis as determined by cell flow cyotmetry and increases in caspase 3 levels. Cellular toxicity was also associated with reductions in brain-derived neurotrophic factor (BDNF) and phosphorylated cyclic AMP response element-binding (p-CREB) protein. Pretreatment with PACAP dose-dependently attenuated SALS-induced toxicity and the associated apoptosis and the chemical changes. PACAP receptor antagonist PACAP 6-38 in turn, dose-dependently blocked the effects of PACAP. Neither PACAP nor PACAP antagonist had any effect of its own on cellular viability. These results suggest protective effects of PACAP in a cellular model of PD. Hence, PACAP or its agonists could be of therapeutic benefit in PD. PMID:23625270

  14. Pinocembrin Suppresses H2O2-Induced Mitochondrial Dysfunction by a Mechanism Dependent on the Nrf2/HO-1 Axis in SH-SY5Y Cells.

    PubMed

    de Oliveira, Marcos Roberto; da Costa Ferreira, Gustavo; Brasil, Flávia Bittencourt; Peres, Alessandra

    2017-01-13

    Mitochondria are susceptible to redox impairment, which has been associated with neurodegeneration. These organelles are both a source and target of reactive species. In that context, there is increasing interest in finding natural compounds that modulate mitochondrial function and mitochondria-related signaling in order to prevent or to treat diseases involving mitochondrial impairment. Herein, we investigated whether and how pinocembrin (PB) would prevent mitochondrial dysfunction elicited by the exposure of human neuroblastoma SH-SY5Y cells to hydrogen peroxide (H2O2). PB (25 μM) was administrated for 4 h before H2O2 treatment (300 μM for 24 h). PB prevented H2O2-induced loss of cell viability mitochondrial depolarization in SH-SY5Y cells. PB also attenuated redox impairment in mitochondrial membranes. The production of superoxide anion radical (O2(-•)) and nitric oxide (NO(•)) was alleviated by PB in cells exposed to H2O2. PB suppressed the H2O2-induced inhibition of the tricarboxylic acid (TCA) cycle enzymes aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase. Furthermore, PB induced anti-inflammatory effects by abolishing the H2O2-dependent activation of the nuclear factor-κB (NF-κB) and upregulation of interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). The PB-induced antioxidant and anti-inflammatory effects are dependent on the heme oxygenate-1 (HO-1) enzyme and on the activation of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), since HO-1 inhibition (with 0.5 μM ZnPP IX) or Nrf2 silencing (with small interfering RNA (siRNA)) abolished the effects of PB. Overall, PB afforded cytoprotection by the Nrf2/HO-1 axis in H2O2-treated SH-SY5Y cells.

  15. TNF-alpha-induced apoptosis is prevented by erythropoietin treatment on SH-SY5Y cells

    SciTech Connect

    Pregi, Nicolas Wenker, Shirley; Vittori, Daniela; Leiros, Claudia Perez; Nesse, Alcira

    2009-02-01

    The growth factor erythropoietin (Epo) has shown neuronal protective action in addition to its well known proerythroid activity. Furthermore, Epo has dealt with cellular inflammation by inhibiting the expression of several proinflammatory cytokines, such as IL-1 and TNF-{alpha}. The action of TNF can have both apoptotic and antiapoptotic consequences due to altered balance between different cell signalling pathways. This work has focused on the apoptotic effects of this cytokine and the potential protective action of Epo. The model we used was neuroblastoma SH-SY5Y cells cultured in the presence of 25 ng/ml TNF-{alpha} or pretreated with 25 U/ml Epo for 12 h before the addition of TNF-{alpha}. Apoptosis was evaluated by differential cell count after Hoechst staining, analysis of DNA ladder pattern, and measurement of caspase activity. Despite its ability to induce NF-{kappa}B nuclear translocation, TNF-{alpha} induced cell death, which was found to be associated to upregulation of TNF Receptor 1 expression. On the other hand, cells activated by Epo became resistant to cell death. Prevention of death receptor upregulation and caspase activation may explain this antiapoptotic effect of Epo, which may be also favoured by the induction of a higher expression of protective factors, such as Bcl-2 and NF-{kappa}B, through mechanisms involving Jak/STAT and PI3K signalling pathways.

  16. Mitochondrial respiratory dysfunction due to the conversion of substituted cathinones to methylbenzamides in SH-SY5Y cells

    PubMed Central

    den Hollander, Bjørnar; Sundström, Mira; Pelander, Anna; Siltanen, Antti; Ojanperä, Ilkka; Mervaala, Eero; Korpi, Esa R.; Kankuri, Esko

    2015-01-01

    The increased use of cathinone-type designer drugs, known as legal highs, has led to concerns about their potential neurotoxicity due to their similarity to methamphetamine (METH). Therefore, closer investigations of their toxic effects are needed. We investigated the effects of the cathinones 4-methylmethcathinone (4-MMC) and 3,4-methylenedioxymethcathinone (MDMC) and the amphetamine METH on cytotoxicity and mitochondrial respiration in SH-SY5Y neuroblastoma cells. We also investigated the contribution of reactive species, dopamine, Bcl-2 and tumor necrosis factor α (TNFα) on toxicity. Finally, we investigated the effect of cathinone breakdown products using ultra-high performance liquid chromatography/high-resolution time-of-flight mass spectrometry and studied their involvement in toxicity. We observed dose-dependent increases in cytotoxicity and decreases in mitochondrial respiration following treatment with all cathinones and amphetamines. Glutathione depletion increases amphetamine, but not cathinone toxicity. Bcl-2 and TNFα pathways are involved in toxicity but dopamine levels are not. We also show that cathinones, but not amphetamines, spontaneously produce reactive species and cytotoxic methylbenzamide breakdown products when in aqueous solution. These results provide an important first insight into the mechanisms of cathinone cytotoxicity and pave the way for further studies on cathinone toxicity in vivo. PMID:26462443

  17. Autophagy regulates chlorpyrifos-induced apoptosis in SH-SY5Y cells

    SciTech Connect

    Park, Jae Hyeon; Lee, Jeong Eun; Shin, In Chul; Koh, Hyun Chul

    2013-04-01

    Recent studies have shown that up-regulation of autophagy may be a tractable therapeutic intervention for clearing disease-causing proteins, including α-synuclein, ubiquitin, and other misfolded or aggregated proteins in pesticide-induced neurodegeneration. In a previous study, we reported that chlorpyrifos (CPF)-induced mitochondria-dependent apoptosis is mediated through reactive oxygen species in SH-SY5Y cells. In this study, we explored a novel pharmacotherapeutic approach to prevent CPF neurotoxicity involving the regulation of autophagy. We investigated the modulation of CPF-induced apoptosis according to autophagy regulation. We found that CPF induced apoptosis in SH-SY5Y cells, as demonstrated by the activation of caspase-3 and nuclear condensation. In addition, we observed that cells treated with CPF underwent autophagic cell death by monitoring the expression of LC3-II and p62. Pretreatment with the autophagy inducer rapamycin significantly enhanced the cell viability of CPF-exposed cells, and the enhancement of cell viability was partially due to alleviation of CPF-induced apoptosis via a decrease in levels of cleaved caspase-3. Specifically, rapamycin pretreatment decreased Bax and increased Bcl-2 expression in mitochondria. In addition, rapamycin significantly decreased cytochrome c release in from mitochondria into the cytosol. However, pretreatment of cells with the autophagy inhibitor, 3-methyladenine (3MA), remarkably increased CPF toxicity in these cells; this with correlated with increased expression of Bax and decreased expression of Bcl-2 in mitochondria. Our results suggest that CPF-induced cytotoxicity is modified by autophagy regulation and that rapamycin protects against CPF-induced apoptosis by enhancing autophagy. Pharmacologic induction of autophagy by rapamycin may be a useful treatment strategy in neurodegenerative disorders. - Highlights: ► Chlorpyrifos (CPF) is cytotoxic to SH-SY5Y cells ► CPF-induced cytotoxicity is mediated by

  18. Decreased expression of nardilysin in SH-SY5Y cells under ethanol stress and reduced density of nardilysin-expressing neurons in brains of alcoholics.

    PubMed

    Bernstein, Hans-Gert; Stricker, Rolf; Zschiebsch, Katja; Müller, Susan; Dobrowolny, Henrik; Steiner, Johann; Bogerts, Bernhard; Reiser, Georg

    2013-03-01

    There is evidence for a genetic link between the metalloendopeptidase nardilysin and alcohol dependence, but the functional implication of the enzyme in alcoholism is unknown. Interestingly, some of the enzyme's substrates and interaction partners are altered in neural and non-neural tissues under the influence of ethanol consumption. To learn more about putative roles of nardilysin in alcohol dependence we studied the expression of the enzyme protein in human neuroblastoma cells under chronic ethanol exposure as well as in four brain regions of alcoholics and matched controls. Cultured SH-SY5Y cells were exposed for 96 h to two different concentrations of ethanol (50 and 200 mM). Nardilysin expression was determined using Western blotting with densitometric analysis. Furthermore, we morphometrically studied the cellular expression of nardilysin in postmortem brains of eight chronic alcoholics and nine controls by counting the number of nardilysin-immunopositive neurons in left frontal limbic area, Nuc. basalis of Meynert, paraventricular and supraoptic hypothalamic nuclei and calculating numerical cell densities. Nardilysin expression was significantly reduced after 96 h of SH-SY5Y cells exposure to 200 mM ethanol. In human brains nardilysin protein was localized to multiple neurons. In heavy drinkers there was a significantly reduced density of nardilysin immunoreactive neurons in Nuc. basalis of Meynert, paraventricular, and supraoptic nuclei. The alcohol-dependent reduction of nardilysin in cell culture and nervous tissue points to an implication of the enzyme in the pathophysiology of alcoholism.

  19. Delta-9-tetrahydrocannabinol protects against MPP+ toxicity in SH-SY5Y cells by restoring proteins involved in mitochondrial biogenesis

    PubMed Central

    Zeissler, Marie-Louise; Eastwood, Jordan; McCorry, Kieran; Hanemann, C. Oliver; Zajicek, John P.; Carroll, Camille B.

    2016-01-01

    Proliferator-activated receptor γ (PPARγ) activation can result in transcription of proteins involved in oxidative stress defence and mitochondrial biogenesis which could rescue mitochondrial dysfunction in Parkinson's disease (PD). The PPARγ agonist pioglitazone is protective in models of PD; however side effects have limited its clinical use. The cannabinoid Δ9-tetrahydrocannabinol (Δ9-THC) may have PPARγ dependent anti-oxidant properties. Here we investigate the effects of Δ9-THC and pioglitazone on mitochondrial biogenesis and oxidative stress. Differentiated SH-SY5Y neuroblastoma cells were exposed to the PD relevant mitochondrial complex 1 inhibitor 1-methyl-4-phenylpyridinium iodide (MPP+). We found that only Δ9-THC was able to restore mitochondrial content in MPP+ treated SH-SY5Y cells in a PPARγ dependent manner by increasing expression of the PPARγ co-activator 1α (PGC-1α), the mitochondrial transcription factor (TFAM) as well as mitochondrial DNA content. Co-application of Δ9-THC with pioglitazone further increased the neuroprotection against MPP+ toxicity as compared to pioglitazone treatment alone. Furthermore, using lentiviral knock down of the PPARγ receptor we showed that, unlike pioglitazone, Δ9-THC resulted in a PPARγ dependent reduction of MPP+ induced oxidative stress. We therefore suggest that, in contrast to pioglitazone, Δ9-THC mediates neuroprotection via PPARγ-dependent restoration of mitochondrial content which may be beneficial for PD treatment. PMID:27366949

  20. Inhibition of tissue transglutaminase promotes Aβ-induced apoptosis in SH-SY5Y cells

    PubMed Central

    Zhang, Ji; Ding, Yi-rong; Wang, Rui

    2016-01-01

    Aim: Tissue transglutaminase (tTG) catalyzes proteins, including β-amyloid (Aβ), to cross-link as a γ-glutamyl-ε-lysine structure isopeptide, which is highly resistant to proteolysis. Thus, tTG plays an important role in protein accumulation in Alzheimer's disease (AD). In the present study, we examined the effect of an irreversible tTG inhibitor, NTU283, on Aβ mimic-induced AD pathogenesis in SH-SY5Y cells. Methods: Western blot and in-cell Western analyses were used to detect tTG and isopeptide (representing the enzyme activity of tTG) protein levels. Moreover, Hoechst and PI co-staining was performed, and caspase-3 and caspase-7 activities and the Bax/Bcl-2 ratio were determined to evaluate the effects of NTU283 on apoptosis. Results: The results confirmed that tTG activity was inhibited by NTU283 20–500 μmol/L in a concentration-dependent manner in SH-SY5Y cells. Contrary to our expectations, however, the isopeptide bonds were increased when cells were co-treated with Aβ and NTU283. In addition, NTU283 alone did not induce apoptosis in SH-SY5Y cells. However, when co-applied with Aβ, NTU283 promoted rather than inhibited Aβ-induced apoptosis. Consistent with the apoptotic rate, pretreating cells with different concentrations of NTU283 and Aβ significantly increased the activities of caspase-3 and caspase-7 as well as the ratio of Bax/Bcl-2. Conclusion: Irreversible inhibition of tTG activity did not block but rather promoted Aβ-induced apoptosis, which indicated that tTG has complex functions in AD pathogenesis. PMID:27665848

  1. Neuropeptide FF-sensitive confinement of mu opioid receptor does not involve lipid rafts in SH-SY5Y cells

    SciTech Connect

    Mouledous, Lionel

    2008-08-15

    *: Mu opioid (MOP) receptor activation can be functionally modulated by stimulation of Neuropeptide FF 2 (NPFF{sub 2}) G protein-coupled receptors. Fluorescence recovery after photobleaching experiments have shown that activation of the NPFF{sub 2} receptor dramatically reduces the fraction of MOP receptors confined in microdomains of the plasma membrane of SH-SY5Y neuroblastoma cells. The aim of the present work was to assess if the direct observation of receptor compartmentation by fluorescence techniques in living cells could be related to indirect estimation of receptor partitioning in lipid rafts after biochemical fractionation of the cell. Our results show that MOP receptor distribution in lipid rafts is highly dependent upon the method of purification, questioning the interpretation of previous data regarding MOP receptor compartmentation. Moreover, the NPFF analogue 1DMe does not modify the distribution profile of MOP receptors, clearly demonstrating that membrane fractionation data do not correlate with direct measurement of receptor compartmentation in living cells.

  2. Acetaminophen Induces Human Neuroblastoma Cell Death through NFKB Activation

    PubMed Central

    Posadas, Inmaculada; Santos, Pablo; Ceña, Valentín

    2012-01-01

    Neuroblastoma resistance to apoptosis may contribute to the aggressive behavior of this tumor. Therefore, it would be relevant to activate endogenous cellular death mechanisms as a way to improve neuroblastoma therapy. We used the neuroblastoma SH-SY5Y cell line as a model to study the mechanisms involved in acetaminophen (AAP)-mediated toxicity by measuring CYP2E1 enzymatic activity, NFkB p65 subunit activation and translocation to the nucleus, Bax accumulation into the mitochondria, cytochrome c release and caspase activation. AAP activates the intrinsic death pathway in the SH-SY5Y human neuroblastoma cell line. AAP metabolism is partially responsible for this activation, because blockade of the cytochrome CYP2E1 significantly reduced but did not totally prevent, AAP-induced SH-SY5Y cell death. AAP also induced NFkB p65 activation by phosphorylation and its translocation to the nucleus, where NFkB p65 increased IL-1β production. This increase contributed to neuroblastoma cell death through a mechanism involving Bax accumulation into the mitochondria, cytochrome c release and caspase3 activation. Blockade of NFkB translocation to the nucleus by the peptide SN50 prevented AAP-mediated cell death and IL-1β production. Moreover, overexpression of the antiapoptotic protein Bcl-xL did not decrease AAP-mediated IL-1β production, but prevented both AAP and IL-1β-mediated cell death. We also confirmed the AAP toxic actions on SK-N-MC neuroepithelioma and U87MG glioblastoma cell lines. The results presented here suggest that AAP activates the intrinsic death pathway in neuroblastoma cells through a mechanism involving NFkB and IL-1β. PMID:23166834

  3. Transportation of Berberine into HepG2, HeLa and SY5Y Cells: A Correlation to Its Anti-Cancer Effect

    PubMed Central

    Pang, Yu-Nong; Liang, Yin-Wen; Feng, Tian-Shi; Zhao, Shuang; Wu, Hao; Chai, Yu-Shuang; Lei, Fan; Ding, Yi; Xing, Dong-Ming; Du, Li-Jun

    2014-01-01

    The anti-cancer activities of berberine (BBR) have been reported extensively in various cancer cell lines. However, the minimal inhibitory concentrations of BBR varied greatly among different cell lines and very few studies have been devoted to elucidate this aspect. In this study, we employed three cancer cell lines, HepG2, HeLa and SY5Y, to compare the transportation and distribution of BBR. HPLC results demonstrated that BBR was capable of penetrating all the cell lines whereas the cumulative concentrations were significantly different. HepG2 cells accumulated higher level of BBR for longer duration than the other two cell lines. Molecular docking studies revealed the BBR binding site on P-glycoprotein 1 (P-gp). In addition, we elucidated that BBR regulated P-gp at both mRNA and protein levels. BBR induced the transcription and translation of P-gp in HeLa and SY5Y cells, whereas BBR inhibited P-gp expression in HepG2 cells. Further study showed that BBR regulates P-gp expression depending on different mechanisms (or affected by different factors) in different cell lines. To summarize, our study has revealed several mechanistic aspects of BBR regulation on P-gp in different cancer cell lines and might shed some useful insights into the use of BBR in the anti-cancer drug development. PMID:25402492

  4. Agmatine effects on mitochondrial membrane potential and NF-κB activation protect against rotenone-induced cell damage in human neuronal-like SH-SY5Y cells.

    PubMed

    Condello, Salvatore; Currò, Monica; Ferlazzo, Nadia; Caccamo, Daniela; Satriano, Joseph; Ientile, Riccardo

    2011-01-01

    Agmatine, an endogenous arginine metabolite, has been proposed as a novel neuromodulator that plays protective roles in the CNS in several models of cellular damage. However, the mechanisms involved in these protective effects in neurodegenerative diseases are poorly understood. The present study was undertaken to investigate the effects of agmatine on cell injury induced by rotenone, commonly used in establishing in vivo and in vitro models of Parkinson's disease, in human-derived dopaminergic neuroblastoma cell line (SH-SY5Y). We report that agmatine dose-dependently suppressed rotenone-induced cellular injury through a reduction of oxidative stress. Similar effects were obtained by spermine, suggesting a scavenging effect for these compounds. However, unlike spermine, agmatine also prevented rotenone-induced nuclear factor-κB nuclear translocation and mitochondrial membrane potential dissipation. Furthermore, rotenone-induced increase in apoptotic markers, such as caspase 3 activity, Bax expression and cytochrome c release, was significantly attenuated with agmatine treatment. These findings demonstrate mitochondrial preservation with agmatine in a rotenone model of apoptotic cell death, and that the neuroprotective action of agmatine appears because of suppressing apoptotic signalling mechanisms. Thus, agmatine may have therapeutic potential in the treatment of Parkinson's disease by protecting dopaminergic neurons.

  5. Insulin-like growth factor 1 specifically up-regulates expression of modifier subunit of glutamate-cysteine ligase and enhances glutathione synthesis in SH-SY5Y cells.

    PubMed

    Takahashi, Shuhei; Hisatsune, Akinori; Kurauchi, Yuki; Seki, Takahiro; Katsuki, Hiroshi

    2016-01-15

    Glutathione is a key regulator of oxidative balance in all mammals, especially in the central nervous system. The first step of glutathione synthesis is catalyzed by glutamate-cysteine ligase (GCL), which is composed of catalytic and modifier subunits (GCLC and GCLM, respectively). In non-neural cells and tissues, insulin and insulin-like growth factor 1 (IGF-1) have been found to stimulate transcription of GCLC gene. Here we found that treatment of human neuroblastoma SH-SY5Y cells with insulin or IGF-1 increased mRNA level of GCLM, but not of GCLC, in a concentration- and time-dependent manner. In contrast, insulin did not increase GCL expression in rat C6 glioma cells. We also confirmed that IGF-1 increased protein level of GCLM and cellular glutathione content in SH-SY5Y cells. In addition, IGF-1 increased nuclear factor erythroid 2-related factor 2 (Nrf2) protein in the nuclear fraction of SH-SY5Y cells. siRNA-mediated knockdown of Nrf2 protein expression abrogated IGF-1-induced up-regulation of GCLM mRNA expression. Finally, IGF-1-induced increase in nuclear Nrf2 protein and GCLM mRNA expression was abolished by LY294002, a phosphoinositide 3-kinase inhibitor. These results indicate that insulin and IGF-1 have the ability to enhance glutathione biosynthesis in neuronal cells via specific up-regulation of GCLM expression.

  6. S-Mercuration of ubiquitin carboxyl-terminal hydrolase L1 through Cys152 by methylmercury causes inhibition of its catalytic activity and reduction of monoubiquitin levels in SH-SY5Y cells.

    PubMed

    Toyama, Takashi; Abiko, Yumi; Katayama, Yuko; Kaji, Toshiyuki; Kumagai, Yoshito

    2015-12-01

    Methylmercury (MeHg) is an environmental electrophile that covalently modifies cellular proteins. In this study, we identified proteins that undergo S-mercuration by MeHg. By combining two-dimensional SDS-PAGE, atomic absorption spectrometry and ultra performance liquid chromatography mass spectrometry (UPLC/MS/MS), we revealed that ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1) is a target for S-mercuration in human neuroblastoma SH-SY5Y cells exposed to MeHg (1 µM, 9 hr). The modification site of UCH-L1 by MeHg was Cys152, as determined by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. MeHg was shown to inhibit the catalytic activity of recombinant human UCH-L1 in a concentration-dependent manner. Knockdown of UCH-L1 indicated that this enzyme plays a critical role in regulating mono-ubiquitin (monoUb) levels in SH-SY5Y cells and exposure of SH-SY5Y cells to MeHg caused a reduction in the level of monoUb in these cells. These observations suggest that UCH-L1 readily undergoes S-mercuration by MeHg through Cys152 and this covalent modification inhibits UCH-L1, leading to the potential disruption of the maintenance of cellular monoUb levels.

  7. Carnosic Acid Induces Anti-Inflammatory Effects in Paraquat-Treated SH-SY5Y Cells Through a Mechanism Involving a Crosstalk Between the Nrf2/HO-1 Axis and NF-κB.

    PubMed

    de Oliveira, Marcos Roberto; de Souza, Izabel Cristina Custódio; Fürstenau, Cristina Ribas

    2017-01-12

    Carnosic acid (CA) is a phenolic diterpene obtained from Rosmarinus officinalis L. and has demonstrated cytoprotective properties in several experimental models. CA exerts antioxidant effects by upregulating the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which controls the expression of antioxidant and phase II detoxification enzymes. Heme oxygenase-1 (HO-1) expression is modulated by Nrf2 and has been demonstrated as part of the mechanism underlying the CA-induced cytoprotection. Nonetheless, it remains to be studied whether and how HO-1 would mediate CA-elicited anti-inflammatory effects. Therefore, we have investigated here whether and how CA would prevent paraquat (PQ)-induced inflammation-related alterations in human neuroblastoma SH-SY5Y cells. SH-SY5Y cells were pretreated for 12 h with CA at 1 μM before exposure to PQ for further 24 h. CA suppressed the PQ-induced alterations on the levels of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and cyclooxygenase-2 (COX-2) through a mechanism involving the activation of the Nrf2/HO-1 axis. Furthermore, we observed a crosstalk between the Nrf2/HO-1 signaling pathway and the activation of the nuclear factor-κB (NF-κB) transcription factor, since administration of ZnPP IX (specific inhibitor of HO-1) or Nrf2 knockdown using small interfering RNA (siRNA) abolished the anti-inflammatory effects induced by CA. Moreover, administration of SN50 (specific inhibitor of NF-κB) inhibited the PQ-induced inflammation-related effects in SH-SY5Y cells. Therefore, CA exerted anti-inflammatory effects in SH-SY5Y cells through an Nrf2/HO-1 axis-dependent manner associated with downregulation of NF-κB.

  8. Oxidative stress induces transient O-GlcNAc elevation and tau dephosphorylation in SH-SY5Y cells.

    PubMed

    Kátai, Emese; Pál, József; Poór, Viktor Soma; Purewal, Rupeena; Miseta, Attila; Nagy, Tamás

    2016-12-01

    O-linked β-N-acetlyglucosamine or O-GlcNAc modification is a dynamic post-translational modification occurring on the Ser/Thr residues of many intracellular proteins. The chronic imbalance between phosphorylation and O-GlcNAc on tau protein is considered as one of the main hallmarks of Alzheimer's disease. In recent years, many studies also showed that O-GlcNAc levels can elevate upon acute stress and suggested that this might facilitate cell survival. However, many consider chronic stress, including oxidative damage as a major risk factor in the development of the disease. In this study, using the neuronal cell line SH-SY5Y we investigated the dynamic nature of O-GlcNAc after treatment with 0.5 mM H2 O2 for 30 min. to induce oxidative stress. We found that overall O-GlcNAc quickly increased and reached peak level at around 2 hrs post-stress, then returned to baseline levels after about 24 hrs. Interestingly, we also found that tau protein phosphorylation at site S262 showed parallel, whereas at S199 and PHF1 sites showed inverse dynamic to O-Glycosylation. In conclusion, our results show that temporary elevation in O-GlcNAc modification after H2 O2 -induced oxidative stress is detectable in cells of neuronal origin. Furthermore, oxidative stress changes the dynamic balance between O-GlcNAc and phosphorylation on tau proteins.

  9. Expression patterns of antioxidant genes in human SH-SY5Y cells after treatment with methadone.

    PubMed

    Saify, Khyber; Saadat, Mostafa

    2015-11-30

    The expression levels of nine antioxidant genes in SH-SY5Y cells exposed to methadone (final concentrations 1-20µM) were investigated. Based on this study the genes could be categorized on three different groups. The number of down-regulated genes were increased as a function of exposure time (P=0.004). The methadone associated mRNA alterations were modulated by N-acetyl-cysteine. These findings suggested that different pathways for regulation of antioxidant genes could be active after exposing of SH-SY5Y cells to methadone; and also suggested that methadone might act by inducing the reactive oxygen species.

  10. Carnosic Acid Suppresses the H2O2-Induced Mitochondria-Related Bioenergetics Disturbances and Redox Impairment in SH-SY5Y Cells: Role for Nrf2.

    PubMed

    de Oliveira, Marcos Roberto; da Costa Ferreira, Gustavo; Peres, Alessandra; Bosco, Simone Morelo Dal

    2017-01-13

    The phenolic diterpene carnosic acid (CA, C20H28O4) exerts antioxidant, anti-inflammatory, anti-apoptotic, and anti-cancer effects in mammalian cells. CA activates the nuclear factor erythroid 2-related factor 2 (Nrf2), among other signaling pathways, and restores cell viability in several in vitro and in vivo experimental models. We have previously reported that CA affords mitochondrial protection against various chemical challenges. However, it was not clear yet whether CA would prevent chemically induced impairment of the tricarboxylic acid cycle (TCA) function in mammalian cells. In the present work, we found that a pretreatment of human neuroblastoma SH-SY5Y cells with CA at 1 μM for 12 h prevented the hydrogen peroxide (H2O2)-induced impairment of the TCA enzymes (aconitase, α-ketoglutarate dehydrogenase (α-KGDH), succinate dehydrogenase (SDH)) and abolished the inhibition of the complexes I and V and restored the levels of ATP by a mechanism associated with Nrf2. CA also exhibited antioxidant abilities by enhancing the levels of reduced glutathione (GSH) and decreasing the content oxidative stress markers (cellular 8-oxo-2'-deoxyguanosine (8-oxo-dG), and mitochondrial malondialdehyde (MDA), protein carbonyl, and 3-nitrotyrosine). Silencing of Nrf2 by small interfering RNA (siRNA) abrogated the protective effects elicited by CA in mitochondria of SH-SY5Y cells. Therefore, CA prevented the H2O2-triggered mitochondrial impairment by an Nrf2-dependent mechanism. The specific role of Nrf2 in ameliorating the function of TCA enzymes function needs further research.

  11. Androgen Receptor Regulates the Growth of Neuroblastoma Cells in vitro and in vivo

    PubMed Central

    Sun, Junyan; Wang, Dongmei; Guo, Lianying; Fang, Shengyun; Wang, Yang; Xing, Rong

    2017-01-01

    Background: Neuroblastoma is the most common extracranial tumors in children. At present about the true etiology of neuroblastoma is unclear and many studies have tried to find effective treatments for these primary malignant tumors. Although it has been illustrated that androgen receptor (AR) was expressed in neuroblastoma cells in some former reports, the biological role of androgen receptor in the development of neuroblastoma is not fully understood. Methods: Androgen (R1881) and the antagonists of androgen receptor (MDV3100 and ARN509) were used to study the role of the androgen receptor signaling pathway in vitro and in vivo on SH-SY5Y and Neuro-2a (N2a) cell lines. Results: We found that AR expression showed an R1881 dose-dependent manner in neuroblastoma cells in vitro and R1881was able to increase, while both antagonists of androgen receptor (MDV3100 and ARN509) significantly decrease, the proliferation, migration, invasion and sphere formation of SH-SY5Y and N2a cells. Moreover, androgen promoted the growth of N2a tumor in vivo. However, when androgen receptor (AR) was effectively knocked down in the two cell lines by siRNA, either promoting or inhibiting effect of the androgen or androgen receptor antagonists, respectively, was attenuated. Conclusion: Our results suggested that androgen receptor may involve in the progression of neuroblastoma as well as provided insight into a new target for the diagnosis and treatment of neuroblastoma patients. PMID:28326012

  12. Androgen Receptor Regulates the Growth of Neuroblastoma Cells in vitro and in vivo.

    PubMed

    Sun, Junyan; Wang, Dongmei; Guo, Lianying; Fang, Shengyun; Wang, Yang; Xing, Rong

    2017-01-01

    Background: Neuroblastoma is the most common extracranial tumors in children. At present about the true etiology of neuroblastoma is unclear and many studies have tried to find effective treatments for these primary malignant tumors. Although it has been illustrated that androgen receptor (AR) was expressed in neuroblastoma cells in some former reports, the biological role of androgen receptor in the development of neuroblastoma is not fully understood. Methods: Androgen (R1881) and the antagonists of androgen receptor (MDV3100 and ARN509) were used to study the role of the androgen receptor signaling pathway in vitro and in vivo on SH-SY5Y and Neuro-2a (N2a) cell lines. Results: We found that AR expression showed an R1881 dose-dependent manner in neuroblastoma cells in vitro and R1881was able to increase, while both antagonists of androgen receptor (MDV3100 and ARN509) significantly decrease, the proliferation, migration, invasion and sphere formation of SH-SY5Y and N2a cells. Moreover, androgen promoted the growth of N2a tumor in vivo. However, when androgen receptor (AR) was effectively knocked down in the two cell lines by siRNA, either promoting or inhibiting effect of the androgen or androgen receptor antagonists, respectively, was attenuated. Conclusion: Our results suggested that androgen receptor may involve in the progression of neuroblastoma as well as provided insight into a new target for the diagnosis and treatment of neuroblastoma patients.

  13. L-theanine protects the APP (Swedish mutation) transgenic SH-SY5Y cell against glutamate-induced excitotoxicity via inhibition of the NMDA receptor pathway.

    PubMed

    Di, X; Yan, J; Zhao, Y; Zhang, J; Shi, Z; Chang, Y; Zhao, B

    2010-07-14

    As a natural analogue of glutamate, l-theanine is the unique amino acid derivative in green tea. Although its underlining mechanisms are not yet clear, it has been suggested that l-theanine treatment may prove beneficial to patients with neurodegenerative diseases. In this study, we investigated the neuroprotective effect and its mechanism of l-theanine in an in vitro model of Alzheimer's disease by using the human APP (Swedish mutation) transgenic SH-SY5Y cell. Amyloid beta (Abeta) neurotoxicity was triggered by l-glutamate in this cell line. Additionally, l-theanine significantly attenuated l-glutamate-induced apoptosis at similar levels to those seen with the NMDA receptor inhibitor MK-801 in the stably expressing APP Swedish mutation SH-SY5Y cells which over-generated Abeta. Meanwhile, the activation of c-Jun N-terminal kinase and caspase-3 induced by l-glutamate was suppressed by l-theanine. We also found that cells treated with l-theanine showed decreased production of nitric oxide resulting from the down-regulated protein levels of inducible nitric oxide synthase (iNOS) and neuronal nitric oxide synthase (nNOS). These results indicate that the inhibition of the NMDA subtype of glutamate receptors and its related pathways is the crucial point of the neuroprotective effect of l-theanine in the cell model. Thus, our present study supports the notion that l-theanine may provide effective prophylaxis and treatment for Alzheimer's disease.

  14. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer's disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK) while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK). Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress.

  15. Lovastatin-induced apoptosis is modulated by geranylgeraniol in a neuroblastoma cell line.

    PubMed

    Marcuzzi, Annalisa; Zanin, Valentina; Piscianz, Elisa; Tricarico, Paola Maura; Vuch, Josef; Girardelli, Martina; Monasta, Lorenzo; Bianco, Anna Monica; Crovella, Sergio

    2012-10-01

    Mevalonic aciduria (MA), the most severe form of mevalonate kinase deficiency (MKD), is still an orphan drug disease and the pathogenetic mechanisms underlying neuronal dysfunction is still poorly understood. In our study we have investigated the apoptotic mechanism mediated by the exposure of the cultured neuroblastoma cell line, SH-SY5Y, to lovastatin in absence or in presence of the isoprenoid, geranylgeraniol, with the aim of unraveling the pathogenesis of MA. Lovastatin, blocks the mevalonate pathway inhibiting the 3-hydroxy-3-methylglutaryl-CoA reductase (HMG-CR), an enzyme of the mevalonate pathway upstream the mevalonate kinase enzyme, reproducing biochemical features similar to those found in MKD. We demonstrate that apoptosis in neuronal lovastatin treated-cells is induced by the mitochondrial pathway, with caspase-9 as the initiator and caspase-3 as the effector caspase. The presence of geranylgeraniol modulates both the caspase-9 and caspase-3 activity in a dose-dependent way, confirming that this isoprenoid enters the mevalonate pathway, is metabolized and finally is able to by-pass the statin biochemical block reconstituting the mevalonate pathway. According to our findings, it should not be the time course adopted that modulates the apoptotic response but rather the isoprenoid itself. Being aware that our results have been obtained using a biochemical model of MKD, and not cells from patients with the disease, we believe our findings increase the knowledge of MA pathogenesis, and may possibly contribute to the development of novel therapeutic strategies.

  16. Microtubule proteins and their post-translational forms in the cerebrospinal fluid of patients with paraparesis associated with HTLV-I infection and in SH-SY5Y cells: an in vitro model of HTLV-I-induced disease.

    PubMed

    Maldonado, Horacio; Ortiz-Riaño, Emilio; Krause, Bernardo; Barriga, Andrés; Medina, Fernando; Pando, M Elsa; Alberti, Carolina; Kettlun, Ana M; Collados, Lucía; García, Lorena; Cartier, Luis; Valenzuela, M Antonieta

    2008-01-01

    HTLV-I-associated myelopathy/tropical spastic paraparesis (HAM/TSP) is characterized by axonal degeneration of the corticospinal tracts. The specific requirements for transport of proteins and organelles to the distal part of the long axon are crucial in the corticospinal tracts. Microtubule dysfunction could be involved in this disease, configuring an axonal transport disease. We measured tubulin and its post-translational modified forms (acetylated and tyrosinated) in CSF of patients and controls, as well as tau and its phosphorylated forms. There were no significant differences in the contents of tubulin and acetyl-tubulin between patients and controls; tyrosyl-tubulin was not detected. In HAM/TSP, tau levels were significantly reduced, while the ratio of pT181/total tau was higher in patients than in controls, this being completely different from what is reported in other neurodegenerative diseases. Phosphorylation at T181 was also confirmed by Mass Spectrometry analysis. Western Blotting with monospecific polyclonal antibodies against pS199, pT205, pT231, pS262, pS356, pS396, pS404 and pS422 did not show differences in phosphorylation in these residues between patients and controls. Treating human SH-SY5Y neuroblastoma cells, a well-known in vitro neurite retraction model, with culture supernatant of MT-2 cells (HTLV-I infected cell line that secretes the viral Tax protein) we observed neurite retraction and an increase in tau phosphorylation at T181. A disruption of normal phosphorylation of tau protein in T181 could result in its dysfunction, contributing to axonal damage.

  17. The influence of inhibiting or stimulating the expression of the α3 subunit of the nicotinic receptor in SH-SY5Y cells on levels of amyloid-β peptide and β-secretase.

    PubMed

    Qi, Xiao-Lan; Zhang, Xue-Ling; Ou-Yang, Kai; Shan, Ke-Ren; Guan, Zhi-Zhong

    2013-01-01

    To examine the effects of the α3 subunit of the nicotinic acetylcholine receptor (nAChR) on the expression of β-secretase and the concomitant level of amyloid-β (Aβ), SH-SY5Y neuroblastoma cells were either transfected with small interference RNAs (siRNAs) specifically targeting this subunit or exposed to nicotine. The levels of α3 nAChR mRNA and protein, as well as the corresponding levels of BACE1 (which cleaves the β-site of APP) and BACE2 (cleaving in the Aβ domain) were determined by real-time PCR and Western blotting, respectively. The levels of Aβ(1-42) in culture media were determined by an Elisa procedure. In SH-SY5Y cells transfected with siRNA, the levels of α3 nAChR mRNA and protein were reduced by 96% and 88%, respectively; the levels of BACE1 mRNA and protein were significantly enhanced, while those of BACE2 were reduced; and the level of Aβ in the culture medium was elevated. In contrast, when untransfected SH-SY5Y cells were exposed to nicotine, the levels of both α3 nAChR mRNA and protein were enhanced; while the levels of BACE1 mRNA and protein were diminished and the corresponding levels of BACE2 enhanced; and the level of Aβ in the culture medium was attenuated. These results indicate that the α3 subunit of nAChR inhibits the production of Aβ by reducing the expression of BACE1 and elevating the expression of BACE2, suggesting that this subunit might play an important neuroprotective role in connection with the pathogenesis of AD.

  18. Neuroprotection by epigallo catechin gallate against bupivacaine anesthesia induced toxicity involves modulation of PI3/Akt/PTEN signalling in N2a and SH-SY5Y cells.

    PubMed

    Wang, Li-Yan; Li, Xia; Han, Yu-Zeng

    2015-01-01

    Bupivacaine, an amide type long-acting local anaesthetic is commonly employed for epidural anesthesia and as well for nerve blockades. However, studies have shown neurotoxicity following local administration of bupivacaine raising concerns over the use of the drug. Compounds that could minimize or inhibit toxic effects of bupivacaine are of high value in operative settings and in pain management. The present study aims to investigate if epigallo catechin gallate (EGCG) could inhibit or prevent bupivacaine toxicity in neuroblastoma cells (N2a and SH-SY5Y). The viability of N2a and SH-SY5Y cells following exposure to EGCG (10-50 µM) were assessed by MTT assay and Annexin V/PI staining. The influence of EGCG on ROS generation was determined. The expression of apoptotic cascade proteins (Caspases-3, -8 and -9, Bcl-xL, Bad, Bax, Bcl-2) and PI3/Akt pathway proteins (Akt, p-Akt, GSK-3β, p-GSK-3β, PTEN) were analyzed by western blotting. EGCG improved the viability of the cells and inhibited apoptosis by potentially decreasing the expression of caspases and pro-apoptotic proteins. Bupivacaine induced ROS generations were reduced on EGCG exposure. EGCG significantly promoted the phosphorylation of Akt and GSK-3β and down-regulated PTEN, thus activating PI3/Akt signalling. EGCG effectively improved the cell viability and inhibited apoptosis of N2a and SH-SY5Y cells via suppression of ROS generation and modulation of PI3K/Akt signalling cascade.

  19. Mercury Reduces the Enzymatic Activity of Neprilysin in Differentiated SH-SY5Y Cells

    PubMed Central

    Chin-Chan, Miguel; Segovia, José; Quintanar, Liliana; Arcos-López, Trinidad; Hersh, Louis B.; Chow, K. Martin; Rodgers, David W.; Quintanilla-Vega, Betzabet

    2015-01-01

    Levels of amyloid beta (Aβ) in the central nervous system are regulated by the balance between its synthesis and degradation. Neprilysin (NEP) is associated with Alzheimer’s disease (AD) by its ability to degrade Aβ. Some studies have involved the exposure to mercury (Hg) in AD pathogenesis; therefore, our aim was to investigate the effects on the anabolism and catabolism of Aβ in differentiated SH-SY5Y cells incubated with 1–20 μM of Hg. Exposure to 20 µM of Hg induced an increase in Aβ-42 secretion, but did not increase the expression of the amyloid precursor protein (APP). Hg incubation (10 and 20 µM) increased NEP protein levels; however, it did not change NEP mRNA levels nor the levels of the amyloid intracellular domain peptide, a protein fragment with transcriptional activity. Interestingly, Hg reduced NEP activity at 10 and 20 µM, and circular dichroism analysis using human recombinant NEP showed conformational changes after incubation with molar equivalents of Hg. This suggests that the Hg-induced inhibition of NEP activity may be mediated by a conformational change resulting in reduced Aβ-42 degradation. Finally, the comparative effects of lead (Pb, 50 μM) were evaluated. We found a significant increase in Aβ-42 levels and a dramatic increase in APP protein levels; however, no alteration in NEP levels was observed nor in the enzymatic activity of this metalloprotease, despite the fact that Pb slightly modified the rhNEP conformation. Overall, our data suggest that Hg and Pb increase Aβ levels by different mechanisms. PMID:25673500

  20. Mercury Reduces the Enzymatic Activity of Neprilysin in Differentiated SH-SY5Y Cells.

    PubMed

    Chin-Chan, Miguel; Segovia, José; Quintanar, Liliana; Arcos-López, Trinidad; Hersh, Louis B; Chow, K Martin; Rodgers, David W; Quintanilla-Vega, Betzabet

    2015-05-01

    Levels of amyloid beta (Aβ) in the central nervous system are regulated by the balance between its synthesis and degradation. Neprilysin (NEP) is associated with Alzheimer's disease (AD) by its ability to degrade Aβ. Some studies have involved the exposure to mercury (Hg) in AD pathogenesis; therefore, our aim was to investigate the effects on the anabolism and catabolism of Aβ in differentiated SH-SY5Y cells incubated with 1-20 μM of Hg. Exposure to 20 µM of Hg induced an increase in Aβ-42 secretion, but did not increase the expression of the amyloid precursor protein (APP). Hg incubation (10 and 20 µM) increased NEP protein levels; however, it did not change NEP mRNA levels nor the levels of the amyloid intracellular domain peptide, a protein fragment with transcriptional activity. Interestingly, Hg reduced NEP activity at 10 and 20 µM, and circular dichroism analysis using human recombinant NEP showed conformational changes after incubation with molar equivalents of Hg. This suggests that the Hg-induced inhibition of NEP activity may be mediated by a conformational change resulting in reduced Aβ-42 degradation. Finally, the comparative effects of lead (Pb, 50 μM) were evaluated. We found a significant increase in Aβ-42 levels and a dramatic increase in APP protein levels; however, no alteration in NEP levels was observed nor in the enzymatic activity of this metalloprotease, despite the fact that Pb slightly modified the rhNEP conformation. Overall, our data suggest that Hg and Pb increase Aβ levels by different mechanisms.

  1. DJ-1-Mediated protective effect of protocatechuic aldehyde against oxidative stress in SH-SY5Y cells.

    PubMed

    Gao, Jian-Wei; Yamane, Takuya; Maita, Hiroshi; Ishikawa, Shizuma; Iguchi-Ariga, Sanae M M; Pu, Xiao-Ping; Ariga, Hiroyoshi

    2011-01-01

    DJ-1 was identified as a causal gene for a familial form of early onset Parkinson's disease (PD), park 7. DJ-1 plays roles in transcriptional regulation and the anti-oxidative stress reaction. In this study, we found that protocatechuic aldehyde (PAL), a traditional Chinese medicine compound, bound to DJ-1 in vitro and that PAL protected SH-SY5Y cells but not DJ-1-knockdown SH-SY5Y cells from oxidative stress-induced cell death, indicating that the protective effect of PAL is mediated by DJ-1. Furthermore, PAL inhibited production of reactive oxygen species and the inhibition was abated in DJ-1-knockdown cells. PAL increased and decreased phosphorylation of AKT and PTEN, respectively, in SH-SY5Y cells, suggesting that the AKT pathway is one of the specific signaling pathways in PAL-induced neuroprotection. Moreover, PAL prevented superfluous oxidation of cysteine 106 of DJ-1, an essential amino acid for DJ-1's function. The present study demonstrates that PAL has potential neuroprotective effects through DJ-1.

  2. Modulation of cellular Hsp72 levels in undifferentiated and neuron-like SH-SY5Y cells determines resistance to staurosporine-induced apoptosis.

    PubMed

    Cheng, Lesley; Smith, Danielle J; Anderson, Robin L; Nagley, Phillip

    2011-01-01

    Increased expression of Hsp72 accompanies differentiation of human neuroblastoma SH-SY5Y cells to neuron-like cells. By modulating cellular levels of Hsp72, we demonstrate here its anti-apoptotic activity both in undifferentiated and neuron-like cells. Thermal preconditioning (43°C for 30 min) induced Hsp72, leading to cellular protection against apoptosis induced by a subsequent treatment with staurosporine. Preconditioned staurosporine-treated cells displayed decreased Bax recruitment to mitochondria and subsequent activation, as well as reduced cytochrome c redistribution from mitochondria. The data are consistent with Hsp72 blocking apoptosis upstream of Bax recruitment to mitochondria. Neuron-like cells (with elevated Hsp72) were more resistant to staurosporine by all measured indices of apoptotic signaling. Use of stable transfectants ectopically expressing moderately elevated levels of Hsp72 revealed that such cells in the undifferentiated state showed enhanced resistance to staurosporine-induced apoptosis, which was even more robust after differentiation to neuron-like cells. Overall, the protective effects of differentiation, thermal preconditioning and ectopic Hsp72 expression were additive. The strong inverse correlation between cellular Hsp72 levels and susceptibility to apoptosis support the notion that Hsp72 acts as a significant neuroprotective factor, enabling post-mitotic neurons to withstand potentially lethal stress that induces apoptosis.

