Science.gov

Sample records for linhagens celulares mrc-5

  1. Investigation of the bystander effect in MRC5 cells after acute and fractionated irradiation in vitro.

    PubMed

    Soleymanifard, Shokouhozaman; Toossi, Mohammad Taghi Bahreyni; Samani, Roghayeh Kamran; Mohebbi, Shokoufeh

    2014-04-01

    Radiation-induced bystander effect (RIBE) has been defined as radiation responses observed in nonirradiated cells. It has been the focus of investigators worldwide due to the deleterious effects it induces in nonirradiated cells. The present study was performed to investigate whether acute or fractionated irradiation will evoke a differential bystander response in MRC5 cells. A normal human cell line (MRC5), and a human lung tumor cell line (QU-DB) were exposed to 0, 1, 2, and 4Gy of single acute or fractionated irradiation of equal fractions with a gap of 6 h. The MRC5 cells were supplemented with the media of irradiated cells and their micronucleus frequency was determined. The micronucleus frequency after single and fractionated irradiation did not vary significantly in the MRC5 cells conditioned with autologous or QU-DB cell-irradiated media, except for 4Gy where the frequency of micronucleated cells was lower in those MRC5 cells cultured in the media of QU-DB-exposed with a single dose of 4Gy. Our study demonstrates that the radiation-induced bystander effect was almost similar after single acute and fractionated exposure in MRC5 cells.

  2. Isolation of influenza virus in human lung embryonated fibroblast cells (MRC-5) from clinical samples.

    PubMed Central

    de Oña, M; Melón, S; de la Iglesia, P; Hidalgo, F; Verdugo, A F

    1995-01-01

    Ninety-four pharyngeal swab samples corresponding to 94 patients with suspected influenza virus infection were inoculated in Madin-Darby canine kidney (MDCK) cells, the conventional cell system for the isolation of influenza virus, and in fibroblastic human embryo lung (MRC-5) cells, a cell system less commonly used for this purpose but one frequently used in clinical virology laboratories. Both cell preparations were treated with trypsin. Influenza virus was recovered from 15% of the samples inoculated in MDCK cells and from 18% of those inoculated in MRC-5 cells. The use of MRC-5 cells can simplify the search for respiratory viruses and would assist in the rapid detection of influenza virus during new epidemics. PMID:7665680

  3. Automobile exhaust particle-induced apoptosis and necrosis in MRC-5 cells.

    PubMed

    Zhao, X H; Wang, X L; Li, X Y

    2001-05-31

    To study the effect of particulate extracts (PE) collected from a heavy traffic road in Lanzhou City, on MRC-5 cell apoptosis, and to explore the toxicity action of PE and its mechanism. Cultured MRC-5 cells were incubated in the extracts of different concentrations. Inhibition of proliferation was measured with a colorimetric 3-[4,5-dimethyl thiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay. Morphological assessment of apoptosis was performed with fluorescence microscopy and electronic microscopy. Extracted DNA from the cells was electrophoresed on agarose gel in order to observe DNA fragmentation. The amount of apoptotic cells was measured by flow cytometry. The results indicated that exposure of exponentially growing MRC-5 cells exposed to PE 5-160 microg l(-1) for 24-96 h resulted in dose- and time-dependent reduction of survival of MRC-5 cells. After treatment with PE, markedly morphological changes of MRC-5 cells including "apoptotic bodies", were observed with a fluorescence microscope. Agarose gel electrophoresis of DNA from the cells treated with PE for 48 and 72 h revealed a "ladder" pattern. PE induced apoptosis in low doses but necrosis in high doses. Apoptotic rates were 12.95, 17.40 and 29.80% after treatment with PE 5, 10, and 20 microg l(-1), respectively. A typical sub-diploid apoptosis peak was demonstrated in MRC-5 cells treated with PE. A significant dose-effect response and time-effect correlation could be found between apoptosis rates and PE. All results confirmed that the PE could induce and accelerate apoptosis in low doses but necrosis in high doses.

  4. Paeonol attenuates aging MRC-5 cells and inhibits epithelial-mesenchymal transition of premalignant HaCaT cells induced by aging MRC-5 cell-conditioned medium.

    PubMed

    Yang, Lihua; Xing, Shangping; Wang, Kun; Yi, Hua; Du, Biaoyan

    2017-08-12

    Senescence-associated secretory phenotype (SASP) factors, such as IL-6 and IL-8, are extremely critical in tissue microenvironment. Senescent human fibroblasts facilitate epithelial-mesenchymal transition (EMT) in premalignant epithelial cells mainly through the secretion of SASP factors. Meanwhile, premalignant human HaCaT Keratinocyte (HaCaT) cells as immortal epithelial cells are susceptible to malignant transformation. Paeonol, an herbal phenolic component found in peonies, exerts anti-aging and anti-tumor efficacies, while the molecular mechanisms of paeonol on EMT in premalignant HaCaT cells induced by SASP factors are unclear. In this study, we first established a senescent human fetal lung fibroblast MRC-5 cell model using hydrogen peroxide evaluated by senescence-associated β-galactosidase assay. Upon paeonol treatment, intracellular reactive oxygen species levels in aging MRC-5 cells were significantly decreased via regulation of nuclear translocation of Nrf2. Then we curiously studied whether the aging MRC-5 cell-conditioned medium could induce EMT in premalignant HaCaT cells, and the results showed that paeonol significantly reduced the clonogenic, migratory, and invasive capacities of premalignant HaCaT cells potentially induced by IL-6 and IL-8. Moreover, we found that paeonol notably altered pluripotency of EMT-associated markers via the modulation of ERK and TGF-β1/Smad pathway in premalignant HaCaT cells. These findings suggest that paeonol may be used as an adjuvant therapy for SASP factor-mediated EMT in premalignant lesion.

  5. High Genetic Stability of Dengue Virus Propagated in MRC-5 Cells as Compared to the Virus Propagated in Vero Cells

    PubMed Central

    Butler, Michael; Wu, Suh-Chin

    2008-01-01

    This work investigated the replication kinetics of the four dengue virus serotypes (DEN-1 to DEN-4), including dengue virus type 4 (DEN-4) recovered from an infectious cDNA clone, in Vero cells and in MRC-5 cells grown on Cytodex 1 microcarriers. DEN-1 strain Hawaii, DEN-2 strain NGC, DEN-3 strain H-87, and DEN-4 strain H-241 , and DEN-4 strain 814669 derived from cloned DNA, were used to infect Vero cells and MRC-5 cells grown in serum-free or serum-containing microcarrier cultures. Serum-free and serum-containing cultures were found to yield comparable titers of these viruses. The cloned DNA-derived DEN-4 started genetically more homogeneous was used to investigate the genetic stability of the virus propagated in Vero cells and MRC-5 cells. Sequence analysis revealed that the DEN-4 propagated in MRC-5 cells maintained a high genetic stability, compared to the virus propagated in Vero cells. Amino acid substitutions of Gly104Cys and Phe108Ile were detected at 70%, 60%, respectively, in the envelope (E) protein of DEN-4 propagated in Vero cells, whereas a single mutation of Glu345Lys was detected at 50% in E of the virus propagated in MRC-5 cells. Sequencing of multiple clones of three separate DNA fragments spanning 40% of the genome also indicated that DEN-4 propagated in Vero cells contained a higher number of mutations than the virus growing in MRC-5 cells. Although Vero cells yielded a peak virus titer approximately 1 to 17 folds higher than MRC-5 cells, cloned DEN-4 from MRC-5 cells maintained a greater stability than the virus from Vero cells. Serum-free microcarrier cultures of MRC-5 cells offer a potentially valuable system for the large-scale production of live-attenuated DEN vaccines. PMID:18350148

  6. Chronic Resveratrol Treatment Inhibits MRC5 Fibroblast SASP-Related Protumoral Effects on Melanoma Cells.

    PubMed

    Menicacci, Beatrice; Laurenzana, Anna; Chillà, Anastasia; Margheri, Francesca; Peppicelli, Silvia; Tanganelli, Elisabetta; Fibbi, Gabriella; Giovannelli, Lisa; Del Rosso, Mario; Mocali, Alessandra

    2017-09-01

    Cellular senescence is related to organismal aging and is observed after DNA damaging cancer therapies, that induce tumor-suppressive modifications, but it is characterized by a strong increase in secreted factors, termed the "senescence-associated secretory phenotype" (SASP). Particularly, SASP from stroma senescent fibroblasts creates a cancer-favoring microenvironment, providing targets for anti-cancer interventions. In the present article, chronic treatment (5 weeks) with 5 µM resveratrol has been used to modulate senescence-related protumoral features of MRC5 fibroblasts, reducing SASP-related interleukins IL1α, IL1β, IL6, and IL8; transforming-growth-factor-β (TGFβ); matrix metallo-proteinases MMP3 and MMP2; urokinase plasminogen activator (uPA); receptor proteins uPAR, IL6R, insulin growth factor receptor-1 (IGF-1R), TGFβ-R2, and CXCR4. The cellular nuclear-factor-kB (NF-kB) protein level was also reduced, confirming its role in the induction of SASP. Resveratrol pretreated MRC5 fibroblasts were resistant to activation by TGFβ. Resveratrol treatment of senescent MRC5 induced the production of conditioned media (CM) which counteracted the protumoral effect of senescent CM on A375 and A375-M6 melanoma cell proliferation and invasiveness, and reduced the expression of epithelial-to-mesenchymal transition markers related to malignant features. This experimental approach proposes a treatment that targets the senescent stromal cell phenotype to induce an anti-tumor hosting microenvironment, which is suitable for both preventive and therapeutic purposes. © The Author 2017. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Silica Nanoparticles Induce Oxidative Stress and Autophagy but Not Apoptosis in the MRC-5 Cell Line

    PubMed Central

    Petrache Voicu, Sorina Nicoleta; Dinu, Diana; Sima, Cornelia; Hermenean, Anca; Ardelean, Aurel; Codrici, Elena; Stan, Miruna Silvia; Zărnescu, Otilia; Dinischiotu, Anca

    2015-01-01

    This study evaluated the in vitro effects of 62.5 µg/mL silica nanoparticles (SiO2 NPs) on MRC-5 human lung fibroblast cells for 24, 48 and 72 h. The nanoparticles’ morphology, composition, and structure were investigated using high resolution transmission electron microscopy, selected area electron diffraction and X-ray diffraction. Our study showed a decreased cell viability and the induction of cellular oxidative stress as evidenced by an increased level of reactive oxygen species (ROS), carbonyl groups, and advanced oxidation protein products after 24, 48, and 72 h, as well as a decreased concentration of glutathione (GSH) and protein sulfhydryl groups. The protein expression of Hsp27, Hsp60, and Hsp90 decreased at all time intervals, while the level of protein Hsp70 remained unchanged during the exposure. Similarly, the expression of p53, MDM2 and Bcl-2 was significantly decreased for all time intervals, while the expression of Bax, a marker for apoptosis, was insignificantly downregulated. These results correlated with the increase of pro-caspase 3 expression. The role of autophagy in cellular response to SiO2 NPs was demonstrated by a fluorescence-labeled method and by an increased level of LC3-II/LC3-I ratio. Taken together, our data suggested that SiO2 NPs induced ROS-mediated autophagy in MRC-5 cells as a possible mechanism of cell survival. PMID:26690408

  8. Evaluation of novel biodegradable cyclic carbonate polyester copolymers for cytocompatibility using MRC-5 cells.

    PubMed

    Longino, J; Mullen, B; Benghuzzi, H; Tucci, M; Tang, C; Storey, R; Puckett, A

    2003-01-01

    The objective of this work was to synthesize and characterize a novel series of biodegradable cyclic carbonate polyester copolymers based on lactide and 5-methyl-5-benzyloxy-carbonyl-1,3-dioxan-2-one (MBC). Two compositions were selected for characterization. One copolymer was based on a racemic mixture of 1-lactide with 15.4 mole % MBC and the other was based on 1-lactide with 8.2 mole % MBC. These polymers contain carboxylic acid moieties along the backbone that may be used for tethering bioactive agents, forming ionic crosslinks or be reacted with vinyl containing monomers to allow free radical crosslinking. The initial materials evaluated have the carboxylic acid functionalities blocked with benzene. These polymers and the de-blocked versions may have potential applications for hard and soft tissue scaffolds, control drug delivery matrixes or a variety of other applications in medicine. The copolymer samples were pressed into 7.0-mm diameter disk using a KBr press. The disks were then sterilized using U.V radiation under a laminar flow hood. After sterilization, the copolymer disks were submerged in 2 ml of media and placed in a CO2 regulated incubator at 37 degrees C. A total of six groups per phase (n = 7 test tubes per group) were used in this study. Test tubes in groups I and III were plated with MRC-5 and subsequently treated with media alone (controls). Test tubes in groups II and IV were plated with MRC-5 and subsequently treated with media before being introduced to copolymer samples. Cell number, as well as, biochemical markers such as protein and malondialdehyde (MDA) were determined at the end of the 24, 48 and 72-hour time periods. Representative test tubes were subjected to an H&E staining procedure for microscopic morphological evaluation. The results of this evaluation suggest that the exposure of both copolymers produced a non-cytotoxic environment with the MRC-5 cell line. Although both copolymers are non-cytotoxic, the sample having the higher

  9. Isolation of eastern equine encephalitis virus in A549 and MRC-5 cell cultures.

    PubMed

    Sotomayor, E A; Josephson, S L

    1999-07-01

    Eastern equine encephalitis (EEE) has been diagnosed either serologically or by virus isolation. Until now, the recovery of EEE virus has been delegated to reference laboratories with the expertise and resources needed to amplify the virus in a susceptible vertebrate host and/or to isolate and identify the virus in cell culture. We report a case in which EEE virus was recovered directly from a patient's cerebrospinal fluid in A549 and MRC-5 cell cultures. Many clinical virology laboratories routinely use these cells to recover adenovirus, herpes simplex virus, and enterovirus. To the best of our knowledge, this is the first report of isolation of EEE virus in A549 cell culture. This report demonstrates the possibility of recovery of EEE virus in cell culture without the necessity of bioamplification or maintaining unusual cell lines.

  10. Inhibition of connective tissue growth factor attenuates paraquat-induced lung fibrosis in a human MRC-5 cell line.

    PubMed

    Huang, Min; Yang, Huifang; Zhu, Lingqin; Li, Honghui; Zhou, Jian; Zhou, Zhijun

    2016-11-01

    Chronic exposure to Paraquat (PQ) may result in progressive pulmonary fibrosis and subsequent chronic obstructive pulmonary malfunction. Connective tissue growth factor (CTGF) has been proposed as a key determinant in the development of lung fibrosis. We investigated thus whether knock down of CTGF can prevent human lung fibroblasts (MRC-5) activation and proliferation with the subsequent inhibition of PQ-induced fibrosis. MRC-5 was transfected with CTGF-siRNAs and exposed to different concentrations of PQ. The siRNA-silencing efficacy was evaluated using western blotting analyses, qRT-PCR and flow cytometry. Next, the viability and migration of MRC-5 was determined. MMP-2, MMP-9, and TIMP-1 accumulation were quantified to evaluate the lung fibrosis exposure to PQ. Over expression of CTGF mRNA was observed in human MRC-5 cell as early as 6 h following PQ stimulation. CTGF gene expression in MRC-5 cells was substantially reduced by RNAi, which significantly suppressed the expression of the lung fibrosis markers such as tissue inhibitor of metalloproteinase-2 (TIMP-2), Matrix metalloproteinase-2 (MMP-2) and Matrix metalloproteinase-9 (MMP-9) that were stimulated by PQ. Inhibition of CTGF expression suppressed impeded the proliferation and migration ability of MRC-5 cells and resulted in cell-extracellular matrix (ECM) protein accumulation in cells. Our results suggest that CTGF promoted the development of PQ-induced lung fibrosis in collaboration with transforming growth factor β1 (TGFβ1). Furthermore, the observed arresting effects of CTGF knock down during this process suggested that CTGF is the potential target site for preventing PQ-induced pulmonary fibrosis. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1620-1626, 2016.

  11. Role of protein kinase C-η in cigarette smoke extract-induced apoptosis in MRC-5-cells.

    PubMed

    Son, E S; Kyung, S Y; Lee, S P; Jeong, S H; Shin, J Y; Ohba, M; Yeo, E J; Park, J W

    2015-09-01

    Cigarette smoke (CS) is a major risk factor for emphysema, which causes cell death in structural cells of the lung by mechanisms that are still not completely understood. We demonstrated previously that CS extract (CSE) induces caspase activation in MRC-5 human lung fibroblasts, activated protein kinase C-η (PKC-η), and translocated PKC-η from the cytosol to the membrane. The objective of this study was to investigate the involvement of PKC-η activation in a CSE-induced extrinsic apoptotic pathway. We determined that CSE increases expression of caspase 3 and 8 cleavage in MRC-5 cells and overexpression of PKC-η significantly increased expression of caspase 3 and 8 cleavage compared with control LacZ-infected cells. In contrast, dominant negative (dn) PKC-η inhibited apoptosis in MRC-5 cells exposed to CSE and decreased expression of caspase 3 and 8 compared with control cells. Exposure to 10% CSE for >8 h significantly increased lactate dehydrogenase release in PKC-η-infected cells compared with LacZ-infected cells. Additionally, PKC-η-infected cells had an increased number of Hoechst 33342 stained nuclei compared with LacZ-infected cells, while dn PKC-η-infected cells exhibited fewer morphological changes than LacZ-infected cells under phase-contrast microscopy. In conclusion, PKC-η activation plays a pro-apoptotic role in CSE-induced extrinsic apoptotic pathway in MRC-5 cells. These results suggest that modulation of PKC-η may be a useful tool for regulating the extrinsic apoptosis of MRC-5 cells by CSE and may have therapeutic potential in the treatment of CS-induced lung injury.

  12. MRC5 and QU-DB bystander cells can produce bystander factors and induce radiation bystander effect.

    PubMed

    Toossi, Mohammad Taghi Bahreyni; Mohebbi, Shokoufeh; Samani, Roghayeh Kamran; Soleymanifard, Shokouhozaman

    2014-07-01

    Radiation damages initiated by radiation-induced bystander effect (RIBE) are not limited to the first or immediate neighbors of the irradiated cells, but the effects have been observed in the cells far from the irradiation site. It has been postulated that bystander cells, by producing bystander factors, are actively involved in the propagation of bystander effect in the regions beyond the initial irradiated site. Current study was planned to test the hypothesis. MRC5 and QU-DB cell lines were irradiated, and successive medium transfer technique was performed to induce bystander effects in two bystander cell groups. Conditioned medium extracted from the target cells was transferred to the bystander cells (first bystander cells). After one hour, conditioned medium was substituted by fresh medium. Two hours later, the fresh medium was transferred to a second group of non-irradiated cells (second bystander cells). Micronucleated cells (MC) were counted to quantify damages induced in the first and second bystander cell groups. Radiation effect was observed in the second bystander cells as well as in the first ones. Statistical analyses revealed that the number of MC in second bystander subgroups was significantly more than the corresponding value observed in control groups, but in most cases it was equal to the number of MC observed in the first bystander cells. MRC5 and QU-DB bystander cells can produce and release bystander signals in the culture medium and affect non-irradiated cells. Therefore, they may contribute to the RIBE propagation.

  13. MRC5 and QU-DB bystander cells can produce bystander factors and induce radiation bystander effect

    PubMed Central

    Toossi, Mohammad Taghi Bahreyni; Mohebbi, Shokoufeh; Samani, Roghayeh Kamran; Soleymanifard, Shokouhozaman

    2014-01-01

    Radiation damages initiated by radiation-induced bystander effect (RIBE) are not limited to the first or immediate neighbors of the irradiated cells, but the effects have been observed in the cells far from the irradiation site. It has been postulated that bystander cells, by producing bystander factors, are actively involved in the propagation of bystander effect in the regions beyond the initial irradiated site. Current study was planned to test the hypothesis. MRC5 and QU-DB cell lines were irradiated, and successive medium transfer technique was performed to induce bystander effects in two bystander cell groups. Conditioned medium extracted from the target cells was transferred to the bystander cells (first bystander cells). After one hour, conditioned medium was substituted by fresh medium. Two hours later, the fresh medium was transferred to a second group of non-irradiated cells (second bystander cells). Micronucleated cells (MC) were counted to quantify damages induced in the first and second bystander cell groups. Radiation effect was observed in the second bystander cells as well as in the first ones. Statistical analyses revealed that the number of MC in second bystander subgroups was significantly more than the corresponding value observed in control groups, but in most cases it was equal to the number of MC observed in the first bystander cells. MRC5 and QU-DB bystander cells can produce and release bystander signals in the culture medium and affect non-irradiated cells. Therefore, they may contribute to the RIBE propagation. PMID:25190998

  14. Halomethane-induced cytotoxicity and cell proliferation in human lung MRC-5 fibroblasts and NL20-TA epithelial cells.

    PubMed

    Nájera-Martínez, Minerva; García-Latorre, Ethel A; Reyes-Maldonado, Elba; Domínguez-López, M Lilia; Vega-López, Armando

    2012-09-01

    Halomethanes (HMs) can be formed during the chlorination process to obtain drinking water. In liver cells, HMs had been shown to be mutagenic and carcinogenic; however, their bioactivation by CYP 2E1 and GSTT1 is required. Although inhalation is the most common pathway of exposure, reports on the toxic effects induced by HMs in human lung are contradictory. The aim of this study was therefore to evaluate in vitro cytotoxicity and cell proliferation induced by CH(2)Cl(2), CHCl(3) and BrCHCl(2) in human lung NL20-TA epithelial cells and MRC-5 fibroblasts, and their relationship with CYP 2E1 and GSTT1 activity. High concentrations of these HMs induced cytotoxicity, particularly in cells treated with BrCHCl(2). Low concentrations of BrCHCl(2) stimulated hyperproliferation of fibroblasts, the most probable consequence of which is regenerative proliferation related to collagen induction. Fibroblasts exposed to BrCHCl(2) exhibited low levels of CYP 2E1 activity suggesting that released bromine is able to alter this activity by affecting the active site or auto regulating the activity itself. GSTT1 was up to ten times more active than CYP 2E1 in both cell lines, indicating that potential lung damage is due to formation of pro-carcinogens such as formaldehyde.

  15. Extracellular Caspase-8 Dependent Apoptosis on HeLa Cancer Cells and MRC-5 Normal Cells by ICD-85 (Venom Derived Peptides)

    PubMed Central

    Zare-Mirakabadi, Abbas; Sarzaeem, Ali

    2012-01-01

    Background Our previous studies revealed an inhibitory effect of ICD-85 (venom derived peptides) on MDA-MB231 and HL-60 cell lines, through induction of apoptosis. The purpose of this study was to investigate apoptosis-induced mechanism on HeLa and MRC-5 cells by ICD-85 through activation of caspase-8. Methods Cell viability, cytosolic enzyme Lactate Dehydrogenase (LDH) and cell morphology were assessed under unexposed and ICD-85 exposed conditions.Caspase-8 activity was assayed by caspase-8 colorimetric assay Kit. Results The results show that Inhibitory Concentration 50% (IC50) value of ICD-85 for HeLa cells at 24 h was estimated and found to be 25.32±2.15 µg/mL. Furthermore, treatment of HeLa cells with ICD-85 at concentrations of 1.6×10 and 2.6×10 µg/mL did not significantly increase LDH release. Morphological changes in HeLa cells on treatment with ICD-85 compared with untreated HeLa cells consistent with an apoptotic mechanism of cell death, such as cell shrinkage which finally results in the generation of apoptotic bodies. However, when MRC-5 cells were exposed to ICD-85, no significant changes in cell morphology and LDH were observed at concentrations below 2.6×10µg/ml. Also, the apoptosis-induction mechanism by ICD-85 on HeLa cells was found through activation of caspase-8 and the activity of caspase-8 in HeLa cells was 1.5 folds more than its activity on MRC-5 cells. Conclusion Therefore, the apoptosis-induced mechanisms by ICD-85 are through activation of caspase-8 and concerning the least cytotoxic effect on MRC-5 cells, ICD-85 may be used as anticancer compound to inhibit growth of cancer cells. PMID:25352970

  16. Dengue Type Four Viruses with E-Glu345Lys Adaptive Mutation from MRC-5 Cells Induce Low Viremia but Elicit Potent Neutralizing Antibodies in Rhesus Monkeys

    PubMed Central

    Li, Xiao-Feng; Tsai, Meng-Ju; Hsiao, Hung-Ju; Peng, Jia-Guan; Sue, Shih-Che; Qin, Cheng-Feng; Wu, Suh-Chin

    2014-01-01

    Knowledge of virulence and immunogenicity is important for development of live-attenuated dengue vaccines. We previously reported that an infectious clone-derived dengue type 4 virus (DENV-4) passaged in MRC-5 cells acquired a Glu345Lys (E-E345K) substitution in the E protein domain III (E-DIII). The same cloned DENV-4 was found to yield a single E-Glu327Gly (E-E327G) mutation after passage in FRhL cells and cause the loss of immunogenicity in rhesus monkeys. Here, we used site-directed mutagenesis to generate the E-E345K and E-E327G mutants from DENV-4 and DENV-4Δ30 infectious clones and propagated in Vero or MRC-5 cells. The E-E345K mutations were consistently presented in viruses recovered from MRC-5 cells, but not Vero cells. Recombinant E-DIII proteins of E345K and E327G increased heparin binding correlated with the reduced infectivity by heparin treatment in cell cultures. Different from the E-E327G mutant viruses to lose the immunogencity in rhesus monkeys, the E-E345K mutant viruses were able to induce neutralizing antibodies in rhesus monkeys with an almost a 10-fold lower level of viremia as compared to the wild type virus. Monkeys immunized with the E-E345K mutant virus were completely protected with no detectable viremia after live virus challenges with the wild type DENV-4. These results suggest that the E-E345K mutant virus propagated in MRC-5 cells may have potential for the use in live-attenuated DENV vaccine development. PMID:24959738

  17. Dengue type four viruses with E-Glu345Lys adaptive mutation from MRC-5 cells induce low viremia but elicit potent neutralizing antibodies in rhesus monkeys.

    PubMed

    Lin, Hsiao-Han; Lee, Hsiang-Chi; Li, Xiao-Feng; Tsai, Meng-Ju; Hsiao, Hung-Ju; Peng, Jia-Guan; Sue, Shih-Che; Qin, Cheng-Feng; Wu, Suh-Chin

    2014-01-01

    Knowledge of virulence and immunogenicity is important for development of live-attenuated dengue vaccines. We previously reported that an infectious clone-derived dengue type 4 virus (DENV-4) passaged in MRC-5 cells acquired a Glu345Lys (E-E345K) substitution in the E protein domain III (E-DIII). The same cloned DENV-4 was found to yield a single E-Glu327Gly (E-E327G) mutation after passage in FRhL cells and cause the loss of immunogenicity in rhesus monkeys. Here, we used site-directed mutagenesis to generate the E-E345K and E-E327G mutants from DENV-4 and DENV-4Δ30 infectious clones and propagated in Vero or MRC-5 cells. The E-E345K mutations were consistently presented in viruses recovered from MRC-5 cells, but not Vero cells. Recombinant E-DIII proteins of E345K and E327G increased heparin binding correlated with the reduced infectivity by heparin treatment in cell cultures. Different from the E-E327G mutant viruses to lose the immunogencity in rhesus monkeys, the E-E345K mutant viruses were able to induce neutralizing antibodies in rhesus monkeys with an almost a 10-fold lower level of viremia as compared to the wild type virus. Monkeys immunized with the E-E345K mutant virus were completely protected with no detectable viremia after live virus challenges with the wild type DENV-4. These results suggest that the E-E345K mutant virus propagated in MRC-5 cells may have potential for the use in live-attenuated DENV vaccine development.

  18. Efficacy of vaccine Ac NFU1 (S-) MRC 5 given after an initial clinical episode in the prevention of herpes genitalis.

    PubMed

    Woodman, C B; Buchan, A; Fuller, A; Hartley, C; Skinner, G R; Stocker, D; Sugrue, D; Clay, J C; Wilkins, G; Wiblin, C

    1983-10-01

    A subunit antigenoid vaccine, Ac NFU1 (S-) MRC 5, was used in patients who had had a clinical episode of herpes genitalis. The rate of recurrence was compared with that in unvaccinated patients to determine the efficacy of vaccination in preventing recurrence and spread of the virus in the community. Seven of 22 (31%) vaccinated patients had eight recurrences after the initial clinical episode; in contrast there were 51 recurrences in 17 of 20 (85%) unvaccinated patients. Although further studies are needed, the results indicate that the vaccine may prevent recurrent episodes of herpes genitalis and thereby reduce the dissemination of this virus in the population.

  19. Efficacy of vaccine Ac NFU1 (S-) MRC 5 given after an initial clinical episode in the prevention of herpes genitalis.

    PubMed Central

    Woodman, C B; Buchan, A; Fuller, A; Hartley, C; Skinner, G R; Stocker, D; Sugrue, D; Clay, J C; Wilkins, G; Wiblin, C

    1983-01-01

    A subunit antigenoid vaccine, Ac NFU1 (S-) MRC 5, was used in patients who had had a clinical episode of herpes genitalis. The rate of recurrence was compared with that in unvaccinated patients to determine the efficacy of vaccination in preventing recurrence and spread of the virus in the community. Seven of 22 (31%) vaccinated patients had eight recurrences after the initial clinical episode; in contrast there were 51 recurrences in 17 of 20 (85%) unvaccinated patients. Although further studies are needed, the results indicate that the vaccine may prevent recurrent episodes of herpes genitalis and thereby reduce the dissemination of this virus in the population. PMID:6311322

  20. Low concentration of PDGF-AB shows synergism with IFN-α in induction of IFN-β and -γ in MRC5 fibroblasts.

    PubMed

    Šantak, G; Šantak, M; Forčić, D

    2013-11-01

    Platelet-derived growth factor (PDGF) is a potent mediator of fibroblast proliferation and chemotaxis. Also it has been reported as a strong suppressor of interferon (IFN) expression. IFN-α has opposite effect on fibroblast function and IFN induction. Here is our early report on the effect of low concentration of PDGF-AB alone or in combination with IFN-α on IFN mRNA production in MRC5 fibroblasts. MRC5 cells incubated with IFN-α or PDGF-AB, alone or in combination, produced significant induction of IFN-α, -β and -γ mRNA in comparison with untreated cells. The induction was dose-dependent, with higher effect in cells treated with lower concentrations of PDGF-AB. Also, low concentration of PDGF-AB showed synergism with IFN-α in IFN-β and -γ induction. Results presented here open new possibilities in multi-cytokine therapy and expand previous results on PDGF activity.

  1. Assessing the survival of MRC5 and a549 cell lines upon exposure to pyruvic Acid, sodium citrate and sodium bicarbonate - biomed 2013.

    PubMed

    Farah, Ibrahim O; Lewis, Veshell L; Ayensu, Wellington K; Cameron, Joseph A

    2013-01-01

    Lung cancer is among the most prevalent and deadly cancers in United States. In general, cancer cells are known to exhibit higher rates of glycolysis in comparison to normal cells. In attempting to exploit this unique cancer-dependent ATP generation phenomenon, it was our hypothesis that upon exposure to organic inhibitors of glycolysis, cancer cells would not survive normally and that their growth and viability would be vastly decreased; essential glycolytic ATP production will be exhausted to the point of collapsing energy utilization. Furthermore, we hypothesize that no negative effect would be seen with exposures to organic inhibitors for normal lung cells. The human lung fibroblast MRC-5 and the human A549 alveolar epithelial cell lines were used as in vitro models of normal lung and lung cancers respectively. Using standard methods, both cell lines were maintained and exposed to pyruvic acid, sodium citrate and sodium bicarbonate reagents at concentration levels ranging from 31.3-2,000 µg/ml in 96 well plates in quadruplets and experiments repeated at least three times using MTT, and cell counting (T4 Cellometer) assays as well as phase-contrast photo-imaging for parallel morphological displays of any changes in the course of their vitality and metabolic activities. Our results indicate that exposure of both cell lines to these organics resulted in concentration dependent cell destruction/cell survival depending on the cell line exposed. Pyruvic acid, sodium citrate and sodium bicarbonate showed statistically significant (p<0.05) differential negative effects on the A549 cell line in comparison to its unexposed control as well as to their effects on the MRC-5 cell line, presenting a potential promise for their use as cancer biotherapeutics.

  2. Protective Effect of Crocodile Hemoglobin and Whole Blood Against Hydrogen Peroxide-Induced Oxidative Damage in Human Lung Fibroblasts (MRC-5) and Inflammation in Mice.

    PubMed

    Phosri, Santi; Jangpromma, Nisachon; Patramanon, Rina; Kongyingyoes, Bunkerd; Mahakunakorn, Pramote; Klaynongsruang, Sompong

    2017-02-01

    A putative protective effect of cHb and cWb against H2O2-induced oxidative damage was evaluated in detail using MRC-5 cells. In addition, the carrageenan (Carr)-induced mouse paw edema model and the cotton pellet-induced granuloma model were employed to examine the in vivo anti-inflammatory activity of cHb and cWb in mice. It was demonstrated that both cHb and cWb treatments significantly increased cell viability and inhibited morphology alterations in MRC-5 cells exposed to H2O2. Orally administered cHb and cWb significantly reduced Carr-induced paw edema volume and cotton pellet-induced granuloma formation. Moreover, cHb and cWb decreased the expression levels of important pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α), while only cWb was found to increase the expression of the anti-inflammatory cytokine IL-10 significantly. Finally, the activity of antioxidant enzymes (SOD, CAT, and GPx) in the liver improved after cHb and cWb treatment under acute and chronic inflammation. Taken collectively, the results of this study suggest that both cHb and cWb protect against hydrogen peroxide-induced damage in fibroblast cells. Moreover, cHb and cWb were found to exhibit anti-inflammatory activity in both the acute and chronic stages of inflammation and appear to enhance antioxidant enzyme activity and decrease lipid peroxidation in the livers of mice. Therefore, this study indicates that cHb and cWb have great potential to be used in the development of dietary supplements for the prevention of oxidative stress related to inflammatory disorders.

  3. Inactivation of p16INK4a, with retention of pRB and p53/p21cip1 function, in human MRC5 fibroblasts that overcome a telomere-independent crisis during immortalization.

    PubMed

    Taylor, Lisa M; James, Alexander; Schuller, Christine E; Brce, Jesena; Lock, Richard B; Mackenzie, Karen L

    2004-10-15

    Recent investigations, including our own, have shown that specific strains of fibroblasts expressing telomerase reverse transcriptase (hTERT) have an extended lifespan, but are not immortal. We previously demonstrated that hTERT-transduced MRC5 fetal lung fibroblasts (MRC5hTERTs) bypassed senescence but eventually succumbed to a second mortality barrier (crisis). In the present study, 67 MRC5hTERT clones were established by limiting dilution of a mass culture. Whereas 39/67 clones had an extended lifespan, all 39 extended lifespan clones underwent crisis. 11 of 39 clones escaped crisis and were immortalized. There was no apparent relationship between the fate of clones at crisis and the level of telomerase activity. Telomeres were hyperextended in the majority of the clones analyzed. There was no difference in telomere length of pre-crisis compared with post-crisis and immortal clones, indicating that hyperextended telomeres were conducive for immortalization and confirming that crisis was independent of telomere length. Immortalization of MRC5hTERT cells was associated with repression of the cyclin-dependent kinase inhibitor p16INK4a and up-regulation of pRB. However, the regulation of pRB phosphorylation and the response of the p53/p21cip1/waf1 pathway were normal in immortal cells subject to genotoxic stress. Overexpression of oncogenic ras failed to de-repress p16INK4a in immortal cells. Furthermore, expression of ras enforced senescent-like growth arrest in p16INK4a-positive, but not p16INK4a-negative MRC5hTERT cells. Immortal cells expressing ras formed small, infrequent colonies in soft agarose, but were non-tumorigenic. Overall, these results implicate the inactivation of p16INK4a as a critical event for overcoming telomere-independent crisis, immortalizing MRC5 fibroblasts and overcoming ras-induced premature senescence.

  4. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field

    PubMed Central

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; d’Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components. PMID:26762783

  5. The influence of non-DNA-targeted effects on carbon ion–induced low-dose hyper-radiosensitivity in MRC-5 cells

    PubMed Central

    Ye, Fei; Ning, Jing; Liu, Xinguo; Jin, Xiaodong; Wang, Tieshan; Li, Qiang

    2016-01-01

    Low-dose hyper-radiosensitivity (LDHRS) is a hot topic in normal tissue radiation protection. However, the primary causes for LDHRS still remain unclear. In this study, the impact of non-DNA-targeted effects (NTEs) on high-LET radiation–induced LDHRS was investigated. Human normal lung fibroblast MRC-5 cells were irradiated with high-LET carbon ions, and low-dose biological effects (in terms of various bio-endpoints, including colony formation, DNA damage and micronuclei formation) were detected under conditions with and without gap junctional intercellular communication (GJIC) inhibition. LDHRS was observed when the radiation dose was <0.2 Gy for all bio-endpoints under investigation, but vanished when the GJIC was suppressed. Based on the probability of cells being hit and micro-dose per cell calculation, we deduced that the LDHRS phenomenon came from the combined action of direct hits and NTEs. We concluded that GJIC definitely plays an important role in cytotoxic substance spreading in high-LET carbon ion–induced LDHRS. PMID:26559335

  6. The influence of non-DNA-targeted effects on carbon ion-induced low-dose hyper-radiosensitivity in MRC-5 cells.

    PubMed

    Ye, Fei; Ning, Jing; Liu, Xinguo; Jin, Xiaodong; Wang, Tieshan; Li, Qiang

    2016-03-01

    Low-dose hyper-radiosensitivity (LDHRS) is a hot topic in normal tissue radiation protection. However, the primary causes for LDHRS still remain unclear. In this study, the impact of non-DNA-targeted effects (NTEs) on high-LET radiation-induced LDHRS was investigated. Human normal lung fibroblast MRC-5 cells were irradiated with high-LET carbon ions, and low-dose biological effects (in terms of various bio-endpoints, including colony formation, DNA damage and micronuclei formation) were detected under conditions with and without gap junctional intercellular communication (GJIC) inhibition. LDHRS was observed when the radiation dose was <0.2 Gy for all bio-endpoints under investigation, but vanished when the GJIC was suppressed. Based on the probability of cells being hit and micro-dose per cell calculation, we deduced that the LDHRS phenomenon came from the combined action of direct hits and NTEs. We concluded that GJIC definitely plays an important role in cytotoxic substance spreading in high-LET carbon ion-induced LDHRS. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  7. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field.

    PubMed

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; d'Angelo, Raffaele; Zeni, Olga

    2016-01-14

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components.

  8. Lack of effects on key cellular parameters of MRC-5 human lung fibroblasts exposed to 370 mT static magnetic field

    NASA Astrophysics Data System (ADS)

    Romeo, Stefania; Sannino, Anna; Scarfì, Maria Rosaria; Massa, Rita; D’Angelo, Raffaele; Zeni, Olga

    2016-01-01

    The last decades have seen increased interest toward possible adverse effects arising from exposure to intense static magnetic fields. This concern is mainly due to the wider and wider applications of such fields in industry and clinical practice; among them, Magnetic Resonance Imaging (MRI) facilities are the main sources of exposure to static magnetic fields for both general public (patients) and workers. In recent investigations, exposures to static magnetic fields have been demonstrated to elicit, in different cell models, both permanent and transient modifications in cellular endpoints critical for the carcinogenesis process. The World Health Organization has therefore recommended in vitro investigations as important research need, to be carried out under strictly controlled exposure conditions. Here we report on the absence of effects on cell viability, reactive oxygen species levels and DNA integrity in MRC-5 human foetal lung fibroblasts exposed to 370 mT magnetic induction level, under different exposure regimens. Exposures have been performed by using an experimental apparatus designed and realized for operating with the static magnetic field generated by permanent magnets, and confined in a magnetic circuit, to allow cell cultures exposure in absence of confounding factors like heating or electric field components.

  9. Novel antiviral activity of mung bean sprouts against respiratory syncytial virus and herpes simplex virus -1: an in vitro study on virally infected Vero and MRC-5 cell lines.

    PubMed

    Hafidh, Rand R; Abdulamir, Ahmed S; Abu Bakar, Fatimah; Sekawi, Zamberi; Jahansheri, Fatemeh; Jalilian, Farid Azizi

    2015-06-11

    New sources for discovering novel antiviral agents are desperately needed. The current antiviral products are both expensive and not very effective. The antiviral activity of methanol extract of mung bean sprouts (MBS), compared to Ribavarin and Acyclovir, on respiratory syncytial virus (RSV) and Herpes Simplex virus -1 (HSV-1) was investigated using cytotoxicity, virus yield reduction, virucidal activity, and prophylactic activity assays on Vero and MRC-5 cell lines. Moreover, the level of antiviral cytokines, IFNβ, TNFα, IL-1, and IL-6 was assessed in MBS-treated, virally infected, virally infected MBS-treated, and control groups of MRC-5 cells using ELISA. MBS extract showed reduction factors (RF) 2.2 × 10 and 0.5 × 10(2) for RSV and HSV-1, respectively. The 2 h incubation virucidal and prophylactic selectivity indices (SI) of MBS on RSV were 14.18 and 12.82 versus Ribavarin SI of 23.39 and 21.95, respectively, and on HSV-1, SI were 18.23 and 10.9 versus Acyclovir, 22.56 and 15.04, respectively. All SI values were >10 indicating that MBS has a good direct antiviral and prophylactic activities on both RSV and HSV-1. Moreover, interestingly, MBS extract induced vigorously IFNβ, TNFα, IL-1, and IL-6 cytokines in MRC-5 infected-treated group far more than other groups (P < 0.05) and induced TNFα and IL-6 in treated group more than infected group (P < 0.05). MBS extract has potent antiviral and to a lesser extent, prophylactic activities against both RSV and HSV-1, and in case of HSV-1, these activities were comparable to Acyclovir. Part of the underlying mechanism(s) of these activities is attributed to MBS potential to remarkably induce antiviral cytokines in human cells. Hence, we infer that MBS methanol extract could be used as such or as purified active component in protecting and treating RSV and HSV-1 infections. More studies are needed to pinpoint the exact active components responsible for the MBS antiviral activities.

  10. The "Methyl-CpG Binding Domain protein 2" plays a repressive role in relation to the promoter CpG content in the normal human cell line MRC5.

    PubMed

    Perriaud, Laury; Lachuer, Joel; Dante, Robert

    2014-01-01

    In cancer cells, methylation-dependent gene silencing is at least partly mediated by the "Methyl-CpG-Binding Domain protein 2" (MBD2 protein), via the recruitment of chromatin remodeling complexes. However this repressive role was poorly investigated in normal cells. To identify the genes repressed by MBD2 in these cells, we have determined the impact of MBD2 depletion on gene expression in human embryonic MRC5 fibroblasts, using RNA inference combined with microarray analysis. The up-regulation of some randomly selected genes was confirmed and a direct association between gene repression and MBD2 binding on methylated promoters associated to these genes was subsequently established. This control of gene expression appears to depend on the CpG content of promoters as MBD2 depletion was not sufficient to induce the expression of silent genes associated with High-CpG promoters, but it was required to achieve the methyl-dependent transcriptional locking of the genes associated with promoters exhibiting intermediate CpG content. Therefore, MBD2 seems to play a selective role in gene repression depending on the CpG content of the promoter regions.

  11. Structure of the vault, a ubiquitous celular component.

    PubMed

    Kong, L B; Siva, A C; Rome, L H; Stewart, P L

    1999-04-15

    The vault is a ubiquitous and highly conserved ribonucleoprotein particle of approximately 13 MDa. This particle has been shown to be upregulated in certain multidrug-resistant cancer cell lines and to share a protein component with the telomerase complex. Determination of the structure of the vault was undertaken to provide a first step towards understanding the role of this cellular component in normal metabolism and perhaps to shed some light on its role in mediating drug resistance. Over 1300 particle images were combined to calculate an approximately 31 A resolution structure of the vault. Rotational power spectra did not yield a clear symmetry peak, either because of the thin, smooth walls or inherent flexibility of the vault. Although cyclic eightfold (C8) symmetry was imposed, the resulting reconstruction may be partially cylindrically averaged about the eightfold axis. Our results reveal the vault to be a hollow, barrel-like structure with two protruding caps and an invaginated waist. Although the normal cellular function of the vault is as yet undetermined, the structure of the vault is consistent with either a role in subcellular transport, as previously suggested, or in sequestering macromolecular assemblies.

  12. "Fuzziness" in the celular interactome: a historical perspective.

    PubMed

    Welch, G Rickey

    2012-01-01

    Some historical background is given for appreciating the impact of the empirical construct known as the cellular protein-protein interactome, which is a seemingly de novo entity that has arisen of late within the context of postgenomic systems biology. The approach here builds on a generalized principle of "fuzziness" in protein behavior, proposed by Tompa and Fuxreiter.(1) Recent controversies in the analysis and interpretation of the interactome studies are rationalized historically under the auspices of this concept. There is an extensive literature on protein-protein interactions, dating to the mid-1900s, which may help clarify the "fuzziness" in the interactome picture and, also, provide a basis for understanding the physiological importance of protein-protein interactions in vivo.

  13. Synthesis and cytotoxicity testing of new amido-substituted triazolopyrrolo[2,1-c][1,4]benzodiazepine (PBDT) derivatives.

    PubMed

    Sorra, Kumaraswamy; Chang, Chi-Fen; Pusuluri, Srinivas; Mukkanti, Khagga; Laiu, Min-Chiau; Bao, Bo-Ying; Su, Chia-Hao; Chuang, Ta-Hsien

    2012-07-25

    A series of amido-substituted triazolopyrrolo[2,1-c][1,4]benzodiazepine (PBDT) derivatives was synthesized from isatoic anhydride, and their cytotoxicity against the MRC-5 and Mahlavu cell lines was evaluated. The results suggest that compound PBDT-7i with the meta-trifluoromethylbenzoyl substituent can selectively inhibit the growth of Mahlavu cells and has low toxicity towards MRC-5 cells.

  14. Comparing the level of bystander effect in a couple of tumor and normal cell lines.

    PubMed

    Soleymanifard, Shokouhozaman; Bahreyni, Mohammad T Toossi

    2012-04-01

    Radiation-induced bystander effect refers to radiation responses which occur in non-irradiated cells. The purpose of this study was to compare the level of bystander effect in a couple of tumor and normal cell lines (QU-DB and MRC5). To induce bystander effect, cells were irradiated with 0.5, 2, and 4 Gy of (60)Co gamma rays and their media were transferred to non-irradiated (bystander) cells of the same type. Cells containing micronuclei were counted in bystander subgroups, non-irradiated, and 0.5 Gy irradiated cells. Frequencies of cells containing micronuclei in QU-DB bystander subgroups were higher than in bystander subgroups of MRC5 cells (P < 0.001). The number of micronucleated cells counted in non-irradiated and 0.5 Gy irradiated QU-DB cells was also higher than the corresponding values for MRC5 cells (P < 0.001). Another difference between the two cell lines was that in QU-DB bystander cells, a dose-dependent increase in the number of micronucleated cells was observed as the dose increased, but at all doses the number of micronucleated cells in MRC5 bystander cells was constant. It is concluded that QU-DB cells are more susceptible than MRC5 cells to be affected by bystander effect, and in the two cell lines there is a positive correlation between DNA damages induced directly and those induced due to bystander effect.

  15. Rapid detection of herpes simplex virus with fluorescein-labeled Helix pomatia lectin.

    PubMed Central

    Slifkin, M; Cumbie, R

    1989-01-01

    The use of fluorescein-conjugated Helix pomatia lectin was shown to be as effective as fluorescein-conjugated monoclonal antibody reagents for the detection and differentiation of herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2) in MRC-5 cell culture. Cells infected with HSV-1 generally displayed a pattern of nongranular or diffuse fluorescence, while cells infected with HSV-2 were identified by the production of fluorescent grains and flecks. This unique nonimmunological reagent, when used in combination with low-speed centrifugation, provides a remarkably specific, sensitive, rapid, and cost-effective means to detect HSV-infected MRC-5 or BHK-21 cells as early as 20 h postinoculation. In contrast to the immunofluorescence method, the serotypes of HSV can be differentiated with only one fluorescein-H. pomatia reagent in MRC-5 cell cultures. Images PMID:2545739

  16. Relative sensitivity of three cell substrates to the Sabin poliovirus strains.

    PubMed

    Kado, G

    Poliovirus types 1, 2 and 3 (Sabin strains) were titrated using microtissue culture plates in three different cell substrates: Hep 2C, Vero and MRC-5 human diploid cells. Each type of poliovirus was titrated 60 times. The virus dilutions were inoculated in the three cell substrates and the titres (TCID50/ml) calculated by the Spearman-Kärber method. The results were analyzed by the U-test (Mann and Whitney procedure) in a Wang 600 computer. For poliovirus type 1 the differences in titres observed between Hep 2C and Vero cells were not statistically significant at p = 0.01, but the differences in titres between Hep 2C and MRC-5 human diploid cells and between Vero and MRC-5 cells were statistically highly significant (p = 0.001). For poliovirus types 2 and 3 the observed differences in titres were highly significant (p = 0.001) between Hep 2C and Vero cells, Hep 2C and MRC-5 and also between Vero and MRC-5 cells, with higher titres on Hep 2C cells. Accordingly with these results Hep 2C and Vero cells showed the same susceptibility to poliovirus type 1. In MCR-5 cells the average titre (G.M.T.) was 1 log10 below the average titres (G.M.T.) from Hep 2C or Vero cells. With poliovirus types 2 and 3 the higher titres were obtained on Hep 2C cells with significant differences to the titres observed in Vero and MRC-5 human diploid cells, which showed less susceptibility.

  17. Progress toward the development of a genetically engineered attenuated hepatitis A virus vaccine.

    PubMed Central

    Funkhouser, A W; Raychaudhuri, G; Purcell, R H; Govindarajan, S; Elkins, R; Emerson, S U

    1996-01-01

    Mutations which positively affect growth of hepatitis A virus in cell culture may negatively affect growth in vivo. Therefore, development of an attenuated vaccine for hepatitis A may require a careful balancing of mutations to produce a virus that will grow efficiently in cells suitable for vaccine production and still maintain a satisfactory level of attenuation in vivo. Since such a balance could be achieved most directly by genetic engineering, we are analyzing mutations that accumulated during serial passage of the HM-175 strain of hepatitis A virus in MRC-5 cell cultures in order to determine the relative importance of the mutations for growth in MRC-5 cells and for attenuation in susceptible primates. Chimeric viral genomes of the HM-175 strain were constructed from cDNA clones derived from a virulent virus and from two attenuated viruses adapted to growth in African green monkey kidney (AGMK) and MRC-5 cells, respectively. Viruses encoded by these chimeric genomes were recovered by in vitro or in vivo transfection and assessed for their ability to grow in cultured MRC-5 cells or to cause hepatitis in primates (tamarins). The only MRC-5-specific mutations that substantially increased the efficiency of growth in MRC-5 cells were a group of four mutations in the 5' noncoding (NC) region. These 5' NC mutations and a separate group of 5' NC mutations that accumulated during earlier passages of the HM-175 virus in primary AGMK cells appeared, independently and additively, to result in decreased biochemical evidence of hepatitis in tamarins. However, neither group of 5' NC mutations had a demonstrable effect on the extent of virus excretion or liver pathology in these animals. PMID:8892918

  18. Progress toward the development of a genetically engineered attenuated hepatitis A virus vaccine.

    PubMed

    Funkhouser, A W; Raychaudhuri, G; Purcell, R H; Govindarajan, S; Elkins, R; Emerson, S U

    1996-11-01

    Mutations which positively affect growth of hepatitis A virus in cell culture may negatively affect growth in vivo. Therefore, development of an attenuated vaccine for hepatitis A may require a careful balancing of mutations to produce a virus that will grow efficiently in cells suitable for vaccine production and still maintain a satisfactory level of attenuation in vivo. Since such a balance could be achieved most directly by genetic engineering, we are analyzing mutations that accumulated during serial passage of the HM-175 strain of hepatitis A virus in MRC-5 cell cultures in order to determine the relative importance of the mutations for growth in MRC-5 cells and for attenuation in susceptible primates. Chimeric viral genomes of the HM-175 strain were constructed from cDNA clones derived from a virulent virus and from two attenuated viruses adapted to growth in African green monkey kidney (AGMK) and MRC-5 cells, respectively. Viruses encoded by these chimeric genomes were recovered by in vitro or in vivo transfection and assessed for their ability to grow in cultured MRC-5 cells or to cause hepatitis in primates (tamarins). The only MRC-5-specific mutations that substantially increased the efficiency of growth in MRC-5 cells were a group of four mutations in the 5' noncoding (NC) region. These 5' NC mutations and a separate group of 5' NC mutations that accumulated during earlier passages of the HM-175 virus in primary AGMK cells appeared, independently and additively, to result in decreased biochemical evidence of hepatitis in tamarins. However, neither group of 5' NC mutations had a demonstrable effect on the extent of virus excretion or liver pathology in these animals.

  19. Data on cell viability of human lung fibroblasts treated with polyphenols-rich extract from Plinia trunciflora (O. Berg) Kausel).

    PubMed

    Calloni, Caroline; Silva Santos, Luciana Fernandes; Martínez, Luana Soares; Salvador, Mirian

    2016-03-01

    Jaboticaba (Plinia trunciflora (O. Berg) Kausel) is a Brazilian native berry, which presents high levels of polyphenols. Here we provide data related to the effects of the polyphenols-rich extract from jaboticaba on the cell viability, mitochondrial complex I (nicotinamide adenine dinucleotide/CoQ oxidoreductase) activity and ATP biosynthesis of human lung fibroblast cells (MRC-5) treated with amiodarone. The data presented in this article demonstrate that the polyphenols-rich extract from jaboticaba was able to reduce cell death as well as the decrease in complex I activity and ATP biosynthesis caused by amiodarone in MRC-5 cells.

  20. Data on cell viability of human lung fibroblasts treated with polyphenols-rich extract from Plinia trunciflora (O. Berg) Kausel)

    PubMed Central

    Calloni, Caroline; Silva Santos, Luciana Fernandes; Martínez, Luana Soares; Salvador, Mirian

    2016-01-01

    Jaboticaba (Plinia trunciflora (O. Berg) Kausel) is a Brazilian native berry, which presents high levels of polyphenols. Here we provide data related to the effects of the polyphenols-rich extract from jaboticaba on the cell viability, mitochondrial complex I (nicotinamide adenine dinucleotide/CoQ oxidoreductase) activity and ATP biosynthesis of human lung fibroblast cells (MRC-5) treated with amiodarone. The data presented in this article demonstrate that the polyphenols-rich extract from jaboticaba was able to reduce cell death as well as the decrease in complex I activity and ATP biosynthesis caused by amiodarone in MRC-5 cells. PMID:26870757

  1. Acylated pregnane glycosides from Caralluma tuberculata and their antiparasitic activity.

    PubMed

    Abdel-Sattar, Essam; Harraz, Fathalla M; Al-ansari, Soliman Mohammed Abdullah; El-Mekkawy, Sahar; Ichino, Chikara; Kiyohara, Hiroaki; Ishiyama, Aki; Otoguro, Kazuhiko; Omura, Satoshi; Yamada, Haruki

    2008-08-01

    Five pregnane glycosides were isolated from Caralluma tuberculata (1-5), in addition to a known one (russelioside E, 6). The structures of the isolated compounds were elucidated by the analysis of NMR data and FAB-MS experiments. All the isolated compounds were tested for their antimalarial and antitrypanosomal activities as well as their cytotoxicity against human diploid embryonic cell line (MRC5).

  2. Prooxidant action of chebulinic acid and tellimagrandin I: causing copper-dependent DNA strand breaks.

    PubMed

    Yi, Zong-Chun; Liu, Yan-Ze; Li, Hai-Xia; Wang, Zhao

    2009-04-01

    The prooxidant activity of two hydrolysable tannins, chebulinic acid and tellimagrandin I, on plasmid DNA and genomic DNA of cultured MRC-5 human embryo lung fibroblasts was assessed. The results revealed that both hydrolysable tannins in combination with Cu(II) induced DNA strand breaks in pBR322 plasmid DNA in a concentration-dependent manner. Chebulinic acid and tellimagrandin I also induced genomic DNA strand breaks of MRC-5 human embryo lung fibroblasts in the presence of Cu(II). After treatment with chebulinic acid or tellimagrandin I alone, the pBR322 plasmid DNA and genomic DNA in MRC-5 cells kept intact. In addition, addition of Cu(I) reagent bathocuproinedisulfonic acid or catalase markedly inhibited the copper-dependent DNA strand breaks by both tannins. However, three typical hydroxyl radical scavengers, DMSO, ethanol and mannitol, did not inhibit the DNA strand breaks. Both tannins were able to reduce Cu(II) to Cu(I). These results indicated that chebulinic acid and tellimagrandin I induced the copper-dependent strand breaks of pBR322 plasmid DNA and MRC-5 genomic DNA with prooxidant action, in which Cu(II)/Cu(I) redox cycle and H(2)O(2) were involved and hydroxyl radical formation is important in the hypothetical mechanism by which DNA strand breaks are formed.

  3. A role for p53 in selenium-induced senescence

    USDA-ARS?s Scientific Manuscript database

    The tumor suppressor p53 and the ataxia-telangiectasia mutated (ATM) kinase play important roles in the senescence response to oncogene activation and DNA damage. We have previously shown that selenium-containing compounds can activate an ATM-dependent senescence response in MRC-5 normal fibroblasts...

  4. Detection of human cytomegalovirus in clinical specimens by centrifugation culture with a nonhuman cell line.

    PubMed Central

    Gleaves, C A; Hursh, D A; Meyers, J D

    1992-01-01

    The sensitivities of MRC-5 and mink lung (ML) cells in centrifugation culture were compared simultaneously for the detection of cytomegalovirus (CMV) IE antigen (immediate-early antigen) from clinical specimens. Of 413 samples assayed, 51 (12%) were positive for CMV by both centrifugation and standard cell culture. At 20 h postinoculation (p.i.), 46 of 51 (90.2%) CMV-positive specimens were detected in ML cells. At 40 h p.i., 50 of 51 (98.0%) CMV-positive specimens were detected in ML cells, compared with 48 of 51 (94.0%) in MRC-5 cells. There was no significant difference in the detection of CMV in either cell line by centrifugation culture. However, in 19 of 23 positive samples that had countable foci at 20 h p.i., there was a 25% increase in the number of positive foci observed for ML cells compared with MRC-5 cells. Less toxicity was also noted for ML cells than for MRC cells, particularly in viral blood specimens. These data suggest that ML cells are comparable to MRC-5 cells for the rapid detection of CMV by centrifugation culture. PMID:1315330

  5. Absence of accelerated atherosclerotic disease progression after intracoronary infusion of bone marrow derived mononuclear cells in patients with acute myocardial infarction--angiographic and intravascular ultrasound--results from the TErapia Celular Aplicada al Miocardio Pilot study.

    PubMed

    Arnold, Roman; Villa, Adolfo; Gutiérrez, Hipólito; Sánchez, Pedro L; Gimeno, Federico; Fernández, Maria E; Gutiérrez, Oliver; Mota, Pedro; Sánchez, Ana; García-Frade, Javier; Fernández-Avilés, Francisco; San Román, Jose A

    2010-06-01

    We tried to evaluate a putative negative effect on coronary atherosclerosis in patients receiving intracoronary infusion of unfractionated bone marrow mononuclear cells (BMMC) following an acute ST-elevation myocardial infarction. Peripheral blood mononuclear cells or enriched CD133(+) BMMC have been associated with accelerated atherosclerosis of the distal segment of the infarct related artery (IRA). Thirty-seven patients with ST-elevation myocardial infarction from the TECAM pilot study underwent intracoronary infusion of autologous BMMC 9 +/- 3.1 days after onset of symptoms. We compared angiographic changes from baseline to 9 months of follow-up in the distal non-stented segment of the IRA, as well as in the contralateral coronary artery, with a matched control group. A subgroup of 15 treated patients underwent additional IVUS within the distal segment of the IRA. No difference between stem cell and control group were found regarding changes in minimum lumen diameter (0.006 +/- 0.42 vs 0.06 +/- 0.41 mm, P = ns) and the percentage of stenosis (-2.68 +/- 12.33% vs -1.78 +/- 8.75%, P = ns) at follow-up. Likewise, no differences were seen regarding changes in the contralateral artery (minimum lumen diameter -0.004 +/- 0.54 mm vs -0.06 +/- 0.35 mm, P = ns). In the intravascular ultrasound substudy, no changes were demonstrated comparing baseline versus follow-up in maximum area stenosis and plaque volume. In this pilot study, analysis of a subgroup of patients found that intracoronary injection of unfractionated BMMC in patients with acute ST-elevation myocardial infarction was not associated with accelerated atherosclerosis progression at mid term. Prospective, randomised studies in large cohorts with long-term angiographic and intravascular ultrasound follow-up are necessary to determine the safety of this therapy. Copyright 2010 Mosby, Inc. All rights reserved.

  6. Dengue type 4 live-attenuated vaccine viruses passaged in vero cells affect genetic stability and dengue-induced hemorrhaging in mice.

    PubMed

    Lee, Hsiang-Chi; Yen, Yu-Ting; Chen, Wen-Yu; Wu-Hsieh, Betty A; Wu, Suh-Chin

    2011-01-01

    Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4) virus retains higher genetic stability in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4 2A and its derived 3' NCR 30-nucleotide deletion mutant DEN-4 2AΔ30, a vaccine candidate. Mutations in the C-prM-E, NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AΔ30 virus titers following Vero cell passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4 2AΔ30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition, more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AΔ30 passages in Vero cells compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single point mutation of E-Q(438)H, E-V(463)L, NS2B-Q(78)H, and NS2B-A(113)T imperatively increased mouse hemorrhaging severity. The relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation in the context of live-attenuated DEN vaccine development.

  7. Dengue Type 4 Live-Attenuated Vaccine Viruses Passaged in Vero Cells Affect Genetic Stability and Dengue-Induced Hemorrhaging in Mice

    PubMed Central

    Lee, Hsiang-Chi; Yen, Yu-Ting; Chen, Wen-Yu; Wu-Hsieh, Betty A.; Wu, Suh-Chin

    2011-01-01

    Most live-attenuated tetravalent dengue virus vaccines in current clinical trials are produced from Vero cells. In a previous study we demonstrated that an infectious cDNA clone-derived dengue type 4 (DEN-4) virus retains higher genetic stability in MRC-5 cells than in Vero cells. For this study we investigated two DEN-4 viruses: the infectious cDNA clone-derived DEN-4 2A and its derived 3′ NCR 30-nucleotide deletion mutant DEN-4 2AΔ30, a vaccine candidate. Mutations in the C-prM-E, NS2B-NS3, and NS4B-NS5 regions of the DEN genome were sequenced and compared following cell passages in Vero and MRC-5 cells. Our results indicate stronger genetic stability in both viruses following MRC-5 cell passages, leading to significantly lower RNA polymerase error rates when the DEN-4 virus is used for genome replication. Although no significant increases in virus titers were observed following cell passages, DEN-4 2A and DEN-4 2AΔ30 virus titers following Vero cell passages were 17-fold to 25-fold higher than titers following MRC-5 cell passages. Neurovirulence for DEN-4 2A and DEN-4 2AΔ30 viruses increased significantly following passages in Vero cells compared to passages in MRC-5 cells. In addition, more severe DEN-induced hemorrhaging in mice was noted following DEN-4 2A and DEN-4 2AΔ30 passages in Vero cells compared to passages in MRC-5 cells. Target mutagenesis performed on the DEN-4 2A infectious clone indicated that single point mutation of E-Q438H, E-V463L, NS2B-Q78H, and NS2B-A113T imperatively increased mouse hemorrhaging severity. The relationship between amino acid mutations acquired during Vero cell passage and enhanced DEN-induced hemorrhages in mice may be important for understanding DHF pathogenesis, as well as for the development of live-attenuated dengue vaccines. Taken together, the genetic stability, virus yield, and DEN-induced hemorrhaging all require further investigation in the context of live-attenuated DEN vaccine development. PMID:22053180

  8. Synthesis and biological evaluation of the pirfenidone derivatives as antifibrotic agents.

    PubMed

    Ma, Zhen; Pan, Youlu; Huang, Wenhai; Yang, Yewei; Wang, Zunyuan; Li, Qin; Zhao, Yin; Zhang, Xinyue; Shen, Zhengrong

    2014-01-01

    A total of 24 pirfenidone derivatives were designed, synthesized and evaluated for their inhibitory activity against the human lung fibroblast cell line MRC-5. These compounds showed the remarkable proliferation inhibition against MRC-5 compared to pirfenidone as the positive control. The possible mechanism of this kind of derivatives as antifibrotic agents was explored. The molecular docking and p38 binding affinity assays demonstrated that the antifibrotic potential of the pirfenidone derivatives was possibly through the inhibition of p38 MAPK signaling pathway. The data from this study suggested that p38 might be a potential therapeutic target for the new generation antifibrotics. All the pirfenidone derivatives are reported here for the first time.

  9. An animal component free medium that promotes the growth of various animal cell lines for the production of viral vaccines.

    PubMed

    Rourou, Samia; Ben Ayed, Yousr; Trabelsi, Khaled; Majoul, Samy; Kallel, Héla

    2014-05-19

    IPT-AFM is a proprietary animal component free medium that was developed for rabies virus (strain LP 2061) production in Vero cells. In the present work, we demonstrated the versatility of this medium and its ability to sustain the growth of other cell lines and different virus strains. Here, three models were presented: Vero cells/rabies virus (strain LP 2061), MRC-5 cells/measles virus (strain AIK-C) and BHK-21 cells/rabies virus (strain PV-BHK21). The cell lines were first adapted to grow in IPT-AFM, by progressive reduction of the amount of serum in the culture medium. After their adaptation, BHK-21 cells grew in suspension by forming clumps, whereas MRC-5 cells remained adherent. Then, kinetics of cell growth were studied in agitated cultures for both cell lines. In addition, kinetics of virus replication were investigated.

  10. In Vitro Anti-Cytomegalovirus Activity of Kampo (Japanese Herbal) Medicine

    PubMed Central

    2004-01-01

    We examined the effect of three types of Kampo medicines on human cytomegalovirus (CMV) replication in the human embryonic fibroblast cell line, MRC-5. Treatment of cells with at least 0.01 μg/ml of Kampo medicines inhibited the cytopathic effects of CMV-infected MRC-5 cells. Moreover, Kampo medicine decreased the replication of CMV without affecting the inhibition of host cells, with a concomitant decrease in CMV DNA levels. However, Kampo medicine demonstrated no virocidal effect on cell-free CMV. Furthermore, western blotting analysis demonstrated that the Kampo medicine decreased the amount of 65 kDa late antigen expression in the infected cells. These results suggest that Kampo medicine may be sufficient to inhibit viral DNA replication and late protein synthesis, resulting in anti-CMV effects. Therefore, these three Kampo medicines have the potential of being a source of new powerful anti-CMV compounds. PMID:15841262

  11. Combining cell lines to optimize isolation of human enterovirus from clinical specimens: report of 25 years of experience.

    PubMed

    Prim, Núria; Rodríguez, Graciela; Margall, Núria; Del Cuerpo, Margarita; Trallero, Gloria; Rabella, Núria

    2013-01-01

    Cell culture is still the gold standard for the diagnosis of human enteroviruses (HEVs) although molecular techniques are required for detection of some serotypes. Due to the diversity of HEVs, a single cell line is not susceptible to all serotypes, and several lines are required to optimize the isolation of HEVs. In this study, the results of HEV isolation during the last 25 years are reported. A total of 1,192 HEVs were isolated and isolation rates varied depending on the cell line used. MRC5 cells yielded the best results (70.7%), followed by A549 cells (52.6%), RD cells (37.5%), and HEp-2 cells (29.7%). A total of 521 HEVs were characterized, and HEV-B was the most frequent species (81%). Polioviruses (PV) and HEV-A were isolated less frequently (17% and 1%, respectively). None of the cell lines detected all the enteroviruses. MRC5 cells were the most susceptible for isolation of echoviruses (85.7%) and PVs (85.4%), whereas HEp2 was the most susceptible for Coxsackieviruses B (82.6%). Some serotypes were isolated in one cell line only. 40.5% of echoviruses were isolated in MRC5 cells whereas 42.3% and 23.9% of Coxsackieviruses B were isolated in RD cells and HEp2 cells, respectively. Although A549 cells did not achieve the best performance for any enterovirus serotypes, they isolated 52.6% of the total HEVs. In view of these results, MRC5 cells, A549 cells, and RD cells should be combined to optimize isolation of HEVs.

  12. Antibody reactivity with Skinner HSV vaccine.

    PubMed

    Muniu, E M; Durham, J; Shariff, D; Hartley, C E; Fuller, A; Melling, J; Wiblin, C; Wilkins, G; Buchan, A; Skinner, G R

    1987-01-01

    Antibody reactivity against herpes simplex virus (HSV) was investigated in 15 subjects who received three subcutaneous immunisations with Skinner HSV vaccine. Humoral antibody responses were detected against type 1 HSV in every subject and against type 2 HSV in all but one subject; immuno-precipitating antibody responses were infrequently detected. There was no antibody reactivity against host-cell (MRC-5), foetal calf serum or rubella virus antigen. None of the vaccinated subjects developed clinical evidence of herpes genitalis.

  13. The Role of Target and Bystander Cells in Dose-Response Relationship of Radiation-Induced Bystander Effects in Two Cell Lines

    PubMed Central

    Soleymanifard, Shokouhozaman; Bahreyni Toossi, Mohammad Taghi; Sazgarnia, Ameneh; Mohebbi, Shokoufe

    2013-01-01

    Objective(s): Radiation effect induced in nonirradiated cells which are adjacent or far from irradiated cells is termed radiation-induced bystander effect (RIBE). Published data on dose-response relationship of RIBE is controversial. In the present study the role of targeted and bystander cells in RIBE dose-response relationship of two cell lines have been investigated. Materials and Methods: Two cell lines (QU-DB and MRC5) which had previously exhibited different dose-response relationship were selected. In the previous study the two cell lines received medium from autologous irradiated cells and the results showed that the magnitude of damages induced in QU-DB cells was dependent on dose unlike MRC5 cells. In the present study, the same cells irradiated with 0.5, 2 and 4 Gy gamma rays and their conditioned media were transferred to nonautologous bystander cells; such that the bystander effects due to cross-interaction between them were studied. Micronucleus assay was performed to measure the magnitude of damages induced in bystander cells (RIBE level). Results: QU-DB cells exhibited a dose-dependent response. RIBE level in MRC5 cells which received medium from 0.5 and 2 Gy QU-DB irradiated cells was not statistically different, but surprisingly when they received medium from 4Gy irradiated QU-DB cells, RIBE was abrogated. Conclusion: Results pertaining to QU-DB and MRC5 cells indicated that both target and bystander cells determined the outcome. Triggering the bystander effect depended on the radiation dose and the target cell-type, but when RIBE was triggered, dose-response relationship was predominantly determined by the bystander cell type. PMID:24298387

  14. Dynamic Monitoring of Mechano-Sensing of Cells by Gold Nanoslit Surface Plasmon Resonance Sensor

    PubMed Central

    Wu, Shu-Han; Lee, Kuang-Li; Weng, Ruei-Hung; Zheng, Zhao-Xian; Chiou, Arthur; Wei, Pei-Kuen

    2014-01-01

    We demonstrated a real-time monitoring of live cells upon laminar shear stress stimulation via surface plasmon resonance (SPR) in gold nanoslit array. A large-area gold nanostructure consisted of 500-nm-period nanoslits was fabricated on a plastic film using the thermal-annealed template-stripping method. The SPR in the gold nanoslit array provides high surface sensitivity to monitor cell adhesion changes near the sensor surface. The human non-small cell lung cancer (CL1-0), human lung fibroblast (MRC-5), and human dermal fibroblast (Hs68) were cultured on the gold nanoslits and their dynamic responses to laminar shear stress were measured under different stress magnitudes from 0 to 30 dyne/cm2. Cell adhesion was increased in CL1-0 under shear flow stimulation. No adhesion recovery was observed after stopping the flow. On the other hand, MRC-5 and Hs68 decreased adhesion and recovered from the shear stress. The degree of recovery was around 70% for MRC-5. This device provides dynamic study and early detection of cell adhesion changes under shear flow conditions. PMID:24586846

  15. Cytotoxic constituents of Pachyrhizus tuberosus from Peruvian amazon.

    PubMed

    Leuner, Olga; Havlik, Jaroslav; Budesinsky, Milos; Vrkoslav, Vladimir; Chu, Jessica; Bradshaw, Tracey D; Hummelova, Jana; Miksatkova, Petra; Lapcik, Oldrich; Valterova, Irena; Kokoska, Ladislav

    2013-10-01

    Investigations into the chemical constituents of the seeds of the neglected tuber crop Pachyrhizus tuberosus (Leguminosae) resulted in the isolation of seven components: five rotenoids [12a-hydroxyerosone (1), 12a-hydroxydolineone (2), erosone (3), 12a-hydroxyrotenone (4) and rotenone (6)], a phenylfuranocoumarin [pachyrrhizine (5)] and an isoflavanone [neotenone (7)]. The compounds were isolated using several chromatography techniques and characterized and verified by NMR and HPLC/MS. The MTT assay was used to examine the selective cytotoxic effects of the methanolic P. tuberosus extract and isolated compounds in two human cancer cell lines [breast (MCF-7) and colorectal (HCT-116)] and in non-transformed human fibroblasts (MRC-5); IC50 values were calculated. The methanolic P. tuberosus extract displayed respectable cytotoxic effects against HCT-116 and MCF-7 cells with IC50 values of 7.3 and 6.3 microg/mL, respectively. Of the compounds, 6 exacted greatest cytotoxicity and selectivity towards the cancer cell lines tested, yielding IC50 values of 0.3 microg/mL against both MCF-7 and HCT-116 cells, and a 6-fold reduced activity against MRC-5 fibroblasts. Compound 4 also demonstrated cytotoxicity against MCF-7 and HCT-116 (1.1 and 1.8 microg/mL, respectively), and reduced cytotoxicity towards MRC-5 cells (7.5 mirog/mL). The results revealed from the in vitro cytotoxic MTT assay are worthy of further antitumor investigation.

  16. Cytotoxicity of Dental Adhesives In Vitro

    PubMed Central

    Koulaouzidou, Elisabeth A.; Helvatjoglu-Antoniades, Maria; Palaghias, George; Karanika-Kouma, Artemis; Antoniades, Dimitrios

    2009-01-01

    Objectives The purpose of this study was to evaluate the cytotoxic effect of six dental adhesives (Admira Bond, Clearfil Liner Bond 2V, ED Primer II, Fuji Bond LC, Gluma Comfort Bond, and NanoBond) applied to cell cultures. Methods The experiments were performed on two cell lines, rat pulp cells (RPC-C2A) and human lung fibroblasts (MRC5). Samples of the adhesives were light-cured and placed in culture medium for 24 hours. The extraction media was applied on the RPC-C2A and the MRC5 cells. Complete medium was used as a control. Cytotoxicity was evaluated with a modified sulforhodamine B (SRB) assay after 24 hours of exposure. Results The cell survival of RPC-C2A cells exposed to Fuji Bond LC, NanoBond, Clearfil Liner Bond 2V, ED Primer II, Admira Bond and Gluma Comfort Bond was 73%, 67%, 50%, 20%, 18% and 5% respectively, relative to the cell survival with the control medium. In the MRC5 cell line, the relative survival was 98%, 80%, 72%, 41%, 19% and 7% after exposure to NanoBond, Fuji Bond LC, Clearfil Liner Bond 2V, ED Primer II, Admira Bond and Gluma Comfort Bond, respectively. Conclusions Different types of dental adhesives showed different cytotoxic effects on cells in vitro. The self-etch adhesives were superior in terms of cytotoxicity. The different cytotoxic effects of dental adhesives should be considered when selecting an appropriate adhesive for operative restorations. PMID:19262725

  17. Identification of shared antigenic determinants of different polypeptides from Davis and Towne cytomegalovirus strains with monoclonal antibodies.

    PubMed

    Chardonnet, Y; Léry, X; Revillard, J P

    1983-01-01

    Six colonies producing antibodies were obtained by fusing mouse myeloma SP2-O cells with spleen cells from mice immunized with cytomegalovirus Davis strain. Among 88 surviving clones, 29 produced antibodies detectable by immunofluorescence on infected MRC5 cells and 2 others produced neutralizing antibodies against a homologous virus. Supernatants from these 31 positive clones and 4 others which were negative in immunofluorescence or neutralization were tested for their capacity to bind polypeptides from labelled Davis-infected cell extracts. Only 8 were found to be positive: five clones (A8, E3, F2, F8 and F20) precipitated 76 K, 60 K and 54 K bands; three others (A4, B9 and C24) precipitated 76 K and 54 K only. Surprisingly, these 8 monoclonal antibodies recognized a unique polypeptide 67 K of Towne-infected MRC5 cells. No correlation was found between (1) the pattern of fluorescence on MRC5 cells infected with Davis strain, (2) the neutralizing activity, and (3) the polypeptides recognized by the monoclonal antibodies.

  18. Paraquat increases connective tissue growth factor expression and impairs lung fibroblast proliferation and viscoelasticity.

    PubMed

    Zhang, N; Xie, Y-P; Pang, L; Zang, X-X; Wang, J; Shi, D; Wu, Y; Liu, X-L; Wang, G-H

    2014-12-01

    This in vitro study was designed to investigate the molecular mechanisms of paraquat-induced damage using cultured human fetal lung fibroblasts (MRC-5 cells), in order to promote the development of improved therapies for paraquat poisoning. Paraquat's effects on proliferation were examined by flow cytometry, on viscoelasticity by the micropipette aspiration technique, and on connective tissue growth factor (CTGF) expression by real-time polymerase chain reaction and enzyme-linked immunosorbent assay. Paraquat was found to significantly reduce the proliferation index of MRC-5 cells in a concentration-dependent manner (p < 0.05) and to significantly impair the viscoelastic properties in a time-independent manner (p < 0.05). Exposure to paraquat led to a significant and time-dependent increase in CTGF expression (p < 0.05) and induced changes in the morphology and biomechanical characteristics of the MRC-5 cells. These findings not only provide novel insights into the mechanisms of paraquat-induced lung fibrosis but may represent useful targets of improved molecular-based therapies for paraquat poisoning.

  19. Antioxidant and Antigenotoxic Activities of the Brazilian Pine Araucaria angustifolia (Bert.) O. Kuntze

    PubMed Central

    Souza, Márcia O.; Branco, Cátia S.; Sene, Juliane; DallAgnol, Rafaela; Agostini, Fabiana; Moura, Sidnei; Salvador, Mirian

    2014-01-01

    Polyphenols are natural products with recognized potential in drug discovery and development. We aimed to evaluate the polyphenolic profile of Araucaria angustifolia bracts, and their ability to scavenge reactive species. The antioxidant and antigenotoxic effects of A. angustifolia polyphenols in MRC5 human lung fibroblast cells were also explored. The total polyphenol extract of A. angustifolia was determined by the Folin–Ciocalteu reagent and the chemical composition was confirmed by HPLC. Reactive oxygen species’ scavenging ability was investigated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method and superoxide dismutase- and catalase-like activities. The protective effect of the extract in MRC5 cells was carried out by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method and the determination of oxidative lipids, protein, and DNA (alkaline and enzymatic comet assay) damage. Total phenolic content of the A. angustifolia extract was 1586 ± 14.53 mg gallic acid equivalents/100 g of bracts. Catechin, epicatechin, quercetin, and apigenin were the major polyphenols. The extract was able to scavenge DPPH radicals and exhibited potent superoxide dismutase and catalase-like activities. Moreover, A. angustifolia extract significantly protected MRC5 cells against H2O2-induced mortality and oxidative damage to lipids, proteins, and DNA. Therefore, A. angustifolia has potential as a source of bioactive chemical compounds. PMID:26784661

  20. Detection of Apoptosis and Necrosis in Normal Human Lung Cells Using 1H NMR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Shih, Chwen-Ming; Ko, Wun-Chang; Yang, Liang-Yo; Lin, Chien-Ju; Wu, Jui-Sheng; Lo, Tsui-Yun; Wang, Shwu-Huey; Chen, Chien-Tsu

    2005-05-01

    This study aimed to detect apoptosis and necrosis in MRC-5, a normal human lung cell line, by using noninvasive proton nuclear magnetic resonance (1H NMR). Live MRC-5 cells were processed first for 1H NMR spectroscopy; subsequently their types and the percentage of cell death were assessed on a flow cytometer. Cadmium (Cd) and mercury (Hg) induced apoptosis and necrosis in MRC-5 cells, respectively, as revealed by phosphatidylserine externalization on a flow cytometer. The spectral intensity ratio of methylene (CH2) resonance (at 1.3 ppm) to methyl (CH3) resonance (at 0.9 ppm) was directly proportional to the percentage of apoptosis and strongly and positively correlated with PI staining after Cd treatment (r2 = 0.9868, P < 0.01). In contrast, this ratio only increased slightly within 2-h Hg treatment, and longer Hg exposure failed to produce further increase. Following 2-h Hg exposure, the spectral intensity of choline resonance (at 3.2 ppm) was abolished, but this phenomenon was absent in Cd-induced apoptosis. These findings together demonstrate that 1H NMR is a novel tool with a quantitative potential to distinguish apoptosis from necrosis as early as the onset of cell death in normal human lung cells.

  1. Gastroprotective mechanisms of action of semisynthetic carnosic acid derivatives in human cells.

    PubMed

    Theoduloz, Cristina; Pertino, Mariano Walter; Schmeda-Hirschmann, Guillermo

    2014-01-06

    Carnosic acid (CA) and its semisynthetic derivatives display relevant gastroprotective effects on HCl/ethanol induced gastric lesions in mice. However, little is known on the mechanisms of action of the new compounds. The aim of the present work was to assess the gastroprotective action mechanisms of CA and its derivatives using human cell culture models. A human gastric adenocarcinoma cell line (AGS) and lung fibroblasts (MRC-5) were used to reveal the possible mechanisms involved. The ability of the compounds to protect cells against sodium taurocholate (NaT)-induced damage, and to increase the cellular reduced glutathione (GSH) and prostaglandin E2 (PGE2) content was determined using AGS cells. Stimulation of cell proliferation was studied employing MRC-5 fibroblasts. Carnosic acid and its derivatives 10-18 raised GSH levels in AGS cells. While CA did not increase the PGE2 content in AGS cells, all derivatives significantly stimulated PGE2 synthesis, the best effect being found for the 12-O-indolebutyrylmethylcarnosate 13. A significant increase in MRC-5 fibroblast proliferation was observed for the derivatives 7 and 16-18. The antioxidant effect of the compounds was assessed by the inhibition of lipid peroxidation in human erythrocyte membranes, scavenging of superoxide anion and DPPH discoloration assay. The new CA derivatives showed gastroprotective effects by different mechanisms, including protection against cell damage induced by NaT, increase in GSH content, stimulation of PGE2 synthesis and cell proliferation.

  2. ROS-mediated cytotoxic effect of copper(II) hydrazone complexes against human glioma cells.

    PubMed

    Recio Despaigne, Angel A; Da Silva, Jeferson G; da Costa, Pryscila R; Dos Santos, Raquel G; Beraldo, Heloisa

    2014-10-27

    2-Acetylpyridine acetylhydrazone (H2AcMe), 2-benzoylpyridine acetylhydrazone (H2BzMe) and complexes [Cu(H2AcMe)Cl2] (1) and [Cu(H2BzMe)Cl2] (2) were assayed for their cytotoxicity against wild type p53 U87 and mutant p53 T98 glioma cells, and against MRC-5 fibroblast cells. Compounds 1 and 2 proved to be more active than the corresponding hydrazones against U87, but not against T98 cells. Compound 1 induced higher levels of ROS than H2AcMe in both glioma cell lines. H2AcMe and 1 induced lower levels of ROS in MRC5 than in U87 cells. Compound 2 induced lower levels of ROS in MRC5 than in T98 cells. The cytotoxic effect of 1 in U87 cells could be related to its ability to provoke the release of ROS, suggesting that the cytotoxicity of 1 might be somehow p53 dependent.

  3. Characterization of Rift Valley fever virus MP-12 strain encoding NSs of Punta Toro virus or sandfly fever Sicilian virus.

    PubMed

    Lihoradova, Olga A; Indran, Sabarish V; Kalveram, Birte; Lokugamage, Nandadeva; Head, Jennifer A; Gong, Bin; Tigabu, Bersabeh; Juelich, Terry L; Freiberg, Alexander N; Ikegami, Tetsuro

    2013-01-01

    Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) is a mosquito-borne zoonotic pathogen which can cause hemorrhagic fever, neurological disorders or blindness in humans, and a high rate of abortion in ruminants. MP-12 strain, a live-attenuated candidate vaccine, is attenuated in the M- and L-segments, but the S-segment retains the virulent phenotype. MP-12 was manufactured as an Investigational New Drug vaccine by using MRC-5 cells and encodes a functional NSs gene, the major virulence factor of RVFV which 1) induces a shutoff of the host transcription, 2) inhibits interferon (IFN)-β promoter activation, and 3) promotes the degradation of dsRNA-dependent protein kinase (PKR). MP-12 lacks a marker for differentiation of infected from vaccinated animals (DIVA). Although MP-12 lacking NSs works for DIVA, it does not replicate efficiently in type-I IFN-competent MRC-5 cells, while the use of type-I IFN-incompetent cells may negatively affect its genetic stability. To generate modified MP-12 vaccine candidates encoding a DIVA marker, while still replicating efficiently in MRC-5 cells, we generated recombinant MP-12 encoding Punta Toro virus Adames strain NSs (rMP12-PTNSs) or Sandfly fever Sicilian virus NSs (rMP12-SFSNSs) in place of MP-12 NSs. We have demonstrated that those recombinant MP-12 viruses inhibit IFN-β mRNA synthesis, yet do not promote the degradation of PKR. The rMP12-PTNSs, but not rMP12-SFSNSs, replicated more efficiently than recombinant MP-12 lacking NSs in MRC-5 cells. Mice vaccinated with rMP12-PTNSs or rMP12-SFSNSs induced neutralizing antibodies at a level equivalent to those vaccinated with MP-12, and were efficiently protected from wild-type RVFV challenge. The rMP12-PTNSs and rMP12-SFSNSs did not induce antibodies cross-reactive to anti-RVFV NSs antibody and are therefore applicable to DIVA. Thus, rMP12-PTNSs is highly efficacious, replicates efficiently in MRC-5 cells, and encodes a DIVA marker, all of which are

  4. Characterization of Rift Valley Fever Virus MP-12 Strain Encoding NSs of Punta Toro Virus or Sandfly Fever Sicilian Virus

    PubMed Central

    Lihoradova, Olga A.; Indran, Sabarish V.; Kalveram, Birte; Lokugamage, Nandadeva; Head, Jennifer A.; Gong, Bin; Tigabu, Bersabeh; Juelich, Terry L.; Freiberg, Alexander N.; Ikegami, Tetsuro

    2013-01-01

    Rift Valley fever virus (RVFV; genus Phlebovirus, family Bunyaviridae) is a mosquito-borne zoonotic pathogen which can cause hemorrhagic fever, neurological disorders or blindness in humans, and a high rate of abortion in ruminants. MP-12 strain, a live-attenuated candidate vaccine, is attenuated in the M- and L-segments, but the S-segment retains the virulent phenotype. MP-12 was manufactured as an Investigational New Drug vaccine by using MRC-5 cells and encodes a functional NSs gene, the major virulence factor of RVFV which 1) induces a shutoff of the host transcription, 2) inhibits interferon (IFN)-β promoter activation, and 3) promotes the degradation of dsRNA-dependent protein kinase (PKR). MP-12 lacks a marker for differentiation of infected from vaccinated animals (DIVA). Although MP-12 lacking NSs works for DIVA, it does not replicate efficiently in type-I IFN-competent MRC-5 cells, while the use of type-I IFN-incompetent cells may negatively affect its genetic stability. To generate modified MP-12 vaccine candidates encoding a DIVA marker, while still replicating efficiently in MRC-5 cells, we generated recombinant MP-12 encoding Punta Toro virus Adames strain NSs (rMP12-PTNSs) or Sandfly fever Sicilian virus NSs (rMP12-SFSNSs) in place of MP-12 NSs. We have demonstrated that those recombinant MP-12 viruses inhibit IFN-β mRNA synthesis, yet do not promote the degradation of PKR. The rMP12-PTNSs, but not rMP12-SFSNSs, replicated more efficiently than recombinant MP-12 lacking NSs in MRC-5 cells. Mice vaccinated with rMP12-PTNSs or rMP12-SFSNSs induced neutralizing antibodies at a level equivalent to those vaccinated with MP-12, and were efficiently protected from wild-type RVFV challenge. The rMP12-PTNSs and rMP12-SFSNSs did not induce antibodies cross-reactive to anti-RVFV NSs antibody and are therefore applicable to DIVA. Thus, rMP12-PTNSs is highly efficacious, replicates efficiently in MRC-5 cells, and encodes a DIVA marker, all of which are

  5. Evaluation of different continuous cell lines in the isolation of mumps virus by the shell vial method from clinical samples

    PubMed Central

    Reina, J; Ballesteros, F; Mari, M; Munar, M

    2001-01-01

    Aims—To compare prospectively the efficacy of the Vero, LLC-MK2, MDCK, Hep-2, and MRC-5 cell lines in the isolation of the mumps virus from clinical samples by means of the shell vial method. Methods—During an epidemic outbreak of parotiditis 48 clinical samples (saliva swabs and CSF) were studied. Two vials of the Vero, LLC-MK2, MDCK, MRC-5, and Hep-2 cell lines were inoculated with 0.2 ml of the samples by the shell vial assay. The vials were incubated at 36°C for two and five days. The vials were then fixed with acetone at -20°C for 10 minutes and stained by a monoclonal antibody against mumps virus by means of an indirect immunofluorescence assay. Results—The mumps virus was isolated from 36 samples. The Vero and LLC-MK2 cell lines showed a 100% isolation capacity, MDCK showed 77.7%, MRC-5 showed 44.4%, and Hep-2 showed 22.2%. The Vero and LLC-MK2 lines were significantly different to the other cell lines (p < 0.001). The sensitivity for the Vero and LLC-MK2 lines at two and five days of incubation was identical (100%). The values obtained in the study of the quantitative isolation capacity (positive isolation with > 5 infectious foci) were 94.4% for Vero, 97.2% for LLC-MK2, 5.5% for MDCK, 5.5% for Hep-2, and 0% for MRC-5. Conclusions—The Vero and LLC-MK2 cell lines are equally efficient at two and five days incubation for the isolation of the mumps virus from clinical samples, and the use of the shell vial method considerably shortens the time of aetiological diagnosis with higher specificity. Key Words: mumps virus • Vero cell line • LLC-MK2 cell line • MDCK cell line • Hep-2 cell line • MRC-5 cell line • isolation • shell vial PMID:11729211

  6. Cellular Effects of Endotoxin in Vitro: Mobility of Endotoxin in the Plasma Membrane of Hepatocytes and Neuroblastoma Cells

    DTIC Science & Technology

    1985-01-01

    initiates ain.otoxin eqxpocar In the pteet work. we have celular perturbations. remains to be determined. I In vivo stdahawe shown that the liver is an...1977) Scismos 195. 307-309 tomn at the Celular LAve (Majde. JA.. ad.). Mp 81-95. 30 SdchminW. J., SebchaW. Y- Casacasas. P. Wminsa Alan I. Liss. New

  7. [An experimental study on targeting suicide gene therapy for lung cancer with HSV-TK driven by hTERT promoter].

    PubMed

    Wang, Yan-ping; Tang, Xiao-jun; Zhou, Qing-hua; Che, Guo-wei; Chen, Xiao-he; Zhu, Da-xing

    2008-09-01

    To study the approach of targeting expression of suicide gene HSV-TK driven by human telomerase catalytic subunit (hTERT) promoter in lung cancer cells, and to investigate inhibitory effect of HSV-TK/GCV driven by hTERT promoter on proliferation of lung cancer cell line A549 in vitro and in vivo. (1) Recombinant expression vectors of HSV-TK driven by hTERT promoter and SV40 promoter (pGL3-hTp-TK and pGL3-SV40-TK) were transfected into telomerase-positive human lung adenocarcinoma cell A549 and telomerase-negative human embryonic lung fibroblast cell MRC-5. The mRNA expression of TK gene was detected with RT-PCR method; (2) With the treatment of GCV, the proliferation of above transfected cells was investigated by MTT assay; Influence of GCV on apoptosis and cell cycle of these cells was evaluated with flow cytometry; (3) After the subcutaneously transplantation of A549 cells into nude mice, intra-tumor injection of plasmid-liposome as well as intra-peritoneal injection of GCV were performed to stUdy anti-tumor effects of pGL3-hTp-TK/GCV and pGL3-SV40-TK/GCV in vivo. (1) Enzyme digestion and PCR suggested that recombinant plasmids of pGL3-hTp-TK and pGL3-SV40-TK were successfully constructed; TK mRNA expression was detected in both A549 and MRC-5 cells transfected with pGL3-SV40-TK, also in A549 transfected with pGL3-hTp-TK, but not in MRC-5 transfected with pGL3-hTp-TK; (2) GCV showed significant inhibition effect on proliferation of A549 and MRC-5 transfected with pGL3-SV40-TK in vitro, also on that of A549 transfected with pGL3-hTp-TK, but not of MRC-5 transfected with pGL3-hTp-TK; With the treatment of GCV, apoptosis index (AI) of A549 cells transfected with pGL3-SV40-TK and pGL3-hTp-TK (21.58% and 23.19% respectively) increased significantly, compared with that of A549 transfected with pGL3-hTp and blank control; GCV enhanced the effects on AI in MRC-5 transfected with pGL3-SV40-TK (9.35%), but not with pGL3-hTp-TK (0.88%); (3) Inhibition ratio of pGL3-SV40-TK

  8. Catechin and epicatechin reduce mitochondrial dysfunction and oxidative stress induced by amiodarone in human lung fibroblasts.

    PubMed

    Silva Santos, Luciana Fernandes; Stolfo, Adriana; Calloni, Caroline; Salvador, Mirian

    2017-06-01

    Amiodarone (AMD) and its metabolite N-desethylamiodarone can cause some adverse effects, which include pulmonary toxicity. Some studies suggest that mitochondrial dysfunction and oxidative stress may play a role in these adverse effects. Catechin and epicatechin are recognized as important phenolic compounds with the ability to decrease oxidative stress. Therefore, the aim of this study was to evaluate the potential of catechin and epicatechin to modulate mitochondrial dysfunction and oxidative damage caused by AMD in human lung fibroblast cells (MRC-5). Mitochondrial dysfunction was assessed through the activity of mitochondrial complex I and ATP biosynthesis. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Superoxide dismutase and catalase activity were measured spectrophotometrically at 480 and 240 nm, respectively. Lipid and protein oxidative levels were determined by thiobarbituric reactive substances and protein carbonyl assays, respectively. Nitric oxide (NO) levels were evaluated using the Griess reaction method. AMD was able to inhibit the activity of mitochondrial complex I and ATP biosynthesis in MRC-5 cells. Lipid and protein oxidative markers increased along with cell death, while superoxide dismutase and catalase activities and NO production decreased with AMD treatment. Both catechin and epicatechin circumvented mitochondrial dysfunction, thereby restoring the activity of mitochondrial complex I and ATP biosynthesis. Furthermore, the phenolic compounds were able to restore the imbalance in superoxide dismutase and catalase activities as well as the decrease in NO levels induced by AMD. Protein and lipid oxidative damage and cell death were reduced by catechin and epicatechin in AMD-treated cells. Catechin and epicatechin reduced mitochondrial dysfunction and oxidative stress caused by AMD in MRC-5 cells.

  9. Optimal isolation and xeno-free culture conditions for limbal stem cell function.

    PubMed

    Stasi, Kalliopi; Goings, DaVida; Huang, Jiayan; Herman, Lindsay; Pinto, Filipa; Addis, Russell C; Klein, Dahlia; Massaro-Giordano, Giacomina; Gearhart, John D

    2014-01-20

    To preserve limbal stem cell (LSC) function in vitro with xenobiotic-free culture conditions. Limbal epithelial cells were isolated from 139 donors using 15 variations of three dissociation solutions. All culture conditions were compared to the baseline condition of murine 3T3-J3 feeders with xenobiotic (Xeno) keratinocyte growth medium at 20% O2. Five Xeno and Xeno-free media with increasing concentrations of calcium and epidermal growth factor (EGF) were evaluated at 5%, 14%, and 20% O2. Human MRC-5, dermal (fetal, neonatal, or adult), and limbal stromal fibroblasts were compared. Statistical analysis was performed on the number of maximum serial weekly passages, percentage of aborted colonies, colony-forming efficiency (CFE), p63α(bright) cells, and RT-PCR ratio of p63α/K12. Immunocytochemistry and RT-PCR for p63α, ABCG2, Bmi1, C/EBPδ , K12, and MUC1 were performed to evaluate phenotype. Dispase/TrypLE was the isolation method that consistently showed the best yield, viability, and CFE. On 3T3-J2 feeders, Xeno-free medium with calcium 0.1 mM and EGF 10 ng/mL at 20% O2 supported more passages with equivalent percentage of aborted colonies, p63α(bright) cells, and p63α/K12 RT-PCR ratio compared to baseline Xeno-media. With this Xeno-free medium, MRC-5 feeders showed the best performance, followed by fetal, neonatal, adult HDF, and limbal fibroblasts. MRC-5 feeders supported serial passages with sustained high expression of progenitor cell markers at levels as robust as the baseline condition without significant difference between 20% and 5% O2. The LSC function can be maintained in vitro under appropriate Xeno-free conditions.

  10. Optimal Isolation and Xeno-Free Culture Conditions for Limbal Stem Cell Function

    PubMed Central

    Stasi, Kalliopi; Goings, DaVida; Huang, Jiayan; Herman, Lindsay; Pinto, Filipa; Addis, Russell C.; Klein, Dahlia; Massaro-Giordano, Giacomina; Gearhart, John D.

    2014-01-01

    Purpose. To preserve limbal stem cell (LSC) function in vitro with xenobiotic-free culture conditions. Methods. Limbal epithelial cells were isolated from 139 donors using 15 variations of three dissociation solutions. All culture conditions were compared to the baseline condition of murine 3T3-J3 feeders with xenobiotic (Xeno) keratinocyte growth medium at 20% O2. Five Xeno and Xeno-free media with increasing concentrations of calcium and epidermal growth factor (EGF) were evaluated at 5%, 14%, and 20% O2. Human MRC-5, dermal (fetal, neonatal, or adult), and limbal stromal fibroblasts were compared. Statistical analysis was performed on the number of maximum serial weekly passages, percentage of aborted colonies, colony-forming efficiency (CFE), p63αbright cells, and RT-PCR ratio of p63α/K12. Immunocytochemistry and RT-PCR for p63α, ABCG2, Bmi1, C/EBPδ , K12, and MUC1 were performed to evaluate phenotype. Results. Dispase/TrypLE was the isolation method that consistently showed the best yield, viability, and CFE. On 3T3-J2 feeders, Xeno-free medium with calcium 0.1 mM and EGF 10 ng/mL at 20% O2 supported more passages with equivalent percentage of aborted colonies, p63αbright cells, and p63α/K12 RT-PCR ratio compared to baseline Xeno-media. With this Xeno-free medium, MRC-5 feeders showed the best performance, followed by fetal, neonatal, adult HDF, and limbal fibroblasts. MRC-5 feeders supported serial passages with sustained high expression of progenitor cell markers at levels as robust as the baseline condition without significant difference between 20% and 5% O2. Conclusions. The LSC function can be maintained in vitro under appropriate Xeno-free conditions. PMID:24030457

  11. Inhibitory effects of alkaline extract of Citrus reticulata on pulmonary fibrosis.

    PubMed

    Zhou, Xian-Mei; Wen, Gao-Yan; Zhao, Yang; Liu, Yu-Mei; Li, Jian-Xin

    2013-03-07

    The pericarp of Citrus reticulata possesses medical functions of regulating Qi and expelling phlegm, and has been clinically used for the treatment of lung related diseases in traditional Chinese medicine for a long time. Our previous research revealed that Citrus reticulata exhibited inhibitory effects on pulmonary fibrosis; however, its active principles are still unclear. To investigate the inhibitory effects on pulmonary fibrosis of alkaline extract from ethanol extract of Citrus reticulata and clarify its possible mechanism. The citrus alkaline extract (CAE) was prepared from ethanol extract of Citrus reticulata and MRC-5 cells were used for the evaluation of inhibitory activity in vitro. CAE was further orally administrated to bleomycin (BLM)-induced pulmonary fibrosis rats. The rat body weight, hydroxyproline levels in serum and lung, pathological changes of lung, as well as mRNA and protein expressions of matrix metalloproteinase-9 (MMP-9), tissue inhibitor of metalloproteinase-1 (TIMP-1) and tumor necrosis factor-α (TNF-α) in rat lung tissues were analyzed. CAE dose-dependently inhibited the proliferation of MRC-5 cells, and the LDH assay clearly revealed that the inhibitory activity of CAE was not due to its cytotoxicity. CAE treatment significantly increased rat weight gain, ameliorated alveolitis and pulmonary fibrosis degree, and lowered hydroxyproline contents in both serum and lung tissues. RT-PCR and western blot revealed that mRNA and protein expressions of MMP-9 were significantly elevated, while mRNA and protein levels of TIMP-1 and TNF-α were markedly decreased in lung tissues of CAE treated rats. The results collectively demonstrated that CAE possessed an inhibitory activity on the proliferation of MRC-5 and a preventive effect on BLM-induced pulmonary fibrosis in rats. The preliminary mechanisms of the effects may be through upregulation of MMP-9 expression and inhibition of the expressions of TNF-α and TIMP-1. Copyright © 2013 Elsevier

  12. Mode of Action of (1′S,2′R)-9-{[1′,2′-Bis(hydroxymethyl) cycloprop-1′-yl]methyl}guanine (A-5021) against Herpes Simplex Virus Type 1 and Type 2 and Varicella-Zoster Virus

    PubMed Central

    Ono, Nobukazu; Iwayama, Satoshi; Suzuki, Katsuya; Sekiyama, Takaaki; Nakazawa, Harumi; Tsuji, Takashi; Okunishi, Masahiko; Daikoku, Tohru; Nishiyama, Yukihiro

    1998-01-01

    The mode of action of (1′S,2′R)-9-{[1′,2′-bis(hydroxymethyl)cycloprop-1′-yl]methyl}guanine (A-5021) against herpes simplex virus type 1 (HSV-1), HSV-2, and varicella-zoster virus (VZV) was studied. A-5021 was monophosphorylated at the 2′ site by viral thymidine kinases (TKs). The 50% inhibitory values for thymidine phosphorylation of A-5021 by HSV-1 TK and HSV-2 TK were comparable to those for penciclovir (PCV) and lower than those for acyclovir (ACV). Of these three agents, A-5021 inhibited VZV TK most efficiently. A-5021 was phosphorylated to a mono-, di-, and triphosphate in MRC-5 cells infected with HSV-1, HSV-2, and VZV. A-5021 triphosphate accumulated more than ACV triphosphate but less than PCV triphosphate in MRC-5 cells infected with HSV-1 or VZV, whereas HSV-2-infected MRC-5 cells had comparable levels of A-5021 and ACV triphosphates. The intracellular half-life of A-5021 triphosphate was considerably longer than that of ACV triphosphate and shorter than that of PCV triphosphate. A-5021 triphosphate competitively inhibited HSV DNA polymerases with respect to dGTP. Inhibition was strongest with ACV triphosphate, followed by A-5021 triphosphate and then (R,S)-PCV triphosphate. A DNA chain elongation experiment revealed that A-5021 triphosphate was incorporated into DNA instead of dGTP and terminated elongation, although limited chain extension was observed. Thus, the strong antiviral activity of A-5021 appears to depend on a more rapid and stable accumulation of its triphosphate in infected cells than that of ACV and on stronger inhibition of viral DNA polymerase by its triphosphate than that of PCV. PMID:9687413

  13. LGL1 modulates proliferation, apoptosis, and migration of human fetal lung fibroblasts.

    PubMed

    Zhang, Hui; Sweezey, Neil B; Kaplan, Feige

    2015-02-15

    Rapid growth and formation of new gas exchange units (alveogenesis) are hallmarks of the perinatal lung. Bronchopulmonary dysplasia (BPD), common in very premature infants, is characterized by premature arrest of alveogenesis. Mesenchymal cells (fibroblasts) regulate both lung branching and alveogenesis through mesenchymal-epithelial interactions. Temporal or spatial deficiency of late-gestation lung 1/cysteine-rich secretory protein LD2 (LGL1/CRISPLD2), expressed in and secreted by lung fibroblasts, can impair both lung branching and alveogenesis (LGL1 denotes late gestation lung 1 protein; LGL1 denotes the human gene; Lgl1 denotes the mouse/rat gene). Absence of Lgl1 is embryonic lethal. Lgl1 levels are dramatically reduced in oxygen toxicity rat models of BPD, and heterozygous Lgl1(+/-) mice exhibit features resembling human BPD. To explore the role of LGL1 in mesenchymal-epithelial interactions in developing lung, we developed a doxycycline (DOX)-inducible RNA-mediated LGL1 knockdown cellular model in human fetal lung fibroblasts (MRC5(LGL1KD)). We assessed the impact of LGL1 on cell proliferation, cell migration, apoptosis, and wound healing. DOX-induced MRC5(LGL1KD) suppressed cell growth and increased apoptosis of annexin V(+) staining cells and caspase 3/7 activity. LGL1-conditioned medium increased migration of fetal rat primary lung epithelial cells and human airway epithelial cells. Impaired healing by MRC5(LGL1KD) cells of a wound model was attenuated by addition of LGL1-conditioned medium. Suppression of LGL1 was associated with dysregulation of extracellular matrix genes (downregulated MMP1, ColXVα1, and ELASTIN) and proapoptosis genes (upregulated BAD, BAK, CASP2, and TNFRSF1B) and inhibition of 44/42MAPK phosphorylation. Our findings define a role for LGL1 in fibroblast expansion and migration, epithelial cell migration, and mesenchymal-epithelial signaling, key processes in fetal lung development.

  14. Benzo(a)pyrene induces p73 mRNA expression and necrosis in human lung adenocarcinoma H1299 cells.

    PubMed

    Jiang, Ying; Rao, Kaimin; Yang, Guangtao; Chen, Xi; Wang, Qian; Liu, Ailin; Zheng, Hongyan; Yuan, Jing

    2012-03-01

    p53 can mediate DNA damage-induced apoptosis in various cell lines treated with Benzo(a)pyrene (BaP). However, the potential role of p73, one of the p53 family members, in BaP-induced apoptotic cell death remains to be determined. In this study, normal fetal lung fibroblasts (MRC-5) and human lung adenocarcinoma cells (H1299, p53-null) were treated with BaP at concentrations of 8, 16, 32, 64, and 128 μM for 4 and 12 h. The oxidative stress status, extent of DNA damage, expression of p53, p73, mdm2, bcl-2, and bax at the mRNA and protein levels, and the percentages of apoptosis and/or necrosis were assessed. In the two BaP-treated cell lines, we observed increased malondialdehyde (MDA) formation and decreased superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity at 4 h after the treatment; furthermore, at the time points of 4 and 12 h, we observed extremely high levels of DNA damage. In addition, at 4 h after the treatment, BaP had induced necrosis in MRC-5 and H1299 cells, but it had inhibited apoptosis in MRC-5 cells (P < 0.01 for all). Furthermore, in BaP-treated H1299 cells, only the p73 mRNA level was up-regulated. The results suggested that BaP-induced DNA damage could trigger a shift from apoptotic cell death toward necrotic cell death and that necrotic cell death is independent of p53 and p73 in these cell lines. Future studies are needed to investigate the time course of changes in the type of BaP-induced cell death in more cell lines.

  15. Selective and potent in vitro antitrypanosomal activities of ten microbial metabolites.

    PubMed

    Otoguro, Kazuhiko; Ishiyama, Aki; Namatame, Miyuki; Nishihara, Aki; Furusawa, Toshiaki; Masuma, Rokuro; Shiomi, Kazuro; Takahashi, Yoko; Yamada, Haruki; Omura, Satoshi

    2008-06-01

    More than 400 compounds isolated from soil microorganisms, and catalogued in the antibiotic library of the Kitasato Institute for Life Sciences, were screened against African trypanosomes. Ten compounds were found to have selective and potent antitrypanosomal activity in vitro: aureothin, cellocidin, destomycin A, echinomycin, hedamycin, irumamycin, LL-Z 1272beta, O-methylnanaomycin A, venturicidin A and virustomycin A. Results of the in vitro assays using the GUTat 3.1 strain of Trypanosomal brucei brucei and the STIB900 strain of T. b. rhodesiense are presented. Cytotoxicity was determined using a human MRC-5 cell line. This is the first report of antitrypanosomal activities of the 10 microbial metabolites listed above.

  16. Cytotoxic activity of antioxidant constituents from Hypericum triquetrifolium Turra.

    PubMed

    Conforti, F; Loizzo, M R; Statti, A G; Menichini, F

    2007-01-01

    The Sulforodamine B (SRB) assay was used to test cytotoxicity against four human cancer cell lines and one normal cell line of antioxidant constituents isolated from Hypericum triquetrifolium Turra. Methanolic extract and pure compounds were tested against the large cell lung carcinoma cell line COR-L23, the hepatocellular carcinoma cell line HepG-2, renal cell adenocarcinoma ACHN, the amelanotic melanoma cell line C32 and normal human foetal lung MRC5. The results showed that I3-II8-biapigenin exhibited strong cytotoxic activity (IC50 = 5.73 micro g mL(-1)) showing a certain degree of selectivity against the different cell types.

  17. Single-walled carbon nanotubes (SWCNTs) inhibit heat shock protein 90 (HSP90) signaling in human lung fibroblasts and keratinocytes.

    PubMed

    Ong, Li-Chu; Tan, Yuen-Fen; Tan, Boon Shing; Chung, Felicia Fei-Lei; Cheong, Soon-Keng; Leong, Chee-Onn

    2017-08-15

    Single-walled carbon nanotubes (SWCNTs) are carbon-based nanomaterials that possess immense industrial potential. Despite accumulating evidence that exposure to SWCNTs might be toxic to humans, our understanding of the mechanisms for cellular toxicity of SWCNTs remain limited. Here, we demonstrated that acute exposure of short (1-3μm) and regular-length (5-30μm) pristine, carboxylated or hydroxylated SWCNTs inhibited cell proliferation in human somatic and human stem cells in a cell type-dependent manner. The toxicity of regular-length pristine SWCNT was most evidenced in NP69>CYT00086>MCF-10A>MRC-5>HaCaT > HEK-293T>HepG2. In contrast, the short pristine SWCNTs were relatively less toxic in most of the cells being tested, except for NP69 which is more sensitive to short pristine SWCNTs as compared to regular-length pristine SWCNTs. Interestingly, carboxylation and hydroxylation of regular-length SWCNTs, but not the short SWCNTs, significantly reduced the cytotoxicity. Exposure of SWCNTs also induced caspase 3 and 9 activities, mitochondrial membrane depolarization, and significant apoptosis and necrosis in MRC-5 embryonic lung fibroblasts. In contrast, SWCNTs inhibited the proliferation of HaCaT human keratinocytes without inducing cell death. Further analyses by gene expression profiling and Connectivity Map analysis showed that SWCNTs induced a gene expression signature characteristic of heat shock protein 90 (HSP90) inhibition in MRC-5 cells, suggesting that SWCNTs may inhibit the HSP90 signaling pathway. Indeed, exposure of MRC-5 cells to SWCNTs results in a dose-dependent decrease in HSP90 client proteins (AKT, CDK4 and BCL2) and a concomitant increase in HSP70 expression. In addition, SWCNTs also significantly inhibited HSP90-dependent protein refolding. Finally, we showed that ectopic expression of HSP90, but not HSP40 or HSP70, completely abrogated the cytotoxic effects of SWCNTs, suggesting that SWCNT-induced cellular toxicity is HSP90 dependent. In

  18. Rheum emodin inhibits enterovirus 71 viral replication and affects the host cell cycle environment

    PubMed Central

    Zhong, Ting; Zhang, Li-ying; Wang, Zeng-yan; Wang, Yue; Song, Feng-mei; Zhang, Ya-hong; Yu, Jing-hua

    2017-01-01

    Human enterovirus 71 (EV71) is the primary causative agent of recent large-scale outbreaks of hand, foot, and mouth disease (HFMD) in Asia. Currently, there are no drugs available for the prevention and treatment of HFMD. In this study, we compared the anti-EV71 activities of three natural compounds, rheum emodin, artemisinin and astragaloside extracted from Chinese herbs Chinese rhubarb, Artemisia carvifolia and Astragalus, respectively, which have been traditionally used for the treatment and prevention of epidemic diseases. Human lung fibroblast cell line MRC5 was mock-infected or infected with EV71, and treated with drugs. The cytotoxicity of the drugs was detected with MTT assay. The cytopathic effects such as cell death and condensed nuclei were morphologically observed. The VP1-coding sequence required for EV71 genome replication was assayed with qRT-PCR. Viral protein expression was analyzed with Western blotting. Viral TCID50 was determined to evaluate EV71 virulence. Flow cytometry analysis of propidium iodide staining was performed to analyze the cell cycle distribution of MRC5 cells. Rheum emodin (29.6 μmol/L) effectively protected MRC5 cells from EV71-induced cytopathic effects, which resulted from the inhibiting viral replication: rheum emodin treatment decreased viral genomic levels by 5.34-fold, viral protein expression by less than 30-fold and EV71 virulence by 0.33107-fold. The fact that inhibition of rheum emodin on viral virulence was much stronger than its effects on genomic levels and viral protein expression suggested that rheum emodin inhibited viral maturation. Furthermore, rheum emodin treatment markedly diminished cell cycle arrest at S phase in MRC5 cells, which was induced by EV71 infection and favored the viral replication. In contrast, neither astragaloside (50 μmol/L) nor artemisinin (50 μmol/L) showed similar anti-EV71 activities. Among the three natural compounds tested, rheum emodin effectively suppressed EV71 viral replication

  19. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1.

    PubMed

    Salah, R; Michaud, P; Mati, F; Harrat, Z; Lounici, H; Abdi, N; Drouiche, N; Mameri, N

    2013-01-01

    In the present study, anticancer activities of chitin, chitosan and low molecular weight chitin were evaluated using a human tumour cell line, THP-1. A molecular weight-activity relationship and an electrostatic interaction-activity relationship were determined. The cytotoxic effects of chitin and derivatives were also evaluated using a normal human foetal lung fibroblastic cell line, MRC-5 and the specific cytotoxicity of chitin and derivatives to tumour cell lines was demonstrated. The high antitumour effect of low molecular weight of chitin was established.

  20. Synthesis, characterization and biological activities of copper(II) complex of 2-Benzimidazolyl-urea and the nitrate salt of 2-Benzimidazolyl-urea

    NASA Astrophysics Data System (ADS)

    Poyraz, Mehmet; Sari, Musa; Banti, Christina N.; Hadjikakou, Sotiris K.

    2017-10-01

    The synthesis of the complex {[Cu(BZIMU)2](NO3)2} (1) (BZIMU = 2-Benzimidazolyl-urea) is reported here. The complex 1 was characterized by elemental analysis, FT-IR, magnetic susceptibility and molar conductance measurements. The crystal structures of 1 and of the nitrate salt of [(BZIMUH+)(NO3)-] (2) were determined by X-ray diffraction analysis. The copper complex 1 and [(BZIMUH+)(NO3)-] (2) were evaluated for their in vitro cytotoxic activity (cell viability) against human cervix adenocarcinoma (HeLa) and human breast adenocarcinoma (MCF-7) cell line and normal human fetal lung fibroblast cells (MRC-5) with SRB assay.

  1. Pharmacomodulation on the 3-acetylursolic acid skeleton: Design, synthesis, and biological evaluation of novel N-{3-[4-(3-aminopropyl)piperazinyl]propyl}-3-O-acetylursolamide derivatives as antimalarial agents.

    PubMed

    Gnoatto, Simone C B; Susplugas, Sophie; Dalla Vechia, Luciana; Ferreira, Thais B; Dassonville-Klimpt, Alexandra; Zimmer, Karine R; Demailly, Catherine; Da Nascimento, Sophie; Guillon, Jean; Grellier, Philippe; Verli, Hugo; Gosmann, Grace; Sonnet, Pascal

    2008-01-15

    A series of new piperazine derivatives of ursolic acid was synthesized and tested against Plasmodium falciparum strains. They were also tested on their cytotoxicity effects upon MRC-5 cells. Seven new piperazinyl analogues showed significant activity in the nanomolar range (IC(50)=78-167nM) against Plasmodium falciparum CQ-resistant strain FcB1. A possible mechanism of interaction implicating binding of these compounds to beta-hematin was supported by in vitro tests. Moreover, the importance of the hydrophilic framework attached at the terminal nitrogen atom of the bis-(3-aminopropyl)piperazine joined to the triterpene ring was also explored through molecular dynamic simulations.

  2. Rheum emodin inhibits enterovirus 71 viral replication and affects the host cell cycle environment.

    PubMed

    Zhong, Ting; Zhang, Li-Ying; Wang, Zeng-Yan; Wang, Yue; Song, Feng-Mei; Zhang, Ya-Hong; Yu, Jing-Hua

    2017-03-01

    Human enterovirus 71 (EV71) is the primary causative agent of recent large-scale outbreaks of hand, foot, and mouth disease (HFMD) in Asia. Currently, there are no drugs available for the prevention and treatment of HFMD. In this study, we compared the anti-EV71 activities of three natural compounds, rheum emodin, artemisinin and astragaloside extracted from Chinese herbs Chinese rhubarb, Artemisia carvifolia and Astragalus, respectively, which have been traditionally used for the treatment and prevention of epidemic diseases. Human lung fibroblast cell line MRC5 was mock-infected or infected with EV71, and treated with drugs. The cytotoxicity of the drugs was detected with MTT assay. The cytopathic effects such as cell death and condensed nuclei were morphologically observed. The VP1-coding sequence required for EV71 genome replication was assayed with qRT-PCR. Viral protein expression was analyzed with Western blotting. Viral TCID50 was determined to evaluate EV71 virulence. Flow cytometry analysis of propidium iodide staining was performed to analyze the cell cycle distribution of MRC5 cells. Rheum emodin (29.6 μmol/L) effectively protected MRC5 cells from EV71-induced cytopathic effects, which resulted from the inhibiting viral replication: rheum emodin treatment decreased viral genomic levels by 5.34-fold, viral protein expression by less than 30-fold and EV71 virulence by 0.33107-fold. The fact that inhibition of rheum emodin on viral virulence was much stronger than its effects on genomic levels and viral protein expression suggested that rheum emodin inhibited viral maturation. Furthermore, rheum emodin treatment markedly diminished cell cycle arrest at S phase in MRC5 cells, which was induced by EV71 infection and favored the viral replication. In contrast, neither astragaloside (50 μmol/L) nor artemisinin (50 μmol/L) showed similar anti-EV71 activities. Among the three natural compounds tested, rheum emodin effectively suppressed EV71 viral replication

  3. Antiproliferative Withanolides from Datura wrightii#

    PubMed Central

    Zhang, Huaping; Bazzill, Joseph; Gallagher, Robert J.; Subramanian, Chitra; Grogan, Patrick T.; Day, Victor W.; Kindscher, Kelly; Cohen, Mark S.; Timmermann, Barbara N.