  3. Participation of protein kinases in cytotoxic and proapoptotic effects of ethylene glycol ethers and their metabolites in SH-SY5Y cells.

    PubMed

    Pomierny, Bartosz; Fuxe, Kjell; Krzyżanowska, Weronika; Regulska, Magdalena; Broniowska, Żaneta; Budziszewska, Bogusława

    2016-10-01

    Ethylene glycol ethers (EGEs) are compounds widely used in many branches of industry. Their toxicological profile in the peripheral tissues is relatively well described, but little is known about their action on the central nervous system (CNS). In this study, we evaluated the effect of 2-ethoxyethanol (EE), 2-butoxyethanol (BE), 2-phenoxyethanol (PHE) and their metabolites on necrotic (estimated by cell viability and lactate dehydrogenase release) and apoptotic (caspase-3 activity and mitochondrial membrane potential) processes and reactive oxygen species' (ROS) production in human neuroblastoma (SH-SY5Y) cells. We have shown that, similar to the peripheral tissues, EGE metabolites in most of the performed assays revealed greater potential to damage than the parent compounds in the CNS cells. Subsequently, we investigated the participation of some selected protein kinases in the degenerative activity of PHE and its main metabolite, phenoxyacetic acid (PHA). It has been found that a GSK3β inhibitor weakened the damaging effects of PHE and PHA in each of the performed assays. Furthermore, the kinases, p38-MAPK, JNK-MAPK and PKC, had a significant role in the cytotoxic and proapoptotic effects of PHA. These results indicate that the neurotoxic effect of EGEs may stem from their impact on many intracellular signal transduction pathways.

  4. Protective effects of Arctium lappa L. roots against hydrogen peroxide-induced cell injury and potential mechanisms in SH-SY5Y cells.

    PubMed

    Tian, Xing; Guo, Li-Ping; Hu, Xiao-Long; Huang, Jin; Fan, Yan-Hua; Ren, Tian-Shu; Zhao, Qing-Chun

    2015-04-01

    Accumulated evidence has shown that excessive reactive oxygen species (ROS) have been implicated in neuronal cell death related with various chronic neurodegenerative disorders. This study was designed to explore neuroprotective effects of ethyl acetate extract of Arctium lappa L. roots (EAL) on hydrogen peroxide (H2O2)-induced cell injury in human SH-SY5Y neuroblastoma cells. The cell viability was significantly decreased after exposure to 200 μM H2O2, whereas pretreatment with different concentrations of EAL attenuated the H2O2-induced cytotoxicity. Hoechst 33342 staining indicated that EAL reversed nuclear condensation in H2O2-treated cells. Meanwhile, TUNEL assay with DAPI staining showed that EAL attenuated apoptosis was induced by H2O2. Pretreatment with EAL also markedly elevated activities of antioxidant enzyme (GSH-Px and SOD), reduced lipid peroxidation (MDA) production, prevented ROS formation, and the decrease of mitochondrial membrane potential. In addition, EAL showed strong radical scavenging ability in 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) assays. Furthermore, EAL inhibited H2O2-induced apoptosis by increases in the Bcl-2/Bax ratio, decreases in cytochrome c release, and attenuation of caspase-3, caspase-9 activities, and expressions. These findings suggest that EAL may be regarded as a potential antioxidant agent and possess potent neuroprotective activity against H2O2-induced injury.

  5. Methylmercury, an environmental electrophile capable of activation and disruption of the Akt/CREB/Bcl-2 signal transduction pathway in SH-SY5Y cells

    PubMed Central

    Unoki, Takamitsu; Abiko, Yumi; Toyama, Takashi; Uehara, Takashi; Tsuboi, Koji; Nishida, Motohiro; Kaji, Toshiyuki; Kumagai, Yoshito

    2016-01-01

    Methylmercury (MeHg) modifies cellular proteins via their thiol groups in a process referred to as “S-mercuration”, potentially resulting in modulation of the cellular signal transduction pathway. We examined whether low-dose MeHg could affect Akt signaling involved in cell survival. Exposure of human neuroblastoma SH-SY5Y cells of up to 2 μM MeHg phosphorylated Akt and its downstream signal molecule CREB, presumably due to inactivation of PTEN through S-mercuration. As a result, the anti-apoptotic protein Bcl-2 was up-regulated by MeHg. The activation of Akt/CREB/Bcl-2 signaling mediated by MeHg was, at least in part, linked to cellular defence because either pretreatment with wortmannin to block PI3K/Akt signaling or knockdown of Bcl-2 enhanced MeHg-mediated cytotoxicity. In contrast, increasing concentrations of MeHg disrupted Akt/CREB/Bcl-2 signaling. This phenomenon was attributed to S-mercuration of CREB through Cys286 rather than Akt. These results suggest that although MeHg is an apoptosis-inducing toxicant, this environmental electrophile is able to activate the cell survival signal transduction pathway at lower concentrations prior to apoptotic cell death. PMID:27357941

  6. Oxidative stress induced by crude venom from the jellyfish Pelagia noctiluca in neuronal-like differentiated SH-SY5Y cells.

    PubMed

    Morabito, Rossana; Condello, Salvatore; Currò, Monica; Marino, Angela; Ientile, Riccardo; La Spada, Giuseppina

    2012-08-01

    Marine toxins are a suitable research model and their mechanism of action is intriguing and still under debate. Either a pore formation mechanism or oxidative stress phenomena may explain the damage induced by toxins. The effect of crude venom from isolated nematocysts of the jellyfish Pelagia noctiluca on neuronal-like cells derived from human neuroblastoma SH-SY5Y has been here studied. To prove the possible oxidative stress events, cell viability, assessed by MTT quantitative colorimetric assay, intracellular reactive oxygen species (ROS) quantified by the non-fluorescent probe H2DCF-DA and changes in mitochondrial transmembrane potential (ΔΨm) measured by the incorporation of a cationic fluorescent dye rhodamine-123 were verified on venom-treated cells (0.05-0.5μg/ml doses). A dose- and time-dependent reduction of all parameters was observed after venom treatment. NAC (N-acetyl-cysteine), antioxidant applied before crude venom application, significantly counteracted the decrease in cell viability and ROS production, while ΔΨm was only partially restored. The disruption of mitochondrial membrane by P. noctiluca crude venom may thus induce oxidative stress by inhibiting mitochondrial respiration and uncoupling oxidative phosphorylation, sensitizing mitochondria in SH-SY5H cells and facilitating membrane permeability. In sum, our findings suggest that P. noctiluca crude venom directly induces ΔΨm collapse with further generation of ROS and add novel information to the understanding of such toxins, still not completely clarified.

  7. Clinacanthus nutans Extracts Modulate Epigenetic Link to Cytosolic Phospholipase A2 Expression in SH-SY5Y Cells and Primary Cortical Neurons.

    PubMed

    Tan, Charlene Siew-Hon; Ho, Christabel Fung-Yih; Heng, Swan-Ser; Wu, Jui-Sheng; Tan, Benny Kwong-Huat; Ng, Yee-Kong; Sun, Grace Y; Lin, Teng-Nan; Ong, Wei-Yi

    2016-09-01

    Clinacanthus nutans Lindau (C. nutans), commonly known as Sabah Snake Grass in southeast Asia, is widely used in folk medicine due to its analgesic, antiviral, and anti-inflammatory properties. Our recent study provided evidence for the regulation of cytosolic phospholipase A2 (cPLA2) mRNA expression by epigenetic factors (Tan et al. in Mol Neurobiol. doi: 10.1007/s12035-015-9314-z , 2015). This enzyme catalyzes the release of arachidonic acid from glycerophospholipids, and formation of pro-inflammatory eicosanoids or toxic lipid peroxidation products such as 4-hydroxynonenal. In this study, we examined the effects of C. nutans ethanol leaf extracts on epigenetic regulation of cPLA2 mRNA expression in SH-SY5Y human neuroblastoma cells and mouse primary cortical neurons. C. nutans modulated induction of cPLA2 expression in SH-SY5Y cells by histone deacetylase (HDAC) inhibitors, MS-275, MC-1568, and TSA. C. nutans extracts also inhibited histone acetylase (HAT) activity. Levels of cPLA2 mRNA expression were increased in primary cortical neurons subjected to 0.5-h oxygen-glucose deprivation injury (OGD). This increase was significantly inhibited by C. nutans treatment. Treatment of primary neurons with the HDAC inhibitor MS-275 augmented OGD-induced cPLA2 mRNA expression, and this increase was modulated by C. nutans extracts. OGD-stimulated increase in cPLA2 mRNA expression was also reduced by a Tip60 HAT inhibitor, NU9056. In view of a key role of cPLA2 in the production of pro-inflammatory eicosanoids and free radical damage, and the fact that epigenetic effects on genes are often long-lasting, results suggest a role for C. nutans and phytochemicals to inhibit the production of arachidonic acid-derived pro-inflammatory eicosanoids and chronic inflammation, through epigenetic regulation of cPLA2 expression.

  8. Dimerumic Acid and Deferricoprogen Activate Ak Mouse Strain Thymoma/Heme Oxygenase-1 Pathways and Prevent Apoptotic Cell Death in 6-Hydroxydopamine-Induced SH-SY5Y Cells.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-08-03

    Parkinson's disease (PD) is a neurodegenerative disorder, which can be modeled using the neurotoxin 6-hydroxydopamine (6-OHDA) to generate oxidative stress. Here, we studied the effects of the antioxidants deferricoprogen (DFC) and dimerumic acid (DMA), produced by rice fermented with Monascus purpureus NTU 568, on 6-OHDA-induced apoptosis in SH-SY5Y cells and their potential protective mechanisms. DMA and DFC inhibited 6-OHDA-induced apoptosis and cellular reactive oxygen species (ROS) in SH-SY5Y human neuroblastoma cells. Molecular analysis demonstrated associated upregulation of the Ak mouse strain thymoma (Akt), heme oxygenase-1 (HO-1), and signal-regulated kinase (ERK) pathways along with inhibited phosphorylation of c-Jun N-terminal kinase (JNK) and p38 pathways and altered homodimeric glycoprotein, N-methyl-d-aspartate (NMDA) receptor, and immunoglobulin Fc receptor gene expression. These results suggested that the neuroprotection elicited by DMA and DFC against 6-OHDA-induced neurotoxicity was associated with the Akt, MAPK, and HO-1 pathways via regulating the gene expression of NMDA receptor, homodimeric glycoprotein, and immunoglobulin Fc receptor.

  9. A multidisciplinary approach to study the functional properties of neuron-like cell models constituting a living bio-hybrid system: SH-SY5Y cells adhering to PANI substrate

    NASA Astrophysics Data System (ADS)

    Caponi, S.; Mattana, S.; Ricci, M.; Sagini, K.; Juarez-Hernandez, L. J.; Jimenez-Garduño, A. M.; Cornella, N.; Pasquardini, L.; Urbanelli, L.; Sassi, P.; Morresi, A.; Emiliani, C.; Fioretto, D.; Dalla Serra, M.; Pederzolli, C.; Iannotta, S.; Macchi, P.; Musio, C.

    2016-11-01

    A living bio-hybrid system has been successfully implemented. It is constituted by neuroblastic cells, the SH-SY5Y human neuroblastoma cells, adhering to a poly-anyline (PANI) a semiconductor polymer with memristive properties. By a multidisciplinary approach, the biocompatibility of the substrate has been analyzed and the functionality of the adhering cells has been investigated. We found that the PANI films can support the cell adhesion. Moreover, the SH-SY5Y cells were successfully differentiated into neuron-like cells for in vitro applications demonstrating that PANI can also promote cell differentiation. In order to deeply characterize the modifications of the bio-functionality induced by the cell-substrate interaction, the functional properties of the cells have been characterized by electrophysiology and Raman spectroscopy. Our results confirm that the PANI films do not strongly affect the general properties of the cells, ensuring their viability without toxic effects on their physiology. Ascribed to the adhesion process, however, a slight increase of the markers of the cell suffering has been evidenced by Raman spectroscopy and accordingly the electrophysiology shows a reduction at positive stimulations in the cells excitability.

  10. Inhibition of cathepsin proteases attenuates migration and sensitizes aggressive N-Myc amplified human neuroblastoma cells to doxorubicin.

    PubMed

    Gangoda, Lahiru; Keerthikumar, Shivakumar; Fonseka, Pamali; Edgington, Laura E; Ang, Ching-Seng; Ozcitti, Cemil; Bogyo, Matthew; Parker, Belinda S; Mathivanan, Suresh

    2015-05-10

    Neuroblastoma arises from the sympathetic nervous system and accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc is reported to occur in more than 20% of patients. While N-Myc amplification status strongly correlates with higher tumour aggression and resistance to treatment, the role of N-Myc in the aggressive progression of the disease is poorly understood. N-Myc being a transcription factor can modulate the secretion of key proteins that may play a pivotal role in tumorigenesis. Characterising the soluble secreted proteins or secretome will aid in understanding their role in the tumour microenvironment, such as promoting cancer cell invasion and resistance to treatment. The aim of this study is to characterise the secretome of human malignant neuroblastoma SK-N-BE2 (N-Myc amplified, more aggressive) and SH-SY5Y (N-Myc non-amplified, less aggressive) cells. Conditioned media from SK-N-BE2 and SH-SY5Y cell lines were subjected to proteomics analysis. We report a catalogue of 894 proteins identified in the secretome isolated from the two neuroblastoma cell lines, SK-N-BE2 and SH-SY5Y. Functional enrichment analysis using FunRich software identified enhanced secretion of proteins implicated in cysteine peptidase activity in the aggressive N-Myc amplified SK-N-BE2 secretome compared to the less tumorigenic SH-SY5Y cells. Protein-protein interaction-based network analysis highlighted the enrichment of cathepsin and epithelial-to-mesenchymal transition sub-networks. For the first time, inhibition of cathepsins by inhibitors sensitized the resistant SK-N-BE2 cells to doxorubicin as well as decreased its migratory potential. The dataset of secretome proteins of N-Myc amplified (more aggressive) and non-amplified (less aggressive) neuroblastoma cells represent the first inventory of neuroblastoma secretome. The study also highlights the prominent role of cathepsins in the N-Myc amplified neuroblastoma pathogenesis. As N-Myc amplification

  11. Increasing the intracellular availability of all-trans retinoic acid in neuroblastoma cells

    PubMed Central

    Armstrong, J L; Ruiz, M; Boddy, A V; Redfern, C P F; Pearson, A D J; Veal, G J

    2005-01-01

    Recent data indicate that isomerisation to all-trans retinoic acid (ATRA) is the key mechanism underlying the favourable clinical properties of 13-cis retinoic acid (13cisRA) in the treatment of neuroblastoma. Retinoic acid (RA) metabolism is thought to contribute to resistance, and strategies to modulate this may increase the clinical efficacy of 13cisRA. The aim of this study was to test the hypothesis that retinoids, such as acitretin, which bind preferentially to cellular retinoic acid binding proteins (CRABPs), or specific inhibitors of the RA hydroxylase CYP26, such as R116010, can increase the intracellular availability of ATRA. Incubation of SH-SY5Y cells with acitretin (50 μM) or R116010 (1 or 10 μM) in combination with either 10 μM ATRA or 13cisRA induced a selective increase in intracellular levels of ATRA, while 13cisRA levels were unaffected. CRABP was induced in SH-SY5Y cells in response to RA. In contrast, acitretin had no significant effect on intracellular retinoid concentrations in those neuroblastoma cell lines that showed little or no induction of CRABP after RA treatment. Both ATRA and 13cisRA dramatically induced the expression of CYP26A1 in SH-SY5Y cells, and treatment with R116010, but not acitretin, potentiated the RA-induced expression of a reporter gene and CYP26A1. The response of neuroblastoma cells to R116010 was consistent with inhibition of CYP26, indicating that inhibition of RA metabolism may further optimise retinoid treatment in neuroblastoma. PMID:15714209

  12. Tianma modulates proteins with various neuro-regenerative modalities in differentiated human neuronal SH-SY5Y cells.

    PubMed

    Ramachandran, Umamaheswari; Manavalan, Arulmani; Sundaramurthi, Husvinee; Sze, Siu Kwan; Feng, Zhi Wei; Hu, Jiang-Miao; Heese, Klaus

    2012-06-01

    Tianma (Rhizoma gastrodiae) is the dried rhizome of the plant Gastrodia elata Blume (Orchidaceae family). As a medicinal herb in traditional Chinese medicine (TCM) its functions are to control convulsions, pain, headache, dizziness, vertigo, seizure, epilepsy and others. In addition, tianma is frequently used for the treatment of neurodegenerative disorders though the mechanism of action is widely unknown. Accordingly, this study was designed to examine the effects of tianma on the proteome metabolism in differentiated human neuronal SH-SY5Y cells to explore its specific effects on neuronal signaling pathways. Using an iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomics research approach, we identified 2390 modulated proteins, out of which 406 were found to be altered by tianma in differentiated human neuronal SH-SY5Y cells. Based on the observed data, we hypothesize that tianma promotes neuro-regenerative signaling cascades by controlling chaperone/proteasomal degradation pathways (e.g. CALR, FKBP3/4, HSP70/90) and mobilizing neuro-protective genes (such as AIP5) as well as modulating other proteins (RTN1/4, NCAM, PACSIN2, and PDLIM1/5) with various regenerative modalities and capacities related to neuro-synaptic plasticity.

  13. Effects of HNE-modification induced by Aβ on neprilysin expression and activity in SH-SY5Y cells

    PubMed Central

    Wang, Rui; Wang, Suqing; Malter, James S.; Wang, Deng-Shun

    2009-01-01

    The cerebral accumulation of β-amyloid (Aβ) is a consistent feature of and likely contributor to the development of Alzheimer’s Disease (AD). In addition to dysregulated production, increasing experimental evidence suggests reduced catabolism also plays an important role in Aβ accumulation. We have previously shown that neprilysin (NEP), the major protease which cleaves Aβ in vivo, is modified by 4-hydroxy-nonenal (HNE) adducts in the brain of AD patients. In order to determine if these changes affected Aβ, SH-SY5Y cells were treated with HNE or Aβ, and then NEP mRNA, protein levels, HNE adducted NEP, NEP activity and secreted Aβ levels were determined. Intracellular NEP developed HNE adducts after 24 h of HNE treatment as determined by immunoprecipitation, immunoblotting and double immunofluorescence staining. HNE-modified NEP showed decreased catalytic activity, which was associated with elevations in Aβ1-40 in SH-SY5Y and H4 APP695wt cells. Incubation of cells with Aβ1-42 also induced HNE adduction of NEP. In an apparent compensatory response, Aβ treated cells showed increased NEP mRNA and protein expression. Despite elevations in NEP protein, the activity was significantly lower compared to the NEP protein level. The present study demonstrates that NEP can be inactivated by HNE-adduction, which is associated with, at least partly, reduced Aβ cleavage and enhanced Aβ accumulation. PMID:19196432

  14. Mechanical stretch exacerbates the cell death in SH-SY5Y cells exposed to paraquat: mitochondrial dysfunction and oxidative stress.

    PubMed

    Wang, Fang; Franco, Rodrigo; Skotak, Maciej; Hu, Gang; Chandra, Namas

    2014-03-01

    Recent studies suggest that traumatic brain injury (TBI) and pesticide exposure increase the risk of Parkinson's disease (PD), but the molecular mechanisms involved remain unclear. Using an in vitro model of TBI, we evaluated the role of mitochondrial membrane potential (ΔΨm) and mitochondrial reactive oxygen species (ROS) induced by stretch on dopaminergic cell death upon paraquat exposure. Human dopaminergic neuroblastoma SH-SY5Y cells grown on silicone membrane were stretched at mild (25%) and moderate (50%) strain prior to paraquat exposure. We observed that moderate stretch (50% strain) increased the vulnerability of cells to paraquat demonstrated by the loss of plasma membrane integrity (propidium iodide-uptake) and decreased mitochondrial activity (MTT assay). Mitochondrial depolarization occurred immediately after stretch, while mitochondrial ROS increased rapidly and remained elevated for up to 4h after the stretch injury. Intracellular glutathione (GSH) stores were also transiently decreased immediately after moderate stretch. Cells treated with paraquat, or moderate stretch exhibited negligible mitochondrial depolarization at 48h post treatment, whereas in cells stretched prior to paraquat exposure, a significant mitochondrial depolarization occurred compared to samples exposed to either paraquat or stretch. Moderate stretch also increased mitochondrial ROS formation, as well as exacerbated intracellular GSH loss induced by paraquat. Overexpression of manganese superoxide dismutase (MnSOD) markedly diminished the deleterious effects of stretch in paraquat neurotoxicity. Our findings demonstrate that oxidative stress induced by mitochondrial dysfunction plays a critical role in the synergistic toxic effects of stretch (TBI) and pesticide exposure. Mitigation of oxidative stress via mitochondria-targeted antioxidants appears an attractive route for treatment of neurodegeneration mediated by TBI.

  15. Expanded and Wild-type Ataxin-3 Modify the Redox Status of SH-SY5Y Cells Overexpressing α-Synuclein.

    PubMed

    Noronha, Carolina; Perfeito, Rita; Laço, Mário; Wüllner, Ullrich; Rego, A Cristina

    2017-02-25

    Neurodegenerative diseases are considered to be distinct clinical entities, although they share the formation of proteinaceous aggregates and several neuropathological mechanisms. Increasing evidence suggest a possible interaction between proteins that have been classically associated to distinct neurodegenerative diseases. Thus, common molecular and cellular pathways might explain similarities between disease phenotypes. Interestingly, the characteristic Parkinson's disease (PD) phenotype linked to bradykinesia is also a clinical presentation of other neurodegenerative diseases. An example is Machado-Joseph disease (MJD), with some patients presenting parkinsonism and a positive response to levodopa (L-DOPA). Protein aggregates positive for α-synuclein (α-Syn), a protein associated with PD, in the substantia nigra of MJD models made us hypothesize a putative additive biological effect induced by expression of α-Syn and ataxin-3 (Atx3), the protein affected in MJD. Hence, in this study we analysed the influence of these two proteins (α-Syn and wild-type or mutant Atx3) on modified redox signaling, a pathological process potentially linked to both diseases, and also the impact of exposure to iron and rotenone in SH-SY5Y neuroblastoma cells. Our results show that both α-Syn and mutant Atx3 overexpression per se increased oxidation of dichlorodihydrofluorescein (DCFH2), and co-expression of these proteins exhibited additive effect on intracellular oxidation, with no correlation with apoptotic features. Mutant Atx3 and α-Syn also potentiated altered redox status induced by iron and rotenone, a hint to how these proteins might influence neuronal dysfunction under pro-oxidant conditions. We further show that overexpression of wild-type Atx3 decreased intracellular DCFH2 oxidation, possibly exerting a neuroprotective role.

  16. Tissue kallikrein induces SH-SY5Y cell proliferation via epidermal growth factor receptor and extracellular signal-regulated kinase1/2 pathway

    SciTech Connect

    Lu, Zhengyu; Yang, Qi; Cui, Mei; Liu, Yanping; Wang, Tao; Zhao, Hong; Dong, Qiang

    2014-03-28

    Highlights: • TK promotes EGFR phosphorylation in SH-SY5Y cells. • TK activates ERK1/2 and p38 phosphorylation in SH-SY5Y cells. • TK mediates SH-SY5Y cell proliferation via EGFR and ERK1/2 pathway. - Abstract: Tissue kallikrein (TK) is well known to take most of its biological functions through bradykinin receptors. In the present study, we found a novel signaling pathway mediated by TK through epidermal growth factor receptor (EGFR) in human SH-SY5Y cells. We discovered that TK facilitated the activation of EGFR, extracellular signal-regulated kinase (ERK) 1/2 and p38 cascade. Interestingly, not p38 but ERK1/2 phosphorylation was severely compromised in cells depleted of EGFR. Nevertheless, impairment of signaling of ERK1/2 seemed not to be restricted to EGFR phosphorylation. We also observed that TK stimulation could induce SH-SY5Y cell proliferation, which was reduced by EGFR down-regulation or ERK1/2 inhibitor. Overall, our findings provided convincing evidence that TK could mediate cell proliferation via EGFR and ERK1/2 pathway in vitro.

  17. Raman micro-spectroscopy study of living SH-SY5Y cells adhering on different substrates.

    PubMed

    Caponi, S; Mattana, S; Ricci, M; Sagini, K; Urbanelli, L; Sassi, P; Morresi, A; Emiliani, C; Dalla Serra, M; Iannotta, S; Musio, C; Fioretto, D

    2016-01-01

    In this paper we test the ability of Raman micro-spectroscopy and Raman mapping to investigate the status of cells grown in adhesion on different substrates. The spectra of immortalized SH-SY5Y cells, grown on silicon and on metallic substrates are compared with those obtained for the same type of cells adhering on organic polyaniline (PANI), a memristive substrate chosen to achieve a living bio-hybrid system. Raman spectra give information on the status of the single cell, its local biochemical composition, and on the modifications induced by the substrate interaction. The good agreement between Raman spectra collected from cells adhering on different substrates confirms that the PANI, besides allowing the cell growth, doesn't strongly affect the general biochemical properties of the cell. The investigation of the cellular state in a label free condition is challenging and the obtained results confirm the Raman ability to achieve this information.

  18. Proteasome Inhibitors Alter Levels of Intracellular Peptides in HEK293T and SH-SY5Y Cells

    PubMed Central

    Dasgupta, Sayani; Castro, Leandro M.; Dulman, Russell; Yang, Ciyu; Schmidt, Marion; Ferro, Emer S.; Fricker, Lloyd D.

    2014-01-01

    The proteasome cleaves intracellular proteins into peptides. Earlier studies found that treatment of human embryonic kidney 293T (HEK293T) cells with epoxomicin (an irreversible proteasome inhibitor) generally caused a decrease in levels of intracellular peptides. However, bortezomib (an antitumor drug and proteasome inhibitor) caused an unexpected increase in the levels of most intracellular peptides in HEK293T and SH-SY5Y cells. To address this apparent paradox, quantitative peptidomics was used to study the effect of a variety of other proteasome inhibitors on peptide levels in HEK293T and SH-SY5Y cells. Inhibitors tested included carfilzomib, MG132, MG262, MLN2238, AM114, and clasto-Lactacystin β-lactone. Only MG262 caused a substantial elevation in peptide levels that was comparable to the effect of bortezomib, although carfilzomib and MLN2238 elevated the levels of some peptides. To explore off-target effects, the proteosome inhibitors were tested with various cellular peptidases. Bortezomib did not inhibit tripeptidyl peptidase 2 and only weakly inhibited cellular aminopeptidase activity, as did some of the other proteasome inhibitors. However, potent inhibitors of tripeptidyl peptidase 2 (butabindide) and cellular aminopeptidases (bestatin) did not substantially alter the peptidome, indicating that the increase in peptide levels due to proteasome inhibitors is not a result of peptidase inhibition. Although we cannot exclude other possibilities, we presume that the paradoxical increase in peptide levels upon treatment with bortezomib and other inhibitors is the result of allosteric effects of these compounds on the proteasome. Because intracellular peptides are likely to be functional, it is possible that some of the physiologic effects of bortezomib and carfilzomib arise from the perturbation of peptide levels inside the cell. PMID:25079948

  19. Preventing expression of the nicotinic receptor subunit α7 in SH-SY5Y cells with interference RNA indicates that this receptor may protect against the neurotoxicity of Aβ.

    PubMed

    Qi, Xiao-Lan; Ou-Yang, Kai; Ren, Jia-Mou; Wu, Chang-Xue; Xiao, Yan; Li, Yi; Guan, Zhi-Zhong

    2013-05-01

    The present aim was to characterize the influence of the α7 nicotinic acetylcholine receptor (nAChR) on BACE, the enzyme that cleaves the amyloid precursor protein (APP) at the β-site, as well as on the oxidative stress induced by amyloid-β peptide (Aβ). To this end, human neuroblastoma SH-SY5Y cells were transfected with siRNAs targeting the α7 nAChR subunit and/or exposed to Aβ1-42. For α7 nAChR, BACE1 (cleaving at the β-site of APP) and BACE2 (cleaving within the Aβ domain), α-secretase (ADAM10), and the two components of γ-secretase, PS and NCT, the mRNA and protein levels were determined by real-time PCR and Western blotting, respectively. The level of Aβ1-42 in the cell culture medium was determined by an ELISA procedure. The extent of lipid peroxidation and activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were assayed spectrophotometrically. In the transfected SH-SY5Y cells, expression of α7 nAChR was reduced; the level of BACE1 increased and that of BACE2 decreased; the amount of ADAM10 lowered; and the level of PS raised. Moreover, the level of Aβ1-42 in the culture medium was elevated. Treatment of non-transfected cells with Aβ elevated the level of malondialdehyde (MDA) and lowered the activities of SOD and GSH-Px and these changes were potentiated by inhibiting expression of α7 nAChR. These results indicate that α7 nAChR plays a significant role in amyloidogenic metabolism of APP and the oxidative stress evoked by Aβ, suggesting that this receptor might help protect against the neurotoxicity of Aβ.

  20. Neuroprotective Effect of SLM, a Novel Carbazole-Based Fluorophore, on SH-SY5Y Cell Model and 3xTg-AD Mouse Model of Alzheimer's Disease.

    PubMed

    Wu, Xiaoli; Kosaraju, Jayasankar; Zhou, Wei; Tam, Kin Yip

    2017-03-15

    Amyloid β (Aβ) peptide aggregating to form a neurotoxic plaque, leading to cognitive deficits, is believed to be one of the plausible mechanisms for Alzheimer's disease (AD). Inhibiting Aβ aggregation is supposed to offer a neuroprotective effect to ameliorate AD. A previous report has shown that SLM, a carbazole-based fluorophore, binds to Aβ to inhibit the aggregation. However, it is not entirely clear whether the inhibition of Aβ aggregation alone would lead to the anticipated neuroprotective effects. In the current study, we intended to examine the protective action of SLM against Aβ-induced neurotoxicity in vitro and to evaluate if SLM can decrease the cognitive and behavioral deficits observed in triple transgenic AD mouse model (3xTg-AD). In the in vitro study, neurotoxicity induced by Aβ42 in human neuroblastoma (SH-SY5Y) cells was found to be reduced through the treatment with SLM. In the in vivo study, following one month SLM intraperitoneal injection (1, 2, and 4 mg/kg), 3xTg-AD mice were tested on Morris water maze (MWM) and Y-maze for their cognitive ability and sacrificed for biochemical estimations. Results show that SLM treatment improved the learning and memory ability in 3xTg-AD mice in MWM and Y-maze tasks. SLM also mitigated the amyloid burden by decreasing brain Aβ40 and Aβ42 levels and reduced tau phosphorylation, glycogen synthase kinase-3β activity, and neuro-inflammation. From our observations, SLM shows neuroprotection in SH-SY5Y cells against Aβ42 and also in 3xTg-AD mouse model by mitigating the pathological features and behavioral impairments.

  1. Noscapine induced apoptosis via downregulation of survivin in human neuroblastoma cells having wild type or null p53.

    PubMed

    Li, Shiwang; He, Jing; Li, Shuai; Cao, Guoqing; Tang, Shaotao; Tong, Qiangsong; Joshi, Harish C

    2012-01-01

    Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Chemotherapy is the mainstay of treatment in children with advanced neuroblastoma. Noscapine, a nontoxic natural compound, can trigger apoptosis in many cancer types. We now show that p53 is dispensable for Noscapine-induced cell death in neuroblastoma cell lines, proapoptotic response to this promising chemopreventive agent is mediated by suppression of survivin protein expression. The Noscapine treatment increased levels of total and Ser(15)-phosphorylated p53 protein in SK-SY5Y cells, but the proapoptotic response to this agent was maintained even after knockdown of the p53 protein level. Exposure of SK-SY5Y and LA1-5S cells to Noscapine resulted in a marked decrease in protein and mRNA level of survivin as early as 12 hours after treatment. Ectopic expression of survivin conferred statistically significant protection against Noscapine-mediated cytoplasmic histone-associated apoptotic DNA fragmentation. Also, the Noscapine-induced apoptosis was modestly but statistically significantly augmented by RNA interference of survivin in both cell lines. Furthermore, Noscapine-induced apoptotic cell death was associated with activation of caspase-3 and cleavage of PARP. In conclusion, the present study provides novel insight into the molecular circuitry of Noscapine-induced apoptosis to indicate suppression of survivin expression as a critical mediator of this process.

  2. Transcription factor activity of estrogen receptor α activation upon nonylphenol or bisphenol A treatment enhances the in vitro proliferation, invasion, and migration of neuroblastoma cells

    PubMed Central

    Ma, Hongda; Yao, Yao; Wang, Changli; Zhang, Liyu; Cheng, Long; Wang, Yiren; Wang, Tao; Liang, Erguang; Jia, Hui; Ye, Qinong; Hou, Mingxiao; Feng, Fan

    2016-01-01

    Many kinds of endocrine-disrupting chemicals (EDCs), for example, the environmental estrogens bisphenol A and nonylphenol, may regulate the activity of estrogen receptor α (ERα) and therefore induce potential disruption of normal endocrine function. However, the involvement of EDCs in human cancers, especially in endocrine-related cancer neuroblastoma regulation, is not very clear. In this work, results showed that upon bisphenol A or nonylphenol treatment, the transcription factor activity of ERα was significantly increased in neuroblastoma cell line SH-SY5Y. Bisphenol A and nonylphenol could enhance ERα activity via recruiting it to the target gene promoter. Furthermore, treatment of bisphenol A and nonylphenol enhanced the in vitro proliferation, invasion, and migration ability of neuroblastoma cells. By investigating the role of EDC-induced ERα upregulation, our data extend the understanding of the function of EDCs and further suggest that ERα might be a potential therapeutic target in human neuroblastoma treatment. PMID:27366082

  3. Differential Aminoacylase Expression in Neuroblastoma

    PubMed Central

    Long, Patrick M.; Stradecki, Holly M.; Minturn, Jane E.; Wesley, Umadevi V.; Jaworski, Diane M.

    2012-01-01

    Neuroblastoma, a cancer of the sympathetic nervous system, is the most common extracranial solid tumor in children. MYCN amplification and increased BDNF/TrkB signaling are features of high-risk tumors; yet, only ~25% of malignant tumors display these features. Thus, the identification of additional biomarkers and therapeutic targets is essential. Since aminoacylase 1 (ACY1), an amino acid deacetylase, is a putative tumor suppressor in small cell lung and renal cell carcinomas, we investigated whether it or the other family members aspartoacylase (ASPA, aminoacylase 2) or aminoacylase 3 (ACY3) could serve a similar function in neuroblastoma. Aminoacylase expression was examined in TrkB-positive, MYCN-amplified (SMS-KCNR and SK-N-BE) and TrkB-negative, non-MYCN amplified (SK-N-AS, SK-N-SH, SH-SY5Y, and SH-EP) neuroblastoma cell lines. Each aminoacylase exhibited distinct spatial localization (i.e., cytosolic ACY1, membrane-associated ASPA, and nuclear ACY3). When SK-N-SH cells were treated with neural differentiation agents (e.g., retinoic acid, cAMP) in media containing 10% serum ACY1 was the only aminoacylase whose expression was up-regulated. ASPA was primarily expressed in SH-EP cells of a glial sublineage. ACY3 was more highly expressed in the TrkB-positive, MYCN-amplified lines. All three aminoacylases were expressed in normal human adrenal gland, a common site of neuroblastoma origin, but only ACY1 and ACY3 displayed detectable expression in primary neuroblastoma tumor. Bioinformatics data mining of Kaplan-Meier survival revealed that high ACY3 expression is correlated with poor prognosis; while, low expression of ACY1 or ASPA is correlated with poor prognosis. These data suggest that aminoacylase expression is dysregulated in neuroblastoma. PMID:21128244

  4. Salvianolic Acid B Inhibits Aβ Generation by Modulating BACE1 Activity in SH-SY5Y-APPsw Cells.

    PubMed

    Tang, Ying; Huang, Dan; Zhang, Mei-Hua; Zhang, Wen-Sheng; Tang, Yu-Xin; Shi, Zheng-Xiang; Deng, Li; Zhou, Dai-Han; Lu, Xin-Yi

    2016-06-01

    Alzheimer's disease (AD) is a neurodegenerative disease in humans. The accumulation of amyloid-β (Aβ) plays a critical role in the pathogenesis of AD. Previous studies indicated that Salvianolic acid B (SalB) could ameliorate Aβ-induced memory impairment. However, whether SalB could influence the generation of Aβ is unclear. Here, we show that SalB (25, 50, or 100 µM) reduces the generation of Aβ40 and Aβ42 in culture media by decreasing the protein expressions of BACE1 and sAPPβ in SH-SY5Y-APPsw cells. Meanwhile, SalB increases the levels of ADAM10 and sAPPα in the cells. However, SalB has no impact on the protein expressions of APP and PS1. Moreover, SalB attenuates oxidative stress and inhibits the activity of GSK3β, which might be related to the suppression of BACE1 expression and amyloidogenesis. Our study suggests that SalB is a promising therapeutic agent for AD by targeting Aβ generation.

  5. Salvianolic Acid B Inhibits Aβ Generation by Modulating BACE1 Activity in SH-SY5Y-APPsw Cells

    PubMed Central

    Tang, Ying; Huang, Dan; Zhang, Mei-Hua; Zhang, Wen-Sheng; Tang, Yu-Xin; Shi, Zheng-Xiang; Deng, Li; Zhou, Dai-Han; Lu, Xin-Yi

    2016-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disease in humans. The accumulation of amyloid-β (Aβ) plays a critical role in the pathogenesis of AD. Previous studies indicated that Salvianolic acid B (SalB) could ameliorate Aβ-induced memory impairment. However, whether SalB could influence the generation of Aβ is unclear. Here, we show that SalB (25, 50, or 100 µM) reduces the generation of Aβ40 and Aβ42 in culture media by decreasing the protein expressions of BACE1 and sAPPβ in SH-SY5Y-APPsw cells. Meanwhile, SalB increases the levels of ADAM10 and sAPPα in the cells. However, SalB has no impact on the protein expressions of APP and PS1. Moreover, SalB attenuates oxidative stress and inhibits the activity of GSK3β, which might be related to the suppression of BACE1 expression and amyloidogenesis. Our study suggests that SalB is a promising therapeutic agent for AD by targeting Aβ generation. PMID:27258307

  6. Neuroblastoma

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Neuroblastoma KidsHealth > For Parents > Neuroblastoma Print A A A ... infancy, the chance of recovery is good. About Neuroblastoma Neuroblastoma most commonly starts in the tissue of ...

  7. Neuroblastoma

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Neuroblastoma KidsHealth > For Parents > Neuroblastoma A A A What's ... infancy, the chance of recovery is good. About Neuroblastoma Neuroblastoma most commonly starts in the tissue of ...

  8. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

    PubMed

    Gaviglio, Angela L; Knelson, Erik H; Blobe, Gerard C

    2017-02-07

    High-risk neuroblastoma is characterized by undifferentiated neuroblasts and low Schwannian stroma content. The tumor stroma contributes to the suppression of tumor growth by releasing soluble factors that promote neuroblast differentiation. Here we identify heparin-binding epidermal growth factor-like growth factor (HBEGF) as a potent prodifferentiating factor in neuroblastoma. HBEGF mRNA expression is decreased in human neuroblastoma tumors compared with benign tumors, with loss correlating with decreased survival. HBEGF protein is expressed only in stromal compartments of human neuroblastoma specimens, with tissue from high-stage disease containing very little stroma or HBEGF expression. In 3 human neuroblastoma cell lines (SK-N-AS, SK-N-BE2, and SH-SY5Y), soluble HBEGF is sufficient to promote neuroblast differentiation and decrease proliferation. Heparan sulfate proteoglycans and heparin derivatives further enhance HBEGF-induced differentiation by forming a complex with the epidermal growth factor receptor, leading to activation of the ERK1/2 and STAT3 pathways and up-regulation of the inhibitor of DNA binding transcription factor. These data support a role for loss of HBEGF in the neuroblastoma tumor microenvironment in neuroblastoma pathogenesis.-Gaviglio, A. L., Knelson, E. H., Blobe, G. C. Heparin-binding epidermal growth factor-like growth factor promotes neuroblastoma differentiation.

  9. Antioxidant and Proliferative Activities of Bupleuri Radix Extract Against Serum Deprivation in SH-SY5Y Cells

    PubMed Central

    Seo, Mi Kyoung; Cho, Hye Yeon; Lee, Chan Hong; Koo, Kyung Ah; Park, Yong Ki; Lee, Jung Goo; Lee, Bong Ju

    2013-01-01

    Objective Bupleuri Radix (BR) is a major component of several Oriental herbal medicines used to treat stress and mental illness. There are evidences that antidepressant drugs modulate oxidative damage implicated in the pathophysiology of neuropsychiatric disorder, including depression. The aim of the present study was to investigate antioxidant and proliferative effects of BR against oxidative stress induced by serum deprivation in SH-SY5Y cells. Methods We examined the antioxidant effects of BR on a number of measures, including cell viability, formation of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and levels of both Bcl-2 and Bax. We also investigated the effects of BR on cell proliferation using the bromodeoxyuridine (BrdU) assay, and used Western blot analysis to measure changes in expression of the cell cycle phase regulators. Results 1) Serum deprivation significantly induced the loss of cell viability, the formation of ROS, the reduction of SOD activity, down-regulation of Bcl-2 expression and up-regulation of Bax expression. However, BR extract reversed these effects in dose-dependent manner. 2) Serum deprivation significantly reduced cell proliferation. Western blot analysis revealed that serum deprivation significantly decreased cyclinD1 and phosphorylated retinoblastoma (pRb) expression, and increased p27 expression. On the other hand, BR dose dependently reversed these effects. Conclusion This study suggests that aqueous extract of BR may exert potent antioxidant effects and also play an important role in regulating cell cycle progression during neurogenesis. These effects of BR may be a potentially important mechanism of antidepressant underlying the observed antioxidant and proliferative effects. PMID:23483021

  10. Dimethyl fumarate attenuates 6-OHDA-induced neurotoxicity in SH-SY5Y cells and in animal model of Parkinson's disease by enhancing Nrf2 activity.

    PubMed

    Jing, X; Shi, H; Zhang, C; Ren, M; Han, M; Wei, X; Zhang, X; Lou, H

    2015-02-12

    Oxidative stress is central to the pathology of several neurodegenerative diseases, including Parkinson's disease (PD), and therapeutics designed to enhance antioxidant potential could have clinical value. In this study, we investigated whether dimethyl fumarate (DMF) has therapeutic effects in cellular and animal model of PD, and explore the role of nuclear transcription factor related to NF-E2 (Nrf2) in this process. Treatment of animals and dopaminergic SH-SY5Y cells with DMF resulted in increased nuclear levels of active Nrf2, with subsequent upregulation of antioxidant target genes. The cytotoxicity of 6-hydroxydopamine (6-OHDA) was reduced by pre-treatment with DMF in SH-SY5Y cells. The increase in the reactive oxygen species caused by 6-OHDA treatment was also attenuated by DMF in SH-SY5Y cells. The neuroprotective effects of DMF against 6-OHDA neurotoxicity were dependent on Nrf2, since treatment with Nrf2 siRNA failed to block against 6-OHDA neurotoxicity and induce Nrf2-dependent cytoprotective genes in SH-SY5Y cells. In vivo, DMF oral administration was shown to upregulate mRNA and protein levels of Nrf2 and Nrf2-regulated cytoprotective genes, attenuate 6-OHDA induced striatal oxidative stress and inflammation in C57BL/6 mice. Moreover, DMF ameliorated dopaminergic neurotoxicity in 6-OHDA-induced PD animal models as evidenced by amelioration of locomotor dysfunction, loss in striatal dopamine, and reductions in dopaminergic neurons in the substantia nigra and striatum. Taken together, these data strongly suggest that DMF may be beneficial for the treatment of neurodegenerative diseases like PD.

  11. Myricitrin alleviates methylglyoxal-induced mitochondrial dysfunction and AGEs/RAGE/NF-κB pathway activation in SH-SY5Y cells.

    PubMed

    Wang, Yue-Hua; Yu, Hai-Tao; Pu, Xiao-Ping; Du, Guan-Hua

    2014-08-01

    Advanced glycation end products (AGEs) have been identified in age-related intracellular protein deposits of neurodegenerative diseases. Methylglyoxal (MGO), a dicarbonyl metabolite, is a major precursor of AGEs which have been linked to the development of neurodegenerative diseases. Myricitrin, a flavanoid isolated from the root bark of Myrica cerifera, attenuated 6-OHDA-induced mitochondrial dysfunction and had a potential anti-Parkinson's disease in our previous investigation. The aims of this study were to investigate the protective effects of myricitrin against MGO-induced injury in SH-SY5Y cells and also to look for the possible mechanisms. The results showed that exposure of SH-SY5Y cells to MGO caused decreases of cell viability, intracellular ATP, mitochondrial redox activity, and mitochondrial membrane potential and an increase in reactive oxygen species generation. However, these mitochondrial dysfunctions were alleviated by co-treatment with myricitrin. Additionally, myricitrin was capable of inhibiting AGEs formation, blocking RAGE expression, and inhibiting NF-κB activation and translocation triggered by MGO in SH-SY5Y cells. Our results suggest that myricitrin alleviates MGO-induced mitochondrial dysfunction, and the possible mechanism is through modulating the AGEs/RAGE/NF-κB pathway. In summary, myricitrin might offer a promising therapeutic strategy to reduce the neurotoxicity of reactive dicarbonyl compounds, providing a potential benefit agent with age-related neurodegenerative diseases.

  12. Hydroethanolic extracts from different genotypes of açaí (Euterpe oleracea) presented antioxidant potential and protected human neuron-like cells (SH-SY5Y).

    PubMed

    Torma, Priscila do Carmo Marchioro Raupp; Brasil, Allana Von Sulzback; Carvalho, Ana Vânia; Jablonski, André; Rabelo, Thallita Kelly; Moreira, José Cláudio Fonseca; Gelain, Daniel Pens; Flôres, Simone Hickmann; Augusti, Paula Rossini; Rios, Alessandro de Oliveira

    2017-05-01

    Fruit breeding programs have resulted in bioactive compounds increase and health effects. Thus, this study aimed to evaluate the antioxidant activity and neuroprotective effects of the hydroethanolic extracts from six açaí (Euterpe oleracea) genotypes using ABTS, deoxyribose, and glutathione oxidation assays, as well as, SH-SY5Y cells insulted with H2O2. L22P13 genotype showed the highest total content of anthocyanins, while L06P13 showed a high content of total carotenoids. However, the genotypes showed no difference in the antioxidant activity by ABTS and deoxyribose assays. The hydroethanolic extracts from different genotypes of açaí showed a protective effect (13-62%) on SH-SY5Y cells insulted by H2O2 at a concentration of 50μg/mL by DCFH-DA assay. Except L04P16, no genotypes showed cytotoxicity in the SRB assay. These results indicate that açaí genotypes have antioxidant effect against reactive species generated in SH-SY5Y cells, suggesting a neuroprotective effect of the hydroethanolic extracts from these fruits.

  13. Identification of chaperones in a MPP+-induced and ATRA/TPA-differentiated SH-SY5Y cell PD model

    PubMed Central

    Xie, Hongrong; Hu, Hui; Chang, Ming; Huang, Dongya; Gu, Xiaobo; Xiong, Xinli; Xiong, Ran; Hu, Linsen; Li, Gang

    2016-01-01

    Parkinson’s disease (PD) is characterized by the pathological accumulation of misfolded proteins. Molecular chaperones assist in the proper folding of proteins and removal of irreversibly misfolded proteins. This study aims to identify potential chaperones associated with protein misfolding and accumulation in PD. ATRA/TPA-differentiated SH-SY5Y cells were treated with 1 mM of MPP+ for 48 hours. Proteins were analyzed by 2D-DIGE followed by MALDI-ToF MS. The treatment of differentiated SH-SY5Y cells by MPP+ led to the unambiguous identification of 10 protein spots, which corresponds to six proteins. Among these six proteins, four were chaperone proteins including nucleophosmin (NPM1), chaperonin-containing TCP-1 subunit 2 (CCT2 or CCTβ), heat shock 90 kDa protein 1 beta (HSP90AB1 or HSP90-β), and tyrosin3/tryptopha5-monoxygenase activation protein, zeta polypeptide (14-3-3ζ, gene symbol: Ywhaz). To our knowledge, this is the first report that linked the upregulation of chaperones after MPP+ treatment with SH-SY5Y cells. However, the NPM1 protein was identified for the first time in the PD model. The upregulation of four chaperone proteins provided evidence that these chaperones have a complementary effect on protein misfolding in the pathogenesis of PD, and hold promise as a good therapeutic target for PD treatment. PMID:28078037

  14. Targeting Notch pathway induces growth inhibition and differentiation of neuroblastoma cells.

    PubMed

    Ferrari-Toninelli, Giulia; Bonini, Sara Anna; Uberti, Daniela; Buizza, Laura; Bettinsoli, Paola; Poliani, Pietro Luigi; Facchetti, Fabio; Memo, Maurizio

    2010-12-01

    High-risk neuroblastoma is a severe pediatric tumor characterized by poor prognosis. Understanding the molecular mechanisms involved in tumor development and progression is strategic for the improvement of pharmacological therapies. Notch was recently proposed as a pharmacological target for the therapy of several cancers and is emerging as a new neuroblastoma-related molecular pathway. However, the precise role played by Notch in this cancer remains to be studied extensively. Here, we show that Notch activation by the Jagged1 ligand enhances the proliferation of neuroblastoma cells, and we propose the possible use of Notch-blocking γ-secretase inhibitors (GSIs) in neuroblastoma therapy. Two different GSIs, Compound E and DAPT, were tested alone or in combination with 13-cis retinoic acid (RA) on neuroblastoma cell lines. SH-SY5Y and IMR-32 cells were chosen as paradigms of lower and higher malignancy, respectively. Used alone, GSIs induced complete cell growth arrest, promoted neuronal differentiation, and significantly reduced cell motility. The combination of GSIs and 13-cis RA resulted in the enhanced growth inhibition, differentiation, and migration of neuroblastoma cells. In summary, our data suggest that a combination of GSIs with 13-cis RA offers a therapeutic advantage over a single agent, indicating a potential novel therapy for neuroblastoma.

  15. Neuroblastoma

    MedlinePlus

    Cancer - neuroblastoma ... Neuroblastoma can occur in many areas of the body. It develops from the tissues that form the ... pressure, digestion, and levels of certain hormones. Most neuroblastomas begin in the abdomen, in the adrenal gland, ...

  16. Toxicity of the amphetamine metabolites 4-hydroxyamphetamine and 4-hydroxynorephedrine in human dopaminergic differentiated SH-SY5Y cells.

    PubMed

    Feio-Azevedo, R; Costa, V M; Ferreira, L M; Branco, P S; Pereira, F C; Bastos, M L; Carvalho, F; Capela, J P

    2017-03-05

    Amphetamine (AMPH) is a psychostimulant used worldwide by millions of patients in the clinical treatment of attention deficit hyperactivity disorder, narcolepsy or even obesity, and is also a drug of abuse. 4-Hydroxynorephedrine (4-OHNE) and 4-hydroxyamphetamine (4-OHAMPH) are two major metabolites known to persist in the brain longer than AMPH. The contribution of AMPH metabolites for its neurotoxicity is undetermined. We evaluated the toxicity of AMPH and its metabolites 4-OHNE and 4-OHAMPH, obtained by chemical synthesis, in human dopaminergic differentiated SH-SY5Y neurons. Cells were exposed to AMPH (concentration range 0-5mM) or 4-OHAMPH or 4-OHNE (concentration range 0-10mM) for 24 or 48h, and the viability was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) and lactate dehydrogenase (LDH) leakage assays. Results showed that for both AMPH and the metabolites a concentration-dependent toxicity was observed. The toxic concentration 50% (TC50) for AMPH and 4-OHNE following 24h exposure was circa 3.5mM and 8mM, respectively. For 4-OHAMPH the TC50 was not reached in the tested concentration range. N-acetyl cysteine, cycloheximide, l-carnitine, and methylphenidate were able to reduce cell death induced by AMPH TC50. Acridine orange/ethidium bromide staining showed evident signs of late apoptotic cells and necrotic cells following 24h exposure to AMPH 3.50mM. The 4-OHAMPH metabolite at 8.00mM originated few late apoptotic cells, whereas 4-OHNE at 8.00mM resulted in late apoptotic cells and necrotic cells, in a scenario similar to AMPH. In conclusion, the AMPH metabolite 4-OHNE is more toxic than 4-OHAMPH, nonetheless both are less toxic than the parent compound in vitro. The most toxic metabolite 4-OHNE has longer permanence in the brain, rendering likely its contribution for AMPH neurotoxicity.

  17. Amyloid Beta Peptides Affect Pregnenolone and Pregnenolone Sulfate Levels in PC-12 and SH-SY5Y Cells Depending on Cholesterol.

    PubMed

    Calan, Ozlem Gursoy; Akan, Pinar; Cataler, Aysenur; Dogan, Cumhur; Kocturk, Semra

    2016-07-01

    Increased amyloid beta (AB) peptide concentration is one of the initiating factors in the neurodegeneration process. It has been suggested that cholesterol induces the synthesis of AB peptide from amyloid precursor protein or facilitates the formation of amyloid plaque by lowering the aggregation threshold of the peptide. It is also shown that AB peptides may affect cholesterol metabolism and the synthesis of steroid hormones such as progesterone and estradiol. Pregnenolone (P) and pregnenolone sulfate (PS) are the major steroids produced from cholesterol in neural tissue. In toxicity conditions, the effect of AB peptides on P and PS levels has not yet been determined. Furthermore, it has not been clearly defined how changes in cellular P and PS levels affect neuronal cell survival. The aim of this study was to determine the effects of AB peptides on cellular changes in P and PS levels depending on the level of their main precursor, cholesterol. Cholesterol and toxic concentrations of AB fragments (AB 25-35, AB 1-40 and AB 1-42) were applied to PC-12 and SH-SY5Y cells. Changes in cellular cholesterol, P and PS levels were determined simultaneously in a dose-and time-dependent manner. The cell viability and cell death types were also evaluated. AB peptides affected both cell viability and P/PS levels. Steroid levels were altered depending on AB fragment type and the cholesterol content of the cells. Treatment with each of the AB fragments alone increased P levels by twofold. However, combined treatment with AB peptides and cholesterol increased P levels by approximately sixfold, while PS levels were increased only about 2.5 fold in both cell lines. P levels in the groups treated with AB 25-35 were higher than those in AB 1-40 and AB 1-42 groups. The cell viabilities were significantly low in the group treated by AB and cholesterol (9 mM). The effect of AB peptides on P levels might be a result of cellular self-defense. On the other hand, the rate of P increase

  18. The Co-chaperone BAG2 Mediates Cold-Induced Accumulation of Phosphorylated Tau in SH-SY5Y Cells.

    PubMed

    de Paula, Cesar Augusto Dias; Santiago, Fernando Enrique; de Oliveira, Adriele Silva Alves; Oliveira, Fernando Augusto; Almeida, Maria Camila; Carrettiero, Daniel Carneiro

    2016-05-01

    Inclusions of phosphorylated tau (p-tau) are a hallmark of many neurodegenerative disorders classified as "tauopathy," of which Alzheimer's disease is the most prevalent form. Dysregulation of tau phosphorylation disrupts neuron structure and function, and hyperphosphorylated tau aggregates to form neurotoxic inclusions. The abundance of ubiquitin in tau inclusions suggests a defect in ubiquitin-mediated tau protein degradation by the proteasome. Under the temperature of 37 °C, the co-chaperone BAG2 protein targets phosphorylated tau for degradation via by a more-efficient, ubiquitin-independent pathway. In both in vivo and in vitro studies, cold exposure induces the accumulation of phosphorylated tau protein. The SH-SY5Y cell line differentiates into neuron-like cells on treatment with retinoic acid and is an established model for research on the effects of cold on tau phosphorylation. The aim of the present study was to investigate whether BAG2 mediates the cold-induced accumulation of phosphorylated tau protein. Our findings show that cold exposure causes a decrease in BAG2 expression in undifferentiated cells. Conversely, BAG2 expression is increased in differentiated cells exposed to cold. Further, undifferentiated cells exposed to cold had an increased proportion of p-tau to total tau, suggesting an accumulation of p-tau that is consistent with decreased levels of BAG2. Overexpression of BAG2 in cold-exposed undifferentiated cells restored levels of p-tau to those of 37 °C undifferentiated control. Interestingly, although BAG2 expression increased in differentiated cells, this increase was not accompanied by a decrease in the proportion of p-tau to total tau. Further, overexpression of BAG2 in cold exposed differentiated cells showed no significant difference in p-tau levels compared to 37 °C controls. Taken together, these data show that expression of BAG2 is differently regulated in a differentiation-dependent context. Our results suggest that

  19. FLZ, a novel HSP27 and HSP70 inducer, protects SH-SY5Y cells from apoptosis caused by MPP(+).

    PubMed

    Kong, Xiang-Chen; Zhang, Dan; Qian, Cheng; Liu, Geng-Tao; Bao, Xiu-Qi

    2011-04-06

    Heat shock proteins (HSPs) play an essential role in various neurodegenerative diseases. Manipulation of upregulation of HSPs in cells has been demonstrated to provide a therapeutic strategy to counteract the misfolding and aggregation of proteins that resulted in neurodegenerative disease. Our previous studies have shown that FLZ, a synthetic novel derivative of squamosamide from a Chinese herb, had potent neuroprotective effect against several experimental Parkinson's disease (PD) models. However, the mechanism of its neuroprotective effect is still not clarified. The present study demonstrated that FLZ induced HSP27 and HSP70 proteins and mRNA expression in a time- and dose-dependent manner in SH-SY5Y cells. Further studies showed that FLZ treatment stimulated the activation of heat shock factor 1 (HSF1) and its regulatory kinase Akt. Inactivation of Akt pathway by the PI3K inhibitor LY294002 blocked the expression of HSP27 and HSP70 induced by FLZ. Moreover, the inducing effects of FLZ on HSP27, HSP70, and HSF1 were all blocked by quercetin, an inhibitor of HSP biosynthesis. The cytoprotective effect of HSP27/HSP70 induced by FLZ against MPP(+) was assessed in SH-SY5Y cells. The pretreatment of FLZ significantly induced the accumulations of HSP27/HSP70 and suppressed the apoptosis caused by MPP(+) in SH-SY5Y cells. However, the protective effects of FLZ against MPP(+) were significantly blocked by quercetin, which indicated that the cytoprotective action of FLZ against MPP(+)-induced apoptosis is at least partially mediated by its induction of HSP27/HSP70. These results provide new evidence for elucidating the mechanism of the neuroprotective effect of FLZ against PD.

  20. Tumor necrosis factor expressed by primary hippocampal neurons and SH-SY5Y cells is regulated by alpha(2)-adrenergic receptor activation.

    PubMed

    Renauld, A E; Spengler, R N

    2002-01-15

    Neuron expression of the cytokine tumor necrosis factor-alpha (TNF), and the regulation of the levels of TNF by alpha(2)-adrenergic receptor activation were investigated. Adult rat hippocampal neurons and phorbol ester (PMA)-differentiated SH-SY5Y cells were examined. Intracellular levels of TNF mRNA accumulation, as well as TNF protein and that released into the supernatant were quantified by in situ hybridization, immunocytochemistry and bioanalysis, respectively. Both neuron cultures demonstrated constitutive production of TNF. Activation of the alpha(2)-adrenergic receptor increased intracellular levels of TNF mRNA and protein in SH-SY5Y cells after addition of graded concentrations of the selective agonist, Brimonidine (UK-14304) to parallel cultures. Intracellular levels of mRNA were increased in a concentration-dependent fashion within 15 min of UK-14304 addition and were sustained during 24 hr of receptor activation. In addition, the levels of TNF in the supernatant were increased in both types of neuron cultures within 15 min of alpha(2)-adrenergic receptor activation. Furthermore, levels of TNF significantly increased in the supernatants of both neuron cultures after potassium-induced depolarization. A reduction in this depolarization-induced release occurred in hippocampal neuron cultures after exposure to the sympathomimetic tyramine with media replacement to deplete endogenous catecholamines. This finding reveals a role for endogenous catecholamines in the regulation of TNF production. Potassium-induced depolarization resulted in the release of TNF in hippocampal neuron cultures within 15 min but not until 24 hr in SH-SY5Y cultures demonstrating a temporally mediated event dependent upon cell type. Neuron expression of TNF, regulated by alpha(2)-adrenergic receptor activation demonstrates not only how a neuron controls its own production of this pleiotropic cytokine, but also displays a normal role for neurons in directing the many functions of TNF.

  1. An Extract from Shrimp Processing By-Products Protects SH-SY5Y Cells from Neurotoxicity Induced by Aβ25–35

    PubMed Central

    Zhang, Yongping; Jiao, Guangling; Song, Cai; Gu, Shelly; Brown, Richard E.; Zhang, Junzeng; Zhang, Pingcheng; Gagnon, Jacques; Locke, Steven; Stefanova, Roumiana; Pelletier, Claude; Zhang, Yi; Lu, Hongyu

    2017-01-01

    Increased evidence suggests that marine unsaturated fatty acids (FAs) can protect neurons from amyloid-β (Aβ)-induced neurodegeneration. Nuclear magnetic resonance (NMR), high performance liquid chromatography (HPLC) and gas chromatography (GC) assays showed that the acetone extract 4-2A obtained from shrimp Pandalus borealis industry processing wastes contained 67.19% monounsaturated FAs and 16.84% polyunsaturated FAs. The present study evaluated the anti-oxidative and anti-inflammatory effects of 4-2A in Aβ25–35-insulted differentiated SH-SY5Y cells. Cell viability and cytotoxicity were measured by using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) assays. Quantitative PCR and Western blotting were used to study the expression of neurotrophins, pro-inflammatory cytokines and apoptosis-related genes. Administration of 20 μM Aβ25–35 significantly reduced SH-SY5Y cell viability, the expression of nerve growth factor (NGF) and its tyrosine kinase TrkA receptor, as well as the level of glutathione, while increased reactive oxygen species (ROS), nitric oxide, tumor necrosis factor (TNF)-α, brain derived neurotrophic factor (BDNF) and its TrkB receptor. Aβ25–35 also increased the Bax/Bcl-2 ratio and Caspase-3 expression. Treatment with 4-2A significantly attenuated the Aβ25–35-induced changes in cell viability, ROS, GSH, NGF, TrkA, TNF-α, the Bax/Bcl-2 ratio and Caspase-3, except for nitric oxide, BDNF and TrKB. In conclusion, 4-2A effectively protected SH-SY5Y cells against Aβ-induced neuronal apoptosis/death by suppressing inflammation and oxidative stress and up-regulating NGF and TrKA expression. PMID:28327516

  2. Interleukin-18 alters protein expressions of neurodegenerative diseases-linked proteins in human SH-SY5Y neuron-like cells

    PubMed Central

    Sutinen, Elina M.; Korolainen, Minna A.; Häyrinen, Jukka; Alafuzoff, Irina; Petratos, Steven; Salminen, Antero; Soininen, Hilkka; Pirttilä, Tuula; Ojala, Johanna O.

    2014-01-01

    Chronic inflammation and oxidative stress (OS) are present in Alzheimer's disease (AD) brains in addition to neuronal loss, Amyloid-β (Aβ) plaques and hyperphosphorylated tau-protein neurofibrillary tangles (NFTs). Previously we showed that levels of the pro-inflammatory cytokine, interleukin-18 (IL-18), are elevated in post-mortem AD brains. IL-18 can modulate the tau kinases, Cdk5 and GSK3β, as well as Aβ-production. IL-18 levels are also increased in AD risk diseases, including type-2 diabetes and obesity. Here, we explored other IL-18 regulated proteins in neuron-like SH-SY5Y cells. Differentiated SH-SY5Y cells, incubated with IL-18 for 24, 48, or 72 h, were analyzed by two-dimensional gel electrophoresis (2D-DIGE). Specific altered protein spots were chosen and identified with mass spectrometry (MS) and verified by western immunoblotting (WIB). IL-18 had time-dependent effects on the SH-SY5Y proteome, modulating numerous protein levels/modifications. We concentrated on those related to OS (DDAH2, peroxiredoxins 2, 3, and 6, DJ-1, BLVRA), Aβ-degradation (MMP14, TIMP2), Aβ-aggregation (Septin-2), and modifications of axon growth and guidance associated, collapsin response mediator protein 2 (CRMP2). IL-18 significantly increased antioxidative enzymes, indicative of OS, and altered levels of glycolytic α- and γ-enolase and multifunctional 14-3-3γ and -ε, commonly affected in neurodegenerative diseases. MMP14, TIMP2, α-enolase and 14-3-3ε, indirectly involved in Aβ metabolism, as well as Septin-2 showed changes that increase Aβ levels. Increased 14-3-3γ may contribute to GSK3β driven tau hyperphosphorylation and CRMP2 Thr514 and Ser522 phosphorylation with the Thr555-site, a target for Rho kinase, showing time-dependent changes. IL-18 also increased caspase-1 levels and vacuolization of the cells. Although our SH-SY5Y cells were not aged, as neurons in AD, our work suggests that heightened or prolonged IL-18 levels can drive protein changes of

  3. Functional characterization of a new p53 mutant generated by homozygous deletion in a neuroblastoma cell line

    SciTech Connect

    Nakamura, Yohko; Ozaki, Toshinori; Niizuma, Hidetaka; Ohira, Miki; Kamijo, Takehiko; Nakagawara, Akira . E-mail: akiranak@chiba-cc.jp

    2007-03-23

    p53 is a key modulator of a variety of cellular stresses. In human neuroblastomas, p53 is rarely mutated and aberrantly expressed in cytoplasm. In this study, we have identified a novel p53 mutant lacking its COOH-terminal region in neuroblastoma SK-N-AS cells. p53 accumulated in response to cisplatin (CDDP) and thereby promoting apoptosis in neuroblastoma SH-SY5Y cells bearing wild-type p53, whereas SK-N-AS cells did not undergo apoptosis. We found another p53 (p53{delta}C) lacking a part of oligomerization domain and nuclear localization signals in SK-N-AS cells. p53{delta}C was expressed largely in cytoplasm and lost the transactivation function. Furthermore, a 3'-part of the p53 locus was homozygously deleted in SK-N-AS cells. Thus, our present findings suggest that p53 plays an important role in the DNA-damage response in certain neuroblastoma cells and it seems to be important to search for p53 mutations outside DNA-binding domain.

  4. Shielding of the Geomagnetic Field Alters Actin Assembly and Inhibits Cell Motility in Human Neuroblastoma Cells

    PubMed Central

    Mo, Wei-Chuan; Zhang, Zi-Jian; Wang, Dong-Liang; Liu, Ying; Bartlett, Perry F.; He, Rong-Qiao

    2016-01-01

    Accumulating evidence has shown that absence of the geomagnetic field (GMF), the so-called hypomagnetic field (HMF) environment, alters the biological functions in seemingly non-magnetosensitive cells and organisms, which indicates that the GMF could be sensed by non-iron-rich and non-photo-sensing cells. The underlying mechanisms of the HMF effects on those cells are closely related to their GMF sensation but remain poorly understood so far. Previously, we found that the HMF represses expressions of genes associated with cell migration and cytoskeleton assembly in human neuroblastoma cells (SH-SY5Y cell line). Here, we measured the HMF-induced changes on cell morphology, adhesion, motility and actin cytoskeleton in SH-SY5Y cells. The HMF inhibited cell adhesion and migration accompanied with a reduction in cellular F-actin amount. Moreover, following exposure to the HMF, the number of cell processes was reduced and cells were smaller in size and more round in shape. Furthermore, disordered kinetics of actin assembly in vitro were observed during exposure to the HMF, as evidenced by the presence of granule and meshed products. These results indicate that elimination of the GMF affects assembly of the motility-related actin cytoskeleton, and suggest that F-actin is a target of HMF exposure and probably a mediator of GMF sensation. PMID:27029216

  5. Protective effects of acetyl-L-carnitine on cisplatin cytotoxicity and oxidative stress in neuroblastoma.

    PubMed

    Altun, Zekiye Sultan; Güneş, Dilek; Aktaş, Safiye; Erbayraktar, Zübeyde; Erbayrktar, Zübeyde; Olgun, Nur

    2010-03-01

    The most widely used platinum-derived drug is cisplatin in neuroblastoma (NB) chemotherapy, which is severely neurotoxic. Acetyl-L-Carnitine (ALC) is a natural occurring compound with a neuroprotective activity in several experimental paradigms. The aim of this study was to determine the effects of ALC on cisplatin induced cytotoxicity and oxidative stress in NB cells. SH-SY5Y (N-Myc negative) and KELLY (N-Myc positive) human NB cell lines were used. Cisplatin induced apoptosis was assessed by using a Cell Death Detection ELISA(PLUS) kit. Lipid peroxidation levels were determined by HPLC analysis. Glutathione levels were determined spectrophotometrically. ALC was used prophylactic or after cisplatin application. The level of cisplatin doses were determined in both type of NB cells at which 50% cell death occurred along with synchronized apoptosis induced. Prophylactic 10 and 50 micromol of ALC concentrations were decreased cisplatin induced lipid peroxidation compared to controls that normally exhibited apoptosis especially in SH-SY5Y cells. Cisplatin caused oxidative stress through decreasing glutathione levels in both cell types. ALC were effectively inhibited the increase in cisplatin induced oxidized glutathione and lipid peroxidation formation in NB cells. We suggested that prophylactic ALC would be a useful agent for cisplatin induced toxicity in NB cells.

  6. Haptoglobin increases with age in rat hippocampus and modulates Apolipoprotein E mediated cholesterol trafficking in neuroblastoma cell lines

    PubMed Central

    Spagnuolo, Maria Stefania; Maresca, Bernardetta; Mollica, Maria Pina; Cavaliere, Gina; Cefaliello, Carolina; Trinchese, Giovanna; Esposito, Maria Grazia; Scudiero, Rosaria; Crispino, Marianna; Abrescia, Paolo; Cigliano, Luisa

    2014-01-01

    Alteration in cholesterol metabolism has been implicated in the pathogenesis of several neurodegenerative disorders. Apolipoprotein E (ApoE) is the major component of brain lipoproteins supporting cholesterol transport. We previously reported that the acute-phase protein Haptoglobin (Hpt) binds ApoE, and influences its function in blood cholesterol homeostasis. Major aim of this study was to investigate whether Hpt influences the mechanisms by which cholesterol is shuttled from astrocytes to neurons. In detail it was studied Hpt effect on ApoE-dependent cholesterol efflux from astrocytes and ApoE-mediated cholesterol incorporation in neurons. We report here that Hpt impairs ApoE-mediated cholesterol uptake in human neuroblastoma cell line SH-SY5Y, and limits the toxicity of a massive concentration of cholesterol for these cells, while it does not affect cholesterol efflux from the human glioblastoma-astrocytoma cell line U-87 MG. As aging is the most important non-genetic risk factor for various neurodegenerative disorders, and our results suggest that Hpt modulates ApoE functions, we evaluated the Hpt and ApoE expression profiles in cerebral cortex and hippocampus of adolescent (2 months), adult (5 and 8 months), and middle-aged (16 months) rats. Hpt mRNA level was higher in hippocampus of 8 and 16 month-old than in 2-month old rats (p < 0.05), and Hpt concentration increased with the age from adolescence to middle-age (p < 0.001). ApoE concentration, in hippocampus, was higher (p < 0.001) in 5 month-old rats compared to 2 month but did not further change with aging. No age-related changes of Hpt (protein and mRNA) were found in the cortex. Our results suggest that aging is associated with changes, particularly in the hippocampus, in the Hpt/ApoE ratio. Age-related changes in the concentration of Hpt were also found in human cerebrospinal fluids. The age-related changes might affect neuronal function and survival in brain, and have important implications in brain

  7. Quantitative proteomics study of the neuroprotective effects of B12 on hydrogen peroxide-induced apoptosis in SH-SY5Y cells.

    PubMed

    Zhong, Lijun; Zhou, Juntuo; Chen, Xi; Lou, Yaxin; Liu, Dan; Zou, Xiajuan; Yang, Bin; Yin, Yuxin; Pan, Yan

    2016-03-08

    B12 belongs to the coumarin class of compounds that have been shown to have various physiological and pharmacological activities including anti-inflammatory, antibacterial, and antioxidant. In the present study, we characterised the neuroprotective effects of B12 against H2O2-induced neuronal cell damage in SH-SY5Y cells. Protein expression profiling in combination with pathway analysis was deployed to investigate the molecular events associated with the neuroprotective effects in human neuronal cells using a label-free quantitative proteomics approach. A total of 22 proteins were significantly differentially expressed in H2O2-damaged cells with or without B12 treatment. Bioinformatics analysis using the Cytoscape platform indicated that poly pyrimidine tract binding protein 1 (PTBP1) was highly associated with the protective effect, and western blotting verified that PTBP1 was up-regulated in H2O2 + B12 treatment group, compared with the H2O2 treated group. PTBP RNAi experiments knocked down PTBP expression, which cancelled out the protective effect of B12 on cell viability. Thus, we infer that B12 neuroprotective activity involves up-regulation of PTBP1 and its associated signalling networks following H2O2-induced apoptosis in SH-SY5Y cells. B12 or related compounds may prove to be useful therapeutic agents for the treatment of neurodegenerative diseases such as Alzheimer's and Parkinson's.

  8. Effects of low intensity static magnetic field on FTIR spectra and ROS production in SH-SY5Y neuronal-like cells.

    PubMed

    Calabrò, Emanuele; Condello, Salvatore; Currò, Monica; Ferlazzo, Nadia; Caccamo, Daniela; Magazù, Salvatore; Ientile, Riccardo

    2013-12-01

    Biological effects of man-made electromagnetic fields (EMFs) have been studied so far by experimental approaches exposing animals and cell cultures to EMFs. However, the evidence for cell toxicity induced by static magnetic field (SMF) is still uncertain. We investigated the effects produced by the exposure of human SH-SY5Y neuronal-like cells to a uniform magnetic field at intensities of 2.2 mT, which is less than the recommended public exposure limits set by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). A decrease of membrane mitochondrial potential up to 30% was measured after 24 h of exposure to SMF in SH-SY5Y cells, and this effect was associated with reactive oxygen species production increase. Fourier transform infrared spectroscopy (FTIR) analysis showed that exposure to a static magnetic intensity around 2.2 mT changed the secondary structure of cellular proteins and lipid components. The vibration bands relative to the methylene group increased significantly after 4 h of exposure, whereas further exposure up to 24 h produced evident shifts of amide I and II modes and a relative increase in β-sheet contents with respect to α-helix components. Our study demonstrated that a moderate SMF causes alteration in cell homeostasis, as indicated by FTIR spectroscopy observations of changes in protein structures that are part of cell response to magnetic field exposure.

  9. Nitric oxide-mediated toxicity in paraquat-exposed SH-SY5Y cells: a protective role of 7-nitroindazole.

    PubMed

    Ortiz-Ortiz, Miguel A; Morán, José M; González-Polo, Rosa A; Niso-Santano, Mireia; Soler, Germán; Bravo-San Pedro, José M; Fuentes, José M

    2009-08-01

    The precise mechanism underlying the role of nitric oxide (NO) or nitric oxide synthases (NOSs) in paraquat-mediated toxicity is yet to be fully elucidated. The importance of the NADPH-diaphorase activity of NOSs in paraquat toxicity, in addition to the production of NO, has previously been reported as a mechanism of toxicity. However, other studies have highlighted the toxicity of NO alone and, conversely a protective role of NO in paraquat-mediated toxicity has also been described. The goal of this study was to clarify the involvement of NO and NOS in paraquat-mediated toxicity in an SH-SY5Y cell system, and to evaluate the putative role of 7-nitroindazole as a protective agent in human neural cells. Our results indicate that the three previously described isoforms of NOS are expressed in SH-SY5Y cells, with the data showing that these synthases act as paraquat diaphorases. While this process could occur at the expense of NO production, NO alone does play a toxic role, with its production leading to the formation of the toxicant peroxynitrite. Although the efficacies of the different inhibitors tested cannot be directly compared because the various NOS forms were probably inhibited to differing extents, the results support the idea that endogenous and inducible NO is a neurotoxic mediator of the effects of paraquat. The NADPH-diaphorase activity of NOS and NO production are therefore factors implicated in the toxicity mediated by the herbicide paraquat.

  10. α-synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson’s disease patients

    PubMed Central

    Dieriks, Birger Victor; Park, Thomas I-H.; Fourie, Chantelle; Faull, Richard L. M.; Dragunow, Mike; Curtis, Maurice A.

    2017-01-01

    Parkinson’s disease (PD) is characterized by the presence of inclusions known as Lewy bodies, which mainly consist of α-synuclein (α-syn) aggregates. There is growing evidence that α-syn self-propagates in non-neuronal cells, thereby contributing to the progression and spread of PD pathology in the brain. Tunneling nanotubes (TNTs) are long, thin, F-actin-based membranous channels that connect cells and have been proposed to act as conduits for α-syn transfer between cells. SH-SY5Y cells and primary human brain pericytes, derived from postmortem PD brains, frequently form TNTs that allow α-syn transfer and long-distance electrical coupling between cells. Pericytes in situ contain α-syn precipitates like those seen in neurons. Exchange through TNTs was rapid, but dependent on the size of the protein. Proteins were able to spread throughout a network of cells connected by TNTs. Transfer through TNTs was not restricted to α-syn; fluorescent control proteins and labeled membrane were also exchanged through TNTs. Most importantly the formation of TNTs and transfer continued during mitosis. Together, our results provide a detailed description of TNTs in SH-SY5Y cells and human brain PD pericytes, demonstrating their role in α-syn transfer and further emphasize the importance that non-neuronal cells, such as pericytes play in disease progression. PMID:28230073

  11. Histone deacetylase 4 promotes ubiquitin-dependent proteasomal degradation of Sp3 in SH-SY5Y cells treated with di(2-ethylhexyl)phthalate (DEHP), determining neuronal death

    SciTech Connect

    Guida, Natascia; Laudati, Giusy; Galgani, Mario; Santopaolo, Marianna; Montuori, Paolo; Triassi, Maria; Di Renzo, Gianfranco; Canzoniero, Lorella M.T.; Formisano, Luigi

    2014-10-01

    Phthalates, phthalic acid esters, are widely used as plasticizers to produce polymeric materials in industrial production of plastics and daily consumable products. Animal studies have shown that di(2-ethylhexyl)phthalate (DEHP) may cause toxic effects in the rat brain. In the present study, chronic exposure to DEHP (0.1–100 μM) caused dose-dependent cell death via the activation of caspase-3 in neuroblastoma cells. Intriguingly, this harmful effect was prevented by the pan-histone deacetylase (HDAC) inhibitor trichostatin A, by the class II HDAC inhibitor MC-1568, but not by the class I HDAC inhibitor MS-275. Furthermore, DEHP reduced specificity protein 3 (Sp3) gene expression, but not Sp3 mRNA, after 24 and 48 h exposures. However, Sp3 protein reduction was prevented by pre-treatment with MC-1568, suggesting the involvement of class II HDACs in causing this effect. Then, we investigated the possible relationship between DEHP-induced neuronal death and the post-translational mechanisms responsible for the down-regulation of Sp3. Interestingly, DEHP-induced Sp3 reduction was associated to its deacetylation and polyubiquitination. Co-immunoprecipitation studies showed that Sp3 physically interacted with HDAC4 after DEHP exposure, while HDAC4 inhibition by antisense oligodeoxynucleotide reverted the DEHP-induced degradation of Sp3. Notably, Sp3 overexpression was able to counteract the detrimental effect induced by DEHP. Taken together, these results suggest that DEHP exerts its toxic effect by inducing deacetylation of Sp3 via HDAC4, and afterwards, Sp3-polyubiquitination. - Highlights: • Di(2-ethylhexyl)phthalate (DEHP) is cytotoxic to SH-SY5Y cells and cortical neurons. • DEHP-induced cytotoxicity is mediated by apoptosis. • DEHP-induced apoptotic cell death is inhibited by class II HDAC MC-1568. • DEHP neurotoxicity is caused by HDAC4-mediated Sp3 degradation by ubiquitin.

  12. Transcriptomic profiling of 39 commonly-used neuroblastoma cell lines.

    PubMed

    Harenza, Jo Lynne; Diamond, Maura A; Adams, Rebecca N; Song, Michael M; Davidson, Heather L; Hart, Lori S; Dent, Maiah H; Fortina, Paolo; Reynolds, C Patrick; Maris, John M

    2017-03-28

    Neuroblastoma cell lines are an important and cost-effective model used to study oncogenic drivers of the disease. While many of these cell lines have been previously characterized with SNP, methylation, and/or mRNA expression microarrays, there has not been an effort to comprehensively sequence these cell lines. Here, we present raw whole transcriptome data generated by RNA sequencing of 39 commonly-used neuroblastoma cell lines. These data can be used to perform differential expression analysis based on a genetic aberration or phenotype in neuroblastoma (e.g., MYCN amplification status, ALK mutation status, chromosome arm 1p, 11q and/or 17q status, sensitivity to pharmacologic perturbation). Additionally, we designed this experiment to enable structural variant and/or long-noncoding RNA analysis across these cell lines. Finally, as more DNase/ATAC and histone/transcription factor ChIP sequencing is performed in these cell lines, our RNA-Seq data will be an important complement to inform transcriptional targets as well as regulatory (enhancer or repressor) elements in neuroblastoma.

  13. Transcriptomic profiling of 39 commonly-used neuroblastoma cell lines

    PubMed Central

    Harenza, Jo Lynne; Diamond, Maura A.; Adams, Rebecca N.; Song, Michael M.; Davidson, Heather L.; Hart, Lori S.; Dent, Maiah H.; Fortina, Paolo; Reynolds, C. Patrick; Maris, John M.

    2017-01-01

    Neuroblastoma cell lines are an important and cost-effective model used to study oncogenic drivers of the disease. While many of these cell lines have been previously characterized with SNP, methylation, and/or mRNA expression microarrays, there has not been an effort to comprehensively sequence these cell lines. Here, we present raw whole transcriptome data generated by RNA sequencing of 39 commonly-used neuroblastoma cell lines. These data can be used to perform differential expression analysis based on a genetic aberration or phenotype in neuroblastoma (e.g., MYCN amplification status, ALK mutation status, chromosome arm 1p, 11q and/or 17q status, sensitivity to pharmacologic perturbation). Additionally, we designed this experiment to enable structural variant and/or long-noncoding RNA analysis across these cell lines. Finally, as more DNase/ATAC and histone/transcription factor ChIP sequencing is performed in these cell lines, our RNA-Seq data will be an important complement to inform transcriptional targets as well as regulatory (enhancer or repressor) elements in neuroblastoma. PMID:28350380

  14. Establishment of functional clonal lines of neurons from mouse neuroblastoma.

    PubMed

    Augusti-Tocco, G; Sato, G

    1969-09-01

    Clonal lines of neurons were obtained in culture from a mouse neuroblastoma. The neuroblastoma cells were adapted to culture growth by the animal-culture alternate passage technique and cloned after single-cell plating. The clonal lines retained the ability to form tumors when injected back into mice. A striking morphological change was observed in the cells adapted to culture growth; they appeared as mature neurons, while the cells of the tumor appeared as immature neuroblasts. Acetylcholinesterase and the enzymes for the synthesis of neurotransmitters, cholineacetylase and tyrosine hydroxylase were assayed in the tumor and compared with brain levels; tyrosine hydroxylase was found to be particularly high, as described previously in human neuroblastomas. The three enzymes were found in the clonal cultures at levels comparable to those found in the tumors. Similarly, there were no remarkable differences between the three clones examined.

  15. Curcumin inhibits apoptosis by regulating intracellular calcium release, reactive oxygen species and mitochondrial depolarization levels in SH-SY5Y neuronal cells.

    PubMed

    Uğuz, Abdülhadi Cihangir; Öz, Ahmi; Nazıroğlu, Mustafa

    2016-08-01

    Neurological diseases such as Alzheimer's and Parkinson's diseases are incurable progressive neurological disorders caused by the degeneration of neuronal cells and characterized by motor and non-motor symptoms. Curcumin, a turmeric product, is an anti-inflammatory agent and an effective reactive oxygen and nitrogen species scavenging molecule. Hydrogen peroxide (H2O2) is the main source of oxidative stress, which is claimed to be the major source of neurological disorders. Hence, in this study we aimed to investigate the effect of curcumin on Ca(2+) signaling, oxidative stress parameters, mitochondrial depolarization levels and caspase-3 and -9 activities that are induced by the H2O2 model of oxidative stress in SH-SY5Y neuronal cells. SH-SY5Y neuronal cells were divided into four groups namely, the control, curcumin, H2O2, and curcumin + H2O2 groups. The dose and duration of curcumin and H2O2 were determined from published data. The cells in the curcumin, H2O2, and curcumin + H2O2 groups were incubated for 24 h with 5 µM curcumin and 100 µM H2O2. Lipid peroxidation and cytosolic free Ca(2+) concentrations were higher in the H2O2 group than in the control group; however, their levels were lower in the curcumin and curcumin + H2O2 groups than in the H2O2 group alone. Reduced glutathione (GSH) and glutathione peroxidase (GSH-Px) values were lower in the H2O2 group although they were higher in the curcumin and curcumin + H2O2 groups than in the H2O2 group. Caspase-3 activity was lower in the curcumin group than in the H2O2 group. In conclusion, curcumin strongly induced modulator effects on oxidative stress, intracellular Ca(2+) levels, and the caspase-3 and -9 values in an experimental oxidative stress model in SH-SY5Y cells.

  16. Valproate Attenuates Endoplasmic Reticulum Stress-Induced Apoptosis in SH-SY5Y Cells via the AKT/GSK3β Signaling Pathway

    PubMed Central

    Li, Zhengmao; Wu, Fenzan; Zhang, Xie; Chai, Yi; Chen, Daqing; Yang, Yuetao; Xu, Kebin; Yin, Jiayu; Li, Rui; Shi, Hongxue; Wang, Zhouguang; Li, Xiaokun; Xiao, Jian; Zhang, Hongyu

    2017-01-01

    Endoplasmic reticulum (ER) stress-induced apoptosis plays an important role in a range of neurological disorders, such as neurodegenerative diseases, spinal cord injury, and diabetic neuropathy. Valproate (VPA), a typical antiepileptic drug, is commonly used in the treatment of bipolar disorder and epilepsy. Recently, VPA has been reported to exert neurotrophic effects and promote neurite outgrowth, but its molecular mechanism is still unclear. In the present study, we investigated whether VPA inhibited ER stress and promoted neuroprotection and neuronal restoration in SH-SY5Y cells and in primary rat cortical neurons, respectively, upon exposure to thapsigargin (TG). In SH-SY5Y cells, cell viability was detected by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and the expression of ER stress-related apoptotic proteins such as glucose‑regulated protein (GRP78), C/EBP homologous protein (CHOP), and cleaved caspase-12/-3 were analyzed with Western blot analyses and immunofluorescence assays. To explore the pathway involved in VPA-induced cell proliferation, we also examined p-AKT, GSK3β, p-JNK and MMP-9. Moreover, to detect the effect of VPA in primary cortical neurons, immunofluorescence staining of β-III tubulin and Anti-NeuN was analyzed in primary cultured neurons exposed to TG. Our results demonstrated that VPA administration improved cell viability in cells exposed to TG. In addition, VPA increased the levels of GRP78 and p-AKT and decreased the levels of ATF6, XBP-1, GSK3β, p-JNK and MMP-9. Furthermore, the levels of the ER stress-induced apoptosis response proteins CHOP, cleaved caspase-12 and cleaved caspase-3 were inhibited by VPA treatment. Meanwhile, VPA administration also increased the ratio of Bcl-2/Bax. Moreover, VPA can maintain neurite outgrowth of primary cortical neurons. Collectively, the neurotrophic effect of VPA is related to the inhibition of ER stress-induced apoptosis in SH-SY5Y cells and the

  17. Proliferation of human neuroblastomas mediated by the epidermal growth factor receptor.

    PubMed

    Ho, Ruth; Minturn, Jane E; Hishiki, Tomoro; Zhao, Huaqing; Wang, Qun; Cnaan, Avital; Maris, John; Evans, Audrey E; Brodeur, Garrett M

    2005-11-01

    Neuroblastoma is a common solid tumor of childhood that is derived from the neural crest. Expression of epidermal growth factor (EGF) receptors (EGFRs) has been associated with enhanced cell growth and aggressive behavior in other tumors. Here, we examined the expression profile of EGFRs in neuroblastoma cell lines and primary tumors. We found that all 13 neuroblastoma cell lines examined expressed EGFR1 (HER1), most at readily detectable levels. Low levels of other human EGFR family receptors were also detected in almost all cell lines. All primary tumors examined expressed readily detectable levels of HER1 and HER3 and lower levels of HER2 and HER4. EGF had a significant effect on the proliferation of neuroblastoma cell lines in vitro. EGF treatment (100 ng/mL) of the cell lines SY5Y and NLF significantly increased cell number (P < 0.01). EGF stimulated more cells to enter S and G2-M phase, as suggested by flow cytometry, indicating that EGF increases cell number by increasing proliferation, with no appreciable change in apoptosis. EGF exposure resulted in receptor autophosphorylation and activation of both the mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT pathways. Exposure to 0.5 micromol/L ZD1839, a HER1-specific inhibitor, caused a 40% to 50% reduction in the number of SY5Y and NLF cells grown in medium containing 10% fetal bovine serum (P < 0.01). Even at 0.01 micromol/L, ZD1839 inhibited autophosphorylation of HER1 by EGF. At 0.1 micromol/L, it also blocked phosphorylation of AKT, but not MAPK, in NLF cells. Additional studies showed that the PI3K/AKT-specific inhibitor LY294002 had a more profound effect than the MAPK-specific inhibitor U0126 in blocking EGF-induced cell proliferation. This suggests that the PI3K/AKT pathway is the main signaling pathway responsible for the proliferation effects of EGF in neuroblastomas. Our results also indicate that ZD1839 is a potent inhibitor of neuroblastoma cell proliferation

  18. [COMPARISON OF CYTOPROTECTIVE EFFECTS OF HEMANTANE AND AMANTADINE UNDER CONDITIONS OF 6-HYDROXYDOPAMINE NEUROTOXIN ACTION ON CULTURED HUMAN NEUROBLASTOMA CELLS].

    PubMed

    Logvinov, I O; Antipova, T A; Nepoklonov, A V; Valdman, E A

    2016-01-01

    Potential neuroprotective activity of the novel antiparkinsonian drug hemantane (hydrochloride N-2-(adamantyl)-hexamethylenimine) in comparison to amantadine has been studied in various regimes of administration on human neuroblastoma SH-SY5Y cell line injury induced by 6-hydroxydopamine (6-OHDA), which is used as in vitro model of dopaminergic neurons for Parkinson's disease. Two regimes of hemantane and amantadine administration in a range of final concentrations 10⁻⁶-10⁻⁸ M were used either prior to or immediately after 6-OHDA introduction. MTT colorimetric assay was used to assess the viability of test cells. Significant decrease in viability of SH-SY5Y cells treated with 6-OHDA was observed. The addition of hemantane to cell medium produced cytoprotective effects in both regimes of administration--before and after 6-OHDA--at concentrations 10⁻⁷ M and 10⁻⁶-10⁻⁸ M, respectively. Amantadine in con- centrations 10⁻⁷-10⁻⁸ M was effective to increase cell survival only when administered after 6-OHDA. These results show that hemantane has a greater neu-roprotective potential in comparison to amantadine.

  19. Contactin‑associated protein‑like 2 expression in SH‑SY5Y cells is upregulated by a FOXP2 mutant with a shortened poly‑glutamine tract.

    PubMed

    Zhao, Yunjing; Liu, Xiaoliang; Sun, Hongwei; Wang, Yueping; Yang, Wenzhu; Ma, Hongwei

    2015-12-01

    The forkhead box protein P2 (FOXP2) gene encodes an important transcription factor that contains a polyglutamine (poly‑Q) tract and a forkhead DNA binding domain. It has been observed that FOXP2 is associated with speech sound disorder (SSD), and mutations that decrease the length of the poly‑Q tract were identified in the FOXP2 gene of SSD patients. However, the exact role of poly‑Q reduction is not well understood. In the present study, constructs expressing wild‑type and poly‑Q reduction mutants of FOXP2 were generated by polymerase chain reaction (PCR) using lentiviral vectors and transfected into the SH‑SY5Y neuronal cell line. Quantitative reverse transcription (qRT)‑PCR and western blotting indicated that infected cells stably expressed high levels of FOXP2. Using this cell model, the impact of FOXP2 on the expression of contactin‑associated protein‑like 2 (CNTNAP2) were investigated, and CNTNAP2 mRNA expression levels were observed to be significantly higher in cells expressing poly‑Q‑reduced FOXP2. In addition, the expression level of CASPR2, a mammalian homolog of Drosophila Neurexin IV, was increased in cells expressing the FOXP2 mutant. Demonstration of regulation by FOXP2 indicates that CNTNAP2 may also be involved in SSD.