    2013-01-01

    A new withanolide (1) named withawrightolide, and four known withanolides (2–5) were isolated from the aerial parts of Datura wrightii (Solanaceae). The structure of compound 1 was elucidated through 2D NMR and other spectroscopic techniques. In addition, the structure of withametelin L (2) was confirmed by X-ray crystallographic analysis. Using MTS viability assays, withanolides 1–5 showed antiproliferative activities against human glioblastoma (U251 and U87), head and neck squamous cell carcinoma (MDA-1986), and normal fetal lung fibroblast (MRC-5) cells with IC50 values in the range between 0.56 and 5.6 μM. PMID:23252848

  4. Identification of cell lines permissive for human coronavirus NL63.

    PubMed

    Schildgen, Oliver; Jebbink, Maarten F; de Vries, Michel; Pyrc, Krzysztov; Dijkman, Ronald; Simon, Arne; Müller, Andreas; Kupfer, Bernd; van der Hoek, Lia

    2006-12-01

    Six cell lines routinely used in laboratories were tested for permissiveness to the infection with the newly identified human coronavirus NL63. Two monkey epithelial cell lines, LLC-MK2 and Vero-B4, showed a cytopathic effect (CPE) and clear viral replication, whereas no CPE or replication was observed in human lung fibroblasts MRC-5s. In Rhabdomyosarcoma cells, Madin-Darby-Canine-kidney cells and in an undefined monkey kidney cell line some replication was observed but massive exponential rise in virus yield lacked The results will lead to an improved routine diagnostic algorithm for the detection of the human coronavirus NL63.

  5. Bioassay-Guided Isolation of Cytotoxic Cycloartane Triterpenoid Glycosides from the Traditionally Used Medicinal Plant Leea indica.

    PubMed

    Wong, Yau Hsiung; Abdul Kadir, Habsah; Ling, Sui Kiong

    2012-01-01

    Leea indica is a medicinal plant used traditionally to cure cancer. In this study, the cytotoxic compounds of L. indica were isolated using bioassay-guided approach. Two cycloartane triterpenoid glycosides, mollic acid arabinoside (MAA) and mollic acid xyloside (MAX), were firstly isolated from L. indica. They inhibited the growth of Ca Ski cervical cancer cells with IC(50) of 19.21 μM (MAA) and 33.33 μM (MAX). MRC5 normal cell line was used to calculate selectivity index. MAA and MAX were about 8 and 4 times more cytotoxic to Ca Ski cells compared to MRC5. The cytotoxicity of MAA was characterized by both cytostatic and cytocidal effects. MAA decreased the expression of proliferative cell nuclear antigen, increased sub-G1 cells, and arrested cells in S and G2/M phases. This study provides the evidence for the ethnomedicinal use of L. indica and paves the way for future mechanism studies on the anticancer effects of MAA.

  6. Chemical Characterization and Cytotoxic Activity of Blueberry Extracts (cv. Misty) Cultivated in Brazil.

    PubMed

    Massarotto, Giovana; Barcellos, Thiago; Garcia, Charlene Silvestrin Celi; Brandalize, Ana Paula Carneiro; Moura, Sidnei; Schwambach, Joséli; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2016-08-01

    Vaccinium corymbosum (L.) varieties cultivation is relatively recent in Brazil, but its production has been intensified given its good adaptability to the Southern Brazil climate. Blueberries are a rich source of phenolic compounds and contain significant levels of anthocyanins, flavonols, chlorogenic acids, and procyanidins, which lead to different biological activities. Chemical identification of skin and whole hydroalcoholic blueberry extracts (ExtSB and ExtWB) revealed the presence of anthocyanins concentrated in the skin and others chemicals compounds as quercetin glycosides, proanthocyanins dimers, citric, and chlorogenic acid in the pulp. Selectivity for tumor cell lines (Hep-2, HeLa, HT-29) using ExtSB and ExtWB extracts was observed through MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay after 24 h of treatment when compared to nontumor cells (MRC-5). Morphological changes and late stages of apoptotic and necrosis process were seen in HT-29 cell line after ExtWB treatment, compared to nontumor cell line MRC-5. These results are in agreement with other studies that indicate the activity of compounds such as anthocyanins and other molecules found in Southern Highbush blueberry variety, attributed to promote beneficial effects on health that may respond as cytotoxic natural agent and contribute to cancer treatment. © 2016 Institute of Food Technologists®

  7. Assessment of packed bed bioreactor systems in the production of viral vaccines

    PubMed Central

    2014-01-01

    Vaccination is believed to be the most effective method for the prevention of infectious diseases. Thus it is imperative to develop cost effective and scalable process for the production of vaccines so as to make them affordable for mass use. In this study, performance of a novel disposable iCELLis fixed bed bioreactor system was investigated for the production of some viral vaccines like Rabies, Hepatitis-A and Chikungunya vaccines in comparison to conventional systems like the commercially available packed bed system and roller bottle system. Vero and MRC-5 cell substrates were evaluated for growth parameters in all the three systems maintaining similar seeding density, multiplicity of infection (MOI) and media components. It was observed that Vero cells showed similar growth in all the three bioreactors whereas MRC-5 cells showed better growth in iCELLis Nano system and roller bottle system. Subsequently, the virus infection and antigen production studies also revealed that for Hepatitis-A and Chikungunya iCELLis Nano bioreactor system was better to the commercial packed bed bioreactor and roller bottle systems. Although for rabies antigen production commercially available packed bed bioreactor system was found to be better. This study shows that different bioreactor platforms may be employed for viral vaccine production and iCELLis Nano is one of such new convenient and a stable platform for production of human viral vaccines. PMID:24949260

  8. Assessment of packed bed bioreactor systems in the production of viral vaccines.

    PubMed

    Rajendran, Ramya; Lingala, Rajendra; Vuppu, Siva Kumar; Bandi, Bala Obulapathi; Manickam, Elaiyaraja; Macherla, Sankar Rao; Dubois, Stéphanie; Havelange, Nicolas; Maithal, Kapil

    2014-01-01

    Vaccination is believed to be the most effective method for the prevention of infectious diseases. Thus it is imperative to develop cost effective and scalable process for the production of vaccines so as to make them affordable for mass use. In this study, performance of a novel disposable iCELLis fixed bed bioreactor system was investigated for the production of some viral vaccines like Rabies, Hepatitis-A and Chikungunya vaccines in comparison to conventional systems like the commercially available packed bed system and roller bottle system. Vero and MRC-5 cell substrates were evaluated for growth parameters in all the three systems maintaining similar seeding density, multiplicity of infection (MOI) and media components. It was observed that Vero cells showed similar growth in all the three bioreactors whereas MRC-5 cells showed better growth in iCELLis Nano system and roller bottle system. Subsequently, the virus infection and antigen production studies also revealed that for Hepatitis-A and Chikungunya iCELLis Nano bioreactor system was better to the commercial packed bed bioreactor and roller bottle systems. Although for rabies antigen production commercially available packed bed bioreactor system was found to be better. This study shows that different bioreactor platforms may be employed for viral vaccine production and iCELLis Nano is one of such new convenient and a stable platform for production of human viral vaccines.

  9. Improved antioxidative and cytotoxic activities of chamomile (Matricaria chamomilla) florets fermented by Lactobacillus plantarum KCCM 11613P*

    PubMed Central

    Park, Eun-Hye; Bae, Won-Young; Eom, Su-Jin; Kim, Kee-Tae; Paik, Hyun-Dong

    2017-01-01

    Antioxidative and cytotoxic effects of chamomile (Matricaria chamomilla) fermented by Lactobacillus plantarum were investigated to improve their biofunctional activities. Total polyphenol (TP) content was measured by the Folin-Denis method, and the antioxidant activities were assessed by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method and β-carotene bleaching method. AGS, HeLa, LoVo, MCF-7, and MRC-5 (normal) cells were used to examine the cytotoxic effects by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) assay. The TP content of fermented chamomile reduced from 21.75 to 18.76 mg gallic acid equivalent (mg GAE)/g, but the DPPH radical capturing activity of fermented chamomile was found to be 11.1% higher than that of nonfermented chamomile after 72 h of fermentation. Following the β-carotene bleaching, the antioxidative effect decreased because of a reduction in pH during fermentation. Additionally, chamomile fermented for 72 h showed a cytotoxic effect of about 95% against cancer cells at 12.7 mg solid/ml of broth, but MRC-5 cells were significantly less sensitive against fermented chamomile samples. These results suggest that the fermentation of chamomile could be applied to develop natural antioxidative and anticancer products. PMID:28124843

  10. Design, synthesis and antitubercular potency of 4-hydroxyquinolin-2(1H)-ones.

    PubMed

    de Macedo, Maíra Bidart; Kimmel, Roman; Urankar, Damijana; Gazvoda, Martin; Peixoto, Antonio; Cools, Freya; Torfs, Eveline; Verschaeve, Luc; Lima, Emerson Silva; Lyčka, Antonín; Milićević, David; Klásek, Antonín; Cos, Paul; Kafka, Stanislav; Košmrlj, Janez; Cappoen, Davie

    2017-09-29

    In this study, a 50-membered library of substituted 4-hydroxyquinolin-2(1H)-ones and two closely related analogues was designed, scored in-silico for drug likeness and subsequently synthesized. Thirteen derivatives, all sharing a common 3-phenyl substituent showed minimal inhibitory concentrations against Mycobacterium tuberculosis H37Ra below 10 μM and against Mycobacterium bovis AN5A below 15 μM but were inactive against faster growing mycobacterial species. None of these selected derivatives showed significant acute toxicity against MRC-5 cells or early signs of genotoxicity in the Vitotox™ assay at the active concentration range. The structure activity study relation provided some insight in the further favourable substitution pattern at the 4-hydroxyquinolin-2(1H)-one scaffold and finally 6-fluoro-4-hydroxy-3-phenylquinolin-2(1H)-one (38) was selected as the most promising member of the library with a MIC of 3.2 μM and a CC50 against MRC-5 of 67.4 μM. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Novel Zinc(II) Complexes [Zn(atc-Et)2] and [Zn(atc-Ph)2]: In Vitro and in Vivo Antiproliferative Studies

    PubMed Central

    Lopes, Erica de O.; de Oliveira, Carolina G.; da Silva, Patricia B.; Eismann, Carlos E.; Suárez, Carlos A.; Menegário, Amauri A.; Leite, Clarice Q. F.; Deflon, Victor M.; Pavan, Fernando R.

    2016-01-01

    Cisplatin and its derivatives are the main metallodrugs used in cancer therapy. However, low selectivity, toxicity and drug resistance are associated with their use. The zinc(II) (ZnII) thiosemicarbazone complexes [Zn(atc-Et)2] (1) and [Zn(atc-Ph)2] (2) (atc-R: monovalent anion of 2-acetylpyridine N4-R-thiosemicarbazone) were synthesized and fully characterized in the solid state and in solution via elemental analysis, Fourier transform infrared (FTIR), ultraviolet-visible (UV-Vis) and proton nuclear magnetic resonance (1H NMR) spectroscopy, conductometry and single-crystal X-ray diffraction. The cytotoxicity of these complexes was evaluated in the HepG2, HeLa, MDA-MB-231, K-562, DU 145 and MRC-5 cancer cell lines. The strongest antiproliferative results were observed in MDA-MB-231 and HepG2 cells, in which these complexes displayed significant selective toxicity (3.1 and 3.6, respectively) compared with their effects on normal MRC-5 cells. In vivo studies were performed using an alternative model (Artemia salina L.) to assure the safety of these complexes, and the results were confirmed using a conventional model (BALB/c mice). Finally, tests of oral bioavailability showed maximum plasma concentrations of 3029.50 µg/L and 1191.95 µg/L for complexes 1 and 2, respectively. According to all obtained results, both compounds could be considered as prospective antiproliferative agents that warrant further research. PMID:27213368

  12. Essential Oil Content of the Rhizome of Curcuma purpurascens Bl. (Temu Tis) and Its Antiproliferative Effect on Selected Human Carcinoma Cell Lines

    PubMed Central

    Hong, Sok-Lai; Lee, Guan-Serm; Ahmed Hamdi, Omer Abdalla; Awang, Khalijah; Aznam Nugroho, Nurfina

    2014-01-01

    Curcuma purpurascens Bl., belonging to the Zingiberaceae family, is known as temu tis in Yogyakarta, Indonesia. In this study, the hydrodistilled dried ground rhizome oil was investigated for its chemical content and antiproliferative activity against selected human carcinoma cell lines (MCF7, Ca Ski, A549, HT29, and HCT116) and a normal human lung fibroblast cell line (MRC5). Results from GC-MS and GC-FID analysis of the rhizome oil of temu tis showed turmerone as the major component, followed by germacrone, ar-turmerone, germacrene-B, and curlone. The rhizome oil of temu tis exhibited strong cytotoxicity against HT29 cells (IC50 value of 4.9 ± 0.4 μg/mL), weak cytotoxicity against A549, Ca Ski, and HCT116 cells (with IC50 values of 46.3 ± 0.7, 32.5 ± 1.1, and 35.0 ± 0.3 μg/mL, resp.), and no inhibitory effect against MCF7 cells. It exhibited mild cytotoxicity against a noncancerous human lung fibroblast cell line (MRC5), with an IC50 value of 25.2 ± 2.7 μg/mL. This is the first report on the chemical composition of this rhizome's oil and its selective antiproliferative effect on HT29. The obtained data provided a basis for further investigation of the mode of cell death. PMID:25177723

  13. MiR-21 is involved in radiation-induced bystander effects.

    PubMed

    Xu, Shuai; Ding, Nan; Pei, Hailong; Hu, Wentao; Wei, Wenjun; Zhang, Xurui; Zhou, Guangming; Wang, Jufang

    2014-01-01

    Radiation-induced bystander effects are well-established phenomena, in which DNA damage responses are induced not only in the directly irradiated cells but also in the non-irradiated bystander cells through intercellular signal transmission. Recent studies hint that bystander effects are possibly mediated via small non-coding RNAs, especially microRNAs. Thus, more details about the roles of microRNA in bystander effects are urgently needed to be elucidated. Here we demonstrated that bystander effects were induced in human fetal lung MRC-5 fibroblasts through medium-mediated way by different types of radiation. We identified a set of differentially expressed microRNAs in the cell culture medium after irradiation, among which the up-regulation of miR-21 was further verified with qRT-PCR. In addition, we found significant upregulation of miR-21 in both directly irradiated cells and bystander cells, which was confirmed by the expression of miR-21 precursor and its target genes. Transfection of miR-21 mimics into non-irradiated MRC-5 cells caused bystander-like effects. Taken together, our data reveals that miR-21 is involved in radiation-induced bystander effects. Elucidation of such a miRNA-mediated bystander effect is of utmost importance in understanding the biological processes related to ionizing radiation and cell-to-cell communication.

  14. Comparing the cytotoxic potential of Withania somnifera water and methanol extracts.

    PubMed

    Pretorius, Etheresia; Oberholzer, Hester Magdalena; Becker, Petrus Johannes

    2009-05-07

    The plant Withania somnifera (Linn.) (Solanacea) is a well-known herbal medicine used in many parts of the world. It has anti-inflammatory, antioxidant, and antitumor as well as neural protective properties. It seems as if the two most active withanolide components, namely withaferin A and withanolide D, found in methanol (MeOH) extracts, are responsible for the anti-inflammatory and antioxidant properties of the plant. The current research evaluated and compared the cytotoxic potential of water and methanol extracts of W. somnifera using a combined crystal violet MTT and Neutral Red assay. MRC-5 cells, a human embryonic lung-derived diploid fibroblast cell line, were the cells of choice. We found that the three lowest concentrations (0.007, 0.042, 0.250 microg/ml) of the plant material extracted in double distilled H(2)O and MeOH do not differ significantly in any of the assays. We therefore suggest that low concentrations of MeOH extracts (up to 0.250 microg/ml plant material) do not cause cell damage to the MRC-5 cells, however, higher levels should be avoided as cell viability and cell numbers are negatively influenced.

  15. Effect on the wound healing process and in vitro cell proliferation by the medicinal Mexican plant Ageratina pichinchensis.

    PubMed

    Romero-Cerecero, Ofelia; Zamilpa-Álvarez, Alejandro; Ramos-Mora, Alberto; Alonso-Cortés, Daniel; Jiménez-Ferrer, Jesús Enrique; Huerta-Reyes, Maira Estrella; Tortoriello, Jaime

    2011-07-01

    The species Ageratina pichinchensis (Asteraceae) has been used for a long time in Mexican traditional medicine for the treatment of different skin conditions and injuries. In this study, the healing capacity of the plant extracts obtained was evaluated and, in order to understand the mechanism of healing, we also analyzed its effect on cell proliferation IN VITRO, cytotoxicity, and skin irritation. Different extracts obtained from the aerial parts of A. pichinchensis, topically administrated, were evaluated in a healing model by scalpel-blade incision on the rat. The extracts, at 10 % concentrations, were administrated daily during an eight-day period. A control group, to which the vehicle was administered, was used; while fibrinolysin (Fibrase SA®) was administered for positive control purposes. Reduction in wound size and the histological characteristics of the skin at the end of the treatment were evaluated. Cytotoxicity was evaluated in cell lines KB (nasopharyngeal carcinoma), UISO (squamous cell carcinoma of the cervix), OVCAR (ovarian carcinoma), and HCT-15 (colon carcinoma). In addition, the effect on cell proliferation of cell line MRC-5 (normal cells from human fetal lung) was measured, and skin irritation was evaluated. The results showed an important healing capacity of A. pichinchensis extract in noninfected wounds; the aqueous extract was found to be the most efficient. The extracts exhibited no cytotoxic effect; however, there was an effect that promoted cell proliferation in cell line MRC-5. The products tested demonstrated no skin irritant effects. © Georg Thieme Verlag KG Stuttgart · New York.

  16. Study of the in vitro antiplasmodial, antileishmanial and antitrypanosomal activities of medicinal plants from Saudi Arabia.

    PubMed

    Al-Musayeib, Nawal M; Mothana, Ramzi A; Al-Massarani, Shaza; Matheeussen, An; Cos, Paul; Maes, Louis

    2012-09-25

    The present study investigated the in vitro antiprotozoal activity of sixteen selected medicinal plants. Plant materials were extracted with methanol and screened in vitro against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. Cytotoxic activity was determined against MRC-5 cells to assess selectivity. The criterion for activity was an IC₅₀ < 10 μg/mL (<5 μg/mL for T. brucei) and a selectivity index of ≥4. Antiplasmodial activity was found in the extracts of Prosopis juliflora and Punica granatum. Antileishmanial activity against L. infantum was demonstrated in Caralluma sinaica and Periploca aphylla. Amastigotes of T. cruzi were affected by the methanol extract of Albizia lebbeck pericarp, Caralluma sinaica, Periploca aphylla and Prosopius juliflora. Activity against T. brucei was obtained in Prosopis juliflora. Cytotoxicity (MRC-5 IC₅₀ < 10 μg/mL) and hence non-specific activities were observed for Conocarpus lancifolius.

  17. Bioassay-Guided Isolation of Cytotoxic Cycloartane Triterpenoid Glycosides from the Traditionally Used Medicinal Plant Leea indica

    PubMed Central

    Wong, Yau Hsiung; Abdul Kadir, Habsah; Ling, Sui Kiong

    2012-01-01

    Leea indica is a medicinal plant used traditionally to cure cancer. In this study, the cytotoxic compounds of L. indica were isolated using bioassay-guided approach. Two cycloartane triterpenoid glycosides, mollic acid arabinoside (MAA) and mollic acid xyloside (MAX), were firstly isolated from L. indica. They inhibited the growth of Ca Ski cervical cancer cells with IC50 of 19.21 μM (MAA) and 33.33 μM (MAX). MRC5 normal cell line was used to calculate selectivity index. MAA and MAX were about 8 and 4 times more cytotoxic to Ca Ski cells compared to MRC5. The cytotoxicity of MAA was characterized by both cytostatic and cytocidal effects. MAA decreased the expression of proliferative cell nuclear antigen, increased sub-G1 cells, and arrested cells in S and G2/M phases. This study provides the evidence for the ethnomedicinal use of L. indica and paves the way for future mechanism studies on the anticancer effects of MAA. PMID:22203865

  18. Detection of 1,N(2)-propano-2'-deoxyguanosine adducts in genomic DNA by ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry in combination with stable isotope dilution.

    PubMed

    Zhang, Ning; Song, Yuanyuan; Wu, Danni; Xu, Tian; Lu, Meiling; Zhang, Weibing; Wang, Hailin

    2016-06-10

    Crotonaldehyde (Cro) is one of widespread and genotoxic α,β-unsaturated aldehydes and can react with the exocyclic amino group of 2'-deoxyguanosine (dG) in genomic DNA to form 1,N(2)-propano-2'-deoxyguanosine (ProdG) adducts. In this study, two diastereomers of high purity were prepared, including non-isotope and stable isotope labeled ProdG adducts, and exploited stable isotope dilution-based calibration method. By taking advantage of synthesized ProdG standards, we developed a sensitive ultrahigh performance liquid chromatography-electrospray ionization-tandem mass spectrometry (UHPLC-ESI-MS/MS) method for accurate quantification of two diastereomers of ProdG adducts. In addition to optimization of the UHPLC separation, ammonium bicarbonate (NH4HCO3) was used as additive in the mobile phase for enhancing the ionization efficiency to ProdG adducts and facilitating MS detection. The limits of detection (LODs, S/N=3) and the limits of quantification (LOQs, S/N=10) are estimated about 50 amol and 150 amol, respectively. By the use of the developed method, both diastereomers of ProdG adducts can be detected in untreated human MRC5 cells with a frequency of 2.4-3.5 adducts per 10(8) nucleotides. Crotonaldehyde treatment dramatically increases the levels of ProdG adducts in human MRC5 in a concentration-dependent manner.

  19. Clathrin-mediated endocytosis of gold nanoparticles in vitro.

    PubMed

    Ng, Cheng Teng; Tang, Florence Mei Ai; Li, Jasmine Jia'en; Ong, Cynthia; Yung, Lanry Lin Yue; Bay, Boon Huat

    2015-02-01

    Gold nanoparticles (AuNPs) have potential biomedical and scientific applications. In this study, we evaluated the uptake and internalization of FBS-coated 20 nm AuNPs into lung fibroblasts and liver cells by different microscopy techniques. AuNP aggregates were observed inside MRC5 lung fibroblasts and Chang liver cells under light microscopy, especially after enhancement with automegallography. Clusters of AuNPs were observed to be adsorbed on the cell surface by scanning electron microscopy. Ultrathin sections showed that AuNPs were mainly enclosed within cytoplasmic vesicles when viewed under transmission electron microscopy. We also investigated the mechanism of uptake for AuNPs, using endocytosis inhibitors and quantification of Au with inductively coupled plasma mass spectrometry. Cells treated with concanavalin A and chlorpromazine showed significant decrease of Au uptake in MRC5 lung fibroblasts and Chang liver cells, respectively, implying that the uptake of AuNPs was facilitated by clathrin-mediated endocytosis. It would therefore appear that uptake of 20 nm AuNPs in both cell types with different tissues of origin, was dependent upon clathrin-mediated endocytosis.

  20. MiR-21 is involved in radiation-induced bystander effects

    PubMed Central

    Xu, Shuai; Ding, Nan; Pei, Hailong; Hu, Wentao; Wei, Wenjun; Zhang, Xurui; Zhou, Guangming; Wang, Jufang

    2014-01-01

    Radiation-induced bystander effects are well-established phenomena, in which DNA damage responses are induced not only in the directly irradiated cells but also in the non-irradiated bystander cells through intercellular signal transmission. Recent studies hint that bystander effects are possibly mediated via small non-coding RNAs, especially microRNAs. Thus, more details about the roles of microRNA in bystander effects are urgently needed to be elucidated. Here we demonstrated that bystander effects were induced in human fetal lung MRC-5 fibroblasts through medium-mediated way by different types of radiation. We identified a set of differentially expressed microRNAs in the cell culture medium after irradiation, among which the up-regulation of miR-21 was further verified with qRT-PCR. In addition, we found significant upregulation of miR-21 in both directly irradiated cells and bystander cells, which was confirmed by the expression of miR-21 precursor and its target genes. Transfection of miR-21 mimics into non-irradiated MRC-5 cells caused bystander-like effects. Taken together, our data reveals that miR-21 is involved in radiation-induced bystander effects. Elucidation of such a miRNA-mediated bystander effect is of utmost importance in understanding the biological processes related to ionizing radiation and cell-to-cell communication. PMID:25483031

  1. Combretastatin A-4 derivatives: synthesis and evaluation of 2,4,5-triaryl-1H-imidazoles as potential agents against H1299 (non-small cell lung cancer cell).

    PubMed

    Tseng, Chih-Hua; Li, Chi-Yi; Chiu, Chien-Chih; Hu, Huei-Ting; Han, Chein-Hwa; Chen, Yeh-Long; Tzeng, Cherng-Chyi

    2012-11-01

    A number of 2,4,5-triaryl-1H-imidazole derivatives were synthesized and evaluated for their antiproliferative activities against the growth of five cell lines including three non-small cell lung cancers (H460, H1299, and A549), one breast cancer (MCF-7), and one normal diploid embryonic lung cell line (MRC-5). Preliminary results indicated that both 2-(5-bromofuran-2-yl)-4,5-bis{4-[3-(dimethylamino) propoxy] phenyl}-1H-imidazole (10f) and 4,5-bis{4-[3-(dimethylamino)propoxy]phenyl}-2-(5-nitrofuran-2-yl)-1H -imidazole (10g) were selectively active against the growth of H1229 with an IC(50) of less than 0.1 μM, thus were more active than topotecan (IC(50) > 10.0 μ M). However, both 10f and 10g exhibited only marginal cytotoxicity against H460, A549, MCF-7, and MRC-5 requiring an IC (50) of at least 4.16 μM. Our results also indicated that 10f induced H1299 cell cycle arrest at G0/G1 through the inactivation of p38 MAPK, JNK, ERK, as well as the expression of SIRT1 and survivin. These results suggested that 10f might have therapeutic potential against H1299 (non-small cell lung cancer cell).

  2. An Optically-Assisted 3-D Cellular Array Machine

    DTIC Science & Technology

    1993-11-05

    Presented by: Physical Optics Corporation 0 Research & Development Division 20600 Gramercy Place, Suite 103 Torrance, California 90501 Principal...Computer Machine (Constructed Hardware) (Planned Hardware Design) Processing Techniques Digital Only Digital and Analog Analog Processor N/A Celular Neural

  3. International Conference on Partitioning in Aqueous Two-Phase Systems: Advances in Separation in Biochenistry, Cell Biology and Biotechnology (7th) Held in New Orleans, Louisiana on 2-7 June 1991.

    DTIC Science & Technology

    1991-06-27

    de Bioquimica y Biologia Molecular y Celular. Facultad de Veterinaria. Universidad de Zaragoza. SPAIN Homogenization of brain tissue results in nerve...School of Medicine, London, U.K. Jose Luque, Jesus Nendieta, Pilar Sancho Departamento de Bioqulmica y Biologia Molecular , Universidad de Alcal& de...and M. J. L6pez-Pirez. Departamento de Bioquimica y Biologia Molecular y Celular. Facultad de Veterinaria. Universidad de Zaragoza. SPAIN Previous

  4. Antiviral Activity and Possible Mechanism of Action of Constituents Identified in Paeonia lactiflora Root toward Human Rhinoviruses

    PubMed Central

    Ngan, Luong Thi My; Jang, Myeong Jin; Kwon, Min Jung; Ahn, Young Joon

    2015-01-01

    Human rhinoviruses (HRVs) are responsible for more than half of all cases of the common cold and cost billions of USD annually in medical visits and missed school and work. An assessment was made of the antiviral activities and mechanisms of action of paeonol (PA) and 1,2,3,4,6-penta-O-galloyl-β-D-glucopyranose (PGG) from Paeonia lactiflora root toward HRV-2 and HRV-4 in MRC5 cells using a tetrazolium method and real-time quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Results were compared with those of a reference control ribavirin. Based on 50% inhibitory concentration values, PGG was 13.4 and 18.0 times more active toward HRV-2 (17.89 μM) and HRV-4 (17.33 μM) in MRC5 cells, respectively, than ribavirin. The constituents had relatively high selective index values (3.3–>8.5). The 100 μg/mL PA and 20 μg/mL PGG did not interact with the HRV-4 particles. These constituents inhibited HRV-4 infection only when they were added during the virus inoculation (0 h), the adsorption period of HRVs, but not after 1 h or later. Moreover, the RNA replication levels of HRVs were remarkably reduced in the MRC5 cultures treated with these constituents. These findings suggest that PGG and PA may block or reduce the entry of the viruses into the cells to protect the cells from the virus destruction and abate virus replication, which may play an important role in interfering with expressions of rhinovirus receptors (intercellular adhesion molecule-1 and low-density lipoprotein receptor), inflammatory cytokines (interleukin (IL)-6, IL-8, tumor necrosis factor, interferon beta, and IL-1β), and Toll-like receptor, which resulted in diminishing symptoms induced by HRV. Global efforts to reduce the level of synthetic drugs justify further studies on P. lactiflora root-derived materials as potential anti-HRV products or lead molecules for the prevention or treatment of HRV. PMID:25860871

  5. Static electric fields interfere in the viability of cells exposed to ionising radiation.

    PubMed

    Arruda-Neto, João D T; Friedberg, Errol C; Bittencourt-Oliveira, Maria C; Cavalcante-Silva, Erika; Schenberg, Ana C G; Rodrigues, Tulio E; Garcia, Fermin; Louvison, Monica; Paula, Claudete R; Mesa, Joel; Moron, Michelle M; Maria, Durvanei A; Genofre, Godofredo C

    2009-04-01

    The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells. Cultures of Microcystis panniformis (Cyanobacteria) in glass tubes were irradiated with doses in the interval 0.5-5 kGy, using a (60)Co gamma source facility. Samples irradiated with 3 kGy were exposed for 2 h to a 20 V . cm(-1) static electric field and viable cells were enumerated. Cultures of Candida albicans were incubated at 36 degrees C for 20 h, gamma-irradiated with doses from 1-4 kGy, and submitted to an electric field of 180 V . cm(-1). Samples were examined under a fluorescence microscope and the number of unviable (red) and viable (apple green fluorescence) cells was determined. For crossing-check purposes, MRC5 strain of lung cells were irradiated with 2 Gy, exposed to an electric field of 1250 V/cm, incubated overnight with the anti-body anti-phospho-histone H2AX and examined under a fluorescence microscope to quantify nuclei with gamma-H2AX foci. In cells exposed to EF, death increased substantially compared to irradiation alone. In C. albicans we observed suppression of the DNA repair shoulder. The effect of EF in growth of M. panniformis was substantial; the number of surviving cells on day-2 after irradiation was 12 times greater than when an EF was applied. By the action of a static electric field on the irradiated MRC5 cells the number of nuclei with gamma-H2AX foci increased 40%, approximately. Application of an EF following irradiation greatly increases cell death. The observation that the DNA repair shoulder in the survival curve of C. albicans is suppressed when cells are exposed to irradiation + EF suggests that EF likely inactivate cellular recovering processes. The result for the number of nuclei with gamma

  6. The potential lymphangiogenic effects of hepatocyte growth factor/scatter factor in vitro and in vivo.

    PubMed

    Jiang, Wen G; Davies, Gaynor; Martin, Tracey A; Parr, Christian; Watkins, Gareth; Mansel, Robert E; Mason, Malcolm D

    2005-10-01

    Lymphangiogenesis is key to the lymphatic spread of cancer cells. The current study examined the potential effect of hepatocyte growth factor (HGF), a factor known to have strong biological effects on endothelial cells, on the lymphangiogenic function of endothelial cells and the formation of lymphatic vessels using both in vitro and in vivo models. Human endothelial cells that have lymphatic characteristics, human prostate and breast cancer cells PC-3 and MDA MB 231, were used. Expression of lymphatic markers, podoplanin, Prox-1, vascular endothelial growth factor receptor 3 (VEGF-R3) and LYVE-1 was determined using reverse transcription polymerase reaction and quantitative PCR. In nude mice prostate and breast xenograft tumour models, either HGF or an HGF-producing fibroblast cell line MRC-5 was given with or without the HGF antagonist, NK4. The lymphangiogenic marker and lymphatic vessels in tumour tissues were also assessed using quantitative PCR and immunohistochemistry, respectively. In the mice tumour models, infusion of rhHGF significantly increased the levels of podoplanin and LYVE-1 in the tumour (p=0.05 for podoplanin and p<0.05 for LYVE-1 vs. without HGF in the prostate tumour model, p<0.05 for podoplanin and p<0.01 for LYVE-1 vs. without HGF for the breast tumour model; p<0.05 for podoplanin and p<0.01 for LYVE-1 vs. without HGF in the breast tumour model). The increased level of LYVE-1 transcript was supported by an increase in the number of LYVE-1-positive lymphatic vessels in tumours, using immunohistochemical analysis. Co-injection of MRC5 cells also increased the levels of LYVE-1 and number of LYVE-1-positive vessels in tumour tissues. The effects of HGF and MRC5 were significantly reduced by the HGF antagonist, NK4. In the in vitro models, rhHGF significantly increased the level of both podoplanin and LYVE-1, as shown by quantitative PCR analysis. Hepatocyte growth factor has potential lymphangiogenic activities, and this may have important

  7. Antiproliferative activity and new argininyl bufadienolide esters from the "cururú" toad Rhinella (Bufo) schneideri.

    PubMed

    Schmeda-Hirschmann, Guillermo; Quispe, Cristina; Theoduloz, Cristina; de Sousa, Paulo Teixeira; Parizotto, Carlos

    2014-09-11

    Toads known as "cururú" (Rhinella schneideri) have been used in the Brazilian Pantanal and Paraguayan Chaco wetlands to treat erysipelas and cancer. The aim of the study was to assess the antiproliferative effect of the venom obtained from Rhinella schneideri and to identify its constituents by spectroscopic and spectrometric methods. The venom was obtained by gentle pressing the parotid glands of the toads. The dry crude drug was analyzed by HPLC-MS-MS and chromatographed on Sephadex LH-20 to obtain purified compounds and fractions for spectroscopic analysis. The venom and fractions were evaluated for antiproliferative activity towards normal human lung fibroblasts (MRC-5) and four human cancer cell lines: gastric epithelial adenocarcinoma (AGS), lung cancer (SK-MES-1), bladder carcinoma (J82) and promyelocytic leukemia (HL-60). From the Rhinella schneideri venom, 29 compounds were isolated and/or identified by spectroscopic and spectrometric means. Three known alkaloids and five argininyl diacids were identified in the complex mixture by HPLC-MS-MS. Nine out of fifteen argininyl diacid derivatives of the bufadienolides bufalin, marinobufagin and telocinobufagin are reported for the first time and four argininyl diacids are described for the first time as natural products. The venom and the fractions 9-13 showed a remarkable antiproliferative effect, with IC50 values in the range 0.019-0.022, 0.035-0.040, 0.028-0.064, 0.042-0.056 and 0.044-0.052 µg/mL for MRC-5, AGS, SK-MES-1, J82 and HL-60 cell lines, respectively. Under the same experimental conditions, IC50 values of the reference compound etoposide were 2.296, 0.277, 1.295, 1.884 and 1.059 µg/mL towards MRC-5, AGS, SK-MES-1, J82 and HL-60 cells, respectively. The venom showed a strong antiproliferative effect towards human cancer cells and presented a high chemical diversity in its constituents, supporting its use as anticancer agent. These findings encourage further work on the chemistry and bioactivity of

  8. Transcription of the herpes simplex virus 1 genome during productive and quiescent infection of neuronal and nonneuronal cells.

    PubMed

    Harkness, Justine M; Kader, Muhamuda; DeLuca, Neal A

    2014-06-01

    Herpes simplex virus 1 (HSV-1) can undergo a productive infection in nonneuronal and neuronal cells such that the genes of the virus are transcribed in an ordered cascade. HSV-1 can also establish a more quiescent or latent infection in peripheral neurons, where gene expression is substantially reduced relative to that in productive infection. HSV mutants defective in multiple immediate early (IE) gene functions are highly defective for later gene expression and model some aspects of latency in vivo. We compared the expression of wild-type (wt) virus and IE gene mutants in nonneuronal cells (MRC5) and adult murine trigeminal ganglion (TG) neurons using the Illumina platform for cDNA sequencing (RNA-seq). RNA-seq analysis of wild-type virus revealed that expression of the genome mostly followed the previously established kinetics, validating the method, while highlighting variations in gene expression within individual kinetic classes. The accumulation of immediate early transcripts differed between MRC5 cells and neurons, with a greater abundance in neurons. Analysis of a mutant defective in all five IE genes (d109) showed dysregulated genome-wide low-level transcription that was more highly attenuated in MRC5 cells than in TG neurons. Furthermore, a subset of genes in d109 was more abundantly expressed over time in neurons. While the majority of the viral genome became relatively quiescent, the latency-associated transcript was specifically upregulated. Unexpectedly, other genes within repeat regions of the genome, as well as the unique genes just adjacent the repeat regions, also remained relatively active in neurons. The relative permissiveness of TG neurons to viral gene expression near the joint region is likely significant during the establishment and reactivation of latency. During productive infection, the genes of HSV-1 are transcribed in an ordered cascade. HSV can also establish a more quiescent or latent infection in peripheral neurons. HSV mutants

  9. Curcumol induces apoptosis in SPC-A-1 human lung adenocarcinoma cells and displays anti-neoplastic effects in tumor bearing mice.

    PubMed

    Tang, Qi-Ling; Guo, Ji-Quan; Wang, Qi-You; Lin, Hai-Shu; Yang, Zhou-Ping; Peng, Tong; Pan, Xue-Diao; Liu, Bing; Wang, Su-Jun; Zang, Lin-Quan

    2015-01-01

    Curcumol is a sesquiterpene originally isolated from curcuma rhizomes, a component of herbal remedies commonly used in oriental medicine. Its beneficial pharmacological activities have attract significant interest recently. In this study, anti-cancer activity of curcumol was examined with both in vitro and in vivo models. It was found that curcumol exhibited time- and concentration-dependent anti-proliferative effects in SPC-A-1 human lung adenocarcinoma cells with cell cycle arrest in the G0/G1 phase while apoptosis-induction was also confirmed with flow cytometry and morphological analyses. Interestingly, curcumol did not display growth inhibition in MRC-5 human embryonic lung fibroblasts, suggesting the anti-proliferative effects of curcumol were specific to cancer cells. Anti-neoplastic effects of curcumol were also confirmed in tumor bearing mice. Curcumol (60 mg/kg daily) significantly reduced tumor size without causing notable toxicity. In conclusion, curcumol appears a favorable anti-cancer candidate for further development.

  10. Overview of measles and mumps vaccine: origin, present, and future of vaccine production.

    PubMed

    Betáková, T; Svetlíková, D; Gocník, M

    2013-01-01

    Measles and mumps are common viral childhood diseases that can cause serious complications. Vaccination remains the most efficient way to control the spread of these viruses. The manufacturing capability for viral vaccines produced in embryonated hen eggs and conventional/classical cell substrates, such as chicken embryo fibroblast or primary dog kidney cell substrates, is no longer sufficient. This limitation can be overcome by utilizing other recognized cell substrates such as Madin Darby Canine Kidney (MDCK), Chinese Hamster Ovary (CHO), Vero (monkey origin) cells, MRC-5 (human diploid) or as an alternative, introducing new cell substrates of human or avian origin. A very important factor in vaccine production is the safety and immunogenicity of the final vaccine, where the proper choice of cell substrate used for virus propagation is made. All substrates used in vaccine production must be fully characterized to avoid the contamination of hidden unknown pathogens which is difficult to achieve in primary cell substrates.

  11. Cytotoxic Guanidine Alkaloids from a French Polynesian Monanchora n. sp. Sponge.

    PubMed

    El-Demerdash, Amr; Moriou, Céline; Martin, Marie-Thérèse; Rodrigues-Stien, Alice de Souza; Petek, Sylvain; Demoy-Schneider, Marina; Hall, Kathryn; Hooper, John N A; Debitus, Cécile; Al-Mourabit, Ali

    2016-08-26

    Four bicyclic and three pentacyclic guanidine alkaloids (1-7) were isolated from a French Polynesian Monanchora n. sp. sponge, along with the known alkaloids monalidine A (8), enantiomers 9-11 of known natural product crambescins, and the known crambescidins 12-15. Structures were assigned by spectroscopic data interpretation. The relative and absolute configurations of the alkaloids were established by analysis of (1)H NMR and NOESY spectra and by circular dichroism analysis. The new norcrambescidic acid (7) corresponds to interesting biosynthetic variation within the pentacyclic core. All compounds exhibited antiproliferative and cytotoxic efficacy against KB, HCT116, HL60, MRC5, and B16F10 cancer cells, with IC50 values ranging from 4 nM to 10 μM.

  12. Antiproliferative Activity of seco-Oxacassanes from Acacia schaffneri.

    PubMed

    Torres-Valencia, J Martín; Motilva, Virginia; Manríquez-Torres, J Jesús; García-Mauriño, Sofía; López-Lázaro, Miguel; Zbakh, Hanaa; Calderón-Montaño, José M; Gómez-Hurtado, Mario A; Gayosso-De-Lucio, Juan A; Cerda-García-Rojas, Carlos M; Joseph-Nathan, Pedro

    2015-06-01

    This work reports the antiproliferative activity of seco-oxacassanes 1-3, isolated from Acacia schaffneri, against human colon (HT-29), lung (A-549), and melanoma (UACC-62) cancer cell lines, as well as against their non-malignant counterparts CCD-841 CoN, MRC-5, and VH-10, respectively, using the sulforhodamine B test. While compounds 1 and 3 were inactive, 2 presented strong activity with IC50 values between 0.12 and 0.92 μg mL(-1). The cytotoxicity mechanisms of 2 were investigated by cell cycle analysis and through DNA repair pathways, indicating that the compound is capable of arresting the cell cycle in the G0/G1 phase. This effect might be generated through damage to DNA by alkylation. In addition, compound 2 was able to decrease HT-29 migration.

  13. Effects of humic substances and phenolic compounds on the in vitro toxicity of aluminium.

    PubMed

    Sauvant, M P; Pepin, D; Guillot, J

    1999-09-01

    The effects of natural chelators [humic acids (HA), caffeic acid (CFA), p-coumaric acid (PCA), protocatechuic acid (PA), vanillic acid (VA), salicylic acid (SA), and 4-hydroxyacetophenone (HY)] and effects of well-known chelators [EDTA and citric acid (CA)] on the in vitro toxicity of aluminium (Al) were investigated with the L-929 murine, Vero simian, and MRC-5 human cell lines. Moderate in vitro cytotoxic effects were induced by Al on the three cell lines (IC(50) values ranking from 5.6 to 7.6 mM). Furthermore, an increased toxicity was observed when Al was concurrently administered with CA, SA, VA, PCA, and HY. Inversely, significant cytoprotective effects were noted with EDTA, HA, CFA, and PA. The role of chelators, and especially the position and the number of reactive moieties of the phenolic compounds tested, can be highlighted to explain the different toxicological Al behavior observed. Copyright 1999 Academic Press.

  14. Design, synthesis and antimycobacterial activities of 1-methyl-2-alkenyl-4(1H)-quinolones

    PubMed Central

    Wube, Abraham A.; Hüfner, Antje; Thomaschitz, Christina; Blunder, Martina; Kollroser, Manfred; Bauer, Rudolf; Bucar, Franz

    2011-01-01

    A series of 23 new 1-methyl-2-alkenyl-4(1H)quinolones have been synthesized and evaluated in vitro for their antimycobacterial activities against fast growing species of mycobacteria, such as Mycobacterium fortuitum, M. smegmatis and M. phlei. The compounds displayed good to excellent inhibition of the growth of the mycobacterial test strains with improved antimycobacterial activity compared to the hit compound, evocarpine. The most active compounds, which possessed chain length of 11–13 carbons at position-2 displayed potent inhibitory effects with an MIC value of 1.0 mg/L. In a human diploid embryonic lung cell line, MRC-5 cytotoxicity assay, the alkaloids showed weak to moderate cytotoxic activity. Biological evaluation of these evocarpine analogues on the less pathogenic fast growing strains of mycobacteria showed an interesting antimycobacterial profile and provided significant insight into the structure–activity relationships. PMID:21106378

  15. Synthesis of magnetic and fluorescent bifunctional nanocomposites and their applications in detection of lung cancer cells in humans.

    PubMed

    Ma, Jingwei; Fan, Qishi; Wang, Lianhui; Jia, Nengqin; Gu, Zhidong; Shen, Hebai

    2010-06-15

    We developed a novel strategy to detect lung cancer cells by utilizing magnetic and fluorescent bifunctional nanocomposites (BNPs) in combination with monoclonal anti-carcinoembryonic antigen (CEA) antibodies. The BNPs, consisting of silica-coated superparamagnetic nanoparticles and quantum dots (QDs), exhibited high luminescence and were easily separated in an external magnetic field. The binding specificity of the antibody-conjugated BNPs (immunonanoparticles) were confirmed via incubating with human lung adenocarcinoma SPCA-1 cells, human leukemic K562 cells and human embryonic lung fibroblasts MRC-5 cells. Further experiments demonstrated that the as-prepared immunonanoparticles can efficiently capture and detect cancer cells in pleural effusion from lung cancer patients. These results suggest that this method, of which the detection procedures are completed within 1h, could be applied to the rapid and cost-effective monitoring of cancer cells in clinical samples.

  16. The cytotoxicity of 8-O-4' neolignans from the seeds of Crataegus pinnatifida.

    PubMed

    Huang, Xiao-Xiao; Zhou, Chen-Chen; Li, Ling-Zhi; Li, Fei-Fei; Lou, Li-Li; Li, Dian-Ming; Ikejima, Takshi; Peng, Ying; Song, Shao-Jiang

    2013-10-15

    Nine new 8-O-4' neolignans, named pinnatifidanin B I-IX (1-9), together with 9 known analogs (10-18) were isolated from the seeds of Crataegus pinnatifida. The structures of 1-18 were determined by spectroscopic methods, including 1D, 2D NMR, CD and HRESIMS analysis. Compounds 8-11, 17 and 18 displayed potent cytotoxic activities against human cancer cell lines, and most interestingly, none of the 6 compounds displayed inhibitory activity against human lung cell line (Mrc5). The 6 cytotoxic compounds are considered to be potential as antitumor agents, which could significantly inhibit the cancer cell growth in a dose-dependent manner and are probably safer than positive control drug. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Anticancer photodynamic therapy based on the use of a microsystem

    NASA Astrophysics Data System (ADS)

    Jastrzebska, E.; Bulka, N.; Zukowski, K.; Chudy, M.; Brzozka, Z.; Dybko, A.

    2015-07-01

    The paper presents the evaluation of photodynamic therapy (PDT) procedures with an application of a microsystem. Two cell lines were used in the experiments, i.e. human lung carcinoma - A549 and normal human fetal lung fibroblast MRC5. Mono-, coculture and mixed cultures were performed in a microsystem at the same time. The microsystem consisted of a concentration gradient generator (CGG) which generates different concentrations of a photosensitizer, and a set of microchambers for cells. The microchambers were linked by microchannels of various length in order to allow cells migration and in this way cocultures were created. Transparent materials were used for the chip manufacture, i.e. glass and poly(dimethylsiloxane). A high power LED was used to test photodynamic therapy effectiveness in the microsystem.

  18. Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma.

    PubMed

    Panngom, K; Baik, K Y; Nam, M K; Han, J H; Rhim, H; Choi, E H

    2013-05-23

    The distinctive cellular and mitochondrial dysfunctions of two human lung cancer cell lines (H460 and HCC1588) from two human lung normal cell lines (MRC5 and L132) have been studied by dielectric barrier discharge (DBD) plasma treatment. This cytotoxicity is exposure time-dependent, which is strongly mediated by the large amount of H2O2 and NOx in culture media generated by DBD nonthermal plasma. It is found that the cell number of lung cancer cells has been reduced more than that of the lung normal cells. The mitochondrial vulnerability to reactive species in H460 may induce distinctively selective responses. Differential mitochondrial membrane potential decrease, mitochondrial enzymatic dysfunction, and mitochondrial morphological alteration are exhibited in two cell lines. These results suggest the nonthermal plasma treatment as an efficacious modality in lung cancer therapy.

  19. Preferential killing of human lung cancer cell lines with mitochondrial dysfunction by nonthermal dielectric barrier discharge plasma

    PubMed Central

    Panngom, K; Baik, K Y; Nam, M K; Han, J H; Rhim, H; Choi, E H

    2013-01-01

    The distinctive cellular and mitochondrial dysfunctions of two human lung cancer cell lines (H460 and HCC1588) from two human lung normal cell lines (MRC5 and L132) have been studied by dielectric barrier discharge (DBD) plasma treatment. This cytotoxicity is exposure time-dependent, which is strongly mediated by the large amount of H2O2 and NOx in culture media generated by DBD nonthermal plasma. It is found that the cell number of lung cancer cells has been reduced more than that of the lung normal cells. The mitochondrial vulnerability to reactive species in H460 may induce distinctively selective responses. Differential mitochondrial membrane potential decrease, mitochondrial enzymatic dysfunction, and mitochondrial morphological alteration are exhibited in two cell lines. These results suggest the nonthermal plasma treatment as an efficacious modality in lung cancer therapy. PMID:23703387

  20. Biologically active vallesamine, strychnan, and rhazinilam alkaloids from Alstonia: Pneumatophorine, a nor-secovallesamine with unusual incorporation of a 3-ethylpyridine moiety.

    PubMed

    Lim, Jun-Lee; Sim, Kae-Shin; Yong, Kien-Thai; Loong, Bi-Juin; Ting, Kang-Nee; Lim, Siew-Huah; Low, Yun-Yee; Kam, Toh-Seok

    2015-09-01

    Four alkaloids comprising two vallesamine, one strychnan, and one pyranopyridine alkaloid, in addition to 32 other known alkaloids were isolated from two Malayan Alstonia species, Alstonia pneumatophora and Alstonia rostrata. The structures of these alkaloids were determined using NMR and MS analyses, and in one instance, confirmed by X-ray diffraction analysis. The nor-6,7-secovallesamine alkaloid, pneumatophorine, is notable for an unusual incorporation of a 3-ethylpyridine moiety in a monoterpenoid indole. The rhazinilam-type alkaloids (rhazinicine, nor-rhazinicine, rhazinal, and rhazinilam) showed strong cytotoxicity toward human KB, HCT-116, MDA-MB-231, and MRC-5 cells, while pneumatophorine, the uleine alkaloid undulifoline, and the strychnan alkaloids, N4-demethylalstogustine and echitamidine, induced concentration dependent relaxation in phenylephrine-precontracted rat aortic rings.

  1. Antimycobacterial, antimicrobial, and biocompatibility properties of para-aminosalicylic acid with zinc layered hydroxide and Zn/Al layered double hydroxide nanocomposites

    PubMed Central

    Saifullah, Bullo; El Zowalaty, Mohamed E; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin M; Hussein, Mohd Zobir

    2014-01-01

    The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH) and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH), against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis. PMID:25114509

  2. Antimycobacterial, antimicrobial, and biocompatibility properties of para-aminosalicylic acid with zinc layered hydroxide and Zn/Al layered double hydroxide nanocomposites.

    PubMed

    Saifullah, Bullo; El Zowalaty, Mohamed E; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin M; Hussein, Mohd Zobir

    2014-01-01

    The treatment of tuberculosis by chemotherapy is complicated due to multiple drug prescriptions, long treatment duration, and adverse side effects. We report here for the first time an in vitro therapeutic effect of nanocomposites based on para-aminosalicylic acid with zinc layered hydroxide (PAS-ZLH) and zinc-aluminum layered double hydroxides (PAS-Zn/Al LDH), against mycobacteria, Gram-positive bacteria, and Gram-negative bacteria. The nanocomposites demonstrated good antimycobacterial activity and were found to be effective in killing Gram-positive and Gram-negative bacteria. A biocompatibility study revealed good biocompatibility of the PAS-ZLH nanocomposites against normal human MRC-5 lung cells. The para-aminosalicylic acid loading was quantified with high-performance liquid chromatography analysis. In summary, the present preliminary in vitro studies are highly encouraging for further in vivo studies of PAS-ZLH and PAS-Zn/Al LDH nanocomposites to treat tuberculosis.

  3. Preparation and toxicological evaluation of methyl pyranoanthocyanin.

    PubMed

    Zhu, Zhenzhou; Wu, Nao; Kuang, Minjie; Lamikanra, Olusola; Liu, Gang; Li, Shuyi; He, Jingren

    2015-09-01

    Anthocyanins are increasingly valued in the food industry for their functional properties and as food colorants. The broadness of their applications has, however, been limited by the lack of stability of these natural pigment extracts in a number of food systems. The potential application of pyranoanthocyanins, anthocyanin derivatives with better stability conferred by the added pyran ring, as a food ingredient was determined. Methylpyranoanthocyanin (MPA) was prepared from reaction of acetone and anthocyanin extracts from red grapes. Reaction products were sequentially purified with polyamide resin, TSK gel resin and semi-preparative HPLC to a purity level >98%. Cytoprotective influence tests of the purified MPA indicated its significant protective effect against H2O2 induced MRC-5 cell damage. Results of evaluations of possible acute toxicity effects on MPA-fed mice, including macro and microscopic assessments, support the conclusion of a non-toxic effect of MPA, and its potential safe use as a food additive.

  4. Characterization and in vitro evaluation of nimotuzumab conjugated with cisplatin-loaded liposomes.

    PubMed

    Vázquez-Becerra, Héctor; Pérez-Cárdenas, Enrique; Muñiz-Hernández, Saé; Izquierdo-Sánchez, Vanessa; Medina, Luis Alberto

    2016-07-21

    In this paper, we report the conjugation of the humanized monoclonal antibody nimotuzumab with cisplatin-loaded liposomes and the in vitro evaluation of its affinity for tumor cells. The conjugation procedure was performed through derivatization of nimotuzumab with N-succinimidyl S-acetylthioacetate (SATA) followed by a covalent attachment with maleimide groups at the end of PEG-DSPE chains located at the membrane of pre-formed liposomes. Confocal microscopy was performed to evaluate the immunoliposome affinity for EGFR antigens from human epidermoid carcinoma (A-431) and normal lung (MRC-5) cell lines. Results showed that the procedures implemented in this work do not affect the capability of the nimotuzumab-immunoliposomes to recognize the tumor cells, which overexpress the EGFR antigens.

  5. A chemocentric approach to the identification of cancer targets.

    PubMed

    Flachner, Beáta; Lörincz, Zsolt; Carotti, Angelo; Nicolotti, Orazio; Kuchipudi, Praveena; Remez, Nikita; Sanz, Ferran; Tóvári, József; Szabó, Miklós J; Bertók, Béla; Cseh, Sándor; Mestres, Jordi; Dormán, György

    2012-01-01

    A novel chemocentric approach to identifying cancer-relevant targets is introduced. Starting with a large chemical collection, the strategy uses the list of small molecule hits arising from a differential cytotoxicity screening on tumor HCT116 and normal MRC-5 cell lines to identify proteins associated with cancer emerging from a differential virtual target profiling of the most selective compounds detected in both cell lines. It is shown that this smart combination of differential in vitro and in silico screenings (DIVISS) is capable of detecting a list of proteins that are already well accepted cancer drug targets, while complementing it with additional proteins that, targeted selectively or in combination with others, could lead to synergistic benefits for cancer therapeutics. The complete list of 115 proteins identified as being hit uniquely by compounds showing selective antiproliferative effects for tumor cell lines is provided.

  6. Antimicrobial prenylated benzoylphloroglucinol derivatives and xanthones from the leaves of Garcinia goudotiana.

    PubMed

    Mahamodo, Sania; Rivière, Céline; Neut, Christel; Abedini, Amin; Ranarivelo, Heritiana; Duhal, Nathalie; Roumy, Vincent; Hennebelle, Thierry; Sahpaz, Sevser; Lemoine, Amélie; Razafimahefa, Dorothée; Razanamahefa, Bakonirina; Bailleul, François; Andriamihaja, Bakolinirina

    2014-06-01

    Bioassay-guided fractionation using antimicrobial assay of the crude acetonic extract of Garcinia goudotiana leaves and of its five partitions led to the isolation of two new prenylated benzoylphloroglucinol derivatives, goudotianone 1 (1) and goudotianone 2 (2), in addition to two known compounds including one xanthone, 1,3,7-trihydroxy-2-isoprenylxanthone (3), and one triterpenoid, friedelin (4). Their structures were elucidated on the basis of different spectroscopic methods, including extensive 1D- and 2D-NMR spectroscopy and mass spectrometry. The crude acetonic extract, the methylene chloride and ethyl acetate partitions, and some tested compounds isolated from this species (1-3) demonstrated selective significant antimicrobial activities against Gram-positive bacteria, in particular Staphylococcus lugdunensis, Enterococcus faecalis and Mycobacterium smegmatis. The potential cytotoxic activities of these extracts and compounds were evaluated against human colon carcinoma HT29 and human fetal lung fibroblast MRC5 cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves.

    PubMed

    Malek, Sri Nurestri Abdul; Shin, Sim Kae; Wahab, Norhanom Abdul; Yaacob, Hashim

    2009-05-06

    Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.

  8. Aromatase inhibitory, radical scavenging, and antioxidant activities of depsidones and diaryl ethers from the endophytic fungus Corynespora cassiicola L36.

    PubMed

    Chomcheon, Porntep; Wiyakrutta, Suthep; Sriubolmas, Nongluksna; Ngamrojanavanich, Nattaya; Kengtong, Surapong; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat

    2009-02-01

    Isolation of a broth extract of the endophytic fungus Corynespora cassiicola L36 afforded three compounds, corynesidones A (1) and B (3), and corynether A (5), together with a known diaryl ether 7. Compounds 1, 3, 5, and 7 were relatively non-toxic against cancer cells, and inactive toward normal cell line, MRC-5. Corynesidone B (3) exhibited potent radical scavenging activity in the DPPH assay, whose activity was comparable to ascorbic acid. Based on the ORAC assay, compounds 1, 3, 5, and 7 showed potent antioxidant activity. However, the isolated natural substances and their methylated derivatives (1-8) neither inhibited superoxide anion radical formation in the XXO assay nor suppressed TPA-induced superoxide anion generation in HL-60 cell line. Corynesidone A (1) inhibited aromatase activity with an IC(50) value of 5.30 microM.

  9. Cytotoxic Withanolide Constituents of Physalis longifolia

    PubMed Central

    Zhang, Huaping; Samadi, Abbas K.; Gallagher, Robert J.; Araya, Juan J.; Tong, Xiaoqin; Day, Victor W.; Cohen, Mark S.; Kindscher, Kelly; Gollapudi, Rao; Timmermann, Barbara N.

    2011-01-01

    Fourteen new withanolides 1-14, named withalongolides A-N, respectively, were isolated from the aerial parts of Physalis longifolia together with eight known compounds (15-22). The structures of compounds 1-14 were elucidated through spectroscopic techniques and chemical methods. In addition, the structures of withanolides 1, 2, 3, and 6 were confirmed by X-ray crystallographic analysis. Using a MTS viability assays, eight withanolides (1, 2, 3, 7, 8, 15, 16, and 19) and four acetylated derivatives (1a, 1b, 2a, and 2b) showed potent cytotoxicity against human head and neck squamous cell carcinoma (JMAR and MDA-1986), melanoma (B16F10 and SKMEL-28), and normal fetal fibroblast (MRC-5) cells with IC50 values in the range between 0.067 and 9.3 μM. PMID:22098611

  10. The identification of rRNA maturation sites in the microsporidian Encephalitozoon cuniculi argues against the full excision of presumed ITS1 sequence.

    PubMed

    Peyretaillade, E; Peyret, P; Metenier, G; Vivares, C P; Prensier, G

    2001-01-01

    In Encephalitozoon cuniculi like in other microsporidia, the primary transcript for SSU and LSU rRNAs includes only one internal transcribed spacer (ITS1) which separates SSU rRNA from the 5.8S region associated with LSU rRNA. The extraction of total RNA from E. cuniculi-infected MRC5 cells using a hot phenol/chloroform procedure enabled us to perform primer extension and S1 nuclease protection experiments in the aim of identifying rRNA maturation sites. Our data support a simple processing (four cleavage sites) with elimination of only nine nucleotides between SSU and LSU rRNA regions. Most of the presumed ITS1 sequence characterized by strain-dependent polymorphism therefore remains linked to SSU rRNA 3' end. A new secondary structure for the sixth domain of E. cuniculi LSU rRNA is proposed following the identification of its 3' terminus.