  20. Extremely Low Frequency Magnetic Field (ELF-MF) Exposure Sensitizes SH-SY5Y Cells to the Pro-Parkinson's Disease Toxin MPP(.).

    PubMed

    Benassi, Barbara; Filomeni, Giuseppe; Montagna, Costanza; Merla, Caterina; Lopresto, Vanni; Pinto, Rosanna; Marino, Carmela; Consales, Claudia

    2016-08-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by dopaminergic neuron loss, with an etiopathogenesis involving both genetic and environmental factors. The occupational/residential exposure to the electromagnetic fields has been recently associated with an increased risk of neurodegenerative diseases; it has been thus proposed that the extremely low frequency magnetic field (ELF-MF) may contribute to neurodegenerative etiopathogenesis, as its interaction with biological systems directly impairs redox homeostasis in specific areas of the brain. The molecular mechanisms elicited by ELF-MF, and their potential involvement in PD onset, still remain unclear. To this end, we set up a generator of ELF-MF able to stably and homogeneously reproduce environmental prolonged exposure to ELF-MF (50 Hz, 1 mT). Results obtained indicate that ELF-MF exposure alters cell response of SH-SY5Y cells to MPP(+). We demonstrate that ELF-MF does not affect per se survival, shape, and morphology of both proliferating and differentiated SH-SY5Y cells but significantly impairs redox homeostasis and thiol content, triggering an increase in protein carbonylation. As a result, toxicity of MPP(+), even at low doses, is highly enhanced in ELF-MF-exposed cells due to a significant increase in ROS levels, potentiation of oxidative damage, and induction of a caspase-dependent apoptosis. Pre-incubation with the thiol antioxidants N-acetyl-L-cysteine and GSH ethyl-ester significantly reduces the extent of oxidative damage and protects cells from death induced by the combined treatment ELF-MF/MPP(+). Taken overall, our results demonstrate the redox-based molecular interaction between ELF-MF and PD neurotoxins in vitro, and open a new scenario for defining the synergy of environmental factors in PD onset.

  1. ETS2 regulating neurodegenerative signaling pathway of human neuronal (SH-SY5Y) cells exposed to single and repeated low-dose sarin (GB).

    PubMed

    Pachiappan, Arjunan; Thwin, Maung Maung; Weng Keong, Loke; Lee, Fook Kay; Manikandan, Jayapal; Sivakumar, Viswanathan; Gopalakrishnakone, Ponnampalam

    2009-06-01

    The mechanistic understanding of low-level sarin-induced neurotoxicity after single or repeated doses has yet to be explored at a cellular level. Using the microarray (Affymetrix-GeneChips) transcription profiling approach, the present study examined gene expression in human SH-SY5Y cells exposed to single (3 and 24 h) or repeated (2 x 24 h) doses of sarin (5 microg/mL) to delineate the possible mechanism. Two hundred twenty-four genes whose expression was significantly (P < 0.01) altered by at least 3-fold were selected by GeneSpringGX analysis. The comparative gene expression data confirmed the transcriptional changes to be related to dose and exposure time of sarin. The effect of a single noncytotoxic sarin dose on gene transcription was variable, whereas repeated doses over 48 h persistently down-regulated genes linked to neurodegenerative mechanisms. Thirty persistently altered genes were validated using real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Similar qRT-PCR profiles obtained in sarin-treated SH-SY5Y and HCN-1A cells confirmed the cell-independent alterations in expression levels. Genes (ETS2, APOE, PSEN1, DDC, and CD9) implicated mainly in the regulation of sarin-induced neuropathogenesis were further confirmed by Western blot and double-immunofluorescence assays. The regulome pathway suggests a new feasible mechanism by which sarin increases ETS2 expression and takes control over other genes involved in the neurodegenerative pathway. The overall data delineate an in vitro experimental model suitable for studying the neuropathology of cells and may provide novel insights into therapeutic interventions.

  2. Neuroprotective effects of chronic exposure of SH-SY5Y to low lithium concentration involve glycolysis stimulation, extracellular pyruvate accumulation and resistance to oxidative stress.

    PubMed

    Nciri, Riadh; Desmoulin, Frank; Allagui, Mohamed Saleh; Murat, Jean-Claude; Feki, Abdelfattah El; Vincent, Christian; Croute, Françoise

    2013-03-01

    Recent studies suggest that lithium protects neurons from death induced by a wide array of neurotoxic insults, stimulates neurogenesis and could be used to prevent age-related neurodegenerative diseases. In this study, SH-SY5Y human neuronal cells were cultured in the absence (Con) or in the presence (Li+) of a low lithium concentration (0.5 mm Li2CO3, i.e. 1 mm lithium ion) for 25-50 wk. In the course of treatment, growth rate of Con and Li+ cells was regularly analysed using Alamar Blue dye. Resistance to oxidative stress was investigated by evaluating: (1) the adverse effects of high concentrations of lithium (4-8 mm) or glutamate (20-90 mm) on cell growth rate; (2) the levels of lipid peroxidation (TBARS) and total glutathione; (3) the expression levels of the anti-apoptotic Bcl-2 protein. In addition, glucose metabolism was investigated by analysing selected metabolites in culture media and cell extracts by 1H-NMR spectroscopy. As compared to Con, Li+ cells multiplied faster and were more resistant to stress, as evidenced by a lower dose-dependent decrease of Alamar Blue reduction and dose-dependent increase of TBARS levels induced by toxic doses of lithium and glutamate. Total glutathione content and Bcl-2 level were increased in Li+ cells. Glucose consumption and glycolytic activity were enhanced in Li+ cells and an important release of pyruvate was observed. We conclude that chronic exposure to lithium induces adaptive changes in metabolism of SH-SY5Y cells involving a higher cell growth rate and a better resistance to oxidative stress.

  3. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways

    PubMed Central

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-01-01

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption. PMID:26978376

  4. Involvement of activation of the Nrf2/ARE pathway in protection against 6-OHDA-induced SH-SY5Y cell death by α-iso-cubebenol.

    PubMed

    Park, Sun Young; Kim, Do Yeon; Kang, Jong-Koo; Park, Geuntae; Choi, Young-Whan

    2014-09-01

    Free radical-mediated neurodegeneration is one of the many causes of Parkinson's disease (PD). As part of our ongoing studies on the identification of biologically active Schisandra chinensis components, we have isolated and structurally elucidated α-iso-cubebenol. This study was carried out in an attempt to clarify the neuroprotective effect of α-iso-cubebenol on toxin-insulted dopaminergic neuronal death using 6-hydroxy-dopamine (6-OHDA)-induced dopaminergic SH-SY5Y cells. α-iso-cubebenol significantly attenuated the loss of mitochondrial function (MTT assay) and membrane integrity (lactate dehydrogenase assay) associated with 6-OHDA-induced neurotoxicity. Pretreatment of the cells with α-iso-cubebenol diminished the intracellular accumulation of reactive oxygen species (ROS) and calcium in response to 6-OHDA. Moreover, α-iso-cubebenol protected against 6-OHDA-induced neurotoxicity through inhibition of SH-SY5Y cell apoptosis. In addition, JC-1 staining, which is a well-established measure of mitochondrial damage, was decreased after treatment with α-iso-cubebenol. Notably, α-iso-cubebenol inhibited the release of mitochondrial flavoprotein apoptosis inducing factor (AIF) from the mitochondria to the cytosol and nucleus following 6-OHDA treatment. In addition, α-iso-cubebenol reduced the 6-OHDA-induced phosphorylation of ERK and induced the phosphorylation of PKA, PKB, and CREB in a dose-dependent manner. Moreover, α-iso-cubebenol stimulated the activation of Nrf2, a downstream target of CREB. Furthermore, α-iso-cubebenol stimulated the expression of multiple antioxidant response genes (NQO-1 and HO-1). Finally, CREB and Nrf2 siRNA transfection diminished α-iso-cubebenol-mediated neuroprotection.

  5. Interferon Gamma potentiates the injury caused by MPP(+) on SH-SY5Y cells, which is attenuated by the nitric oxide synthases inhibition.

    PubMed

    Titze-de-Almeida, Simoneide S; Lustosa, Cátia Faria; Horst, Camila Hillesheim; Bel, Elaine Del; Titze-de-Almeida, Ricardo

    2014-12-01

    This study examined whether the cytokine interferon (IFN) gamma plays a role in the injury of SH-SY5Y cells caused by MPP(+) (1-methyl-4-phenylpyridinium). First of all, IFN-gamma sensitized cells to the neurotoxin MPP(+), as determined by MTT (3-(4,5-dimethylthiazol-2-y1)-2,5-diphenyltetrazolium bromide) assay. MPP(+)-injured cells showed higher reactive oxygen species (ROS) levels, which was reinforced by IFN-gamma. The injury triggered a marked expression of the neuronal NOS (nNOS) enzyme. L-NAME [N(ω)-nitro-L-arginine methyl ester, a non-specific NOS inhibitor] reestablished the cell viability after IFN-gamma challenging, and recovered cells from MPP(+) injury (95.0 vs. 84.7 %; P < 0.05). Seven-NI (7-nitroindazole, a nNOS inhibitor) protected cells against the injury by MPP(+) co-administered with IFN-gamma. Both inhibitors restrained the apoptosis of SH-SY5Y cells caused by MPP(+)/IFN-gamma. Regarding oxidative stress, L-NAME and 7-NI attenuated the increase in ROS levels caused by MPP(+) (45.3 or 48.4 vs. 87.9 %, P < 0.05). Indeed, L-NAME was more effective than 7-NI for reducing oxidative stress caused by MPP(+) under IFN-gamma exposition. The nNOS gene silencing by small-interfering RNAs recovered cells challenged by IFN-gamma (24 h), or MPP(+) (8 h). In conclusion, IFN-gamma sensitizes cells to MPP(+)-induced injury, also causing an increase in ROS levels. Pretreating cells with L-NAME or 7-NI reverts both the oxidative stress and apoptosis triggered by the neurotoxin MPP(+). Taking together, our data reinforce that IFN-gamma and NOS enzymes play a role in oxidative stress and dopaminergic cell death triggered by MPP(+).

  6. Rosiglitazone inhibits chlorpyrifos-induced apoptosis via modulation of the oxidative stress and inflammatory response in SH-SY5Y cells

    SciTech Connect

    Lee, Jeong Eun; Park, Jae Hyeon; Jang, Sea Jeong; Koh, Hyun Chul

    2014-07-15

    Oxidative stress can lead to expression of inflammatory transcription factors, which are important regulatory elements in the induction of inflammatory responses. One of the transcription factors, nuclear transcription factor kappa-B (NF-κB) plays a significant role in the inflammation regulatory process. Inflammatory cell death has been implicated in neuronal cell death in some neurodegenerative disorders such as Parkinson's disease (PD). In this study, we investigated the molecular mechanisms underlying apoptosis initiated by chlorpyrifos (CPF)-mediated oxidative stress. Based on the cytotoxic mechanism of CPF, we examined the neuroprotective effects of rosiglitazone (RGZ), a peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist, against CPF-induced neuronal cell death. The treatment of SH-SY5Y cells with CPF induced oxidative stress. In addition, CPF activated the p38, JNK and ERK mitogen-activated protein kinases (MAPKs), and induced increases in the inflammatory genes such as COX-2 and TNF-α. CPF also induced nuclear translocation of NF-κB and inhibitors of NF-κB abolished the CPF-induced COX-2 expression. Pretreatment with RGZ significantly reduced ROS generation and enhanced HO-1 expression in CPF-exposed cells. RGZ blocked the activation of both p38 and JNK signaling, while ERK activation was strengthened. RGZ also attenuated CPF-induced cell death through the reduction of NF-κB-mediated proinflammatory factors. Results from this study suggest that RGZ may exert an anti-apoptotic effect against CPF-induced cytotoxicity by attenuation of oxidative stress as well as inhibition of the inflammatory cascade via inactivation of signaling by p38 and JNK, and NF-κB. - Highlights: • CPF induces apoptotic cell death in SH-SY5Y cells • ROS involved in CPF-mediated apoptotic cell death • Inflammation involved in CPF-mediated apoptotic cell death • Rosiglitazone modulates ROS and inflammatory response in CPF-treated cells.

  7. Astaxanthin Inhibits Acetaldehyde-Induced Cytotoxicity in SH-SY5Y Cells by Modulating Akt/CREB and p38MAPK/ERK Signaling Pathways.

    PubMed

    Yan, Tingting; Zhao, Yan; Zhang, Xia; Lin, Xiaotong

    2016-03-10

    Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. Acetaldehyde, the most toxic metabolite of ethanol, mediates the brain tissue damage and cognitive dysfunction induced by chronic excessive alcohol consumption. In this study, the effect of astaxanthin, a marine bioactive compound, on acetaldehyde-induced cytotoxicity was investigated in SH-SY5Y cells. It was found that astaxanthin protected cells from apoptosis by ameliorating the effect of acetaldehyde on the expression of Bcl-2 family proteins, preventing the reduction of anti-apoptotic protein Bcl-2 and the increase of pro-apoptotic protein Bak induced by acetaldehyde. Further analyses showed that astaxanthin treatment inhibited acetaldehyde-induced reduction of the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB). Astaxanthin treatment also prevented acetaldehyde-induced increase of the level of activated p38 mitogen-activated protein kinase (MAPK) and decrease of the level of activated extracellular signal-regulated kinases (ERKs). Activation of Akt/CREB pathway promotes cell survival and is involved in the upregulation of Bcl-2 gene. P38MAPK plays a critical role in apoptotic events while ERKs mediates the inhibition of apoptosis. Thus, astaxanthin may inhibit acetaldehyde-induced apoptosis through promoting the activation of Akt/CREB and ERKs and blocking the activation of p38MAPK. In addition, astaxanthin treatment suppressed the oxidative stress induced by acetaldehyde and restored the antioxidative capacity of SH-SY5Y cells. Therefore, astaxanthin may protect cells against acetaldehyde-induced cytotoxicity through maintaining redox balance and modulating apoptotic and survival signals. The results suggest that astaxanthin treatment may be beneficial for preventing neurotoxicity associated with acetaldehyde and excessive alcohol consumption.

  8. Changes in the NMR Metabolic Profile of Live Human Neuron-Like SH-SY5Y Cells Exposed to Interferon-α2.

    PubMed

    Valeria, Righi; Luisa, Schenetti; Adele, Mucci; Stefania, Benatti; Fabio, Tascedda; Nicoletta, Brunello; Carmine, Pariante M; Silvia, Alboni

    2016-03-01

    Interferon (IFN)-α2 is an extensively therapeutically used pro-inflammatory cytokine. Though its efficacy in controlling viral replication and tumor cells proliferation, administration of IFN-α2 is often associated with the development of central side effects. Magnetic resonance spectroscopy studies have demonstrated that IFN-α2 administration affects brain metabolism, however the exact nature of this effect is not completely known. We hypothesized that IFN-α2 can affect metabolic activity of human neuron-like SH-SY5Y cells which possess many characteristics of neurons and represent one of the most used models for studying mechanisms involved in neurotoxicity or neuroprotection. To test our hypothesis we have characterized the metabolic signature of live SH-SY5Y, and their conditioned media, after 24 and 72 h of exposure to vehicle or IFN-α2 (100 ng/ml) by using High Resolution-Magic Angle Spinning (HR-MAS) Nuclear Magnetic Resonance (NMR) spectroscopy. Our results revealed that 1) the use of HR-MAS NMR is ideally suitable for the characterization of the metabolic profile of live cells and their conditioned media without extraction procedures; and 2) a 72 h exposure to IFN-α2 increases the level of metabolites involved in maintaining energetic (including creatine and lactate) and osmotic (such as myo-inositol, scyllo-inositol, taurine and glycerophosphorylcholine) balances in neuron-like cells and of metabolic waste products (namely lactate, ethanol and acetate), glycine and glutamine in their growth media. These results may contribute to gain more knowledge about the IFN-α2 induced effect on the brain and support the interpretation of magnetic resonance spectroscopy studies performed in humans.

  9. Dynamic and selective HERV RNA expression in neuroblastoma cells subjected to variation in oxygen tension and demethylation.

    PubMed

    Hu, Lijuan; Uzhameckis, Dmitrijs; Hedborg, Fredrik; Blomberg, Jonas

    2016-01-01

    We studied HERV expression in cell lines after hypoxia, mitogenic stimulation, and demethylation, to better understand if hypoxia may play a role in ERV activation also within the nervous system, as represented by neuroblastoma cell lines. The level of RNA of four human ERV groups (HERVs) (HERVE, I/T, H, and W), and three housekeeping genes, of different cell lines including A549, COS-1, Namalwa, RD-L and Vero-E6, as well as human neuroblastoma cell lines SH-SY5Y, SK-N-DZ, and SK-N-AS were studied using reverse transcription and real-time quantitative PCR (QPCR). During the course of recovery from hypoxia a pronounced and selective activation of RNA expression of HERVW-like sequences, but not of HERVE, I/T, H, and three housekeeping genes, was found in the neuroblastoma cell lines, most pronounced in SK-N-DZ. In the SK-N-DZ cell line, we also tested the expression of HERVs after chemical treatments. HERVW-like sequences were selectively upregulated by 5-azacytidine, a demethylating agent. Some HERVW loci seem especially responsive to hypoxia and demethylation. HERV expression in neuroblastoma cells is selectively and profoundly influenced by some physiological and chemical stimuli.

  10. Differentiation-associated decrease in muscarinic receptor sensitivity in human neuroblastoma cells

    SciTech Connect

    Heikkilae, J.E.; Scott, J.G.; Suominen, L.A.; Akerman, K.E.O.

    1987-01-01

    Muscarinic receptor-linked increases in intracellular free Ca/sup 2 +/ as measured with quin-2 and Ca/sup 2 +/ release from monolayers of cells have been measured in the human neuroblastoma cell line SH-SY5Y. Induction of differentiation with the phorbol ester 12-O-tetradecanoylphorbol-13-acetate (TPA) leads to a decrease in the sensitivity of the cells to low concentrations of agonists with respect to the induced increase in cytosolic free Ca/sup 2 +/ and stimulation of Ca/sup 2 +/ efflux. No decrease in agonist binding affinity was observed when the displacement of a labelled antagonist, /sup 3/H-NMS, by a non-labelled agonist was studied.

  11. Heterogeneous Uptake of Nanoparticles in Mouse Models of Pediatric High-Risk Neuroblastoma

    PubMed Central

    Ghaghada, Ketan B.; Starosolski, Zbigniew A.; Lakoma, Anna; Kaffes, Caterina; Agarwal, Saurabh; Athreya, Khannan K.; Shohet, Jason; Kim, Eugene

    2016-01-01

    Liposomal chemotherapeutics are exemplified by DOXIL® are commonly used in adult cancers. While these agents exhibit improved safety profile compared to their free drug counterparts, their treatment response rates have been ~ 20%, often attributed to the heterogeneous intratumoral uptake and distribution of liposomal nanoparticles. Non-invasive and quantitative monitoring of the uptake and distribution of liposomal nanoparticles in solid tumors could allow for patient stratification and personalized cancer nanomedicine. In this study, the variability of liposomal nanoparticle intratumoral distribution and uptake in orthotopic models of pediatric neuroblastoma was investigated using a liposomal nanoprobe visualized by high-resolution computed tomography (CT). Two human neuroblastoma cell lines (NGP: a MYCN-amplified line, and SH-SY5Y a MYCN non-amplified line) were implanted in the renal capsule of nude mice to establish the model. Intratumoral nanoparticle uptake was measured at tumor ages 1, 2, 3 and 4 weeks post implantation. The locations of uptake within the tumor were mapped in the 3-dimensional reconstructed images. Total uptake was measured by integration of the x-ray absorption signal over the intratumoral uptake locations. Both tumor models showed significant variation in nanoparticle uptake as the tumors aged. Observation of the uptake patterns suggested that the nanoparticle uptake was dominated by vascular leak at the surface/periphery of the tumor, and localized, heterogeneous vascular leak in the interior of the tumor. Slow growing SH-SY5Y tumors demonstrated uptake that correlated directly with the tumor volume. Faster growing NGP tumor uptake did not correlate with any tumor geometric parameters, including tumor volume, tumor surface area, and R30 and R50, measures of uptake localized to the interior of the tumor. However, uptake for both SH-SY5Y and NGP tumors correlated almost perfectly with the leak volume, as measured by CT. These results

  12. Astroglial U87 Cells Protect Neuronal SH-SY5Y Cells from Indirect Effect of Radiation by Reducing DNA Damage and Inhibiting Fas Mediated Apoptotic Pathway in Coculture System.

    PubMed

    Saeed, Yasmeen; Rehman, Abdul; Xie, Bingjie; Xu, Jin; Hong, Ma; Hong, Qing; Deng, Yulin

    2015-08-01

    Recent studies provide the evidence that indirect effects of radiation could lead to neuronal cells death but underlying mechanism is not completely understood. On the other hand astroglial cells are known to protect neuronal cells against stress conditions in vivo and invitro. Yet, the fate of neuronal cells and the neuroprotective effect of coculture system (with glial cells) in response to indirect radiation exposure remain rarely discussed. Here, we purpose that the indirect effect of radiation may induce DNA damage by cell cycle arrest and receptor mediated apoptotic cascade which lead to apoptotic death of neuronal SH-SY5Y cells. We also hypothesized that coculture (with glial U87) may relieved the neuronal SH-SY5Y cells from toxicity of indirect effects radiation by reducing DNA damage and expression of apoptotic proteins in vitro. In the present study irradiated cell conditioned medium (ICCM) was used as source of indirect effect of radiation. Neuronal SH-SY5Y cells were exposed to ICCM with and without coculture with (glial U87) in transwell coculture system respectively. Various endpoints such as, cell survival number assay, Annexin V/PI assay, cell cycle analysis by flow cytometer, mRNA level of Fas receptor by q RT-PCR, expression of key apoptotic proteins by western blot and estimation of neurotrophic factors by ELISA method were analyzed into neuronal SH-SY5Y cells with and without co culture after ICCM exposure respectively. We found that ICCM induced DNA damage in neuronal SH-SY5Y cells by significant increase in cell cycle arrest at S-phase (***P < 0.001) which was further supported by over expression of P53 protein (**P < 0.01). While coculture (with glial U87), significantly reduced the ICCM induced cell cycle arrest and expression of P53 ((###) P < 0.001) neuronal SH-SY5Y cells. Further investigation of the underlying apoptotic mechanism revealed that in coculture system; ICCM induced elevated level of FAS mRNA level was significantly reduced

  13. Pharmacognostical Analysis and Protective Effect of Standardized Extract and Rizonic Acid from Erythrina velutina against 6-Hydroxydopamine-Induced Neurotoxicity in SH-SY5Y Cells

    PubMed Central

    Silva, Aline H.; Fonseca, Francisco Noé; Pimenta, Antônia T. A.; Lima, MaryAnne S.; Silveira, Edilberto Rocha; Viana, Glauce S. B.; Vasconcelos, Silvânia M. M.; Leal, Luzia Kalyne A. M.

    2016-01-01

    Background: Erythrina velutina is a tree common in the northeast of Brazil extensively used by traditional medicine for the treatment of central nervous system disorders. Objective: To develop a standardized ethanol extract of E. velutina (EEEV) and to investigate the neuroprotective potential of the extract and rizonic acid (RA) from E. velutina on neuronal cells. Materials and methods: The plant drug of E. velutina previously characterized was used for the production of EEEV. Three methods were evaluated in order to obtain an extract with higher content of phenols. The neuroprotective effect of standardized EEEV (HPLC-PDA) and RA was investigated on SH-SY5Y cell exposure to the neurotoxin 6-hydroxydopamine (6-OHDA). Results: The powder of the plant drug was classified as moderately coarse and several quality control parameters were determined. EEEV produced by percolation gave the highest phenol content when related to others extractive methods, and its HPLC-PDA analysis allowed to identify four flavonoids and RA, some reported for the first time for the species. EEEV and RA reduced significantly the neurotoxicity induced by 6-OHDA in SH-SY5Y cells determined by the MTT assay and the nitrite concentration. EEEV also showed a free radical scavenging activity. Conclusion: This is the first pharmacological study about E. velutina which used a controlled standardized extract since the preparation of the herbal drug. This extract and RA, acting as an antioxidant, presents a neuroprotective effect suggesting that they have potential for future development as a therapeutic agent in neurodegenerative disease as Parkinson. SUMMARY The powder of Erythrina velutina was classified as moderately coarse and several quality-control parameters were determined.Ethanolic extract from E. velutina (EEEV) produced by percolation gave the highest phenol content when related to others extractive methods and its HPLC–PDA analysis of EEEV allowed to identify four flavonoids and rizonic

  14. New insights into neuroblastoma cisplatin resistance: a comparative proteomic and meta-mining investigation.

    PubMed

    D'Aguanno, Simona; D'Alessandro, Annamaria; Pieroni, Luisa; Roveri, Antonella; Zaccarin, Mattia; Marzano, Valeria; De Canio, Michele; Bernardini, Sergio; Federici, Giorgio; Urbani, Andrea

    2011-02-04

    Neuroblastoma is one of the most aggressive solid tumors in the childhood. Therapy resistance to anticancer drugs represents the major limitation to the effectiveness of clinical treatment. To better understand the mechanisms underlying cisplatin resistance, we performed a comparative proteomic study of the human neuroblastoma cell line SH-SY5Y and its cisplatin resistant counterpart by both the classical 2-DE electrophoresis coupled to mass spectrometry and the more innovative label-free nLC-MS(E). The differentially expressed proteins were classified by bioinformatic tools according to their biological functions and their involvement in several cellular processes. Moreover, a meta-mining investigation of protein ontologies was also performed on available data from previously published proteomics studies to highlight the modulation of significant cellular pathways, which may regulate the sensitivity of neuroblastoma to cisplatin. In particular, we hypothesized a major role of the transcription factor nuclear factor-erythroid 2-related factor 2 (Nrf2) pathway. Confocal microscopy experiments, enzyme assay, and Western blotting of proteins regulated by Nrf2 provided evidences that this pathway, playing a protective role in normal cells, may represent a potential novel target to control cisplatin resistance in neuroblastoma.

  15. Immunoproteomic studies on paediatric opsoclonus-myoclonus associated with neuroblastoma.

    PubMed

    Torres-Vega, Estefanía; Durán-Moreno, María; Sánchez Del Pino, Manuel; Yáñez, Yania; Cañete, Adela; Castel, Victoria; López-Cuevas, Rogelio; Vílchez, Juan Jesús; Dalmau, Josep; Graus, Francesc; García Verdugo, José Manuel; Bataller, Luis

    2016-08-15

    We aimed to identify new cell-membrane antigens implicated in opsoclonus-myoclonus with neuroblastoma. The sera of 3 out of 14 patients showed IgG electron-microscopy immunogold reactivity on SH-SY5Y neuroblastoma cells. Immunoprecipitation experiments using rat brain synaptosomes and SH-SY5Y cells led to the identification of: (1) thirty-one nuclear/cytoplasmic proteins (including antigens HuB, HuC); (2) seven neuronal membrane proteins, including the Shaw-potassium channel Kv3.3 (KCNC3), whose genetic disruption in mice causes ataxia and generalized muscle twitching. Although cell-based assays did not demonstrate direct antigenicity, our findings point to Shaw-related subfamily of the potassium voltage-gated channels complexed proteins as hypothetical antigenic targets.

  16. The Role of Neurotransmitters in Protection against Amyloid-β Toxicity by KiSS-1 Overexpression in SH-SY5Y Neurons

    PubMed Central

    Milton, Nathaniel G. N.

    2013-01-01

    Recent studies have suggested that the kisspeptin (KP) and kissorphin (KSO) peptides have neuroprotective actions against the Alzheimer's amyloid-β (Aβ) peptide. Overexpression of the human KiSS-1 gene that codes for KP and KSO peptides in SH-SY5Y neurons has also been shown to inhibit Aβ neurotoxicity. The in vivo actions of KP include activation of neuroendocrine and neurotransmitter systems. The present study used antagonists of KP, neuropeptide FF (NPFF), opioids, oxytocin, estrogen, adrenergic, cholinergic, dopaminergic, serotonergic, and γ-aminobutyric acid (GABA) receptors plus inhibitors of catalase, cyclooxygenase, nitric oxide synthase, and the mitogen activated protein kinase cascade to characterize the KiSS-1 gene overexpression neuroprotection against Aβ cell model. The results showed that KiSS-1 overexpression is neuroprotective against Aβ and the action appears to involve the KP or KSO peptide products of KiSS-1 processing. The mechanism of neuroprotection does not involve the activation of the KP or NPFF receptors. Opioids play a role in the toxicity of Aβ in the KiSS-1 overexpression system and opioid antagonists naloxone or naltrexone inhibited Aβ toxicity. The mechanism of KiSS-1 overexpression induced protection against Aβ appears to have an oxytocin plus a cyclooxygenase dependent component, with the oxytocin antagonist atosiban and the cyclooxygenase inhibitor SC-560 both enhancing the toxicity of Aβ. PMID:24967306

  17. Protective Effect of Total Phenolic Compounds from Inula helenium on Hydrogen Peroxide-induced Oxidative Stress in SH-SY5Y Cells.

    PubMed

    Wang, J; Zhao, Y M; Zhang, B; Guo, C Y

    2015-01-01

    Inula helenium has been reported to contain a large amount of phenolic compounds, which have shown promise in scavenging free radicals and prevention of neurodegenerative diseases. This study is to investigate the neuroprotective effects of total phenolic compounds from I. helenium on hydrogen peroxide-induced oxidative damage in human SH-SY5Y cells. Antioxidant capacity of total phenolic compounds was determined by radical scavenging activity, the level of intracellular reactive oxygen species and superoxide dismutase activity. The cytotoxicity of total phenolic compounds was determined using a cell counting kit-8 assay. The effect of total phenolic compounds on cell apoptosis due to hydrogen peroxide-induced oxidative damage was detected by Hoechst 33258 and Annexin-V/PI staining using fluorescence microscope and flow cytometry, respectively. Mitochondrial function was evaluated using the mitochondrial membrane potential and mitochondrial ATP synthesis by JC-1 dye and high performance liquid chromatography, respectively. It was shown that hydrogen peroxide significantly induced the loss of cell viability, increment of apoptosis, formation of reactive oxygen species, reduction of superoxide dismutase activity, decrease in mitochondrial membrane potential and a decrease in adenosine triphosphate production. On the other hand, total phenolic compounds dose-dependently reversed these effects. This study suggests that total phenolic compounds exert neuroprotective effects against hydrogen peroxide-induced oxidative damage via blocking reactive oxygen species production and improving mitochondrial function. The potential of total phenolic compounds and its neuroprotective mechanisms in attenuating hydrogen peroxide-induced oxidative stress-related cytotoxicity is worth further exploration.

  18. PDGF-mediated protection of SH-SY5Y cells against Tat toxin involves regulation of extracellular glutamate and intracellular calcium

    SciTech Connect

    Zhu Xuhui; Yao Honghong; Peng Fuwang; Callen, Shannon; Buch, Shilpa

    2009-10-15

    The human immunodeficiency virus (HIV-1) protein Tat has been implicated in mediating neuronal apoptosis, one of the hallmark features of HIV-associated dementia (HAD). Mitigation of the toxic effects of Tat could thus be a potential mechanism for reducing HIV toxicity in the brain. In this study we demonstrated that Tat-induced neurotoxicity was abolished by NMDA antagonist-MK801, suggesting the role of glutamate in this process. Furthermore, we also found that pretreatment of SH-SY5Y cells with PDGF exerted protection against Tat toxicity by decreasing extracellular glutamate levels. We also demonstrated that extracellular calcium chelator EGTA was able to abolish PDGF-mediated neuroprotection, thereby underscoring the role of calcium signaling in PDGF-mediated neuroprotection. We also showed that Erk signaling pathway was critical for PDGF-mediated protection of cells. Additionally, blocking calcium entry with EGTA resulted in suppression of PDGF-induced Erk activation. These findings thus underscore the role of PDGF-mediated calcium signaling and Erk phosphorylation in the protection of cells against HIV Tat toxicity.

  19. Neurotoxicity of β-Keto Amphetamines: Deathly Mechanisms Elicited by Methylone and MDPV in Human Dopaminergic SH-SY5Y Cells.

    PubMed

    Valente, Maria João; Bastos, Maria de Lourdes; Fernandes, Eduarda; Carvalho, Félix; Guedes de Pinho, Paula; Carvalho, Márcia

    2017-01-26

    Synthetic cathinones (β-keto amphetamines) act as potent CNS stimulants similarly to classical amphetamines, which raise concerns about their potential neurotoxic effects. The present in vitro study aimed to explore and compare the mechanisms underlying the neurotoxicity of two commonly abused cathinone derivatives, 3,4-methylenedioxymethcathinone (methylone) and 3,4-methylenedioxypyrovalerone (MDPV), with those of 3,4-methylenedioxymethamphetamine (MDMA), using undifferentiated and differentiated SH-SY5Y cells. Following a 24 h exposure period, methylone and MDPV induced loss of cell viability in a concentration-dependent manner, in the following order of potency: MDPV ≈ MDMA > methylone. Dopaminergic differentiated cells evidenced higher sensitivity to the neurotoxic effects of both cathinones and MDMA than the undifferentiated ones, but this effect was not inhibited by the DAT inhibitor GBR 12909. Intracellular oxidative stress mediated by methylone and MDPV was demonstrated by the increase in reactive oxygen and nitrogen species (ROS and RNS) production, depletion of intracellular reduced glutathione and increased oxidized glutathione levels. All three drugs elicited mitochondrial impairment, characterized by the mitochondrial membrane potential (Δψm) dissipation and intracellular ATP depletion. Apoptosis was found to be a common mechanism of cell death induced by methylone and MDPV, with evident chromatin condensation and formation of pyknotic nuclei, and activation of caspases 3, 8, and 9. In conclusion, the present data shows that oxidative stress and mitochondrial dysfunction play a role in cathinones-induced neuronal damage, ultimately leading to cell death by apoptosis.

  20. N-Acetylcysteine in Combination with IGF-1 Enhances Neuroprotection against Proteasome Dysfunction-Induced Neurotoxicity in SH-SY5Y Cells

    PubMed Central

    Anand, Pinki; Kuang, Anxiu; Akhtar, Feroz; Scofield, Virginia L.

    2016-01-01

    Ubiquitin proteasome system (UPS) dysfunction has been implicated in the development of many neuronal disorders, including Parkinson's disease (PD). Previous studies focused on individual neuroprotective agents and their respective abilities to prevent neurotoxicity following a variety of toxic insults. However, the effects of the antioxidant N-acetylcysteine (NAC) on proteasome impairment-induced apoptosis have not been well characterized in human neuronal cells. The aim of this study was to determine whether cotreatment of NAC and insulin-like growth factor-1 (IGF-1) efficiently protected against proteasome inhibitor-induced cytotoxicity in SH-SY5Y cells. Our results demonstrate that the proteasome inhibitor, MG132, initiates poly(ADP-ribose) polymerase (PARP) cleavage, caspase 3 activation, and nuclear condensation and fragmentation. In addition, MG132 treatment leads to endoplasmic reticulum (ER) stress and autophagy-mediated cell death. All of these events can be attenuated without obvious reduction of MG132 induced protein ubiquitination by first treating the cells with NAC and IGF-1 separately or simultaneously prior to exposure to MG132. Moreover, our data demonstrated that the combination of the two proved to be significantly more effective for neuronal protection. Therefore, we conclude that the simultaneous use of growth/neurotrophic factors and a free radical scavenger may increase overall protection against UPS dysfunction-mediated cytotoxicity and neurodegeneration. PMID:27774335

  1. Methadone induces necrotic-like cell death in SH-SY5Y cells by an impairment of mitochondrial ATP synthesis.

    PubMed

    Perez-Alvarez, Sergio; Cuenca-Lopez, Maria D; de Mera, Raquel M Melero-Fernández; Puerta, Elena; Karachitos, Andonis; Bednarczyk, Piotr; Kmita, Hanna; Aguirre, Norberto; Galindo, Maria F; Jordán, Joaquin

    2010-11-01

    Methadone is a widely used therapeutic opioid in narcotic addiction and neuropathic pain syndromes. Oncologists regularly use methadone as a long-lasting analgesic. Recently it has also been proposed as a promising agent in leukemia therapy, especially when conventional therapies are not effective. Nevertheless, numerous reports indicate a negative impact on human cognition with chronic exposure to opiates. Thus, clarification of methadone toxicity is required. In SH-SY5Y cells we found that high concentrations of methadone were required to induce cell death. Methadone-induced cell death seems to be related to necrotic processes rather than typical apoptosis. Cell cultures challenged with methadone presented alterations in mitochondrial outer membrane permeability. A mechanism that involves Bax translocation to the mitochondria was observed, accompanied with cytochrome c release. Furthermore, no participation of known protein regulators of apoptosis such as Bcl-X(L) and p53 was observed. Interestingly, methadone-induced cell death took place by a caspases-independent pathway; perhaps due to its ability to induce a drastic depletion in cellular ATP levels. Therefore, we studied the effect of methadone on isolated rat liver mitochondria. We observed that methadone caused mitochondrial uncoupling, coinciding with the ionophoric properties of methadone, but did not cause swelling of the organelles. Overall, the effects observed for cells in the presence of supratherapeutic doses of methadone may result from a "bioenergetic crisis." A decreased level of cellular energy may predispose cells to necrotic-like cell death.

  2. LGR5 regulates pro-survival MEK/ERK and proliferative Wnt/β-catenin signalling in neuroblastoma.

    PubMed

    Vieira, Gabriella Cunha; Chockalingam, S; Melegh, Zsombor; Greenhough, Alexander; Malik, Sally; Szemes, Marianna; Park, Ji Hyun; Kaidi, Abderrahmane; Zhou, Li; Catchpoole, Daniel; Morgan, Rhys; Bates, David O; Gabb, Peter David; Malik, Karim

    2015-11-24

    LGR5 is a marker of normal and cancer stem cells in various tissues where it functions as a receptor for R-spondins and increases canonical Wnt signalling amplitude. Here we report that LGR5 is also highly expressed in a subset of high grade neuroblastomas. Neuroblastoma is a clinically heterogenous paediatric cancer comprising a high proportion of poor prognosis cases (~40%) which are frequently lethal. Unlike many cancers, Wnt pathway mutations are not apparent in neuroblastoma, although previous microarray analyses have implicated deregulated Wnt signalling in high-risk neuroblastoma. We demonstrate that LGR5 facilitates high Wnt signalling in neuroblastoma cell lines treated with Wnt3a and R-spondins, with SK-N-BE(2)-C, SK-N-NAS and SH-SY5Y cell-lines all displaying strong Wnt induction. These lines represent MYCN-amplified, NRAS and ALK mutant neuroblastoma subtypes respectively. Wnt3a/R-Spondin treatment also promoted nuclear translocation of β-catenin, increased proliferation and activation of Wnt target genes. Strikingly, short-interfering RNA mediated knockdown of LGR5 induces dramatic Wnt-independent apoptosis in all three cell-lines, accompanied by greatly diminished phosphorylation of mitogen/extracellular signal-regulated kinases (MEK1/2) and extracellular signal-regulated kinases (ERK1/2), and an increase of BimEL, an apoptosis facilitator downstream of ERK. Akt signalling is also decreased by a Rictor dependent, PDK1-independent mechanism. LGR5 expression is cell cycle regulated and LGR5 depletion triggers G1 cell-cycle arrest, increased p27 and decreased phosphorylated retinoblastoma protein. Our study therefore characterises new cancer-associated pathways regulated by LGR5, and suggest that targeting of LGR5 may be of therapeutic benefit for neuroblastomas with diverse etiologies, as well as other cancers expressing high LGR5.

  3. Toxicological impact of JWH-018 and its phase I metabolite N-(3-hydroxypentyl) on human cell lines.

    PubMed

    Couceiro, Joana; Bandarra, Susana; Sultan, Haider; Bell, Suzanne; Constantino, Susana; Quintas, Alexandre

    2016-07-01

    The emergence and abuse of synthetic cannabinoids has been increasing as an alternative to cannabis, mainly among youth. As their appearance on the drug market has been recent, the pharmacological and toxicological profiles of these psychoactive substances are poorly understood. Current studies suggest that they have stronger effects compared to their natural alternatives and their metabolites retain affinity towards CB1 receptors in CNS. Since studies on its toxicological properties are scarce, the effects of the drug in human derived cell lines were investigated. The present study was designed to explore the toxicological impact of parent drug versus phase I metabolites of synthetic cannabinoids on human cells with and without CB1 receptor. The human cell line of neuroblastoma SH-SY5Y and human kidney cell line HEK-293T were exposed to JWH-018 and to its N-(3-hydroxypentyl) metabolite. Cell toxicity was evaluated using the MTT and LDH assay. Additionally, a dual staining methodology with fluorescent Annexin V-FITC and propidium iodide was performed to address the question of whether JWH-018 N-(3-hydroxypentyl) metabolite is inducing cell death through apoptosis or necrosis, in HEK293T and SH-SY5Y cell lines. The obtained results show that JWH-018 does not cause a statistically significant decrease in cell viability, in contrast to its N-(3-hydroxypentyl) metabolite, which at ≥25μM causes a significant decrease in cell viability. Both cell lines are affected by JWH-018 metabolite. Our results point to higher toxicity of JWH-018 metabolite when compared to its parent drug, suggesting a non-CB1 receptor mediated toxicological mechanism. Comparing the results from Annexin V/PI with MTT and LDH assays of SH-SY5Y and HEK293T in the presence of the synthetic cannabinoid metabolite, emerges the picture that cellular viability decreases and associated death is occurring through necrosis.

  4. Differential effects of wild-type and A53T mutant isoform of alpha-synuclein on the mitochondrial proteome of differentiated SH-SY5Y cells.

    PubMed

    Pennington, Kyla; Peng, Jianhe; Hung, Chao-Chun; Banks, Rosamonde E; Robinson, Philip A

    2010-05-07

    Increased levels of wild-type (WT) alpha-synuclein (alpha-syn) and mutant A53T alpha-syn are associated with Parkinson's disease (PD), a disease linked to abnormal mitochondrial function. This study compared mitochondria prepared from differentiated SH-SY5Y cells overexpressing WT or A53T alpha-syn with control cells, using 2-D difference in-gel electrophoresis. Statistical analysis was carried out primarily using ANOVA (p < 0.01; Host:WT:A53T) and subsequently using independent t tests (host vs WT, host vs A53T). Of the protein spots found to be differentially expressed (n = 71; p < 0.01, >1.8/<-1.8 fold change), 63 proteins were identified by LC-MS/MS, with the majority (77%) significantly altered in WT samples only. Twenty-three proteins known to be integral components of the mitochondria were abnormally expressed including those with roles in ATP synthesis, oxidoreduction, motor activity, carbohydrate metabolism, protein transcription, and protein folding. Thirteen forms of cytoskeletal proteins were also found to be overexpressed in the mitochondrial preparations from WT alpha-syn cells, suggesting an increased interaction of mitochondria with the cytoskeletal network. Altered levels of four mitochondrial proteins (HSPA9 (mortalin), NDUFS1, DLAT, ATP5A1) were confirmed using Western blot analysis. Furthermore, a significant reduction in OXPHOS 1 activity was observed in the WT alpha-syn cells, suggesting that there are functional consequences of the observed altered protein expression changes in the mitochondria.

  5. Protective Effect of Total Phenolic Compounds from Inula helenium on Hydrogen Peroxide-induced Oxidative Stress in SH-SY5Y Cells

    PubMed Central

    Wang, J.; Zhao, Y. M.; Zhang, B.; Guo, C. Y.

    2015-01-01

    Inula helenium has been reported to contain a large amount of phenolic compounds, which have shown promise in scavenging free radicals and prevention of neurodegenerative diseases. This study is to investigate the neuroprotective effects of total phenolic compounds from I. helenium on hydrogen peroxide-induced oxidative damage in human SH-SY5Y cells. Antioxidant capacity of total phenolic compounds was determined by radical scavenging activity, the level of intracellular reactive oxygen species and superoxide dismutase activity. The cytotoxicity of total phenolic compounds was determined using a cell counting kit-8 assay. The effect of total phenolic compounds on cell apoptosis due to hydrogen peroxide-induced oxidative damage was detected by Hoechst 33258 and Annexin-V/PI staining using fluorescence microscope and flow cytometry, respectively. Mitochondrial function was evaluated using the mitochondrial membrane potential and mitochondrial ATP synthesis by JC-1 dye and high performance liquid chromatography, respectively. It was shown that hydrogen peroxide significantly induced the loss of cell viability, increment of apoptosis, formation of reactive oxygen species, reduction of superoxide dismutase activity, decrease in mitochondrial membrane potential and a decrease in adenosine triphosphate production. On the other hand, total phenolic compounds dose-dependently reversed these effects. This study suggests that total phenolic compounds exert neuroprotective effects against hydrogen peroxide-induced oxidative damage via blocking reactive oxygen species production and improving mitochondrial function. The potential of total phenolic compounds and its neuroprotective mechanisms in attenuating hydrogen peroxide-induced oxidative stress-related cytotoxicity is worth further exploration. PMID:26009648

  6. Inorganic mercury prevents the differentiation of SH-SY5Y cells: Amyloid precursor protein, microtubule associated proteins and ROS as potential targets.

    PubMed

    Chan, Miguel Chin; Bautista, Elizabeth; Alvarado-Cruz, Isabel; Quintanilla-Vega, Betzabet; Segovia, José

    2017-02-06

    Exposure to mercury (Hg) occurs through different pathways and forms including methylmecury (MeHg) from seafood and rice, ethylmercury (EtHg), and elemental Hg (Hg(0)) from dental amalgams and artisanal gold mining. Once in the brain all these forms are transformed to inorganic Hg (I-Hg), where it bioaccumulates and remains for long periods. Hg is a well-known neurotoxicant, with its most damaging effects reported during brain development, when cellular key events, such as cell differentiation take place. A considerable number of studies report an impairment of neuronal differentiation due to MeHg exposure, however the effects of I-Hg, an important form of Hg found in brain, have received less attention. In this study, we decided to examine the effects of I-Hg exposure (5, 10 and 20μM) on the differentiation of SH-SY5Y cells induced by retinoic acid (RA, 10μM). We observed extension of neuritic processes and increased expression of neuronal markers (MAP2, tubulin-βIII, and Tau) after RA stimulation, all these effects were decreased by the co-exposure to I-Hg. Interestingly, I-Hg increased the levels of reactive oxygen species (ROS) and nitric oxide (NO) accompanied with increased levels of inducible nitric oxide synthase (iNOS) and, dimethylarginine dimethylaminohydrolase 1 (DDHA1). Remarkably I-Hg decreased levels of nitric oxide synthase neuronal (nNOS). Moreover I-Hg reduced the levels of tyrosine hydroxylase (TH) and amyloid precursor protein (APP) a protein recently involved in neuronal differentiation. These data suggest that the exposure to I-Hg impairs cell differentiation, and point to new potential targets of Hg toxicity such as APP and NO signaling.

  7. The enzyme lecithin-cholesterol acyltransferase esterifies cerebrosterol and limits the toxic effect of this oxysterol on SH-SY5Y cells.

    PubMed

    La Marca, Valeria; Spagnuolo, Maria Stefania; Cigliano, Luisa; Marasco, Daniela; Abrescia, Paolo

    2014-07-01

    Cholesterol is mostly removed from the CNS by its conversion to cerebrosterol (24(S)-hydroxycholesterol, 24(S)OH-C), which is transported to the circulation for bile formation in liver. A neurotoxic role of this oxysterol was previously demonstrated in cell culture. Here, we provide evidence that the enzyme lecithin-cholesterol acyltransferase, long known to esterify cholesterol, also produces monoesters of 24(S)OH-C. Proteoliposomes containing apolipoprotein A-I or apolipoprotein E were used to stimulate the enzyme activity and entrap the formed esters. Proteoliposomes with apolipoprotein A-I were found to be more active than those with apolipoprotein E in stimulating the production of oxysteryl esters. Cholesterol and 24(S)OH-C were found to compete for enzyme activity. High levels of haptoglobin, as those circulating during the acute inflammatory phase, inhibited 24(S)OH-C esterification. When highly neurotoxic 24(S)OH-C was treated with enzyme and proteoliposomes before incubation with differentiated SH-SY5Y cells, the neuron survival improved. The esters of 24(S)OH-C, embedded into proteoliposomes by the enzyme and isolated from unesterified 24(S)OH-C by gel filtration chromatography, did not enter the neurons in culture. These results suggest that the enzyme, in the presence of the apolipoproteins, converts 24(S)OH-C into esters restricted to the extracellular environment, thus preventing or limiting oxysterol-induced neurotoxic injuries to neurons in culture. 24-hydroxycholesterol (24(S)OH-C) is neurotoxic. The enzyme lecithin-cholesterol acyltransferase (LCAT) synthesizes monoesters of 24(S)OH-C in reaction mixtures with proteoliposomes containing phospholipids and apolipoprotein A-I or apolipoprotein E. The esters, also produced by incubation of cerebrospinal fluid only with tritiated 24(S)OH-C, are embedded into lipoproteins that do not enter neurons in culture. The enzyme activity limits the toxicity of 24-hydroxycholesterol in neuron culture.

  8. Yi-Zhi-Fang-Dai Formula Protects against Aβ1–42 Oligomer Induced Cell Damage via Increasing Hsp70 and Grp78 Expression in SH-SY5Y Cells

    PubMed Central

    Liu, Lumei; Wan, Wenbin; Chen, Wenjing; Chan, Yuanjin; Shen, Qi

    2016-01-01

    Yi-Zhi-Fang-Dai formula (YZFDF) is an experiential prescription used to cure dementia cases like Alzheimer's disease (AD). In this study, the main effective compounds of YZFDF have been identified from this formula, and the neuroprotective effect against Aβ1–42 oligomer of YZFDF has been tested in SH-SY5Y cells. Our results showed that YZFDF could increase cell viability and could attenuate endothelial reticula- (ER-) mediated apoptosis. Evidence indicated that protein folding and endothelial reticula stress (ERS) played an important role in the AD pathological mechanism. We further explored the expression of Hsp70, an important molecular chaperon facilitating the folding of other proteins, and Grp78, the marker protein of ERS in SH-SY5Y cells. Data told us that YZFDF pretreatment could influence the mRNA and protein expression of these two proteins. At last, we also found that YZFDF pretreatment could activate Akt in SH-SY5Y cells. All these above indicate that YZFDF could be a potent therapeutic candidate for AD treatment. PMID:27829867

  9. Cytotoxicity of alpha-particle-emitting m-[211At]astatobenzylguanidine on human neuroblastoma cells.

    PubMed

    Strickland, D K; Vaidyanathan, G; Zalutsky, M R

    1994-10-15

    Radioiodinated m-iodobenzylguanidine (MIBG) has been used with only limited success for the treatment of neural crest tumors including neuroblastoma. Use of an MIBG analogue labeled with 211At could be advantageous because of the shorter range and higher linear energy transfer of its alpha-particle emissions compared with the beta-particles emitted by 131I. The potential utility of m-[211At]astatobenzylguanidine for the treatment of neuroblastoma was investigated in vitro using 3 human neuroblastoma cell lines known to take up MIBG [SK-N-SH, SK-N-BE(2C), and SK-SY5Y] and a control line lacking MIBG uptake (SK-N-MC). Maximum binding of m-[211At]astatobenzylguanidine ([211At] MABG) to 5 x 10(5) cells after a 2-h incubation ranged from 61% for SK-N-SH to 1% for SK-N-MC. Using a limiting dilution clonogenic assay, the cytotoxicity for SK-N-SH cells of [211At]MABG was compared with [211At]astatide and no-carrier-added [131I]MIBG. A D0 of 5.8 nCi/ml was calculated for [211At]MABG compared with 482 nCi/ml for [211At] astatide, indicating a more than 80-fold enhanced cytotoxicity for the specifically targeted alpha-particles of [211At]MABG. For [211At]MABG, the D0 corresponded to only 6.4 211At atoms bound/cell compared with 9000 atoms/cell for no-carrier-added [131I]MIBG. The D0 values measured for [211At]MABG treatment of SK-SY5Y, SK-N-BE(2C), and SK-N-MC cells were 50, 5.8, and 11,043 nCi/ml, respectively, corresponding to 7.04, 6.46, and 171.79 211At atoms bound/cell. In conclusion, these results have demonstrated that [211At]MABG is considerably more cytotoxic than [131I]MIBG and that [211At]MABG could have great potential as a radiotherapeutic agent for the treatment of neuroblastoma.

  10. Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma.

    PubMed

    Florea, Ana-Maria; Varghese, Elizabeth; McCallum, Jennifer E; Mahgoub, Safa; Helmy, Irfan; Varghese, Sharon; Gopinath, Neha; Sass, Steffen; Theis, Fabian J; Reifenberger, Guido; Büsselberg, Dietrich

    2017-02-11

    Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1-10 μM) or TOPO (0.1 nM-1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment.

  11. Mercury specifically induces LINE-1 activity in a human neuroblastoma cell line.

    PubMed

    Habibi, Laleh; Shokrgozar, Mohammad Ali; Tabrizi, Mina; Modarressi, Mohammad Hossein; Akrami, Seyed Mohammad

    2014-01-01

    L1 retro-elements comprise 17% of the human genome. Approximately 100 copies of these autonomous mobile elements are active in our DNA and can cause mutations, gene disruptions, and genomic instability. Therefore, human cells control the activities of L1 elements, in order to prevent their deleterious effects through different mechanisms. However, some toxic agents increase the retrotransposition activity of L1 elements in somatic cells. In order to identify specific effects of neurotoxic metals on L1 activity in neuronal cells, we studied the effects of mercury and cobalt on L1-retroelement activity by measuring levels of cellular transcription, protein expression, and genomic retrotransposition in a neuroblastoma cell line compared with the effects in three non-neuronal cell lines. Our results show that mercury increased the expression of L1 RNA, the activity of the L1 5'UTR, and L1 retrotransposition exclusively in the neuroblastoma cell line but not in non-neuronal cell lines. However, cobalt increased the expression of L1 RNA in neuroblastoma cells, HeLa cells, and wild-type human fibroblasts, and also increased the activity of the L1 5'UTR as well as the SV40 promoter in HeLa cells but not in neuroblastoma cells. Exposure to cobalt did not result in increased retrotransposition activity in HeLa cells or neuroblastoma cells. We conclude that non-toxic levels of the neurotoxic agent mercury could influence DNA by increasing L1 activities, specifically in neuronal cells, and may make these cells susceptible to neurodegeneration over time.

  12. Toxicological and efficacy assessment of post-transition metal (Indium) phthalocyanine for photodynamic therapy in neuroblastoma

    PubMed Central

    Neagu, Monica; Constantin, Carolina; Tampa, Mircea; Matei, Clara; Lupu, Andreea; Manole, Emilia; Ion, Rodica-Mariana; Fenga, Concettina; Tsatsakis, Aristidis M.

    2016-01-01

    Metallo-phthalocyanines due to their photophysical characteristics as high yield of triplet state and long lifetimes, appear to be good candidates for photodynamic therapy (PDT). Complexes with diamagnetic metals such as Zn2+, Al3+ Ga3+ and In3+meet such requirements and are recognized as potential PDT agents. Clinically, Photofrin® PDT in neuroblastoma therapy proved in pediatric subjects diagnosed with progressive/recurrent malignant brain tumors increased progression free survival and overall survival outcome. Our study focuses on the dark toxicity testing of a Chloro-Indium-phthalocyanine photosensitizer (In-Pc) upon SH-SY5Y neuroblastoma cell line and its experimental in vitro PDT. Upon testing, In-Pc has shown a relatively high singlet oxygen quantum yield within the cells subjected to PDT (0.553), and 50 μg/mL IC50. Classical toxicological and efficacy assessment were completed with dynamic cellular impedance measurement methodology. Using this technology we have shown that long time incubation of neuroblastoma cell lines in In-Pc (over 5 days) does not significantly hinder cell proliferation when concentration are ≤ 10 μg/mL. When irradiating neuroblastoma cells loaded with non-toxic concentration of In-Pc, 50% of cells entered apoptosis. Transmission electron microscopy has confirmed apoptotic characteristics of cells. Investigating the proliferative capacity of the in vitro treated cells we have shown that cells that “escape” the irradiation protocol, present a reduced proliferative capacity. In conclusion, In-Pc represents another photosensitizer that can display sound PDT properties enhancing neuroblastoma therapy armentarium. PMID:27626486

  13. Disassembly of microtubules and inhibition of neurite outgrowth, neuroblastoma cell proliferation, and MAP kinase tyrosine dephosphorylation by dibenzyl trisulphide.

    PubMed

    Rösner, H; Williams, L A; Jung, A; Kraus, W

    2001-08-22

    Dibenzyl trisulphide (DTS), a main lipophilic compound in Petiveria alliacea L. (Phytolaccaceae), was identified as one of the active immunomodulatory compounds in extracts of the plant. To learn more about its biological activities and molecular mechanisms, we conducted one-dimensional NMR interaction studies with bovine serum albumin (BSA) and tested DTS and related compounds in two well-established neuronal cell-and-tissue culture systems. We found that DTS preferentially binds to an aromatic region of BSA which is rich in tyrosyl residues. In SH-SY5Y neuroblastoma cells, DTS attenuates the dephosphorylation of tyrosyl residues of MAP kinase (erk1/erk2). In the same neuroblastoma cell line and in Wistar 38 human lung fibroblasts, DTS causes a reversible disassembly of microtubules, but it did not affect actin dynamics. Probably due to the disruption of the microtubule dynamics, DTS also inhibits neuroblastoma cell proliferation and neurite outgrowth from spinal cord explants. Related dibenzyl compounds with none, one, or two sulphur atoms were found to be significantly less effective. These data confirmed that the natural compound DTS has a diverse spectrum of biological properties, including cytostatic and neurotoxic actions in addition to immunomodulatory activities.

  14. Inhibitors of histone deacetylase (HDAC) restore the p53 pathway in neuroblastoma cells

    PubMed Central

    Condorelli, F; Gnemmi, I; Vallario, A; Genazzani, A A; Canonico, P L

    2007-01-01

    Background and purpose: Inhibitors of histone deacetylase (HDAC) are emerging as a promising class of anti-cancer drugs, but a generic deregulation of transcription in neoplastic cells cannot fully explain their therapeutic effects. In this study we evaluated alternative molecular mechanisms by which HDAC inhibitors could affect neuroblastoma viability. Experimental approach: Effects of HDAC inhibitors on survival of the I-type SK-N-BE and the N-type NB SH-SY5Y neuroblastoma cell lines were assessed by the MTT assay. Molecular pathways leading to this were examined by western blot, confocal microscopy and cytofluorometry. The mRNA levels of apoptotic mediators were assessed semi-quantitatively by RT-PCR. Tumour-suppressor p53 trans activity was assessed in EMSA experiments. HDAC inhibitors were also studied in cells subjected to plasmid-based p53 interference (p53i). Key results: HDAC inhibitors induced cell death via the mitochondrial pathway of apoptosis with recruitment of Bcl-2 family members. Bcl-2 overexpression rendered neuroblastoma cells resistant to HDAC inhibitor treatment. Low concentrations of HDAC inhibitors (0.9 mM) caused a G2 cell-cycle arrest and a marked upregulation of the p21/Waf1/Cip1 protein. HDAC inhibitors also activate the p53 protein via hyper-acetylation and nuclear re-localization, without affecting its protein expression. Accordingly, HDAC inhibitor-induced cell-killing and p21/Waf1/Cip1 upregulation is impaired in p53i-cells. Conclusions and implications: In neuroblastoma cells, HDAC inhibitors may overcome the resistance to classical chemotherapeutic drugs by restoring the p53 tumour-repressor function via its hyper-acetylation and nuclear migration, events usually impaired in such tumours. In neuroblastoma cells, HDAC inhibitors are not able to induce p21/Waf1/Cip1 in the absence of a functional p53. PMID:18059320

  15. Anticancer activity of liposomal bergamot essential oil (BEO) on human neuroblastoma cells.

    PubMed

    Celia, Christian; Trapasso, Elena; Locatelli, Marcello; Navarra, Michele; Ventura, Cinzia Anna; Wolfram, Joy; Carafa, Maria; Morittu, Valeria Maria; Britti, Domenico; Di Marzio, Luisa; Paolino, Donatella

    2013-12-01

    Citrus extracts, particularly bergamot essential oil (BEO) and its fractions, have been found to exhibit anticancer efficacy. However, the poor water solubility, low stability and limited bioavailability have prevented the use of BEO in cancer therapy. To overcome such drawbacks, we formulated BEO liposomes that improved the water solubility of the phytocomponents and increased their anticancer activity in vitro against human SH-SY5Y neuroblastoma cells. The results warrant further investigation of BEO liposomes for in vivo applications.

  16. The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling

    PubMed Central

    Saez-Atienzar, S; Bonet-Ponce, L; Blesa, J R; Romero, F J; Murphy, M P; Jordan, J; Galindo, M F

    2014-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been associated with Parkinson's disease, and its inhibition opens potential new therapeutic options. Among the drug inhibitors of both wild-type and mutant LRRK2 forms is the 2-arylmethyloxy-5-subtitutent-N-arylbenzamide GSK257815A. Using the well-established dopaminergic cell culture model SH-SY5Y, we have investigated the effects of GSK2578215A on crucial neurodegenerative features such as mitochondrial dynamics and autophagy. GSK2578215A induces mitochondrial fragmentation of an early step preceding autophagy. This increase in autophagosome results from inhibition of fusion rather than increases in synthesis. The observed effects were shared with LRRK2-IN-1, a well-described, structurally distinct kinase inhibitor compound or when knocking down LRRK2 expression using siRNA. Studies using the drug mitochondrial division inhibitor 1 indicated that translocation of the dynamin-related protein-1 has a relevant role in this process. In addition, autophagic inhibitors revealed the participation of autophagy as a cytoprotective response by removing damaged mitochondria. GSK2578215A induced oxidative stress as evidenced by the accumulation of 4-hydroxy-2-nonenal in SH-SY5Y cells. The mitochondrial-targeted reactive oxygen species scavenger MitoQ positioned these species as second messengers between mitochondrial morphologic alterations and autophagy. Altogether, our results demonstrated the relevance of LRRK2 in mitochondrial-activated pathways mediating in autophagy and cell fate, crucial features in neurodegenerative diseases. PMID:25118928

  17. Molecular targeting of retinoic acid metabolism in neuroblastoma: the role of the CYP26 inhibitor R116010 in vitro and in vivo

    PubMed Central

    Armstrong, J L; Taylor, G A; Thomas, H D; Boddy, A V; Redfern, C P F; Veal, G J

    2007-01-01

    Isomerisation to all-trans-retinoic acid (ATRA) is widely accepted as the key mechanism underlying the favourable clinical properties of 13-cis-retinoic acid (13cisRA). As intracellular metabolism of ATRA by CYP26 may result in clinical resistance to 13cisRA, an increase in efficacy may be achieved through modulation of this metabolic pathway. We have evaluated the effect of the CYP26 inhibitor R116010 on retinoid metabolism in neuroblastoma cell lines and a xenograft model. In neuroblastoma cells, which showed a high level of CYP26 induction in response to ATRA, R116010 selectively inhibited ATRA metabolism. In addition, siRNA-mediated knockdown of CYP26 selectively increased ATRA levels and the expression of retinoid-responsive marker genes was potentiated by R116010. Treatment of mice bearing SH-SY5Y xenografts with 13cisRA (100 mg kg−1) revealed substantial levels (16%) of intratumoral ATRA after 6 h, despite plasma ATRA levels representing only 1% total retinoids under these conditions. Co-administration of R116010 with 13cisRA in this mouse model resulted in significant increases in plasma ATRA and 13cisRA concentrations. Furthermore, R116010 induced significant decreases in levels of 4-oxo metabolites in hepatic tissue after co-administration with either ATRA or 13cisRA. These data suggest considerable potential for CYP26 inhibitors in the future treatment of neuroblastoma with 13cisRA. PMID:17486130

  18. Expression and DNA-binding activity of MYCN/Max and Mnt/Max during induced differentiation of human neuroblastoma cells.

    PubMed

    Smith, Anna Grynfeld; Popov, Nikita; Imreh, Martha; Axelson, Håkan; Henriksson, Marie

    2004-08-15

    Amplification of MYCN is one of the most important prognostic markers for neuroblastoma and is correlated with rapid tumor progression and poor prognosis. MYCN belongs to the Myc/Max/Mad/Mnt network of proteins that regulate proliferation, apoptosis, and differentiation. It is well established that MYCN is downregulated during induced differentiation of neuroblastoma cells carrying an amplified MYCN gene, but very little is known about other components of the network, i.e., the Max, Mad, and Mnt proteins, during this process. In this study we show that Mad and Mnt expression was only modestly regulated in differentiating SK-N-BE(2) neuroblastoma cells, while MYCN was rapidly downregulated. This downregulation was reflected in a decreased MYCN/Max DNA-binding activity while the Mnt/Max binding did not change during differentiation. In parallel experiments we also analyzed the Myc/Max/Mad expression and DNA binding capacity during induced differentiation in the MYCN single copy neuroblastoma cell line SH-SY5Y. In this cell line only modest changes in expression of the components of the MYCN/Max/Mad/Mnt network was detected, but since the cell line expresses relatively low levels of MYCN and c-Myc, these changes might be of functional significance. Cell cycle analyses of SK-N-BE(2) demonstrated an increase in the G1-phase fraction after RA-treatment. These data show that the decreased MYCN expression and MYCN DNA-binding is correlated with retarded cell cycle progression. Furthermore, when Mad1 or Mnt was overexpressed in SK-N-BE(2) cells they retained the capacity to differentiate, underscoring the notion that MYCN downregulation, and not changes in Mad/Mnt expression, is essential for neuroblastoma cell differentiation.

  19. EPO Mediates Neurotrophic, Neuroprotective, Anti-Oxidant, and Anti-Apoptotic Effects via Downregulation of miR-451 and miR-885-5p in SH-SY5Y Neuron-Like Cells.

    PubMed

    Alural, Begum; Duran, Gizem Ayna; Tufekci, Kemal Ugur; Allmer, Jens; Onkal, Zeynep; Tunali, Dogan; Genc, Kursad; Genc, Sermin

    2014-01-01

    Erythropoietin (EPO) is a neuroprotective cytokine, which has been applied in several animal models presenting neurological disorders. One of the proposed modes of action resulting in neuroprotection is post-transcriptional gene expression regulation. This directly brings to mind microRNAs (miRNAs), which are small non-coding RNAs that regulate gene expression at the post-transcriptional level. It has not yet been evaluated whether miRNAs participate in the biological effects of EPO or whether it, inversely, modulates specific miRNAs in neuronal cells. In this study, we employed miRNA and mRNA arrays to identify how EPO exerts its biological function. Notably, miR-451 and miR-885-5p are downregulated in EPO-treated SH-SY5Y neuronal-like cells. Accordingly, target prediction and transcriptome analysis of cells treated with EPO revealed an alteration of the expression of genes involved in apoptosis, cell survival, proliferation, and migration. Low expression of miRNAs in SH-SY5Y was correlated with high expression of their target genes, vascular endothelial growth factor A, matrix metallo peptidase 9 (MMP9), cyclin-dependent kinase 2 (CDK2), erythropoietin receptor, Mini chromosome maintenance complex 5 (MCM5), B-cell lymphoma 2 (BCL2), and Galanin (GAL). Cell viability, apoptosis, proliferation, and migration assays were carried out for functional analysis after transfection with miRNA mimics, which inhibited some biological actions of EPO such as neuroprotection, anti-oxidation, anti-apoptosis, and migratory effects. In this study, we report for the first time that EPO downregulates the expression of miRNAs (miR-451 and miR-885-5p) in SH-SY5Y neuronal-like cells. The correlation between the over-expression of miRNAs and the decrease in EPO-mediated biological effects suggests that miR-451 and miR-885-5p may play a key role in the mediation of biological function.

  20. Polymeric nanoparticles enhance the sonodynamic activity of meso-tetrakis (4-sulfonatophenyl) porphyrin in an in vitro neuroblastoma model

    PubMed Central

    Canaparo, Roberto; Varchi, Greta; Ballestri, Marco; Foglietta, Federica; Sotgiu, Giovanna; Guerrini, Andrea; Francovich, Andrea; Civera, Pierluigi; Frairia, Roberto; Serpe, Loredana

    2013-01-01

    Purpose Sonodynamic therapy is a developing noninvasive modality for cancer treatment, based on the selective activation of a sonosensitizer agent by acoustic cavitation. The activated sonosensitizer agent might generate reactive oxygen species leading to cancer cell death. We investigated the potential poly-methyl methacrylate core-shell nanoparticles (NPs) loaded with meso-tetrakis (4-sulfonatophenyl) porphyrin (TPPS) have to function as an innovative sonosensitizing system, ie, TPPS-NPs. Methods Shockwaves (SWs) generated by a piezoelectric device were used to induce acoustic cavitation. The cytotoxic effect of the sonodynamic treatment with TPPS-NPs and SWs was investigated on the human neuroblastoma cell line, SH-SY5Y. Cells were exposed for 12 hours to TPPS-NPs (100 μg/mL) and then to SWs (0.43 mJ/mm2 for 500 impulses, 4 impulses/second). Treatment with SWs, TPPS, and NPs alone or in combination was carried out as control. Results There was a statistically significant decrease in SH-SY5Y cell proliferation after the sonodynamic treatment with TPPS-NPs and SWs. Indeed, there was a significant increase in necrotic (16.91% ± 3.89%) and apoptotic (27.45% ± 3.03%) cells at 48 hours. Moreover, a 15-fold increase in reactive oxygen species production for cells exposed to TPPS-NPs and SWs was observed at 1 hour compared with untreated cells. A statistically significant enhanced mRNA (messenger ribonucleic acid) expression of NRF2 (P<0.001) and a significant downregulation of TIGAR (P<0.05) and MAP3K5 (P<0.05) genes was observed in cells exposed to TPPS-NPs and SWs at 24 hours, along with a statistically significant release of cytochrome c (P<0.01) at 48 hours. Lastly, the sonosensitizing system was also investigated in an in vitro three-dimensional model, and the sonodynamic treatment significantly decreased the neuroblastoma spheroid growth. Conclusion The sonosensitizing properties of TPPS were significantly enhanced once loaded onto NPs, thus enhancing the

  1. Cell lines from MYCN transgenic murine tumours reflect the molecular and biological characteristics of human neuroblastoma.

    PubMed

    Cheng, Andy J; Cheng, Ngan Ching; Ford, Jette; Smith, Janice; Murray, Jayne E; Flemming, Claudia; Lastowska, Maria; Jackson, Michael S; Hackett, Christopher S; Weiss, William A; Marshall, Glenn M; Kees, Ursula R; Norris, Murray D; Haber, Michelle

    2007-06-01

    Overexpression of the human MYCN oncogene driven by a tyrosine hydroxylase promoter causes tumours in transgenic mice that recapitulate the childhood cancer neuroblastoma. To establish an in vitro model to study this process, a series of isogenic cell lines were developed from these MYCN-driven murine tumours. Lines were established from tumours arising in homozygous and hemizygous MYCN transgenic mice. Hemizygous tumours gave rise to cell lines growing only in suspension. Homozygous tumours gave rise to similar suspension lines as well as morphologically distinct substrate-adherent lines characteristic of human S-type neuroblastoma cells. FISH analysis demonstrated selective MYCN transgene amplification in cell lines derived from hemizygous mice. Comparative genomic hybridisation (CGH) and fluorescence in situ hybridisation (FISH) analysis confirmed a range of neuroblastoma-associated genetic changes in the various lines, in particular, gain of regions syntenic with human 17q. These isogenic lines together with the transgenic mice thus represent valuable models for investigating the biological characteristics of aggressive neuroblastoma.

  2. C-Phycocyanin protects SH-SY5Y cells from oxidative injury, rat retina from transient ischemia and rat brain mitochondria from Ca2+/phosphate-induced impairment.

    PubMed

    Marín-Prida, Javier; Pentón-Rol, Giselle; Rodrigues, Fernando Postalli; Alberici, Luciane Carla; Stringhetta, Karina; Leopoldino, Andréia Machado; Naal, Zeki; Polizello, Ana Cristina Morseli; Llópiz-Arzuaga, Alexey; Rosa, Marcela Nunes; Liberato, José Luiz; Santos, Wagner Ferreira Dos; Uyemura, Sergio Akira; Pentón-Arias, Eduardo; Curti, Carlos; Pardo-Andreu, Gilberto L

    2012-12-01

    Oxidative stress and mitochondrial impairment are essential in the ischemic stroke cascade and eventually lead to tissue injury. C-Phycocyanin (C-PC) has previously been shown to have strong antioxidant and neuroprotective actions. In the present study, we assessed the effects of C-PC on oxidative injury induced by tert-butylhydroperoxide (t-BOOH) in SH-SY5Y neuronal cells, on transient ischemia in rat retinas, and in the calcium/phosphate-induced impairment of isolated rat brain mitochondria (RBM). In SH-SY5Y cells, t-BOOH induced a significant reduction of cell viability as assessed by an MTT assay, and the reduction was effectively prevented by treatment with C-PC in the low micromolar concentration range. Transient ischemia in rat retinas was induced by increasing the intraocular pressure to 120mmHg for 45min, which was followed by 15min of reperfusion. This event resulted in a cell density reduction to lower than 50% in the inner nuclear layer (INL), which was significantly prevented by the intraocular pre-treatment with C-PC for 15min. In the RBM exposed to 3mM phosphate and/or 100μM Ca(2+), C-PC prevented in the low micromolar concentration range, the mitochondrial permeability transition as assessed by mitochondrial swelling, the membrane potential dissipation, the increase of reactive oxygen species levels and the release of the pro-apoptotic cytochrome c. In addition, C-PC displayed a strong inhibitory effect against an electrochemically-generated Fenton reaction. Therefore, C-PC is a potential neuroprotective agent against ischemic stroke, resulting in reduced neuronal oxidative injury and the protection of mitochondria from impairment.

  3. Tanshinone I Attenuates the Effects of a Challenge with H2O2 on the Functions of Tricarboxylic Acid Cycle and Respiratory Chain in SH-SY5Y Cells.

    PubMed

    de Oliveira, Marcos Roberto; Fürstenau, Cristina Ribas; de Souza, Izabel Cristina Custódio; da Costa Ferreira, Gustavo

    2016-11-15

    Tanshinone I (T-I; C18H12O3) is a cytoprotective molecule. T-I has been viewed as an antioxidant and anti-inflammatory agent exerting neuroprotective actions in several experimental models. Nonetheless, the mechanisms underlying the beneficial effects of T-I in mammalian cells are not completely understood yet. Mitochondrial dysfunction has been associated with several neurodegenerative diseases which remain uncured. Therefore, there is increasing interest in compounds that may be used in the prevention or treatment of those pathologies. Since T-I presents an antioxidant capacity, we investigated here whether and how this compound would prevent mitochondrial impairment in SH-SY5Y cells exposed to hydrogen peroxide (H2O2), which has been involved in the triggering of deleterious effects in several experimental models mimicking neurodegenerative processes. We found that a pretreatment with T-I at 2.5 μM for 2 h suppressed the pro-oxidant effects of H2O2 on mitochondrial membranes. Furthermore, T-I prevented the H2O2-elicited inhibition of the tricarboxylic acid (TCA) cycle enzymes (aconitase, α-ketoglutarate dehydrogenase, and succinate dehydrogenase) and of the mitochondrial complexes I and V. T-I also abrogated the mitochondrial depolarization and the mitochondrial failure to produce ATP in cells exposed to H2O2. T-I upregulated the levels of reduced glutathione (GSH) in the mitochondria of SH-SY5Y cells. T-I induced mitochondrial protection, at least in part, by activating the nuclear factor erythroid 2-related factor 2 (Nrf2), because silencing of Nrf2 by using small interference RNA (SiRNA) blocked these effects. Therefore, T-I afforded mitochondrial protection (involving both redox and bioenergetics-related aspects) against H2O2 through the activation of Nrf2.

  4. The Ews/Fli-1 fusion gene changes the status of p53 in neuroblastoma tumor cell lines.

    PubMed

    Rorie, Checo J; Weissman, Bernard E

    2004-10-15

    One hallmark of Ewing's sarcoma/peripheral neuroectodermal tumors is the presence of the Ews/Fli-1 chimeric oncogene. Interestingly, infection of neuroblastoma tumor cell lines with Ews/Fli-1 switches the differentiation program of neuroblastomas to Ewing's sarcoma/peripheral neuroectodermal tumors. Here we examined the status of cytoplasmically sequestered wt-p53 in neuroblastomas after stable expression of Ews/Fli-1. Immunofluorescence revealed that in the neuroblastoma-Ews/Fli-1 infectant cell lines, p53 went from a punctate-pattern of cytoplasmic sequestration to increased nuclear localization. Western blot analysis revealed that PARC was down-regulated in one neuroblastoma cell line but not expressed in the second. Therefore, decreased PARC expression could not fully account for relieving p53 sequestration in the neuroblastoma tumor cells. Neuroblastoma-Ews/Fli-1 infectant cell lines showed marked increases in p53 protein expression without transcriptional up-regulation. Interestingly, p53 was primarily phosphorylated, without activation of its downstream target p21(WAF1). Western blot analysis revealed that whereas MDM2 gene expression does not change, p14(ARF), a negative protein regulator of MDM2, increases. These observations suggest that the downstream p53 pathway may be inactivated as a result of abnormal p53. We also found that p53 has an extended half-life in the neuroblastoma-Ews/Fli-1 infectants despite the retention of a wild-type sequence in neuroblastoma-Ews/Fli-1 infectant cell lines. We then tested the p53 response pathway and observed that the neuroblastoma parent cells responded to genotoxic stress, whereas the neuroblastoma-Ews/Fli-1 infectants did not. These results suggest that Ews/Fli-1 can directly abrogate the p53 pathway to promote tumorigenesis. These studies also provide additional insight into the relationship among the p53 pathway proteins.

  5. Vitis labrusca extract effects on cellular dynamics and redox modulations in a SH-SY5Y neuronal cell model: a similar role to lithium.

    PubMed

    Scola, Gustavo; Laliberte, Victoria Louise Marina; Kim, Helena Kyunghee; Pinguelo, Arsene; Salvador, Mirian; Young, L Trevor; Andreazza, Ana Cristina

    2014-12-01

    Oxidative stress and calcium imbalance are consistently reported in bipolar disorder (BD). Polymorphism of voltage-dependent calcium channel, L type, alpha 1C subunit (CACNA1c), which is responsible for the regulation of calcium influx, was also shown to have a strong association with BD. These alterations can lead to a number of different consequences in the cell including production of reactive species causing oxidative damage to proteins, lipids and DNA. Lithium is the most frequent medication used for the treatment of BD. Despite lithium's effects, long-term use can result in many negative side effects. Therefore, there is an urgent need for the development of drugs that may have similar biological effects as lithium without the negative consequences. Moreover, polyphenols are secondary metabolites of plants that present multi-faceted molecular abilities, such as regulation of cellular responses. Vitis labrusca extract (VLE), a complex mixture of polyphenols obtained from seeds of winery wastes of V. labrusca, was previously characterized by our group. This extract presented powerful antioxidant and neuroprotective properties. Therefore, the ability of VLE to ameliorate the consequences of hydrogen peroxide (H2O2)-induced redox alterations to cell viability, intracellular calcium levels and the relative levels of the calcium channel CACNA1c in comparison to lithium's effects were evaluated using a neuroblastoma cell model. H2O2 treatment increased cell mortality through apoptotic and necrotic pathways leading to an increase in intracellular calcium levels and alterations to relative CACNA1c levels. VLE and lithium were found to similarly ameliorate cell mortality through regulation of the apoptotic/necrotic pathways, decreasing intracellular calcium levels and preventing alterations to the relative levels of CACNA1c. The findings of this study suggest that VLE exhibits protective properties against oxidative stress-induced alterations similar to that of lithium

  6. Identification of different ALK mutations in a pair of neuroblastoma cell lines established at diagnosis and relapse

    PubMed Central

    Chen, Lindi; Humphreys, Angharad; Turnbull, Lisa; Bellini, Angela; Schleiermacher, Gudrun; Salwen, Helen; Cohn, Susan L.; Bown, Nick; Tweddle, Deborah A.

    2016-01-01

    Anaplastic Lymphoma Kinase (ALK) is a transmembrane receptor kinase that belongs to the insulin receptor superfamily and has previously been shown to play a role in cell proliferation, migration and invasion in neuroblastoma. Activating ALK mutations are reported in both hereditary and sporadic neuroblastoma tumours, and several ALK inhibitors are currently under clinical evaluation as novel treatments for neuroblastoma. Overall, mutations at codons F1174, R1275 and F1245 together account for ∼85% of reported ALK mutations in neuroblastoma. NBLW and NBLW-R are paired cell lines originally derived from an infant with metastatic MYCN amplified Stage IVS (Evans Criteria) neuroblastoma, at diagnosis and relapse, respectively. Using both Sanger and targeted deep sequencing, this study describes the identification of distinct ALK mutations in these paired cell lines, including the rare R1275L mutation, which has not previously been reported in a neuroblastoma cell line. Analysis of the sensitivity of NBLW and NBLW-R cells to a panel of ALK inhibitors (TAE-684, Crizotinib, Alectinib and Lorlatinib) revealed differences between the paired cell lines, and overall NBLW-R cells with the F1174L mutation were more resistant to ALK inhibitor induced apoptosis compared with NBLW cells. This pair of cell lines represents a valuable pre-clinical model of clonal evolution of ALK mutations associated with neuroblastoma progression. PMID:27888620

  7. Protective effects of ginsenoside Rg1 against hydrogen peroxide-induced injury in human neuroblastoma cells

    PubMed Central

    Sun, Zhi-gao; Chen, Li-ping; Wang, Fa-wei; Xu, Cheng-yong; Geng, Miao

    2016-01-01

    The active ingredient of ginseng, ginsenosides Rg1, has been shown to scavenge free radicals and improve antioxidant capacity. This study hypothesized that ginsenosides Rg1 has a protective role in human neuroblastoma cells injured by H2O2. Ginsenosides Rg1 at different concentrations (50 and 100 μM) was used to treat H2O2 (150 μM)-injured SH-SY5Y cells. Results demonstrated that ginsenoside Rg1 elevated the survival rate of SH-SY5Y cells injured by H2O2, diminished the amount of leaked lactate dehydrogenase, and increased superoxide dismutase activity. Ginsenoside Rg1 effectively suppressed caspase-3 immunoreactivity, and contributed to heat shock protein 70 gene expression, in a dose-dependent manner. These results indicate that ginsenoside Rg1 has protective effects on SH-SY5Y cells injured by H2O2 and that its mechanism of action is associated with anti-oxidation and the inhibition of apoptosis. PMID:27630703

  8. Protective effect of carnosic acid against paraquat-induced redox impairment and mitochondrial dysfunction in SH-SY5Y cells: Role for PI3K/Akt/Nrf2 pathway.

    PubMed

    de Oliveira, Marcos Roberto; Ferreira, Gustavo Costa; Schuck, Patrícia Fernanda

    2016-04-01

    Carnosic acid (CA) is a phenolic diterpene isolated from Rosmarinus officinalis and exerts anti-inflammatory, antioxidant, and anticarcinogenic activities in different cell types. It has been reported that CA is able to cause protective effects on experimental models of neurodegeneration. However, the exact mechanism by which CA prevents neuronal degeneration remains to be better studied. We investigated here whether there is a role for CA as a neuroprotective agent in a paraquat (PQ) model of Parkinson's disease (PD) regarding cellular and mitochondrial-related redox parameters. SH-SY5Y cells were treated with CA for 12h and were exposed to 100 μM PQ for 24h. It was found that CA at different concentrations prevented the effects of PQ on cell viability and redox parameters. CA alleviated reactive oxygen and nitrogen species production elicited by PQ, as well as decreased the toxic effect on mitochondrial function. Inhibition of Pi3K/Akt pathway with LY294002 or silencing of Nrf2 expression partially blocked the reversal of redox impairment induced by CA. Therefore, CA activated Nrf2 through modulation of PI3K/Akt pathway resulting in increased levels of antioxidant enzymes and consequent neuroprotection. Thus, CA may be viewed as a potential neuroprotective agent to be used in cases of Parkinson's disease (PD).

  9. Thionate versus Oxon: comparison of stability, uptake, and cell toxicity of ((14)CH(3)O)(2)-labeled methyl parathion and methyl paraoxon with SH-SY5Y cells.

    PubMed

    Bharate, Sandip B; Prins, John M; George, Kathleen M; Thompson, Charles M

    2010-07-28

    The stability, hydrolysis, and uptake of the organophosphates methyl parathion and methyl paraoxon were investigated in SH-SY5Y cells. The stabilities of ((14)CH(3)O)(2)-methyl parathion ((14)C-MPS) and ((14)CH(3)O)(2)-methyl paraoxon ((14)C-MPO) at 1 microM in culture media had similar half-lives of 91.7 and 101.9 h, respectively. However, 100 microM MPO caused >95% cytotoxicity at 24 h, whereas 100 microM MPS caused 4-5% cytotoxicity at 24 h ( approximately 60% cytotoxicity at 48 h). Greater radioactivity was detected inside cells treated with MPO as compared to MPS, although >80% of the total MPO uptake was primarily dimethyl phosphate (DMP). Maximum uptake was reached after 48 h of (14)C-MPS or (14)C-MPO exposure with total uptakes of 1.19 and 1.76 nM/10(6) cells for MPS and MPO, respectively. The amounts of MPS and MPO detected in the cytosol after 48 h of exposure time were 0.54 and 0.37 nM/10(6) cells, respectively.

  10. Hydrochloric acid alters the effect of L-glutamic acid on cell viability in human neuroblastoma cell cultures.

    PubMed

    Croce, Nicoletta; Bernardini, Sergio; Di Cecca, Stefano; Caltagirone, Carlo; Angelucci, Francesco

    2013-07-15

    l-Glutamic acid (l-glutamate) is used to induce excitotoxicity and test neuroprotective compounds in cell cultures. However, because l-glutamate powder is nearly insoluble in water, many manufacturers recommend reconstituting l-glutamate in hydrochloric acid (HCl) prior to successive dilutions. Nevertheless, HCl, even at low concentrations, may alter the pH of the cell culture medium and interfere with cell activity. Thus, the aim of this study was to evaluate whether the reconstitution of l-glutamate powder in HCl alters its capacity to induce neurotoxicity in different human neuroblastoma cell lines. SH-SY5Y, IMR-32 and SK-N-BE(2) cells were exposed to various concentrations of l-glutamate, which was either reconstituted in HCl (1M) or post re-equilibrated to the pH of the culture medium (7.5). After 24 and 48h of incubation, changes in the cell viability of treated versus untreated cells were evaluated. The effect of an identical amount of HCl present in the l-glutamate dilutions on neuroblastoma cell survival was also investigated. Our data showed that the neurotoxicity of glutamate reconstituted in HCl was comparable to that of HCl alone. Moreover, the pH variations induced by glutamate or HCl in the culture medium were similar. When the pH of the glutamate stock solution was re-equilibrated, l-glutamate induced variation in cell viability to a lower extent and after a longer incubation time. This study demonstrated that HCl used to reconstitute l-glutamate powder might alter the effect of glutamate itself in neuroblastoma cell cultures. Thus, this information might be useful to scientists who use l-glutamate to induce excitotoxicity or to test neuroprotective agents.

  11. Neuronal cell lines as model dorsal root ganglion neurons

    PubMed Central

    Yin, Kathleen; Baillie, Gregory J

    2016-01-01

    Background Dorsal root ganglion neuron-derived immortal cell lines including ND7/23 and F-11 cells have been used extensively as in vitro model systems of native peripheral sensory neurons. However, while it is clear that some sensory neuron-specific receptors and ion channels are present in these cell lines, a systematic comparison of the molecular targets expressed by these cell lines with those expressed in intact peripheral neurons is lacking. Results In this study, we examined the expression of RNA transcripts in the human neuroblastoma-derived cell line, SH-SY5Y, and two dorsal root ganglion hybridoma cell lines, F-11 and ND7/23, using Illumina next-generation sequencing, and compared the results with native whole murine dorsal root ganglions. The gene expression profiles of these three cell lines did not resemble any specific defined dorsal root ganglion subclass. The cell lines lacked many markers for nociceptive sensory neurons, such as the Transient receptor potential V1 gene, but expressed markers for both myelinated and unmyelinated neurons. Global gene ontology analysis on whole dorsal root ganglions and cell lines showed similar enrichment of biological process terms across all samples. Conclusions This paper provides insights into the receptor repertoire expressed in common dorsal root ganglion neuron-derived cell lines compared with whole murine dorsal root ganglions, and illustrates the limits and potentials of these cell lines as tools for neuropharmacological exploration. PMID:27130590

  12. Early Targets of miR-34a in Neuroblastoma*

    PubMed Central

    De Antonellis, Pasqualino; Carotenuto, Marianeve; Vandenbussche, Jonathan; De Vita, Gennaro; Ferrucci, Veronica; Medaglia, Chiara; Boffa, Iolanda; Galiero, Alessandra; Di Somma, Sarah; Magliulo, Daniela; Aiese, Nadia; Alonzi, Alessandro; Spano, Daniela; Liguori, Lucia; Chiarolla, Cristina; Verrico, Antonio; Schulte, Johannes H.; Mestdagh, Pieter; Vandesompele, Jo; Gevaert, Kris; Zollo, Massimo

    2014-01-01

    Several genes encoding for proteins involved in proliferation, invasion, and apoptosis are known to be direct miR-34a targets. Here, we used proteomics to screen for targets of miR-34a in neuroblastoma (NBL), a childhood cancer that originates from precursor cells of the sympathetic nervous system. We examined the effect of miR-34a overexpression using a tetracycline inducible system in two NBL cell lines (SHEP and SH-SY5Y) at early time points of expression (6, 12, and 24 h). Proteome analysis using post-metabolic labeling led to the identification of 2,082 proteins, and among these 186 were regulated (112 proteins down-regulated and 74 up-regulated). Prediction of miR-34a targets via bioinformatics showed that 32 transcripts held miR-34a seed sequences in their 3′-UTR. By combining the proteomics data with Kaplan Meier gene-expression studies, we identified seven new gene products (ALG13, TIMM13, TGM2, ABCF2, CTCF, Ki67, and LYAR) that were correlated with worse clinical outcomes. These were further validated in vitro by 3′-UTR seed sequence regulation. In addition, Michigan Molecular Interactions searches indicated that together these proteins affect signaling pathways that regulate cell cycle and proliferation, focal adhesions, and other cellular properties that overall enhance tumor progression (including signaling pathways such as TGF-β, WNT, MAPK, and FAK). In conclusion, proteome analysis has here identified early targets of miR-34a with relevance to NBL tumorigenesis. Along with the results of previous studies, our data strongly suggest miR-34a as a useful tool for improving the chance of therapeutic success with NBL. PMID:24912852

  13. The ameliorative effect of Monascus purpureus NTU 568-fermented rice extracts on 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells and the rat model of Parkinson's disease.

    PubMed

    Tseng, Wei-Ting; Hsu, Ya-Wen; Pan, Tzu-Ming

    2016-02-01

    Oxidative stress and neuroinflammation underlie the major pathogenesis in Parkinson's disease (PD). Antioxidants are known to protect against the degeneration of dopaminergic neurons. Monascus purpureus-fermented rice, a traditional Chinese medicine as well as a health food, includes multifunctional metabolites. The present study was designed to investigate the effects of the antioxidant-containing M. purpureus NTU 568-fermented rice extract (extracted with 50% ethanol, so called R50E) in 6-hydrodopamine (6-OHDA)-induced neurotoxicity in vitro and in vivo. In vitro, treatment with R50E reduced 6-OHDA-induced SH-SY5Y cell death. In vivo, two doses of R50E (5.5 and 11.0 mg kg(-1)) were administered for a period of 28 days following 6-OHDA-induced lesioning. The administration of R50E reduced parkinsonian motor dysfunction and the number of tyrosine hydroxylase (TH)-immunoreactive neurons present in 6-OHDA-induced lesioned rats. Moreover, the administration of R50E reversed the elevation of reactive oxygen species (ROS) and malondialdehyde (MDA) levels and promoted the activity of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione reductase, and glutathione peroxidase via down-regulation of p47 phox, NOX1, and NOX2 expression in the 6-OHDA-lesion rats. Furthermore, treatment with R50E attenuated nitric oxide (NO) and tumor necrosis factor (TNF-α) levels in the 6-OHDA-lesion rats. In conclusion, R50E may prevent neurodegeneration via anti-oxidative and anti-inflammatory mechanisms, suggesting its potential therapeutic value for PD treatment. This is the first study for evaluating the neuroprotective effects of red mold fermented products in PD models.