  11. Cloning of full length genome of varicella-zoster virus vaccine strain into a bacterial artificial chromosome and reconstitution of infectious virus.

    PubMed

    Yoshii, Hironori; Somboonthum, Pranee; Takahashi, Michiaki; Yamanishi, Koichi; Mori, Yasuko

    2007-06-28

    The complete genome of the varicella-zoster virus (VZV) Oka vaccine strain (vOka) has been cloned into a bacterial artificial chromosome (BAC), and several BAC clones with the vOka genome have been obtained. Infectious viruses were reconstituted in MRC-5 cells transfected with the vOka-BAC DNA clones. The clones were distributed into two groups based on differences in amino acids found in ORF 62/71 region among the vOka-BAC clones. The recombinant vOka (rvOka) grew slower than recombinant Oka parental virus (rpOka), pOka and vOka. This is the first report that the vOka genome was cloned into BAC vector. The rvOka-BAC system would be useful as a vector for construction of recombinant live vaccines.

  12. Cytotoxic withanolide constituents of Physalis longifolia.

    PubMed

    Zhang, Huaping; Samadi, Abbas K; Gallagher, Robert J; Araya, Juan J; Tong, Xiaoqin; Day, Victor W; Cohen, Mark S; Kindscher, Kelly; Gollapudi, Rao; Timmermann, Barbara N

    2011-12-27

    Fourteen new withanolides, 1-14, named withalongolides A-N, respectively, were isolated from the aerial parts of Physalis longifolia together with eight known compounds (15-22). The structures of compounds 1-14 were elucidated through spectroscopic techniques and chemical methods. In addition, the structures of withanolides 1, 2, 3, and 6 were confirmed by X-ray crystallographic analysis. Using a MTS viability assay, eight withanolides (1, 2, 3, 7, 8, 15, 16, and 19) and four acetylated derivatives (1a, 1b, 2a, and 2b) showed potent cytotoxicity against human head and neck squamous cell carcinoma (JMAR and MDA-1986), melanoma (B16F10 and SKMEL-28), and normal fetal fibroblast (MRC-5) cells with IC₅₀ values in the range between 0.067 and 9.3 μM.

  13. Inhibition of ganciclovir-resistant human cytomegalovirus replication by Kampo (Japanese herbal medicine).

    PubMed

    Murayama, Tsugiya; Yamaguchi, Nobuo; Iwamoto, Kozo; Eizuru, Yoshito

    2006-01-01

    We examined the effect of Kampo on the replication of ganciclovir (GCV)-resistant human cytomegalovirus (HCMV) in the human embryonic fibroblast cell line MRC-5. Treatment of HCMV-infected cells with Sho-seiryu-to (SST; Xiao-Qing-Long-Tang in Chinese) resulted in the inhibition of viral replication without affecting the cell growth. SST treatment decreased the synthesis of viral DNA, but had no virucidal effect on cell-free HCMV. However, the inhibitory effect of SST on HCMV replication was ablated by anti-interferon-beta (IFN-beta) antibody suggesting that SST inhibits the replication of GCV-resistant HCMV through the induction of IFN-beta. These results suggest that SST is a novel compund with potential as an anti-HCMV.

  14. Replication of Bovine Herpesvirus Type 4 in Human Cells In Vitro

    PubMed Central

    Egyed, László

    1998-01-01

    A reference strain (Movár 33/63) of bovine herpesvirus type 4 (BHV-4) was inoculated into 14 different human cell lines and five primary cell cultures representing various human tissues. BHV-4 replicated in two embryonic lung cell lines, MRC-5 and Wistar-38, and in a giant-cell glioblastoma cell culture. Cytopathic effect and intranuclear inclusion bodies were observed in these cells. PCR detected a 10,000-times-higher level of BHV-4 DNA. Titration of the supernatant indicated a 100-fold increase of infectious particles. Since this is the first bovine (human herpesvirus 8 and Epstein-Barr virus related) herpesvirus which replicates on human cells in vitro, the danger of possible human BHV-4 infection should not be ignored. PMID:9650976

  15. Naphthoquinones from Onosma paniculata induce cell-cycle arrest and apoptosis in melanoma Cells.

    PubMed

    Kretschmer, Nadine; Rinner, Beate; Deutsch, Alexander J A; Lohberger, Birgit; Knausz, Heike; Kunert, Olaf; Blunder, Martina; Boechzelt, Herbert; Schaider, Helmut; Bauer, Rudolf

    2012-05-25

    Activity-guided fractionation of a petroleum ether-soluble extract of the roots of Onosma paniculata, which has been shown to affect the cell cycle and to induce apoptosis in melanoma cells, led to the isolation of several shikonin derivatives, namely, β-hydroxyisovalerylshikonin (1), acetylshikonin (2), dimethylacrylshikonin (3), and a mixture of α-methylbutyrylshikonin and isovalerylshikonin (4+5). All compounds exhibited strong cytotoxicity against eight cancer cell lines and MRC-5 lung fibroblasts, with 3 found to possess the most potent cytotoxicity toward four melanoma cell lines (SBcl2, WM35, WM9, and WM164). Furthermore, 3 and the mixture of 4+5 were found to interfere with cell-cycle progression in these cell lines and led to an increasing number of cells in the subG1 region as well as to caspase-3/7 activation, indicating apoptotic cell death.

  16. An outbreak of herpes rugbiorum managed by vaccination of players and sociosexual contacts.

    PubMed

    Skinner, G R; Davies, J; Ahmad, A; McLeish, P; Buchan, A

    1996-11-01

    An outbreak of herpes rugbiorum involved nine players including the scrum half and the full back. The infection was characterized by significant constitutional upset with decreased levels of general fitness and match performance for 1-4 months following the outbreak; one player had herpetic lesions on his right eyelid and corneum. Every infected player, 15 non-infected players and five sociosexual contacts received two vaccinations with intracellular subunit vaccine NFU. Ac. HSV-1 (S-MRC5). None of the players or contacts developed cutaneous herpetic recurrence during a follow-up period of 3 years; the player with ocular disease had one recurrence at 30 months following the original episode. These findings encourage consideration of prophylactic or post-exposure vaccination of participants in rugby or other contact sports with this or other appropriate herpes simplex vaccine.

  17. Cdc14B depletion leads to centriole amplification and its overexpression prevents unscheduled centriole duplication

    SciTech Connect

    Wu, Jun; Plumley, Hyekyung; Rhee, David; Johnson, Dabney K; Dunlap, John; Liu, Yie; Wang, Yisong

    2008-01-01

    Centrosome duplication is tightly controlled in coordination with DNA replication. The molecular mechanism of centrosome duplication remains unclear. Previous studies found that a fraction of human proline-directed phosphatase Cdc14B associates with centrosomes. However, Cdc14B's involvement in centrosome cycle control has never been explored. Here, we show that depletion of Cdc14B by RNA interference leads to centriole amplification in both HeLa and normal human fibroblast BJ and MRC-5 cells. Induction of Cdc14B expression through a regulatable promoter significantly attenuates centriole amplification in prolonged S-phase arrested cells and proteasome inhibitor Z-L3VS-treated cells. This inhibitory function requires centriole-associated Cdc14B catalytic activity. Together, these results suggest a potential function for Cdc14B phosphatase in maintaining the fidelity of centrosome duplication cycle.

  18. Revisiting Previously Investigated Plants: A Molecular Networking-Based Study of Geissospermum laeve.

    PubMed

    Fox Ramos, Alexander E; Alcover, Charlotte; Evanno, Laurent; Maciuk, Alexandre; Litaudon, Marc; Duplais, Christophe; Bernadat, Guillaume; Gallard, Jean-François; Jullian, Jean-Christophe; Mouray, Elisabeth; Grellier, Philippe; Loiseau, Philippe M; Pomel, Sébastien; Poupon, Erwan; Champy, Pierre; Beniddir, Mehdi A

    2017-03-10

    Three new monoterpene indole alkaloids (1-3) have been isolated from the bark of Geissospermum laeve, together with the known alkaloids (-)-leuconolam (4), geissolosimine (5), and geissospermine (6). The structures of 1-3 were elucidated by analysis of their HRMS and NMR spectroscopic data. The absolute configuration of geissolaevine (1) was deduced from the comparison of experimental and theoretically calculated ECD spectra. The isolation workflow was guided by a molecular networking-based dereplication strategy using an in-house database of monoterpene indole alkaloids. In addition, five known compounds previously undescribed in the Geissospermum genus were dereplicated from the G. laeve alkaloid extract network and were assigned with various levels of identification confidence. The antiparasitic activities against Plasmodium falciparum and Leishmania donovani as well as the cytotoxic activity against the MRC-5 cell line were determined for compounds 1-5.

  19. Characterization and immunogenicity of a candidate subunit vaccine against varicella-zoster virus.

    PubMed

    Davies, J; Hallworth, J A; McLeish, P; Randall, S; Martin, B A; Buchan, A; Skinner, G R

    1994-05-01

    This study describes the properties of an inactivated subunit antigen preparation from varicella-zoster virus (VZV)-infected MRC-5 cells by treatment with detergent and formaldehyde, ultracentrifugation over sucrose and acetone precipitation. The method preserved the antigenicity of VZV proteins and several VZV-specific glycoproteins, while virus DNA was less than 20 pg/250 micrograms protein--a putative vaccine dose. The vaccine was immunogenic in rabbits and stimulated antibodies to the major capsid protein as well as to glycoproteins; an immunoprecipitin was shared with a known immune human serum. The preparation contained no infectious VZV with no evidence of side effects in a rabbit or in five human vaccinees during a follow-up period of 6-10 years.

  20. Report of twelve years experience in open study of Skinner herpes simplex vaccine towards prevention of herpes genitalis.

    PubMed

    Skinner, G R; Fink, C; Melling, J; Wiblin, C; Thornton, B; Hallworth, J; Gardner, W; McLeish, P; Hartley, C; Buchan, A

    1992-01-01

    Three hundred and forty-seven subjects at risk for herpes genitalis were vaccinated with Skinner vaccine, NFUAc.HSV1.(S-MRC5), and were followed for an average duration of 2 years representing a total consortship of 664.4 years. Based on survey information obtained during this consortship, there were estimated to be 3076 recurrences which summated to 3.5 years total duration of disease and comprised at least 6794 lesions; there were an estimated 51997 episodes of intercourse including at least 241 episodes of unprotected intercourse in the presence of herpetic lesions. The rate of contraction of herpes genitalis was 6 of 54 consorts (11.1%) who received one vaccination and 7 of 293 (2.4%) who received two, three of four vaccinations. There was no evidence of physical or psychological side effects from vaccination.

  1. The preparation, efficacy and safety of 'antigenoid' vaccine NFU1 (S-L+) MRC toward prevention of herpes simplex virus infections in human subjects.

    PubMed

    Skinner, G R; Buchan, A; Hartley, C E; Turner, S P; Williams, D R

    1980-01-01

    Vaccine NFU1 (S-L+) MRC was prepared by high multiplicity infection of serum-deprived human embryonic lung (MRC 5) cells with type 1 Herpes simplex virus. The preparative process removed inoculum virus particles and virus DNA while virus particle and DNA synthesis was inhibited by the presence of lithium chloride in the cell culture medium. The vaccine stimulated neutralising antibody in vaccinated mice and provided long-term protection against intra-vaginal challenge with type 2 herpes virus. The safety of the vaccine was confirmed by inoculation into newborn mice and cell lines of human, mammalian, and rodent origin. There was no evidence of cell transformation in vitro or of oncogenicity or teratogenicity in rodent species. It is intended to investigate the efficiency of this vaccine in human subjects.

  2. Synthesis and biological evaluation of furopyrimidine N,O-nucleosides.

    PubMed

    Romeo, Roberto; Giofrè, Salvatore V; Garozzo, Adriana; Bisignano, Benedetta; Corsaro, Antonino; Chiacchio, Maria A

    2013-09-15

    A series of modified N,O-nucleosides, characterized by the presence of a furopyrimidine moiety, has been synthesized by exploiting a Sonogashira cross coupling reaction of 1-isoxazolidinyl-5-iodouracil with alkynes, followed by treatment with CuI in refluxing TEA/MeOH mixture. The obtained compounds were screened against both RNA and DNA viruses. None of the compounds were endowed with antiviral activity at subtoxic concentrations. However, some of them were able to inhibit proliferation of MRC-5, Vero, BS-C-1 cells by 50% (CC50) at concentrations ranging from 0.7 to 62.5 mM. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Phosphoprotein profiles of candidate markers for early cellular responses to low-dose γ-radiation in normal human fibroblast cells.

    PubMed

    Yim, Ji-Hye; Yun, Jung Mi; Kim, Ji Young; Lee, In Kyung; Nam, Seon Young; Kim, Cha Soon

    2017-01-24

    Ionizing radiation causes biological damage that leads to severe health effects. However, the effects and subsequent health implications caused by exposure to low-dose radiation are unclear. The objective of this study was to determine phosphoprotein profiles in normal human fibroblast cell lines in response to low-dose and high-dose γ-radiation. We examined the cellular response in MRC-5 cells 0.5 h after exposure to 0.05 or 2 Gy. Using 1318 antibodies by antibody array, we observed ≥1.3-fold increases in a number of identified phosphoproteins in cells subjected to low-dose (0.05 Gy) and high-dose (2 Gy) radiation, suggesting that both radiation levels stimulate distinct signaling pathways. Low-dose radiation induced nucleic acid-binding transcription factor activity, developmental processes, and multicellular organismal processes. By contrast, high-dose radiation stimulated apoptotic processes, cell adhesion and regulation, and cellular organization and biogenesis. We found that phospho-BTK (Tyr550) and phospho-Gab2 (Tyr643) protein levels at 0.5 h after treatment were higher in cells subjected to low-dose radiation than in cells treated with high-dose radiation. We also determined that the phosphorylation of BTK and Gab2 in response to ionizing radiation was regulated in a dose-dependent manner in MRC-5 and NHDF cells. Our study provides new insights into the biological responses to low-dose γ-radiation and identifies potential candidate markers for monitoring exposure to low-dose ionizing radiation.

  4. Genetic subpopulations of Rift Valley fever virus strains ZH548 and MP-12 and recombinant MP-12 strains.

    PubMed

    Lokugamage, Nandadeva; Freiberg, Alexander N; Morrill, John C; Ikegami, Tetsuro

    2012-12-01

    Rift Valley fever virus strain MP-12 was generated by serial plaque passages of parental strain ZH548 12 times in MRC-5 cells in the presence of a chemical mutagen, 5-fluorouracil. As a result, MP-12 encoded 4, 9, and 10 mutations in the S, M, and L segments, respectively. Among them, mutations in the M and L segments were responsible for attenuation, while the MP-12 S segment still encoded a virulent phenotype. We performed high-throughput sequencing of MP-12 vaccine, ZH548, and recombinant MP-12 (rMP-12) viruses. We found that rMP-12 contains very low numbers of viral subpopulations, while MP-12 and ZH548 contain 2 to 4 times more viral genetic subpopulations than rMP-12. MP-12 genetic subpopulations did not encode the ZH548 sequence at the 23 MP-12 consensus mutations. On the other hand, 4 and 2 mutations in M and L segments of MP-12 were found in ZH548 subpopulations. Thus, those 6 mutations were no longer MP-12-specific mutations. ZH548 encoded several unique mutations compared to other Egyptian strains, i.e., strains ZH501, ZH1776, and ZS6365. ZH548 subpopulations shared nucleotides at the mutation site common with those in the Egyptian strains, while MP-12 subpopulations did not share those nucleotides. Thus, MP-12 retains unique genetic subpopulations and has no evidence of reversion to the ZH548 sequence in the subpopulations. This study provides the first information regarding the genetic subpopulations of RVFV and shows the genetic stability of the MP-12 vaccine manufactured in MRC-5 cells.

  5. Genetic Subpopulations of Rift Valley Fever Virus Strains ZH548 and MP-12 and Recombinant MP-12 Strains

    PubMed Central

    Lokugamage, Nandadeva; Freiberg, Alexander N.; Morrill, John C.

    2012-01-01

    Rift Valley fever virus strain MP-12 was generated by serial plaque passages of parental strain ZH548 12 times in MRC-5 cells in the presence of a chemical mutagen, 5-fluorouracil. As a result, MP-12 encoded 4, 9, and 10 mutations in the S, M, and L segments, respectively. Among them, mutations in the M and L segments were responsible for attenuation, while the MP-12 S segment still encoded a virulent phenotype. We performed high-throughput sequencing of MP-12 vaccine, ZH548, and recombinant MP-12 (rMP-12) viruses. We found that rMP-12 contains very low numbers of viral subpopulations, while MP-12 and ZH548 contain 2 to 4 times more viral genetic subpopulations than rMP-12. MP-12 genetic subpopulations did not encode the ZH548 sequence at the 23 MP-12 consensus mutations. On the other hand, 4 and 2 mutations in M and L segments of MP-12 were found in ZH548 subpopulations. Thus, those 6 mutations were no longer MP-12-specific mutations. ZH548 encoded several unique mutations compared to other Egyptian strains, i.e., strains ZH501, ZH1776, and ZS6365. ZH548 subpopulations shared nucleotides at the mutation site common with those in the Egyptian strains, while MP-12 subpopulations did not share those nucleotides. Thus, MP-12 retains unique genetic subpopulations and has no evidence of reversion to the ZH548 sequence in the subpopulations. This study provides the first information regarding the genetic subpopulations of RVFV and shows the genetic stability of the MP-12 vaccine manufactured in MRC-5 cells. PMID:23035230

  6. Synthesis and Antibacterial Evaluation of a New Series of N-Alkyl-2-alkynyl/(E)-alkenyl-4-(1H)-quinolones

    PubMed Central

    Wube, Abraham; Guzman, Juan-David; Hüfner, Antje; Hochfellner, Christina; Blunder, Martina; Bauer, Rudolf; Gibbons, Simon; Bhakta, Sanjib; Bucar, Franz

    2012-01-01

    To gain further insight into the structural requirements of the aliphatic group at position 2 for their antimycobacterial activity, some N-alkyl-4-(1H)-quinolones bearing position 2 alkynyls with various chain length and triple bond positions were prepared and tested for in vitro antibacterial activity against rapidly-growing strains of mycobacteria, the vaccine strain Mycobacterium bovis BCG, and methicillin-resistant Staphylococcus aureus strains, EMRSA-15 and -16. The compounds were also evaluated for inhibition of ATP-dependent MurE ligase of Mycobacterium tuberculosis. The lowest MIC value of 0.5 mg/L (1.2-1.5 μM) was found against M. fortuitum and M. smegmatis. These compounds displayed no or only weak toxicity to the human lung fibroblast cell line MRC-5 at 100 μM concentration. The quinolone derivatives exhibited pronounced activity against the epidemic MRSA strains (EMRSA-15 and -16) with MIC values of 2-128 mg/L (5.3-364.7 μM), and M. bovis BCG with an MIC value of 25 mg/L (66.0-77.4 μM). In addition, the compounds inhibited the MurE ligase of M. tuberculosis with moderate to weak activity showing IC50 values of 200-774 μM. The increased selectivity towards mycobacterial bacilli with reference to MRC-5 cells observed for 2-alkynyl quinolones compared to their corresponding 2-alkenyl analogues serves to highlight the mycobacterial specific effect of the triple bond. Exploration of a terminal bromine atom at the side chain of N-alkyl-2-(E)-alkenyl-4-(1H)-quinolones showed improved antimycobacterial activity whereas a cyclopropyl residue at N-1 was suggested to be detrimental to antibacterial activity. PMID:22777190

  7. Electrical characterization of single cells using polysilicon wire ion sensor in an isolation window.

    PubMed

    Wu, You-Lin; Hsu, Po-Yen; Hsu, Chung-Ping; Wang, Chih-Cheng; Lee, Li-Wen; Lin, Jing-Jenn

    2011-10-01

    A polysilicon wire (PSW) sensor can detect the H(+) ion density (pH value) of the medium coated on its surface, and different cells produce different extracellular acidification and hence different H(+) ion densities. Based on this, we used a PSW sensor in combination with a mold-cast polydimethylsiloxane (PDMS) isolation window to detect the adhesion, apoptosis and extracellular acidification of single normal cells and single cancer cells. Single living human normal cells WI38, MRC5, and BEAS-2B as well as non-small-cell lung cancer (NSCLC) cells A549, H1299, and CH27 were cultivated separately inside the isolation window. The current flowing through the PSW channel was measured. From the PSW channel current change as a function of time, we determined the cell adhesion time by observing the time required for the current change to saturate, since a stable extracellular ion density was established after the cells were completely adhered to the PSW surface. The apoptosis of cells can also be determined when the channel current change drops to zero. We found that all the NSCLC cells had a higher channel current change and hence a lower pH value than the normal cells anytime after they were seeded. The corresponding average pH values were 5.86 for A549, 6.00 for H1299, 6.20 for CH27, 6.90 for BEAS-2B, 6.96for MRC5, and 7.02 for WI38, respectively, after the cells were completely adhered to the PSW surface. Our results show that NSCLC cells have a stronger cell-substrate adhesion and a higher extracellular acidification rate than normal cells.

  8. Resistin-like molecule-β (RELM-β) targets airways fibroblasts to effect remodelling in asthma: from mouse to man

    PubMed Central

    Sharma, S.; Kierstein, S.; Wu, H. F.; Eid, G.; Haczku, A.; Corrigan, C. J.; Ying, S.

    2016-01-01

    Summary Background RELM-β has been implicated in airways inflammation and remodelling in murine models. Its possible functions in human airways are largely unknown. The aim was to address the hypothesis that RELM-β plays a role in extracellular matrix deposition in asthmatic airways. Methods The effects of RELM-β gene deficiency were studied in a model of allergen exposure in mice sensitised and challenged with Aspergillus fumigatus (Af). RELM-β expression was investigated in bronchial biopsies from asthmatic patients. Direct regulatory effects of RELM-β on human lung fibroblasts were examined using primary cultures and the MRC5 cell line in vitro. Results Sensitisation and challenge of wild-type mice with Af-induced release of RELM-β with a time course coincident with that of procollagen in the airways. Af-induced expression of mRNA encoding some, but not all ECM in the lung parenchyma was attenuated in RELM-β−/− mice. RELM-β expression was significantly increased in the bronchial submucosa of human asthmatics compared with controls, and its expression correlated positively with that of fibronectin and α-smooth muscle actin. In addition to epithelial cells, macrophages, fibroblasts and vascular endothelial cells formed the majority of cells expressing RELM-β in the submucosa. Exposure to RELM-β increased TGF-β1, TGF-β2, collagen I, fibronectin, smooth muscle α-actin, laminin α1, and hyaluronan and proteoglycan link protein 1 (Hapl1) production as well as proliferation by human lung fibroblasts in vitro. These changes were associated with activation of ERK1/2 in MRC5 cells. Conclusion The data are consistent with the hypothesis that elevated RELM-β expression in asthmatic airways contributes to airways remodelling at least partly by increasing fibroblast proliferation and differentiation with resulting deposition of extracellular matrix proteins. PMID:25545115

  9. Isolation and characterization of a new cytotoxic dihydrophenanthrene from Dioscorea membranacea rhizomes and its activity against five human cancer cell lines.

    PubMed

    Itharat, Arunporn; Thongdeeying, Pakakrong; Ruangnoo, Srisopa

    2014-10-28

    The rhizomes of Dioscorea membranacea Pierre (DM) have been used as ingredients in anticancer herbal formulations in Thai traditional medicine (TTM). Thus, the aim of this study was to investigate the active constituents of DM for cytotoxic activity in order to support its TTM use. A bioassay-guided isolation procedure was used to separate the cytotoxic constituents from ethanolic extract of Dioscorea membranacea rhizomes by testing against five human cancer cell lines, i.e. large cell lung carcinoma, COR-L23; liver cancer cells, HepG2; prostate cancer cells, PC3; breast cancer cells MCF-7; cervical cancer cells, Hela; and one normal human lung cell line (MRC 5) using the SRB assay. Two known dihydrophenanthrene compounds [2,4 dimethoxy-5,6-dihydroxy-9,10-dihydrophenanthrene (1) and 5-hydroxy-2,4,6-trimethoxy-9,10-dihydrophenanthrene (2)], and a new dihydrophenanthrene compound, 5,6,2 -trihydroxy 3,4-methoxy, 9,10-dihydrophenanthrene (3) were isolated and fully characterized. 1 showed the highest cytotoxic activity against COR-L23, MCF-7 and PC3 cell lines (IC₅₀=14.89, 17.49 and 19.04 µM, respectively), and 2 showed selective cytotoxic activity against PC3 (IC₅₀=23.54 µM). The new compound 3 showed selective cytotoxic activity against only MCF-7 cells (IC₅₀=31.41 µM). Interestingly the crude extract of DM was much less toxic to the normal cell line (MRC-5) (IC₅₀>50 µg/ml) compared to the five cancer cell lines, (IC50 value ranged between 6 and 29 µg/ml). The phytochemicals isolated from DM may serve as lead compounds for the design of new anti-cancer agents with better selective cytotoxic indices. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Resveratrol raises in vitro anticancer effects of paclitaxel in NSCLC cell line A549 through COX-2 expression.

    PubMed

    Kong, Fanhua; Zhang, Runqi; Zhao, Xudong; Zheng, Guanlin; Wang, Zhou; Wang, Peng

    2017-09-01

    The aim of this study was to determine the raising anticancer effects of resveratrol (Res) on paclitaxel (PA) in non-small cell lung cancer (NSCLC) cell line A549. The 10 µg/ml of Res had no effect on human fetal lung fibroblast MRC-5 cells or on A549 cancer cells and the 5 or 10 µg/ml of PA also had no effect on MRC-5 normal cells. PA-L (5 µg/ml) and PA-H (10 µg/ml) had the growth inhibitory effects in NSCLC cell line A549, and Res increased these growth inhibitory effects. By flow cytometry experiment, after Res (5 µg/ml)+PA-H (10 µg/ml) treatment, the A549 cells showed the most apoptosic cells compared to other group treatments, and after additional treatment with Res, the apoptosic cells of both two PA concentrations were raised. Res+PA could reduce the mRNA and protein expressions of COX-2, and Res+PA could reduce the COX-2 related genes of VEGF, MMP-1, MMP-2, MMP-9, NF-κB, Bcl-2, Bcl-xL, procollagen I, collagen I, collagen III and CTGF, TNF-α, IL-1β, iNOS and raise the TIMP-1, TIMP-2, TIMP-3, IκB-α, p53, p21, caspase-3, caspase-8, caspase-9, Bax genes compared to the control cells and the PA treated cells. From these results, it can be suggested that Res could raise the anticancer effects of PA in A549 cells, thus Res might be used as a good sensitizing agent for PA.

  11. Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo

    SciTech Connect

    Lee, Miyoung; Jeong, Sang Young; Ha, Jueun; Kim, Miyeon; Jin, Hye Jin; Kwon, Soon-Jae; Chang, Jong Wook; Choi, Soo Jin; Oh, Wonil; Yang, Yoon Sun; Kim, Jae-Sung; Jeon, Hong Bae

    2014-04-18

    Highlights: • hUCB-MSCs maintained low immunogenicity even after immune challenge in vitro. • Humanized NSG mice were established using human UCB CD34+ cells. • Repeated intravenous hUCB-MSC injection into mice did not lead to immune responses and adverse events. • Allogeneic hUCB-MSCs maintained low immunogenicity in vitro and in vivo. - Abstract: Evaluation of the immunogenicity of human mesenchymal stem cells (MSCs) in an allogeneic setting during therapy has been hampered by lack of suitable models due to technical and ethical limitations. Here, we show that allogeneic human umbilical cord blood derived-MSCs (hUCB-MSCs) maintained low immunogenicity even after immune challenge in vitro. To confirm these properties in vivo, a humanized mouse model was established by injecting isolated hUCB-derived CD34+ cells intravenously into immunocompromised NOD/SCID IL2γnull (NSG) mice. After repeated intravenous injection of human peripheral blood mononuclear cells (hPBMCs) or MRC5 cells into these mice, immunological alterations including T cell proliferation and increased IFN-γ, TNF-α, and human IgG levels, were observed. In contrast, hUCB-MSC injection did not elicit these responses. While lymphocyte infiltration in the lung and small intestine and reduced survival rates were observed after hPBMC or MRC5 transplantation, no adverse events were observed following hUCB-MSC introduction. In conclusion, our data suggest that allogeneic hUCB-MSCs have low immunogenicity in vitro and in vivo, and are therefore “immunologically safe” for use in allogeneic clinical applications.

  12. Phyllostachys edulis extract induces apoptosis signaling in osteosarcoma cells, associated with AMPK activation.

    PubMed

    Chou, Chi-Wen; Cheng, Ya-Wen; Tsai, Chung-Hung

    2014-01-01

    Bamboo is distributed worldwide, and its different parts are used as foods or as a traditional herb. Recently, antitumoral effects of bamboo extracts on several tumors have been increasingly reported; however, antitumoral activity of bamboo extracts on osteosarcoma remains unclear. In the present study, we investigated effects of an aqueous Phyllostachys edulis leaf extract (PEE) on osteosarcoma cells and the underlying mechanism of inhibition. The growth of human osteosarcoma cell lines 143 B and MG-63 and lung fibroblast MRC-5 cells was determined by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. Apoptosis was demonstrated using TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay and flow cytometric analysis. Phosphorylation and protein levels were determined by immunoblotting. After treatment with PEE, viability of 143 B and MG-63 cells was dose-dependently reduced to 36.3% ± 1.6% of control values, which were similar to AICAR (5-aminoimidazole-4-carboxamide 1-β-D-ribofuranoside) treatments. In parallel, ratios of apoptotic cells and cells in the sub-G1 phase were significantly increased. Further investigation showed that PEE treatments led to activation of caspase cascades and changes of apoptotic mediators Bcl2, Bax, and p53. Consistently, our results revealed that PEE activated adenosine monophosphate-activated protein kinase (AMPK) signaling, and the AMPK activation was associated with the induction of apoptotic signaling. Our results indicated that PEE suppressed the growth of 143 B and MG-63 cells but moderately affected MRC-5 cells. PEE-induced apoptosis may attribute to AMPK activation and the following activation of apoptotic signaling cascades. These findings revealed that PEE possesses antitumoral activity on human osteosarcoma cells by manipulating AMPK signaling, suggesting that PEE alone or combined with regular antitumor drugs may be beneficial as osteosarcoma treatments.

  13. Synthesis and antibacterial evaluation of a new series of N-Alkyl-2-alkynyl/(E)-alkenyl-4-(1H)-quinolones.

    PubMed

    Wube, Abraham; Guzman, Juan-David; Hüfner, Antje; Hochfellner, Christina; Blunder, Martina; Bauer, Rudolf; Gibbons, Simon; Bhakta, Sanjib; Bucar, Franz

    2012-07-09

    To gain further insight into the structural requirements of the aliphatic group at position 2 for their antimycobacterial activity, some N-alkyl-4-(1H)-quinolones bearing position 2 alkynyls with various chain length and triple bond positions were prepared and tested for in vitro antibacterial activity against rapidly-growing strains of mycobacteria, the vaccine strain Mycobacterium bovis BCG, and methicillin-resistant Staphylococcus aureus strains, EMRSA-15 and -16. The compounds were also evaluated for inhibition of ATP-dependent MurE ligase of Mycobacterium tuberculosis. The lowest MIC value of 0.5 mg/L (1.2-1.5 µM) was found against M. fortuitum and M. smegmatis. These compounds displayed no or only weak toxicity to the human lung fibroblast cell line MRC-5 at 100 µM concentration. The quinolone derivatives exhibited pronounced activity against the epidemic MRSA strains (EMRSA-15 and -16) with MIC values of 2-128 mg/L (5.3-364.7 µM), and M. bovis BCG with an MIC value of 25 mg/L (66.0-77.4 µM). In addition, the compounds inhibited the MurE ligase of M. tuberculosis with moderate to weak activity showing IC50 values of 200-774 µM. The increased selectivity towards mycobacterial bacilli with reference to MRC-5 cells observed for 2-alkynyl quinolones compared to their corresponding 2-alkenyl analogues serves to highlight the mycobacterial specific effect of the triple bond. Exploration of a terminal bromine atom at the side chain of N-alkyl-2-(E)-alkenyl-4-(1H)-quinolones showed improved antimycobacterial activity whereas a cyclopropyl residue at N-1 was suggested to be detrimental to antibacterial activity.

  14. Selenoprotein H Suppresses Cellular Senescence through Genome Maintenance and Redox Regulation*

    PubMed Central

    Wu, Ryan T. Y.; Cao, Lei; Chen, Benjamin P. C.; Cheng, Wen-Hsing

    2014-01-01

    Oxidative stress and persistent DNA damage response contribute to cellular senescence, a degeneration process critically involving ataxia telangiectasia-mutated (ATM) and p53. Selenoprotein H (SelH), a nuclear selenoprotein, is proposed to carry redox and transactivation domains. To determine the role of SelH in genome maintenance, shRNA knockdown was employed in human normal and immortalized cell lines. SelH shRNA MRC-5 diploid fibroblasts under ambient O2 displayed a distinct profile of senescence including β-galactosidase expression, autofluorescence, growth inhibition, and ATM pathway activation. Such senescence phenotypes were alleviated in the presence of ATM kinase inhibitors, by p53 shRNA knockdown, or by maintaining the cells under 3% O2. During the course of 5-day recovery, the induction of phospho-ATM on Ser-1981 and γH2AX by H2O2 treatment (20 μm) subsided in scrambled shRNA but exacerbated in SelH shRNA MRC-5 cells. Results from clonogenic assays demonstrated hypersensitivity of SelH shRNA HeLa cells to paraquat and H2O2, but not to hydroxyurea, neocarzinostatin, or camptothecin. While SelH mRNA expression was induced by H2O2 treatment, SelH-GFP did not mobilize to sites of oxidative DNA damage. The glutathione level was lower in SelH shRNA than scrambled shRNA HeLa cells, and the H2O2-induced cell death was rescued in the presence of N-acetylcysteine, a glutathione precursor. Altogether, SelH protects against cellular senescence to oxidative stress through a genome maintenance pathway involving ATM and p53. PMID:25336634

  15. Pioglitazone, a peroxisome proliferator-activated receptor gamma ligand, suppresses bleomycin-induced acute lung injury and fibrosis.

    PubMed

    Aoki, Yasuhiro; Maeno, Toshitaka; Aoyagi, Kana; Ueno, Manabu; Aoki, Fumiaki; Aoki, Nozomi; Nakagawa, Junichi; Sando, Yoshichika; Shimizu, Yuji; Suga, Tatsuo; Arai, Masashi; Kurabayashi, Masahiko

    2009-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARgamma) ligands have been shown to possess potent anti-inflammatory actions. Idiopathic interstitial pneumonia is defined as a specific form of chronic fibrosing lung disease characterized by progressive fibrosis which leads to deterioration and destruction of the lungs. To investigate whether the PPARgamma ligand pioglitazone (PGZ) inhibited bleomycin (BLM)-induced acute lung injury and subsequent fibrosis. BLM was administered intratracheally to Wistar rats which were then treated with PGZ. Rat alveolar macrophages were stimulated with BLM for 6 h with or without PGZ pretreatment for 18 h. MRC-5 cells (human lung fibroblasts) were treated with PGZ for 18 h. After the treatment, the cells were stimulated with transforming growth factor- beta (TGF-beta) for 6 h. PGZ inhibited BLM-induced acute lung injury and subsequent lung fibrosis when it was administered from day -7. PGZ treatment suppressed the accumulation of inflammatory cells in lungs and the concentration of tumor necrosis factor-alpha (TNF-alpha) in bronchoalveolar lavage fluid on day 3. PGZ also inhibited BLM-induced TNF-alpha production in alveolar macrophages. Furthermore, PGZ inhibited fibrotic changes and an increase in hydroxyproline content in lungs after instillation of BLM, even when PGZ was administered in the period from day 7 to day 28. Northern blot analyses revealed that PGZ inhibited TGF-beta-induced procollagen I and connective tissue growth factor (CTGF) expression in MRC-5 cells. These results suggest that activation of PPARgamma ameliorates BLM-induced acute inflammatory responses and fibrotic changes at least partly through suppression of TNF-alpha, procollagen I and CTGF expression. Beneficial effects of this PPARgamma ligand on inflammatory and fibrotic processes open new perspectives for a potential role of PPARgamma as a molecular target in fibroproliferative lung diseases. Copyright 2008 S. Karger AG, Basel.

  16. Deciphering an underlying mechanism of differential cellular effects of nanoparticles: an example of Bach-1 dependent induction of HO-1 expression by gold nanorod.

    PubMed

    Fan, Zhenlin; Yang, Xiao; Li, Yiye; Li, Suping; Niu, Shiwen; Wu, Xiaochun; Wei, Jingyan; Nie, Guangjun

    2012-12-01

    Gold nanoparticles are extensively investigated for their potential biomedical applications. Therefore, it is pertinent to thoroughly evaluate their biological effects at different levels and their underlying molecular mechanism. Frequently, there are discrepancies about the biological effects of various gold nanoparticles among the reports dealing with different models. Most of the studies focused on the different biological effects of various nano-properties of the nanomaterials. We hypothesize that the biological models with different metabolic processes would be taken into account to explain the observed discrepancies of biological effects of nanomaterials. Herein, by using mouse embryo fibroblast cell line (MEF-1) and human embryonal lung fibroblast cell line (MRC-5) as in vitro models, we studied the cellular effects of gold nanorods (AuNRs) coated with poly (diallyldimethyl ammonium chloride) (PDDAC), polyethylene glycol and polystyrene sulfonae (PSS). We found that all three AuNRs had no effects on cellular viability at the concentration of 1 nM; however, AuNRs that coated with PDDAC and PSS induced significant up-regulation of heme oxygenase-1 (HO-1) which was believed to be involved in cellular defense activities in MEF-1 but not in MRC-5 cells. Further study showed that the low fundamental expression of transcription factor Bach-1, the major regulator of HO-1 expression, in MEF-1 was responsible for the up-regulation of HO-1 induced by the AuNRs. Our results indicate that although AuNRs we used are non-cytotoxic, they cell-specifically induce change of gene expression, such as HO-1. Our current study provides a good example to explain the molecular mechanisms of differential biological effects of nanomaterials in different cellular models. This finding raises a concern on evaluation of cellular effects of nanoparticles where the cell models should be critically considered.

  17. Fever-range hyperthermia vs. hypothermia effect on cancer cell viability, proliferation and HSP90 expression.

    PubMed

    Kalamida, Dimitra; Karagounis, Ilias V; Mitrakas, Achilleas; Kalamida, Sofia; Giatromanolaki, Alexandra; Koukourakis, Michael I

    2015-01-01

    The current study examines the effect of fever-range hyperthermia and mild hypothermia on human cancer cells focusing on cell viability, proliferation and HSP90 expression. A549 and H1299 lung carcinoma, MCF7 breast adenocarcinoma, U87MG and T98G glioblastoma, DU145 and PC3 prostate carcinoma and MRC5 normal fetal lung fibroblasts cell lines were studied. After 3-day exposure to 34°C, 37°C and 40°C, cell viability was determined. Cell proliferation (ki67 index), apoptosis (Caspase 9) and HSP90 expression was studied by confocal microscopy. Viability/proliferation experiments demonstrated that MRC5 fibroblasts were extremely sensitive to hyperthermia, while they were the most resistant to hypothermia. T98G and A549 were thermo-tolerant, the remaining being thermo-sensitive to a varying degree. Nonetheless, as a universal effect, hypothermia reduced viability/proliferation in all cell lines. Hyperthermia sharply induced Caspase 9 in the U87MG most thermo-sensitive cell line. In T98G and A549 thermo-tolerant cell lines, the levels of Caspase 9 declined. Moreover, hyperthermia strongly induced the HSP90 levels in T98G, whilst a sharp decrease was recorded in the thermo-sensitive PC3 and U87MG cell lines. Hyperthermia sensitized thermo-sensitive cancer cell lines to cisplatin and temozolomide, whilst its sensitizing effect was diminished in thermo-tolerant cell lines. The existence of thermo-tolerant and thermo-sensitive cancer cell lines was confirmed, which further encourages research to classify human tumor thermic predilection for patient stratification in clinical trials. Of interest, mild hypothermia had a universal suppressing effect on cancer cell proliferation, further supporting the radio-sensitization hypothesis through reduction of oxygen and metabolic demands.

  18. Gastroprotective and cytotoxic effect of semisynthetic ferruginol derivatives.

    PubMed

    Areche, Carlos; Rodríguez, Jaime A; Razmilic, Iván; Yáñez, Tania; Theoduloz, Cristina; Schmeda-Hirschmann, Guillermo

    2007-02-01

    The gastroprotective abietane diterpene ferruginol has been shown to present high cytotoxicity. In order to obtain active compounds with less cytotoxicity, 18 semisynthetic ferruginol derivatives and totarol were assessed for their gastroprotective effects in the HCl/ethanol-induced gastric lesion model in mice, as well as for cytotoxicity in human gastric epithelial cells (AGS) and human lung fibroblasts (MRC-5). At 20 mg kg(-1), the greatest gastroprotective effects were provided by abieta-8,11,13-triene (1), abieta-8,11,13-trien-12-yl-2-chloropropanoate (8), abieta-8,11,13-trien-12-yl propenoate (9), 12-(2,3,4,6-tetra-O-acetyl-beta-D-glucopyranosyloxy)-abieta-8,11,13-triene (17) and 12-(beta-D-galactopyranosyloxy)-abieta-8,11,13-triene (18), all of which were as active as the reference drug lansoprazole at 20 mg kg(-1), reducing gastric lesions by 69, 76, 67, 72 and 61%, respectively. No relation was observed between lipophilicity and the gastroprotective effect. Compounds that showed the greatest cytotoxicity towards AGS cells were ferruginol (2), the corresponding formate (5), acetate (6), propionate (7), 8, 9, 12-(beta-D-glucopyranosyloxy)-abieta-8,11,13-triene (16), 18 and totarol (20) (IC50 18-44 microM). Ferruginol and compounds 5-9, 16, 18 and 20 were the most toxic compounds against fibroblasts (IC50 19-56 microM), with a correlation to AGS cells. The derivative 19 was much more active against AGS cells than towards fibroblasts. The best activity/cytotoxicity ratio was found for compound 17, with a lesion index comparable with lansoprazole at 20 mg kg(-1) and cytotoxicity >1000 microM towards MRC-5 and AGS cells, respectively. In conclusion, some derivatives showed a better gastroprotective effect/cytotoxicity ratio than the parent compound ferruginol. A total of 13 new compounds are reported here for the first time.

  19. Si/SiO2 quantum dots cause cytotoxicity in lung cells through redox homeostasis imbalance.

    PubMed

    Stan, Miruna S; Memet, Indira; Sima, Cornelia; Popescu, Traian; Teodorescu, Valentin S; Hermenean, Anca; Dinischiotu, Anca

    2014-09-05

    Si/SiO2 quantum dots (QDs) are novel particles with unique physicochemical properties that promote them as potential candidates for biomedical applications. Although their interaction with human cells has been poorly investigated, oxidative stress appears to be the main factor involved in the cytotoxicity of these nanoparticles. In this study, we show for the first time the influence of Si/SiO2 QDs on cellular redox homeostasis and glutathione distribution in human lung fibroblasts. The nanoparticles morphology, composition and structure have been investigated using high resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD) analysis. MRC-5 cells (human lung fibroblasts) were incubated with various concentrations of Si/SiO2 QDs ranging between 25 and 200 μg/mL for up to 72 h. The results of the MTT and sulforhodamine B assays showed that exposure to QDs led to a time-dependent decrease in cell viability and biomass. The increase in reactive oxygen species (ROS) and malondialdehyde (MDA) levels together with the lower glutathione content suggested that the cellular redox homeostasis was altered. Regarding GSH distribution, the first two days of treatment resulted in a localization of GSH mainly in the cytoplasm, while at longer incubation time the nuclear/cytoplasmic ratio indicated a nuclear localization. These modifications of cell redox state also affected the redox status of proteins, which was demonstrated by the accumulation of oxidized proteins and actin S-glutathionylation. In addition, the externalization of phosphatidylserine provided evidence that apoptosis might be responsible for cell death, but necrosis was also revealed. Our results suggest that Si/SiO2 quantum dots exerted cytotoxicity on MRC-5 cells by disturbing cellular homeostasis which had an effect upon protein redox status. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Enzymatic analysis of venom from Cuban scorpion Rhopalurus junceus

    PubMed Central

    Díaz-García, Alexis; Ruiz-Fuentes, Jenny Laura; Yglesias-Rivera, Arianna; Rodríguez-Sánchez, Hermis; Riquenes Garlobo, Yanelis; Fleitas Martinez, Osmel; Fraga Castro, José A

    2015-01-01

    Rhopalurus junceus scorpion venom has been identified as a natural extract with anticancer potential. Interestingly, this scorpion venom does not cause adverse symptoms in humans. However, there is scarce information about its composition and enzymatic activity. In this work, we determined the electrophoretic profile of the venom, the gelatinase and caseinolytic activity, and the phospholipase A2 (PLA2) and hemolytic activity. The effect of different venom doses (6.25, 12.5 and 25 mg/kg) on gastrocnemius muscle was also measured as CK and LDH activity in serum. The presence of hyaluronidase was determined by turbidimetric assay. The effect of different fractions obtained by gel filtration chromatography were evaluated at different concentrations (0.05, 0.1, 0.2, 0.4, 0.6mg/ml) against lung cancer cell A549 and lung normal cell MRC-5 using MTT assay. The electrophoretic profile demonstrated the presence of proteins bands around 67kDa, 43kDa, 18.4kDa and a majority band below 14.3kDa. The venom did not showed caseinolytic, gelatinase, PLA2 and hemolytic activity even at highest venom concentration used in the study. Scorpion venom only showed a significant toxic effect on gastrocnemius muscles identified by CK and LDH release after subcutaneous injection of 12.5 and 25mg/kg. Low molecular weight fractions (<4kDa) induced a significant cytotoxicity in A549 cells while high molecular weight proteins (45–60kDa) were responsible for hyaluronidase activity and toxic effect against MRC-5. Experiments indicate that Rhopalurus junceus scorpion venom has low enzymatic activity, which could contribute to the low toxic potential of this scorpion venom. PMID:26605039

  1. Up-regulation of survivin during immortalization of human myofibroblasts is linked to repression of tumor suppressor p16(INK4a) protein and confers resistance to oxidative stress.

    PubMed

    Kan, Chin-Yi; Petti, Carlotta; Bracken, Lauryn; Maritz, Michelle; Xu, Ning; O'Brien, Rosemary; Yang, Chen; Liu, Tao; Yuan, Jun; Lock, Richard B; MacKenzie, Karen L

    2013-04-26

    Survivin is an essential component of the chromosomal passenger complex and a member of the inhibitor of apoptosis family. It is expressed at high levels in a large variety of malignancies, where it has been implicated in drug resistance. It was also shown previously that survivin is up-regulated during telomerase-mediated immortalization, which occurs at a relatively early stage during carcinogenesis. This study shows that up-regulation of survivin during immortalization of human myofibroblasts is an indirect consequence of the repression of p16(INK4a). Survivin and p16(INK4a) were functionally linked by assays that showed that either the up-regulation of survivin or repression of p16(INK4a) rendered telomerase-transduced MRC-5 myofibroblasts resistant to oxidative stress. Conversely, siRNA-mediated down-regulation of survivin activated caspases and enhanced the sensitivity of immortal MRC-5 cells to oxidative stress. The E2F1 transcription factor, which is negatively regulated by the pRB/p16(INK4a) tumor suppressor pathway, was implicated in the up-regulation of survivin. Using the ChIP assay, it was shown that E2F1 directly interacted with the survivin gene (BIRC5) promoter in cells that spontaneously silenced p16(INK4a) during telomerase-mediated immortalization. E2F1 binding to the BIRC5 was also enhanced in telomerase-transduced cells subjected to shRNA-mediated repression of p16(INK4a). Together, these data show that repression of p16(INK4a) contributes to the up-regulation of survivin and thereby provides a survival advantage to cells exposed to oxidative stress during immortalization. The up-regulation of survivin during immortalization likely contributes to the vulnerability of immortal cells to transformation by oncogenes that alter intracellular redox state.

  2. Synthesis, Characterization, and Cytotoxicity of Platinum(IV) Carbamate Complexes

    PubMed Central

    Wilson, Justin J.; Lippard, Stephen J.

    2011-01-01

    The synthesis, characterization, and cytotoxicity of eight new platinum(IV) complexes having the general formula, c,c,t-[Pt(NH3)2Cl2(O2CNHR)2], are reported, where R = tert-butyl (4), cyclopentyl (5), cyclohexyl (6), phenyl (7), p-tolyl (8), p-anisole (9), 4-fluorophenyl (10), or 1-naphthyl (11). These compounds were synthesized by reacting organic isocyanates with the platinum(IV) complex, c,c,t-[Pt(NH3)2Cl2(OH)2]. The electrochemistry of the compounds was investigated by cyclic voltammetry. The aryl carbamate complexes 7 – 11 exhibit reduction peak potentials near −720 mV vs. Ag/AgCl, whereas the alkyl carbamate complexes display reduction peak potentials between −820 and −850 mV vs. Ag/AgCl. The cyclic voltammograms of c,c,t-[Pt(NH3)2Cl2(O2CCH3)2] (1), c,c,t-[Pt(NH3)2Cl2(O2CCF3)2] (2), and cis-[Pt(NH3)2Cl4] (3) were measured for comparison. Density functional theory (DFT) studies were undertaken to investigate the electronic structures of 1 – 11 and to determine their adiabatic electron affinities. A linear correlation (R2 = 0.887) between computed adiabatic electron affinities and measured reduction peak potential was discovered. The biological activity of 4 – 11 and, for comparison, cisplatin was evaluated in human lung cancer A549 and normal MRC-5 cells by the MTT assay. The compounds exhibit comparable or slightly better activity than cisplatin against the A549 cells. In MRC-5 cells, all are equally or slightly less cytotoxic than cisplatin, except for 4 and 5, which are more toxic. PMID:21361279

  3. Protective effect of a Phyllanthus orbicularis aqueous extract against UVB light in human cells.

    PubMed

    Vernhes, Marioly; González-Pumariega, Maribel; Andrade, Luciana; Schuch, Andre Passaglia; de Lima-Bessa, Keronninn Moreno; Menck, Carlos Frederico Martins; Sánchez-Lamar, Angel

    2013-01-01

    One approach to protect human skin against the dangerous effects of solar ultraviolet (UV) irradiation is the use of natural products, such as photoprotectors. Phyllanthus orbicularis Kunth (Euphorbiaceae) is a Cuban endemic plant used in popular medicine. Its antigenotoxicity effect against some harmful agents has been investigated. However, the effect in ultraviolet B (UVB)-irradiated human cells has not been previously assessed. The protective effect of a P. orbicularis extract against UVB light-induced damage in human cells was evaluated. DNA repair proficient (MRC5-SV) and deficient (XP4PA, complementation group XPC) cell-lines were used. Damaging effects of UVB light were evaluated by clonogenic assay and apoptosis induction by flow cytometry techniques. The extent of DNA repair itself was determined by the removal of cyclobutane pyrimidine dimers (CPDs). The CPDs were detected and quantified by slot-blot assay. Treatment of UVB-irradiated MRC5-SV cells with P. orbicularis extract increased the percentage of colony-forming cells from 36.03 ± 3.59 and 4.42 ± 1.45 to 53.14 ± 8.8 and 14.52 ± 1.97, for 400 and 600 J/m(2), respectively. A decrease in apoptotic cell population was observed in cells maintained within the extract. The P. orbicularis extract enhanced the removal of CPD from genomic DNA. The CPDs remaining were found to be about 27.7 and 1.1%, while with plant extract, treatment these values decreased to 16.1 and 0.2%, for 3 and 24 h, respectively. P. orbicularis aqueous extract protects human cells against UVB damage. This protective effect is through the modulation of DNA repair effectiveness.

  4. Locked Nucleic Acid Gapmers and Conjugates Potently Silence ADAM33, an Asthma-Associated Metalloprotease with Nuclear-Localized mRNA.

    PubMed

    Pendergraff, Hannah M; Krishnamurthy, Pranathi Meda; Debacker, Alexandre J; Moazami, Michael P; Sharma, Vivek K; Niitsoo, Liisa; Yu, Yong; Tan, Yen Nee; Haitchi, Hans Michael; Watts, Jonathan K

    2017-09-15

    Two mechanisms dominate the clinical pipeline for oligonucleotide-based gene silencing, namely, the antisense approach that recruits RNase H to cleave target RNA and the RNAi approach that recruits the RISC complex to cleave target RNA. Multiple chemical designs can be used to elicit each pathway. We compare the silencing of the asthma susceptibility gene ADAM33 in MRC-5 lung fibroblasts using four classes of gene silencing agents, two that use each mechanism: traditional duplex small interfering RNAs (siRNAs), single-stranded small interfering RNAs (ss-siRNAs), locked nucleic acid (LNA) gapmer antisense oligonucleotides (ASOs), and novel hexadecyloxypropyl conjugates of the ASOs. Of these designs, the gapmer ASOs emerged as lead compounds for silencing ADAM33 expression: several gapmer ASOs showed subnanomolar potency when transfected with cationic lipid and low micromolar potency with no toxicity when delivered gymnotically. The preferential susceptibility of ADAM33 mRNA to silencing by RNase H may be related to the high degree of nuclear retention observed for this mRNA. Dynamic light scattering data showed that the hexadecyloxypropyl ASO conjugates self-assemble into clusters. These conjugates showed reduced potency relative to unconjugated ASOs unless the lipophilic tail was conjugated to the ASO using a biocleavable linkage. Finally, based on the lead ASOs from (human) MRC-5 cells, we developed a series of homologous ASOs targeting mouse Adam33 with excellent activity. Our work confirms that ASO-based gene silencing of ADAM33 is a useful tool for asthma research and therapy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  5. Epigenetic modulation upon exposure of lung fibroblasts to TiO2 and ZnO nanoparticles: alterations in DNA methylation

    PubMed Central

    Patil, Nayana A; Gade, WN; Deobagkar, Deepti D

    2016-01-01

    Titanium dioxide (TiO2) and zinc oxide (ZnO) nanoparticles (NPs) are promising candidates for numerous applications in consumer products. This will lead to increased human exposure, thus posing a threat to human health. Both these types of NPs have been studied for their cell toxicity, immunotoxicity, and genotoxicity. However, effects of these NPs on epigenetic modulations have not been studied. Epigenetics is an important link in the genotype and phenotype modulation and misregulation can often lead to lifestyle diseases. In this study, we have evaluated the DNA methylation-based epigenetic changes upon exposure to various concentrations of NPs. The investigation was designed to evaluate global DNA methylation, estimating the corresponding methyltransferase activity and expression of Dnmt gene using lung fibroblast (MRC5) cell line as lungs are the primary route of entry and target of occupational exposure to TiO2 and ZnO NPs. Enzyme-linked immunosorbent assay-based immunochemical assay revealed dose-related decrease in global DNA methylation and DNA methyltransferase activity. We also found direct correlation between the concentration of NPs, global methylation levels, and expression levels of Dnmt1, 3A, and 3B genes upon exposure. This is the first study to investigate effect of exposure to TiO2 and ZnO on DNA methylation levels in MRC5 cells. Epigenetic processes are known to play an important role in reprogramming and adaptation ability of an organism and can have long-term consequences. We suggest that changes in DNA methylation can serve as good biomarkers for early exposure to NPs since they occur at concentrations well below the sublethal levels. Our results demonstrate a clear epigenetic alteration in response to metal oxide NPs and that this effect was dose-dependent. PMID:27660443

  6. Silicon-based quantum dots induce inflammation in human lung cells and disrupt extracellular matrix homeostasis.

    PubMed

    Stan, Miruna-Silvia; Sima, Cornelia; Cinteza, Ludmila Otilia; Dinischiotu, Anca

    2015-08-01

    Quantum dots (QDs) are nanocrystalline semiconductor materials that have been tested for biological applications such as cancer therapy, cellular imaging and drug delivery, despite the serious lack of information of their effects on mammalian cells. The present study aimed to evaluate the potential of Si/SiO2 QDs to induce an inflammatory response in MRC-5 human lung fibroblasts. Cells were exposed to different concentrations of Si/SiO2 QDs (25-200 μg·mL(-1)) for 24, 48, 72 and 96 h. The results obtained showed that uptake of QDs was dependent on biocorona formation and the stability of nanoparticles in various biological media (minimum essential medium without or with 10% fetal bovine serum). The cell membrane damage indicated by the increase in lactate dehydrogenase release after exposure to QDs was dose- and time-dependent. The level of lysosomes increased proportionally with the concentration of QDs, whereas an accumulation of autophagosomes was also observed. Cellular morphology was affected, as shown by the disruption of actin filaments. The enhanced release of nitric oxide and the increase in interleukin-6 and interleukin-8 protein expression suggested that nanoparticles triggered an inflammatory response in MRC-5 cells. QDs decreased the protein expression and enzymatic activity of matrix metalloproteinase (MMP)-2 and MMP-9 and also MMP-1 caseinase activity, whereas the protein levels of MMP-1 and tissue inhibitor of metalloproteinase-1 increased. The present study reveals for the first time that silicon-based QDs are able to generate inflammation in lung cells and cause an imbalance in extracellular matrix turnover through a differential regulation of MMPs and tissue inhibitor of metalloproteinase-1 protein expression.

  7. Early activation of pro-fibrotic WNT5A in sepsis-induced acute lung injury.

    PubMed

    Villar, Jesús; Cabrera-Benítez, Nuria E; Ramos-Nuez, Angela; Flores, Carlos; García-Hernández, Sonia; Valladares, Francisco; López-Aguilar, Josefina; Blanch, Lluís; Slutsky, Arthur S

    2014-10-21

    The mechanisms of lung repair and fibrosis in the acute respiratory distress syndrome (ARDS) are poorly known. Since the role of WNT/β-catenin signaling appears to be central to lung healing and fibrosis, we hypothesized that this pathway is activated very early in the lungs after sepsis. We tested our hypothesis using a three-step experimental design: (1) in vitro lung cell injury model with human bronchial epithelial BEAS-2B and lung fibroblasts (MRC-5) cells exposed to endotoxin for 18 hours; (2) an animal model of sepsis-induced ARDS induced by cecal ligation and perforation, and (3) lung biopsies from patients who died within the first 24 hours of septic ARDS. We examined changes in protein levels of target genes involved in the Wnt pathway, including WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, matrix metalloproteinase-7 (MMP7), cyclin D1, and vascular endothelial growth factor (VEGF) by Western blotting and immunohistochemistry. Finally, we validated the main gene targets of this pathway in experimental animals and human lungs. Protein levels of WNT5A, non-phospho (Ser33/37/Thr41) β-catenin, total β-catenin, MMP7, cyclin D1, and VEGF increased after endotoxin stimulation in BEAS-2B and MRC-5 cells. Lungs from septic animals and from septic humans demonstrated acute lung inflammation, collagen deposition, and marked increase of WNT5A and MMP7 protein levels. Our findings suggest that the WNT/β-catenin signaling pathway is activated very early in sepsis-induced ARDS and could play an important role in lung repair and fibrosis. Modulation of this pathway might represent a potential target for treatment for septic and ARDS patients.

  8. Assessment of The Dose-Response Relationship of Radiation-Induced Bystander Effect in Two Cell Lines Exposed to High Doses of Ionizing Radiation (6 and 8 Gy)

    PubMed Central

    Bahreyni Toossi, Mohammad Taghi; Khademi, Sara; Azimian, Hosein; Mohebbi, Shokoufeh; Soleymanifard, Shokouhozaman

    2017-01-01

    Objective The dose-response relationship of radiation-induced bystander effect (RIBE) is controversial at high dose levels. The aim of the present study is to assess RIBE at high dose levels by examination of different endpoints. Materials and Methods This experimental study used the medium transfer technique to induce RIBE. The cells were divided into two main groups: QU-DB cells which received medium from autologous irradiated cells and MRC5 cells which received medium from irradiated QU-DB cells. Colony, MTT, and micronucleus assays were performed to quantify bystander responses. The medium was diluted and transferred to bystander cells to investigate whether medium dilution could revive the RIBE response that disappeared at a high dose. Results The RIBE level in QU-DB bystander cells increased in the dose range of 0.5 to 4 Gy, but decreased at 6 and 8 Gy. The Micronucleated cells per 1000 binucleated cells (MNBN) frequency of QU-DB bystander cells which received the most diluted medium from 6 and 8 Gy QU-DB irradiated cells reached the maximum level compared to the MNBN frequency of the cells that received complete medium (P<0.0001). MNBN frequency of MRC5 cells which received the most diluted medium from 4 Gy QU-DB irradiated cells reached the maximum level compared to MNBN frequency of cells that received complete medium (P<0.0001). Conclusion Our results showed that RIBE levels decreased at doses above 4 Gy; however, RIBE increased when diluted conditioned medium was transferred to bystander cells. This finding confirmed that a negative feedback mechanism was responsible for the decrease in RIBE response at high doses. Decrease of RIBE at high doses might be used to predict that in radiosurgery, brachytherapy and grid therapy, in which high dose per fraction is applied, normal tissue damage owing to RIBE may decrease. PMID:28836405

  9. Assessment of The Dose-Response Relationship of Radiation-Induced Bystander Effect in Two Cell Lines Exposed to High Doses of Ionizing Radiation (6 and 8 Gy).

    PubMed

    Bahreyni Toossi, Mohammad Taghi; Khademi, Sara; Azimian, Hosein; Mohebbi, Shokoufeh; Soleymanifard, Shokouhozaman

    2017-10-01

    The dose-response relationship of radiation-induced bystander effect (RIBE) is controversial at high dose levels. The aim of the present study is to assess RIBE at high dose levels by examination of different endpoints. This experimental study used the medium transfer technique to induce RIBE. The cells were divided into two main groups: QU-DB cells which received medium from autologous irradiated cells and MRC5 cells which received medium from irradiated QU-DB cells. Colony, MTT, and micronucleus assays were performed to quantify bystander responses. The medium was diluted and transferred to bystander cells to investigate whether medium dilution could revive the RIBE response that disappeared at a high dose. The RIBE level in QU-DB bystander cells increased in the dose range of 0.5 to 4 Gy, but decreased at 6 and 8 Gy. The Micronucleated cells per 1000 binucleated cells (MNBN) frequency of QU-DB bystander cells which received the most diluted medium from 6 and 8 Gy QU-DB irradiated cells reached the maximum level compared to the MNBN frequency of the cells that received complete medium (P<0.0001). MNBN frequency of MRC5 cells which received the most diluted medium from 4 Gy QU-DB irradiated cells reached the maximum level compared to MNBN frequency of cells that received complete medium (P<0.0001). Our results showed that RIBE levels decreased at doses above 4 Gy; however, RIBE increased when diluted conditioned medium was transferred to bystander cells. This finding confirmed that a negative feedback mechanism was responsible for the decrease in RIBE response at high doses. Decrease of RIBE at high doses might be used to predict that in radiosurgery, brachytherapy and grid therapy, in which high dose per fraction is applied, normal tissue damage owing to RIBE may decrease.

  10. Human cytomegalovirus gene UL21a encodes a short-lived cytoplasmic protein and facilitates virus replication in fibroblasts.

    PubMed

    Fehr, Anthony R; Yu, Dong

    2010-01-01

    The human cytomegalovirus (HCMV) gene UL21a was recently annotated by its conservation in chimpanzee cytomegalovirus. Two large-scale mutagenic analyses showed that mutations in overlapping UL21a/UL21 resulted in a severe defect of virus growth in fibroblasts. Here, we characterized UL21a and demonstrated its role in HCMV infection. We mapped a UL21a-specific transcript of approximately 600 bp that was expressed with early kinetics. UL21a encoded pUL21a, a protein of approximately 15 kDa, which was unstable and localized predominantly to the cytoplasm during HCMV infection or when expressed alone. Interestingly, pUL21a was drastically stabilized in the presence of proteasome inhibitor MG132, but its instability was independent of a functional ubiquitin-mediated pathway, suggesting that pUL21a underwent proteasome-dependent, ubiquitin-independent degradation. A UL21a deletion virus was attenuated in primary human newborn foreskin fibroblasts (HFFs) and embryonic lung fibroblasts (MRC-5), whereas a marker-rescued virus and mutant viruses lacking the neighboring or overlapping genes UL20, UL21, or UL21.5-UL23 replicated at wild-type levels. The growth defect of UL21a-deficient virus in MRC-5 cells was more pronounced than that in HFFs. At a high multiplicity of infection, the UL21a deletion virus synthesized viral proteins with wild-type kinetics but had a two- to threefold defect in viral DNA replication. More importantly, although pUL21a was not detected in the virion, progeny virions produced by the mutant virus were approximately 10 times less infectious than wild-type virus, suggesting that UL21a is required for HCMV to establish efficient productive infection. We conclude that UL21a encodes a short-lived cytoplasmic protein and facilitates HCMV replication in fibroblasts.

  11. Potential gastroprotective effect of novel cyperenoic acid/quinone derivatives in human cell cultures.

    PubMed

    Theoduloz, Cristina; Carrión, Ivanna Bravo; Pertino, Mariano Walter; Valenzuela, Daniela; Schmeda-Hirschmann, Guillermo

    2012-11-01

    The stem bark of Tabebuia species and the rhizomes of Jatropha isabelii are used in Paraguayan traditional medicine to treat gastric lesions and as anti-inflammatory agents. The sesquiterpene cyperenoic acid obtained from J. isabelii has been shown to display a gastroprotective effect in animal models of induced gastric ulcers while the quinone lapachol shows several biological effects associated with the use of the crude drug. The aim of this work was to prepare hybrid molecules presenting a terpene and a quinone moiety and to obtain an assessment of the gastroprotective activity of the new compounds using human cell cultures (MRC-5 fibroblasts and AGS epithelial gastric cells). Eight compounds, including the natural products and semisynthetic derivatives were assessed for proliferation of MRC-5 fibroblasts, protection against sodium taurocholate-induced damage, prostaglandin E2 content, and stimulation of cellular-reduced glutathione synthesis in AGS cells. The following antioxidant assays were performed: DPPH discoloration, scavenging of the superoxide anion, and inhibition of induced lipoperoxidation in erythrocyte membranes. 3-Hydroxy-β-lapachone (3) and cyperenoic acid (4) stimulated fibroblast proliferation. Lapachol (1), dihydroprenyl lapachol (2), 3-hydroxy-β-lapachone (3), and lapachoyl cyperenate (6) protected against sodium taurocholate-induced damage in AGS cells. Lapachol (1) and dihydroprenyl lapachoyl cyperenate (7) significantly stimulated prostaglandin E2 synthesis in AGS cells. Compounds 3, 4, and 7 raised reduced glutathione levels in AGS cells. The hybrid compounds presented activities different than those of the starting sesquiterpene or quinones. Georg Thieme Verlag KG Stuttgart · New York.

  12. Basic fibroblast growth factor activates β-catenin/RhoA signaling in pulmonary fibroblasts with chronic obstructive pulmonary disease in rats.

    PubMed

    Ge, Zhengxing; Li, Bo; Zhou, Xun; Yang, Yi; Zhang, Jun

    2016-12-01

    Chronic obstructive pulmonary disease (COPD) is featured by aberrant extracellular matrix (ECM) deposition. Trigger of the β-catenin/RhoA pathway has been involved in aberrant ECM deposition in several diseases. We investigated WNT signaling activation in primary pulmonary fibroblasts of rats with and without COPD and the function of WNT signaling in pulmonary fibroblast. We evaluated the expression of WNT signaling and the role of β-catenin, using MRC-5 fibroblasts and primary lung fibroblasts of rats with and without COPD. Lung fibroblasts highly expressed mRNA of genes associated with WNT signaling. Treatment of MRC-5 fibroblasts using basic fibroblast growth factor (bFGF), a composition of the mucus in COPD patients, enhanced β-catenin, Wnt5a and RhoA expression. The expression in β-catenin, Wnt5a and RhoA induced by bFGF was higher in fibroblasts of rats with COPD than without COPD, whereas the basal expression was similar. bFGF also activated transcriptionally active and increased total β-catenin protein expression. Moreover, bFGF enhanced the expression of α-sm-actin and fibronectin, which was abrogated by β-catenin, Wnt5a and RhoA-specific adenovirus siRNA. The induction of active β-catenin and then fibronectin turnover in response to bFGF were markedly increased in pulmonary fibroblasts from rat with COPD. β-Catenin/RhoA pathway results in ECM deposition in lung fibroblasts and myofibroblasts differentiation. β-catenin/RhoA signaling induced by bFGF is promoted in lung fibroblasts from rats with COPD. The study indicated a crucial role of the WNT signaling in mediating fibroblast morphology and function in COPD.

  13. Polydimethylsiloxane SlipChip for mammalian cell culture applications.

    PubMed

    Chang, Chia-Wen; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2015-11-07

    This paper reports a polydimethylsiloxane (PDMS) SlipChip for in vitro cell culture applications, multiple-treatment assays, cell co-cultures, and cytokine detection assays. The PDMS SlipChip is composed of two PDMS layers with microfluidic channels on each surface that are separated by a thin silicone fluid (Si-fluid) layer. The integration of Si-fluid enables the two PDMS layers to be slid to different positions; therefore, the channel patterns can be re-arranged for various applications. The SlipChip design significantly reduces the complexity of sample handling, transportation, and treatment processes. To apply the developed SlipChip for cell culture applications, human lung adenocarcinoma epithelial cells (A549) and lung fibroblasts (MRC-5) were cultured to examine the biocompatibility of the developed PDMS SlipChip. Moreover, embryonic pluripotent stem cells (ES-D3) were also cultured in the device to evaluate the retention of their stemness in the device. The experimental results show that cell morphology, viability and proliferation are not affected when the cells are cultured in the SlipChip, indicating that the device is highly compatible with mammalian cell culture. In addition, the stemness of the ES-D3 cells was highly retained after they were cultured in the device, suggesting the feasibility of using the SlipChip for stem cell research. Various cell experiments, such as simultaneous triple staining of cells and co-culture of MRC-5 with A549 cells, were also performed to demonstrate the functionalities of the PDMS SlipChip. Furthermore, we used a cytokine detection assay to evaluate the effect of endotoxin (lipopolysaccharides, LPS) treatment on the cytokine secretion of A549 cells using the SlipChip. The developed PDMS SlipChip provides a straightforward and effective platform for various on-chip in vitro cell cultures and consequent analysis, which is promising for a number of cell biology studies and biomedical applications.

  14. Cell membrane and cell junctions in differentiation of preimplanted mouse embryos.

    PubMed

    Izquierdo, L; Fernández, S; López, T

    1976-12-01

    Cell membrane and cell junctions in differentiation of preimplanted mouse embryos, (membrana celular y uniones celulares en la diferenciación del embrión de ratón antes de la implantación). Arch. Biol. Med. Exper. 10: 130-134, 1976. The development of cell junctions that seal the peripheral blastomeres could be a decisive step in the differentiation of morulae into blastocysts. The appearance of these junctions is studied by electron microscopy of late morulae and initial blastocysts. Zonulae occludentes as well as impermeability to lanthanum emulsion precedes the appearance of the blastocel and hence might be considered as one of its necessary causes.

  15. Reduction of Cold Injury by Superoxide Dismutase and Catalase

    DTIC Science & Technology

    1989-01-01

    Das, Ph.D. Cardiovascular Division , Department of Surgery University of Connecticut School of Medicine Farmington, CT 06032 (203) 679-3687 E L * ~S...1984) Role of oxygen radicals in cardiac injury due to reoxygenation. Journal of Molecular arid Celular Cardiology, 16. 459-470. 12 1,5. H. Otani (1986

  16. Replication of Japanese Encephalitis Virus.

    DTIC Science & Technology

    1980-12-10

    division , school, laboratory, etc., of the author. List city, state, and ZIP Code. Block 10 Program Element, Project, Task Area, and Work Unit Numbers...largely of smooth and some rough intracytoplasmic membranes. ....4’ .... ..... . 14 Table 4. Phospholipid distribution in celular membranes and virions

  17. Reversible Computing

    DTIC Science & Technology

    1980-02-01

    will have been introduced. 9. Reversible celular autemata We shall assume the reader to have some familiarity with the concept of cel- lular...10003 Mr. Kin B. Thcmpson 1 copy Technical Director Information Systems Divisia.i Naval Research Laboratory (OP-91T) Technical Information Division

  18. Army Reserve Mobilization: The Personnel Lessons Not Learned from Desert Shield/Storm

    DTIC Science & Technology

    1993-04-27

    others required augmentation by Reserve units, especially in such areas as personnel, finance, medical, dental, and transportation . At a number of...Mobilization Division to the ARCOMs’ ODCSPER TDAs along with necessary equipment such as lap top computers and celular telephones. Family support activities

  19. Fidelity of DNA Replication in Normal and Malignant Human Breast Cells.

    DTIC Science & Technology

    1997-08-01

    A vatit"Y Of DNA synthesis and the typt of DNA replica~tion Products " celular prca including DNA rsplicatlon. DNA repsair. R~NA formed in experiments...ftoxyrthonucloside transport systems in mouse Slioms and mouse. pollymorase (a. 5.). arid unteil-IDNA glycimyl**e Utivlid’ 1n culturedneuroblassoma cells by

  20. Preguntas frecuentes SmokefreeTXT | Smokefree Español

    Cancer.gov

    Reciba gratuitamente estímulos para dejar de fumar, consejos y recomendaciones 24 horas al día, los 7 días de la semana en su celular con SmokefreeTXT en Español. Envíe LIBRE al 47848 para suscríbirse.

  1. Palabras clave SmokefreeTXT | Smokefree Español

    Cancer.gov

    Reciba gratuitamente estímulos para dejar de fumar, consejos y recomendaciones 24 horas al día, los 7 días de la semana en su celular con SmokefreeTXT en Español. Envíe LIBRE al 47848 para suscríbirse.

  2. Essential Oil of Cymbopogon nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species

    PubMed Central

    De Toledo, Luciani Gaspar; Ramos, Matheus Aparecido Dos Santos; Spósito, Larissa; Castilho, Elza Maria; Pavan, Fernando Rogério; Lopes, Érica De Oliveira; Zocolo, Guilherme Julião; Silva, Francisca Aliny Nunes; Soares, Tigressa Helena; dos Santos, André Gonzaga; Bauab, Taís Maria; De Almeida, Margarete Teresa Gottardo

    2016-01-01

    Background: The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. Objective: The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. Methods: The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. Results: According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 μg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 μg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 μg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a

  3. Tumor suppressor in lung cancer-1 (TSLC1) mediated by dual-regulated oncolytic adenovirus exerts specific antitumor actions in a mouse model

    PubMed Central

    Lei, Wen; Liu, Hong-bin; Wang, Shi-bing; Zhou, Xiu-mei; Zheng, Shui-di; Guo, Ke-ni; Ma, Bu-yun; Xia, Yu-long; Tan, Wen-song; Liu, Xin-yuan; Wang, Yi-gang

    2013-01-01

    Aim: The tumor suppressor in lung cancer-1 (TSLC1) is a candidate tumor suppressor of lung cancer, and frequently inactivated in primary non-small cell lung cancer (NSCLC). In this study, we investigated the effects of TSLC1 mediated by a dual-regulated oncolytic adenovirus on lung cancer, and the mechanisms underlying the antitumor actions. Methods: The recombinant virus Ad·sp-E1A(Δ24)-TSLC1 was constructed by inserting the TSLC1 gene into the dual-regulated Ad·sp-E1A(Δ24) vector, which contained the survivin promoter and a 24 bp deletion within E1A. The antitumor effects of Ad·sp-E1A(Δ24)-TSLC1 were evaluated in NCI-H460, A549, and H1299 lung cancer cell lines and the normal fibroblast cell line MRC-5, as well as in A549 xenograft model in nude mice. Cell viability was assessed using MTT assay. The expression of TSLC1 and activation of the caspase signaling pathway were detected by Western blot analyses. The tumor tissues from the xenograft models were examined using H&E staining, IHC, TUNEL, and TEM analyses. Results: Infection of A549 lung cancer cells with Ad·sp-E1A(Δ24)-TSLC1 induced high level expression of TSLC1. Furthermore, the Ad·sp-E1A(Δ24)-TSLC1 virus dose-dependently suppressed the viability of NCI-H460, A549, and H1299 lung cancer cells, and did not affect MRC-5 normal fibroblast cells. Infection of NCI-H460, A549, and H1299 lung cancer cells with Ad·sp-E1A(Δ24)-TSLC1 induced apoptosis, and increased activation of caspase-8, caspase-3 and PARP. In A549 xenograft model in nude mice, intratumoral injection of Ad·sp-E1A(Δ24)-TSLC1 significantly suppressed the tumor volume, and increased the survival rate (from less than 15% to 87.5% at d 60). Histological studies showed that injection of Ad·sp-E1A(Δ24)-TSLC1 caused tumor cell apoptosis and virus particle propagation in tumor tissues. Conclusion: The oncolytic adenovirus Ad·sp-E1A(Δ24)-TSLC1 exhibits specific antitumor effects, and is a promising agent for the treatment of lung cancer

  4. Characterization of two substrains of Puumala virus that show phenotypes that are different from each other and from the original strain.

    PubMed

    Sundström, Karin B; Stoltz, Malin; Lagerqvist, Nina; Lundkvist, Åke; Nemirov, Kirill; Klingström, Jonas

    2011-02-01

    Hantaviruses, the causative agents of two emerging diseases, are negative-stranded RNA viruses with a tripartite genome. We isolated two substrains from a parental strain of Puumala hantavirus (PUUV-Pa), PUUV-small (PUUV-Sm) and PUUV-large (PUUV-La), named after their focus size when titrated. The two isolates were sequenced; this revealed differences at two positions in the nucleocapsid protein and two positions in the RNA-dependent RNA polymerase, but the glycoproteins were identical. We also detected a 43-nucleotide deletion in the PUUV-La S-segment 5' noncoding region covering a predicted hairpin loop structure that was found to be conserved among all hantaviruses with members of the rodent subfamily Arvicolinae as their hosts. Stocks of PUUV-La showed a lower ratio of viral RNA to infectious particles than stocks of PUUV-Sm and PUUV-Pa, indicating that PUUV-La replicated more efficiently in alpha/beta interferon (IFN-α/β)-defective Vero E6 cells. In Vero E6 cells, PUUV-La replicated to higher titers and PUUV-Sm replicated to lower titers than PUUV-Pa. In contrast, in IFN-competent MRC-5 cells, PUUV-La and PUUV-Sm replicated to similar levels, while PUUV-Pa progeny virus production was strongly inhibited. The different isolates clearly differed in their potential to induce innate immune responses in MRC-5 cells. PUUV-Pa caused stronger induction of IFN-β, ISG56, and MxA than PUUV-La and PUUV-Sm, while PUUV-Sm caused stronger MxA and ISG56 induction than PUUV-La. These data demonstrate that the phenotypes of isolated hantavirus substrains can have substantial differences compared to each other and to the parental strain. Importantly, this implies that the reported differences in phenotypes for hantaviruses might depend more on chance due to spontaneous mutations during passage than inherited true differences between hantaviruses.

  5. Essential Oil of Cymbopogon nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species.

    PubMed

    De Toledo, Luciani Gaspar; Ramos, Matheus Aparecido Dos Santos; Spósito, Larissa; Castilho, Elza Maria; Pavan, Fernando Rogério; Lopes, Érica De Oliveira; Zocolo, Guilherme Julião; Silva, Francisca Aliny Nunes; Soares, Tigressa Helena; Dos Santos, André Gonzaga; Bauab, Taís Maria; De Almeida, Margarete Teresa Gottardo

    2016-08-09

    The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 μg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 μg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 μg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a concentration of 10× MIC. The values of the IC50

  6. Inhibition of NO production by Grindelia argentina and isolation of three new cytotoxic saponins.

    PubMed

    Alza, Natalia P; Pferschy-Wenzig, Eva-Maria; Ortmann, Sabine; Kretschmer, Nadine; Kunert, Olaf; Rechberger, Gerald N; Bauer, Rudolf; Murray, Ana P

    2014-02-01

    A bioassay-guided phytochemical analysis of the ethanolic extract of Grindelia argentina Deble & Oliveira-Deble (Asteraceae) allowed the isolation of a known flavone, hispidulin, and three new oleanane-type saponins, 3-O-β-D-xylopyranosyl-(1→3)-β-D-glucopyranosyl-2β,3β,16α,23-tetrahydroxyolean-12-en-28-oic acid 28-O-β-D-xylopyranosyl-(1→2)-β-D-apiofuranosyl-(1→3)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl ester (2), 3-O-β-D-glucopyranosyl-2β,3β,23-trihydroxyolean-12-en-28-oic acid 28-O-β-D-xylopyranosyl-(1→2)-β-D-apiofuranosyl-(1→3)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl ester, (3) and 3-O-β-D-xylopyranosyl-(1→3)-β-D-glucopyranosyl-2β,3β,23-trihydroxyolean-12-en-28-oic acid 28-O-β-D-xylopyranosyl-(1→2)-β-D-apiofuranosyl-(1→3)-β-D-xylopyranosyl-(1→3)-α-L-rhamnopyranosyl-(1→2)-α-L-arabinopyranosyl ester (4), named grindeliosides A-C, respectively. Their structures were determined by extensive 1D- and 2D-NMR experiments along with mass spectrometry and chemical evidence. The isolated compounds were evaluated for their inhibitory activities against LPS/IFN-γ-induced NO production in RAW 264.7 macrophages and for their cytotoxic activities against the human leukemic cell line CCRF-CEM and MRC-5 lung fibroblasts. Hispidulin markedly reduced LPS/IFN-γ-induced NO production (IC50 51.4 μM), while grindeliosides A-C were found to be cytotoxic, with grindelioside C being the most active against both CCRF-CEM (IC50 4.2±0.1 μM) and MRC-5 (IC50 4.5±0.1 μM) cell lines.

  7. Inhibition of DNA-PKcs enhances radiosensitivity and increases the levels of ATM and ATR in NSCLC cells exposed to carbon ion irradiation

    PubMed Central

    YANG, LINA; LIU, YUANYUAN; SUN, CHAO; YANG, XINRUI; YANG, ZHEN; RAN, JUNTAO; ZHANG, QIUNING; ZHANG, HONG; WANG, XINYU; WANG, XIAOHU

    2015-01-01

    Non-small cell lung cancer (NSCLC) exhibits radioresistance to conventional rays, due to its DNA damage repair systems. NSCLC may potentially be sensitized to radiation treatment by reducing those factors that continuously enhance the repair of damaged DNA. In the present study, normal lung fibroblast MRC-5 and lung cancer A549 cells were treated with NU7026 and CGK733, which are inhibitors of the DNA-dependent protein kinase catalytic subunit (PKcs) and ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR), respectively, followed by exposure to X-rays and carbon ion irradiation. The cytotoxic activity, cell survival rate, DNA damage repair ability, cell cycle arrest and apoptosis rate of the treated cells were analyzed with MTT assay, colony formation assay, immunofluorescence and flow cytometry, respectively. The transcription and translation levels of the ATM, ATR and DNA-PKcs genes were detected by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The results indicated that the radiosensitivity and DNA repair ability of A549 cells were reduced, and the percentages of apoptotic cells and those arrested at the G2/M phase of the cell cycle were significantly increased, following ionizing radiation with inhibitor-pretreatment. The expression levels of ATM, ATR, DNA-PKcs and phosphorylated histone H2AX, a biomarker for DNA double-strand breaks, were all upregulated at the transcriptional or translational level in A549 cells treated with carbon ion irradiation, compared with the control and X-rays-treated cells. In addition, the treatment with 5–50 µM NU7026 or CGK733 did not produce any obvious cytotoxicity in MRC-5 cells, and the effect of the DNA-PKcs-inhibitor on enhancing the radiosensitivity of A549 cells was stronger than that observed for the ATM and ATR-inhibitor. These findings demonstrated a minor role for ATM and ATR in radiation-induced cell death, since the upregulation of

  8. In vitro antiprotozoal and cytotoxic activity of 33 ethonopharmacologically selected medicinal plants from Democratic Republic of Congo.

    PubMed

    Musuyu Muganza, D; Fruth, B I; Nzunzu Lami, J; Mesia, G K; Kambu, O K; Tona, G L; Cimanga Kanyanga, R; Cos, P; Maes, L; Apers, S; Pieters, L

    2012-05-07

    The antiprotozoal and cytotoxic activity of the aqueous extracts from 33 medicinal plants, used by traditional healers for the treatment of various parasitic diseases and collected after an ethnopharmacological inventory conducted in the Bolongo area, Bandundu province in DR Congo, was evaluated. Decoctions were prepared, lyophilized and evaluated for in vitro antiprotozoal activity against Trypanosoma b. brucei, Trypanosoma cruzi, Leishmania infantum, and the chloroquine- and pyrimethamine-resistant K1 strain of Plasmodium falciparum. Cytotoxicity against MRC-5 cells was included to assess selectivity of activity. Most of the tested extracts exhibited pronounced (IC(50)≤5μg/ml) or good (5MRC-5 cells (CC(50)<10μg/ml). These results can partly support and justify the traditional use of some of these plant species for the treatment of parasitic diseases. Copyright © 2012. Published by Elsevier Ireland Ltd.

  9. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster.

    PubMed

    Ng, Cheng Teng; Yong, Liang Qing; Hande, Manoor Prakash; Ong, Choon Nam; Yu, Liya E; Bay, Boon Huat; Baeg, Gyeong Hun

    2017-01-01

    Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster. A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript (DDIT3) and endoplasmic reticulum (ER) to nucleus signaling 1 (ERN1) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in vivo. More extensive studies would be

  10. Zinc oxide nanoparticles exhibit cytotoxicity and genotoxicity through oxidative stress responses in human lung fibroblasts and Drosophila melanogaster

    PubMed Central

    Ng, Cheng Teng; Yong, Liang Qing; Hande, Manoor Prakash; Ong, Choon Nam; Yu, Liya E; Bay, Boon Huat; Baeg, Gyeong Hun

    2017-01-01

    Background Although zinc oxide nanoparticles (ZnO NPs) have been widely used, there has been an increasing number of reports on the toxicity of ZnO NPs. However, study on the underlying mechanisms under in vivo conditions is insufficient. Methods In this study, we investigated the toxicological profiles of ZnO NPs in MRC5 human lung fibroblasts in vitro and in an in vivo model using the fruit fly Drosophila melanogaster. A comprehensive study was conducted to evaluate the uptake, cytotoxicity, reactive oxygen species (ROS) formation, gene expression profiling and genotoxicity induced by ZnO NPs. Results For in vitro toxicity, the results showed that there was a significant release of extracellular lactate dehydrogenase and decreased cell viability in ZnO NP-treated MRC5 lung cells, indicating cellular damage and cytotoxicity. Generation of ROS was observed to be related to significant expression of DNA Damage Inducible Transcript (DDIT3) and endoplasmic reticulum (ER) to nucleus signaling 1 (ERN1) genes, which are ER stress-related genes. Oxidative stress induced DNA damage was further verified by a significant release of DNA oxidation product, 8-hydroxydeoxyguanosine (8-OHdG), as well as by the Comet assay. For the in vivo study using the fruit fly D. melanogaster as a model, significant toxicity was observed in F1 progenies upon ingestion of ZnO NPs. ZnO NPs induced significant decrease in the egg-to-adult viability of the flies. We further showed that the decreased viability is closely associated with ROS induction by ZnO NPs. Removal of one copy of the D. melanogaster Nrf2 alleles further decreased the ZnO NPs-induced lethality due to increased production of ROS, indicating that nuclear factor E2-related factor 2 (Nrf2) plays important role in ZnO NPs-mediated ROS production. Conclusion The present study suggests that ZnO NPs induced significant oxidative stress-related cytotoxicity and genotoxicity in human lung fibroblasts in vitro and in D. melanogaster in

  11. The synthesis, spectroscopic, X-ray characterization and in vitro cytotoxic testing results of activity of five new trans-platinum(IV) complexes with functionalized pyridines.

    PubMed

    Rakić, Gordana M; Grgurić-Šipka, Sanja; Kaluđerović, Goran N; Bette, Martin; Filipović, Lana; Aranđelović, Sandra; Radulović, Siniša; Tešić, Zivoslav Lj

    2012-09-01

    Platinum(IV) complexes with general formulas [Pt(L(1-2))(2)Cl(4)], where L(1-2) are 3-acetylpyridine (1) and 4-acetylpyridine (2) respectively, and [Pt(HL(3-5))(2)Cl(2)], where H(2)L(3-5) are 2,3-pyridinedicarboxylic acid (3), 2,4-pyridinedicarboxylic acid (4) and 2,5-pyridinedicarboxylic acid (5) respectively, were prepared by the reaction of K(2)[PtCl(6)] with the corresponding ligand in 1:2 M ratio in water. The complexes were characterized by elemental analysis and IR and NMR spectroscopy. The structures of complexes 2 and 5 were determined by X-ray crystallography, which revealed the trans orientation of chloride anions around platinum(IV) in the case of both complexes. The antiproliferative activity was investigated in six tumor cell lines (human cervical carcinoma cells (HeLa), murine melanoma cells (B16), human breast carcinoma cells (MDA-MB-453), human colon carcinoma cells (LS-174), transformed human umbilical vein endothelial cells (EA.hy 926) and murine endothelial cells (MS1)) and in one non-tumor cell line-human fetal lung fibroblast cells (MRC-5). Cytotoxicity studies indicated that Pt(IV) complexes with acetyl-substituted pyridine ligands exhibit significantly higher in vitro antiproliferative activity than the complexes with carboxylato-substituted pyridines. Complexes 1 and 2 showed antiproliferative activity in all tested tumor cell lines, with the highest potential in human endothelial cells EA.hy 926, since they had IC(50) values of 13.8 ± 5.8 μM and 23.4 ± 3.3 μM, respectively and were more active than cisplatin. Complexes 1 and 2 exhibited lower toxicity against the non-tumor human lung fibroblast cell line (MRC-5) than against most of the tested tumor cell lines. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  12. Inhibition of DNA-PKcs enhances radiosensitivity and increases the levels of ATM and ATR in NSCLC cells exposed to carbon ion irradiation.

    PubMed

    Yang, Lina; Liu, Yuanyuan; Sun, Chao; Yang, Xinrui; Yang, Zhen; Ran, Juntao; Zhang, Qiuning; Zhang, Hong; Wang, Xinyu; Wang, Xiaohu

    2015-11-01

    Non-small cell lung cancer (NSCLC) exhibits radioresistance to conventional rays, due to its DNA damage repair systems. NSCLC may potentially be sensitized to radiation treatment by reducing those factors that continuously enhance the repair of damaged DNA. In the present study, normal lung fibroblast MRC-5 and lung cancer A549 cells were treated with NU7026 and CGK733, which are inhibitors of the DNA-dependent protein kinase catalytic subunit (PKcs) and ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR), respectively, followed by exposure to X-rays and carbon ion irradiation. The cytotoxic activity, cell survival rate, DNA damage repair ability, cell cycle arrest and apoptosis rate of the treated cells were analyzed with MTT assay, colony formation assay, immunofluorescence and flow cytometry, respectively. The transcription and translation levels of the ATM, ATR and DNA-PKcs genes were detected by reverse transcription-quantitative polymerase chain reaction and western blotting, respectively. The results indicated that the radiosensitivity and DNA repair ability of A549 cells were reduced, and the percentages of apoptotic cells and those arrested at the G2/M phase of the cell cycle were significantly increased, following ionizing radiation with inhibitor-pretreatment. The expression levels of ATM, ATR, DNA-PKcs and phosphorylated histone H2AX, a biomarker for DNA double-strand breaks, were all upregulated at the transcriptional or translational level in A549 cells treated with carbon ion irradiation, compared with the control and X-rays-treated cells. In addition, the treatment with 5-50 µM NU7026 or CGK733 did not produce any obvious cytotoxicity in MRC-5 cells, and the effect of the DNA-PKcs-inhibitor on enhancing the radiosensitivity of A549 cells was stronger than that observed for the ATM and ATR-inhibitor. These findings demonstrated a minor role for ATM and ATR in radiation-induced cell death, since the upregulation of

  13. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway)

    NASA Astrophysics Data System (ADS)

    Ganesh Kumar, C.; Poornachandra, Y.; Chandrasekhar, Cheemalamarri

    2015-11-01

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2

  14. In Vitro Antitumor Active Gold(I) Triphenylphosphane Complexes Containing 7-Azaindoles

    PubMed Central

    Štarha, Pavel; Trávníček, Zdeněk; Drahoš, Bohuslav; Dvořák, Zdeněk

    2016-01-01

    A series of gold(I) complexes of the general composition [Au(naza)(PPh3)] (1–8) was prepared and thoroughly characterized (e.g., electrospray ionization (ESI) mass spectrometry and multinuclear nuclear magnetic resonance (NMR) spectroscopy). The N1-deprotonated anions of 7-azaindole or its derivatives (naza) are coordinated to the metal centre through the N1 atom of their pyrrole ring, as proved by a single crystal X-ray analysis of the complexes [Au(3I5Braza)(PPh3)] (7) and [Au(2Me4Claza)(PPh3)]·½H2O (8′). The in vitro cytotoxicity of the complexes 1–8 was studied against both the cisplatin-sensitive and -resistant variants of the A2780 human ovarian carcinoma cell line, as well as against the MRC-5 human normal fibroblast cell line. The complexes 4, 5, and 8, containing deprotonated 3-iodo-7-azaindole, 5-bromo-7-azaindole, and 2-methyl-4-chloro-7-azaindole (2Me4Claza), respectively, showed significantly higher potency (IC50 = 2.8–3.5 µM) than cisplatin (IC50 = 20.3 µM) against the A2780 cells and markedly lower effect towards the MRC-5 non-cancerous cells (IC50 = 26.0–29.2 µM), as compared with the mentioned A2780 cancer cells. The results of the flow cytometric studies of the A2780 cell cycle perturbations revealed a G2-cell cycle phase arrest of the cells treated by the representative complexes 1 and 5, which is indicative of a different mechanism of action from cisplatin (induced S-cell cycle phase arrest). The stability of the representative complex 8 in the water-containing solution as well as its ability to interact with the reduced glutathione, cysteine and bovine serum albumin was also studied using 1H and 31P-NMR spectroscopy (studied in the 50% DMF-d7/50% D2O mixture) and ESI+ mass spectrometry (studied in the 50% DMF/50% H2O mixture); DMF = dimethylformamide. The obtained results are indicative for the release of the N-donor azaindole-based ligand in the presence of the used biomolecules. PMID:27973440

  15. Cytotoxic effect of Alpinia scabra (Blume) Náves extracts on human breast and ovarian cancer cells

    PubMed Central

    2013-01-01

    Background Alpinia scabra, locally known as 'Lengkuas raya’, is an aromatic, perennial and rhizomatous herb from the family Zingiberaceae. It is a wild species which grows largely on mountains at moderate elevations in Peninsular Malaysia, but it can also survive in the lowlands like in the states of Terengganu and Northern Johor. The present study reports the cytotoxic potential of A. scabra extracts from different parts of the plant. Methods The experimental approach in the present study was based on a bioassay-guided fractionation. The crude methanol and fractionated extracts (hexane, chloroform and water) from different parts of A. scabra (leaves, rhizomes, roots and pseudo stems) were prepared prior to the cytotoxicity evaluation against human ovarian (SKOV-3) and hormone-dependent breast (MCF7) carcinoma cells. The identified cytotoxic extracts were then subjected to chemical investigations in order to identify the active ingredients. A normal human lung fibroblast cell line (MRC-5) was used to determine the specificity for cancerous cells. The cytotoxic extracts and fractions were also subjected to morphological assessment, DNA fragmentation analysis and DAPI nuclear staining. Results The leaf (hexane and chloroform) and rhizome (chloroform) extracts showed high inhibitory effect against the tested cells. Ten fractions (LC1-LC10) were yielded after purification of the leaf chloroform extract. Fraction LC4 which showed excellent cytotoxic activity was further purified and resulted in 17 sub-fractions (VLC1-VLC17). Sub-fraction VLC9 showed excellent cytotoxicity against MCF7 and SKOV-3 cells but not toxic against normal MRC-5 cells. Meanwhile, eighteen fractions (RC1-RC18) were obtained after purification of the rhizome chloroform extract, of which fraction RC5 showed cytotoxicity against SKOV-3 cells with high selectivity index. There were marked morphological changes when observed using phase-contrast inverted microscope, DAPI nuclear staining and also DNA

  16. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway

    PubMed Central

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-01-01

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis. PMID:27278104

  17. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites

    PubMed Central

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly. PMID:27486322

  18. Pyrazine, 2-ethylpyridine, and 3-ethylpyridine are cigarette smoke components that alter the growth of normal and malignant human lung cells, and play a role in multidrug resistance development.

    PubMed

    Liu, Min; Poo, Wak-Kim; Lin, Yu-Ling

    2015-02-01

    Lung cancer is one of the few human diseases for which the primary etiological agent, cigarette smoke (CS), has been described; however, the precise role of individual cigarette smoke toxicant in tumor development and progression remains to be elusive. The purpose of this study was to assess in vitro the effects of previously identified cigarette smoke components, pyrazine, 2-ethylpyridine, and 3-ethylpyridine, on non-tumorigenic (MRC5) and adenocarcinomic (A549) human lung cell lines. Our data showed that the administration of three cigarette smoke components in combination perturbed the proliferation of both normal and adenocarcinomic cells. Study of malignant cells revealed that CS components were cytotoxic at high concentration (10(-6) M) and stimulatory in a dose-dependent manner at lower concentrations (10(-8) M to 10(-10) M). This adverse effect was enhanced when adenocarcinomic cells were maintained in hypoxia resembling intratumoral environment. Furthermore, exposure to pyrazine, 2-ethylpyridine, and 3-ethylpyridine induced oxidative stress in both normal and malignant cells. Finally, assessment of P-gp activity revealed that multidrug resistance was induced in CS component exposed adenocarcinomic lung cells and the induction was augmented in hypoxia. Taken together, pyrazine, 2-ethylpyridine, and 3-ethylpyridine adversely altered both normal and diseased lung cells in vitro and data collected from this study may help lung cancer patients to understand the importance of quitting smoking during lung cancer treatment.

  19. Investigation of antimicrobial physiology of orthorhombic and monoclinic nanoallotropes of sulfur at the interface of transcriptome and metabolome.

    PubMed

    Roy Choudhury, Samrat; Mandal, Amrita; Ghosh, Mahua; Basu, Sulagna; Chakravorty, Dipankar; Goswami, Arunava

    2013-07-01

    Nanosized elemental sulfur (ES) is already reported to exert superior antimicrobial efficacy than micron-sized ES, which encourages their use in drugs and therapeutics. The aim of the present study is to explore the possible route and mode of antimicrobial action of orthorhombic (α-SNPs) and monoclinic (β-SNPs) allotropes of sulfur, respectively, at their nano-dimensions. The antimicrobial efficacy of α- and β-SNPs was determined against both the conventionally ES-resistant and ES-susceptible fungi and bacteria. Both the SNPs inhibited the microbial growth, irrespective of their resistance profile to ES and caused significant deformities on the microbial cell surfaces. However, the extent of antimicrobial efficacy was found to be optimum for α-SNPs, which can be attributed to their size, shape, and surface modification. Subsequent transcript profiling, metabolite profiling, and enzymatic analyses revealed that α- and β-SNPs impaired a cluster of mitochondrial enzymes involved in cellular respiration and oxidative phosphorylation. ES and SNPs stress were found to elicit the NADPH-dependent glutathione reductase mediated ES-detoxification response in fungi and caused them to undertake the glyoxylate shunt in favor of energy conservation. A simultaneous study was also undertaken to assess the biocompatible or bio-adverse properties of SNPs in terms of their cytotoxic and genotoxic effects against the human derived lung fibroblast cell line (MRC-5). The present study hence explores the antimicrobial physiology of two novel functional materials and demonstrates their compatibility as a future putative antimicrobial drug.

  20. In vitro and in vivo antimalarial activity and cytotoxicity of extracts, fractions and a substance isolated from the Amazonian plant Tachia grandiflora (Gentianaceae)

    PubMed Central

    Silva, Luiz Francisco Rocha e; Lima, Emerson Silva; de Vasconcellos, Marne Carvalho; Aranha, Ellen Suzany Pereira; Costa, David Siqueira; Mustafa, Elba Vieira; de Morais, Sabrina Kelly Reis; Alecrim, Maria das Graças Costa; Nunomura, Sergio Massayoshi; Struwe, Lena; de Andrade-Neto, Valter Ferreira; Pohlit, Adrian Martin

    2013-01-01

    Tachia sp. are used as antimalarials in the Amazon Region and in vivo antimalarial activity of a Tachia sp. has been previously reported. Tachia grandiflora Maguire and Weaver is an Amazonian antimalarial plant and herein its cytotoxicity and antimalarial activity were investigated. Spectral analysis of the tetraoxygenated xanthone decussatin and the iridoid aglyone amplexine isolated, respectively, from the chloroform fractions of root methanol and leaf ethanol extracts was performed. In vitro inhibition of the growth of Plasmodium falciparum Welch was evaluated using optical microscopy on blood smears. Crude extracts of leaves and roots were inactive in vitro. However, chloroform fractions of the root and leaf extracts [half-maximal inhibitory concentration (IC50) = 10.5 and 35.8 µg/mL, respectively] and amplexine (IC50= 7.1 µg/mL) were active in vitro. Extracts and fractions were not toxic to type MRC-5 human fibroblasts (IC50> 50 µg/mL). Water extracts of the roots of T. grandiflora administered by mouth were the most active extracts in the Peters 4-day suppression test in Plasmodium berghei-infected mice. At 500 mg/kg/day, these extracts exhibited 45-59% inhibition five to seven days after infection. T. grandiflora infusions, fractions and isolated substance have potential as antimalarials. PMID:23827996

  1. Studies of stools from pseudomembranous colitis, rotaviral, and other diarrheal syndromes by frequency-pulsed electron capture gas-liquid chromatography.

    PubMed Central

    Brooks, J B; Nunez-Montiel, O L; Basta, M T; Hierholzer, J C

    1984-01-01

    Thirty-five patients with various diarrheal syndromes and 22 controls were studied. All stool samples were carefully cultured for Clostridium difficile, using selective isolation media. Cytotoxin assays with proper antitoxin neutralization were done in MRC-5 cells. The stool samples were extracted four times, three times at pH 2 and once at pH 10, using CHCl3 or ether. Derivatizations of extracts were done with trichloroethanol, heptafluorobutyric anhydride, and heptafluorobutyric anhydride-ethanol, and all derivatives were analyzed by frequency-pulsed electron capture gas-liquid chromatography (FPEC-GLC). A dedicated computer was used to assist in both qualitative and quantitative data analysis. Isocaproic acid (iC6) was always found in stool from which C. difficile was isolated and was absent in C. difficile-negative specimens. p-Cresol was found frequently in both persons with pseudomembranous colitis and controls. Tryptamine was found in stool containing C. bifermentans. The FPEC-GLC profiles of persons with acute diarrhea were very different from those of normal persons. Diarrhea associated with adenovirus and rotavirus, Klebsiella spp., and Escherichia spp. showed different FPEC-GLC patterns. Stools from well persons consistently contained full-scale peaks of pyruvic, acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids. In rotavirus stools isobutyric, isovaleric, and valeric acids were reduced in quantity from those found in control stools, whereas propionic and butyric acids were increased. PMID:6490836

  2. Characterization of clone 13, a naturally attenuated avirulent isolate of Rift Valley fever virus, which is altered in the small segment.

    PubMed

    Muller, R; Saluzzo, J F; Lopez, N; Dreier, T; Turell, M; Smith, J; Bouloy, M

    1995-10-01

    The 74HB59 strain of Rift Valley fever (RVF) virus, isolated from a human case in the Central African Republic, was shown to be composed of a heterogeneous population of viruses when plaque-purified clones were analyzed for their reactivity with monoclonal antibodies (MAbs) directed against the nucleocapsid (N) protein or the nonstructural (NSs) protein. One of these clones, C13, was of particular interest in that it proved to be avirulent in mice and hamsters, and highly immunogenic. Although C13 showed normal reactivity with a large panel of MAbs directed at the glycoproteins, it failed to react with specific MAbs or polyclonal antibodies directed at the NSs protein and with a specific MAb recognizing the N protein of the Egyptian strains. Consequently, the small RNA segment, which encodes the N and NSs proteins in an ambisense strategy, was sequenced and compared with the existing sequence of the attenuated MP-12 RVF virus strain. We found that the NSs gene contained, in addition to two conservative coding changes, a large internal deletion of 549 nucleotides that removes 69% of the open reading frame but conserves in-frame the N and C termini of the predicted translation product. In addition, the sequence revealed that the N protein of C13 contained a single amino acid change. Clone C13 replicated normally in certain cell types in vitro and in Culex pipiens mosquitoes after intrathoracic inoculation, but established abortive infections in MRC-5 human fibroblasts.

  3. Antioxidative and Anticanceric Activities of Magnolia (Magnolia denudata) Flower Petal Extract Fermented by Pediococcus acidilactici KCCM 11614.

    PubMed

    Park, Hye; Kim, Hyun-Suk; Eom, Su Jin; Kim, Kee-Tae; Paik, Hyun-Dong

    2015-07-03

    In this study, the effects of magnolia (Magnolia (M.) denudata) extract fermentation in increasing the extract's antioxidative and anticancer activities were investigated. Magnolia was fermented by Pediococcus acidilactici KCCM 11614. The total phenolic content was determined by the Folin-Ciocalteu's method and the antioxidative effects by 1,1-diphenyl-2-picrylhydrazy (DPPH) and ferric reducing ability of plasma (FRAP) assay. Anticancer activity against cancer and normal cells was determined using 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT). Total phenolic content during fermentation increased from 38.1 to 47.0 mg gallic acid equivalent (GAE)/g of solid matter. The radical scavenging activity was 91.4% after 72 h fermentation. Fermented magnolia's antioxidative effect was threefold higher than that of the (non-fermented) control. Fermentation (48 h) increased anticanceric activity against AGS, LoVo, and MCF-7 cancer cells 1.29- to 1.36-fold compared with that of the control, but did not affect MRC-5 (normal) cells, suggesting that fermented magnolia could be used as a natural antioxidative and anticancer agent.

  4. The coffee constituent chlorogenic acid induces cellular DNA damage and formation of topoisomerase I- and II-DNA complexes in cells.

    PubMed

    Burgos-Morón, Estefanía; Calderón-Montaño, José Manuel; Orta, Manuel Luis; Pastor, Nuria; Pérez-Guerrero, Concepción; Austin, Caroline; Mateos, Santiago; López-Lázaro, Miguel

    2012-08-01

    Chlorogenic acid (CGA) is a plant polyphenol with known antioxidant properties. Although some studies suggest that CGA has anticancer properties, others indicate that this dietary constituent may cause DNA damage and induce carcinogenic effects. Because CGA is widely consumed in the form of coffee, it is important to further evaluate the putative DNA-damaging activity of CGA. Here we have employed two standard techniques commonly used for DNA damage detection (the comet assay and the γ- H2AX focus assay) and observed that CGA (0.5-5 mM) induces DNA damage in normal and cancer cells. We report for the first time that CGA induces high levels of topoisomerase I- and topoisomerase II-DNA complexes in cells (TARDIS assay). Catalase pretreatment abolished the formation of these topoisomerase-DNA complexes and reduced the cytotoxic activity of CGA, therefore indicating that hydrogen peroxide plays an important role in these activities. Lung cancer cells (A549) were more sensitive than normal lung fibroblasts (MRC5) to the cytotoxic activity of CGA, supporting previous findings that CGA may induce selective killing of cancer cells. Taking into consideration our results and the pharmacokinetic profile of CGA, the possible cancer preventive, carcinogenic and therapeutic potential of this dietary agent are discussed.

  5. Alpha, beta-unsaturated lactones 2-furanone and 2-pyrone induce cellular DNA damage, formation of topoisomerase I- and II-DNA complexes and cancer cell death.

    PubMed

    Calderón-Montaño, José Manuel; Burgos-Morón, Estefanía; Orta, Manuel Luis; Pastor, Nuria; Austin, Caroline A; Mateos, Santiago; López-Lázaro, Miguel

    2013-09-12

    The alpha, beta-unsaturated lactones 2-furanone and 2-pyrone are part of the chemical structure of a variety of naturally occurring compounds (e.g., cardenolides, bufadienolides, acetogenins, coumarins, and food-flavoring furanones), some of which have shown anticancer activity and/or DNA damaging effects. Here we report that 2-furanone and 2-pyrone induce cellular DNA damage (assessed by the comet assay and the gamma-H2AX focus assay) and the formation of topoisomerase I- and topoisomerase II-DNA complexes in cells (visualized and quantified in situ by the TARDIS assay). Cells mutated in BRCA2 (deficient in homologous recombination repair) were significantly hypersensitive to the cytotoxic activity of 2-pyrone, therefore suggesting that BRCA2 plays an important role in the repair of DNA damage induced by this lactone. Both lactones were cytotoxic in A549 lung cancer cells at lower concentrations than in MRC5 non-malignant lung fibroblasts. The possible involvement of 2-furanone and 2-pyrone in the anticancer and DNA-damaging activities of compounds containing these lactones is discussed. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  6. Antioxidants, Phytochemicals, and Cytotoxicity Studies on Phaleria macrocarpa (Scheff.) Boerl Seeds

    PubMed Central

    Lay, Ma Ma; Karsani, Saiful Anuar; Banisalam, Behrooz; Mohajer, Sadegh; Abd Malek, Sri Nurestri

    2014-01-01

    In recent years, the utilization of certain medicinal plants as therapeutic agents has drastically increased. Phaleria macrocarpa (Scheff.) Boerl is frequently used in traditional medicine. The present investigation was undertaken with the purpose of developing pharmacopoeial standards for this species. Nutritional values such as ash, fiber, protein, fat, and carbohydrate contents were investigated, and phytochemical screenings with different reagents showed the presence of flavonoids, glycosides, saponin glycosides, phenolic compounds, steroids, tannins, and terpenoids. Our results also revealed that the water fraction had the highest antioxidant activity compared to the methanol extract and other fractions. The methanol and the fractionated extracts (hexane, chloroform, ethyl acetate, and water) of P. macrocarpa seeds were also investigated for their cytotoxic effects on selected human cancer cells lines (MCF-7, HT-29, MDA-MB231, Ca Ski, and SKOV-3) and a normal human fibroblast lung cell line (MRC-5). Information from this study can be applied for future pharmacological and therapeutic evaluations of the species, and may assist in the standardization for quality, purity, and sample identification. To the best of our knowledge, this is the first report on the phytochemical screening and cytotoxic effect of the crude and fractionated extracts of P. macrocarpa seeds on selected cells lines. PMID:24818141

  7. The proprotein convertase furin is required to maintain viability of alveolar rhabdomyosarcoma cells

    PubMed Central

    Jaaks, Patricia; Meier, Gianmarco; Alijaj, Nagjie; Brack, Eva; Bode, Peter; Koscielniak, Ewa; Wachtel, Marco; Schäfer, Beat W.; Bernasconi, Michele

    2016-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children. Success of current therapies is still limited and outcome is particularly poor for metastatic alveolar rhabdomyosarcoma (aRMS). We previously identified the proprotein convertase furin as potential target for specific drug delivery with RMS-homing peptides. Furin is a protease that converts inactive precursor proteins into bioactive proteins and peptides. In this study, we investigate the biological role of furin in aRMS progression in vitro and in vivo. Furin expression was confirmed in over 86% RMS biopsies in a tissue microarray (n=89). Inducible furin silencing in vitro led to significant impairment of cell viability and proliferation in all investigated aRMS cell lines, but not in MRC5 fibroblasts. Furthermore, the aRMS cell lines Rh3 and Rh4 revealed to be very sensitive to furin silencing, undergoing caspase-dependent cell death. Notably, furin silencing in vivo led to complete remission of established Rh4 tumors and to delayed growth in Rh30 tumors. Taken together, these findings identify furin as an important factor for aRMS progression and survival. Thus, we propose furin as a novel therapeutic target for treatment of aRMS. PMID:27572312

  8. Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy

    PubMed Central

    Muthoosamy, Kasturi; Bai, Renu Geetha; Abubakar, Ibrahim Babangida; Sudheer, Surya Mudavasseril; Lim, Hong Ngee; Loh, Hwei-San; Huang, Nay Ming; Chia, Chin Hua; Manickam, Sivakumar

    2015-01-01

    Purpose A simple, one-pot strategy was used to synthesize reduced graphene oxide (RGO) nanosheets by utilizing an easily available over-the-counter medicinal and edible mushroom, Ganoderma lucidum. Methods The mushroom was boiled in hot water to liberate the polysaccharides, the extract of which was then used directly for the reduction of graphene oxide. The abundance of polysaccharides present in the mushroom serves as a good reducing agent. The proposed strategy evades the use of harmful and expensive chemicals and avoids the typical tedious reaction methods. Results More importantly, the mushroom extract can be easily separated from the product without generating any residual byproducts and can be reused at least three times with good conversion efficiency (75%). It was readily dispersible in water without the need of ultrasonication or any surfactants; whereas 5 minutes of ultrasonication with various solvents produced RGO which was stable for the tested period of 1 year. Based on electrochemical measurements, the followed method did not jeopardize RGO’s electrical conductivity. Moreover, the obtained RGO was highly biocompatible to not only colon (HT-29) and brain (U87MG) cancer cells, but was also viable towards normal cells (MRC-5). Conclusion Besides being eco-friendly, this mushroom based approach is easily scalable and demonstrates remarkable RGO stability and biocompatibility, even without any form of functionalization. PMID:25759577

  9. Antiproliferative activity and induction of apoptotic by ethanolic extract of Alpinia galanga rhizhome in human breast carcinoma cell line

    PubMed Central

    2014-01-01

    Background We investigated the potential of galangal rhizomes to induce cytotoxic and apoptotic effects in the cultured human breast carcinoma cell line, (MCF-7) in compare with the non-malignant (MRC-5) cells. Methods Both cells were cultured in DMEM medium and treated with galangal rhizomes for three consecutive days. The percentage of apoptotic cells was determined by flow cytometry using Annexin-V fluorescein isothiocyanate. Results The results showed that the ethanolic extract of galangal rhizomes decreased cell viability in the malignant cells as a concentration- and time- dependent manner. The IC50 values against MCF-7 were determined at 400.0 ± 11.7 and 170.0 ± 5.9 μg/ml after 48 and 72 h respectively. The morphology of MCF-7 cells treated with the ethanolic extract confirmed the cell proliferation assay results. Alpinia galanga induced apoptosis in MCF-7 cells, as determined by flow cytometry. Conclusions We concluded that the extract of Alpinia galanga exerts pro-apoptotic effects in a breast cancer-derived cell line and could be considered as a potential chemotherapeutic agent in breast cancer. PMID:24935101

  10. In vitro antileishmanial and antimalarial activity of selected plants of Nepal

    PubMed Central

    Joshi, Bishnu; Hendrickx, Sarah; Magar, Lila Bahadur; Parajuli, Niranjan; Dorny, Pierre; Maes, Louis

    2016-01-01

    Background: Nepal is very rich in biodiversity, and no extensive effort has yet been carried out to screen plants that are used by traditional healers against parasitic diseases. The aim of this study was to evaluate the in vitro antileishmanial and antimalarial activity of crude methanolic or ethanolic extracts of 29 plant species that are currently used by local people of Nepal for treating different ailments. Methods: Crude extracts of leaves, twigs, aerial parts, and/or roots of the selected plants were evaluated for in vitro inhibitory activity against intracellular amastigotes of Leishmania infantum and against erythrocytic stages of Plasmodium falciparum. To determine the selectivity index (SI), cytotoxicity was assessed on MRC-5 cells in parallel. Results: Three plant species, namely Phragmites vallatoria and Ampelocissus tomentosa, for which no antiprotozoal activity has previously been reported, and Terminalia chebula revealed antiprotozoal activity. The extract of A. tomentosa exhibited moderate activity against L. infantum with an inhibitory concentration 50% (IC50) of 13.2 ± 4.3 µg/ml and SI >3, while T. chebula exhibited fairly good antiplasmodial activity with IC50 values of 4.5 ± 2.4 µg/ml and SI values >5. Conclusion: In countries like Nepal, where the current health system is unable to combat the burden of endemic parasitic diseases, evaluation of local plants as a potential source of the drug can help in expanding the treatment options. The extent of untapped resources available in these countries provides an opportunity for future bioprospecting. PMID:27757268

  11. Protective effect of bone marrow derived mesenchymal stem cells in lipopolysaccharide-induced acute lung injury mediated by claudin-4 in a rat model

    PubMed Central

    Zheng, Yueliang; Cai, Wenwei; Zhou, Shengang; Xu, Liming; Jiang, Chengxing

    2016-01-01

    Our study aims to investigate the effects of bone marrow derived mesenchymal stem cells (BM-MSCs) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) as well as the underlying mechanism. In our study, Wistar rats were randomly divided into four groups: control group; ALI group; ALI+MSCs group and ALI+MSCs claudin-4 siRNA group. MRC-5 and BEAS-2B cell lines were used for in vitro assay. Flow cytometry, western blot, hematoxylin and eosin (H&E) staining, CCK-8 assay, enzyme-linked immunosorbent assay (ELISA) were involved to measure the pathological changes in lung tissues. Results showed that in vivo MSCs administration significantly attenuated pulmonary edema (wet/dry ratio), inflammation cytokines levels (TGF-α), pathological alternations and cell apoptosis which were mediated by claudin-4 in LPS-induced acute lung injury in rats. In vitro experiment showed that hypoxia could induce the expression of claudin-4 in MSCs, and MSCs treatment showed significantly enhanced cell viability (by CCK-8 assay) and reduced cell apoptosis. In conclusion, the present study demonstrated that BM-MSCs can protect against LPS-induced ALI in vivo and in vitro, at least partly mediated by claudin-4. PMID:27725857

  12. Proteomic profile response of Paracoccidioides lutzii to the antifungal argentilactone.

    PubMed

    Prado, Renata S; Bailão, Alexandre M; Silva, Lívia C; de Oliveira, Cecília M A; Marques, Monique F; Silva, Luciano P; Silveira-Lacerda, Elisângela P; Lima, Aliny P; Soares, Célia M; Pereira, Maristela

    2015-01-01

    The dimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis (PCM), a mycosis of high incidence in Brazil. The toxicity of drug treatment and the emergence of resistant organisms have led to research for new candidates for drugs. In this study, we demonstrate that the natural product argentilactone was not cytotoxic or genotoxic to MRC5 cells at the IC50 concentration to the fungus. We also verified the proteomic profile of Paracoccidioides lutzii after incubation with argentilactone using a label free quantitative proteome nanoUPLC-MS(E). The results of this study indicated that the fungus has a global metabolic adaptation in the presence of argentilactone. Enzymes of important pathways, such as glycolysis, the Krebs cycle and the glyoxylate cycle, were repressed, which drove the metabolism to the methylcytrate cycle and beta-oxidation. Proteins involved in cell rescue, defense and stress response were induced. In this study, alternative metabolic pathways adopted by the fungi were elucidated, helping to elucidate the course of action of the compound studied.