  14. Tris (1, 3-dichloro-2-propyl) phosphate induces apoptosis and autophagy in SH-SY5Y cells: Involvement of ROS-mediated AMPK/mTOR/ULK1 pathways.

    PubMed

    Li, Ruiwen; Zhou, Peijiang; Guo, Yongyong; Lee, Jae-Seong; Zhou, Bingsheng

    2017-02-01

    Tris (1, 3-dichloro-2-propyl) phosphate (TDCIPP), an extensively used organophosphorus flame retardant, is frequently detected in the environment and biota. Recent studies have shown that TDCIPP has neurotoxic effects. We hypothesized that the neurotoxicity might occur via the induction of the apoptosis and autophagy pathways. In the present study, we investigated TDCIPP-induced apoptotic death and autophagy in SH-SY5Y cells. Treatment with TDCIPP induced increased reactive oxygen species (ROS) generation and cell apoptosis, as well as autophagy. The autophagy inhibitor 3-methyladenine (3-MA) markedly decreased the expression of the autophagy marker beclin-1, microtubule-associated protein light chain 3-II (LC3II), p62/sequestosome 1 (SQSTM1) degradation, and promoted apoptosis. Conversely, the autophagy inducer rapamycin (Rapa) alleviated TDCIPP-induced apoptosis and markedly increased the expression of the autophagy markers. Pretreatment with N-acetyl cysteine (NAC) eliminated the increased ROS generation, resulting in increased cell viability. For further examination of the signaling pathways involved in TDCIPP-induced autophagy, compound C, a pharmacological inhibitor of adenosine monophosphate activated protein kinase (AMPK) was used. Western blotting showed that compound C markedly reduced the expression of phospho-AMPK (p-AMPK) and phospho-Unc-51-like kinase 1 (p-ULK1), increased phospho-mammalian target of rapamycin (p-mTOR) expression, and decreased beclin-1 and LC3II expression. These results suggested that the AMPK/mTOR/ULK1 signaling pathway was involved in TDCIPP-induced autophagy. The antioxidant NAC antagonized TDCIPP-induced activation of AMPK and autophagy. Taken together, our findings provide the first evidence that TDCIPP promotes apoptosis and autophagy simultaneously and that this process involves the ROS-mediated AMPK/mTOR/ULK1 pathways. Lastly, the induction of autophagy is a protective mechanism against TDCIPP-induced apoptosis.

  15. Nitro-oxidative Stress Is Involved in Anticancer Activity of 17β-Estradiol Derivative in Neuroblastoma Cells.

    PubMed

    Gorska, Magdalena; Kuban-Jankowska, Alicja; Milczarek, Ryszard; Wozniak, Michal

    2016-04-01

    Neuroblastoma is one of the most common childhood malignancies and the primary cause of death from pediatric cancer. Derivatives of 17β-estradiol, 2-methoxyestradiol, as well as selective estrogen receptor modulators, such as fulvestrant, are novel potentially active anticancer agents. In particular, 2-methoxyestradiol is effective in treatment of numerous malignancies, including breast and prostate cancer, Ewing sarcoma, and osteosarcoma. Herein, we treated neuroblastoma SH-SY5Y cells with physiologically and pharmacologically relevant concentrations of 2-methoxyestradiol. We used flow cytometry in order to determine cell viability, cell death, level of nitric oxide and mitochondrial membrane potential. We demonstrated that at pharmacologically relevant concentrations, 2-methoxyestradiol results in induction of apoptosis of neuroblastoma SH-SY5Y cells via nitric oxide generation and reduction of mitochondrial membrane potential. Based on the obtained data, we propose that 2-methoxyestradiol may be a natural modulator of cancer cell death and survival through nitro-oxidative stress-dependent mechanisms. Moreover, the results confirm the efficiency of 2-methoxyestradiol in treatment of neuroblastoma.

  16. Aberrant CpG Methylation Mediates Abnormal Transcription of MAO-A Induced by Acute and Chronic L-3,4-Dihydroxyphenylalanine Administration in SH-SY5Y Neuronal Cells.

    PubMed

    Yang, Zhaofei; Wang, Xuan; Yang, Jian; Sun, Min; Wang, Yong; Wang, Xiaomin

    2017-04-01

    L-3,4-dihydroxyphenylalanine (L-dopa) remains the most effective drug for therapy of Parkinson's disease (PD); however, long-term use of it causes serious side effects. L-dopa-induced dyskinesia (LID) has consistently been related to L-dopa-derived excessive dopamine release, but the mechanisms have not been addressed very clear. Monoamine oxidase A (MAO-A) is one of the key enzymes in dopamine metabolism and therefore may be involved in L-dopa-induced side effects. And, epigenetic modification controls MAO-A gene transcription. To investigate the effects of L-dopa on MAO-A transcription and its underlying epigenetic mechanism, neuronal SH-SY5Y cells were treated with L-dopa for 24 h (acute) and for 7-21 days (chronic). Results showed that chronic L-dopa administration resulted in a dose-dependent and time-dependent downregulation of MAO-A, whereas acute L-dopa administration induced upregulation of MAO-A transcription and expression. Meanwhile, chronic L-dopa exposure induced CpG hypermethylation in MAO-A promoter, while acute L-dopa administration caused CpG hypomethylation. And, CpG demethylation resulted in reactivation of MAO-A transcription. These results indicated that aberrant CpG methylation might play a key role in MAO-A transcriptional misregulation in L-dopa administration. In addition, results showed that acute L-dopa administration induced downregulation of DNA methyltransferase 3a (DNMT3a). Transcription of ten-eleven translocation 1 (TET1) were significantly downregulated in chronic L-dopa administration. These data indicated that in chronic L-dopa administration, TET1 downregulation might mediate CpG hypermethylation, which is responsible for the downregulation of MAO-A transcription. In contrast, in acute L-dopa administration, DNMT3a downregulation might mediate hypomethylation, contributing to the MAO-A upregulation. In conclusion, our findings suggested that TET1 and DNMTs might mediate aberrant CpG methylation, associated with the

  17. Next generation sequencing of microRNAs from isogenic neuroblastoma cell lines isolated before and after treatment.

    PubMed

    Roth, Sarah Andrea; Knutsen, Erik; Fiskaa, Tonje; Utnes, Peter; Bhavsar, Swapnil; Hald, Øyvind H; Løkke, Cecilie; Mestdagh, Pieter; Johansen, Steinar D; Flægstad, Trond; Einvik, Christer

    2016-03-01

    Neuroblastoma is a pediatric cancer of the developing sympathetic nervous system. High risk neuroblastoma patients typically undergo an initial remission in response to treatment, followed by recurrence of aggressive tumors that have become refractory to further treatment. Recent works have underlined the involvement of microRNAs (miRNAs) in neuroblastoma development and evolution of drug resistance. In this study we have used deep sequencing technology to identify miRNAs differentially expressed in neuroblastoma cell lines isolated from 6 patients at diagnosis and at relapse after intensive treatments. This approach revealed a panel of 42 differentially expressed miRNAs, 8 of which were upregulated and 34 were downregulated. Most strikingly, the 14q32 miRNA clusters encode 22 of the downregulated miRNAs. Reduced expression of 14q32 miRNAs in tumors associated with poor prognosis factors was confirmed in a cohort consisting of 226 primary neuroblastomas. In order to gain insight into the nature of the genes that may be affected by the differentially expressed miRNAs we utilized Ingenuity Pathway Analysis (IPA). This analysis revealed several biological functions and canonical pathways associated with cancer progression and drug resistance. The results of this study contribute to the identification of miRNAs involved in the complex processes of surviving therapeutic treatment and developing drug resistance in neuroblastoma.

  18. Reverse engineering the neuroblastoma regulatory network uncovers MAX as one of the master regulators of tumor progression.

    PubMed

    Albanus, Ricardo D'Oliveira; Juliani Siqueira Dalmolin, Rodrigo; Alves Castro, Mauro Antônio; Augusto de Bittencourt Pasquali, Matheus; de Miranda Ramos, Vitor; Pens Gelain, Daniel; Fonseca Moreira, José Cláudio

    2013-01-01

    Neuroblastoma is the most common extracranial tumor and a major cause of infant cancer mortality worldwide. Despite its importance, little is known about its molecular mechanisms. A striking feature of this tumor is its clinical heterogeneity. Possible outcomes range from aggressive invasion to other tissues, causing patient death, to spontaneous disease regression or differentiation into benign ganglioneuromas. Several efforts have been made in order to find tumor progression markers. In this work, we have reconstructed the neuroblastoma regulatory network using an information-theoretic approach in order to find genes involved in tumor progression and that could be used as outcome predictors or as therapeutic targets. We have queried the reconstructed neuroblastoma regulatory network using an aggressive neuroblastoma metastasis gene signature in order to find its master regulators (MRs). MRs expression profiles were then investigated in other neuroblastoma datasets so as to detect possible clinical significance. Our analysis pointed MAX as one of the MRs of neuroblastoma progression. We have found that higher MAX expression correlated with favorable patient outcomes. We have also found that MAX expression and protein levels were increased during neuroblastoma SH-SY5Y cells differentiation. We propose that MAX is involved in neuroblastoma progression, possibly increasing cell differentiation by means of regulating the availability of MYC:MAX heterodimers. This mechanism is consistent with the results found in our SH-SY5Y differentiation protocol, suggesting that MAX has a more central role in these cells differentiation than previously reported. Overexpression of MAX has been identified as anti-tumorigenic in other works, but, to our knowledge, this is the first time that the link between the expression of this gene and malignancy was verified under physiological conditions.

  19. Reverse Engineering the Neuroblastoma Regulatory Network Uncovers MAX as One of the Master Regulators of Tumor Progression

    PubMed Central

    Albanus, Ricardo D’Oliveira; Juliani Siqueira Dalmolin, Rodrigo; Alves Castro, Mauro Antônio; Augusto de Bittencourt Pasquali, Matheus; de Miranda Ramos, Vitor; Pens Gelain, Daniel; Fonseca Moreira, José Cláudio

    2013-01-01

    Neuroblastoma is the most common extracranial tumor and a major cause of infant cancer mortality worldwide. Despite its importance, little is known about its molecular mechanisms. A striking feature of this tumor is its clinical heterogeneity. Possible outcomes range from aggressive invasion to other tissues, causing patient death, to spontaneous disease regression or differentiation into benign ganglioneuromas. Several efforts have been made in order to find tumor progression markers. In this work, we have reconstructed the neuroblastoma regulatory network using an information-theoretic approach in order to find genes involved in tumor progression and that could be used as outcome predictors or as therapeutic targets. We have queried the reconstructed neuroblastoma regulatory network using an aggressive neuroblastoma metastasis gene signature in order to find its master regulators (MRs). MRs expression profiles were then investigated in other neuroblastoma datasets so as to detect possible clinical significance. Our analysis pointed MAX as one of the MRs of neuroblastoma progression. We have found that higher MAX expression correlated with favorable patient outcomes. We have also found that MAX expression and protein levels were increased during neuroblastoma SH-SY5Y cells differentiation. We propose that MAX is involved in neuroblastoma progression, possibly increasing cell differentiation by means of regulating the availability of MYC:MAX heterodimers. This mechanism is consistent with the results found in our SH-SY5Y differentiation protocol, suggesting that MAX has a more central role in these cells differentiation than previously reported. Overexpression of MAX has been identified as anti-tumorigenic in other works, but, to our knowledge, this is the first time that the link between the expression of this gene and malignancy was verified under physiological conditions. PMID:24349289

  20. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells.

    PubMed

    Marzinke, Mark A; Clagett-Dame, Margaret

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21(Cip1), a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G(1)/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation.

  1. Visualization of co-localization in Aβ42-administered neuroblastoma cells reveals lysosome damage and autophagosome accumulation related to cell death.

    PubMed

    Soura, Violetta; Stewart-Parker, Maris; Williams, Thomas L; Ratnayaka, Arjuna; Atherton, Joe; Gorringe, Kirsti; Tuffin, Jack; Darwent, Elisabeth; Rambaran, Roma; Klein, William; Lacor, Pascale; Staras, Kevin; Thorpe, Julian; Serpell, Louise C

    2012-01-15

    Aβ42 [amyloid-β peptide-(1-42)] plays a central role in Alzheimer's disease and is known to have a detrimental effect on neuronal cell function and survival when assembled into an oligomeric form. In the present study we show that administration of freshly prepared Aβ42 oligomers to a neuroblastoma (SH-SY5Y) cell line results in a reduction in survival, and that Aβ42 enters the cells prior to cell death. Immunoconfocal and immunogold electron microscopy reveal the path of the Aβ42 with time through the endosomal system and shows that it accumulates in lysosomes. A 24 h incubation with Aβ results in cells that have damaged lysosomes showing signs of enzyme leakage, accumulate autophagic vacuoles and exhibit severely disrupted nuclei. Endogenous Aβ is evident in the cells and the results of the present study suggest that the addition of Aβ oligomers disrupts a crucial balance in Aβ conformation and concentration inside neuronal cells, resulting in catastrophic effects on cellular function and, ultimately, in cell death.

  2. Viologen-phosphorus dendrimers exhibit minor toxicity against a murine neuroblastoma cell line.

    PubMed

    Lazniewska, Joanna; Milowska, Katarzyna; Katir, Nadia; El Kadib, Abdelkim; Bryszewska, Maria; Majoral, Jean-Pierre; Gabryelak, Teresa

    2013-09-01

    Dendrimers containing viologen (derivatives of 4,4'-bipyridyl) units in their structure have been demonstrated to exhibit antiviral activity against human immunodeficiency virus (HIV-1). It has also recently been revealed that novel dendrimers with both viologen units and phosphorus groups in their structure show different antimicrobial, cytotoxic and hemotoxic properties, and have the ability to influence the activity of cholinesterases and to inhibit α-synuclein fibrillation. Since the influence of viologen-phosphorus structures on basic cellular processes had not been investigated, we examined the impact of such macromolecules on the murine neuroblastoma cell line (N2a). We selected three water-soluble viologen-phosphorus (VPD) dendrimers, which differ in their core structure, number of viologen units and number and type of surface groups, and analyzed several aspects of the cellular response. These included cell viability, generation of reactive oxygen species (ROS), alterations in mitochondrial activity, morphological modifications, and the induction of apoptosis and necrosis. The MTT assay results suggest that all of the tested dendrimers are only slightly cytotoxic. Although some changes in ROS formation and mitochondrial function were detected, the three compounds did not induce apoptosis or necrosis. In light of these results, we can assume that the tested VPD are relatively safe for mouse neuroblastoma cells. Although more research on their safety is needed, VPD seem to be promising nanoparticles for further biomedical investigation.

  3. Methyl jasmonate downregulates expression of proliferating cell nuclear antigen and induces apoptosis in human neuroblastoma cell lines.

    PubMed

    Tong, Qiang-Song; Jiang, Guo-Song; Zheng, Li-Duan; Tang, Shao-Tao; Cai, Jia-Bin; Liu, Yuan; Zeng, Fu-Qing; Dong, Ji-Hua

    2008-07-01

    Recent evidence indicates that methyl jasmonate, a plant stress hormone, exhibits anticancer activity on human cancer cells. Whether methyl jasmonate could inhibit the growth of human neuroblastoma cells still, however, remains largely unknown. In this study, administration of methyl jasmonate to cultured neuroblastoma cell lines, SK-N-SH and BE(2)-C, resulted in a decrease of cell viability in a dose-dependent and time-dependent manner as demonstrated by MTT colorimetry and colony formation assay. The results from RT-PCR indicated that the expression of proliferating cell nuclear antigen, but not of cyclin D1, was downregulated by methyl jasmonate. Accordingly, the cell cycle of methyl jasmonate-treated neuroblastoma cells was arrested at the G0/G1 phase. Moreover, incubation of SK-N-SH and BE(2)-C cells with methyl jasmonate resulted in characteristic changes of apoptosis, as demonstrated by acridine orange-ethidium bromide (AO/EB) staining, Hoechst 33258 staining and flow cytometry. Moreover, methyl jasmonate decreased the expression of the X-linked inhibitor of apoptosis protein and survivin, critical members of the inhibitors of apoptosis protein family, in neuroblastoma cells. These findings indicate that methyl jasmonate suppresses the growth of cultured human neuroblastoma cells associated with downregulation of proliferating cell nuclear antigen, and induces apoptosis accompanied by downregulation of the X-linked inhibitor of apoptosis protein and survivin, which lays the groundwork for further investigation into the mechanisms of methyl jasmonate-mediated anticancer activities.

  4. Relationship between interphasic nucleolar organizer regions and growth rate in two neuroblastoma cell lines.

    PubMed Central

    Derenzini, M.; Pession, A.; Farabegoli, F.; Trerè, D.; Badiali, M.; Dehan, P.

    1989-01-01

    The relationship between the quantity of silver-stained interphasic nucleolar organizer regions (NORs) and nuclear synthetic activity, caryotype, and growth rate was studied in two established neuroblastoma cell lines (CHP 212 and HTB 10). Statistical analysis of silver-stained NORs revealed four times as many in CHP 212 cells compared with HTB 10 cells. No difference was observed in the ribosomal RNA synthesis between the two cell lines. The caryotype index was 1.2 for CHP 212 and 1.0 for HTB 10 cells. The number of chromosomes carrying NORs and the quantity of ribosomal genes was found to be the same for the two cell lines. Doubling time of CHP 212 cells was 20 hours compared with 54 hours for HTB 10 cells. In CHP 212 cells bindering of cell duplication by serum deprivation induced a progressive lowering (calculated at 48, 72, and 96 hours) of the quantity of silver-stained interphasic NORs. Recovery of duplication by new serum addition induced, after 24 hours, an increase of the quantity of silver-stained interphasic NORs up to control levels. In the light of available data, these results indicate that the quantity of interphasic NORs is strictly correlated only to the growth rate of the cell. Images Figure 2 Figure 3 Figure 4 PMID:2705511

  5. Antiproliferative and pro-apoptotic effects afforded by novel Src-kinase inhibitors in human neuroblastoma cells

    PubMed Central

    2010-01-01

    Background Neuroblastoma (NB) is the second most common solid malignancy of childhood that usually undergoes rapid progression with a poor prognosis upon metastasis. The Src-family tyrosine kinases (SFKs) are a group of proteins involved in cancer development and invasiveness that seem to play an important role in the NB carcinogenesis. Methods To determine cell proliferation, the growth rate was evaluated by both MTT test and cells counted. Analysis of DNA content was performed for the evaluation of the cell cycle and apoptosis. To characterize the mechanisms underlying the antiproliferative effects induced by SI 34, a novel pyrazolo-pyrimidine derivative provided with Src inhibitory activity, the involvement of some cellular pathways that are important for cell proliferation and survival was investigated by western blot assays. In particular, the contribution of cyclins, Src and ERK were examined. Finally, experiments of cell adhesion and invasiveness were performed. Results Treatment of SH-SY5Y human NB cells and CHP100 human neuroepithelioma (NE) cultures with three novel pyrazolo[3,4-d]pyrimidine derivatives, namely SI 34, SI 35 and SI 83, inhibits the cell proliferation in a time and concentration-dependent manner. The maximal effect was obtained after 72 hours incubation with SI 34 10 μM. Fluorescence microscopy experiments, flow cytometry analysis and determination of caspase-3 activity by fluorimetric assays showed that SI 34 induced SH-SY5Y apoptosis. Moreover, SI 34 determined cell cycle arrest at the G0/G1 phase, paralleled by a decreased expression of cyclin D1. Furthermore, our data indicate that SI 34 reduces the SH-SY5Y cells adhesion and invasiveness. Evidence that SI 34 inhibits the Src and the ERK-phosphorylation, suggests the mechanism through which it exerts its effects in SH-SY5Y cells. Conclusions Our study shows the ability of this pyrazolo-pyrimidine Src inhibitor in reducing the growth and the invasiveness of human NB cells, suggesting a

  6. Management of neuroblastoma: a study of first- and second-line chemotherapy responses, a single institution experience

    PubMed Central

    Habib, Emmad E.; El-Kashef, Amr T.; Fahmy, Ezzat S.

    2012-01-01

    Neuroblastoma is a high-grade malignancy of childhood. It is chemo- and radio-sensitive but prone to relapse after initial remission. The aim of the current study was to study the results of the first- and second-line chemotherapy on the short-term response and long-term survival of children, and to further describe the side effects of treatment. Ninety-five children with advanced neuroblastoma were included in the study, divided into two groups according to the treatment strategy: 65 were treated by first-line chemotherapy alone, and 30 children who were not responding or relapsed after first-line chemotherapy were treated by second-line chemotherapy. External beam radiotherapy was given to bone and brain secondary cancers when detected. Staging workup was performed before, during and after management. Response was documented after surgery for the primary tumor. Median follow up was 32 months (range 24–60 months). Chemothe rapy was continued until toxicity or disease progression occurred, indicating interruption of chemotherapy. Patients received a maximum of 8 cycles. Toxicity was mainly myelo-suppression, with grade II-III severity in 60% of the firstline and 70% of the second-line chemotherapy patients. Median total actuarial survival was nearly 51 months for the first-line chemotherapy group and 30 months for the second-line line group, with a statistically significant difference between the two groups (P<0.01). PMID:25992205

  7. Identification of Multiple Hypoxia Signatures in Neuroblastoma Cell Lines by l1-l2 Regularization and Data Reduction

    PubMed Central

    Fardin, Paolo; Cornero, Andrea; Barla, Annalisa; Mosci, Sofia; Acquaviva, Massimo; Rosasco, Lorenzo; Gambini, Claudio; Verri, Alessandro; Varesio, Luigi

    2010-01-01

    Hypoxia is a condition of low oxygen tension occurring in the tumor and negatively correlated with the progression of the disease. We studied the gene expression profiles of nine neuroblastoma cell lines grown under hypoxic conditions to define gene signatures that characterize hypoxic neuroblastoma. The l1-l2 regularization applied to the entire transcriptome identified a single signature of 11 probesets discriminating the hypoxic state. We demonstrate that new hypoxia signatures, with similar discriminatory power, can be generated by a prior knowledge-based filtering in which a much smaller number of probesets, characterizing hypoxia-related biochemical pathways, are analyzed. l1-l2 regularization identified novel and robust hypoxia signatures within apoptosis, glycolysis, and oxidative phosphorylation Gene Ontology classes. We conclude that the filtering approach overcomes the noisy nature of the microarray data and allows generating robust signatures suitable for biomarker discovery and patients risk assessment in a fraction of computer time. PMID:20652058

  8. Advances in neuroblastoma research

    SciTech Connect

    Evans, A.E.; D'Angio, G.J.; Seeger, R.C.

    1985-01-01

    This book contains over 50 papers. Some of the titles are: Studies on the expression of the amplified domain in human neuroblastoma cells; Comparison studies of oncogenes in retinoblastoma and neuroblastoma; Chromosome abnormalities, gene amplification and tumor progression; and Peripheral neuroepithelioma: Genetic analysis of tumor derived cell lines.

  9. Stress Conditions Increase Vimentin Cleavage by Omi/HtrA2 Protease in Human Primary Neurons and Differentiated Neuroblastoma Cells.

    PubMed

    Lucotte, Bérangère; Tajhizi, Mehdi; Alkhatib, Dareen; Samuelsson, Eva-Britt; Wiehager, Birgitta; Schedin-Weiss, Sophia; Sundström, Erik; Winblad, Bengt; Tjernberg, Lars O; Behbahani, Homira

    2015-12-01

    Dysfunctional Omi/HtrA2, a mitochondrial serine protease, has been implicated in various neurodegenerative disorders. Despite the wealth of evidence on the roles of Omi/HtrA2 in apoptosis, little is known about its cytosolic targets, the cleavage of which could account for the observed morphological changes such as cytoskeletal reorganizations in axons. By proteomic analysis, vimentin was identified as a substrate for Omi/HtrA2 and we have reported increased Omi/HtrA2 protease activity in Alzheimer disease (AD) brain. Here, we investigated a possible link between Omi/HtrA2 and vimentin cleavage, and consequence of this cleavage on mitochondrial distribution in neurons. In vitro protease assays showed vimentin to be cleaved by Omi/HtrA2 protease, and proximity ligation assay demonstrated an increased interaction between Omi/HtrA2 and vimentin in human primary neurons upon stress stimuli. Using differentiated neuroblastoma SH-SY5Y cells, we showed that Omi/HtrA2 under several different stress conditions induces cleavage of vimentin in wild-type as well as SH-SY5Y cells transfected with amyloid precursor protein with the Alzheimer disease-associated Swedish mutation. After stress treatment, inhibition of Omi/HtrA2 protease activity by the Omi/HtrA2 specific inhibitor, Ucf-101, reduced the cleavage of vimentin in wild-type cells. Following altered vimentin filaments integrity by stress stimuli, mitochondria was redistributed in differentiated SH-SY5Y cells and human primary neurons. In summary, the findings outlined in this paper suggest a role of Omi/HtrA2 in modulation of vimentin filamentous structure in neurons. Our results provide important findings for understanding the biological role of Omi/HtrA2 activity during stress conditions, and give knowledge of interplay between Omi/HtrA2 and vimentin which might affect mitochondrial distribution in neurons.

  10. Identification of Small Molecules against Botulinum Neurotoxin B Binding to Neuronal Cells at Ganglioside GT1b Binding Site with Low to Moderate Affinity

    DTIC Science & Technology

    2014-10-01

    recorded using a SpectraMax Plus plate reader with SoftMax ProVer 5.4 software (Molecular Devices, CA). Cell line: Human neuroblastoma cell line SH... neuroblastoma cell line SH-SY5Y (Table 2). Although most of the compounds were found to show some toxicity, three compounds were found to be relatively...50% are shown in red bold. Table 2 Compound toxicity for human neuroblastoma SH-SY5Y cell line. Sigmoidal Dose Response analysis except for

  11. The all-trans retinoic acid (atRA)-regulated gene Calmin (Clmn) regulates cell cycle exit and neurite outgrowth in murine neuroblastoma (Neuro2a) cells

    SciTech Connect

    Marzinke, Mark A.; Clagett-Dame, Margaret

    2012-01-01

    The vitamin A metabolite all-trans retinoic acid (atRA) functions in nervous system development and regulates cell proliferation and differentiation. Neuroblastoma cells (SH-SY5Y and Neuro2a or N2A) exposed to atRA undergo growth inhibition and neuronal differentiation, both of which are preceded by an increase in Clmn mRNA. Treatment of N2A cells with atRA produces a reduction in phosphohistone 3 immunostaining and BrdU incorporation, both indicators of a reduction in cell proliferation. These effects are nearly eliminated in atRA-treated shClmn knockdown cells. Loss of Clmn in the mouse N2A cell line also results in a significant reduction of atRA-mediated neurite outgrowth, a response that can be rescued by reintroduction of the Clmn sequence. In contrast, ectopic overexpression of Clmn produces an increase in the cyclin dependent kinase inhibitor, p21{sup Cip1}, a decrease in cyclin D1 protein and an increase in hypophosphorylated Rb, showing that Clmn participates in G{sub 1}/S arrest. Clmn overexpression alone is sufficient to inhibit N2A cell proliferation, whereas both Clmn and atRA must be present to induce neurite outgrowth. This study shows that the atRA-responsive gene Clmn promotes exit from the cell cycle, a requisite event for neuronal differentiation. -- Highlights: Black-Right-Pointing-Pointer Calmin is a retinoic acid-responsive gene. Black-Right-Pointing-Pointer Calmin promotes cell cycle exit in N2A cells. Black-Right-Pointing-Pointer Calmin overexpression increases p21Cip1 and decreases cyclin D1. Black-Right-Pointing-Pointer Calmin is required for RA-induced growth inhibition and neurite outgrowth.

  12. What Is Neuroblastoma?

    MedlinePlus

    ... Research and Treatment? Neuroblastoma About Neuroblastoma What Is Neuroblastoma? Cancer starts when cells in the body begin ... see the section, Signs and Symptoms of Neuroblastoma ). Neuroblastomas Neuroblastomas are cancers that start in early nerve ...

  13. How Is Neuroblastoma Diagnosed?

    MedlinePlus

    ... Neuroblastoma Early Detection, Diagnosis, and Staging How Is Neuroblastoma Diagnosed? Neuroblastomas are usually found when a child ... Ask Your Child’s Doctor About Neuroblastoma? More In Neuroblastoma About Neuroblastoma Causes, Risk Factors, and Prevention Early ...

  14. Transcription factor activating protein 2 beta (TFAP2B) mediates noradrenergic neuronal differentiation in neuroblastoma.

    PubMed

    Ikram, Fakhera; Ackermann, Sandra; Kahlert, Yvonne; Volland, Ruth; Roels, Frederik; Engesser, Anne; Hertwig, Falk; Kocak, Hayriye; Hero, Barbara; Dreidax, Daniel; Henrich, Kai-Oliver; Berthold, Frank; Nürnberg, Peter; Westermann, Frank; Fischer, Matthias

    2016-02-01

    Neuroblastoma is an embryonal pediatric tumor that originates from the developing sympathetic nervous system and shows a broad range of clinical behavior, ranging from fatal progression to differentiation into benign ganglioneuroma. In experimental neuroblastoma systems, retinoic acid (RA) effectively induces neuronal differentiation, and RA treatment has been therefore integrated in current therapies. However, the molecular mechanisms underlying differentiation are still poorly understood. We here investigated the role of transcription factor activating protein 2 beta (TFAP2B), a key factor in sympathetic nervous system development, in neuroblastoma pathogenesis and differentiation. Microarray analyses of primary neuroblastomas (n = 649) demonstrated that low TFAP2B expression was significantly associated with unfavorable prognostic markers as well as adverse patient outcome. We also found that low TFAP2B expression was strongly associated with CpG methylation of the TFAP2B locus in primary neuroblastomas (n = 105) and demethylation with 5-aza-2'-deoxycytidine resulted in induction of TFAP2B expression in vitro, suggesting that TFAP2B is silenced by genomic methylation. Tetracycline inducible re-expression of TFAP2B in IMR-32 and SH-EP neuroblastoma cells significantly impaired proliferation and cell cycle progression. In IMR-32 cells, TFAP2B induced neuronal differentiation, which was accompanied by up-regulation of the catecholamine biosynthesizing enzyme genes DBH and TH, and down-regulation of MYCN and REST, a master repressor of neuronal genes. By contrast, knockdown of TFAP2B by lentiviral transduction of shRNAs abrogated RA-induced neuronal differentiation of SH-SY5Y and SK-N-BE(2)c neuroblastoma cells almost completely. Taken together, our results suggest that TFAP2B is playing a vital role in retaining RA responsiveness and mediating noradrenergic neuronal differentiation in neuroblastoma.

  15. Intracellular fragment of NLRR3 (NLRR3-ICD) stimulates ATRA-dependent neuroblastoma differentiation

    SciTech Connect

    Akter, Jesmin; Takatori, Atsushi; Islam, Md. Sazzadul; Nakazawa, Atsuko; Ozaki, Toshinori; Nagase, Hiroki; Nakagawara, Akira

    2014-10-10

    Highlights: • NLRR3 is a membrane protein highly expressed in favorable neuroblastoma. • NLRR3-ICD was produced through proteolytic processing by secretases. • NLRR3-ICD was induced to be translocated into cell nucleus following ATRA exposure. • NLRR3-ICD plays a pivotal role in ATRA-mediated neuroblastoma differentiation. - Abstract: We have previously identified neuronal leucine-rich repeat protein-3 (NLRR3) gene which is preferentially expressed in favorable human neuroblastomas as compared with unfavorable ones. In this study, we have found for the first time that NLRR3 is proteolytically processed by secretases and its intracellular domain (NLRR3-ICD) is then released to translocate into cell nucleus during ATRA-mediated neuroblastoma differentiation. According to our present observations, NLRR3-ICD was induced to accumulate in cell nucleus of neuroblastoma SH-SY5Y cells following ATRA treatment. Since the proteolytic cleavage of NLRR3 was blocked by α- or γ-secretase inhibitor, it is likely that NLRR3-ICD is produced through the secretase-mediated processing of NLRR3. Intriguingly, forced expression of NLRR3-ICD in neuroblastoma SK-N-BE cells significantly suppressed their proliferation as examined by a live-cell imaging system and colony formation assay. Similar results were also obtained in neuroblastoma TGW cells. Furthermore, overexpression of NLRR3-ICD stimulated ATRA-dependent neurite elongation in SK-N-BE cells. Together, our present results strongly suggest that NLRR3-ICD produced by the secretase-mediated proteolytic processing of NLRR3 plays a crucial role in ATRA-mediated neuronal differentiation, and provide a clue to develop a novel therapeutic strategy against aggressive neuroblastomas.

  16. Synthesis and turnover of plasma-membrane proteins and glycoproteins in a neuroblastoma cell line.

    PubMed Central

    Mathews, R A; Johnson, T C; Hudson, J E

    1976-01-01

    A kinetic analysis of the appearance of 14C-labelled proteins in the surface membranes isolated from exponentially growing neuroblastoma cells (N2a) showed that the total membrane proteins reached a steady-state specific radioactivity in 18-20 h. However, examination of individual protein bands resolved by sodium dodecyl sulphate-urea-polyacrylamide-gel electrophoresis illustrated that differences in the kinetics of specific surface-membrane proteins could be detected. Although most of the protein bands reached a steady-state specific radioactivity at a time similar to that for total membrane proteins, at least two bands (mol. wt. 180000 and 130000) attained the steady-state within 8-10 h. It was shown by the use of dual-labelling techniques that these two protein bands turned over in the surface membranes of neuroblastoma N2a cells at least 180 and 150% faster than the total membrane protein. These two proteins were glycosylated and located on the outer surface of the cells, since they were labelled with radioactive carbohydrates and readily removed by treatment of the intact neuroblastoma cell with proteinases. PMID:1275913

  17. Anti-Neuroblastoma Properties of a Recombinant Sunflower Lectin

    PubMed Central

    Pinedo, Marcela; Genoula, Melanie; Silveyra, María Ximena; De Oliveira Carvalho, André; Regente, Mariana; Del Río, Marianela; Ribeiro Soares, Júlia; Moreira Gomes, Valdirene; De La Canal, Laura

    2017-01-01

    According to their sugar recognition specificity, plant lectins are proposed as bioactive proteins with potential in cancer treatment and diagnosis. Helja is a mannose-specific jacalin-like lectin from sunflower which was shown to inhibit the growth of certain fungi. Here, we report its recombinant expression in a prokaryotic system and its activity in neurobalstoma cells. Helja coding sequence was fused to the pET-32 EK/LIC, the enterokinase/Ligation-independent cloning vector and a 35 kDa protein was obtained in Escherichia coli representing Helja coupled to thioredoxin (Trx). The identity of this protein was verified using anti-Helja antibodies. This chimera, named Trx-rHelja, was enriched in the soluble bacterial extracts and was purified using Ni+2-Sepharose and d-mannose-agarose chromatography. Trx-rHelja and the enterokinase-released recombinant Helja (rHelja) both displayed toxicity on human SH-SY5Y neuroblastomas. rHelja decreased the viability of these tumor cells by 75% according to the tetrazolium reduction assay, and microscopic analyses revealed that the cell morphology was disturbed. Thus, the stellate cells of the monolayer became spheroids and were isolated. Our results indicate that rHelja is a promising tool for the development of diagnostic or therapeutic methods for neuroblastoma cells, the most common solid tumors in childhood. PMID:28075401

  18. Homocysteine induces glyceraldehyde-3-phosphate dehydrogenase acetylation and apoptosis in the neuroblastoma cell line Neuro2a

    PubMed Central

    Fang, M.; Jin, A.; Zhao, Y.; Liu, X.

    2016-01-01

    High plasma levels of homocysteine (Hcy) promote the progression of neurodegenerative diseases. However, the mechanism by which Hcy mediates neurotoxicity has not been elucidated. We observed that upon incubation with Hcy, the viability of a neuroblastoma cell line Neuro2a declined in a dose-dependent manner, and apoptosis was induced within 48 h. The median effective concentration (EC50) of Hcy was approximately 5 mM. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) nuclear translocation and acylation has been implicated in the regulation of apoptosis. We found that nuclear translocation and acetylation of GAPDH increased in the presence of 5 mM Hcy and that higher levels of acetyltransferase p300/CBP were detected in Neuro2a cells. These findings implicate the involvement of GAPDH in the mechanism whereby Hcy induces apoptosis in neurons. This study highlights a potentially important pathway in neurodegenerative disorders, and a novel target pathway for neuroprotective therapy. PMID:26785692

  19. miR-362-5p inhibits proliferation and migration of neuroblastoma cells by targeting phosphatidylinositol 3-kinase-C2β.

    PubMed

    Wu, Kai; Yang, Liucheng; Chen, Jianfeng; Zhao, Haijun; Wang, Jianjun; Xu, Shuai; Huang, Zonghai

    2015-07-08

    miR-362-5p is down-regulated in high-risk neuroblastoma and can function as a tumor suppressor. However, its role remains poorly understood. We show that miR-362-5p is down-regulated in metastatic neuroblastoma compared with primary neuroblastoma. Overexpression of miR-362-5p inhibits cell proliferation, migration and invasion of neuroblastoma cells in vitro and suppresses tumor growth of neuroblastoma in vivo. Phosphatidylinositol 3-kinase (PI3K)-C2β is a target of miR-362-5p. Knockdown of PI3K-C2β by siRNA had a similar effect to overexpression of miR-362-5p on SH-SY5Y cells. Overexpression of PI3K-C2β partially reversed tumor-suppressive effects of miR-362-5p. We suggest that miR-362-5p suppresses neuroblastoma cell growth and motility, partially by targeting PI3K-C2β.

  20. Therapeutic and Imaging Applications of Dopamine Receptors in Breast Cancer

    DTIC Science & Technology

    2015-09-01

    neuroblastoma ,31 leukemia,29 ovarian,32 breast29,33,34 and colon33 cancer cells. However, most studies did not identify which DAR was expressed in their...the human neuroblastoma SH-SY5Y cell line. Neuropharmacology 2007; 53: 724–732. 32 Moreno-Smith M, Lu C, Shahzad MM, Pena GN, Allen JK, Stone RL et al

  1. Effect of graphene on growth of neuroblastoma cells.

    PubMed

    Park, Hye-Bin; Nam, Hyo-Geun; Oh, Hong-Gi; Kim, Jung-Hyun; Kim, Chang-Man; Song, Kwang-Soup; Jhee, Kwang-Hwan

    2013-02-01

    The unique properties of graphene have earned much interest in the fields of materials science and condensed-matter physics in recent years. However, the biological applications of graphene remain largely unexplored. In this study, we investigated the conditions and viability of a cell culture exposed to graphene onto glass and SiO2/Si, using a human nerve cell line, SH-SY5Y. Cell viability was 84% when cultured on glass and SiO2/Si coated with graphene as compared with culturing on polystyrene surface. Fluorescence data showed that the presence of graphene did not influence cell morphology. These findings suggest that graphene may be used for biological applications.

  2. High efficacy of the BCL-2 inhibitor ABT199 (venetoclax) in BCL-2 high-expressing neuroblastoma cell lines and xenografts and rational for combination with MCL-1 inhibition.

    PubMed

    Bate-Eya, Laurel T; den Hartog, Ilona J M; van der Ploeg, Ida; Schild, Linda; Koster, Jan; Santo, Evan E; Westerhout, Ellen M; Versteeg, Rogier; Caron, Huib N; Molenaar, Jan J; Dolman, M Emmy M

    2016-05-10

    The anti-apoptotic protein B cell lymphoma/leukaemia 2 (BCL-2) is highly expressed in neuroblastoma and plays an important role in oncogenesis. In this study, the selective BCL-2 inhibitor ABT199 was tested in a panel of neuroblastoma cell lines with diverse expression levels of BCL-2 and other BCL-2 family proteins. ABT199 caused apoptosis more potently in neuroblastoma cell lines expressing high BCL-2 and BIM/BCL-2 complex levels than low expressing cell lines. Effects on cell viability correlated with effects on BIM displacement from BCL-2 and cytochrome c release from the mitochondria. ABT199 treatment of mice with neuroblastoma tumors expressing high BCL-2 levels only resulted in growth inhibition, despite maximum BIM displacement from BCL-2 and the induction of a strong apoptotic response. We showed that neuroblastoma cells might survive ABT199 treatment due to its acute upregulation of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) and BIM sequestration by MCL-1. In vitro inhibition of MCL-1 sensitized neuroblastoma cell lines to ABT199, confirming the pivotal role of MCL-1 in ABT199 resistance. Our findings suggest that neuroblastoma patients with high BCL-2 and BIM/BCL-2 complex levels might benefit from combination treatment with ABT199 and compounds that inhibit MCL-1 expression.

  3. High efficacy of the BCL-2 inhibitor ABT199 (venetoclax) in BCL-2 high-expressing neuroblastoma cell lines and xenografts and rational for combination with MCL-1 inhibition

    PubMed Central

    Bate-Eya, Laurel T.; den Hartog, Ilona J.M.; van der Ploeg, Ida; Schild, Linda; Koster, Jan; Santo, Evan E.; Westerhout, Ellen M.; Versteeg, Rogier; Caron, Huib N.; Molenaar, Jan J.; Dolman, M. Emmy M.

    2016-01-01

    The anti-apoptotic protein B cell lymphoma/leukaemia 2 (BCL-2) is highly expressed in neuroblastoma and plays an important role in oncogenesis. In this study, the selective BCL-2 inhibitor ABT199 was tested in a panel of neuroblastoma cell lines with diverse expression levels of BCL-2 and other BCL-2 family proteins. ABT199 caused apoptosis more potently in neuroblastoma cell lines expressing high BCL-2 and BIM/BCL-2 complex levels than low expressing cell lines. Effects on cell viability correlated with effects on BIM displacement from BCL-2 and cytochrome c release from the mitochondria. ABT199 treatment of mice with neuroblastoma tumors expressing high BCL-2 levels only resulted in growth inhibition, despite maximum BIM displacement from BCL-2 and the induction of a strong apoptotic response. We showed that neuroblastoma cells might survive ABT199 treatment due to its acute upregulation of the anti-apoptotic BCL-2 family protein myeloid cell leukaemia sequence 1 (MCL-1) and BIM sequestration by MCL-1. In vitro inhibition of MCL-1 sensitized neuroblastoma cell lines to ABT199, confirming the pivotal role of MCL-1 in ABT199 resistance. Our findings suggest that neuroblastoma patients with high BCL-2 and BIM/BCL-2 complex levels might benefit from combination treatment with ABT199 and compounds that inhibit MCL-1 expression. PMID:27056887

  4. Neurotoxic effects of local anesthetics on the mouse neuroblastoma NB2a cell line.

    PubMed

    Mete, M; Aydemir, I; Tuglu, I M; Selcuki, M

    2015-04-01

    Local anesthetics are used clinically for peripheral nerve blocks, epidural anesthesia, spinal anesthesia and pain management; large concentrations, continuous application and long exposure time can cause neurotoxicity. The mechanism of neurotoxicity caused by local anesthetics is unclear. Neurite outgrowth and apoptosis can be used to evaluate neurotoxic effects. Mouse neuroblastoma cells were induced to differentiate and generate neurites in the presence of local anesthetics. The culture medium was removed and replaced with serum-free medium plus 20 μl combinations of epidermal growth factor and fibroblast growth factor containing tetracaine, prilocaine, lidocaine or procaine at concentrations of 1, 10, 25, or 100 μl prior to neurite measurement. Cell viability, iNOS, eNOS and apoptosis were evaluated. Local anesthetics produced toxic effects by neurite inhibition at low concentrations and by apoptosis at high concentrations. There was an inverse relation between local anesthetic concentrations and cell viability. Comparison of different local anesthetics showed toxicity, as assessed by cell viability and apoptotic potency, in the following order: tetracaine > prilocaine > lidocaine > procaine. Procaine was the least neurotoxic local anesthetic and because it is short-acting, may be preferred for pain prevention during short procedures.

  5. Potential anticancer activity of carvone in N2a neuroblastoma cell line.

    PubMed

    Aydın, Elanur; Türkez, Hasan; Keleş, Mevlüt Sait

    2015-08-01

    Carvone (CVN) is a monocyclic monoterpene found in the essential oils of Mentha spicata var. crispa (Lamiaceae) and Carum carvi L. (Apiaceae) plants and has been reported to have antioxidant, antimicrobial, anticonvulsant, and antitumor activities. The beneficial health properties of CVN have encouraged us to look into its anticancer activity. To the best of our knowledge, reports are not available on the anticancer activity of CVN in cultured primary rat neuron and N2a neuroblastoma (NB) cells. Therefore, the present study is an attempt toward exploring the potential anticancer activity of CVN, if any, in cultured primary rat neuron and N2a NB cells. Our results indicated that CVN (only at 25 mg/L) treatment led to an increase in the total antioxidant capacity levels in cultured primary rat neuron cells compared with control cells. Also, CVN (at concentrations higher than 100 mg/L) treatment led to an increase in the total oxidative stress levels in both cell types. The mean values of the total scores of cells showing DNA damage (for comet assay) were not found to be significantly different from the control values in both cells (p > 0.05). On the other hand, after 24 h treatment with CVN, 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide assay showed that CVN application significantly reduced the cell viability rates in both cell types at concentrations higher than 100 mg/L. Summarizing, our data suggest that CVN represents little potential for promising anticancer agent to improve brain tumors therapy.

  6. Cloning of a brain-type isoform of human Rab GDI and its expression in human neuroblastoma cell lines and tumor specimens.