  13. Proteomic profile response of Paracoccidioides lutzii to the antifungal argentilactone

    PubMed Central

    Prado, Renata S.; Bailão, Alexandre M.; Silva, Lívia C.; de Oliveira, Cecília M. A.; Marques, Monique F.; Silva, Luciano P.; Silveira-Lacerda, Elisângela P.; Lima, Aliny P.; Soares, Célia M.; Pereira, Maristela

    2015-01-01

    The dimorphic fungi Paracoccidioides spp. are the etiological agents of paracoccidioidomycosis (PCM), a mycosis of high incidence in Brazil. The toxicity of drug treatment and the emergence of resistant organisms have led to research for new candidates for drugs. In this study, we demonstrate that the natural product argentilactone was not cytotoxic or genotoxic to MRC5 cells at the IC50 concentration to the fungus. We also verified the proteomic profile of Paracoccidioides lutzii after incubation with argentilactone using a label free quantitative proteome nanoUPLC-MSE. The results of this study indicated that the fungus has a global metabolic adaptation in the presence of argentilactone. Enzymes of important pathways, such as glycolysis, the Krebs cycle and the glyoxylate cycle, were repressed, which drove the metabolism to the methylcytrate cycle and beta-oxidation. Proteins involved in cell rescue, defense and stress response were induced. In this study, alternative metabolic pathways adopted by the fungi were elucidated, helping to elucidate the course of action of the compound studied. PMID:26150808

  14. Fabrication of Fe3O4@mSiO2 Core-Shell Composite Nanoparticles for Drug Delivery Applications

    NASA Astrophysics Data System (ADS)

    Uribe Madrid, Sergio I.; Pal, Umapada; Kang, Young Soo; Kim, Junghoon; Kwon, Hyungjin; Kim, Jungho

    2015-05-01

    We report the synthesis of Fe3O4@mSiO2 nanostructures of different meso-silica (mSiO2) shell thickness, their biocompatibility and behaviors for loading and release of a model drug ibuprofen. The composite nanostructures have superparamagnetic magnetite cores of 208 nm average size and meso-silica shells of 15 to 40 nm thickness. A modified Stöber method was used to grow the meso-silica shells over the hydrothermally grown monodispersed magnetite particles. The composite nanoparticles show very promising drug holding and releasing behaviors, which depend on the thickness of meso-silica shell. The biocompatibility of the meso-silica-coated and uncoated magnetite nanoparticles was tested through cytotoxicity assay on breast cancer (MCF-7), ovarian cancer (SKOV3), normal human lung fibroblasts MRC-5, and IMR-90 cells. The high drug holding capacity and reasonable biocompatibility of the nanostructures make them ideal agents for targeted drug delivery applications in human body.

  15. Xanthohumol induces apoptosis and S phase cell cycle arrest in A549 non-small cell lung cancer cells

    PubMed Central

    Yong, Wai Kuan; Ho, Yen Fong; Malek, Sri Nurestri Abd

    2015-01-01

    Background: Xanthohumol, a major prenylated chalcone found in female hop plant, Humulus lupulus, was reported to have various chemopreventive and anti-cancer properties. However, its apoptotic effect on human alveolar adenocarcinoma cell line (A549) of non-small cell lung cancer (NSCLC) was unknown. Objective: This study aimed to investigate the effects of xanthohumol on apoptosis in A549 human NSCLC cells. Materials and Methods: A549 cell proliferation was determined by sulforhodamine B assay. Morphological changes of the cells were studied via phase contrast and fluorescent microscopy. Induction of apoptosis was assessed by Annexin-V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) staining, DNA fragmentation (TUNEL) assay mitochondrial membrane potential assay, cell cycle analysis, and caspase activity studies. Results: Xanthohumol was found to decrease cell proliferation in A549 cells but had relatively low cytotoxicity on normal human lung fibroblast cell line (MRC-5). Typical cellular and nuclear apoptotic features were also observed in A549 cells treated with xanthohumol. Onset of apoptosis in A549 cells was further confirmed by externalization of phosphatidylserine, changes in mitochondrial membrane potential, and DNA fragmentation in the cells after treatment. Xanthohumol induced accumulation of cells in sub G1 and S phase based on cell cycle analysis and also increased the activities of caspase-3, -8, and -9. Conclusion: This work suggests that xanthohumol as an apoptosis inducer, may be a potent therapeutic compound for NSCLC. PMID:26664015

  16. Isolation and Structure Elucidation by LC-DAD-MS and LC-DAD-SPE-NMR of Cyclopeptide Alkaloids from the Roots of Ziziphus oxyphylla and Evaluation of Their Antiplasmodial Activity.

    PubMed

    Tuenter, Emmy; Ahmad, Rizwan; Foubert, Kenn; Amin, Adnan; Orfanoudaki, Maria; Cos, Paul; Maes, Louis; Apers, Sandra; Pieters, Luc; Exarchou, Vassiliki

    2016-11-23

    Nine cyclopeptide alkaloids (1-9), of which five (compounds 2, 3, 5, 8, and 9) are described herein for the first time, were isolated from roots of Ziziphus oxyphylla by means of conventional separation methods as well as semipreparative HPLC with DAD and ESIMS detection and LC-DAD-SPE-NMR. Structure elucidation was done by spectroscopic means. Nummularine-R (1), a previously known constituent from this species, was isolated along with its new derivatives O-desmethylnummularine-R (2) and O-desmethylnummularine-R N-oxide (3). In addition, the known compounds hemsine-A (4) and ramosine-A (6), as well as hemsine-A N-oxide (5), were isolated. Moreover, oxyphylline-C (7), a known constituent of Z. oxyphylla stems, was obtained, and two new compounds were identified, oxyphyllines-E (8) and -F (9). Just like oxyphylline-C, oxyphyllines-E and -F belong to the relatively rare class of neutral cyclopeptide alkaloids. The antiplasmodial activity and cytotoxicity of compounds 1, 2, 4, 6, and 9 were evaluated, and the most promising activity was found for O-desmethylnummularine-R (2), which exhibited an IC50 value of 3.2 ± 2.6 μM against Plasmodium falciparum K1, whereas an IC50 value of >64.0 μM was evident for its cytotoxicity against MRC-5 cells.

  17. Selenium Compounds Activate Early Barriers of Tumorigenesis*

    PubMed Central

    Wu, Min; Kang, Mandy M.; Schoene, Norberta W.; Cheng, Wen-Hsing

    2010-01-01

    Selenium chemoprevention by apoptosis has been well studied, but it is not clear whether selenium can activate early barriers of tumorigenesis, namely senescence and DNA damage response. To test this hypothesis, we treated normal and cancerous cells with a gradient concentration of sodium selenite, methylseleninic acid and methylselenocysteine for 48 h, followed by a recovery of 1–7 days. Here we show that selenium compounds at doses of ≤LD50 can induce cellular senescence, as evidenced by the expression of senescence-associated β-galactosidase and 5-bromo-2-deoxyuridine incorporation, in normal but not cancerous cells. In response to clastogens, the ataxia telangiectasia mutated (ATM) protein is rapidly activated, which in turn initiates a cascade of DNA damage response. We found that the ATM pathway is activated by the selenium compounds, and the kinase activity is required for the selenium-induced senescence response. Pretreatment of the MRC-5 non-cancerous cells with the antioxidant N-acetylcysteine or 2,2,6,6-tetramethylpiperidine-1-oxyl suppresses the selenium-induced ATM activation and senescence. Taken together, the results suggest a novel role of selenium in the activation of early tumorigenesis barriers specific in non-cancerous cells, whereby selenium induces an ATM-dependent senescence response that depends on reactive oxygen species. PMID:20157118

  18. A SERS and fluorescence dual mode cancer cell targeting probe based on silica coated Au@Ag core-shell nanorods.

    PubMed

    Zong, Shenfei; Wang, Zhuyuan; Yang, Jing; Wang, Chunlei; Xu, Shuhong; Cui, Yiping

    2012-08-15

    We report a dual mode cancer cell targeting probe based on CdTe quantum dots (QDs) conjugated, silica coated Au@Ag core-shell nanorods (Au@Ag NRs), which can generate both surface enhanced Raman scattering (SERS) and fluorescence signals. In such a probe, folic acid (FA) is used as a targeting ligand for folate receptors (FRs) overexpressed cancer cells. To synthesize the probe, Au@Ag NRs were first prepared to serve as the SERS substrates by coating an Ag shell on the gold nanorods. Then the Au@Ag NRs were labeled with 4-mercaptobenzoic acid (4MBA) to generate SERS signals, followed by being coated with a silica shell through a modified Stöber method. Finally, CdTe QDs and FA were conjugated to the silica coated Au@Ag NRs by the carbodiimide chemistry to yield fluorescence and the targeting ability, respectively. To validate the targeting capability of the probe, in vitro experiments were conducted, using HeLa cells with overexpressed FRs as the model target cells and MRC-5 cells with a low folate receptor expression level as the negative control. Both the fluorescence imaging and the SERS mapping results confirmed that the proposed probe can be used as an efficient cancer cell targeting agent. This kind of multifunctional probe has great potential in the diagnosis and therapeutics of cancerous diseases due to its specific targeting and multiplex imaging abilities, especially in the simultaneous tracking of multiple components in a hybrid bio-system.

  19. Synthesis of core-shell hematite (α-Fe2O3) nanoplates: Quantitative analysis of the particle structure and shape, high coercivity and low cytotoxicity

    NASA Astrophysics Data System (ADS)

    Tadic, Marin; Kopanja, Lazar; Panjan, Matjaz; Kralj, Slavko; Nikodinovic-Runic, Jasmina; Stojanovic, Zoran

    2017-05-01

    Hematite core-shell nanoparticles with plate-like morphology were synthesized using a one-step hydrothermal synthesis. An XRPD analysis indicates that the sample consist of single-phase α-Fe2O3 nanoparticles. SEM and TEM measurements show that the hematite sample is composed of uniform core-shell nanoplates with 10-20 nm thickness, 80-100 nm landscape dimensions (aspect ratio ∼5) and 3-4 nm thickness of the surface shells. We used computational methods for the quantitative analysis of the core-shell particle structure and circularity shape descriptor for the quantitative shape analysis of the nanoparticles from TEM micrographs. The calculated results indicated that a percentage of the shell area in the nanoparticle area (share [%]) is significant. The determined values of circularity in the perpendicular and oblique perspective clearly show shape anisotropy of the nanoplates. The magnetic properties revealed the ferromagnetic-like properties at room temperature with high coercivity HC = 2340 Oe, pointing to the shape and surface effects. These results signify core-shell hematite nanoparticles' for practical applications in magnetic devices. The synthesized hematite plate-like nanoparticles exhibit low cytotoxicity levels on the human lung fibroblasts (MRC5) cell line demonstrating the safe use of these nanoparticles for biomedical applications.

  20. Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: kinetics, mechanism, and toxicity of degradation products.

    PubMed

    Abramović, Biljana F; Despotović, Vesna N; Šojić, Daniela V; Orčić, Dejan Z; Csanádi, János J; Četojević-Simin, Dragana D

    2013-09-01

    The photocatalytic degradation of the herbicide clomazone (0.05mM) in aqueous suspensions of TiO2 Degussa P25 was examined as a function of the different operational parameters. The optimum concentration of the catalyst was found to be 0.50mgmL(-1) under UV light at the pH 10.3. In the first stage of the reaction, the photocatalytic degradation of clomazone followed the pseudo-first order kinetics, with and the heterogeneous catalysis proceeding via OH radicals. The results also showed that the disappearance of clomazone led to the formation of a number of organic intermediates and ionic byproducts, whereas its complete mineralization occurred after about 55min. Tentative photodegradation pathways were proposed and discussed. A comparison of the evolution of toxicity that was evaluated in vitro in rat hepatoma (H-4-II-E) and human fetal lung (MRC-5) cell lines with the degradation kinetics indicates that the irradiation contributed to the decrease of the toxicity of the mixture that is no longer dominated by the parent compound. The study also encompassed the effect of the quality of natural water on the rate of removal of clomazone.

  1. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    PubMed Central

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-01-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2−), hydroxyl radical (HO·), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO· (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma. PMID:25715710

  2. Levels of synthesis of primate-specific nuclear proteins differ between growth-arrested and proliferating cells

    SciTech Connect

    Celis, J.E.; Madsen, P.; Nielsen, S.; Ratz, G.P.; Lauridsen, J.B.; Celis, A.

    1987-02-01

    A monoclonal antibody that reacts specifically with the proliferation-sensitive nuclear proteins, isoelectric focusing (IEF) 8Z31 (molecular weight (MW), 76,000 charge variants, HeLa protein catalogue number) has been characterized. As determined by indirect immunofluorescence, the antibody stains the nucleolus and nucleoplasm of interphase-cultured cells of primate origin, but does not react with cells of other species. Proteins having similar MWs and isoelectric points as the human or monkey (primates) proteins were not observed in cultured cells of the following species: aves, bat, dog, dolphin, goat, hamster, mink, mouse, pisces, potoroo, rabbit and rat. Quantitative two-dimensional (2D) gel electrophoretic analysis of (/sup 35/S)methionine-labelled proteins synthesized by normal (quiescent, proliferating) and SV40-transformed human MRC-5 fibroblasts revealed significant differences in the levels of synthesis of both IEF 8Z30 and 8Z31. In quiescent cells the main labelled product corresponded to IEF 8Z31 (ratio IEF 8Z31/8Z30, 2.3), while in the transformed cells the major product was IEF 8Z30 (ratio, 0.62). Normal proliferating fibroblasts exhibited similar levels of both proteins (ratio, 1.21). Combined levels of synthesis of both proteins were 1.50 and 1.20 times as high in the transformed cells as in the quiescent and proliferating cells, respectively. Modulation of the levels of synthesis of these proteins may play a role in cell proliferation.

  3. Synthesis and in vitro antitumour screening of 2-(β-D-xylofuranosyl)thiazole-4-carboxamide and two novel tiazofurin analogues with substituted tetrahydrofurodioxol moiety as a sugar mimic.

    PubMed

    Popsavin, Mirjana; Spaić, Saša; Svirčev, Miloš; Kojić, Vesna; Bogdanović, Gordana; Popsavin, Velimir

    2012-11-01

    2-(β-D-xylofuranosyl)thiazole-4-carboxamide (2) and two new tiazofurin analogues with 5-hydroxymethyl-2-methyl-tetrahydro-furo[2,3-d][1,3]dioxol-6-ol moiety as a sugar mimic (27 and 28) have been synthesized and evaluated for their in vitro antitumour activity against a panel of human tumour cell lines (K562, HL 60, Jurkat, Raji and HeLa). In contrast to previous literature reports, a metabolic MTT assay revealed remarkable cytotoxicity of 2 against K562 (IC(50)=0.15 μM) and HL-60 (IC(50)=0.13 μM) cells. Flow cytometry data suggest that cytotoxic effects of analogue 2 in the culture of K562 cells might be mediated by apoptosis, in opposite to tiazofurin, which did not induce apoptosis of K562 cells after 24h, thus suggesting a different mechanism of action. All three analogues 2, 27 and 28 were also active against Jurkat, Raji and HeLa cells, with IC(50) values in the range from 0.06 to 5.61 μM, but were completely inactive against the normal foetal lung fibroblasts (MRC-5). Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. The effect of grain size on the biocompatibility, cell-materials interface, and mechanical properties of microwave-sintered bioceramics.

    PubMed

    Veljović, Djordje; Colić, Miodrag; Kojić, Vesna; Bogdanović, Gordana; Kojić, Zvezdana; Banjac, Andrijana; Palcevskis, Eriks; Petrović, Rada; Janaćković, Djordje

    2012-11-01

    The effect of decreasing the grain size on the biocompatibility, cell-material interface, and mechanical properties of microwave-sintered monophase hydroxyapatite bioceramics was investigated in this study. A nanosized stoichiometric hydroxyapatite powder was isostatically pressed at high pressure and sintered in a microwave furnace in order to obtain fine grained dense bioceramics. The samples sintered at 1200°C, with a density near the theoretical one, were composed of micron-sized grains, while the grain size decreased to 130 nm on decreasing the sintering temperature to 900°C. This decrease in the grain size certainly led to increases in the fracture toughness by much as 54%. An in vitro investigation of biocompatibility with L929 and human MRC-5 fibroblast cells showed noncytotoxic effects for both types of bioceramics, while the relative cell proliferation rate, cell attachment and metabolic activity of the fibroblasts were improved with decreasing of grain size. An initial in vivo investigation of biocompatibility by the primary cutaneous irritation test showed that both materials exhibited no irritation properties.

  5. Isolates of Encephalitozoon cuniculi from farmed blue foxes (Alopex lagopus) from Norway differ from isolates from Swiss domestic rabbits (Oryctolagus cuniculus).

    PubMed

    Mathis, A; Akerstedt, J; Tharaldsen, J; Odegaard, O; Deplazes, P

    1996-01-01

    Encephalitozoon cuniculi has a wide host range among mammals, but whether it represents a homogeneous species is a subject of controversy. We have isolated, cultivated (in human MRC-5 cells) and, for the first time, characterized by immunological and molecular biological methods four isolates of E. cuniculi from Norwegian blue foxes with a history of encephalitozoonosis. The isolates were compared with nine isolates from domestic rabbits from Switzerland. Two E. cuniculi subtypes were identified according to their host species. A 5'-GTTT-3' tetranucleotide repeat was present twice in the rDNA intergenic spacer in all isolates from foxes as opposed to three times in all isolates from rabbits. Furthermore, random amplified polymorphic DNA analysis showed one polymorphic band among the subtypes, and Western-blot analysis using serum from an infected fox discriminated between the two subtypes on the basis of their banding patterns in the ranges of 31-33 and 38-40 kDa. The 5'-GTTT-3' tetranucleotide repeat is a valuable genetic marker for these two subtypes of E. cuniculi and will be of use in continued studies on the molecular epidemiology of this parasite.

  6. Herpes simplex virus antigen direct detection in standard virus transport medium by Du Pont Herpchek enzyme-linked immunosorbent assay.

    PubMed Central

    Verano, L; Michalski, F J

    1990-01-01

    A commercial 5-h direct herpes simplex virus (HSV) antigen detection enzyme immunoassay kit (Du Pont Herpchek) was compared with a cell culture isolation system by using primary rabbit kidney and MRC-5 cells with 779 clinical specimens received in virus transport medium and with stock tissue culture preparations of HSV types 1 and 2. In the first study of 422 specimens from symptomatic patients, Herpchek detected 110 of 111 HSV-positive specimens (26.3% of all specimens), with a sensitivity of 99% and a specificity of 100%. In the second study of 357 specimens primarily from asymptomatic pregnant women, however, Herpchek detected 70 of 119 HSV-positive specimens (33% of all specimens), with a sensitivity of 58.8% and a specificity of 99.5%. Stock virus dilution experiments showed that Herpchek was 10 to 100 times less sensitive than culture. Herpchek was found to be an acceptable test for symptomatic patients, but for asymptomatic patients shedding a low titer of HSV it was not as sensitive and cell culture of Herpchek-negative specimens is recommended for such cases. PMID:2174903

  7. Herpes simplex virus antigen direct detection in standard virus transport medium by Du Pont Herpchek enzyme-linked immunosorbent assay.

    PubMed

    Verano, L; Michalski, F J

    1990-11-01

    A commercial 5-h direct herpes simplex virus (HSV) antigen detection enzyme immunoassay kit (Du Pont Herpchek) was compared with a cell culture isolation system by using primary rabbit kidney and MRC-5 cells with 779 clinical specimens received in virus transport medium and with stock tissue culture preparations of HSV types 1 and 2. In the first study of 422 specimens from symptomatic patients, Herpchek detected 110 of 111 HSV-positive specimens (26.3% of all specimens), with a sensitivity of 99% and a specificity of 100%. In the second study of 357 specimens primarily from asymptomatic pregnant women, however, Herpchek detected 70 of 119 HSV-positive specimens (33% of all specimens), with a sensitivity of 58.8% and a specificity of 99.5%. Stock virus dilution experiments showed that Herpchek was 10 to 100 times less sensitive than culture. Herpchek was found to be an acceptable test for symptomatic patients, but for asymptomatic patients shedding a low titer of HSV it was not as sensitive and cell culture of Herpchek-negative specimens is recommended for such cases.

  8. Stereocontrolled synthesis of the four 16-hydroxymethyl-19-nortestosterone isomers and their antiproliferative activities.

    PubMed

    Schneider, Gyula; Kiss, Anita; Mernyák, Erzsébet; Benke, Zsanett; Wölfling, János; Frank, Éva; Bózsity, Noémi; Gyovai, András; Minorics, Renáta; Zupkó, István

    2016-01-01

    Novel 16-hydroxymethyl-19-nortestosterone diastereomers were prepared by Birch reduction from the corresponding 3-methoxy-16-hydroxymethylestra-1,3,5(10)-trien-17-ol isomers with known configurations. The synthesized compounds are 16α- and 16β-hydroxymethyl-substituted 19-nortestosterone and their 17α-epimers. To prepare 17α-19-nortestosterone, the Mitsunobu inversion reaction of 19-nortestosterone with different alkyl and aryl carboxylic acids was chosen. Deacylation of the new compounds by the Zemplén method yielded the required 17α-19-nortestosterone. The antiproliferative activities of the structurally related compounds were determined in vitro through microculture tetrazolium assays on a panel of human adherent cervical (HeLa, SiHa and C33A), breast (MCF-7, MDA-MB-231, MDA-MB-361 and T47D) and ovarian (A2780) cell lines. The 17α epimer of 19-nortestosterone demonstrated considerable activity, selectively for HeLa cells, with a calculated IC50 of 0.65 μM. The reference compound, cisplatin, displayed an order of magnitude higher IC50 (12.4 μM). The cancer selectivity of 17α-19-nortestosterone was tested by MTT assay performed with noncancerous human fibroblast cell line MRC-5. The results indicated that 17α-19-nortestosterone selectively disturbs the viability of HeLa cells without greatly affecting other cancer cell types and intact fibroblasts.

  9. Gastroprotective effect of the Mapuche crude drug Araucaria araucana resin and its main constituents.

    PubMed

    Schmeda-Hirschmann, Guillermo; Astudillo, Luis; Rodríguez, Jaime; Theoduloz, Cristina; Yáñez, Tania

    2005-10-03

    The resin from the tree Araucaria araucana (Araucariaceae) has been used since pre-columbian times by the Mapuche amerindians to treat ulcers. The gastroprotective effect of the resin was assessed in the ethanol-HCl-induced gastric ulcer in mice showing a dose-dependent gastroprotective activity at 100, 200 and 300 mg/kg per os. The main three diterpene constituents of the resin, namely imbricatolic acid, 15-hydroxyimbricatolal and 15-acetoxyimbricatolic acid were isolated and evaluated for gastroprotective effect at doses of 50, 100 and 200 mg/kg. A dose-related gastroprotective effect with highly significant activity (P<0.01) was observed at doses up to 200 mg/kg. At 100 mg/kg, the highest gastroprotective activity was provided by 15-hydroxyimbricatolal and 15-acetoxyimbricatolic acid, all of them being as active as the reference drug lansoprazole at 20 mg/kg. The cytotoxicity of the main diterpenes as well as lansoprazole was studied towards human lung fibroblasts (MRC-5) and determined by the MTT reduction assay. A concentration-dependent cell viability inhibition was found with IC50 values ranging from 125 up to 290 microM. Our results support the traditional use of the Araucaria araucana resin by the Mapuche culture.

  10. Oxidative inactivation of alpha 1-proteinase inhibitor by alveolar epithelial type II cells.

    PubMed

    Wallaert, B; Aerts, C; Gressier, B; Gosset, P; Voisin, C

    1993-12-01

    The aim of this work was to evaluate the ability of guinea pig alveolar epithelial type II cells to generate significant amounts of reactive oxygen species to inactivate alpha 1-proteinase inhibitor (alpha 1-PI). Inactivation of alpha 1-PI was evaluated by its inhibitory activity against porcine pancreatic elastase and was expressed as a percentage. The same experiments were performed in parallel with alveolar macrophages (AM) obtained from the same animals and with MRC-5 fibroblasts. Both type II cells and AM released significant amounts of hydrogen peroxide and superoxide, whereas the fibroblasts did not. Unstimulated type II cells (0.5 +/- 2%), AM (1.2 +/- 1.5%), and fibroblasts (0.5 +/- 0.5%) were unable to inactivate alpha 1-PI. Addition of phorbol myristate acetate did not increase their ability to inactivate alpha 1-PI. In contrast, type II cells (79.7 +/- 7%) and AM (80.1 +/- 8%) dramatically inactivated alpha 1-PI in the presence of myeloperoxidase (25 mU/ml), whereas fibroblasts did not. Addition of catalase to the reaction significantly prevented the inactivation of alpha 1-PI. Western blot analysis of alpha 1-PI did not reveal a significant proteolysis of alpha 1-PI, which supports the hypothesis that, in the presence of neutrophil-derived myeloperoxidase, type II cells may oxidatively inactivate alpha 1-PI.

  11. Propagation and assay of hepatitis A virus in vitro.

    PubMed

    Siegl, G; deChastonay, J; Kronauer, G

    1984-08-01

    Ten strains of hepatitis A virus (HAV) originating from far distant geographical locations were adapted to growth in PLC/PRF/5 (human hepatoma derived and/or MRC-5 (human embryonic lung) cells. In the course of primary adaptation some of these strains exhibited a predilection for distinct cultural conditions such as type of host cell and temperature of incubation. With progressive passage, variant viruses with quite different requirements could be selected; yet, it proved impossible to isolate a virus which replicated equally well in both types of cells and at both 32 and 37 degrees C without at least one preceding passage under the new conditions. Analysis of the virus/cell relationship of well adapted HAV strains revealed that the replication cycle of HAV extends over about 24 h. Moreover, replication evidently passes from a state of active production of infectious virus to a phase during which hepatitis A antigen (HAAg) is synthesized and terminates in the state of persistent infection with markedly reduced synthetic activity. In all three phases replication of HAV is non-cytolytic and the vast majority of both infectious virus and of HAAg remains cell associated. The observations concerning the growth characteristics of HAV were used to develop two rapid in vitro assay systems for HAV infectivity (fluorescent focus assay and in situ RIA). Finally, the conditions for large scale production of infectious HAV and of HAAg in a cell factory system were analysed.

  12. Short Interfering RNA Inhibits Rift Valley Fever Virus Replication and Degradation of Protein Kinase R in Human Cells

    PubMed Central

    Faburay, Bonto; Richt, Juergen A.

    2016-01-01

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing severe outbreaks in humans and livestock in sub-Saharan Africa and the Arabian Peninsula. Human infections are characterized by fever, sometimes leading to encephalitis, retinitis, hemorrhagic fever, and occasionally death. There are currently no fully licensed vaccines or effective therapies for human use. Gene silencing mediated by double-stranded short interfering RNA (siRNA) is a sequence-specific, highly conserved mechanism in eukaryotes, which serves as an antiviral defense mechanism. Here, we demonstrate that siRNA duplexes directed against the RVFV nucleoprotein can effectively inhibit RVFV replication in human (MRC5 cells) and African green monkey cells (Vero E6 cells). Using these cells, we demonstrate that individual or complex siRNAs, targeting the RVFV nucleoprotein gene completely abrogate viral protein expression and prevent degradation of the host innate antiviral factor, protein kinase R (PKR). Importantly, pre-treatment of cells with the nucleoprotein-specific siRNAs markedly reduces the virus titer. The antiviral effect of the siRNAs was not attributable to interferon or the interferon response effector molecule, PKR. Thus, the antiviral activity of RVFV nucleoprotein-specific siRNAs may provide novel therapeutic strategy against RVFV infections in animals and humans. PMID:27933051

  13. Genotoxicity of wood dust in a human embryonic lung cell line.

    PubMed

    Zhou, Z C; Norpoth, K H; Nelson, E

    1995-01-01

    Wood dust exposure has been found to be an occupational hazard, being linked to an enhanced incidence of various neoplasias. Here we performed an experiment to evaluate the ability of solvent extracts of natural woods to induce chromosome aberrations in respiratory cells in culture. Human embryonic lung cells, MRC-5, grown in Dulbecco's medium were exposed to various concentrations of the dust extracts of pesticide-free (untreated) beech, oak and pine woods. Three concentrations per extract with and without metabolic activation (S9) and 100 metaphase cells per dose were examined for possible structural aberrations. Although no dose-dependent activity could be found with any extract in the presence of S9, most aberrations observed were of the chromatid type caused by oak wood. Dose-dependent chromosomal breaks caused by oak and chromatid breaks caused by both beech and oak were observed in the absence of S9. These data might support the early hypothesis that hard wood dust per se contains some in vivo genotoxic and thus possibly carcinogenic components.

  14. Genotoxicity evaluation of dental restoration nanocomposite using comet assay and chromosome aberration test

    NASA Astrophysics Data System (ADS)

    Musa, Marahaini; Thirumulu Ponnuraj, Kannan; Mohamad, Dasmawati; Rahman, Ismail Ab

    2013-01-01

    Nanocomposite is used as a dental filling to restore the affected tooth, especially in dental caries. The dental nanocomposite (KelFil) for tooth restoration used in this study was produced by the School of Dental Sciences, Universiti Sains Malaysia, Malaysia and is incorporated with monodispersed, spherical nanosilica fillers. The aim of the study was to determine the genotoxic effect of KelFil using in vitro genotoxicity tests. The cytotoxicity and genotoxicity of KelFil was evaluated using MTT assay, comet assay and chromosome aberration tests with or without the addition of a metabolic activation system (S9 mix), using the human lung fibroblast cell line (MRC-5). Concurrent negative and positive controls were included. In the comet assay, no comet formation was found in the KelFil groups. There was a significant difference in tail moment between KelFil groups and positive control (p < 0.05). Similarly, no significant aberrations in chromosomes were noticed in KelFil groups. The mitotic indices of treatment groups and negative control were significantly different from positive controls. Hence, it can be concluded that the locally produced dental restoration nanocomposite (KelFil) is non-genotoxic under the present test conditions.

  15. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts.

    PubMed

    Marthandan, Shiva; Priebe, Steffen; Baumgart, Mario; Groth, Marco; Cellerino, Alessandro; Guthke, Reinhard; Hemmerich, Peter; Diekmann, Stephan

    2015-01-01

    Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin.

  16. Microcystis aeruginosa toxin: cell culture toxicity, hemolysis, and mutagenicity assays.

    PubMed Central

    Grabow, W O; Du Randt, W C; Prozesky, O W; Scott, W E

    1982-01-01

    Crude toxin was prepared by lyophilization and extraction of toxic Microcystis aeruginosa from four natural sources and a unicellular laboratory culture. The responses of cultures of liver (Mahlavu and PCL/PRF/5), lung (MRC-5), cervix (HeLa), ovary (CHO-K1), and kidney (BGM, MA-104, and Vero) cell lines to these preparations did not differ significantly from one another, indicating that toxicity was not specific for liver cells. The results of a trypan blue staining test showed that the toxin disrupted cell membrane permeability within a few minutes. Human, mouse, rat, sheep, and Muscovy duck erythrocytes were also lysed within a few minutes. Hemolysis was temperature dependent, and the reaction seemed to follow first-order kinetics. Escherichia coli, Streptococcus faecalis, and Tetrahymena pyriformis were not significantly affected by the toxin. The toxin yielded negative results in Ames/Salmonella mutagenicity assays. Microtiter cell culture, trypan blue, and hemolysis assays for Microcystis toxin are described. The effect of the toxin on mammalian cell cultures was characterized by extensive disintegration of cells and was distinguishable from the effects of E. coli enterotoxin, toxic chemicals, and pesticides. A possible reason for the acute lethal effect of Microcystis toxin, based on cytolytic activity, is discussed. Images PMID:6808921

  17. Green synthesis of bacterial mediated anti-proliferative gold nanoparticles: inducing mitotic arrest (G2/M phase) and apoptosis (intrinsic pathway).

    PubMed

    Kumar, C Ganesh; Poornachandra, Y; Chandrasekhar, Cheemalamarri

    2015-11-28

    The physiochemical and biological properties of microbial derived gold nanoparticles have potential applications in various biomedical domains as well as in cancer therapy. We have fabricated anti-proliferative bacterial mediated gold nanoparticles (b-Au NPs) using a culture supernatant of Streptomyces clavuligerus and later characterized them by UV-visible, TEM, DLS, XRD and FT-IR spectroscopic techniques. The capping agent responsible for the nanoparticle formation was characterized based on SDS-PAGE and MALDI-TOF-MS analyses. They were tested for anticancer activity in A549, HeLa and DU145 cell lines. The biocompatibility and non-toxic nature of the nanoparticles were tested on normal human lung cell line (MRC-5). The b-Au NPs induced the cell cycle arrest in G2/M phase and also inhibited the microtubule assembly in DU145 cells. Mechanistic studies, such as ROS, MMP, Cyt-c, GSH, caspases 9, 8 and 3 activation and the Annexin V-FITC staining, along with the above parameters tested provided sufficient evidence that the b-Au NPs induced apoptosis through the intrinsic pathway. The results supported the use of b-Au NPs for future therapeutic application in cancer therapy and other biomedical applications.

  18. Biomarker-free dielectrophoretic sorting of differentiating myoblast multipotent progenitor cells and their membrane analysis by Raman spectroscopy.

    PubMed

    Muratore, Massimo; Srsen, Vlastimil; Waterfall, Martin; Downes, Andrew; Pethig, Ronald

    2012-09-01

    Myoblasts are muscle derived mesenchymal stem cell progenitors that have great potential for use in regenerative medicine, especially for cardiomyogenesis grafts and intracardiac cell transplantation. To utilise such cells for pre-clinical and clinical applications, and especially for personalized medicine, it is essential to generate a synchronised, homogenous, population of cells that display phenotypic and genotypic homogeneity within a population of cells. We demonstrate that the biomarker-free technique of dielectrophoresis (DEP) can be used to discriminate cells between stages of differentiation in the C2C12 myoblast multipotent mouse model. Terminally differentiated myotubes were separated from C2C12 myoblasts to better than 96% purity, a result validated by flow cytometry and Western blotting. To determine the extent to which cell membrane capacitance, rather than cell size, determined the DEP response of a cell, C2C12 myoblasts were co-cultured with GFP-expressing MRC-5 fibroblasts of comparable size distributions (mean diameter ∼10 μm). A DEP sorting efficiency greater than 98% was achieved for these two cell types, a result concluded to arise from the fibroblasts possessing a larger membrane capacitance than the myoblasts. It is currently assumed that differences in membrane capacitance primarily reflect differences in the extent of folding or surface features of the membrane. However, our finding by Raman spectroscopy that the fibroblast membranes contained a smaller proportion of saturated lipids than those of the myoblasts suggests that the membrane chemistry should also be taken into account.

  19. Synthesis, characterization, and efficacy of antituberculosis isoniazid zinc aluminum-layered double hydroxide based nanocomposites.

    PubMed

    Saifullah, Bullo; El Zowalaty, Mohamed Ezzat; Arulselvan, Palanisamy; Fakurazi, Sharida; Webster, Thomas J; Geilich, Benjamin Mahler; Hussein, Mohd Zobir

    2016-01-01

    The chemotherapy for tuberculosis (TB) is complicated by its long-term treatment, its frequent drug dosing, and the adverse effects of anti-TB drugs. In this study, we have developed two nanocomposites (A and B) by intercalating the anti-TB drug isoniazid (INH) into Zn/Al-layered double hydroxides. The average size of the nanocomposites was found to bê164 nm. The efficacy of the Zn/Al-layered double hydroxides intercalated INH against Mycobacterium tuberculosis was increased by approximately three times more than free INH. The nanocomposites were also found to be active against Gram-positive and -negative bacteria. Compared to the free INH, the nanodelivery formulation was determined to be three times more biocompatible with human normal lung fibroblast MRC-5 cells and 3T3 fibroblast cells at a very high concentration of 50 µg/mL for up to 72 hours. The in vitro release of INH from the Zn/Al-layered double hydroxides was found to be sustained in human body-simulated buffer solutions of pH 4.8 and 7.4. This research is a step forward in making the TB chemotherapy patient friendly.

  20. Development of a Highly Biocompatible Antituberculosis Nanodelivery Formulation Based on Para-Aminosalicylic Acid—Zinc Layered Hydroxide Nanocomposites

    PubMed Central

    Arulselvan, Palanisamy; El Zowalaty, Mohamed Ezzat; Fakurazi, Sharida; Webster, Thomas J.; Geilich, Benjamin; Hussein, Mohd Zobir

    2014-01-01

    Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS) and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) found to be at 1.40 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells-3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS) solution at pH values of 7.4 and 4.8. Most importantly the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies. PMID:25050392

  1. Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate–zinc aluminum-layered double-hydroxide nanocomposites

    PubMed Central

    Saifullah, Bullo; Hussein, Mohd Zobir; Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida

    2013-01-01

    We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours. PMID:24255593

  2. Ultrasensitive cytosensing based on an aptamer modified nanobiosensor with a bioconjugate: Detection of human non-small-cell lung cancer cells.

    PubMed

    Mir, Tanveer A; Yoon, Jang-Hee; Gurudatt, N G; Won, Mi-Sook; Shim, Yoon-Bo

    2015-12-15

    A novel aptamer-based amperometric nanobiosensor was designed for the sensitive and selective detection of A549 human non-small-cell lung cancer (NSCLC) cells. The cytosensing was performed using a MUC1 aptamer probe with a bioconjugate, where the probe was fabricated by the covalent immobilization on a conducting polymer nanocomposite formed through the self-assembly of 4-([2,2':5',2''-terthiophen]-3'-yl) benzoic acid (TTBA) on AuNPs. A bioconjugate composed of hydrazine and aptamer attached on AuNPs was used to reveal the selectively amplified detection signal. The cells were quantitatively analyzed using chronoamperometric measurements, and the results were further compared and confirmed using microscopic and DPV methods based on silver staining cytosensing experiments. The proposed aptasensor showed a high affinity for MUC1 positive lung cancer cells (A549) compared with the other control cancer cells, including human prostate (PC3), MUC1 negative normal lung (MRC-5), and liver tumors (HepG2) cells. An excellent dynamic range of the proposed method was obtained from 15 to 1×10(6) cells/mL with a detection limit of 8 cells/mL.

  3. New gastroprotective labdeneamides from (4S,9R,10R) methyl 18-carboxy-labda-8,13(E)-diene-15-oate.

    PubMed

    Olate, Verónica Rachel; Pertino, Mariano Walter; Theoduloz, Cristina; Yesilada, Erdem; Monsalve, Francisco; González, Paulo; Droguett, Daniel; Richomme, Pascal; Hadi, A Hamid; Schmeda-Hirschmann, Guillermo

    2012-03-01

    Starting from the diterpene (4S,9R,10R) methyl 18-carboxy-labda-8,13(E)-dien-15-oate (PMD) and its 8(9)-en isomer [PMD 8(9)-en], 11 amides were prepared and assessed for a gastroprotective effect in the ethanol/HCl-induced gastric lesions model in mice. Basal cytotoxicity of the compounds was determined on the following human cell lines: normal lung fibroblasts (MRC-5), gastric epithelial adenocarcinoma (AGS), and hepatocellular carcinoma (Hep G2). All compounds are described for the first time. At the single oral dose of 0.1 mg/kg, compounds 1, 10, and 11 presented a strong gastroprotective effect, at least comparable with that of the reference compound lansoprazole at 1 mg/kg, reducing gastric lesions by 76.7, 67.7, and 77.2 %, respectively. The leucyl amide methyl ester 3, tryptophanyl amide methyl ester 5, and benzyl amide 6 of PMD presented a selective basal cytotoxicity on Hep G2 cells with IC₅₀ values of 136.8, 105.3, and 94.2 µM, respectively, while the IC₅₀ values towards AGS cells were 439.5, 928.0, and 937.3 µM, respectively. The three compounds did not affect fibroblast viability with IC₅₀ values > 1000 µM. Compounds 7, 8, 10, and 11 showed no toxic effect against the three selected cell lines.

  4. Exceedingly biocompatible and thin-layered reduced graphene oxide nanosheets using an eco-friendly mushroom extract strategy.

    PubMed

    Muthoosamy, Kasturi; Bai, Renu Geetha; Abubakar, Ibrahim Babangida; Sudheer, Surya Mudavasseril; Lim, Hong Ngee; Loh, Hwei-San; Huang, Nay Ming; Chia, Chin Hua; Manickam, Sivakumar

    2015-01-01

    A simple, one-pot strategy was used to synthesize reduced graphene oxide (RGO) nanosheets by utilizing an easily available over-the-counter medicinal and edible mushroom, Ganoderma lucidum. The mushroom was boiled in hot water to liberate the polysaccharides, the extract of which was then used directly for the reduction of graphene oxide. The abundance of polysaccharides present in the mushroom serves as a good reducing agent. The proposed strategy evades the use of harmful and expensive chemicals and avoids the typical tedious reaction methods. More importantly, the mushroom extract can be easily separated from the product without generating any residual byproducts and can be reused at least three times with good conversion efficiency (75%). It was readily dispersible in water without the need of ultrasonication or any surfactants; whereas 5 minutes of ultrasonication with various solvents produced RGO which was stable for the tested period of 1 year. Based on electrochemical measurements, the followed method did not jeopardize RGO's electrical conductivity. Moreover, the obtained RGO was highly biocompatible to not only colon (HT-29) and brain (U87MG) cancer cells, but was also viable towards normal cells (MRC-5). Besides being eco-friendly, this mushroom based approach is easily scalable and demonstrates remarkable RGO stability and biocompatibility, even without any form of functionalization.

  5. Antiproliferative activity and induction of apoptotic by ethanolic extract of Alpinia galanga rhizhome in human breast carcinoma cell line.

    PubMed

    Samarghandian, Saeed; Hadjzadeh, Mousa-Al-Reza; Afshari, Jalil Tavakkol; Hosseini, Mohadeseh

    2014-06-17

    We investigated the potential of galangal rhizomes to induce cytotoxic and apoptotic effects in the cultured human breast carcinoma cell line, (MCF-7) in compare with the non-malignant (MRC-5) cells. Both cells were cultured in DMEM medium and treated with galangal rhizomes for three consecutive days. The percentage of apoptotic cells was determined by flow cytometry using Annexin-V fluorescein isothiocyanate. The results showed that the ethanolic extract of galangal rhizomes decreased cell viability in the malignant cells as a concentration- and time- dependent manner. The IC50 values against MCF-7 were determined at 400.0 ± 11.7 and 170.0 ± 5.9 μg/ml after 48 and 72 h respectively. The morphology of MCF-7 cells treated with the ethanolic extract confirmed the cell proliferation assay results. Alpinia galanga induced apoptosis in MCF-7 cells, as determined by flow cytometry. We concluded that the extract of Alpinia galanga exerts pro-apoptotic effects in a breast cancer-derived cell line and could be considered as a potential chemotherapeutic agent in breast cancer.

  6. Chain elongation analog of resveratrol as potent cancer chemoprevention agent.

    PubMed

    Kang, Yan-Fei; Qiao, Hai-Xia; Xin, Long-Zuo; Ge, Li-Ping

    2016-09-01

    Resveratrol is identified as a natural cancer chemoprevention agent. There has been a lot of interest in designing and developing resveratrol analogs with cancer chemoprevention activity superior to that of parent molecule and exploring their action mechanism in the past several decades. In this study, we have synthesized resveratrol analogs of compounds A-C via conjugated chain elongation based on isoprene unit retention strategy. Remarkably, cytotoxic activity analysis results indicated that compound B possesses the best proliferation inhibition activity for NCI-H460 cells in all the test compounds. Intriguingly, compound B displayed a higher cytotoxicity against human non-small cell lung cancer cells (NCI-H460) compared to normal human embryonic lung fibroblasts (MRC-5). Afterward, flow cytometry analysis showed that compound B would induce cell apoptosis. We further researched the action mechanism. When NCI-H460 cells were incubated by compound B for 6 or 9 h, respectively, the intracellular reactive oxygen species (ROS) level was enhanced obviously. With elevation of intracellular ROS level, flow cytometry measurement verified mitochondrial transmembrane potential collapse, which was accompanied by the up-regulation of Bax and down-regulation of Bcl-2. More interestingly, compound B increased the expression of caspase-9 and caspase-3, which induced cell apoptosis. Moreover, compound B arrested cell cycle in G0/G1 phase. These are all to provide useful information for designing resveratrol-based chemoprevention agent and understanding the action mechanism.

  7. A novel polyaniline/polypyrrole/graphene oxide fiber for the determination of volatile organic compounds in headspace gas of lung cell lines.

    PubMed

    Li, JingHong; Xu, Hui

    2017-05-15

    Exploration of volatile organic compounds (VOCs) generated by lung cell lines is a powerful and non-invasive tool for the detection of potential volatile biomarkers of lung cancer. In this study, a simple and sensitive solid phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS) method was developed for the determination of VOCs in the headspace gas of lung cell lines. For the purpose of preconcentration, a novel polyaniline/polypyrrole/graphene oxide (PANI/PPy/GO) coating was prepared on the surface of stainless steel fiber via in-situ electrochemical deposition for the first time. The characteristic properties of the coating were studied and the results revealed that the coating possessed large surface area, high extraction efficiency, excellent thermal and mechanical stability as well as long lifespan. Some parameters affecting the extraction efficiency such as synthesis conditions, extraction and desorption conditions were optimized. Under the optimal conditions, the method displayed relatively wide linear range (three or four orders of magnitude) with correlation coefficients above 0.9916. Low detection limits from 1.0 to 12ngL(-1) were obtained. Relative standard deviations ranged from 1.2% to 18.0% indicating good repeatability and reproducibility of the method. This method has been successfully applied to analyze VOCs in the headspace gas of lung adenocarcinoma epithelial cell line (A549) and human embryonic fibroblast cell line (MRC-5).

  8. Assessment of the in vitro antiprotozoal and cytotoxic potential of 20 selected medicinal plants from the island of Soqotra.

    PubMed

    Mothana, Ramzi A; Al-Musayeib, Nawal M; Matheeussen, An; Cos, Paul; Maes, Louis

    2012-12-03

    Malaria, leishmaniasis and human African trypanosomiasis continue to be major public health problems in need of new and more effective drugs. The aim of this study was to evaluate in vitro antiprotozoal activity of twenty endemic medicinal plants collected from the island of Soqotra in the Indian Ocean. The plant materials were extracted with methanol and tested for antiplasmodial activity against erythrocytic schizonts of Plasmodium falciparum, for antileishmanial activity against intracellular amastigotes of Leishmania infantum and for antitrypanosomal activity against intracellular amastigotes of Trypanosoma cruzi and free trypomastigotes of T. brucei. To assess selectivity, cytotoxicity was determined against MRC-5 fibroblasts. Selective activity was obtained for Punica protopunica against Plasmodium (IC₅₀ 2.2 µg/mL) while Eureiandra balfourii and Hypoestes pubescens displayed activity against the three kinetoplastid parasites (IC₅₀ < 10 µg/mL). Acridocarpus socotranus showed activity against T. brucei and T. cruzi (IC₅₀ 3.5 and 8.4 µg/mL). Ballochia atrovirgata, Dendrosicycos socotrana, Dracaena cinnabari and Euphorbia socotrana displayed non-specific inhibition of the parasites related to high cytotoxicity.

  9. Responses of Solid Tumor Cells in DMEM to Reactive Oxygen Species Generated by Non-Thermal Plasma and Chemically Induced ROS Systems

    NASA Astrophysics Data System (ADS)

    Kaushik, Neha; Uddin, Nizam; Sim, Geon Bo; Hong, Young June; Baik, Ku Youn; Kim, Chung Hyeok; Lee, Su Jae; Kaushik, Nagendra Kumar; Choi, Eun Ha

    2015-02-01

    In this study, we assessed the role of different reactive oxygen species (ROS) generated by soft jet plasma and chemical-induced ROS systems with regard to cell death in T98G, A549, HEK293 and MRC5 cell lines. For a comparison with plasma, we generated superoxide anion (O2-), hydroxyl radical (HO.), and hydrogen peroxide (H2O2) with chemicals inside an in vitro cell culture. Our data revealed that plasma decreased the viability and intracellular ATP values of cells and increased the apoptotic population via a caspase activation mechanism. Plasma altered the mitochondrial membrane potential and eventually up-regulated the mRNA expression levels of BAX, BAK1 and H2AX gene but simultaneously down-regulated the levels of Bcl-2 in solid tumor cells. Moreover, a western blot analysis confirmed that plasma also altered phosphorylated ERK1/2/MAPK protein levels. At the same time, using ROS scavengers with plasma, we observed that scavengers of HO. (mannitol) and H2O2 (catalase and sodium pyruvate) attenuated the activity of plasma on cells to a large extent. In contrast, radicals generated by specific chemical systems enhanced cell death drastically in cancer as well as normal cell lines in a dose-dependent fashion but not specific with regard to the cell type as compared to plasma.

  10. Libyan Thymus capitatus essential oil: antioxidant, antimicrobial, cytotoxic and colon pathogen adhesion-inhibition properties.

    PubMed

    Džamić, A M; Nikolić, B J; Giweli, A A; Mitić-Ćulafić, D S; Soković, M D; Ristić, M S; Knežević-Vukčević, J B; Marin, P D

    2015-08-01

    In the present work, the Libyan wild-growing Thymus capitatus essential oil (EO) was evaluated for its biological properties. Carvacrol (68.19%) and thymol (12.29%) were found to be the main compounds of the oil. Antioxidant properties, determined by 2,2-diphenylpicrylhydrazyl (DPPH) assay, revealed that IC50 values were 119, 403 and 105 μg ml(-1) for oil, thymol and carvacrol respectively. Microdilution method showed strong antibacterial and especially antifungal potential. Tetrazolium (MTT) colorimetric assay indicated moderate cytotoxicity towards human cell lines MRC-5, HCT 116 and HT-29 (IC50 = 30-150 μg ml(-1)). In adhesion-inhibition assay oil and main compounds reduced adhesion of Escherichia coli and Listeria monocytogenes on colon cells HT-29 (51 and 39% of inhibition against L. monocytogenes and E. coli respectively). Essential oil of Th. capitatus showed moderate cytotoxic activity, together with excellent antimicrobial effect, in particular against fungi, and significant potential to reduce pathogen colonization in colon. This is the first report that EO of Th. capitatus could protect against colonization of pathogens to colon epithelium. Thymus capitatus from Libya should be recognized as possible new source of natural antioxidants, antimicrobials as well as possible source of new chemotherapeutics. © 2015 The Society for Applied Microbiology.

  11. Selective susceptibility to nanosecond pulsed electric field (nsPEF) across different human cell types.

    PubMed

    Gianulis, Elena C; Labib, Chantelle; Saulis, Gintautas; Novickij, Vitalij; Pakhomova, Olga N; Pakhomov, Andrei G

    2017-05-01

    Tumor ablation by nanosecond pulsed electric fields (nsPEF) is an emerging therapeutic modality. We compared nsPEF cytotoxicity for human cell lines of cancerous (IMR-32, Hep G2, HT-1080, and HPAF-II) and non-cancerous origin (BJ and MRC-5) under strictly controlled and identical conditions. Adherent cells were uniformly treated by 300-ns PEF (0-2000 pulses, 1.8 kV/cm, 50 Hz) on indium tin oxide-covered glass coverslips, using the same media and serum. Cell survival plotted against the number of pulses displayed three distinct regions (initial resistivity, logarithmic survival decline, and residual resistivity) for all tested cell types, but with differences in LD50 spanning as much as nearly 80-fold. The non-cancerous cells were less sensitive than IMR-32 neuroblastoma cells but more vulnerable than the other cancers tested. The cytotoxic efficiency showed no apparent correlation with cell or nuclear size, cell morphology, metabolism level, or the extent of membrane disruption by nsPEF. Increasing pulse duration to 9 µs (0.75 kV/cm, 5 Hz) produced a different selectivity pattern, suggesting that manipulation of PEF parameters can, at least for certain cancers, overcome their resistance to nsPEF ablation. Identifying mechanisms and cell markers of differential nsPEF susceptibility will critically contribute to the proper choice and outcome of nsPEF ablation therapies.

  12. Investigation of antitumor potential of Ni(II) complexes with tridentate PNO acylhydrazones of 2-(diphenylphosphino)benzaldehyde and monodentate pseudohalides.

    PubMed

    Čobeljić, Božidar; Milenković, Milica; Pevec, Andrej; Turel, Iztok; Vujčić, Miroslava; Janović, Barbara; Gligorijević, Nevenka; Sladić, Dušan; Radulović, Siniša; Jovanović, Katarina; Anđelković, Katarina

    2016-04-01

    Square-planar azido Ni(II) complex with condensation product of 2-(diphenylphosphino)benzaldehyde and Girard's T reagent was synthesized and its crystal structure was determined. Cytotoxic activity of the azido complex and previously synthesized isothiocyanato, cyanato and chlorido Ni(II) complexes with this ligand was examined on six tumor cell lines (HeLa, A549, K562, MDA-MB-453, MDA-MB-361 and LS-174) and two normal cell line (MRC-5 and BEAS-2B). All the investigated nickel(II) complexes were cytotoxic against all tumor cell lines. The newly synthesized azido complex showed selectivity to HeLa and A549 tumor cell lines compared to the normal cells (for A549 IC50 was similar to that of cisplatin). Azido complex interferes with cell cycle phase distribution of A549 and HeLa cells and possesses nuclease activity towards supercoiled DNA. The observed selectivity of the azido complex for some tumor cell lines can be connected with its strong DNA damaging activity.

  13. Synthesis, gastroprotective effect and cytotoxicity of new amino acid diterpene monoamides and diamides.

    PubMed

    Schmeda-Hirschmann, Guillermo; Pertino, Mariano Walter; Rodriguez, Jaime A; Monsalve, Francisco; Droguett, Daniel; Theoduloz, Cristina

    2010-10-21

    Following our studies on the gastroprotective effect and cytotoxicity of terpene derivatives, new amides were prepared from the diterpene 8(17)-labden-15,19-dioic acid (junicedric acid) and its 8(9)-en isomer with C-protected amino acids (amino acid esters). The new compounds were evaluated for their gastroprotective effect in the ethanol/HCl-induced gastric lesions model in mice, as well as for cytotoxicity using the following human cell lines: normal lung fibroblasts (MRC-5), gastric adenocarcinoma cells (AGS) and liver hepatocellular carcinoma (Hep G2). A dose-response experiment showed that at 25 mg/kg the C-15 leucyl and C-15,19-dileucylester amides of junicedric acid reduced gastric lesions by about 65.6 and 49.6%, respectively, with an effect comparable to lansoprazole at 20 mg/kg (79.3% lesion reduction). The comparison of the gastroprotective effect of 18 new amino acid ester amides was carried out at a single oral dose of 25 mg/kg. Several compounds presented a strong gastroprotective effect, reducing gastric lesions in the 70.9-87.8% range. The diprolyl derivative of junicedric acid, the most active product of this study (87.8% lesion reduction at 25 mg/kg) presented a cytotoxicity value comparable with that of the reference compound lansoprazole. The structure-activity relationships are discussed.

  14. Discrimination and quantification of autofluorescence spectra of human lung cells

    NASA Astrophysics Data System (ADS)

    Rahmani, Mahya; Khani, Mohammad Mehdi; Khazaei Koohpar, Zeinab; Molik, Paria

    2016-10-01

    To study laser-induced autofluorescence spectroscopy of the human lung cell line, we evaluated the native fluorescence properties of cancer QU-DB and normal MRC-5 human lung cells during continuous exposure to 405 nm laser light. Two emission bands centered at ~470 nm and ~560 nm were observed. These peaks are most likely attributable to mitochondrial fluorescent reduced nicotinamide adenine dinucleotide and riboflavin fluorophores, respectively. This article highlights lung cell autofluorescence characterization and signal discrimination by collective investigation of different spectral features. The absolute intensity, the spectral shape factor or redox ratio, the full width of half-maximum and the full width of quarter maximum was evaluated. Moreover, the intensity ratio, the area under the peak and the area ratio as a contrast factor for normal and cancerous cells were also calculated. Among all these features it seems that the contrast factor precisely and significantly discriminates the spectral differences of normal and cancerous lung cells. On the other hand, the relative quantum yield for both cell types were found by comparing the quantum yield of an unknown compound with known fluorescein sodium as a reference solution.

  15. Tyrosol and hydroxytyrosol derivatives as antitrypanosomal and antileishmanial agents.

    PubMed

    Belmonte-Reche, Efres; Martínez-García, Marta; Peñalver, Pablo; Gómez-Pérez, Verónica; Lucas, Ricardo; Gamarro, Francisco; Pérez-Victoria, José María; Morales, Juan Carlos

    2016-08-25

    Trypanosomiasis and leishmaniasis keep being a real challenge for health and development of African countries. Existing treatments have considerable side effects and increase resistance of the parasites. We have measured antitrypanosomal and antileishmanial activity of natural phenols, tyrosol (TYR) and hydroxytyrosol (HT) and several of their esters and metabolites. We found significant IC50 values against Trypanosoma brucei for HT decanoate ester and HT dodecanoate ester (0.6 and 0.36 μM, respectively). This represents a large increase in activity with respect to HT (79 and 132 fold, respectively). Moreover, both compounds displayed a high selectivity index against MRC-5, a non-tumoral human cell line (118 and 106, respectively). Then, we synthesized a focused library of compounds to explore structure-activity. We found the ether and thiourea analogs of HT decanoate ester and HT dodecanoate ester also showed IC50 values against T. brucei in the low micromolar range. In conclusion, the di-ortho phenolic ring and medium size alkyl chain are essential for activity whereas the nature of the chemical bond among them seems less important.

  16. Antituberculosis nanodelivery system with controlled-release properties based on para-amino salicylate-zinc aluminum-layered double-hydroxide nanocomposites.

    PubMed

    Saifullah, Bullo; Hussein, Mohd Zobir; Hussein-Al-Ali, Samer Hasan; Arulselvan, Palanisamy; Fakurazi, Sharida

    2013-01-01

    We report the intercalation and characterization of para-amino salicylic acid (PASA) into zinc/aluminum-layered double hydroxides (ZLDHs) by two methods, direct and indirect, to form nanocomposites: PASA nanocomposite prepared by a direct method (PASA-D) and PASA nanocomposite prepared by an indirect method (PASA-I). Powder X-ray diffraction, Fourier-transform infrared spectroscopy, and thermogravimetric analysis revealed that the PASA drugs were accommodated within the ZLDH interlayers. The anions of the drug were accommodated as an alternate monolayer (along the long-axis orientation) between ZLDH interlayers. Drug loading was estimated to be 22.8% and 16.6% for PASA-D and PASA-I, respectively. The in vitro release properties of the drug were investigated in physiological simulated phosphate-buffered saline solution of pH 7.4 and 4.8. The release followed the pseudo-second-order model for both nanocomposites. Cell viability (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide [MTT] assays) was assessed against normal human lung fibroblast MRC-5 and 3T3 mouse fibroblast cells at 24, 48, and 72 hours. The results showed that the nanocomposite formulations did not possess any cytotoxicity, at least up to 72 hours.

  17. Antimalarial activity of extract and norbergenin derivatives from the stem bark of Diospyros sanza-minika A. Chevalier (Ebenaceae).

    PubMed

    Tangmouo, Jean Gustave; Ho, Raimana; Matheeussen, An; Lannang, Alain Meli; Komguem, Justin; Messi, Bernadette Biloa; Maes, Louis; Hostettmann, Kurt

    2010-11-01

    The methanol extract from the stem bark of Diospyros sanza-minika as well as five norbergenin derivatives isolated from this crude extract were evaluated for their in vitro activity against Plasmodium falciparum K1 and cytotoxicity on MRC-5 cells. 4-O-(3'-methylgalloyl)norbergenin was found to be the most potent compound (IC(50) 0.6 μg/mL; CC(50) 24.7 μg/mL), followed by 4-O-galloylnorbergenin (IC(50) 3.9 μg/mL; CC(50) > 64 μg/mL) and 11-O-p-hydroxy-benzoyl-norbergenin (IC(50) 4.9 μg/mL; CC(50) > 64 μg/mL). Norbergenin and 4-O-syringoylnorbergenin were inactive (IC(50) > 32 μg/mL; CC(50) > 64 μg/mL). The antimalarial activity of the pure constituents and of the methanol extract from the stem bark of Diospyros sanza-minika is reported for the first time. The results provide interesting baseline information for the potential use of the crude extract well as some of the isolated compounds in the search for novel antimalarial compounds.