    PubMed

    Nishimura, N; Goji, J; Nakamura, H; Orita, S; Takai, Y; Sano, K

    1995-11-15

    Rab proteins, a family of Ras-related small GTP-binding proteins, play a key role in regulating intracellular vesicle trafficking. Rab GDP dissociation inhibitor (GDI3) forms a soluble complex with Rab proteins and thereby prevents the exchange of GDP for GTP. Recently, two isoforms of Rab GDI cDNA were isolated from rats and mice. In this study, we have isolated a brain-type isoform of human Rab GDI cDNA and examined its expression in neuroblastoma. We tentatively designate it as human Rab GDI alpha (hu GDI alpha) and another human Rab GDI, as human Rab GDI beta (hu GDI beta). Hu GDI alpha cDNA encodes a protein of 447 amino acids with a deduced molecular weight of 50,200. Northern blot analysis revealed that hu GDI alpha gene is expressed abundantly in the brain but much less in other tissues, while hu GDI beta gene is ubiquitously expressed. All human neuroblastoma cell lines and tumor specimens examined express hu GDI alpha gene to various extents, while a human T cell leukemia cell line, MOLT3, does not. The levels of both hu GDI alpha and beta mRNA were constant in a human neuroblastoma cell line, NB1, during its neuronal differentiation, while Rab3A and neurofilament-L gene expression and the number of neurosecretory granules were elevated at this condition. These results suggest that hu GDI alpha gene expression is not related to the differentiation state of neuronal cells.

  7. The Involvement of Microtubules and Actin during the Infection of Japanese Encephalitis Virus in Neuroblastoma Cell Line, IMR32

    PubMed Central

    Henry Sum, Magdline Sia

    2015-01-01

    The role of the cytoskeleton, actin, and microtubules were examined during the process of Japanese encephalitis (JEV) infection in a human neuroblastoma cell line, IMR32. Cytochalasin D and nocodazole were used to depolymerise the cellular actin and microtubules, respectively, in order to study the effect of JEV infection in the cell. This study shows that depolymerisation of the actin cytoskeleton at early process of infection inhibits JEV infection in the cell; however infection was not inhibited when depolymerisation occurred at the later stage of infection. The microtubules, on the other hand, are required at 2 points in infection. The antigen production in the cells was inhibited when the infected cells were treated at time up to 2 hours after inoculation and there was no significant effect at later times, while the viable virus released continued to be affected until 10 hours after inoculation. In conclusion, infection of JEV in IMR32 cells required actin to facilitate early process in infection and the microtubular network is utilised as the transport system to the virus replication site and the release of mature virus. PMID:25705678

  8. Hydrogen sulfide generation from l-cysteine in the human glioblastoma-astrocytoma U-87 MG and neuroblastoma SHSY5Y cell lines.

    PubMed

    Bronowicka-Adamska, Patrycja; Bentke, Anna; Wróbel, Maria

    2017-01-01

    Hydrogen sulfide (H2S) is endogenously synthesized from l-cysteine in reactions catalyzed by cystathionine beta-synthase (CBS, EC 4.2.1.22) and gamma-cystathionase (CSE, EC 4.4.1.1). The role of 3-mercaptopyruvate sulfurtransferase (MPST, EC 2.8.1.2) in H2S generation is also considered; it could be important for tissues with low CTH activity, e.g. cells of the nervous system. The expression and activity of CBS, CTH, and MPST were detected in the human glioblastoma-astrocytoma (U-87 MG) and neuroblastoma (SHSY5Y) cell lines. In both cell lines, the expression and activity of MPST were the highest among the investigated enzymes, suggesting its possible role in the generation of H2S. The RP-HPLC method was used to determine the concentration of cystathionine and alpha-ketobutyrate, products of the CBS- and CTH-catalyzed reactions. The difference in cystathionine levels between cell homogenates treated with totally CTH-inhibiting concentrations of dl-propargylglycine and without the inhibitor was used to evaluate the activity of CBS. The higher expression and activity of CBS, CTH and MPST in the neuroblastoma cells were associated with more intensive generation of H2S in the presence of 2 mM cysteine. A threefold higher level of sulfane sulfur, a potential source of hydrogen sulfide, was detected in the astrocytoma cells in comparison to the neuroblastoma cells.

  9. MicroRNA-432 contributes to dopamine cocktail and retinoic acid induced differentiation of human neuroblastoma cells by targeting NESTIN and RCOR1 genes.

    PubMed

    Das, Eashita; Bhattacharyya, Nitai Pada

    2014-05-02

    MicroRNA (miRNA) regulates expression of protein coding genes and has been implicated in diverse cellular processes including neuronal differentiation, cell growth and death. To identify the role of miRNA in neuronal differentiation, SH-SY5Y and IMR-32 cells were treated with dopamine cocktail and retinoic acid to induce differentiation. Detection of miRNAs in differentiated cells revealed that expression of many miRNAs was altered significantly. Among the altered miRNAs, human brain expressed miR-432 induced neurite projections, arrested cells in G0-G1, reduced cell proliferation and could significantly repress NESTIN/NES, RCOR1/COREST and MECP2. Our results reveal that miR-432 regulate neuronal differentiation of human neuroblastoma cells.

  10. Nardostachys jatamansi Root Extract Modulates the Growth of IMR-32 and SK-N-MC Neuroblastoma Cell Lines Through MYCN Mediated Regulation of MDM2 and p53

    PubMed Central

    Suryavanshi, Snehal; Raina, Prerna; Deshpande, Rashmi; Kaul-Ghanekar, Ruchika

    2017-01-01

    Aim: The present study evaluated the effect of ethanolic extract of Nardostachys jatamansi roots (NJet) on MYCN mediated regulation of expression of MDM2 and p53 proteins in neuroblastoma cell lines, IMR-32 and SK-N-MC. Materials and Methods: The effect of NJet on cell viability was determined by MTT; and on growth kinetics was evaluated by trypan blue dye exclusion method and soft agar assay. The expression of p53, MDM2 and MYCN proteins in response to NJet treatment was evaluated by immunoblotting. Results: NJet decreased the viability of neuroblastoma cells without affecting the viability of non-cancerous, HEK-293 cells. It altered the growth kinetics of the cancer cells in a dose-dependent manner. NJet down regulated the expression of MYCN and MDM2 proteins with a simultaneous increase in the expression of tumor suppressor protein p53. Conclusions: The present data demonstrated that NJet regulated the growth of IMR-32 and SK-N-MC through reduction in MYCN expression that lead to down regulation of MDM2 protein and increase in p53 expression. These preliminary results warrant further in depth studies to explore the therapeutic potential of Nardostachys jatamansi in the management of neuroblastoma. SUMMARY NJet reduced the viability of human neuroblastoma cell lines without affecting the viability of non-cancerous, HEK-293 cells.NJet regulated the growth kinetics of the cancer cells.NJet decreased the expression of MYCN and MDM2 proteins and simultaneously increased the expression of tumor suppressor protein p53. Abbreviation used: NJet: Ethanolic extract of Nardostachys jatamansi MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide HPTLC: High performance thin layer chromatography PMID:28216878

  11. The cell death response to the ROS inducer, cobalt chloride, in neuroblastoma cell lines according to p53 status.

    PubMed

    Stenger, Christophe; Naves, Thomas; Verdier, Mireille; Ratinaud, Marie-Helene

    2011-09-01

    Cobalt chloride (CoCl2), a hypoxia-mimetic agent, induces reactive oxygen species (ROS) generation, leading to cell death. Divergent data have been reported concerning p53 implication in this apoptotic mechanism. In this study, we studied cobalt-induced cell death in neuroblastoma cell lines carrying wild-type (WT) p53 ( SHSY5Y) and a mutated DNA-binding domain p53 [SKNBE(2c)]. CoCl2 induced an upregulation of p53, p21 and PUMA expression in WT cells but not in SKNBE(2c). In SHSY5Y cells, p53 serine-15 phosphorylation appeared early (6 h) in the mitochondria, and also in the nucleus after 12 h. In contrast, in SKNBE(2c) cells, the slight nuclear signal disappeared with CoCl2 treatment. In SHSY5Y cells, a mitochondrial pathway dependent on caspases [collapse of mitochondrial transmembrane potential (∆Ψmt), caspase 3 and 9 activation], was activated in a time-dependent manner. SKNBE(2c) cells exhibited a delay in the cell death executive phase linked to a caspase-independent pathway, involving apoptosis inducing factor nuclear translocation, but also an autophagic process attested by LC3-II expression and cathepsin-B activation. The downregulation of p53 in SHSY5Y cells by siRNA induced a cell death pathway related to the one observed in SKNBE(2c) cells. Finally, CoCl2 induced time-dependent canonical p53 mitochondrial apoptosis in the WT p53 cell line, and caspase-independent cell death in cells with a mutated or KO p53.

  12. Neuroblastoma Screening

    MedlinePlus

    ... is the most common type of cancer in infants. The number of new cases of neuroblastoma is ... credited as the source. Please note that blog posts that are written by individuals from outside the ...

  13. A Novel Anticancer Agent, 8-Methoxypyrimido[4′,5′:4,5]thieno(2,3-b) Quinoline-4(3H)-One Induces Neuro 2a Neuroblastoma Cell Death through p53-Dependent, Caspase-Dependent and -Independent Apoptotic Pathways

    PubMed Central

    Sahu, Upasana; Sidhar, Himakshi; Ghate, Pankaj S.; Advirao, Gopal M.; Raghavan, Sathees C.; Giri, Ranjit K.

    2013-01-01

    Neuroblastoma is the most common cancer in infants and fourth most common cancer in children. Despite recent advances in cancer treatments, the prognosis of stage-IV neuroblastoma patients continues to be dismal which warrant new pharmacotherapy. A novel tetracyclic condensed quinoline compound, 8-methoxypyrimido [4′,5′:4,5]thieno(2,3-b) quinoline-4(3H)-one (MPTQ) is a structural analogue of an anticancer drug ellipticine and has been reported to posses anticancer property. Study on MPTQ on neuroblastoma cells is very limited and mechanisms related to its cytotoxicity on neuroblastoma cells are completely unknown. Here, we evaluated the anticancer property of MPTQ on mouse neuro 2a and human SH-SY5Y neuroblastoma cells and investigated the mechanisms underlying MPTQ-mediated neuro 2a cell death. MPTQ-mediated neuro 2a and SH-SY5Y cell deaths were found to be dose and time dependent. Moreover, MPTQ induced cell death reached approximately 99.8% and 90% in neuro 2a and SH-SY5Y cells respectively. Nuclear oligonucleosomal DNA fragmentation and Terminal dUTP Nick End Labelling assays indicated MPTQ-mediated neuro 2a cell death involved apoptosis. MPTQ-mediated apoptosis is associated with increased phosphorylation of p53 at Ser15 and Ser20 which correlates with the hyperphosphorylation of Ataxia-Telangiectasia mutated protein (ATM). Immunocytochemical analysis demonstrated the increased level of Bax protein in MPTQ treated neuro 2a cells. MPTQ-mediated apoptosis is also associated with increased activation of caspase-9, -3 and -7 but not caspase-2 and -8. Furthermore, increased level of caspase-3 and cleaved Poly (ADP Ribose) polymerase were observed in the nucleus of MPTQ treated neuro 2a cells, suggesting the involvement of caspase-dependent intrinsic but not extrinsic apoptotic pathway. Increased nuclear translocation of apoptosis inducing factor suggests additional involvement of caspase-independent apoptosis pathway in MPTQ treated neuro 2a cells. Collectively

  14. Human neuroblastoma cell lines as models for the in vitro study of neoplastic and neuronal cell differentiation.

    PubMed Central

    Abemayor, E; Sidell, N

    1989-01-01

    Neuroblastoma is a childhood solid tumor composed of primitive cells derived from precursors of the autonomic nervous system. This neoplasm has the highest rate of spontaneous regression of all cancer types and has been noted to undergo spontaneous and chemically induced differentiation into elements resembling mature nervous tissue. As such, neuroblastoma has been a prime model system for the study of neuronal differentiation and the process of cancer cell maturation. In this paper we review those agents that have been described to induce the differentiation of neuroblastoma, with an emphasis on the effects and possible mechanisms of action of a group of related compounds, the retinoids. With this model system and the availability of subclones that are both responsive and resistant to chemically induced differentiation, fundamental questions regarding the mechanisms and processes underlying cell maturation have become more amenable to in vitro study. Images FIGURE 1. A FIGURE 1. B FIGURE 1. C FIGURE 2. A FIGURE 2. B PMID:2538324

  15. The M sub 1 muscarinic receptor and its second messenger coupling in human neuroblastoma cells and transfected murine fibroblast cells

    SciTech Connect

    Mei, Lin.

    1989-01-01

    The data of this study indicate that pirenzepine (PZ)-high affinity muscarinic receptors (mAChRs) are coupled to the hydrolysis of inositol lipids and not to the adenylate cyclase system in human neuroblastoma SH-SY5Y cells. The maximal carbachol(CCh)-stimulated ({sup 3}H)IP{sub 1} accumulation in the SH-SY5Y cells was decreased in the presence of 1{mu}g/ml pertussis toxin, suggesting that a pertussis toxin sensitive G-protein may be involved in the coupling. Several cell clones which express only M{sub 1} mAChR were generated by transfecting the murine fibroblast B82 cells with the cloned rat genomic m{sub 1} gene. The transfected B82 cells (cTB10) showed specific ({sup 3}H)(-)QNB binding activity. The mAChRs in these cells are of the M{sub 1} type defined by their high affinity for PZ and low affinity for AF-DX 116 and coupled to hydrolysis of inositol lipids, possibly via a pertussis toxin sensitive G protein. The relationship between the M{sub 1} mAChR density and the receptor-mediated hydrolysis of inositol lipids was studied in 7 clones. The M{sub 1} mAChR densities in these cells characterized by ({sup 3}H)(-)MQNB binding ranged from 12 fmol/10{sup 6} cells in LK3-1 cells to 260 fmol/10{sup 6} cells in the LK3-8 cells.

  16. Mechanistic and functional changes in Ca2+ entry after retinoic acid-induced differentiation of neuroblastoma cells

    PubMed Central

    2005-01-01

    We have investigated effects of neuronal differentiation on hormone-induced Ca2+ entry. Fura-2 fluorescence measurements of undifferentiated SH-SY5Y neuroblastoma cells, stimulated with methacholine, revealed the presence of voltage-operated Ca2+-permeable, Mn2+-impermeable entry pathways, and at least two voltage-independent Ca2+- and Mn2+-permeable entry pathways, all of which apparently contribute to both peak and plateau phases of the Ca2+ signal. Similar experiments using 9-cis retinoic acid-differentiated cells, however, revealed voltage-operated Ca2+-permeable, Mn2+-impermeable channels, and, more significantly, the absence or down-regulation of the most predominant of the voltage-independent entry pathways. This down-regulated pathway is probably due to CCE (capacitative Ca2+ entry), since thapsigargin also stimulated Ca2+ and Mn2+ entry in undifferentiated but not differentiated cells. The Ca2+ entry components remaining in methacholine-stimulated differentiated cells contributed to only the plateau phase of the Ca2+ signal. We conclude that differentiation of SH-SY5Y cells results in a mechanistic and functional change in hormone-stimulated Ca2+ entry. In undifferentiated cells, voltage-operated Ca2+ channels, CCE and NCCE (non-CCE) pathways are present. Of the voltage-independent pathways, the predominant one appears to be CCE. These pathways contribute to both peak and plateau phases of the Ca2+ signal. In differentiated cells, CCE is either absent or down-regulated, whereas voltage-operated entry and NCCE remain active and contribute to only the plateau phase of the Ca2+ signal. PMID:15673285

  17. Targeting tachykinin receptors in neuroblastoma

    PubMed Central

    Szymansky, Annabell; Seiler, Marleen; Althoff, Kristina; Beckers, Anneleen; Speleman, Frank; Schäfers, Simon; De Preter, Katleen; Astrahanseff, Kathy; Struck, Joachim; Schramm, Alexander; Eggert, Angelika; Bergmann, Andreas; Schulte, Johannes H.

    2017-01-01

    Neuroblastoma is the most common extracranial tumor in children. Despite aggressive multimodal treatment, high-risk neuroblastoma remains a clinical challenge with survival rates below 50%. Adding targeted drugs to first-line therapy regimens is a promising approach to improve survival in these patients. TACR1 activation by substance P has been reported to be mitogenic in cancer cell lines. Tachykinin receptor (TACR1) antagonists are approved for clinical use as an antiemetic remedy since 2003. Tachykinin receptor inhibition has recently been shown to effectively reduce growth of several tumor types. Here, we report that neuroblastoma cell lines express TACR1, and that targeting TACR1 activity significantly reduced cell viability and induced apoptosis in neuroblastoma cell lines. Gene expression profiling revealed that TACR1 inhibition repressed E2F2 and induced TP53 signaling. Treating mice harboring established neuroblastoma xenograft tumors with Aprepitant also significantly reduced tumor burden. Thus, we provide evidence that the targeted inhibition of tachykinin receptor signaling shows therapeutic efficacy in preclinical models for high-risk neuroblastoma. PMID:27888795

  18. Comparison of the Side Populations in Pretreatment and Postrelapse Neuroblastoma Cell Lines

    DTIC Science & Technology

    2010-08-01

    discussion 1890. [6] Kern SE and Shibata D (2007). The fuzzy math of solid tumor stem cells: a per- spective. Cancer Res 67, 8985–8988. Figure 5...Squire J, and Dirks PB (2003). Identification of a cancer stem cell in human brain tumors . Cancer Res 63, 5821–5828. [14] Singh SK, Hawkins C, Clarke...Sciences, Bethesda, MD, USA Abstract Cancer stem–like cells have been identified in both primary tumors and in cell lines and seem to have a high degree

  19. Modulation of interactions of neuroblastoma cell lines with extracellular matrix proteins affects their sensitivity to treatment with the anti-GD2 ganglioside antibody 14G2a.

    PubMed

    Horwacik, Irena; Rokita, Hanna

    2017-05-01

    Children diagnosed with high risk neuroblastoma have poor prognosis which stimulates efforts to broaden therapies of the neoplasm. GD2-ganglioside (GD2) marks neuroblastoma cells and is a target for monoclonal antibodies. We have recently shown that some neuroblastoma cell lines are sensitive to direct cytotoxicity of the anti-GD2 mouse monoclonal antibody 14G2a (mAb). For IMR-32 and LA-N-1 cell lines, treatment with the 14G2a mAb induced evident changes in appearance such as cell rounding, aggregation, loose contact with culture plastic, or detachment. Such findings prompted us to investigate whether modulation of attachment of neuroblastoma cells to extracellular matrix (ECM) proteins can affect their sensitivity to the 14G2a mAb treatment. First, using ultra-low attachment plates, we show that survival of the IMR-32, LA-N-1, LA-N-5, CHP-134 and Kelly cells depends on attachment. Next, we compared cellular ATP levels of the cell lines treated with the 14G2a mAb using uncoated, fibronectin-, collagen IV-coated surfaces to show that the ECM proteins slightly modulate sensitivity of the cell lines to the mAb. Then, we characterized presence of selected integrin subunits or their complexes on the cell surface. Finally, we applied small molecule inhibitors of selected integrin complexes: obtustatin (inhibiting α1β1 heterodimer), BIO 1211 (inhibiting active α4β1 heterodimer), cilengitide and SB273005 (inhibitors of αVβ3, αVβ5 heterodimers) to verify their effects on attachment of cell lines, cellular ATP levels, and in some experiments activities of apoptosis-executing caspase-3 and -7, for the compounds used alone or in combination with the 14G2a mAb. We characterized levels of total FAK (focal adhesion kinase), p-FAK (Tyr397) in IMR-32 cells treated with BIO 1211, and in LA-N-5, Kelly and SK-N-SH cells treated with SB273005. Our results extend knowledge on factors influencing cytotoxicity of 14G2a.

  20. Low dose of arsenic trioxide inhibits multidrug resistant-related P-glycoprotein expression in human neuroblastoma cell line.

    PubMed

    Liu, Ling; Li, Yang; Xiong, Xilin; Qi, Kai; Zhang, Chi; Fang, Jianpei; Guo, Haixia

    2016-12-01

    This study investigated arsenic trioxide (As2O3), cisplatin (DDP) and etoposide (Vp16) on the anticancer effects and P-glycoprotein (P-gp) expression in neuroblastoma (NB) SK-N-SH cells. The potential influence of As2O3, DDP and Vp16 currently included in NB routine treatment protocols on cytotoxicity in SK-N-SH cells was measured by flow cytometry and drug half-maximal inhibitory concentration (IC50) was established. Moreover, chemotherapeutic agent-mediated changes of cellular expression levels of resistant-related P-gp, was monitored using western blotting. The data showed that As2O3, DDP and Vp16 significantly inhibited the growth and survival of the SK-N-SH cells at different concentration. Notably, the levels of apoptosis were upregulated in SK-N-SH cells with an acceleration of the exposure time and the concentration of As2O3, DDP and Vp16. As2O3, DDP and Vp16 were observed with their IC50 values on SK-N-SH cells being 3 µM, 8 and 100 µg/ml, respectively. Flow cytometry analysis showed that As2O3 at low concentrations in SK-N-SH cells led to enhanced accumulation of cell populations in G2/M phase with increasing the exposure time, and increased levels of apoptosis. In contrast, we observed that SK-N-SH cell populations arrested in S phase by DDP and Vp16. In vitro examination revealed that following pretreatment of SK-N-SH cells with As2O3, the expression of P-gp was not increased. The expression of P-gp downregulation were noted following the group treated by As2O3 at 2 and 3 µM. Exposed to As2O3 at 3 µM for 72 h, SK-N-SH cells exhibited lower expression of P-gp than 2 µM As2O3 for 72 h. In contrast, the expression of P-gp was upregulated by DDP and VP16. In summary, SK-N-SH cells were responsive to chemotherapeutic agent-induced apoptosis in a dose-dependent and time-dependent manner. In particular, ours findings showed that low dose of As2O3 markedly reduced the P-gp expression and increased apoptotic cell death in human NB cell line.

  1. Biochemical Characterization of Liver Oil of Echinorhinus brucus (Bramble Shark) and Its Cytotoxic Evaluation on Neuroblastoma Cell Lines (SHSY-5Y)

    PubMed Central

    Venugopal, Vishnu; Kumaran, Ajeeshkumar Kizhakkepurath; Sekhar Chatterjee, Niladri; Kumar, Suvanish; Kavilakath, Shyni; Nair, Jayarani Ramachandran; Mathew, Suseela

    2016-01-01

    The objective of the present study was to characterize the liver oil extracted from the deep sea shark, Echinorhinus brucus, caught from Central Indian Ocean and to evaluate its cytotoxic effect on neuroblastoma cell line (SHSY-5Y). Characterization of liver oil of Echinorhinus brucus revealed the presence of palmitic acid (15%), oleic acid (12%), stearic acid (8%), docosahexaenoic acid (DHA) (18%), and eicosapentaenoic acid (EPA) (16%). It was also found to be a good source of squalene (38.5%) and fat soluble vitamins such as A, D, and K (vitamin A: 17.08 mg/100 g of oil, vitamin D: 15.04 mg/100 g oil, and vitamin K: 11.45 mg/100 g oil). Since it was found to be rich in essential fatty acids, fat soluble vitamins, and squalene, it can be considered as better dietary supplement. The oil of Echinorhinus brucus also showed high in vitro cytotoxic effect against the human neuroblastoma cell line (SHSY-5Y) and the IC50 value laid between 35 and 45 ng. PMID:27340593

  2. Biochemical Characterization of Liver Oil of Echinorhinus brucus (Bramble Shark) and Its Cytotoxic Evaluation on Neuroblastoma Cell Lines (SHSY-5Y).

    PubMed

    Venugopal, Vishnu; Kumaran, Ajeeshkumar Kizhakkepurath; Sekhar Chatterjee, Niladri; Kumar, Suvanish; Kavilakath, Shyni; Nair, Jayarani Ramachandran; Mathew, Suseela

    2016-01-01

    The objective of the present study was to characterize the liver oil extracted from the deep sea shark, Echinorhinus brucus, caught from Central Indian Ocean and to evaluate its cytotoxic effect on neuroblastoma cell line (SHSY-5Y). Characterization of liver oil of Echinorhinus brucus revealed the presence of palmitic acid (15%), oleic acid (12%), stearic acid (8%), docosahexaenoic acid (DHA) (18%), and eicosapentaenoic acid (EPA) (16%). It was also found to be a good source of squalene (38.5%) and fat soluble vitamins such as A, D, and K (vitamin A: 17.08 mg/100 g of oil, vitamin D: 15.04 mg/100 g oil, and vitamin K: 11.45 mg/100 g oil). Since it was found to be rich in essential fatty acids, fat soluble vitamins, and squalene, it can be considered as better dietary supplement. The oil of Echinorhinus brucus also showed high in vitro cytotoxic effect against the human neuroblastoma cell line (SHSY-5Y) and the IC50 value laid between 35 and 45 ng.

  3. Genetics Home Reference: neuroblastoma

    MedlinePlus

    ... Help Me Understand Genetics Home Health Conditions neuroblastoma neuroblastoma Enable Javascript to view the expand/collapse boxes. Download PDF Open All Close All Description Neuroblastoma is a type of cancer that most often ...

  4. The Selective Estrogen Receptor Modulator Raloxifene Regulates Arginine-Vasopressin Gene Expression in Human Female Neuroblastoma Cells Through G Protein-Coupled Estrogen Receptor and ERK Signaling.

    PubMed

    Grassi, Daniela; Ghorbanpoor, Samar; Acaz-Fonseca, Estefania; Ruiz-Palmero, Isabel; Garcia-Segura, Luis M

    2015-10-01

    The selective estrogen receptor modulator raloxifene reduces blood pressure in hypertensive postmenopausal women. In the present study we have explored whether raloxifene regulates gene expression of arginine vasopressin (AVP), which is involved in the pathogenesis of hypertension. The effect of raloxifene was assessed in human female SH-SY5Y neuroblastoma cells, which have been recently identified as a suitable cellular model to study the estrogenic regulation of AVP. Raloxifene, within a concentration ranging from 10(-10) M to 10(-6) M, decreased the mRNA levels of AVP in SH-SY5Y cells with maximal effect at 10(-7) M. This effect of raloxifene was imitated by an agonist (±)-1-[(3aR*,4S*,9bS*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl]-ethanone of G protein-coupled estrogen receptor-1 (GPER) and blocked by an antagonist (3aS*,4R*,9bR*)-4-(6-bromo-1,3-benzodioxol-5-yl)-3a,4,5,9b-3H-cyclopenta[c]quinoline of GPER and by GPER silencing. Raloxifene induced a time-dependent increase in the level of phosphorylated ERK1 and ERK2, by a mechanism blocked by the GPER antagonist. The treatment of SH-SY5Y cells with either a MAPK/ERK kinase 1/2-specific inhibitor (1,4-diamino-2, 3-dicyano-1,4-bis(2-aminophenylthio)butadine) or a protein kinase C inhibitor (sotrastaurin) blocked the effects of raloxifene on the phosphorylation of ERK1/2 and the regulation of AVP mRNA levels. These results reveal a mechanism mediating the regulation of AVP expression by raloxifene, involving the activation of GPER, which in turn activates protein kinase C, MAPK/ERK kinase, and ERK. The regulation of AVP by raloxifene and GPER may have implications for the treatment of blood hypertension(.).

  5. MicroRNA-181a suppresses parkin-mediated mitophagy and sensitizes neuroblastoma cells to mitochondrial uncoupler-induced apoptosis

    PubMed Central

    Lao, Yuanzhi; Liao, Weijie; Liao, Meijian; Luo, Xuan; Wu, Jiangbin; Xie, Weidong; Zhang, Yaou; Xu, Naihan

    2016-01-01

    Damage to mitochondria often results in the activation of both mitophagy and mitochondrial apoptosis. The elimination of dysfunctional mitochondria is necessary for mitochondrial quality maintenance and efficient energy supply. Here we report that miR-181a is a novel inhibitor of mitophagy. miR-181a is downregulated by mitochondrial uncouplers in human neuroblastoma SH-SY5Y cells. Overexpression of miR-181a inhibits mitochondrial uncoupling agents-induced mitophagy by inhibiting the degradation of mitochondrial proteins without affecting global autophagy. Knock down of endogenous miR-181a accelerates the autophagic degradation of damaged mitochondria. miR-181a directly targets Parkin E3 ubiquitin ligase and partially blocks the colocalization of mitochondria and autophagosomes/lysosomes. Re-expression of exogenous Parkin restores the inhibitory effect of miR-181a on mitophagy. Furthermore, miR-181a increases the sensitivity of neuroblastoma cells to mitochondrial uncoupler-induced apoptosis, whereas miR-181a antagomir prevents cell death. Because mitophagy defects are associated with a variety of human disorders, these findings indicate an important link between microRNA and Parkin-mediated mitophagy and highlights a potential therapeutic strategy for human diseases. PMID:27281615

  6. A Proteomics Approach to Investigate miR-153-3p and miR-205-5p Targets in Neuroblastoma Cells

    PubMed Central

    Pal, Ramavati; Ho, Hsin-Pin; Alves, Guido; Chang, Emmanuel J.; Larsen, Jan Petter; Møller, Simon Geir

    2015-01-01

    MicroRNAs are key regulators associated with numerous diseases. In HEK293 cells, miR-153-3p and miR-205-5p down-regulate alpha-synuclein (SNCA) and Leucine-rich repeat kinase 2 (LRRK2), two key proteins involved in Parkinson’s disease (PD). We have used two-dimensional gel electrophoresis (2D-PAGE) coupled to mass spectrometry (MS) to identify a spectrum of miR-153-3p and miR-205-5p targets in neuronal SH-SY5Y cells. We overexpressed and inhibited both microRNAs in SH-SY5Y cells and through comparative proteomics profiling we quantified ~240 protein spots from each analysis. Combined, thirty-three protein spots were identified showing significant (p-value < 0.05) changes in abundance. Modulation of miR-153-3p resulted in seven up-regulated proteins and eight down-regulated proteins. miR-205 modulation resulted in twelve up-regulated proteins and six down-regulated proteins. Several of the proteins are associated with neuronal processes, including peroxiredoxin-2 and -4, cofilin-1, prefoldin 2, alpha-enolase, human nucleoside diphosphate kinase B (Nm23) and 14-3-3 protein epsilon. Many of the differentially expressed proteins are involved in diverse pathways including metabolism, neurotrophin signaling, actin cytoskeletal regulation, HIF-1 signaling and the proteasome indicating that miR-153-3p and miR-205-5p are involved in the regulation of a wide variety of biological processes in neuroblastoma cells. PMID:26633009

  7. ASPP2 Plays a Dual Role in gp120-Induced Autophagy and Apoptosis of Neuroblastoma Cells.

    PubMed

    Liu, Zhiying; Qiao, Luxin; Zhang, Yulin; Zang, Yunjing; Shi, Ying; Liu, Kai; Zhang, Xin; Lu, Xiaofan; Yuan, Lin; Su, Bin; Zhang, Tong; Wu, Hao; Chen, Dexi

    2017-01-01

    HIV invasion of the central nervous system (CNS) in the majority of patients infected with HIV-1, leads to dysfunction and injury within the CNS, showing a variety of neurological symptoms which was broadly termed HIV-associated neurocognitive disorder (HAND). But the molecular mechanisms are not completely understood. It has been suggested that apoptosis and autophagic dysfunction in neurons may play an important role in the development of HAND. Previous studies have indicated that p53 may be involved in the onset of neurological disorder in AIDS. Apoptosis-stimulating protein of p53-2 (ASPP2), a p53-binding protein with specific function of inducing p53, has been reported to modulate autophagy. In the present study, we observed that gp120 induces autophagy and apoptosis in SH-SY5Y neuroblastoma cells. Adenovirus-mediated overexpression of ASPP2 significantly inhibited autophagy and apoptosis induced by low dose of gp120 protein (50 ng/mL), but induced autophagy and apoptosis when treated by high dose of gp120 protein (200 ng/mL). Further, ASPP2 knockdown attenuated autophagy and apoptosis induced by gp120. Conclusion: ASPP2 had different effects on the autophagy and apoptosis of neurons induced by different concentration of gp120 protein. It may be a potential therapeutic agent for HAND through modulating autophagy and apoptosis in CNS.

  8. ASPP2 Plays a Dual Role in gp120-Induced Autophagy and Apoptosis of Neuroblastoma Cells

    PubMed Central

    Liu, Zhiying; Qiao, Luxin; Zhang, Yulin; Zang, Yunjing; Shi, Ying; Liu, Kai; Zhang, Xin; Lu, Xiaofan; Yuan, Lin; Su, Bin; Zhang, Tong; Wu, Hao; Chen, Dexi

    2017-01-01

    HIV invasion of the central nervous system (CNS) in the majority of patients infected with HIV-1, leads to dysfunction and injury within the CNS, showing a variety of neurological symptoms which was broadly termed HIV-associated neurocognitive disorder (HAND). But the molecular mechanisms are not completely understood. It has been suggested that apoptosis and autophagic dysfunction in neurons may play an important role in the development of HAND. Previous studies have indicated that p53 may be involved in the onset of neurological disorder in AIDS. Apoptosis-stimulating protein of p53-2 (ASPP2), a p53-binding protein with specific function of inducing p53, has been reported to modulate autophagy. In the present study, we observed that gp120 induces autophagy and apoptosis in SH-SY5Y neuroblastoma cells. Adenovirus-mediated overexpression of ASPP2 significantly inhibited autophagy and apoptosis induced by low dose of gp120 protein (50 ng/mL), but induced autophagy and apoptosis when treated by high dose of gp120 protein (200 ng/mL). Further, ASPP2 knockdown attenuated autophagy and apoptosis induced by gp120. Conclusion: ASPP2 had different effects on the autophagy and apoptosis of neurons induced by different concentration of gp120 protein. It may be a potential therapeutic agent for HAND through modulating autophagy and apoptosis in CNS. PMID:28392757

  9. Identification of novel targets for PGC-1{alpha} and histone deacetylase inhibitors in neuroblastoma cells

    SciTech Connect

    Cowell, Rita M. Talati, Pratik; Blake, Kathryn R.; Meador-Woodruff, James H.; Russell, James W.

    2009-02-06

    Recent evidence suggests that the transcriptional coactivator peroxisome proliferator activated receptor {gamma} coactivator 1{alpha} (PGC-1{alpha}) is involved in the pathology of Huntington's Disease (HD). While animals lacking PGC-1{alpha} express lower levels of genes involved in antioxidant defense and oxidative phosphorylation in the brain, little is known about other targets for PGC-1{alpha} in neuronal cells and whether there are ways to pharmacologically target PGC-1{alpha} in neurons. Here, PGC-1{alpha} overexpression in SH-SY5Y neuroblastoma cells upregulated expression of genes involved in mitochondrial function, glucose transport, fatty acid metabolism, and synaptic function. Overexpression also decreased vulnerability to hydrogen peroxide-induced cell death and caspase 3 activation. Treatment of cells with the histone deacetylase inhibitors (HDACi's) trichostatin A and valproic acid upregulated PGC-1{alpha} and glucose transporter 4 (GLUT4). These results suggest that PGC-1{alpha} regulates multiple pathways in neurons and that HDACi's may be good candidates to target PGC-1{alpha} and GLUT4 in HD and other neurological disorders.

  10. Aberrant regulation of choline metabolism by mitochondrial electron transport system inhibition in neuroblastoma cells

    PubMed Central

    Baykal, Ahmet T.; Jain, Mohit R.

    2009-01-01

    Anomalous choline metabolic patterns have been consistently observed in vivo using Magnetic Resonance Spectroscopy (MRS) analysis of patients with neurodegenerative diseases and tissues from cancer patient. It remains unclear; however, what signaling events may have triggered these choline metabolic aberrancies. This study investigates how changes in choline and phospholipid metabolism are regulated by distinct changes in the mitochondrial electron transport system (ETS). We used specific inhibitors to down regulate the function of individual protein complexes in the ETS of SH-SY5Y neuroblastoma cells. Interestingly, we found that dramatic elevation in the levels of phosphatidylcholine metabolites could be induced by the inhibition of individual ETS complexes, similar to in vivo observations. Such interferences produced divergent metabolic patterns, which were distinguishable via principal component analysis of the cellular metabolomes. Functional impairments in ETS components have been reported in several central nervous system (CNS) diseases, including Alzheimer’s disease (AD) and Parkinson’s disease (PD); however, it remains largely unknown how the suppression of individual ETS complex function could lead to specific dysfunction in different cell types, resulting in distinct disease phenotypes. Our results suggest that the inhibition of each of the five ETS complexes might differentially regulate phospholipase activities within choline metabolic pathways in neuronal cells, which could contribute to the overall understanding of mitochondrial diseases. PMID:19774105

  11. Direct Observation of α-Synuclein Amyloid Aggregates in Endocytic Vesicles of Neuroblastoma Cells

    PubMed Central

    Subramaniam, Vinod; Canters, Gerard W.; Schmidt, Thomas; Aartsma, Thijs J.

    2016-01-01

    Aggregation of α-synuclein has been linked to both familial and sporadic Parkinson’s disease. Recent studies suggest that α-synuclein aggregates may spread from cell to cell and raise questions about the propagation of neurodegeneration. While continuous progress has been made characterizing α-synuclein aggregates in vitro, there is a lack of information regarding the structure of these species inside the cells. Here, we use confocal fluorescence microscopy in combination with direct stochastic optical reconstruction microscopy, dSTORM, to investigate α-synuclein uptake when added exogenously to SH-SY5Y neuroblastoma cells, and to probe in situ morphological features of α-synuclein aggregates with near nanometer resolution. We demonstrate that using dSTORM, it is possible to follow noninvasively the uptake of extracellularly added α-synuclein aggregates by the cells. Once the aggregates are internalized, they move through the endosomal pathway and accumulate in lysosomes to be degraded. Our dSTORM data show that α-synuclein aggregates remain assembled after internalization and they are shortened as they move through the endosomal pathway. No further aggregation was observed inside the lysosomes as speculated in the literature, nor in the cytoplasm of the cells. Our study thus highlights the super-resolution capability of dSTORM to follow directly the endocytotic uptake of extracellularly added amyloid aggregates and to probe the morphology of in situ protein aggregates even when they accumulate in small vesicular compartments. PMID:27105068

  12. Olfactory neuroblastoma

    SciTech Connect

    O'Connor, T.A.; McLean, P.; Juillard, G.J.; Parker, R.G.

    1989-06-15

    Fifteen patients with olfactory neuroblastoma were treated during the 17-year period of 1969 to 1986. Data was analyzed with respect to age at presentation, sex, presenting signs and symptoms, stage, and results of treatment. Age ranged from 4 to 67 years with the median age being 27 years. Median follow-up was 8 years. Local control was achieved in nine of nine patients or 100% with successful surgical resection, i.e., minimal residual disease, followed by postoperative radiation therapy (45 to 65 Gy) was employed. There were no distant failures when the primary site was controlled. Regional lymph node metastases were infrequent: only 13% (two of 15 patients) presented with positive nodes. Three of four patients treated initially with surgery alone had a local recurrence, two of which were successfully salvaged by combined therapy. There were four patients treated with radiation therapy alone: three had persistent disease after radiation therapy, and one patient was controlled with 65 Gy. Olfactory neuroblastoma has a propensity to recur locally when treated with surgery alone. The authors' experience suggests excellent local control can be achieved with surgery immediately followed by radiation therapy. Thus the authors recommend planned combined treatment for all resectable lesions.

  13. Sublethal irradiation promotes invasiveness of neuroblastoma cells

    SciTech Connect

    Schweigerer, Lothar; Rave-Fraenk, Margret; Schmidberger, Heinz; Hecht, Monica . E-mail: monica.hecht@med.uni-goettingen.de

    2005-05-13

    Neuroblastoma is the most frequent extracranial solid tumour of childhood. Despite multiple clinical efforts, clinical outcome has remained poor. Neuroblastoma is considered to be radiosensitive, but some clinical studies including the German trial NB90 failed to show a clinical benefit of radiation therapy. The mechanisms underlying this apparent discrepancy are still unclear. We have therefore investigated the effects of radiation on neuroblastoma cell behaviour in vitro. We show that sublethal doses of irradiation up-regulated the expression of the hepatocyte growth factor (HGF) and its receptor c-Met in some neuroblastoma cell lines. The increase in HGF/c-Met expression was correlated with enhanced invasiveness and activation of proteases degrading the extracellular matrix. Thus, irradiation at sublethal doses may promote the metastatic dissemination of neuroblastoma cells through activating the HGF/c-Met pathway and triggering matrix degradation.

  14. Bcl-xL-mediated antioxidant function abrogates the disruption of mitochondrial dynamics induced by LRRK2 inhibition.

    PubMed

    Saez-Atienzar, Sara; Bonet-Ponce, Luis; da Casa, Carmen; Perez-Dolz, Laura; Blesa, Jose R; Nava, Eduardo; Galindo, Maria F; Jordan, Joaquín

    2016-01-01

    We have used the human neuroblastoma cell line SH-SY5Y overexpressing Bcl-xL (SH-SY5Y/Bcl-xL) to clarify the effects of this mitochondrial protein on the control of mitochondrial dynamics and the autophagic processes which occur after the inhibition of leucine-rich repeat kinase 2 (LRRK2) with GSK2578215A. In wild type (SH-SY5Y/Neo) cells, GSK2578215A (1nM) caused a disruption of mitochondrial morphology and an imbalance in intracellular reactive oxygen species (ROS) as indicated by an increase in dichlorofluorescein fluorescence and 4-hydroxynonenal. However, SH-SY5Y/Bcl-xL cells under GSK2578215A treatment, unlike the wild type, preserved a high mitochondrial membrane potential and did not exhibit apoptotical chromatins. In contrast to wild type cells, in SH-SY5Y/Bcl-xL cells, GSK2578215A did not induce mitochondrial translocation of neither dynamin related protein-1 nor the proapoptotic protein, Bax. In SH-SY5Y/Neo, but not SH-SY5Y/Bcl-xL cells, mitochondrial fragmentation elicited by GSK2578215A precedes an autophagic response. Furthermore, the overexpression of Bcl-xL protein restores the autophagic flux pathway disrupted by this inhibitor. SH-SY5Y/Neo, but not SH-SY5Y/Bcl-xL cells, responded to LRRK2 inhibition by an increase in the levels of acetylated tubulin, indicating that this was abrogated by Bcl-xL overexpression. This hyperacetylation of tubulin took place earlier than any of the above-mentioned events suggesting that it is involved in the autophagic flux interruption. Pre-treatment with tempol prevented the GSK2578215A-induced mitochondrial fragmentation, autophagy and the rise in acetylated tubulin in SH-SY5Y/Neo cells. Thus, these data support the notion that ROS act as a second messenger connexion between LRRK2 inhibition and these deleterious responses, which are markedly alleviated by the Bcl-xL-mediated ROS generation blockade.

  15. Do We Know What Causes Neuroblastoma?

    MedlinePlus

    ... Factors, and Prevention Do We Know What Causes Neuroblastoma? The causes of most neuroblastomas are not known. ... Causes Neuroblastoma? Can Neuroblastoma Be Prevented? More In Neuroblastoma About Neuroblastoma Causes, Risk Factors, and Prevention Early ...

  16. What Are the Key Statistics about Neuroblastoma?

    MedlinePlus

    ... About Neuroblastoma What Are the Key Statistics About Neuroblastoma? Neuroblastoma is by far the most common cancer ... New in Neuroblastoma Research and Treatment? More In Neuroblastoma About Neuroblastoma Causes, Risk Factors, and Prevention Early ...

  17. Identifying microRNAs that Regulate Neuroblastoma Cell Differentiation

    DTIC Science & Technology

    2015-10-01

    Award Number: W81XWH-13-1-0241 TITLE: Identifying that Regulate Neuroblastoma Cell Differentiation PRINCIPAL INVESTIGATOR: Dr. Liqin Du...inducing miRNA, miR- 449a. We examined the differentiation-inducing function of miR-449a in multiple neuroblastoma cell lines. We have demonstrated that...miR-449a functions as an inducer of cell differentiation in neuroblastoma cell lines with distinct genetic backgrounds, including the MYCN

  18. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143

    PubMed Central

    Yang, Hai-Jie; Ju, Fei; Guo, Xin-Xin; Ma, Shuang-Ping; Wang, Lei; Cheng, Bin-Feng; Zhuang, Rui-Juan; Zhang, Bin-Bin; Shi, Xiang; Feng, Zhi-Wei; Wang, Mian

    2017-01-01

    Nitric oxide (NO)-induced apoptosis in neurons is an important cause of neurodegenerative disease in humans. The cold-inducible protein RBM3 mediates the protective effects of cooling on apoptosis induced by various insults. However, whether RBM3 protects neural cells from NO-induced apoptosis is unclear. This study aimed to investigate the neuroprotective effect of RBM3 on NO-induced apoptosis in human SH-SY5Y neuroblastoma cells. Firstly, we demonstrated that mild hypothermia (32 °C) induces RBM3 expression and confers a potent neuroprotective effect on NO-induced apoptosis, which was substantially diminished when RBM3 was silenced by siRNA. Moreover, overexpression of RBM3 exhibited a strong protective effect against NO-induced apoptosis. Signaling pathway screening demonstrated that only p38 inhibition by RBM3 provided neuroprotective effect, although RBM3 overexpression could affect the activation of p38, JNK, ERK, and AKT signaling in response to NO stimuli. Notably, RBM3 overexpression also blocked the activation of p38 signaling induced by transforming growth factor-β1. Furthermore, both RBM3 overexpression and mild hypothermia abolished the induction of miR-143 by NO, which was shown to mediate the cytotoxicity of NO in a p38-dependent way. These findings suggest that RBM3 protects neuroblastoma cells from NO-induced apoptosis by suppressing p38 signaling, which mediates apoptosis through miR-143 induction. PMID:28134320

  19. β-N-Methylamino-L-alanine (BMAA) perturbs alanine, aspartate and glutamate metabolism pathways in human neuroblastoma cells as determined by metabolic profiling.

    PubMed

    Engskog, Mikael K R; Ersson, Lisa; Haglöf, Jakob; Arvidsson, Torbjörn; Pettersson, Curt; Brittebo, Eva

    2017-02-04

    β-Methylamino-L-alanine (BMAA) is a non-proteinogenic amino acid that induces long-term cognitive deficits, as well as an increased neurodegeneration and intracellular fibril formation in the hippocampus of adult rodents following short-time neonatal exposure and in vervet monkey brain following long-term exposure. It has also been proposed to be involved in the etiology of neurodegenerative disease in humans. The aim of this study was to identify metabolic effects not related to excitotoxicity or oxidative stress in human neuroblastoma SH-SY5Y cells. The effects of BMAA (50, 250, 1000 µM) for 24 h on cells differentiated with retinoic acid were studied. Samples were analyzed using LC-MS and NMR spectroscopy to detect altered intracellular polar metabolites. The analysis performed, followed by multivariate pattern recognition techniques, revealed significant perturbations in protein biosynthesis, amino acid metabolism pathways and citrate cycle. Of specific interest were the BMAA-induced alterations in alanine, aspartate and glutamate metabolism and as well as alterations in various neurotransmitters/neuromodulators such as GABA and taurine. The results indicate that BMAA can interfere with metabolic pathways involved in neurotransmission in human neuroblastoma cells.