  18. Mikania laevigata: chemical characterization and selective cytotoxic activity of extracts on tumor cell lines.

    PubMed

    Rufatto, L C; Finimundy, T C; Roesch-Ely, M; Moura, S

    2013-07-15

    Cancer is the second major cause of mortality worldwide, losing only to cardiovascular disease. Nowadays, around 50% of antineoplastic drugs were discovered and isolated by indications of plants in folk medicine. In Brazilian flora there are many species of plants which have great therapeutic importance, highlighting the Mikania laevigata (Asteraceae) that has been used for their valuable properties, especially in the respiratory tract. In the present study, the compounds of M. laevigata extracts were characterized by High Resolution Mass Spectrometry (HRMS) and Gas Chromatography with Mass analysis (GC/MS-EI). Therefore, the presence of some compounds with promising biological properties as antitumor activity was detected. Coumarin (1,2-benzopyrone) was previously reported as responsible for some biological activities of this plant species. Here, the extracts were evaluated by their cytotoxic activity against tumor (Hep-2, HeLa) and non tumor (MRC-5) cell lines, presenting significant inhibitory activity of cell growth in all extracts analyzed, chloroform, ethyl acetate, hexane, ethanol, which is related to its chemical composition. From the four different extracts here tested, two of them, hexane and ethanol, presented a clear selectivity against both tumor cells lines investigated. This can be explained by variances and increase of phenolic compounds in the ethanol fraction and an association of molecules with coumarin found in the hexane fraction. Copyright © 2013 Elsevier GmbH. All rights reserved.

  19. Antimicrobial Assessment of Resins from Calophyllum Antillanum and Calophyllum Inophyllum.

    PubMed

    Cuesta-Rubio, Osmany; Oubada, Ahmad; Bello, Adonis; Maes, Louis; Cos, Paul; Monzote, Lianet

    2015-12-01

    The Calophyllum genus is well-known for its antimicrobial and cytotoxic activities, and therefore, we analyzed these biological activities for resins of Calophyllum antillanum and Calophyllum inophyllum growing in Cuba. C. antillanum resins showed a potent activity against Plasmodium falciparum (IC50  = 0.3 ± 0.1 µg/mL), while its cytotoxicity against MRC-5 cells was much lower (IC50  = 21.6 ± 1.1 µg/mL). In contrary, the resin of C. inophyllum showed an unspecific activity. The presence of apetalic acid, isoapetalic acid, calolongic acid, pinetoric acid I, pinetoric acid II, isocalolongic acid, pinetoric acid III, and isopinetoric acid III in C. antillanum resins was also confirmed. These results demonstrated for the first time the potential activity of C. antillanum resins against P. falciparum. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Electric Cell-Substrate Impedance Sensing (ECIS) with Microelectrode Arrays for Investigation of Cancer Cell – Fibroblasts Interaction

    PubMed Central

    Tran, Trong Binh; Baek, Changyoon; Min, Junhong

    2016-01-01

    The tumor microenvironment, including stromal cells, surrounding blood vessels and extracellular matrix components, has been defined as a crucial factor that influences the proliferation, drug-resistance, invasion and metastasis of malignant epithelial cells. Among other factors, the communications and interaction between cancer cells and stromal cells have been reported to play pivotal roles in cancer promotion and progression. To investigate these relationships, an on-chip co-culture model was developed to study the cellular interaction between A549—human lung carcinoma cells and MRC-5—human lung epithelial cells in both normal proliferation and treatment conditions. In brief, a co-culture device consisting of 2 individual fluidic chambers in parallel, which were separated by a 100 μm fence was utilized for cell patterning. Microelectrodes arrays were installed within each chamber including electrodes at various distances away from the confrontation line for the electrochemical impedimetric sensing assessment of cell-to-cell influence. After the fence was removed and cell-to-cell contact occurred, by evaluating the impedance signal responses representing cell condition and behavior, both direct and indirect cell-to-cell interactions through conditioned media were investigated. The impact of specific distances that lead to different influences of fibroblast cells on cancer cells in the co-culture environment was also defined. PMID:27088611

  1. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line.

    PubMed

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G; Wenzel, Jürgen J; Johne, Reimar

    2016-09-29

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown.

  2. Discovery of Inhibitors of Trypanosoma brucei by Phenotypic Screening of a Focused Protein Kinase Library.

    PubMed

    Woodland, Andrew; Thompson, Stephen; Cleghorn, Laura A T; Norcross, Neil; De Rycker, Manu; Grimaldi, Raffaella; Hallyburton, Irene; Rao, Bhavya; Norval, Suzanne; Stojanovski, Laste; Brun, Reto; Kaiser, Marcel; Frearson, Julie A; Gray, David W; Wyatt, Paul G; Read, Kevin D; Gilbert, Ian H

    2015-11-01

    A screen of a focused kinase inhibitor library against Trypanosoma brucei rhodesiense led to the identification of seven series, totaling 121 compounds, which showed >50 % inhibition at 5 μm. Screening of these hits in a T. b. brucei proliferation assay highlighted three compounds with a 1H-imidazo[4,5-b]pyrazin-2(3H)-one scaffold that showed sub-micromolar activity and excellent selectivity against the MRC5 cell line. Subsequent rounds of optimisation led to the identification of compounds that exhibited good in vitro drug metabolism and pharmacokinetics (DMPK) properties, although in general this series suffered from poor solubility. A scaffold-hopping exercise led to the identification of a 1H-pyrazolo[3,4-b]pyridine scaffold, which retained potency. A number of examples were assessed in a T. b. brucei growth assay, which could differentiate static and cidal action. Compounds from the 1H-imidazo[4,5-b]pyrazin-2(3H)-one series were found to be either static or growth-slowing and not cidal. Compounds with the 1H-pyrazolo[3,4-b]pyridine scaffold were found to be cidal and showed an unusual biphasic nature in this assay, suggesting they act by at least two mechanisms.

  3. Litchi seed extract inhibits epidermal growth factor receptor signaling and growth of Two Non-small cell lung carcinoma cells.

    PubMed

    Chung, Yuan-Chiang; Chen, Chin-Hui; Tsai, Yu-Ting; Lin, Chih-Cheng; Chou, Jyh-Ching; Kao, Ting-Yu; Huang, Chiu-Chen; Cheng, Chi-Hsuan; Hsu, Chih-Ping

    2017-01-05

    Litchi seeds possess rich amounts of phenolics and have been shown to inhibit proliferation of several types of cancer cells. However, the suppression of EGFR signaling in non-small cell lung cancer (NSCLC) by litchi seed extract (LCSE) has not been fully understood. In this study, the effects of LCSE on EGFR signaling, cell proliferation, the cell cycle and apoptosis in A549 adenocarcinoma cells and NCI- H661 large-cell carcinoma cells were examined. The results demonstrated that LCSE potently reduced the number of cancer cells and induced growth inhibition, cell-cycle arrest in the G1 or G2/M phase, and apoptotic death in the cellular experiment. Only low cytotoxicity effect was noted in normal lung MRC-5 cells. LCSE also suppressed cyclins and Bcl-2 and elevated Kip1/p27, Bax and caspase 8, 9 and 3 activities, which are closely associated with the downregulation of EGFR and its downstream Akt and Erk-1/-2 signaling. The results implied that LCSE suppressed EGFR signaling and inhibited NSCLC cell growth. This study provided in vitro evidence that LCSE could serve as a potential agent for the adjuvant treatment of NSCLC.

  4. Antiplasmodial, antitrypanosomal, and cytotoxic activities of prenylated flavonoids isolated from the stem bark of Artocarpus styracifolius.

    PubMed

    Bourjot, Mélanie; Apel, Cécile; Martin, Marie-Thérèse; Grellier, Philippe; Nguyen, Van Hung; Guéritte, Françoise; Litaudon, Marc

    2010-10-01

    In continuation of our efforts to find new antimalarial drugs, a systematic IN VITRO evaluation using a chloroquine resistant strain of PLASMODIUM FALCIPARUM (FcB1) was undertaken on extracts prepared from various parts of Vietnamese plants. The ethyl acetate extract obtained from the stem bark of ARTOCARPUS STYRACIFOLIUS (Moraceae) exhibited strong antiplasmodial activity (87 % at 10 µg/mL) whereas weak cytotoxicity was observed in a human fibroblast cell line (MRC-5). Phytochemical investigation of this extract led to isolation of two new prenylated flavonoids, styracifolins A and B ( 1 and 2), as well as the known artoheterophyllin A ( 3) and B ( 4), artonins A ( 5), B ( 6), and F ( 7), and heterophyllin ( 8). Structures of 1 and 2 were elucidated by spectroscopic methods and through comparison with data reported in the literature. Compounds 1- 8 exhibited antiplasmodial activities with IC (50) values ranging from 1.1 µM to 13.7 µM, and compounds 1, 2, 6, and 8 showed significant antitrypanosomal activities.

  5. Induction of Apoptosis of 2,4′,6-Trihydroxybenzophenone in HT-29 Colon Carcinoma Cell Line

    PubMed Central

    Lay, Ma Ma; Karsani, Saiful Anuar

    2014-01-01

    2,4′,6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins. PMID:24579081

  6. Self-Styled ZnO Nanostructures Promotes the Cancer Cell Damage and Supresses the Epithelial Phenotype of Glioblastoma

    PubMed Central

    Wahab, Rizwan; Kaushik, Neha; Khan, Farheen; Kaushik, Nagendra Kumar; Choi, Eun Ha; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2016-01-01

    Extensive researches have been done on the applications of zinc oxide nanoparticles (ZnO-NPs) for the biological purposes. However, the role and toxicity mechanisms of ZnO nanostructures (ZnO-NSts) such as nanoplates (NPls), nanorods (NRs), nanosheets (NSs), nanoflowers (NFs) on cancer cells are not largely known. Present study was focused to investigate the possible mechanisms of apoptosis induced by self-designed ZnO-NSts, prepared at fix pH via solution process and exposed against human T98G gliomas including various cancers and non-malignant embryonic kidney HEK293, MRC5 fibroblast cells. NSts were used for the induction of cell death in malignant human T98G gliomas including various cancers and compared with the non-malignant cells. Notably, NRs were found to induce higher cytotoxicity, inhibitory effects on cancer and normal cells in a dose dependent manner. We also showed that NRs induced cancer cell death through oxidative stress and caspase-dependent pathways. Furthermore, quantitative and qualitative analysis of ZnO-NSts have also been confirmed by statistical analytical parameters such as precision, accuracy, linearity, limits of detection and limit of quantitation. These self-styled NSts could provide new perception in the research of targeted cancer nanotechnology and have potentiality to improve new therapeutic outcomes with poor diagnosis. PMID:26818603

  7. XPF knockout via CRISPR/Cas9 reveals that ERCC1 is retained in the cytoplasm without its heterodimer partner XPF.

    PubMed

    Lehmann, Janin; Seebode, Christina; Smolorz, Sabine; Schubert, Steffen; Emmert, Steffen

    2017-06-01

    The XPF/ERCC1 heterodimeric complex is essentially involved in nucleotide excision repair (NER), interstrand crosslink (ICL), and double-strand break repair. Defects in XPF lead to severe diseases like xeroderma pigmentosum (XP). Up until now, XP-F patient cells have been utilized for functional analyses. Due to the multiple roles of the XPF/ERCC1 complex, these patient cells retain at least one full-length allele and residual repair capabilities. Despite the essential function of the XPF/ERCC1 complex for the human organism, we successfully generated a viable immortalised human XPF knockout cell line with complete loss of XPF using the CRISPR/Cas9 technique in fetal lung fibroblasts (MRC5Vi cells). These cells showed a markedly increased sensitivity to UVC, cisplatin, and psoralen activated by UVA as well as reduced repair capabilities for NER and ICL repair as assessed by reporter gene assays. Using the newly generated knockout cells, we could show that human XPF is markedly involved in homologous recombination repair (HRR) but dispensable for non-homologous end-joining (NHEJ). Notably, ERCC1 was not detectable in the nucleus of the XPF knockout cells indicating the necessity of a functional XPF/ERCC1 heterodimer to allow ERCC1 to enter the nucleus. Overexpression of wild-type XPF could reverse this effect as well as the repair deficiencies.

  8. Rosiglitazone inhibits migration, proliferation, and phenotypic differentiation in cultured human lung fibroblasts.

    PubMed

    Lin, Qing; Fang, Li-Ping; Zhou, Wei-Wei; Liu, Xin-Min

    2010-03-01

    Recent studies have indicated that peroxisome proliferator-activated receptor gamma (PPARgamma) is capable of modulating inflammation, which prompted us to investigate the potential of PPARgamma ligands as lung protective agents in pulmonary fibrosis. The present study was undertaken to investigate the effects of rosiglitazone (RSG), a highly potent ligand of PPARgamma, on migration, proliferation, and phenotypic differentiation of human lung fibroblasts (MRC-5) and to explore its potential for therapy of pulmonary fibrosis. The cell migration potential was observed in a scratch wound model. Cell proliferation was determined by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) method, immunocytochemical staining, and flow cytometry, and protein expression by Western blot analysis. RSG slowed cell migration distance induced by fetal bovine serum (FBS), decreased cell proliferation initiated by FBS or platelet-derived growth factor-BB (PDGF-BB), and decreased alpha-smooth muscle actin (alpha-SMA) protein expression induced by transforming growth factor-beta1 (TGF-beta1). In addition, RSG incubation reduced the ratio of phospho-extracellular signal-regulated kinases 1/2 (p-ERK1/2) to ERK1/2 expression stimulated by FBS, PDGF-BB, and TGF-beta1. These findings show that RSG treatment inhibits lung fibroblast migration and proliferation and myofibroblast transdifferentiation stimulated by FBS and growth factors in vitro, which suggests that PPARgamma agonists could antagonize pulmonary fibrosis and have potential for therapeutic application in pulmonary fibrosis.

  9. Atmospheric plasma surface modifications of electrospun PCL/chitosan/PCL hybrid scaffolds by nozzle type plasma jets for usage of cell cultivation

    NASA Astrophysics Data System (ADS)

    Surucu, Seda; Masur, Kai; Turkoglu Sasmazel, Hilal; Von Woedtke, Thomas; Weltmann, Klaus Dieter

    2016-11-01

    This paper reports Ar gas, Ar + O2, Ar + O2 + N2 gas mixtures and dry air plasma modifications by atmospheric pressure argon driven kINPen and air driven Diener (PlasmaBeam) plasma jets to alter surface properties of three dimensional (3D), electrospun PCL/Chitosan/PCL layer by layer hybrid scaffolds to improve human fibroblast (MRC5) cell attachment and growth. The characterizations of the samples were done by contact angle (CA) measurements, scanning electron microscopy (SEM), X-Ray Photoelectron spectroscopy (XPS) analysis. The results showed that the plasma modification carried out under dry air and Ar + O2 + N2 gas mixtures were altered effectively the nanotopography and the functionality of the material surfaces. It was found that the samples treated with Ar + O2 + N2 gas mixtures for 1 min and dry air for 9 min have better hydrophilicity 78.9° ± 1.0 and 75.6° ± 0.1, respectively compared to the untreated samples (126.5°). Biocompatibility performance of the scaffolds was determined with alamarBlue (aB) assay and MTT assay methods, Giemsa staining, fluorescence microscope, confocal laser scanning microscope (CLSM) and scanning electron microscope (SEM) analyses. The results showed that plasma treated samples increased the hydrophilicity and oxygen functionality and topography of the surfaces significantly, thus affecting the cell viability and proliferation on/within scaffolds.

  10. Identification of a candidate standard strain of severe fever with thrombocytopenia syndrome virus for vaccine quality control in China using a cross-neutralization assay.

    PubMed

    Jia, Zheng; Wu, Xiaohong; Wang, Ling; Li, Xiuling; Dai, Xinxian; Liang, Mifang; Cao, Shouchun; Kong, Yan; Liu, Jingjing; Li, Yuhua; Wang, Junzhi

    2017-03-01

    Severe fever with thrombocytopenia syndrome (SFTS) is caused by a phlebovirus of the Bunyaviridae family, which is designated as SFTS virus (SFTSV). To our knowledge, no efficient SFTSV vaccine exists. Here, we report the identification of a standard virus strain for the eight major SFTSV strains circulating in China for use in evaluating the SFTSV vaccine. Rabbits were immunized with the SFTSV strains and the cross-neutralization capacities of SFTSV anti-sera were determined in microculture cytopathic effect (CPE)-inhibition assays. The mean cross-neutralization capacity of the eight SFTSV anti-sera ranged from 62.4 to 142.6%, compared to autologous strains. The HB29 strain demonstrated strong cross-reactivity with heterologous antibodies, and 33 serum samples from SFTS patients efficiently neutralized HB29, suggesting its broad cross-reactivity. In addition, HB29 demonstrated good replication in Vero and MRC-5 cells (8.0 and 6.0 lg 50% cell culture-infectious dose/mL, respectively) and significant CPE, which satisfied the requirements for a standard virus strain. The HB29 isolate was proven identical to the reported HB29 strain by DNA sequencing, and showed high homology in the S segments with other SFTSV strains (94.8-99.7%). Our results suggest that HB29 may be the best candidate standard strain for use in SFTS vaccine development in China.

  11. Differential cytotoxic effects of sodium meta-arsenite on human cancer cells, dental papilla stem cells and somatic cells correlate with telomeric properties and gene expression.

    PubMed

    Jeon, Byeong-Gyun; Kumar, B Mohana; Kang, Eun-Ju; Maeng, Geun-Ho; Lee, Yeon-Mi; Hah, Young-Sool; Ock, Sun-A; Kwack, Dae-Oh; Park, Bong-Wook; Rho, Gyu-Jin

    2011-12-01

    We investigated the effects of sodium meta-arsenite (NaAsO(2)) on human cancer cells (MDA-MB-231, MCF-7 and U-87 MG), dental papilla tissue stem cells (DPSCs) and somatic cells [MRC-5 fetal fibroblasts and adult muscle cells (MCs)] by examining telomeric properties, endogenous reverse transcriptase (RT) activity and the expression of tumorigenesis-linked genes. Half maximal inhibitory concentration (IC(50)) values were higher in DPSCs and MCs, possessing longer telomere lengths when compared to cancer cells. Levels of telomerase and RT activity, and the expression of protein 53 (p53), B-cell lymphoma 2 (BCL2), nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB), transforming growth factor beta (TGFβ) and vascular endothelial growth factor (VEGF) were significantly lower in cancer cells following sodium meta-arsenite treatment, whereas the effect was absent or marginally detected in DPSCs and somatic cells. Collectively, sodium meta-arsenite effectively induced cellular cytotoxicity by inhibiting telomerase and RT activity, and down-regulating transcript levels in cancer cells with shorter telomere lengths, whereas more tolerance was evident in DPSCs and somatic cells possessing longer telomere lengths.

  12. Phytochemical, antimicrobial and antiprotozoal evaluation of Garcinia mangostana pericarp and α-mangostin, its major xanthone derivative.

    PubMed

    Al-Massarani, Shaza M; El Gamal, Ali A; Al-Musayeib, Nawal M; Mothana, Ramzi A; Basudan, Omer A; Al-Rehaily, Adnan J; Farag, Mohamed; Assaf, Mahmoud H; El Tahir, Kamaleldin H; Maes, Louis

    2013-09-02

    Five xanthone derivatives and one flavanol were isolated from the dichloromethane extract of Garcinia mangostana. Dichloromethane, ethyl acetate extract and the major xanthone (α-mangostin) were evaluated in vitro against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi and free trypomastigotes of T. brucei. The major constituent α-mangostin was also checked for antimicrobial potential against Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Bacillius subtilis, Staphylococcus aureus, Mycobacterium smegmatis, M. cheleneoi, M. xenopi and M. intracellulare. Activity against P. falciparum (IC₅₀ 2.7 μg/mL) and T. brucei (IC₅₀ 0.5 μg/mL) were observed for the dichloromethane extract, however, with only moderate selectivity was seen based on a parallel cytotoxicity evaluation on MRC-5 cells (IC₅₀ 9.4 μg/mL). The ethyl acetate extract was inactive (IC₅₀ > 30 µg/mL). The major constituent α-mangostin showed rather high cytotoxicity (IC₅₀ 7.5 µM) and a broad but non-selective antiprotozoal and antimicrobial activity profile. This in vitro study endorses that the antiprotozoal and antimicrobial potential of prenylated xanthones is non-conclusive in view of the low level of selectivity.

  13. Solid lipid nanoparticle (SLN) formulations as a potential tool for the reduction of cytotoxicity of saponins.

    PubMed

    Van de Ven, H; Vermeersch, M; Shunmugaperumal, T; Vandervoort, J; Maes, L; Ludwig, A

    2009-03-01

    The present pilot study explored the potential of solid lipid nanoparticles (SLN) to entrap saponins and reduce the membrane toxicity of these compounds. SLN composed of different types of solid lipid were prepared by the cold homogenisation technique. Combinations of anionic, cationic and non-ionic stabilisers were selected in order to obtain negatively, positively and neutrally charged SLN. Mean particle size and zeta potential of blank and saponin-loaded formulations were measured by Dynamic Light Scattering (DLS), Electrophoretic Light Scattering (ELS) and in vitro cytotoxicity on MRC-5 SV2 and J774 cells was assessed using a resazurin-based assay. The type of solid lipid used for the formulation influenced the mean particle size, while the zeta potential mainly depended on the kind of surfactant utilised. Blank SLN composed of hard fat and anionic or non-ionic surfactants did not result in cytotoxicity. After loading with saponin, the anionic hard fat SLN was found to be the optimal formulation.

  14. Radiosensitivity and relative biological effectiveness based on a generalized target model

    PubMed Central

    Zhao, Lei; Wu, Di; Mi, Dong; Sun, Yeqing

    2017-01-01

    By considering both cellular repair effects and indirect effects of radiation, we have generalized the traditional target model, and made it have a linear–quadratic–linear characteristic. To assess the repair capacity–dependent radiosensitivity and relative biological effectiveness (RBE), the generalized target model was used to fit the survival of human normal embryonic lung fibroblast MRC-5 cells in the G0 and G1 phases after various types of radiations. The fitting results indicate that the generalized target model works well in the dose ranges considered. The resulting calculations qualitatively show that the parameter ratio (a/V) in the model could represent the cellular repair capacity. In particular, the significant linear correlations between radiosensitivity/RBE and cellular repair capacity are observed for different slopes of the linear regression curves. These results show that the radiosensitivity and RBE depend on the cellular repair capacity and can be regulated by linear energy transfer. These analyses suggest that the ratio a/V in the generalized target model can also be used for radiation damage assessment in radiotherapy. PMID:27422933

  15. Antiproliferative activity of (η(6)-arene)ruthenacarborane sandwich complexes against HCT116 and MCF7 cell lines.

    PubMed

    Gozzi, Marta; Schwarze, Benedikt; Sárosi, Menyhárt-Botond; Lönnecke, Peter; Drača, Dijana; Maksimović-Ivanić, Danijela; Mijatović, Sanja; Hey-Hawkins, Evamarie

    2017-08-11

    Three [(η(6)-arene)RuC2B9H11] complexes (arene = p-cymene (2), biphenyl (3) and 1-Me-4-COOEt-C6H4 (4)) were synthesised according to modified literature procedures and fully characterised. 2-4 were found to be moderately active against two types of tumour cell lines (HCT116 and MCF7), with IC50 values in the low micromolar range. However, viability of normal, healthy cells (MRC-5 cell line, MLEC and mouse macrophages) was not affected by treatment with 2-4, indicating high selectivity of the metallacarborane complexes towards tumour cell lines, compared to the unselective antitumour agent cisplatin and other potential Ru(II) drugs. Moreover, flow cytometric analysis suggested that 4 induces cell death via a caspase-dependent apoptotic mechanism. DFT calculations of the frontier molecular orbitals showed that the HOMO-LUMO gap in 2-4 is smaller than in the corresponding cyclopentadienyl complexes 2-Cp-4-Cp (e.g. 5.47 (2) vs. 6.31 eV (2-Cp)). In order to assess the stability of 2-4, particularly the ruthenium-dicarbollide bond, energy decomposition analysis (EDA) of 2-4, together with the respective cyclopentadienyl analogues 2-Cp-4-Cp, was performed. EDA suggests that the ruthenium(ii)-dicarbollide bond in the three complexes is mostly ionic and far stronger than the ruthenium(ii)-arene bond.

  16. In vitro antimalarial activity and cytotoxicity of some selected cuban medicinal plants.

    PubMed

    Valdés, Aymé Fernández-Calienes; Martínez, Judith Mendiola; Lizama, Ramón Scull; Gaitén, Yamilet Gutiérrez; Rodríguez, Deyanira Acuña; Payrol, Juan Abreu

    2010-01-01

    Terrestrial plants have been demonstrated to be sources of antimalarial compounds. In Cuba, little is known about antimalarial potentials of plant species used as medicinals. For that reason, we evaluated the antimalarial activity of 14 plant species used in Cuba as antimalarial, antipyretic and/or antiparasitic. Hydroalcoholic extracts were prepared and tested in vitro for the antimalarial activity against Plasmodium falciparum Ghana strain and over human cell line MRC-5 to determine cytotoxicity. Parasite multiplication was determined microscopically by the direct count of Giemsa stained parasites. A colorimetric assay was used to quantify cytotoxicity. Nine extracts showed IC50 values lower than 100 µg/mL against P. falciparum, four extracts were classified as marginally active (SI < 4), one as partially active (Parthenium hysterophorus) exhibiting SI equal to 6.2 and two extracts as active (Bambusa vulgaris and Punica granatum), showing SI > 10. B. vulgaris showed the most potent and specific antiplasmodial action (IC50 = 4.7 µg/mL, SI = 28.9). Phytochemical characterization of active extracts confirmed the presence of triterpenoids in B. vulgaris and polar compounds with phenol free groups and fluorescent metabolites in both extracts as major phytocompounds, by thin layer chromatography. In conclusion, antimalarial use of B. vulgaris and P. hysterophorus was validated. B. vulgaris and P. granatum extracts were selected for follow-up because of their strong antimalarial activity.

  17. The Deubiquitinase Inhibitor PR-619 Sensitizes Normal Human Fibroblasts to Tumor Necrosis Factor-related Apoptosis-inducing Ligand (TRAIL)-mediated Cell Death*

    PubMed Central

    Crowder, Roslyn N.; Dicker, David T.; El-Deiry, Wafik S.

    2016-01-01

    TNF-related apoptosis-inducing ligand (TRAIL) is a potential cancer therapy that selectively targets cancer cell death while non-malignant cells remain viable. Using a panel of normal human fibroblasts, we characterized molecular differences in human foreskin fibroblasts and WI-38 TRAIL-resistant cells and marginally sensitive MRC-5 cells compared with TRAIL-sensitive human lung and colon cancer cells. We identified decreased caspase-8 protein expression and protein stability in normal fibroblasts compared with cancer cells. Additionally, normal fibroblasts had incomplete TRAIL-induced caspase-8 activation compared with cancer cells. We found that normal fibroblasts lack the ubiquitin modification of caspase-8 required for complete caspase-8 activation. Treatment with the deubiquitinase inhibitor PR-619 increased caspase-8 ubiquitination and caspase-8 enzymatic activity and sensitized normal fibroblasts to TRAIL-mediated apoptosis. Therefore, posttranslational regulation of caspase-8 confers resistance to TRAIL-induced cell death in normal cells through blockade of initiation of the extrinsic cell death pathway. PMID:26757822

  18. Exceedingly Higher co-loading of Curcumin and Paclitaxel onto Polymer-functionalized Reduced Graphene Oxide for Highly Potent Synergistic Anticancer Treatment

    PubMed Central

    Muthoosamy, Kasturi; Abubakar, Ibrahim Babangida; Bai, Renu Geetha; Loh, Hwei-San; Manickam, Sivakumar

    2016-01-01

    Metastasis of lung carcinoma to breast and vice versa accounts for one of the vast majority of cancer deaths. Synergistic treatments are proven to be the effective method to inhibit malignant cell proliferation. It is highly advantageous to use the minimum amount of a potent toxic drug, such as paclitaxel (Ptx) in ng/ml together with a natural and safe anticancer drug, curcumin (Cur) to reduce the systemic toxicity. However, both Cur and Ptx suffer from poor bioavailability. Herein, a drug delivery cargo was engineered by functionalizing reduced graphene oxide (G) with an amphiphilic polymer, PF-127 (P) by hydrophobic assembly. The drugs were loaded via pi-pi interactions, resulting in a nano-sized GP-Cur-Ptx of 140 nm. A remarkably high Cur loading of 678 wt.% was achieved, the highest thus far compared to any other Cur nanoformulations. Based on cell proliferation assay, GP-Cur-Ptx is a synergistic treatment (CI < 1) and is highly potent towards lung, A549 (IC50 = 13.24 μg/ml) and breast, MDA-MB-231 (IC50 = 1.450 μg/ml) cancer cells. These positive findings are further confirmed by increased reactive oxygen species, mitochondrial membrane potential depletion and cell apoptosis. The same dose treated on normal MRC-5 cells shows that the system is biocompatible and cancerous cell-specific. PMID:27597657

  19. Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device

    PubMed Central

    Lin, Chien-Han; Wang, Chien-Kai; Chen, Yu-An; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2016-01-01

    In various physiological activities, cells experience stresses along their in-plane direction when facing substrate deformation. Capability of continuous monitoring elasticity of live cell layers during a period is highly desired to investigate cell property variation during various transformations under normal or disease states. This paper reports time-lapsed measurement of live cell layer in-plane elasticity using a pressure sensor embedded microfluidic device. The sensor converts pressure-induced deformation of a flexible membrane to electrical signals. When cells are cultured on top of the membrane, flexural rigidity of the composite membrane increases and further changes the output electrical signals. In the experiments, human embryonic lung fibroblast (MRC-5) cells are cultured and analyzed to estimate the in-plane elasticity. In addition, the cells are treated with a growth factor to simulate lung fibrosis to study the effects of cell transformation on the elasticity variation. For comparison, elasticity measurement on the cells by atomic force microscopy (AFM) is also performed. The experimental results confirm highly anisotropic configuration and material properties of cells. Furthermore, the in-plane elasticity can be monitored during the cell transformation after the growth factor stimulation. Consequently, the developed microfluidic device provides a powerful tool to study physical properties of cells for fundamental biophysics and biomedical researches. PMID:27812019

  20. Electric Cell-Substrate Impedance Sensing (ECIS) with Microelectrode Arrays for Investigation of Cancer Cell-Fibroblasts Interaction.

    PubMed

    Tran, Trong Binh; Baek, Changyoon; Min, Junhong

    2016-01-01

    The tumor microenvironment, including stromal cells, surrounding blood vessels and extracellular matrix components, has been defined as a crucial factor that influences the proliferation, drug-resistance, invasion and metastasis of malignant epithelial cells. Among other factors, the communications and interaction between cancer cells and stromal cells have been reported to play pivotal roles in cancer promotion and progression. To investigate these relationships, an on-chip co-culture model was developed to study the cellular interaction between A549-human lung carcinoma cells and MRC-5-human lung epithelial cells in both normal proliferation and treatment conditions. In brief, a co-culture device consisting of 2 individual fluidic chambers in parallel, which were separated by a 100 μm fence was utilized for cell patterning. Microelectrodes arrays were installed within each chamber including electrodes at various distances away from the confrontation line for the electrochemical impedimetric sensing assessment of cell-to-cell influence. After the fence was removed and cell-to-cell contact occurred, by evaluating the impedance signal responses representing cell condition and behavior, both direct and indirect cell-to-cell interactions through conditioned media were investigated. The impact of specific distances that lead to different influences of fibroblast cells on cancer cells in the co-culture environment was also defined.

  1. Enhanced stability of polyacrylate-coated magnetite nanoparticles in biorelevant media.

    PubMed

    Hajdú, Angéla; Szekeres, Márta; Tóth, Ildikó Y; Bauer, Rita A; Mihály, Judith; Zupkó, István; Tombácz, Etelka

    2012-06-01

    Magnetite nanoparticles (MNPs) were prepared by alkaline hydrolysis of Fe(II) and Fe(III) chlorides. Adsorption of polyacrylic acid (PAA) on MNPs was measured at pH=6.5±0.3 and I=0.01 M (NaCl) to find the optimal PAA amount for MNP stabilization under physiological conditions. We detected an H-bond formation between magnetite surface groups and PAA by ATR-FTIR measurements, but bonds of metal ion-carboxylate complexes, generally cited in literature, were not identified at the given pH and ionic strength. The dependence of the electrokinetic potential and the aggregation state on the amount of added PAA at various pHs was measured by electrophoretic mobility and dynamic light-scattering methods. The electrokinetic potential of the naked MNPs was low at near physiological pH, but PAA adsorption overcharged the particles. Highly negatively charged, well-stabilized carboxylated MNPs formed via adsorption of PAA in an amount of approximately ten times of that necessary to compensate the original positive charge of the magnetite. Coagulation kinetics experiments revealed gradual enhancement of salt tolerance at physiological pH from ~0.001 M at no added PAA up to ~0.5 M at 1.12 mmol/g PAA. The PAA-coated MNPs exert no substantial effect on the proliferation of malignant (HeLa) or non-cancerous fibroblast cells (MRC-5) as determined by means of MTT assays.

  2. Synthesis and evaluation of series of diazine-bridged dinuclear platinum(II) complexes through in vitro toxicity and molecular modeling: correlation between structure and activity of Pt(II) complexes.

    PubMed

    Senerovic, Lidija; Zivkovic, Marija D; Veselinovic, Aleksandar; Pavic, Aleksandar; Djuran, Milos I; Rajkovic, Snezana; Nikodinovic-Runic, Jasmina

    2015-02-12

    Polynuclear Pt(II) complexes are a novel class of promising anticancer agents with potential clinical significance. A series of pyrazine (pz) bridged dinuclear Pt(II) complexes with general formulas {[Pt(L)Cl]2(μ-pz)}(2+) (L, ethylenediamine, en; (±)-1,2-propylenediamine, 1,2-pn; isobutylenediamine, ibn; trans-(±)-1,2-diaminocyclohexane, dach; 1,3-propylenediamine, 1,3-pd; 2,2-dimethyl-1,3-propylenediamine, 2,2-diMe-1,3-pd) and one pyridazine (pydz) bridged {[Pt(en)Cl]2(μ-pydz)}(2+) complex were prepared. The anticancer potential of these complexes were determined through in vitro cytotoxicity assay in human fibroblasts (MRC5) and two carcinoma cell lines (A375 and HCT116), interaction with double stranded DNA through in vitro assay, and molecular docking study. All complexes inhibited cell proliferation with inhibitory concentrations in the 0.5-120 μM range. While {[Pt(1,3-pd)Cl]2(μ-pz)}(2+) showed improved activity and {[Pt(en)Cl]2(μ-pydz)}(2+) showed comparable activity to that of clinically relevant cisplatin, {[Pt(en)Cl]2(μ-pydz)}(2+) was less toxic in an assay with zebrafish (Danio rerio) embryos, causing no adverse developmental effects. The in vitro cytotoxicity of all diazine-bridged dinuclear Pt(II) complexes is discussed in correlation to their structural characteristics.

  3. In Vitro Anticancer Evaluation of Platinum(II/IV) Complexes with Diisoamyl Ester of (S,S)-ethylenediamine-N,N'-di-2-propanoic Acid.

    PubMed

    Zmejkovski, Bojana B; Pantelić, Nebojša; Filipović, Lana; Aranđelović, Sandra; Radulović, Siniša; Sabo, Tibor J; Kaluđerović, Goran N

    2017-01-01

    Platinum(II) and platinum(IV) complexes [PtCln{(S,S)-(i-Am)2eddip}] (n = 2, 4: 1, 2, respectively; (S,S)-(i-Am)2eddip = O,O'-diisoamyl-(S,S)-ethylenediamine-N,N'-di-2-propanoate) were synthesized and characterized by elemental analysis, IR, 1H and 13C NMR spectroscopy and mass spectrometry. Quantum chemical calculations were used to predict formed isomers of 1 and 2. Furthermore, reduction of 2 with ascorbic acid was followed by time-dependant 13C NMR spectroscopy in order to enable assignation of the formed isomers for complex 1. In vitro cytotoxic activity was determined for 1 and 2 on a panel of five human tumor cell lines derived from cervix adenocarcinoma (HeLa), alveolar basal adenocarcinoma (A549), breast adenocarcinoma (MDA-453), colorectal cancer (LS 174), erythromyeloblastoid leukemia (K562), as well as one non-malignant human lung fibroblast cell line (MRC-5), using MTT assay. Both complexes exhibited high (2 against K562: IC50 = 5.4 μM), more active than cisplatin, to moderate activity (1). Both complexes caused considerable decrease of cell number in K562 cells in G1, S and G2 phases, concordantly increasing subpopulation in sub-G1 fraction. Morphological analysis of K562 cell death induced by platinum(II/IV) complexes indicate apoptosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  4. Studies of stools from pseudomembranous colitis, rotaviral, and other diarrheal syndromes by frequency-pulsed electron capture gas-liquid chromatography.

    PubMed

    Brooks, J B; Nunez-Montiel, O L; Basta, M T; Hierholzer, J C

    1984-09-01

    Thirty-five patients with various diarrheal syndromes and 22 controls were studied. All stool samples were carefully cultured for Clostridium difficile, using selective isolation media. Cytotoxin assays with proper antitoxin neutralization were done in MRC-5 cells. The stool samples were extracted four times, three times at pH 2 and once at pH 10, using CHCl3 or ether. Derivatizations of extracts were done with trichloroethanol, heptafluorobutyric anhydride, and heptafluorobutyric anhydride-ethanol, and all derivatives were analyzed by frequency-pulsed electron capture gas-liquid chromatography (FPEC-GLC). A dedicated computer was used to assist in both qualitative and quantitative data analysis. Isocaproic acid (iC6) was always found in stool from which C. difficile was isolated and was absent in C. difficile-negative specimens. p-Cresol was found frequently in both persons with pseudomembranous colitis and controls. Tryptamine was found in stool containing C. bifermentans. The FPEC-GLC profiles of persons with acute diarrhea were very different from those of normal persons. Diarrhea associated with adenovirus and rotavirus, Klebsiella spp., and Escherichia spp. showed different FPEC-GLC patterns. Stools from well persons consistently contained full-scale peaks of pyruvic, acetic, propionic, isobutyric, butyric, isovaleric, and valeric acids. In rotavirus stools isobutyric, isovaleric, and valeric acids were reduced in quantity from those found in control stools, whereas propionic and butyric acids were increased.

  5. Measurement of in-plane elasticity of live cell layers using a pressure sensor embedded microfluidic device

    NASA Astrophysics Data System (ADS)

    Lin, Chien-Han; Wang, Chien-Kai; Chen, Yu-An; Peng, Chien-Chung; Liao, Wei-Hao; Tung, Yi-Chung

    2016-11-01

    In various physiological activities, cells experience stresses along their in-plane direction when facing substrate deformation. Capability of continuous monitoring elasticity of live cell layers during a period is highly desired to investigate cell property variation during various transformations under normal or disease states. This paper reports time-lapsed measurement of live cell layer in-plane elasticity using a pressure sensor embedded microfluidic device. The sensor converts pressure-induced deformation of a flexible membrane to electrical signals. When cells are cultured on top of the membrane, flexural rigidity of the composite membrane increases and further changes the output electrical signals. In the experiments, human embryonic lung fibroblast (MRC-5) cells are cultured and analyzed to estimate the in-plane elasticity. In addition, the cells are treated with a growth factor to simulate lung fibrosis to study the effects of cell transformation on the elasticity variation. For comparison, elasticity measurement on the cells by atomic force microscopy (AFM) is also performed. The experimental results confirm highly anisotropic configuration and material properties of cells. Furthermore, the in-plane elasticity can be monitored during the cell transformation after the growth factor stimulation. Consequently, the developed microfluidic device provides a powerful tool to study physical properties of cells for fundamental biophysics and biomedical researches.

  6. Biocompatibility of poly(2-alkyl-2-oxazoline) brush surfaces for adherent lung cell lines.

    PubMed

    Tait, Angela; Fisher, Adam L; Hartland, Tom; Smart, David; Glynne-Jones, Peter; Hill, Martyn; Swindle, Emily J; Grossel, Martin; Davies, Donna E

    2015-08-01

    Development of synthetic surfaces that are highly reproducible and biocompatible for in vitro cell culture offers potential for development of improved models for studies of cellular physiology and pathology. They may also be useful in tissue engineering by removal of the need for biologically-derived components such as extracellular matrix proteins. We synthesised four types of 2-alkyl-2-oxazoline polymers ranging from the hydrophilic poly(2-methyl-2-oxazoline) to the hydrophobic poly(2-n-butyl-2-oxazoline). The polymers were terminated using amine-functionalised glass coverslips, enabling the synthetic procedure to be reproducible and scaleable. The polymer-coated glass slides were tested for biocompatibility using human epithelial (16HBE14o-) and fibroblastic (MRC5) cell lines. Differences in adhesion and motility of the two cell types was observed, with the poly(2-isopropyl-2-oxazoline) polymer equally supporting the growth of both cell types, whereas poly(2-n-butyl-2-oxazoline) showed selectivity for fibroblast growth. In summary, 2-alkyl-2-oxazoline polymers may be a useful tool for building in vitro model cell culture models with preferential adhesion of specific cell types. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. In Vitro Morphological Assessment of Apoptosis Induced by Antiproliferative Constituents from the Rhizomes of Curcuma zedoaria

    PubMed Central

    Syed Abdul Rahman, Syarifah Nur; Abdul Wahab, Norhanom; Abd Malek, Sri Nurestri

    2013-01-01

    Bioassay-guided isolation of the active hexane fractions of Curcuma zedoaria led to the identification of five pure compounds, namely, curzerenone (1), neocurdione (2), curdione (3), alismol (4), and zederone (5) and a mixture of sterols, namely, campesterol (6), stigmasterol (7), and β-sitosterol (8). Alismol has never been reported to be present in Curcuma zedoaria. All isolated compounds except (3) were evaluated for their cytotoxic activity against MCF-7, Ca Ski, and HCT-116 cancer cell lines and noncancer human fibroblast cell line (MRC-5) using neutral red cytotoxicity assay. Curzerenone and alismol significantly inhibited cell proliferation in human cancer cell lines MCF-7, Ca Ski, and HCT-116 in a dose-dependent manner. Cytological observations by an inverted phase contrast microscope and Hoechst 33342/PI dual-staining assay showed typical apoptotic morphology of cancer cells upon treatment with curzerenone and alismol. Both compounds induce apoptosis through the activation of caspase-3. It can thus be suggested that curzerenone and alismol are modulated by apoptosis via caspase-3 signalling pathway. The findings of the present study support the use of Curcuma zedoaria rhizomes in traditional medicine for the treatment of cancer-related diseases. Thus, two naturally occurring sesquiterpenoids, curzerenone and alismol, hold great promise for use in chemopreventive and chemotherapeutic strategies. PMID:23762112

  8. Mannich bases of 1,2,4-triazole-3-thione containing adamantane moiety: Synthesis, preliminary anticancer evaluation, and molecular modeling studies.

    PubMed

    Milošev, Milorad Z; Jakovljević, Katarina; Joksović, Milan D; Stanojković, Tatjana; Matić, Ivana Z; Perović, Milka; Tešić, Vesna; Kanazir, Selma; Mladenović, Milan; Rodić, Marko V; Leovac, Vukadin M; Trifunović, Snežana; Marković, Violeta

    2016-12-09

    A series of 18 novel N-Mannich bases derived from 5-adamantyl-1,2,4-triazole-3-thione was synthesized and characterized using NMR spectroscopy and X-ray diffraction technique. All derivatives were evaluated for their anticancer potential against four human cancer cell lines. Several tested compounds exerted good cytotoxic activities on K562 and HL-60 cell lines, along with pronounced selectivity, showing lower cytotoxicity against normal fibroblasts MRC-5 compared to cancer cells. The effects of compounds 5b, 5e, and 5j on the cell cycle were investigated by flow cytometric analysis. It was found that these compounds cause the accumulation of cells in the subG1 and G1 phases of the cell cycle and induce caspase-dependent apoptosis, while the anti-angiogenic effects of 5b, 5e, and 5j have been confirmed in EA.hy926 cells using a tube formation assay. Further, the interaction of Bax protein with compound 5b was investigated by means of molecular modeling, applying the combined molecular docking/molecular dynamics approach.

  9. Whole cell structural imaging at 20 nanometre resolutions using MeV ions

    NASA Astrophysics Data System (ADS)

    Watt, F.; Chen, X.; Chen, C.-B.; Udalagama, CNB; van Kan, J. A.; Bettiol, A. A.

    2013-07-01

    MeV proton and alpha (helium ion) particle beams can now be focused to 20 nm spot sizes, and ion/matter simulations using the DEEP computer code show that these resolutions are maintained through the top micrometre or so of organic material. In addition, the energy deposition profiles of the transmitted ions are laterally constrained to a few nanometers from the initial ion path. This paves the way for high resolution structural imaging of relatively thick biological material, e.g. biological cells. Examples are shown of high resolution structural imaging of whole biological cells (MRC5) using on-axis scanning transmission ion microscopy (STIM). Nanoparticles have the ability to cross the cell membrane, and may therefore prove useful as drug delivery probes. We show that the combination of on-axis STIM for imaging the cell interior, and off-axis STIM for imaging gold nanoparticles with enhanced contrast within the cell, represents a powerful set of ion beam techniques for tracking gold nanoparticles in biological cells. Whole cell imaging at high spatial resolutions represents a new area for nuclear microprobes.

  10. GANRA-5 protects both cultured cells and mice from various radiation types by functioning as a free radical scavenger.

    PubMed

    Pei, H; Chen, W; Hu, W; Zhu, M; Liu, T; Wang, J; Zhou, G

    2014-06-01

    The radio-protective effects of the oxazolone derivative chemical compound 4-(4-methoxy-3-methoxyphenyl-methyl)-2-phenyl- 5(4H)-oxazolone (GANRA-5) against different types of radiation including X-rays, carbon ion beams, microwaves and ultraviolet light (UV) were studied. Cell proliferation/cytotoxicity assay and colony-forming assay were conducted to evaluate the toxicity of GANRA-5. To test its influence on the induction of double-stranded break (DSB) formation and genomic instability, γH2AX focus-forming assay as well as cytokinesis-block micronucleus assay was utilized. Our results indicate that GANRA-5 exhibits low toxicity, while providing high radio-protective effects for MRC-5 cells against different types of radiation. We also found that GANRA-5 acts as a free radical scavenger. Our animal studies provided evidence that GANRA-5 significantly increases the survival rate of mice after X-ray irradiation. Analyses of hemogram, visceral index and detection of superoxide dismutase (SOD) and malondialdehyde (MDA) in the viscera indicate both low toxicity of GANRA-5, combined with its ability to shield radiation risk. In conclusion, our results suggest that GANRA-5 has the potential to be used as a safe and efficient radio-protectant.

  11. Salvianolic Acid B Attenuates Experimental Pulmonary Fibrosis through Inhibition of the TGF-β Signaling Pathway.

    PubMed

    Liu, Qingmei; Chu, Haiyan; Ma, Yanyun; Wu, Ting; Qian, Feng; Ren, Xian; Tu, Wenzhen; Zhou, Xiaodong; Jin, Li; Wu, Wenyu; Wang, Jiucun

    2016-06-09

    Pulmonary fibrosis is a progressive and fatal disorder. In our previous study, we found that the Yiqihuoxue formula (YQHX), a prescription of Traditional Chinese Medicine, had a curative effect on scleroderma, a typical fibrotic disease. The aim of this study was to determine the key ingredient mediating the therapeutic effects of YQHX and to examine its effect on pulmonary fibrosis, including its mechanism. Luciferase reporter assays showed that the most important anti-fibrotic component of the YQHX was Salviae miltiorrhiza (SM). Experiments performed using a bleomycin-instilled mouse model of pulmonary fibrosis showed that Salvianolic acid B (SAB), the major ingredient of SM, had strong anti-inflammatory and anti-fibrotic effects through its inhibition of inflammatory cell infiltration, alveolar structure disruption, and collagen deposition. Furthermore, SAB suppressed TGF-β-induced myofibroblastic differentiation of MRC-5 fibroblasts and TGF-β-mediated epithelial-to-mesenchymal transition of A549 cells by inhibiting both Smad-dependent signaling and the Smad-independent MAPK pathway. Taken together, our results suggest that SM is the key anti-fibrotic component of the YQHX and that SAB, the major ingredient of SM, alleviates experimental pulmonary fibrosis both in vivo and in vitro by inhibiting the TGF-β signaling pathway. Together, these results suggest that SAB potently inhibits pulmonary fibrosis.

  12. In vitro and in vivo antimalarial activity and cytotoxicity of extracts, fractions and a substance isolated from the Amazonian plant Tachia grandiflora (Gentianaceae).

    PubMed

    Silva, Luiz Francisco Rocha e; Lima, Emerson Silva; Vasconcellos, Marne Carvalho de; Aranha, Ellen Suzany Pereira; Costa, David Siqueira; Mustafa, Elba Vieira; Morais, Sabrina Kelly Reis de; Alecrim, Maria das Graças Costa; Nunomura, Sergio Massayoshi; Struwe, Lena; de Andrade-Neto, Valter Ferreira; Pohlit, Adrian Martin

    2013-06-01

    Tachia sp. are used as antimalarials in the Amazon Region and in vivo antimalarial activity of a Tachia sp. has been previously reported. Tachia grandiflora Maguire and Weaver is an Amazonian antimalarial plant and herein its cytotoxicity and antimalarial activity were investigated. Spectral analysis of the tetraoxygenated xanthone decussatin and the iridoid aglyone amplexine isolated, respectively, from the chloroform fractions of root methanol and leaf ethanol extracts was performed. In vitro inhibition of the growth of Plasmodium falciparum Welch was evaluated using optical microscopy on blood smears. Crude extracts of leaves and roots were inactive in vitro. However, chloroform fractions of the root and leaf extracts [half-maximal inhibitory concentration (IC50) = 10.5 and 35.8 µg/mL, respectively] and amplexine (IC50= 7.1 µg/mL) were active in vitro. Extracts and fractions were not toxic to type MRC-5 human fibroblasts (IC50> 50 µg/mL). Water extracts of the roots of T. grandiflora administered by mouth were the most active extracts in the Peters 4-day suppression test in Plasmodium berghei-infected mice. At 500 mg/kg/day, these extracts exhibited 45-59% inhibition five to seven days after infection. T. grandiflora infusions, fractions and isolated substance have potential as antimalarials.

  13. Development of novel biocompatible hybrid nanocomposites based on polyurethane-silica prepared by sol gel process.

    PubMed

    Rashti, Ali; Yahyaei, Hossein; Firoozi, Saman; Ramezani, Sara; Rahiminejad, Ali; Karimi, Roya; Farzaneh, Khadijeh; Mohseni, Mohsen; Ghanbari, Hossein

    2016-12-01

    Due to high biocompatibility, polyurethane has found many applications, particularly in development of biomedical devices. A new nanocomposite based on thermoset polyurethane and silica nanoparticles was synthesized using sol-gel method. Sol-gel process was fulfilled in two acidic and basic conditions by using tetraethylorthosilicate (TEOS) and trimethoxyisocyanatesilane as precursors. The hybrid films characterized for mechanical and surface properties using tensile strength, contact angle, ATR-FTIR and scanning electron microscopy. Biocompatibility and cytotoxicity of the hybrids were assessed using standard MTT, LDH and TUNEL assays. The results revealed that incorporation of silica nanoparticles was significantly improved tensile strength and mechanical properties of the hybrids. Based on the contact angle results, silica nanoparticles increased hydrophilicity of the hybrids. Biocompatibility by using human lung epithelial cell line (MRC-5) demonstrated that the hybrids were significantly less cytotoxic compared to pristine polymer as tested by MTT and LDH assays. TUNEL assay revealed no signs of apoptosis in all tested samples. The results of this study demonstrated that incorporation of silica nanoparticles into polyurethane lead to the enhancement of biocompatibility, indicating that these hybrids could potentially be used in biomedical field in particular as a new coating for medical implants.

  14. Short Interfering RNA Inhibits Rift Valley Fever Virus Replication and Degradation of Protein Kinase R in Human Cells.

    PubMed

    Faburay, Bonto; Richt, Juergen A

    2016-01-01

    Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing severe outbreaks in humans and livestock in sub-Saharan Africa and the Arabian Peninsula. Human infections are characterized by fever, sometimes leading to encephalitis, retinitis, hemorrhagic fever, and occasionally death. There are currently no fully licensed vaccines or effective therapies for human use. Gene silencing mediated by double-stranded short interfering RNA (siRNA) is a sequence-specific, highly conserved mechanism in eukaryotes, which serves as an antiviral defense mechanism. Here, we demonstrate that siRNA duplexes directed against the RVFV nucleoprotein can effectively inhibit RVFV replication in human (MRC5 cells) and African green monkey cells (Vero E6 cells). Using these cells, we demonstrate that individual or complex siRNAs, targeting the RVFV nucleoprotein gene completely abrogate viral protein expression and prevent degradation of the host innate antiviral factor, protein kinase R (PKR). Importantly, pre-treatment of cells with the nucleoprotein-specific siRNAs markedly reduces the virus titer. The antiviral effect of the siRNAs was not attributable to interferon or the interferon response effector molecule, PKR. Thus, the antiviral activity of RVFV nucleoprotein-specific siRNAs may provide novel therapeutic strategy against RVFV infections in animals and humans.

  15. Interleukin 1 and tumor necrosis factor stimulate two novel protein kinases that phosphorylate the heat shock protein hsp27 and beta-casein.

    PubMed

    Guesdon, F; Freshney, N; Waller, R J; Rawlinson, L; Saklatvala, J

    1993-02-25

    We have partially purified and characterized two protein kinases that were strongly activated by interleukin-1 (IL-1) or tumor necrosis factor (TNF) in MRC-5 fibroblasts. The kinases were separated by anion exchange chromatography of cytosolic fractions. They phosphorylated in vitro the small heat shock protein (hsp27) or beta-casein and were stimulated 3- and 4.5-fold, respectively, in cells that had been exposed to IL-1 or TNF for 10 min. They were distinct from the mitogen-activated protein kinases, whose activation by IL-1 or TNF has been reported recently. The hsp27 kinase phosphorylated its substrate on serine residues. Its molecular mass was estimated to be 45-kDa by gel filtration. It is probably involved in the increase in hsp27 phosphorylation seen in intact cells. The beta-casein kinase behaved as a 65-kDa protein. It phosphorylated its substrate on serine and threonine residues and had little activity on alpha-casein. The hsp27 and beta-casein kinases were not activated after stimulation of the cells with phorbol myristate acetate (PMA). In contrast, the MAP kinases were activated to a similar extent (2-3-fold) by the cytokines and by PMA. The hsp27- and beta-casein kinases probably correspond to novel enzymes whose mechanisms of activation may be independent of protein kinase C or MAP kinases.

  16. Synthesis of novel isoflavene-propranolol hybrids as anti-tumor agents.

    PubMed

    Yee, Eugene M H; Pasquier, Eddy; Iskander, George; Wood, Kasey; Black, David StC; Kumar, Naresh

    2013-04-01

    Isoflavene-propranolol hybrid molecules were developed as potentially novel anti-tumour agents. Isoflavene itself has potent anti-cancer activity while propranolol can enhance anti-proliferative and anti-angiogenic properties of 5-fluorouracil and paclitaxel. The hybrids were produced via nucleophilic addition of substituted amine groups to a dioxiran intermediate, which was in turn generated from the Williamson-type reaction of isoflavene with (±)-epichlorohydrin. These analogues were tested in anti-cancer cell viability assays against SHEP neuroblastoma and MDA-MB-231 breast adenocarcinoma cell lines, and were found to exhibit potent anti-proliferative activities. These compounds also displayed anti-angiogenic and anti-proliferative effects in HMEC-1 human microvascular endothelial cell lines. Notably, the most potent hybrid molecules synthesized in this work showed enhanced potency against cancer cell lines compared to either isoflavene or propranolol alone, while retaining significant selectivity for cancer cells over MRC-5 normal lung fibroblast cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Amphipathic guanidine-embedded glyoxamide-based peptidomimetics as novel antibacterial agents and biofilm disruptors.

    PubMed

    Nizalapur, Shashidhar; Kimyon, Onder; Yee, Eugene; Ho, Kitty; Berry, Thomas; Manefield, Mike; Cranfield, Charles G; Willcox, Mark; Black, David StC; Kumar, Naresh

    2017-03-01

    Antimicrobial resistance in bacteria is becoming increasingly prevalent, posing a critical challenge to global health. Bacterial biofilm formation is a common resistance mechanism that reduces the effectiveness of antibiotics. Thus, the development of compounds that can disrupt bacterial biofilms is a potential strategy to combat antimicrobial resistance. We report herein the synthesis of amphipathic guanidine-embedded glyoxamide-based peptidomimetics via ring-opening reactions of N-naphthoylisatins with amines and amino acids. These compounds were investigated for their antibacterial activity by the determination of minimum inhibitory concentration (MIC) against S. aureus and E. coli. Compounds 35, 36, and 66 exhibited MIC values of 6, 8 and 10 μg mL(-1) against S. aureus, respectively, while compounds 55 and 56 showed MIC values of 17 and 19 μg mL(-1) against E. coli, respectively. Biofilm disruption and inhibition activities were also evaluated against various Gram-positive and Gram-negative bacteria. The most active compound 65 exhibited the greatest disruption of established biofilms by 65% in S. aureus, 61% in P. aeruginosa, and 60% in S. marcescens respectively, at 250 μM concentration, while compound 52 inhibited the formation of biofilms by 72% in S. marcescens at 250 μM. We also report here the in vitro toxicity against MRC-5 human lung fibroblast cells. Finally, the pore forming capability of the three most potent compounds were tested using tethered bilayer lipid membrane (tBLM) technology.

  18. Anticancer activity of small amphipathic β²,²-amino acid derivatives.

    PubMed

    Hansen, Terkel; Ausbacher, Dominik; Zachariassen, Zack G; Anderssen, Trude; Havelkova, Martina; Strøm, Morten B

    2012-12-01

    We report the anticancer activity from screening of a series of synthetic β(2,2)-amino acid derivatives that were prepared to confirm the pharmacophore model of short cationic antimicrobial peptides with high anti-Staphylococcal activity. The most potent derivatives against human Burkitt's lymphoma (Ramos) cells displayed IC(50) values below 8 μM, and low toxicity against human red blood cells (EC(50) > 200 μM). A more than 5-fold preference for Ramos cancer cells compared to human lung fibroblasts (MRC-5 cells) was also obtained for the most promising β(2,2)-amino acid derivative 3-amino-N-(2-aminoethyl)-2,2-bis(naphthalen-2-ylmethyl)propanamide (5c). Screening of 5c at the National Cancer Institute (NCI, USA) confirmed its anticancer potency and revealed a very broad range of anticancer activity with IC(50) values of 0.32-3.89 μM against 59 different cancer cell lines. Highest potency was obtained against the colon cancer cell lines, a non-small cell lung cancer, a melanoma, and three leukemia cell lines included in the NCI screening panel. The reported β(2,2)-amino acid derivatives constitute a promising new class of anticancer agents based on their high anticancer potency, ease of synthesis, mode-of-action, and optimized pharmacokinetic properties compared to much larger antimicrobial peptides. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  19. Herpes simplex viruses type 1 and 2 photoinactivated in the presence of methylene blue transform human and mouse cells in vitro.

    PubMed

    Michútová, M; Mrázová, V; Kúdelová, M; Smolinská, M; Šupoliková, M; Vrbová, M; Golais, F

    2017-01-01

    Three strains of herpes simplex virus, K17syn- and HSZPsyn+ of type 1 (HSV-1) and USsyn- of type 2 (HSV-2), were photoinactivated in the presence of methylene blue and used to infect 3 cell lines, normal human lung tissue cells (MRC-5), mouse epithelial cells (NIH3T3), and human lung carcinoma cells (A549). The virus titer and phenotype of cells were evaluated to compare the characteristics of normal and carcinoma cells infected with non-syncytial (non-syn) and syncytial (syn) strains of herpes simplex viruses. We found that the cells of both normal cell lines infected with photoinactivated K17syn- and USsyn- but not HSZPsyn+ acquired transformed phenotype accompanied by the presence of virus. Surprisingly, the infection with photoinactivated viruses K17syn- and USsyn- but not HSZPsyn+ resulted in the suppression of the transformed phenotype of A549 cells. Using nested PCR, herpesviral DNA was identified in newly transformed cells and cells that lost the transformed phenotype. The effect of putative herpesvirus-related growth factors (HRGF) produced by cells infected with photoinactivated viruses was quantified and compared. Since methylene blue is currently used in phototherapy of herpetic lesions, these results raise the question of whether such therapy is risky to human health.