  20. RNA-binding protein RBM3 prevents NO-induced apoptosis in human neuroblastoma cells by modulating p38 signaling and miR-143.

    PubMed

    Yang, Hai-Jie; Ju, Fei; Guo, Xin-Xin; Ma, Shuang-Ping; Wang, Lei; Cheng, Bin-Feng; Zhuang, Rui-Juan; Zhang, Bin-Bin; Shi, Xiang; Feng, Zhi-Wei; Wang, Mian

    2017-01-30

    Nitric oxide (NO)-induced apoptosis in neurons is an important cause of neurodegenerative disease in humans. The cold-inducible protein RBM3 mediates the protective effects of cooling on apoptosis induced by various insults. However, whether RBM3 protects neural cells from NO-induced apoptosis is unclear. This study aimed to investigate the neuroprotective effect of RBM3 on NO-induced apoptosis in human SH-SY5Y neuroblastoma cells. Firstly, we demonstrated that mild hypothermia (32 °C) induces RBM3 expression and confers a potent neuroprotective effect on NO-induced apoptosis, which was substantially diminished when RBM3 was silenced by siRNA. Moreover, overexpression of RBM3 exhibited a strong protective effect against NO-induced apoptosis. Signaling pathway screening demonstrated that only p38 inhibition by RBM3 provided neuroprotective effect, although RBM3 overexpression could affect the activation of p38, JNK, ERK, and AKT signaling in response to NO stimuli. Notably, RBM3 overexpression also blocked the activation of p38 signaling induced by transforming growth factor-β1. Furthermore, both RBM3 overexpression and mild hypothermia abolished the induction of miR-143 by NO, which was shown to mediate the cytotoxicity of NO in a p38-dependent way. These findings suggest that RBM3 protects neuroblastoma cells from NO-induced apoptosis by suppressing p38 signaling, which mediates apoptosis through miR-143 induction.

  1. PHOX2A and PHOX2B are differentially regulated during retinoic acid-driven differentiation of SK-N-BE(2)C neuroblastoma cell line

    PubMed Central

    Di Lascio, Simona; Saba, Elena; Belperio, Debora; Raimondi, Andrea; Lucchetti, Helen; Fornasari, Diego; Benfante, Roberta

    2016-01-01

    PHOX2B and its paralogue gene PHOX2A are two homeodomain proteins in the network regulating the development of autonomic ganglia that have been associated with the pathogenesis of neuroblastoma (NB), because of their over-expression in different NB cell lines and tumour samples. We used the SK-N-BE(2)C cell line to show that all-trans retinoic acid (ATRA), a drug that is widely used to inhibit growth and induce differentiation in NBs, regulates both PHOX2A and PHOX2B expression, albeit by means of different mechanisms: it up-regulates PHOX2A and down-regulates PHOX2B. Both mechanisms act at transcriptional level, but prolonged ATRA treatment selectively degrades the PHOX2A protein, whereas the corresponding mRNA remains up-regulated. Further, we show that PHOX2A is capable of modulating PHOX2B expression, but this mechanism is not involved in the PHOX2B down-regulation induced by retinoic acid. Our findings demonstrate that PHOX2A expression is finely controlled during retinoic acid differentiation and this, together with PHOX2B down-regulation, reinforces the idea that they may be useful biomarkers for NB staging, prognosis and treatment decision making. PMID:26902400

  2. The Role of Monocarboxylate Transporters and Their Chaperone CD147 in Lactate Efflux Inhibition and the Anticancer Effects of Terminalia chebula in Neuroblastoma Cell Line N2-A

    PubMed Central

    Messeha, S. S.; Zarmouh, N. O.; Taka, E.; Gendy, S. G.; Shokry, G. R.; Kolta, M. G.; Soliman, K. F. A.

    2016-01-01

    Aims In the presence of oxygen, most of the synthesized pyruvate during glycolysis in the cancer cell of solid tumors is released away from the mitochondria to form lactate (Warburg Effect). To maintain cell homeostasis, lactate is transported across the cell membrane by monocarboxylate transporters (MCTs). The major aim of the current investigation is to identify novel compounds that inhibit lactate efflux that may lead to identifying effective targets for cancer treatment. Study Design In this study, 900 ethanol plant extracts were screened for their lactate efflux inhibition using neuroblastoma (N2-A) cell line. Additionally, we investigated the mechanism of inhibition for the most potent plant extract regarding monocarboxylate transporters expression, and consequences effects on viability, growth, and apoptosis. Methodology The potency of lactate efflux inhibition of ethanol plant extracts was evaluated in N2-A cells by measuring extracellular lactate levels. Caspase 3- activity and acridine orange/ethidium bromide staining were performed to assess the apoptotic effect. The antiproliferative effect was measured using WST assay. Western blotting was performed to quantify protein expression of MCTs and their chaperone CD147 in treated cells lysates. Results Terminalia chebula plant extract was the most potent lactate efflux inhibitor in N2-A cells among the 900 - tested plant extracts. The results obtained show that extract of Terminalia chebula fruits (TCE) significantly (P = 0.05) reduced the expression of the MCT1, MCT3, MCT4 and the chaperone CD147. The plant extract was more potent (IC50 of 3.59 ± 0.26 μg/ml) than the MCT standard inhibitor phloretin (IC50 76.54 ± 3.19 μg/ml). The extract also showed more potency and selective cytotoxicity in cancer cells than DI-TNC1 primary cell line (IC50 7.37 ± 0.28 vs. 17.35 ± 0.19 μg/ml). Moreover, TCE Inhibited N2-A cell growth (IG50 = 5.20 ± 0.30 μg/ml) and induced apoptosis at the 7.5 μg/ml concentration

  3. Inhibition of the focal adhesion kinase and vascular endothelial growth factor receptor-3 interaction leads to decreased survival in human neuroblastoma cell lines.

    PubMed

    Beierle, Elizabeth A; Ma, Xiaojie; Stewart, Jerry E; Megison, Michael; Cance, William G; Kurenova, Elena V

    2014-03-01

    Neuroblastoma continues to be a devastating childhood solid tumor and is responsible for over 15% of all childhood cancer-related deaths. Focal adhesion kinase (FAK) and vascular endothelial growth factor receptor-3 (VEGFR-3) are protein tyrosine kinases that are overexpressed in a number of human cancers, including neuroblastoma. These two kinases can directly interact and provide survival signals to cancer cells. In this study, we utilized siRNA to VEGFR-3 to demonstrate the biologic importance of this kinase in neuroblastoma cell survival. We also used confocal microscopy and immunoprecipitation to show that FAK and VEGFR-3 bind in neuroblastoma. Finally, employing a 12-amino-acid peptide (AV3) specific to VEGFR-3, we showed that the colocalization between FAK and VEGFR-3 could be disrupted, and that disruption resulted in decreased neuroblastoma cell survival. These studies provide insight to the FAK-VEGFR-3 interaction in neuroblastoma and demonstrate its importance in this tumor type. Focusing upon the FAK-VEGFR-3 interaction may provide a novel therapeutic target for the development of new strategies for treatment of neuroblastoma.

  4. Molecular basis underlying the biological effects elicited by extremely low-frequency magnetic field (ELF-MF) on neuroblastoma cells.

    PubMed

    Sulpizio, Marilisa; Falone, Stefano; Amicarelli, Fernanda; Marchisio, Marco; Di Giuseppe, Fabrizio; Eleuterio, Enrica; Di Ilio, Carmine; Angelucci, Stefania

    2011-12-01

    Extremely low-frequency magnetic fields (ELF-MFs) may affect human health because of the possible associations with leukemia but also with cancer, cardiovascular, and neurological disorders. In the present work, human SH-SY5Y neuroblastoma cells were exposed to a 50 Hz, 1 mT sinusoidal ELF-MF at three different times, that is, 5 days (T5), 10 days (T10), and 15 days (T15) and then the effects of ELF-MF on proteome expression and biological behavior were investigated. Through comparative analysis between treated and control samples, we analyzed the proteome changes induced by ELF-MF exposure. Nine new proteins resolved in sample after a 15-day treatment were involved in a cellular defense mechanism and/or in cellular organization and proliferation such as peroxiredoxin isoenzymes (2, 3, and 6), 3-mercaptopyruvate sulfurtransferase, actin cytoplasmatic 2, t-complex protein subunit beta, ropporin-1A, and profilin-2 and spindlin-1. Our results indicated that ELF-MFs exposure altered the proliferative status and other important cell biology-related parameters, such as cell growth pattern, and cytoskeletal organization. These findings support our hypothesis that ELF radiation could trigger a shift toward a more invasive phenotype.

  5. Implication of limonene and linalyl acetate in cytotoxicity induced by bergamot essential oil in human neuroblastoma cells.

    PubMed

    Russo, Rossella; Ciociaro, Antonella; Berliocchi, Laura; Cassiano, Maria Gilda Valentina; Rombolà, Laura; Ragusa, Salvatore; Bagetta, Giacinto; Blandini, Fabio; Corasaniti, Maria Tiziana

    2013-09-01

    Bergamot (Citrus bergamia, Risso et Poiteau) essential oil (BEO) is a widely used plant extract showing anxiolytic, analgesic and neuroprotective effects in rodents; also, BEO activates multiple death pathways in cancer cells. Despite detailed knowledge of its chemical composition, the constituent/s responsible for these pharmacological activities remain largely unknown. Aim of the present study was to identify the components of BEO implicated in cell death. To this end, limonene, linalyl acetate, linalool, γ-terpinene, β-pinene and bergapten were individually tested in human SH-SY5Y neuroblastoma cultures at concentrations comparable with those found in cytotoxic dilutions of BEO. None of the tested compounds elicited cell death. However, significant cytotoxicity was observed when cells were cotreated with limonene and linalyl acetate whereas no other associations were effective. Only cotreatment, but not the single exposure to limonene and linalyl acetate, replicated distinctive morphological and biochemical changes induced by BEO, including caspase-3 activation, PARP cleavage, DNA fragmentation, cell shrinkage, cytoskeletal alterations, together with necrotic and apoptotic cell death. Collectively, our findings suggest a major role for a combined action of these monoterpenes in cancer cell death induced by BEO.

  6. Amyloid-beta leads to impaired cellular respiration, energy production and mitochondrial electron chain complex activities in human neuroblastoma cells.

    PubMed

    Rhein, V; Baysang, G; Rao, S; Meier, F; Bonert, A; Müller-Spahn, F; Eckert, A

    2009-09-01

    Evidence suggests that amyloid-beta (Abeta) protein is a key factor in the pathogenesis of Alzheimer's disease (AD) and it has been recently proposed that mitochondria are involved in the biochemical pathway by which Abeta can lead to neuronal dysfunction. Here we investigated the specific effects of Abeta on mitochondrial function under physiological conditions. Mitochondrial respiratory functions and energy metabolism were analyzed in control and in human wild-type amyloid precursor protein (APP) stably transfected human neuroblastoma cells (SH-SY5Y). Mitochondrial respiratory capacity of mitochondrial electron transport chain (ETC) in vital cells was measured with a high-resolution respirometry system (Oxygraph-2k). In addition, we determined the individual activities of mitochondrial complexes I-IV that compose ETC and ATP cellular levels. While the activities of complexes I and II did not change between cell types, complex IV activity was significantly reduced in APP cells. In contrast, activity of complex III was significantly enhanced in APP cells, as compensatory response in order to balance the defect of complex IV. However, this compensatory mechanism could not prevent the strong impairment of total respiration in vital APP cells. As a result, the respiratory control ratio (state3/state4) together with ATP production decreased in the APP cells in comparison with the control cells. Chronic exposure to soluble Abeta protein may result in an impairment of energy homeostasis due to a decreased respiratory capacity of mitochondrial electron transport chain which, in turn, may accelerate neurons demise.

  7. Neuroblastoma: A neurochemical approach

    SciTech Connect

    Schor, N.F. )

    1991-07-01

    Neuroblastoma is among the most common malignancies of childhood. Despite greatly improved therapy for some pediatric tumors, the prognosis for children with metastatic neuroblastoma has not changed significantly in the past 10 years. With conventional chemotherapy, radiation therapy, and surgery, children with metastatic neuroblastoma have a 20% long-term survival rate. The authors describe here approaches to neuroblastoma that target its neuronal characteristics. On the one hand, the neurotransmitter receptors on the surface of the neuroblastoma cells and, on the other hand, specific isozymes that distinguish neuroblastoma cells from their normal counterparts are the focus of these experimental therapies. In the former case, specificity for tumor cells is effected by (1) selective protection of normal neuronal elements from toxicity, or (2) selective potentiation of toxicity for neural tumor cells. It is hoped that these strategies will be generalizable to other neural crest-derived tumors. 32 references.

  8. HLXB9 Gene Expression, and Nuclear Location during In Vitro Neuronal Differentiation in the SK-N-BE Neuroblastoma Cell Line

    PubMed Central

    Leotta, Claudia Giovanna; Federico, Concetta; Brundo, Maria Violetta; Tosi, Sabrina; Saccone, Salvatore

    2014-01-01

    Different parts of the genome occupy specific compartments of the cell nucleus based on the gene content and the transcriptional activity. An example of this is the altered nuclear positioning of the HLXB9 gene in leukaemia cells observed in association with its over-expression. This phenomenon was attributed to the presence of a chromosomal translocation with breakpoint proximal to the HLXB9 gene. Before becoming an interesting gene in cancer biology, HLXB9 was studied as a developmental gene. This homeobox gene is also known as MNX1 (motor neuron and pancreas homeobox 1) and it is relevant for both motor neuronal and pancreatic beta cells development. A spectrum of mutations in this gene are causative of sacral agenesis and more broadly, of what is known as the Currarino Syndrome, a constitutional autosomal dominant disorder. Experimental work on animal models has shown that HLXB9 has an essential role in motor neuronal differentiation. Here we present data to show that, upon treatment with retinoic acid, the HLXB9 gene becomes over-expressed during the early stages of neuronal differentiation and that this corresponds to a reposition of the gene in the nucleus. More precisely, we used the SK-N-BE human neuroblastoma cell line as an in vitro model and we demonstrated a transient transcription of HLXB9 at the 4th and 5th days of differentiation that corresponded to the presence, predominantly in the cell nuclei, of the encoded protein HB9. The nuclear positioning of the HLXB9 gene was monitored at different stages: a peripheral location was noted in the proliferating cells whereas a more internal position was noted during differentiation, that is while HLXB9 was transcriptionally active. Our findings suggest that HLXB9 can be considered a marker of early neuronal differentiation, possibly involving chromatin remodeling pathways. PMID:25136833

  9. HLXB9 gene expression, and nuclear location during in vitro neuronal differentiation in the SK-N-BE neuroblastoma cell line.

    PubMed

    Leotta, Claudia Giovanna; Federico, Concetta; Brundo, Maria Violetta; Tosi, Sabrina; Saccone, Salvatore

    2014-01-01

    Different parts of the genome occupy specific compartments of the cell nucleus based on the gene content and the transcriptional activity. An example of this is the altered nuclear positioning of the HLXB9 gene in leukaemia cells observed in association with its over-expression. This phenomenon was attributed to the presence of a chromosomal translocation with breakpoint proximal to the HLXB9 gene. Before becoming an interesting gene in cancer biology, HLXB9 was studied as a developmental gene. This homeobox gene is also known as MNX1 (motor neuron and pancreas homeobox 1) and it is relevant for both motor neuronal and pancreatic beta cells development. A spectrum of mutations in this gene are causative of sacral agenesis and more broadly, of what is known as the Currarino Syndrome, a constitutional autosomal dominant disorder. Experimental work on animal models has shown that HLXB9 has an essential role in motor neuronal differentiation. Here we present data to show that, upon treatment with retinoic acid, the HLXB9 gene becomes over-expressed during the early stages of neuronal differentiation and that this corresponds to a reposition of the gene in the nucleus. More precisely, we used the SK-N-BE human neuroblastoma cell line as an in vitro model and we demonstrated a transient transcription of HLXB9 at the 4th and 5th days of differentiation that corresponded to the presence, predominantly in the cell nuclei, of the encoded protein HB9. The nuclear positioning of the HLXB9 gene was monitored at different stages: a peripheral location was noted in the proliferating cells whereas a more internal position was noted during differentiation, that is while HLXB9 was transcriptionally active. Our findings suggest that HLXB9 can be considered a marker of early neuronal differentiation, possibly involving chromatin remodeling pathways.

  10. Analysis of Epidermal Growth Factor Receptor Related Gene Expression Changes in a Cellular and Animal Model of Parkinson’s Disease

    PubMed Central

    Kim, In-Su; Koppula, Sushruta; Park, Shin-Young; Choi, Dong-Kug

    2017-01-01

    We employed transcriptome analysis of epidermal growth factor receptor related gene expression changes in cellular and animal models of Parkinson’s disease (PD). We used a well-known Parkinsonian toxin 1-methyl-4-phenylpyridine (MPP+) to induce neuronal apoptosis in the human neuroblastoma SH-SY5Y cell line. The MPP+-treatment of SH-SY5Y cells was capable of inducing neuro-apoptosis, but it remains unclear what kinds of transcriptional genes are affected by MPP+ toxicity. Therefore the pathways that were significantly perturbed in MPP+ treated human neuroblastoma SH-SY5Y cells were identified based on genome-wide gene expression data at two time points (24 and 48 h). We found that the Epidermal Growth Factor Receptor (EGFR) pathway-related genes showed significantly differential expression at all time points. The EGFR pathway has been linked to diverse cellular events such as proliferation, differentiation, and apoptosis. Further, to evaluate the functional significance of the altered EGFR related gene expression observed in MPP+-treated SH-SY5Y cells, the EGFR related GJB2 (Cx26) gene expression was analyzed in an MPP+-intoxicated animal PD model. Our findings identify that the EGFR signaling pathway and its related genes, such as Cx26, might play a significant role in dopaminergic (DAergic) neuronal cell death during the process of neuro-apoptosis and therefore can be focused on as potential targets for therapeutic intervention. PMID:28212331

  11. Surgery combined with controlled-release doxorubicin silk films as a treatment strategy in an orthotopic neuroblastoma mouse model

    PubMed Central

    Chiu, B; Coburn, J; Pilichowska, M; Holcroft, C; Seib, F P; Charest, A; Kaplan, D L

    2014-01-01

    Background: Neuroblastoma tumour resection goal is maximal tumour removal. We hypothesise that combining surgery with sustained, local doxorubicin application can control tumour growth. Methods: We injected human neuroblastoma cells into immunocompromised mouse adrenal gland. When KELLY cell-induced tumour volume was >300 mm3, 80–90% of tumour was resected and treated as follows: instantaneous-release silk film with 100 μg doxorubicin (100IR), controlled-release film with 200 μg (200CR) over residual tumour bed; and 100 and 200 μg intravenous doxorubicin (100IV and 200IV). Tumour volume was measured and histology analysed. Results: Orthotopic tumours formed with KELLY, SK-N-AS, IMR-32, SH-SY5Y cells. Tumours reached 1800±180 mm3 after 28 days, 2200±290 mm3 after 35 days, 1280±260 mm3 after 63 days, and 1700±360 mm3 after 84 days, respectively. At 3 days post KELLY tumour resection, tumour volumes were similar across all groups (P=0.6210). Tumour growth rate was similar in untreated vs control film, 100IV vs 100IR, and 100IV vs 200IV. There was significant difference in 100IR vs 200CR (P=0.0004) and 200IV vs 200CR (P=0.0003). Tumour growth with all doxorubicin groups was slower than that of control (P: <0.0001–0.0069). At the interface of the 200CR film and tumour, there was cellular necrosis, surrounded by apoptotic cells before reaching viable tumour cells. Conclusions: Combining surgical resection and sustained local doxorubicin treatment is effective in tumour control. Administering doxorubicin in a local, controlled manner is superior to giving an equivalent intravenous dose in tumour control. PMID:24921912

  12. Improved Mitochondrial and Methylglyoxal-Related Metabolisms Support Hyperproliferation Induced by 50 Hz Magnetic Field in Neuroblastoma Cells.

    PubMed

    Falone, Stefano; Santini, Silvano; di Loreto, Silvia; Cordone, Valeria; Grannonico, Marta; Cesare, Patrizia; Cacchio, Marisa; Amicarelli, Fernanda

    2016-09-01

    Extremely low frequency magnetic fields (ELF-MF) are common environmental agents that are suspected to promote later stages of tumorigenesis, especially in brain-derived malignancies. Even though ELF magnetic fields have been previously linked to increased proliferation in neuroblastoma cells, no previous work has studied whether ELF-MF exposure may change key biomolecular features, such as anti-glycative defence and energy re-programming, both of which are currently considered as crucial factors involved in the phenotype and progression of many malignancies. Our study investigated whether the hyperproliferation that is induced in SH-SY5Y human neuroblastoma cells by a 50 Hz, 1 mT ELF magnetic field is supported by an improved defense towards methylglyoxal (MG), which is an endogenous cancer-static and glycating α-oxoaldehyde, and by rewiring of energy metabolism. Our findings show that not only the ELF magnetic field interfered with the biology of neuron-derived malignant cells, by de-differentiating further the cellular phenotype and by increasing the proliferative activity, but also triggered cytoprotective mechanisms through the enhancement of the defense against MG, along with a more efficient management of metabolic energy, presumably to support the rapid cell outgrowth. Intriguingly, we also revealed that the MF-induced bioeffects took place after an initial imbalance of the cellular homeostasis, which most likely created a transient unstable milieu. The biochemical pathways and molecular targets revealed in this research could be exploited for future approaches aimed at limiting or suppressing the deleterious effects of ELF magnetic fields. J. Cell. Physiol. 231: 2014-2025, 2016. © 2016 Wiley Periodicals, Inc.

  13. Effects of dopamine on LC3-II activation as a marker of autophagy in a neuroblastoma cell model.

    PubMed

    Giménez-Xavier, Pol; Francisco, Roser; Santidrián, Antonio F; Gil, Joan; Ambrosio, Santiago

    2009-07-01

    Dopamine at 100-500 microM has toxic effects on human SH-SY5Y neuroblastoma cells, manifested as apoptotic cell loss and strong autophagy. The molecular mechanisms and types of dopamine-induced cell death are not yet well known. Their identification is important in the study of neurodegenerative diseases that specifically involve dopaminergic neurons. We looked for changes in expression and content of proteins involved in apoptosis and autophagy after dopamine treatment. All the changes found were prevented by avoiding dopamine oxidation with N-acetylcysteine, indicating a key role for the products of dopamine oxidation in dopamine toxicity. As early as 1-2h after treatment we found an increase in hypoxia-inducible factor-1alpha (HIF-1alpha) and an accumulation of ubiquitinated proteins. Proteins regulated by HIF-1alpha and involved in apoptosis and/or autophagy, such as p53, Puma and Bnip3, were subsequently increased. However, apoptotic parameters (caspase-3, caspase-7, PARP) were only activated after 12h of 500muM dopamine treatment. Autophagy, monitored by the LC3-II increase after LC3-I linkage to autophagic vacuoles, was evident after 6h of treatment with both 100 and 500 microM dopamine. The mTOR pathway was inhibited by dopamine, probably due to the intracellular redox changes and energy depletion leading to AMPK activation. However, this mechanism is not sufficient to explain the high LC3-II activation caused by dopamine: the LC3-II increase was not reversed by IGF-1, which prevented this effect when caused by the mTOR inhibitor rapamycin. Our results suggest that the aggregation of ubiquitinated non-degraded proteins may be the main cause of LC3-II activation and autophagy. As we have reported previously, cytosolic dopamine may cause damage by autophagy in neuroblastoma cells (and presumably in dopaminergic neurons), which develops to apoptosis and leads to cell degeneration.

  14. Depletion of the Human Ion Channel TRPM2 in Neuroblastoma Demonstrates Its Key Role in Cell Survival through Modulation of Mitochondrial Reactive Oxygen Species and Bioenergetics.

    PubMed

    Bao, Lei; Chen, Shu-Jen; Conrad, Kathleen; Keefer, Kerry; Abraham, Thomas; Lee, John P; Wang, JuFang; Zhang, Xue-Qian; Hirschler-Laszkiewicz, Iwona; Wang, Hong-Gang; Dovat, Sinisa; Gans, Brian; Madesh, Muniswamy; Cheung, Joseph Y; Miller, Barbara A

    2016-11-18

    Transient receptor potential melastatin 2 (TRPM2) ion channel has an essential function in modulating cell survival following oxidant injury and is highly expressed in many cancers including neuroblastoma. Here, in xenografts generated from neuroblastoma cells in which TRPM2 was depleted with CRISPR/Cas9 technology and in in vitro experiments, tumor growth was significantly inhibited and doxorubicin sensitivity increased. The hypoxia-inducible transcription factor 1/2α (HIF-1/2α) signaling cascade including proteins involved in oxidant stress, glycolysis, and mitochondrial function was suppressed by TRPM2 depletion. TRPM2-depleted SH-SY5Y neuroblastoma cells demonstrated reduced oxygen consumption and ATP production after doxorubicin, confirming impaired cellular bioenergetics. In cells in which TRPM2 was depleted, mitochondrial superoxide production was significantly increased, particularly following doxorubicin. Ectopic expression of superoxide dismutase 2 (SOD2) reduced ROS and preserved viability of TRPM2-depleted cells, however, failed to restore ATP levels. Mitochondrial reactive oxygen species (ROS) were also significantly increased in cells in which TRPM2 function was inhibited by TRPM2-S, and pretreatment of these cells with the antioxidant MitoTEMPO significantly reduced ROS levels in response to doxorubicin and protected cell viability. Expression of the TRPM2 pore mutant E960D, in which calcium entry through TRPM2 is abolished, also resulted in significantly increased mitochondrial ROS following doxorubicin treatment, showing the critical role of TRPM2-mediated calcium entry. These findings demonstrate the important function of TRPM2 in modulation of cell survival through mitochondrial ROS, and the potential of targeted inhibition of TRPM2 as a therapeutic approach to reduce cellular bioenergetics, tumor growth, and enhance susceptibility to chemotherapeutic agents.

  15. Human erythrocytes and neuroblastoma cells are affected in vitro by Au(III) ions

    SciTech Connect

    Suwalsky, Mario; Gonzalez, Raquel; Villena, Fernando; Aguilar, Luis F.; Sotomayor, Carlos P.; Bolognin, Silvia; Zatta, Paolo

    2010-06-25

    Gold compounds are well known for their neurological and nephrotoxic implications. However, haematological toxicity is one of the most serious toxic and less studied effects. The lack of information on these aspects of Au(III) prompted us to study the structural effects induced on cell membranes, particularly that of human erythrocytes. AuCl{sub 3} was incubated with intact erythrocytes, isolated unsealed human erythrocyte membranes (IUM) and molecular models of the erythrocyte membrane. The latter consisted of multibilayers of dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine, phospholipids classes located in the outer and inner monolayers of the human erythrocyte membrane, respectively. This report presents evidence that Au(III) interacts with red cell membranes as follows: (a) in scanning electron microscopy studies on human erythrocytes it was observed that Au(III) induced shape changes at a concentration as low as 0.01 {mu}M; (b) in isolated unsealed human erythrocyte membranes Au(III) induced a decrease in the molecular dynamics and/or water content at the glycerol backbone level of the lipid bilayer polar groups in a 5-50 {mu}M concentration range, and (c) X-ray diffraction studies showed that Au(III) in the 10 {mu}m-1 mM range induced increasing structural perturbation only to dimyristoylphosphatidylcholine bilayers. Additional experiments were performed in human neuroblastoma cells SH-SY5Y. A statistically significant decrease of cell viability was observed with Au(III) ranging from 0.1 {mu}M to 100 {mu}M.

  16. Seladin-1/DHCR24 protects neuroblastoma cells against Aβ toxicity by increasing membrane cholesterol content

    PubMed Central

    Cecchi, C; Rosati, F; Pensalfini, A; Formigli, L; Nosi, D; Liguri, G; Dichiara, F; Morello, M; Danza, G; Pieraccini, G; Peri, A; Serio, M; Stefani, M

    2008-01-01

    The role of brain cholesterol in Alzheimer's disease (AD) is currently a matter of debate. Experimental evidence suggests that reducing circulating and brain cholesterol protects against AD, however recent data indicate that low membrane cholesterol results in neurode-generation and that the cholesterol synthesis catalyst seladin-1 is down-regulated in AD-affected brain regions. We previously reported a significant correlation between resistance to amyloid toxicity and content of membrane cholesterol in differing cultured cell types. Here we provide evidence that Aβ42 pre-fibrillar aggregates accumulate more slowly and in reduced amount at the plasma membrane of human SH-SY5Y neuroblastoma cells overexpressing seladin-1 or treated with PEG-cholesterol than at the membrane of control cells. The accumulation was significantly increased in cholesterol-depleted cells following treatment with the specific seladin-1 inhibitor 5,22E-cholestadien-3-ol or with methyl-β-cyclodextrin. The resistance to amyloid toxicity and the early cytosolic Ca2+ rise following exposure to Aβ42 aggregates were increased and prevented, respectively, by increasing membrane cholesterol whereas the opposite effects were found in cholesterol-depleted cells. These results suggest that seladin-1-dependent cholesterol synthesis reduces membrane-aggregate interaction and cell damage associated to amyloid-induced imbalance of cytosolic Ca2+. Our findings extend recently reported data indicating that seladin-1 overexpression directly enhances the resistance to Aβ toxicity featuring seladin-1/DHCR 24 as a possible new susceptibility gene for sporadic AD. PMID:18194465

  17. Developing ER Stress Inhibitors for Treating ALS

    DTIC Science & Technology

    2015-11-01

    the benzodiazepinone derivatives to protect SH-SY5Y neuroblastoma cells from thapsigargin (TG) induced cell death (Fig 1.2). Compound EC50 (µM...ability of the newly synthesized benzodiazepinone derivatives to protect SH- SY5Y neuroblastoma cells from thapsigargin (TG) induced cell death

  18. Neuroblastoma patient-derived orthotopic xenografts retain metastatic patterns and geno- and phenotypes of patient tumours.

    PubMed

    Braekeveldt, Noémie; Wigerup, Caroline; Gisselsson, David; Mohlin, Sofie; Merselius, My; Beckman, Siv; Jonson, Tord; Börjesson, Anna; Backman, Torbjörn; Tadeo, Irene; Berbegall, Ana P; Ora, Ingrid; Navarro, Samuel; Noguera, Rosa; Påhlman, Sven; Bexell, Daniel

    2015-03-01

    Neuroblastoma is a childhood tumour with heterogeneous characteristics and children with metastatic disease often have a poor outcome. Here we describe the establishment of neuroblastoma patient-derived xenografts (PDXs) by orthotopic implantation of viably cryopreserved or fresh tumour explants of patients with high risk neuroblastoma into immunodeficient mice. In vivo tumour growth was monitored by magnetic resonance imaging and fluorodeoxyglucose-positron emission tomography. Neuroblastoma PDXs retained the undifferentiated histology and proliferative capacity of their corresponding patient tumours. The PDXs expressed neuroblastoma markers neural cell adhesion molecule, chromogranin A, synaptophysin and tyrosine hydroxylase. Whole genome genotyping array analyses demonstrated that PDXs retained patient-specific chromosomal aberrations such as MYCN amplification, deletion of 1p and gain of chromosome 17q. Thus, neuroblastoma PDXs recapitulate the hallmarks of high-risk neuroblastoma in patients. PDX-derived cells were cultured in serum-free medium where they formed free-floating neurospheres, expressed neuroblastoma gene markers MYCN, CHGA, TH, SYP and NPY, and retained tumour-initiating and metastatic capacity in vivo. PDXs showed much higher degree of infiltrative growth and distant metastasis as compared to neuroblastoma SK-N-BE(2)c cell line-derived orthotopic tumours. Importantly, the PDXs presented with bone marrow involvement, a clinical feature of aggressive neuroblastoma. Thus, neuroblastoma PDXs serve as clinically relevant models for studying and targeting high-risk metastatic neuroblastoma.

  19. What's New in Neuroblastoma Research and Treatment?

    MedlinePlus

    ... Neuroblastoma Research and Treatment? Neuroblastoma About Neuroblastoma What’s New in Neuroblastoma Research and Treatment? Important research into ... cells different from normal cells may lead to new approaches to treating this disease. Newer drugs that ...

  20. Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS

    PubMed Central

    Saintas, Emily; Abrahams, Liam; Ahmad, Gulshan T.; Ajakaiye, Anu-Oluwa M.; AlHumaidi, Abdulaziz S. H. A. M.; Ashmore-Harris, Candice; Clark, Iain; Dura, Usha K.; Fixmer, Carine N.; Ike-Morris, Chinedu; Mato Prado, Mireia; Mccullough, Danielle; Mishra, Shishir; Schöler, Katia M. U.; Timur, Husne; Williamson, Maxwell D. C.; Alatsatianos, Markella; Bahsoun, Basma; Blackburn, Edith; Hogwood, Catherine E.; Lithgow, Pamela E.; Rowe, Michelle; Yiangou, Lyto; Rothweiler, Florian; Cinatl, Jindrich; Zehner, Richard; Baines, Anthony J.; Garrett, Michelle D.; Gourlay, Campbell W.; Griffin, Darren K.; Gullick, William J.; Hargreaves, Emma; Howard, Mark J.; Lloyd, Daniel R.; Rossman, Jeremy S.; Smales, C. Mark; Tsaousis, Anastasios D.; von der Haar, Tobias; Wass, Mark N.

    2017-01-01

    The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin. PMID:28192521

  1. Acquired resistance to oxaliplatin is not directly associated with increased resistance to DNA damage in SK-N-ASrOXALI4000, a newly established oxaliplatin-resistant sub-line of the neuroblastoma cell line SK-N-AS.

    PubMed

    Saintas, Emily; Abrahams, Liam; Ahmad, Gulshan T; Ajakaiye, Anu-Oluwa M; AlHumaidi, Abdulaziz S H A M; Ashmore-Harris, Candice; Clark, Iain; Dura, Usha K; Fixmer, Carine N; Ike-Morris, Chinedu; Mato Prado, Mireia; Mccullough, Danielle; Mishra, Shishir; Schöler, Katia M U; Timur, Husne; Williamson, Maxwell D C; Alatsatianos, Markella; Bahsoun, Basma; Blackburn, Edith; Hogwood, Catherine E; Lithgow, Pamela E; Rowe, Michelle; Yiangou, Lyto; Rothweiler, Florian; Cinatl, Jindrich; Zehner, Richard; Baines, Anthony J; Garrett, Michelle D; Gourlay, Campbell W; Griffin, Darren K; Gullick, William J; Hargreaves, Emma; Howard, Mark J; Lloyd, Daniel R; Rossman, Jeremy S; Smales, C Mark; Tsaousis, Anastasios D; von der Haar, Tobias; Wass, Mark N; Michaelis, Martin

    2017-01-01

    The formation of acquired drug resistance is a major reason for the failure of anti-cancer therapies after initial response. Here, we introduce a novel model of acquired oxaliplatin resistance, a sub-line of the non-MYCN-amplified neuroblastoma cell line SK-N-AS that was adapted to growth in the presence of 4000 ng/mL oxaliplatin (SK-N-ASrOXALI4000). SK-N-ASrOXALI4000 cells displayed enhanced chromosomal aberrations compared to SK-N-AS, as indicated by 24-chromosome fluorescence in situ hybridisation. Moreover, SK-N-ASrOXALI4000 cells were resistant not only to oxaliplatin but also to the two other commonly used anti-cancer platinum agents cisplatin and carboplatin. SK-N-ASrOXALI4000 cells exhibited a stable resistance phenotype that was not affected by culturing the cells for 10 weeks in the absence of oxaliplatin. Interestingly, SK-N-ASrOXALI4000 cells showed no cross resistance to gemcitabine and increased sensitivity to doxorubicin and UVC radiation, alternative treatments that like platinum drugs target DNA integrity. Notably, UVC-induced DNA damage is thought to be predominantly repaired by nucleotide excision repair and nucleotide excision repair has been described as the main oxaliplatin-induced DNA damage repair system. SK-N-ASrOXALI4000 cells were also more sensitive to lysis by influenza A virus, a candidate for oncolytic therapy, than SK-N-AS cells. In conclusion, we introduce a novel oxaliplatin resistance model. The oxaliplatin resistance mechanisms in SK-N-ASrOXALI4000 cells appear to be complex and not to directly depend on enhanced DNA repair capacity. Models of oxaliplatin resistance are of particular relevance since research on platinum drugs has so far predominantly focused on cisplatin and carboplatin.

  2. Neuroprotective Ganglioside Derivatives

    DTIC Science & Technology

    2006-09-01

    determined to have therapeutic potential were to be tested in vitro for their ability to cross a brain capillary endothelial cell culture model of...the BBB. Finally, derivatives that were both cytoprotective and that effectively crossed the in vitro BBB model were to be tested in vivo for their...phenylpyridinium (MPP+) and the SH-SY5Y human neuroblastoma cell line. Derivatives determined to have therapeutic potential are tested in vitro for their

  3. A Preliminary Investigation into the Impact of a Pesticide Combination on Human Neuronal and Glial Cell Lines In Vitro

    PubMed Central

    Coleman, Michael D.; O'Neil, John D.; Woehrling, Elizabeth K.; Ndunge, Oscar Bate Akide; Hill, Eric J.; Menache, Andre; Reiss, Claude J.

    2012-01-01

    Many pesticides are used increasingly in combinations during crop protection and their stability ensures the presence of such combinations in foodstuffs. The effects of three fungicides, pyrimethanil, cyprodinil and fludioxonil, were investigated together and separately on U251 and SH-SY5Y cells, which can be representative of human CNS glial and neuronal cells respectively. Over 48h, all three agents showed significant reductions in cellular ATP, at concentrations that were more than tenfold lower than those which significantly impaired cellular viability. The effects on energy metabolism were reflected in their marked toxic effects on mitochondrial membrane potential. In addition, evidence of oxidative stress was seen in terms of a fall in cellular thiols coupled with increases in the expression of enzymes associated with reactive species formation, such as GSH peroxidase and superoxide dismutase. The glial cell line showed significant responsiveness to the toxin challenge in terms of changes in antioxidant gene expression, although the neuronal SH-SY5Y line exhibited greater vulnerability to toxicity, which was reflected in significant increases in caspase-3 expression, which is indicative of the initiation of apoptosis. Cyprodinil was the most toxic agent individually, although oxidative stress-related enzyme gene expression increases appeared to demonstrate some degree of synergy in the presence of the combination of agents. This report suggests that the impact of some pesticides, both individually and in combinations, merits further study in terms of their impact on human cellular health. PMID:22880100

  4. Drugs Approved for Neuroblastoma

    Cancer.gov

    This page lists cancer drugs approved by the Food and Drug Administration (FDA) for neuroblastoma. The list includes generic names and brand names. The drug names link to NCI's Cancer Drug Information summaries.

  5. Immune Therapies for Neuroblastoma

    PubMed Central

    Navid, Fariba; Armstrong, Michael; Barfield, Raymond C.

    2009-01-01

    Neuroblastoma, a solid tumor arising from developing cells of the sympathetic nervous system, is the most common extracranial tumor in children. The prognosis for high-risk neuroblastoma remains poor with conventional treatment, and new approaches are therefore being explored to treat this disease. One such alternative therapy that holds promise is immune therapy. We review here the recent advances in 4 types of immune therapy – cytokine, vaccine, antibody, and cellular therapy – to treat neuroblastoma. We present preclinical research and clinical trials on several promising candidates such as IL-12, dendritic cell vaccines, anti-GD2 antibodies, and allogeneic hematopoietic stem cell transplant. An optimal treatment plan for neuroblastoma will most likely involve multimodal approaches and combinations of immune therapies. PMID:19342881

  6. UBE4B Levels Are Correlated with Clinical Outcomes in Neuroblastoma Patients and with Altered Neuroblastoma Cell Proliferation and Sensitivity to EGFR Inhibitors

    PubMed Central

    Zage, Peter E.; Sirisaengtaksin, Natalie; Liu, Yin; Gireud, Monica; Brown, Brandon S.; Palla, Shana; Richards, Kristen N.; Hughes, Dennis P.M.; Bean, Andrew J.

    2012-01-01

    Background The UBE4B gene, located on chromosome 1p36, encodes a ubiquitin ligase that interacts with Hrs, a protein involved in EGFR trafficking, suggesting a link between EGFR trafficking and neuroblastoma pathogenesis. We have analyzed the roles of UBE4B in the outcomes of neuroblastoma patients and in neuroblastoma tumor cell proliferation, EGFR trafficking, and response to EGFR inhibition. Methods We examined the association of UBE4B expression with neuroblastoma patient survival using available microarray datasets. We measured UBE4B and EGFR protein levels in patient tumor samples and EGFR degradation rates in neuroblastoma cell lines and analyzed the effects of UBE4B on neuroblastoma tumor cell growth. The effects of the EGFR inhibitor cetuximab were examined in neuroblastoma cells expressing wild-type and mutant UBE4B. Results Low UBE4B gene expression is associated with poor outcomes in patients with neuroblastoma. UBE4B overexpression reduced neuroblastoma tumor cell proliferation, and UBE4B expression was inversely related to EGFR expression in patient tumor samples. EGFR degradation rates correlated with cellular UBE4B levels. Enhanced expression of catalytically active UBE4B resulted in reduced sensitivity to EGFR inhibition. Conclusions We have demonstrated associations between UBE4B expression and neuroblastoma patient outcomes and between UBE4B and EGFR expression in neuroblastoma tumor samples. Moreover, levels of UBE4B influenced neuroblastoma tumor cell proliferation, EGFR degradation, and response to EGFR inhibition. These results suggest UBE4B-mediated GFR trafficking may contribute to the poor prognosis of neuroblastoma tumors with 1p36 deletions, and that UBE4B expression may be a marker that can predict responses of neuroblastoma tumors to treatment. PMID:22990745

  7. Neuronal effects of 4-t-Butylcatechol: A model for catechol-containing antioxidants

    SciTech Connect

    Lo, Y.-C. Liu Yuxin; Lin, Y.-C.; Shih, Y.-T.; Liu, C.-M.; Burka, Leo T.

    2008-04-15

    Many herbal medicines and dietary supplements sold as aids to improve memory or treat neurodegenerative diseases or have other favorable effects on the CNS contain a catechol or similar 1,2-dihydroxy aromatic moiety in their structure. As an approach to isolate and examine the neuroprotective properties of catechols, a simple catechol 4-t-Butylcatechol (TBC) has been used as a model. In this study, we investigated the effects of TBC on lipopolysaccharide (LPS)-activated microglial-induced neurotoxicity by using the in vitro model of coculture murine microglial-like cell line HAPI with the neuronal-like human neuroblastoma cell line SH-SY5Y. We also examined the effects of TBC on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in human dopaminergic neuroblastoma SH-SY5Y cells. TBC at concentrations from 0.1-10 {mu}M had no toxic effect on HAPI cells and SH-SY5Y cells, and it inhibited LPS (100 ng/ml)-induced increases of superoxide, intracellular ROS, gp91{sup Phox}, iNOS and a decrease of HO-1 in HAPI cells. Under coculture condition, TBC significantly reduced LPS-activated microglia-induced dopaminergic SH-SY5Y cells death. Moreover, TBC (0.1-10 {mu}M) inhibited 6-OHDA-induced increases of intracellular ROS, iNOS, nNOS, and a decrease of mitochondria membrane potential, and cell death in SH-SY5Y cells. However, the neurotoxic effects of TBC (100 {mu}M) on SH-SY5Y cells were also observed including the decrease in mitochondria membrane potential and the increase in COX-2 expression and cell death. TBC-induced SH-SY5Y cell death was attenuated by pretreatment with NS-398, a selective COX-2 inhibitor. In conclusion, this study suggests that TBC might possess protective effects on inflammation- and oxidative stress-related neurodegenerative disorders. However, the high concentration of TBC might be toxic, at least in part, for increasing COX-2 expression.

  8. Gonadotropin-releasing hormone modulates cholesterol synthesis and steroidogenesis in SH-SY5Y cells.

    PubMed

    Rosati, Fabiana; Sturli, Niccolò; Cungi, Maria Chiara; Morello, Matteo; Villanelli, Fabio; Bartolucci, Gianluca; Finocchi, Claudia; Peri, Alessandro; Serio, Mario; Danza, Giovanna

    2011-04-01

    Neurosteroids are involved in Central Nervous System development, brain functionality and neuroprotection but little is known about regulators of their biosynthesis. Recently gonadotropins, Gonadotropin-releasing Hormone (GnRH) and their receptors have been localized in different brain regions, such as hippocampus and cortex. Using human neuronal-like cells we found that GnRH up-regulates the expression of key genes of cholesterol and steroid synthesis when used in a narrow range around 1.0 nM. The expression of Hydroxysterol D24-reductase (seladin-1/DHCR24), that catalyzes the last step of cholesterol biosynthesis, is increased by 50% after 90 min of incubation with GnRH. StAR protein and P450 side chain cleavage (P450scc) are up-regulated by 3.3 times after 90 min and by 3.5 times after 3 h, respectively. GnRH action is mediated by LH and 1.0 nM GnRH enhances the expression of LHβ as well. A two fold increase of cell cholesterol is induced after 90 min of GnRH incubation and 17β-estradiol (E2) production is increased after 24, 48 and 72 h. These data indicate for the first time that GnRH regulates both cholesterol and steroid biosynthesis in human neuronal-like cells and suggest a new physiological role for GnRH in the brain.

  9. Cannabidiol Exposure During Neuronal Differentiation Sensitizes Cells Against Redox-Active Neurotoxins.

    PubMed

    Schönhofen, Patrícia; de Medeiros, Liana M; Bristot, Ivi Juliana; Lopes, Fernanda M; De Bastiani, Marco A; Kapczinski, Flávio; Crippa, José Alexandre S; Castro, Mauro Antônio A; Parsons, Richard B; Klamt, Fábio

    2015-08-01

    Cannabidiol (CBD), one of the most abundant Cannabis sativa-derived compounds, has been implicated with neuroprotective effect in several human pathologies. Until now, no undesired side effects have been associated with CBD. In this study, we evaluated CBD's neuroprotective effect in terminal differentiation (mature) and during neuronal di