  20. In vitro antimicrobial assessment of Cuban propolis extracts.

    PubMed

    Monzote, Lianet; Cuesta-Rubio, Osmany; Campo Fernandez, Mercedes; Márquez Hernandez, Ingrid; Fraga, Jorge; Pérez, Kleich; Kerstens, Monique; Maes, Louis; Cos, Paul

    2012-12-01

    Propolis is a resinous mixture of different plant exudates collected by honeybees. Currently, propolis is widely used as a food supplement and in folk medicine. We have evaluated 20 Cuban propolis extracts of different chemical types, brown (BCP), red and yellow (YCP), with respect to their in vitro antibacterial, antifungal and antiprotozoal properties. The extracts inhibited the growth of Staphylococcus aureus and Trichophyton rubrum at low µg/mL concentrations, whereas they were not active against Escherichia coli and Candida albicans. The major activity of the extracts was found against the protozoa Leishmania, Trypanosoma and Plasmodium, although cytotoxicity against MRC-5 cells was also observed. The BCP-3, YCP-39 and YCP-60 extracts showed the highest activity against P. falciparum, with 50% of microbial growth (IC₅₀) values of 0.2 µg/mL. A positive correlation between the biological activity and the chemical composition was observed for YCP extracts. The most promising antimicrobial activity corresponds to YCP subtype B, which contains acetyl triterpenes as the main constituents. The present in vitro study highlights the potential of propolis against protozoa, but further research is needed to increase selectivity towards the parasite. The observed chemical composition-activity relationship of propolis can contribute to the identification of the active principles and standardisation of this bee product.

  1. Isolation of a larvicidal compound from Piper solmsianum C.DC. (Piperaceae).

    PubMed

    Macedo, Arthur Ladeira; Duprat, Rodrigo Coutinho; Moreira, Davyson de Lima; Kaplan, Maria Auxiliadora Coelho; Vasconcelos, Thatyana Rocha Alves; Pinto, Laine Celestino; Montenegro, Raquel Carvalho; Ratcliffe, Norman Arthur; Mello, Cicero Brasileiro; Valverde, Alessandra Leda

    2017-09-08

    The Aedes aegypti mosquito is one of the major vectors of arboviruses. These diseases have re-emerged and the insecticides used nowadays are toxic to mammals and environment and have only been effective in the short-term. In this context, natural products are an alternative. The genus Piper has many active compounds against arthropods, including neolignans. The present study evaluated the larvicidal potential of the n-hexanic extract of Piper solmsianum and eupomatenoid-6, identified by GC-MS and NMR techniques, from this extract against Ae. aegypti. The crude extract (100 μg/mL) killed 80% and 98.3% of larvae in the first and third day, respectively. Eupomatenoid-6 exhibited LD50 of 19.33 μM and LD90 of 28.68 μM and was then assayed in human fibroblast cells (MRC5), showing an IC50 of 39.30 μM with estimated LD50 of 42.26 mmol/kg. Our results indicate eupomatenoid-6 as a potent insecticide with relatively low toxicity for mammals.

  2. In vitro evaluation of Portuguese propolis and floral sources for antiprotozoal, antibacterial and antifungal activity.

    PubMed

    Falcão, Soraia I; Vale, Nuno; Cos, Paul; Gomes, Paula; Freire, Cristina; Maes, Louis; Vilas-Boas, Miguel

    2014-03-01

    Propolis is a beehive product with a very complex chemical composition, used since ancient times in several therapeutic treatments. As a contribution to the improvement of drugs against several tropical diseases caused by protozoa, we screened Portuguese propolis and its potential floral sources Populus x Canadensis and Cistus ladanifer against Plasmodium falciparum, Leishmania infantum, Trypanosoma brucei and Trypanosoma cruzi. The toxicity against MRC-5 fibroblast cells was evaluated to assess selectivity. The in vitro assays were performed following the recommendations of WHO Special Programme for Research and Training in Tropical Diseases (TDR) and revealed moderate activity, with the propolis extracts presenting the relatively highest inhibitory effect against T. brucei. Additionally, the antimicrobial activity against Staphylococcus aureus, Candida albicans, Trichophyton rubrum and Aspergillus fumigatus was also verified with the better results observed against T. rubrum. The quality of the extracts was controlled by evaluating the phenolic content and antioxidant activity. The observed biological activity variations are associated with the variable chemical composition of the propolis and the potential floral sources under study.

  3. Evaluation of the In Vitro Antiplasmodial, Antileishmanial, and Antitrypanosomal Activity of Medicinal Plants Used in Saudi and Yemeni Traditional Medicine

    PubMed Central

    Mothana, Ramzi A.; Al-Musayeib, Nawal M.; Al-Ajmi, Mohamed F.; Cos, Paul; Maes, Louis

    2014-01-01

    The antiplasmodial, antileishmanial, and antitrypanosomal activity of twenty-five medicinal plants distributed in Saudi Arabia and Yemen was evaluated. The plants were extracted with methanol and screened in vitro against erythrocytic schizonts of Plasmodium falciparum, intracellular amastigotes of Leishmania infantum and Trypanosoma cruzi, and free trypomastigotes of T. brucei. To assess selectivity, cytotoxicity was determined on MRC-5 cells. Criteria for activity were an IC50 < 10 μg/mL and high selectivity (SI). Seven plants showed interesting antiprotozoal activity in one or more models. Extracts of Caralluma penicillata and Acalypha ciliata showed fairly good activity against P. falciparum with IC50 of 6.7 and 10.8 μg/mL and adequate selectivity (SI > 9.6 and >5.9). Interesting activity against L. infantum was obtained with Verbascum bottae (IC50 of 3.2 μg/mL, SI 10.2) and Solanum glabratum (IC50 8.1 μg/mL, SI 3.4). The extracts of C. penicillata, Leucas virgata, Loranthus regularis, and V. bottae exhibited moderate activity against T. brucei (IC50 8.5, 8.1, 8.3, and 2.3 μg/mL; SI > 7.6, 7.7, 4.3, and >14.1). These results partly support the traditional use of some of the selected medicinal plants and warrant further investigations into the putative active constituents. PMID:24963330

  4. Enhanced Replication of Hepatitis E Virus Strain 47832c in an A549-Derived Subclonal Cell Line

    PubMed Central

    Schemmerer, Mathias; Apelt, Silke; Trojnar, Eva; Ulrich, Rainer G.; Wenzel, Jürgen J.; Johne, Reimar

    2016-01-01

    Hepatitis E virus (HEV) is a human pathogen with increasing importance. The lack of efficient cell culture systems hampers systematic studies on its replication cycle, virus neutralization and inactivation. Here, several cell lines were inoculated with the HEV genotype 3c strain 47832c, previously isolated from a chronically infected transplant patient. At 14 days after inoculation the highest HEV genome copy numbers were found in A549 cells, followed by PLC/PRF/5 cells, whereas HepG2/C3A, Huh-7 Lunet BLR and MRC-5 cells only weakly supported virus replication. Inoculation of A549-derived subclone cell lines resulted in most cases in reduced HEV replication. However, the subclone A549/D3 was susceptible to lower virus concentrations and resulted in higher virus yields as compared to parental A549 cells. Transcriptome analysis indicated a downregulation of genes for carcinoembryonic antigen-related cell adhesion molecules (CEACAM) 5 and 6, and an upregulation of the syndecan 2 (SDC2) gene in A549/D3 cells compared to A549 cells. However, treatment of A549/D3 cells or A549 cells with CEACAM- or syndecan 2-specific antisera did not influence HEV replication. The results show that cells supporting more efficient HEV replication can be selected from the A549 cell line. The specific mechanisms responsible for the enhanced replication remain unknown. PMID:27690085

  5. Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: Isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402.

    PubMed

    Casella, Thiago M; Eparvier, Véronique; Mandavid, Hugues; Bendelac, Audrey; Odonne, Guillaume; Dayan, Laura; Duplais, Christophe; Espindola, Laila S; Stien, Didier

    2013-12-01

    Because of the symbiotic nature of endophytes, this survey aims to investigate the probability of discovering antibacterial, antifungal and cytotoxic activities in leaf endophytic microbes. We isolated 138 cultivable microbes (121 fungi, 3 bacteria and 14 unidentified or unknown microbes) from 24 plant species, a significant relative proportion of which exhibited antifungal and cytotoxic potential against Candida albicans ATCC 10213 and the human cell lines KB (uterine cervical carcinoma), MDA-MB-435 (melanoma), and MRC5 (normal human lung fibroblasts). Three active fungal extracts were fractionated, resulting in the isolation of eight compounds. Seven had been described in the literature including the following: acremonisol A, semicochliodinol A, cochliodinol, griseofulvin, pyrenocin A, novae zelandin A and alterperylenol. A previously unreported compound named pyrrocidine C was isolated from Lewia infectoria SNB-GTC2402 and identified by spectroscopic analysis. As in pyrrocidines A and B, this compound is a cis-substituted decahydrofluorene with a quaternary carbon at C-5 and opposite stereochemistry at C-8 corresponding to C-6 of pyrrocidines A and B. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Similarities in Gene Expression Profiles during In Vitro Aging of Primary Human Embryonic Lung and Foreskin Fibroblasts

    PubMed Central

    Marthandan, Shiva; Priebe, Steffen; Groth, Marco; Cellerino, Alessandro; Guthke, Reinhard; Hemmerich, Peter; Diekmann, Stephan

    2015-01-01

    Replicative senescence is of fundamental importance for the process of cellular aging, since it is a property of most of our somatic cells. Here, we elucidated this process by comparing gene expression changes, measured by RNA-seq, in fibroblasts originating from two different tissues, embryonic lung (MRC-5) and foreskin (HFF), at five different time points during their transition into senescence. Although the expression patterns of both fibroblast cell lines can be clearly distinguished, the similar differential expression of an ensemble of genes was found to correlate well with their transition into senescence, with only a minority of genes being cell line specific. Clustering-based approaches further revealed common signatures between the cell lines. Investigation of the mRNA expression levels at various time points during the lifespan of either of the fibroblasts resulted in a number of monotonically up- and downregulated genes which clearly showed a novel strong link to aging and senescence related processes which might be functional. In terms of expression profiles of differentially expressed genes with age, common genes identified here have the potential to rule the transition into senescence of embryonic lung and foreskin fibroblasts irrespective of their different cellular origin. PMID:26339636

  7. Conserved genes and pathways in primary human fibroblast strains undergoing replicative and radiation induced senescence.

    PubMed

    Marthandan, Shiva; Menzel, Uwe; Priebe, Steffen; Groth, Marco; Guthke, Reinhard; Platzer, Matthias; Hemmerich, Peter; Kaether, Christoph; Diekmann, Stephan

    2016-07-28

    Cellular senescence is induced either internally, for example by replication exhaustion and cell division, or externally, for example by irradiation. In both cases, cellular damages accumulate which, if not successfully repaired, can result in senescence induction. Recently, we determined the transcriptional changes combined with the transition into replicative senescence in primary human fibroblast strains. Here, by γ-irradiation we induced premature cellular senescence in the fibroblast cell strains (HFF and MRC-5) and determined the corresponding transcriptional changes by high-throughput RNA sequencing. Comparing the transcriptomes, we found a high degree of similarity in differential gene expression in replicative as well as in irradiation induced senescence for both cell strains suggesting, in each cell strain, a common cellular response to error accumulation. On the functional pathway level, "Cell cycle" was the only pathway commonly down-regulated in replicative and irradiation-induced senescence in both fibroblast strains, confirming the tight link between DNA repair and cell cycle regulation. However, "DNA repair" and "replication" pathways were down-regulated more strongly in fibroblasts undergoing replicative exhaustion. We also retrieved genes and pathways in each of the cell strains specific for irradiation induced senescence. We found the pathways associated with "DNA repair" and "replication" less stringently regulated in irradiation induced compared to replicative senescence. The strong regulation of these pathways in replicative senescence highlights the importance of replication errors for its induction.

  8. Mussel oligopeptides protect human fibroblasts from hydrogen peroxide (H2O2)-induced premature senescence.

    PubMed

    Zhou, Yue; Dong, Ying; Xu, Qing-Gang; Zhu, Shu-Yun; Tian, Shi-Lei; Huo, Jing-jing; Hao, Ting-Ting; Zhu, Bei-Wei

    2014-01-01

    Mussel bioactive peptides have been viewed as mediators to maximize the high quality of life. In this study, the anti-aging activities of mussel oligopeptides were evaluated using H2O2-induced prematurely senescent MRC-5 fibroblasts. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and flow cytometry displayed that exposure to H2O2 led to the loss of cell viability and cell cycle arrest. In addition, H2O2 caused the elevation of senescence-associated-β-galactosidase (SA-β-gal) activity and formation of senescence-associated heterochromatin foci (SAHF). It was found that pretreatment with mussel oligopeptides could significantly attenuate these properties associated with cellular senescence. Mussel oligopeptides also led to the increase of glutathione (GSH) level and mitochondrial transmembrane potential (Δψm) recovery. In addition, mussel oligopeptides resulted in an improvement in transcriptional activity of peroxiredoxin 1 (Prx1), nicotinamide phosphoribosyltransferase (NAMPT) and sirtuin 1 (SIRT1). This study revealed that mussel oligopeptides could protect against cellular senescence induced by H2O2, and the effects were closely associated with redox cycle modulating and potentiating the SIRT1 pathway. These findings provide new insights into the beneficial role of mussel bioactive peptides on retarding senescence process. Crown Copyright © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Effect of arsenic and cadmium on the persistence of mutagen-induced DNA lesions in human cells

    SciTech Connect

    Hartmann, A.; Speit, G.

    1996-12-31

    The alkaline single cell gel electrophoresis (SCG test or comet assay) was used to characterize the influence of sodium arsenite (NaAsO{sub 2}) and cadmium sulphate (CdSO{sub 4}) on the persistence of mutagen-induced DNA lesions. Human blood and SV40-transformed fibroblasts (MRC5CV1) were treated for 2 hr with methyl methanesulphonate (MMS) or benzo(a)pyrene (BaP). MMS induced concentration-related DNA damage in white blood cells (WBC) and fibroblasts in similar concentrations. For the induction of DNA damage by BaP, higher concentrations had to be applied to WBC than to the fibroblast cell line. To study the influence of metal ions on the persistence of DNA lesions, treated cells were further incubated for 2 hr in the absence (post-incubation) or presence (posttreatment) of NaAsO{sub 2} or CdSO{sub 4}, BaP- and MMS-induced DNA lesions persisted in both cell types, indicating an inhibition of DNA repair by these metals. The results suggest a strong interaction of arsenic and cadmium with BaP- and MMS-induced DNA repair processes. 34 refs., 5 figs., 2 tabs.

  10. In Vitro Synergistic Antioxidant Activity and Identification of Antioxidant Components from Astragalus membranaceus and Paeonia lactiflora

    PubMed Central

    Zhang, Xin; Li, Pengcheng; Zhang, Xing; Wu, Zhaoxi; Li, Dapeng

    2014-01-01

    Many traditionally used herbs demonstrate significantly better pharmacological effects when used in combination than when used alone. However, the mechanism underlying this synergism is still poorly understood. This study aimed to investigate the synergistic antioxidant activity of Astragalus membranaceus (AME) and Paeonia Lactiflora (PL), and identify the potential antioxidant components by 1,1-diphenyl-2-picrylhydrazine (DPPH) radical spiking test followed by a high performance liquid chromatography separation combined with diode array detection and tandem mass spectrometry analysis (DPPH-HPLC-DAD-MS/MS). Eight AME-PL combined extracts (E1–E8) were prepared based on bioactivity-guided fractionation. Among them, E1 exhibited the strongest synergistic effect in scavenging DPPH radicals and reducing ferric ions (P<0.05). Moreover, E1 presented strong cytoprotection against H2O2-induced oxidative damage in MRC-5 cells by suppressing the decrease of the superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT) activities. A strong correlation between the increment of total phenolic/flavonoid and synergistic antioxidant activity, especially between the increment of total flavonoid and the increase in ferric reducing power was observed. Finally, seven antioxidant substances were identified in E1 as oxypaeoniflora, catechin, calycosin-7-O-β-D-glucopyranoside, fomononetin-7-O-β-D-glucopyranoside, 9,10-dimethoxy-pterocarpan-3-O-β-D-glucopyranoside, quercetin and 2′-dihydroxy-3′,4′-dimethyl-isoflavan-7-O-β-D-glucopyranoside. PMID:24816851

  11. Discovery of Inhibitors of Trypanosoma brucei by Phenotypic Screening of a Focused Protein Kinase Library

    PubMed Central

    Woodland, Andrew; Thompson, Stephen; Cleghorn, Laura A T; Norcross, Neil; De Rycker, Manu; Grimaldi, Raffaella; Hallyburton, Irene; Rao, Bhavya; Norval, Suzanne; Stojanovski, Laste; Brun, Reto; Kaiser, Marcel; Frearson, Julie A; Gray, David W; Wyatt, Paul G; Read, Kevin D; Gilbert, Ian H

    2015-01-01

    A screen of a focused kinase inhibitor library against Trypanosoma brucei rhodesiense led to the identification of seven series, totaling 121 compounds, which showed >50 % inhibition at 5 μm. Screening of these hits in a T. b. brucei proliferation assay highlighted three compounds with a 1H-imidazo[4,5-b]pyrazin-2(3H)-one scaffold that showed sub-micromolar activity and excellent selectivity against the MRC5 cell line. Subsequent rounds of optimisation led to the identification of compounds that exhibited good in vitro drug metabolism and pharmacokinetics (DMPK) properties, although in general this series suffered from poor solubility. A scaffold-hopping exercise led to the identification of a 1H-pyrazolo[3,4-b]pyridine scaffold, which retained potency. A number of examples were assessed in a T. b. brucei growth assay, which could differentiate static and cidal action. Compounds from the 1H-imidazo[4,5-b]pyrazin-2(3H)-one series were found to be either static or growth-slowing and not cidal. Compounds with the 1H-pyrazolo[3,4-b]pyridine scaffold were found to be cidal and showed an unusual biphasic nature in this assay, suggesting they act by at least two mechanisms. PMID:26381210

  12. Novel aminoalkylated azaphenothiazines as potential inhibitors of T98G, H460 and SNU80 cancer cell lines in vitro.

    PubMed

    Kushwaha, Khushbu; Kaushik, Nagendra Kumar; Kaushik, Neha; Chand, Mahesh; Kaushik, Reena; Choi, Eun Ha; Jain, Subhash C

    2016-05-01

    A set of twenty-one novel aminoalkylated azaphenothiazines is synthesized using a two-step methodology starting from azaphenothiazines. The key step was the selective monoalkylation at position 10 of azaphenothiazines. In all, twenty-five molecules, including intermediates, were investigated for their in vitro anticancer activity, of which fourteen azaphenothiazines (2b, 3a, 3c, 3d, 3e-h, 3j, 3n, 3o, 3p, 3s, and 3u) were found to decrease the metabolic viability and growth of the T98G, H460 and SNU80 cancer cells effectively in a dose-dependent manner. In silico, pharmacokinetic studies suggest that these molecules have good bioavailability, water solubility and other drug-like parameters. Compounds 3a, 3c and 3g were identified as the leading molecules for future investigation due to their (a) high activity against T98G brain, H460 lung and SNU80 thyroid cancer cells; (b) low cytotoxicity with regard to non-malignant HEK293 and MRC5 cells; (c) low toxic risk levels based on in vitro and in silico evaluations; (d) good theoretical oral bioavailability according to Lipinski 'rule of five' pharmacokinetic parameters; and (e) better drug-likeness and drug-score values.

  13. Diterpenylquinone hybrids: synthesis and assessment of gastroprotective mechanisms of action in human cells.

    PubMed

    Theoduloz, Cristina; Bravo, Ivanna; Pertino, Mariano Walter; Schmeda-Hirschmann, Guillermo

    2013-09-10

    A modern approach in the search for new bioactive molecules is the synthesis of novel chemical entities combining molecules of different biosynthetic origin presenting biological effects as single compounds. Gastroprotective compounds from South American medicinal plants, namely quinones and diterpenes, were used as building blocks to obtain hybrid diterpenylquinones. Starting from the labdane diterpene junicedric acid and two isomers, as well as from three quinones, including lapachol, 18 hybrid molecules were synthesized. Six of them are described for the first time. The potential gastroprotective mechanisms of action of the compounds were assessed in dose-response experiments using human gastric epithelial cells (AGS) and human lung fibroblasts (MRC-5). The following studies were carried out: stimulation of cell proliferation, cytoprotection against sodium taurocholate (NaT)-induced damage, synthesis of PGE2 and total reduced sulfhydryl (GSH) content. The antioxidant capacity of the compounds was determined on the inhibition of the lipoperoxidation in human erythrocyte membranes. Hybrid compounds presented activities different from those shown by the starting compounds, supporting the potential of this approach in the search for new bioactive molecules. The effects might be modulated by selective modification in the terpene or quinone moieties of the new molecules. Structure-activity relationships are discussed.

  14. In vitro cytotoxicity and genotoxicity of composite mixtures of natural rubber and leather residues used for textile applications.

    PubMed

    Cavalcante, Dalita Gsm; Gomes, Andressa S; Dos Reis, Elton Ap; Danna, Caroline S; Kerche-Silva, Leandra E; Yoshihara, Eidi; Job, Aldo E

    2016-11-03

    A novel composite material has been developed from natural rubber and leather waste, and a corresponding patent has been filed. This new material may be incorporated into textile and footwear products. However, as leather waste contains chromium, the biocompatibility of this new material and its safety for use in humans must be investigated. The aim of the present study was to investigate the presence of chromium in this new material, determine the amount of each form of chromium present (trivalent or hexavalent), and evaluate the potential cytotoxic and genotoxic effects of the novel composite in two cell lines. The cellular viability was quantified using the MTT3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide reduction method and neutral red uptake assay, and genotoxic damage was analyzed using the comet assay. Our findings indicated that the extracts obtained from the composite were severely cytotoxic to both cell lines tested, and additionally highly genotoxic to MRC-5 cells. These biological responses do not appear to be attributable to the presence of chromium, as the trivalent form was predominantly found to be present in the extracts, indicating that hexavalent chromium is not formed during the production of the novel composite. The incorporation of this new material in applications that do not involve direct contact with the human skin is thus indicated, and it is suggested that the chain of production of this material be studied in order to improve its biocompatibility so that it may safely be used in the textile and footwear industries.

  15. Pharmacological perspectives from Brazilian Salvia officinalis (Lamiaceae): antioxidant, and antitumor in mammalian cells.

    PubMed

    Garcia, Charlene S C; Menti, Caroline; Lambert, Ana Paula F; Barcellos, Thiago; Moura, Sidnei; Calloni, Caroline; Branco, Cátia S; Salvador, Mirian; Roesch-Ely, Mariana; Henriques, João A P

    2016-03-01

    Salvia officinalis (Lamiaceae) has been used in south of Brazil as a diary homemade, in food condiment and tea-beverage used for the treatment of several disorders. The objective of this study was to characterize chemical compounds in the hydroalcoholic (ExtHS) and aqueous (ExtAS) extract from Salvia officinalis (L.) by gas chromatography-mass spectrometry (GC-MS) and by high-resolution electrospray ionization mass spectrometry (ESI-QTOF MS/MS), evaluate in vitro ability to scavenge the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+), catalase (CAT-like) and superoxide dismutase (SOD-like) activity, moreover cytotoxic by MTT assay, alterations on cell morphology by giemsa and apoptotic-induced mechanism for annexin V/propidium iodide. Chemical identification sage extracts revealed the presence of acids and phenolic compounds. In vitro antioxidant analysis for both extracts indicated promising activities. The cytotoxic assays using tumor (Hep-2, HeLa, A-549, HT-29 and A-375) and in non-tumor (HEK-293 and MRC-5), showed selectivity for tumor cell lines. Immunocytochemistry presenting a majority of tumor cells at late stages of the apoptotic process and necrosis. Given the results presented here, Brazilian Salvia officinalis (L.) used as condiment and tea, may protect the body against some disease, in particularly those where oxidative stress is involved, like neurodegenerative disorders, inflammation and cancer.

  16. Age related changes in steroid receptors on cultured lung fibroblasts

    SciTech Connect

    Barile, F.A.; Bienkowski, R.S.

    1986-03-05

    The number of high affinity glucocorticoid receptors (Ro) on human fetal lung fibroblasts decreases as the cells age in vitro, and it has been suggested that these cell systems may be useful models of age-related changes in vivo. They examined the relation between change in Ro with in vitro aging and donor age. Confluent monolayers of lung fibroblasts at various population doubling levels (PDL), were incubated with (/sup 3/H)-dexamethasone ((/sup 3/H)Dex) either alone or with excess (.01 mM) Dex. Specific binding was calculated as the difference between radioactivity in cells incubated with and without unlabeled Dex; Scatchard plots were used to analyze the data. Ro, measured as fmol (/sup 3/H)Dex/10/sup 6/ cells, for two lines of human fetal cells (HFL-1 and MRC-5) decreased with increasing age in vitro. However, human newborn (CRL-1485) and adult (CCL-201) cells and fetal rabbit cells (FAB-290), showed increases in Ro with continuous passage. For each cell line, the affinity constant (K/sub d/) did not change significantly with passage. They conclude that the direction of changes in steroid receptor levels on cells aging in vitro is influenced by donor age and species. Caution should be used in applying results obtained from model systems to aging organisms.

  17. Unstable Chromosome Aberrations Do Not Accumulate in Normal Human Fibroblast after Fractionated X-Irradiation

    PubMed Central

    Ojima, Mitsuaki; Ito, Maki; Suzuki, Keiji; Kai, Michiaki

    2015-01-01

    We determined the frequencies of dicentric chromosomes per cell in non-dividing confluent normal human fibroblasts (MRC-5) irradiated with a single 1 Gy dose or a fractionated 1 Gy dose (10X0.1 Gy, 5X0.2 Gy, and 2X0.5 Gy). The interval between fractions was between 1 min to 1440 min. After the completion of X-irradiation, the cells were incubated for 24 hours before re-plating at a low density. Then, demecolcine was administrated at 6 hours, and the first mitotic cells were collected for 42 hours. Our study demonstrated that frequencies of dicentric chromosomes in cells irradiated with a 1 Gy dose at different fractions were significantly reduced if the fraction interval was increased from 1 min to 5 min (p<0.05, χ2-test). Further increasing the fraction interval from 5 up to 1440 min did not significantly affect the frequency of dicentric chromosomes. Since misrejoining of two independent chromosome breaks introduced in close proximity gives rise to dicentric chromosome, our results indicated that such circumstances might be quite infrequent in cells exposed to fractionated X-irradiation with prolonged fraction intervals. Our findings should contribute to improve current estimation of cancer risk from chronic low-dose-rate exposure, or intermittent exposure of low-dose radiation by medical exposure. PMID:25723489

  18. Self-Styled ZnO Nanostructures Promotes the Cancer Cell Damage and Supresses the Epithelial Phenotype of Glioblastoma

    NASA Astrophysics Data System (ADS)

    Wahab, Rizwan; Kaushik, Neha; Khan, Farheen; Kaushik, Nagendra Kumar; Choi, Eun Ha; Musarrat, Javed; Al-Khedhairy, Abdulaziz A.

    2016-01-01

    Extensive researches have been done on the applications of zinc oxide nanoparticles (ZnO-NPs) for the biological purposes. However, the role and toxicity mechanisms of ZnO nanostructures (ZnO-NSts) such as nanoplates (NPls), nanorods (NRs), nanosheets (NSs), nanoflowers (NFs) on cancer cells are not largely known. Present study was focused to investigate the possible mechanisms of apoptosis induced by self-designed ZnO-NSts, prepared at fix pH via solution process and exposed against human T98G gliomas including various cancers and non-malignant embryonic kidney HEK293, MRC5 fibroblast cells. NSts were used for the induction of cell death in malignant human T98G gliomas including various cancers and compared with the non-malignant cells. Notably, NRs were found to induce higher cytotoxicity, inhibitory effects on cancer and normal cells in a dose dependent manner. We also showed that NRs induced cancer cell death through oxidative stress and caspase-dependent pathways. Furthermore, quantitative and qualitative analysis of ZnO-NSts have also been confirmed by statistical analytical parameters such as precision, accuracy, linearity, limits of detection and limit of quantitation. These self-styled NSts could provide new perception in the research of targeted cancer nanotechnology and have potentiality to improve new therapeutic outcomes with poor diagnosis.

  19. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: pulmonary compatible and site-specific drug delivery in lung metastases.

    PubMed

    Joshi, Nitin; Shirsath, Nitesh; Singh, Ankur; Joshi, Kalpana S; Banerjee, Rinti

    2014-11-18

    Concerns related to pulmonary toxicity and non-specificity of nanoparticles have limited their clinical applications for aerosol delivery of chemotherapeutics in lung cancer. We hypothesized that pulmonary surfactant mimetic nanoparticles that offer pH responsive release specifically in tumor may be a possible solution to overcome these issues. We therefore developed lung surfactant mimetic and pH responsive lipid nanovesicles for aerosol delivery of paclitaxel in metastatic lung cancer. 100-200 nm sized nanovesicles showed improved fusogenicity and cytosolic drug release, specifically with cancer cells, thereby resulting in improved cytotoxicity of paclitaxel in B16F10 murine melanoma cells and cytocompatibility with normal lung fibroblasts (MRC 5). The nanovesicles showed airway patency similar to that of endogenous pulmonary surfactant and did not elicit inflammatory response in alveolar macrophages. Their aerosol administration while significantly improving the biodistribution of paclitaxel in comparison to Taxol (i.v.), also showed significantly higher metastastes inhibition (~75%) in comparison to that of i.v. Taxol and i.v. Abraxane. No signs of interstitial pulmonary fiborisis, chronic inflammation and any other pulmonary toxicity were observed with nanovesicle formulation. Overall, these nanovesicles may be a potential platform to efficiently deliver hydrophobic drugs as aerosol in metastatic lung cancer and other lung diseases, without causing pulmonary toxicity.

  20. Endogenous lung surfactant inspired pH responsive nanovesicle aerosols: Pulmonary compatible and site-specific drug delivery in lung metastases

    NASA Astrophysics Data System (ADS)

    Joshi, Nitin; Shirsath, Nitesh; Singh, Ankur; Joshi, Kalpana S.; Banerjee, Rinti

    2014-11-01

    Concerns related to pulmonary toxicity and non-specificity of nanoparticles have limited their clinical applications for aerosol delivery of chemotherapeutics in lung cancer. We hypothesized that pulmonary surfactant mimetic nanoparticles that offer pH responsive release specifically in tumor may be a possible solution to overcome these issues. We therefore developed lung surfactant mimetic and pH responsive lipid nanovesicles for aerosol delivery of paclitaxel in metastatic lung cancer. 100-200 nm sized nanovesicles showed improved fusogenicity and cytosolic drug release, specifically with cancer cells, thereby resulting in improved cytotoxicity of paclitaxel in B16F10 murine melanoma cells and cytocompatibility with normal lung fibroblasts (MRC 5). The nanovesicles showed airway patency similar to that of endogenous pulmonary surfactant and did not elicit inflammatory response in alveolar macrophages. Their aerosol administration while significantly improving the biodistribution of paclitaxel in comparison to Taxol (i.v.), also showed significantly higher metastastes inhibition (~75%) in comparison to that of i.v. Taxol and i.v. Abraxane. No signs of interstitial pulmonary fiborisis, chronic inflammation and any other pulmonary toxicity were observed with nanovesicle formulation. Overall, these nanovesicles may be a potential platform to efficiently deliver hydrophobic drugs as aerosol in metastatic lung cancer and other lung diseases, without causing pulmonary toxicity.

  1. Antitumour effects of Phyllanthus emblica L.: induction of cancer cell apoptosis and inhibition of in vivo tumour promotion and in vitro invasion of human cancer cells.

    PubMed

    Ngamkitidechakul, C; Jaijoy, K; Hansakul, P; Soonthornchareonnon, N; Sireeratawong, S

    2010-09-01

    Phyllanthus emblica Linn. (PE) is a medicinal fruit used in many Asian traditional medicine systems for the treatment of various diseases including cancer. The present study tested the potential anticancer effects of aqueous extract of PE in four ways: (1) against cancer cell lines, (2) in vitro apoptosis, (3) mouse skin tumourigenesis and (4) in vitro invasiveness. The PE extract at 50-100 microg/mL significantly inhibited cell growth of six human cancer cell lines, A549 (lung), HepG2 (liver), HeLa (cervical), MDA-MB-231 (breast), SK-OV3 (ovarian) and SW620 (colorectal). However, the extract was not toxic against MRC5 (normal lung fibroblast). Apoptosis in HeLa cells was also observed as PE extract caused DNA fragmentation and increased activity of caspase-3/7 and caspase-8, but not caspase-9, and up-regulation of the Fas protein indicating a death receptor-mediated mechanism of apoptosis. Treatment of PE extract on mouse skin resulted in over 50% reduction of tumour numbers and volumes in animals treated with DMBA/TPA. Lastly, 25 and 50 microg/mL of PE extract inhibited invasiveness of MDA-MB-231 cells in the in vitro Matrigel invasion assay. These results suggest P. emblica exhibits anticancer activity against selected cancer cells, and warrants further study as a possible chemopreventive and antiinvasive agent.

  2. Comparative study of biological activities and phytochemical composition of two rose hips and their preserves: Rosa canina L. and Rosa arvensis Huds.

    PubMed

    Nađpal, Jelena D; Lesjak, Marija M; Šibul, Filip S; Anačkov, Goran T; Četojević-Simin, Dragana D; Mimica-Dukić, Neda M; Beara, Ivana N

    2016-02-01

    The aim of this study was to compare phenolic profile, vitamin C content, antioxidant, anti-inflammatory and cytotoxic activity of rose hips and the preserves (purée and jam) of two Rosa species: renowned Rosa canina L. and unexplored Rosa arvensis Huds. The liquid chromatography-tandem mass spectrometry analysis of 45 phenolics resulted in quantification of 14 compounds, with quercitrin, gallic and protocatechuic acids as the most dominant. High antioxidant potential of R. canina and a moderate activity of R. arvensis extracts were determined through several assays. Purée of both species and methanol extract of air-dried R. canina hips showed some anti-inflammatory (cyclooxygenase-1 and 12-lipooxygense inhibition potency) activity. Purée of R. canina exerted cytotoxic activity only against the HeLa cell line among several others (HeLa, MCF7, HT-29 and MRC-5). The presented results support traditional use of rose hips and their fruit preserves as food with health and nutritional benefits.

  3. Native human interferon-α is a strong inductor of endogenous cytokines involved in the suppression of procollagen type I.

    PubMed

    Santak, G; Santak, M; Forčić, D

    2013-09-01

    Native human interferon-α (nHuIFN-α) has a stronger reductive effect on procollagen type I mRNA expression than recombinant human interferon-α (rHuIFN-α). It is partially due to the additive activity of interleukin-1β (IL-1β), which is present in small concentrations in nHuIFN-α. Here, we show that the reductive effect is also the result of the endogenous cytokines induced by the activity of nHuIFN-α. In the culture of MRC5 fibroblasts, we have further found that nHuIFN-α induces endogenous interferons in higher amounts than rHuIFN-α, measured with PCR. That is more pronounced when interferon-γ (IFN-γ) is measured. This result puts a new light on IFN-γ activity in the nHuIFN-α treatment because its role was neglected due to the loss of its activity during the nHuIFN-α preparation process. The findings lead to the conclusion that endogenous cytokines play a significant role in the nHuIFN-α -mediated reduction of procollagen type I mRNA and are therefore an important factor in potential therapeutic usage. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  4. WNT16B is a new marker of cellular senescence that regulates p53 activity and the phosphoinositide 3-kinase/AKT pathway.

    PubMed

    Binet, Romuald; Ythier, Damien; Robles, Ana I; Collado, Manuel; Larrieu, Delphine; Fonti, Claire; Brambilla, Elisabeth; Brambilla, Christian; Serrano, Manuel; Harris, Curtis C; Pedeux, Rémy

    2009-12-15

    Senescence is a tumor suppression mechanism that is induced by several stimuli, including oncogenic signaling and telomere shortening, and controlled by the p53/p21(WAF1) signaling pathway. Recently, a critical role for secreted factors has emerged, suggesting that extracellular signals are necessary for the onset and maintenance of senescence. Conversely, factors secreted by senescent cells may promote tumor growth. By using expression profiling techniques, we searched for secreted factors that were overexpressed in fibroblasts undergoing replicative senescence. We identified WNT16B, a member of the WNT family of secreted proteins. We found that WNT16B is overexpressed in cells undergoing stress-induced premature senescence and oncogene-induced senescence in both MRC5 cell line and the in vivo murine model of K-Ras(V12)-induced senescence. By small interfering RNA experiments, we observed that both p53 and WNT16B are necessary for the onset of replicative senescence. WNT16B expression is required for the full transcriptional activation of p21(WAF1). Moreover, WNT16B regulates activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway. Overall, we identified WNT16B as a new marker of senescence that regulates p53 activity and the PI3K/AKT pathway and is necessary for the onset of replicative senescence.

  5. Do conjugated eicosapentaenoic acid and conjugated docosahexaenoic acid induce apoptosis via lipid peroxidation in cultured human tumor cells?

    PubMed

    Igarashi, M; Miyazawa, T

    2000-04-13

    Conjugated eicosapentaenoic acid (CEPA) and conjugated docosahexaenoic acid (CDHA) with triene structure, isomerized by alkaline treatment, showed intensive cytotoxicity with LD(50) at 12 and 16 microM, respectively, in DLD-1 cells (colorectal adenocarcinoma), while they had no effect on normal human fibroblast cell lines such as MRC-5, TIG-103, and KMS-6 cells. Cytotoxic action of CEPA and CDHA was also demonstrated in other tumor cell lines including HepG2, A549, MCF-7, and MKN-7 cells. alpha-Tocopherol suppressed cytotoxicity of CEPA and CDHA in tumor cells, and the cytotoxicity involved membrane phospholipid peroxidation. CEPA and CDHA induced DNA condensation and fragmentation in DLD-1 cells, indicating the involvement of apoptosis in this cytotoxic mechanism. Furthermore, previous reports have shown that lipid peroxidation product induces cell death, including apoptotic cell death in different cell lines. CEPA and CDHA have been demonstrated in cultured cells to cause cell death via lipid peroxidation and apoptosis in the absence of alpha-tocopherol. Copyright 2000 Academic Press.

  6. Induction of apoptosis of 2,4',6-trihydroxybenzophenone in HT-29 colon carcinoma cell line.

    PubMed

    Lay, Ma Ma; Karsani, Saiful Anuar; Malek, Sri Nurestri Abd

    2014-01-01

    2,4',6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins.

  7. Behavior, Immunologic Response, and Upper Respiratory Infection

    DTIC Science & Technology

    1989-01-11

    as opposed to celular immune suppression, we decided to use anti-rubella antibody in test sera to control for this alterantive interpretation. An...Chambers Dr. Terry C. Johnson Health Sciences Center Division of Biology University of Illinois at Chicago Ackert Hall P.O. Box 6998 Kansas State...Program Manager Scientific Officer, Immunology Program Biological/Human Factors Division Office of Naval Research Office of Naval Research, Code 125

  8. A Cellular Automata Approach to Computer Vision and Image Processing.

    DTIC Science & Technology

    1980-09-01

    two sets of lines running more or less radially outward from C. The heavy 4crooked lines delimit the sectors. They represent divisions which define...quantization regions which group directions we wish to regard as similar. One solution I considered was to rotate the celular world by fifteen degrees...from any one subfield are neighbors. The three subfields are shown in figure 15 labelled "A", "B" and "C". The reason given for this division into

  9. The p25 Subunit of the Dynactin Complex is Required for Dynein-Early Endosome Interaction

    DTIC Science & Technology

    2011-01-01

    Services University, Bethesda, MD 20814 3Departamento de Medicina Molecular y Celular, Centro de Investigaciones Biológicas, Consejo Superior de... Investigaciones Cientificas, Madrid 28040, Spain © 2011 Zhang et al. This article is distributed under the terms of an Attribution– Noncommercial–Share Alike...Consejo Superior de Investigaciones Cien- tificas I3P predoctoral contract. Submitted: 3 November 2010 Accepted: 6 June 2011 References Abenza, J.F., A

  10. Hyperthermia: New Thoughts on an Old Problem

    DTIC Science & Technology

    1989-06-01

    Reduced steady-state celular 9 Increased rate of energy increases the risk of serious injury, military energy levels consumption/production medics...proportion (20% to 45%) of the total energy used in resing cells.2: Active so- dium transport is present in all cells. The active transport of either sodium...gradients. This active transport is tightly coupled and re- "quires tiat one molecule of adenosioe triphos- phate (ATP) be hvdrolyzed in order to return

  11. Fire-retardant foams

    NASA Technical Reports Server (NTRS)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  12. Fire-retardant foams

    NASA Technical Reports Server (NTRS)

    Gagliani, J.

    1978-01-01

    Family of polyimide resins are being developed as foams with exceptional fire-retardant properties. Foams are potentially useful for seat cushions in aircraft and ground vehicles and for applications such as home furnishings and building-construction materials. Basic formulations can be modified with reinforcing fibers or fillers to produce celular materials for variety of applications. By selecting reactants, polymer structure can be modified to give foams with properties ranging from high resiliency and flexibility to brittleness and rigidity.

  13. Partnership of the Sociedade Brasileira de Oncologia Pediátrica and International Society of Pediatric Oncology to improve nutritional care for children with cancer in Brazil.

    PubMed

    Viani, Karina; Filho, Vicente Odone; Ferman, Sima; Fonseca, Teresa Cristina Cardoso; Oliveira, Vanessa da Cunha; Lemos, Priscila Dos Santos Maia; Barr, Ronald D; Ladas, Elena J

    The authors present a proposal of a partnership between the Sociedade Brasileira de Oncologia Pediátrica (SOBOPE) and the International Society of Pediatric Oncology (SIOP) to promote the standardization and improvement of nutritional care of kids under cancer treatment in Brazil. The results of the first meeting in Brazil as well as plans for future meetings are described. Copyright © 2017 Associação Brasileira de Hematologia, Hemoterapia e Terapia Celular. Published by Elsevier Editora Ltda. All rights reserved.

  14. Anti-proliferative action of silibinin on human colon adenomatous cancer HT-29 cells.

    PubMed

    Akhtar, Reyhan; Ali, Mohd; Mahmood, Safrunnisa; Sanyal, Sankar Nath

    2014-02-01

    Antecedentes: Silibinina un flavonoide a partir de la leche de cardo mariano (Silybum marianum) exhiben una variedad de acciones farmacológicas, incluyendo actividades anti-proliferativos y apoptóticos contra varios tipos de cánceres en animales intactos y líneas celulares de cáncer. En el presente estudio, se estudió el efecto de silibinina en células humanas de cáncer de colon HT-29. Método: Las incubaciones de las células con diferentes concentraciones silibinin (0,783-1.600 ug/ml) para 24, 48 o 72 horas mostró un descenso progresivo de la viabilidad celular. Resultados: La pérdida de la viabilidad celular fue de tiempo de inhibición dependiente y óptima de crecimiento de las células (78%) se observó a las 72 horas. Bajo microscopio invertido, las células muertas fueron vistos como los agregados de células. IC50 (concentración de silibinina matar a las células 50%) los valores fueron 180, 110 y 40 ug/ml a las 24, 48 y 72 horas, respectivamente. Conclusión: Estos resultados volver a hacer cumplir la potenciales contra el cáncer de silibinina, como se informó anteriormente para varias otras líneas celulares de cáncer (Ramasamy y Agarwal (2008), Cancer Letters, 269: 352-62).

  15. Validation of virus inactivation by heat treatment in the manufacture of diaspirin crosslinked hemoglobin.

    PubMed

    Farmer, M; Ebeling, A; Marshall, T; Hauck, W; Sun, C S; White, E; Long, Z

    1992-01-01

    Diaspirin crosslinked hemoglobin (DCLHb), a hemoglobin based oxygen carrying solution prepared from outdated human blood, is subjected to a heat treatment step to inactivate viruses in our manufacturing process. To validate the efficacy of this inactivation, we have simulated the heat treatment procedure at a reduced scale using hemoglobin solution spiked with representative viruses. Human Immuno-deficiency Virus (HIV), Cytomegalovirus (CMV), and Duck Hepatitis B Virus (DHBV) were used in this validation. Inoculation with concentrated virus was performed just prior to the heat treatment to determine the effect of that specific process step. Samples were taken before, during, and after heat treatment and assayed for virus titer in an attempt to assess the rate as well as the extent of virus inactivation. CMV was analyzed in a plaque assay using MRC-5 indicator cells. The titer was reduced from 3.3 x 10(6) plaque forming units (PFU) per mL to less than 5 x 10(1) PFU/mL (detection limit) within 30 minutes. DHBV was analyzed by inoculation of serially diluted samples into Pekin ducklings, followed at intervals by screening sera for DHBV DNA by dot blot hybridization. The titer was reduced from 5.0 x 10(6) duck infectious units (DIU) per mL to less than 5 x 10(0) DIU/mL (detection limit) within 1 hour. HIV titers were determined through an ELISA assay for p24 antigen present in peripheral blood lymphocyte cocultivation supernatants. The titer was reduced from 2.0 x 10(4) infectious units (IU) per mL to less than 2 x 10(0) IU/mL (detection limit) within 1 hour. These data indicate that high titers of these blood borne viruses are rapidly inactivated by this heat treatment process.

  16. Hydrogen peroxide induces adaptive response and differential gene expression in human embryo lung fibroblast cells.

    PubMed

    Wei, Qinzhi; Huang, Haiyan; Yang, Linqing; Yuan, Jianhui; Yang, Xiaohua; Liu, Yungang; Zhuang, Zhixiong

    2014-04-01

    Hydrogen peroxide (H2 O2 ), a substance involved in cellular oxidative stress, has been observed to induce an adaptive response, which is characterized by a protection against the toxic effect of H2 O2 at higher concentrations. However, the molecular mechanism for the adaptive response remains unclear. In particular, the existing reports on H2 O2 -induced adaptive response are limited to animal cells and human tumor cells, and relatively normal human cells have never been observed for an adaptive response to H2 O2 . In this study, a human embryo lung fibroblast (MRC-5) cell line was used to model an adaptive response to H2 O2 , and the relevant differential gene expressions by using fluoro mRNA differential display RT-PCR. The results showed significant suppression of cytotoxicity of H2 O2 (1100 μM, 1 h) after pretreatment of the cells with H2 O2 at lower concentrations (0.088-8.8 μM, 24 h), as indicated by cell survival, lactate dehydrogenase release, and the rate of apoptotic cells. Totally 60 mRNA components were differentially expressed compared to untreated cells, and five of them (sizing 400-600 bp) which demonstrated the greatest increase in expression were cloned and sequenced. They showed identity with known genes, such as BCL-2, eIF3S5, NDUFS4, and RPS10. Real time RT-PCR analysis of the five genes displayed a pattern of differential expression consistent with that by the last method. These five genes may be involved in the induction of adaptive response by H2 O2 in human cells, at least in this particular cell type. Copyright © 2012 Wiley Periodicals, Inc.

  17. Selective Ru(II)/lawsone complexes inhibiting tumor cell growth by apoptosis.

    PubMed

    Oliveira, Katia M; Liany, Luna-Dulcey; Corrêa, Rodrigo S; Deflon, Victor M; Cominetti, Marcia R; Batista, Alzir A

    2017-11-01

    New Ru(II) complexes with lawsone (law) characterized as trans-[Ru(law)(PPh3)2(N-N)]PF6, where PPh3 means triphenylphosphine and N-N is 2,2'-bipyridine (1), 4,4'-dimethyl-2,2'-bipyridine (2), 4,4'-dimethoxy-2,2'-bipyridine (3), 1,10-phenanthroline (4) or 4,7-diphenyl-1,10-phenanthroline (5), induce apoptosis in tumor cells. Cytotoxicity of the complexes against the tumor cell lines DU-145 (prostate cancer cells), MCF-7 (breast cancer cells), A549 (lung cancer cells) and lung non-tumor cell line MRC-5 demonstrated promising IC50 values, lower than those found for the cisplatin, a drug used as a reference. Due to the high cytotoxic activity and selectivity against A549 cells line, complex (5) was selected for detailed assays. The complex (5) inhibits cells migration in concentrations in a nanomolar range, inducing tumor cell death by apoptosis, as confirmed by flow cytometry experiments. Furthermore, the antiproliferative activity of complex (5) on A549 tumor cells is attributed to a cell cycle arrest at the Sub G1 phase, followed by a decrease in the number of cells at the S phase. In addition, the interaction of the complexes (1-5) with CT-DNA was evaluated by circular dichroism, in which no changes in the secondary structure of DNA were observed, suggesting a weak interaction of the complexes with the biomolecule. On the other hand, complexes (1-5) showed a higher interaction with human serum albumin (HSA) by non-covalent van der Waals forces and hydrogen bonding, resulting in static quenching. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Metastasized lung cancer suppression by Morinda citrifolia (Noni) leaf compared to Erlotinib via anti-inflammatory, endogenous antioxidant responses and apoptotic gene activation.

    PubMed

    Lim, Swee-Ling; Mustapha, Noordin M; Goh, Yong-Meng; Bakar, Nurul Ain Abu; Mohamed, Suhaila

    2016-05-01

    Metastasized lung and liver cancers cause over 2 million deaths annually, and are amongst the top killer cancers worldwide. Morinda citrifolia (Noni) leaves are traditionally consumed as vegetables in the tropics. The macro and micro effects of M. citrifolia (Noni) leaves on metastasized lung cancer development in vitro and in vivo were compared with the FDA-approved anti-cancer drug Erlotinib. The extract inhibited the proliferation and induced apoptosis in A549 cells (IC50 = 23.47 μg/mL) and mouse Lewis (LL2) lung carcinoma cells (IC50 = 5.50 μg/mL) in vitro, arrested cancer cell cycle at G0/G1 phases and significantly increased caspase-3/-8 without changing caspase-9 levels. The extract showed no toxicity on normal MRC5 lung cells. Non-small-cell lung cancer (NSCLC) A549-induced BALB/c mice were fed with 150 and 300 mg/kg M. citrifolia leaf extract and compared with Erlotinib (50 mg/kg body weight) for 21 days. It significantly increased the pro-apoptotic TRP53 genes, downregulated the pro-tumourigenesis genes (BIRC5, JAK2/STAT3/STAT5A) in the mice tumours, significantly increased the anti-inflammatory IL4, IL10 and NR3C1 expression in the metastasized lung and hepatic cancer tissues and enhanced the NFE2L2-dependent antioxidant responses against oxidative injuries. The extract elevated serum neutrophils and reduced the red blood cells, haemoglobin, corpuscular volume and cell haemoglobin concentration in the lung cancer-induced mammal. It suppressed inflammation and oedema, and upregulated the endogenous antioxidant responses and apoptotic genes to suppress the cancer. The 300 mg/kg extract was more effective than the 50 mg/kg Erlotinib for most of the parameters measured.

  19. Silver(I) complexes with phthalazine and quinazoline as effective agents against pathogenic Pseudomonas aeruginosa strains.

    PubMed

    Glišić, Biljana Đ; Senerovic, Lidija; Comba, Peter; Wadepohl, Hubert; Veselinovic, Aleksandar; Milivojevic, Dusan R; Djuran, Miloš I; Nikodinovic-Runic, Jasmina

    2016-02-01

    Five silver(I) complexes with aromatic nitrogen-containing heterocycles, phthalazine (phtz) and quinazoline (qz), were synthesized, characterized and analyzed by single-crystal X-ray diffraction analysis. Although different AgX salts reacted with phtz, only dinuclear silver(I) complexes of the general formula {[Ag(X-O)(phtz-N)]2(μ-phtz-N,N')2} were formed, X=NO3(-) (1), CF3SO3(-) (2) and ClO4(-) (3). However, reactions of qz with an equimolar amount of AgCF3SO3 and AgBF4 resulted in the formation of polynuclear complexes, {[Ag(CF3SO3-O)(qz-N)]2}n (4) and {[Ag(qz-N)][BF4]}n (5). Complexes 1-5 were evaluated by in vitro antimicrobial studies against a panel of microbial strains that lead to many skin and soft tissue, respiratory, wound and nosocomial infections. The obtained results indicate that all tested silver(I) complexes have good antibacterial activity with MIC (minimum inhibitory concentration) values in the range from 2.9 to 48.0μM against the investigated strains. Among the investigated strains, these complexes were particularly efficient against pathogenic Pseudomonas aeruginosa (MIC=2.9-29μM) and had a marked ability to disrupt clinically relevant biofilms of strains with high inherent resistance to antibiotics. On the other hand, their activity against the fungus Candida albicans was moderate. In order to determine the therapeutic potential of silver(I) complexes 1-5, their antiproliferative effect on the human lung fibroblastic cell line MRC5, has been also evaluated. The binding of complexes 1-5 to the genomic DNA of P. aeruginosa was demonstrated by gel electrophoresis techniques and well supported by molecular docking into the DNA minor groove. All investigated complexes showed an improved cytotoxicity profile in comparison to the clinically used AgNO3.

  20. Copper(I)-Phosphine Polypyridyl Complexes: Synthesis, Characterization, DNA/HSA Binding Study, and Antiproliferative Activity.

    PubMed

    Villarreal, Wilmer; Colina-Vegas, Legna; Visbal, Gonzalo; Corona, Oscar; Corrêa, Rodrigo S; Ellena, Javier; Cominetti, Marcia Regina; Batista, Alzir Azevedo; Navarro, Maribel

    2017-04-03

    A series of copper(I)-phosphine polypyridyl complexes have been investigated as potential antitumor agents. The complexes [Cu(PPh3)2dpq]NO3 (2), [Cu(PPh3)2dppz]NO3 (3), [Cu(PPh3)2dppa]NO3 (4), and [Cu(PPh3)2dppme]NO3 (5) were synthesized by the reaction of [Cu(PPh3)2NO3] with the respective planar ligand under mild conditions. These copper complexes were fully characterized by elemental analysis, molar conductivity, FAB-MS, and NMR, UV-vis, and IR spectroscopies. Interactions between these copper(I)-phosphine polypyridyl complexes and DNA have been investigated using various spectroscopic techniques and analytical methods, such as UV-vis titrations, thermal denaturation, circular dichroism, viscosity measurements, gel electrophoresis, and competitive fluorescent intercalator displacement assays. The results of our studies suggest that these copper(I) complexes interact with DNA in an intercalative way. Furthermore, their high protein binding affinities toward human serum albumin were determined by fluorescence studies. Additionally, cytotoxicity analyses of all complexes against several tumor cell lines (human breast, MCF-7; human lung, A549; and human prostate, DU-145) and non-tumor cell lines (Chinese hamster lung, V79-4; and human lung, MRC-5) were performed. The results revealed that copper(I)-phosphine polypyridyl complexes are more cytotoxic than the corresponding planar ligand and also showed to be more active than cisplatin. A good correlation was observed between the cytostatic activity and lipophilicity of the copper(I) complexes studied here.

  1. Rescue of infectious rift valley fever virus entirely from cDNA, analysis of virus lacking the NSs gene, and expression of a foreign gene.

    PubMed

    Ikegami, Tetsuro; Won, Sungyong; Peters, C J; Makino, Shinji

    2006-03-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) has a tripartite negative-strand genome, causes a mosquito-borne disease that is endemic in sub-Saharan African countries and that also causes large epidemics among humans and livestock. Furthermore, it is a bioterrorist threat and poses a risk for introduction to other areas. In spite of its danger, neither veterinary nor human vaccines are available. We established a T7 RNA polymerase-driven reverse genetics system to rescue infectious clones of RVFV MP-12 strain entirely from cDNA, the first for any phlebovirus. Expression of viral structural proteins from the protein expression plasmids was not required for virus rescue, whereas NSs protein expression abolished virus rescue. Mutants of MP-12 partially or completely lacking the NSs open reading frame were viable. These NSs deletion mutants replicated efficiently in Vero and 293 cells, but not in MRC-5 cells. In the latter cell line, accumulation of beta interferon mRNA occurred after infection by these NSs deletion mutants, but not after infection by MP-12. The NSs deletion mutants formed larger plaques than MP-12 did in Vero E6 cells and failed to shut off host protein synthesis in Vero cells. An MP-12 mutant carrying a luciferase gene in place of the NSs gene replicated as efficiently as MP-12 did, produced enzymatically active luciferase during replication, and stably retained the luciferase gene after 10 virus passages, representing the first demonstration of foreign gene expression in any bunyavirus. This reverse genetics system can be used to study the molecular virology of RVFV, assess current vaccine candidates, produce new vaccines, and incorporate marker genes into animal vaccines.

  2. Rescue of Infectious Rift Valley Fever Virus Entirely from cDNA, Analysis of Virus Lacking the NSs Gene, and Expression of a Foreign Gene

    PubMed Central

    Ikegami, Tetsuro; Won, Sungyong; Peters, C. J.; Makino, Shinji

    2006-01-01

    Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) has a tripartite negative-strand genome, causes a mosquito-borne disease that is endemic in sub-Saharan African countries and that also causes large epidemics among humans and livestock. Furthermore, it is a bioterrorist threat and poses a risk for introduction to other areas. In spite of its danger, neither veterinary nor human vaccines are available. We established a T7 RNA polymerase-driven reverse genetics system to rescue infectious clones of RVFV MP-12 strain entirely from cDNA, the first for any phlebovirus. Expression of viral structural proteins from the protein expression plasmids was not required for virus rescue, whereas NSs protein expression abolished virus rescue. Mutants of MP-12 partially or completely lacking the NSs open reading frame were viable. These NSs deletion mutants replicated efficiently in Vero and 293 cells, but not in MRC-5 cells. In the latter cell line, accumulation of beta interferon mRNA occurred after infection by these NSs deletion mutants, but not after infection by MP-12. The NSs deletion mutants formed larger plaques than MP-12 did in Vero E6 cells and failed to shut off host protein synthesis in Vero cells. An MP-12 mutant carrying a luciferase gene in place of the NSs gene replicated as efficiently as MP-12 did, produced enzymatically active luciferase during replication, and stably retained the luciferase gene after 10 virus passages, representing the first demonstration of foreign gene expression in any bunyavirus. This reverse genetics system can be used to study the molecular virology of RVFV, assess current vaccine candidates, produce new vaccines, and incorporate marker genes into animal vaccines. PMID:16501102

  3. Guanidine-reactive agent phenylglyoxal induces DNA damage and cancer cell death.

    PubMed

    Calderón-Montaño, José M; Burgos-Morón, Estefanía; Orta, Manuel L; Pastor, Nuria; Perez-Guerrero, Concepción; Austin, Caroline A; Mateos, Santiago; López-Lázaro, Miguel

    2012-01-01

    DNA-damaging compounds (e.g., alkylating agents, cytotoxic antibiotics and DNA topoisomerase poisons) are the most widely used anticancer drugs. The inability of tumor cells to properly repair some types of DNA damage may explain why specific DNA-damaging drugs can selectively kill tumor cells. Phenylglyoxal is a dicarbonyl compound known to react with guanidine groups such as that of the DNA base guanine, therefore suggesting that phenylglyoxal could induce DNA damage and have anticancer activity. Cellular DNA damage was measured by the alkaline comet assay and the γH2AX focus assay. Formation of topoisomerase I- and topoisomerase II-DNA complexes was assessed by the TARDIS assay, an immunofluorescence technique that employs specific antibodies to DNA topo I or topo II to detect the protein covalently bound to the DNA in individual cells. Cell growth inhibition and cytotoxicity were determined by XTT, MTT and clonogenic assays. Apoptosis was assessed by the Annexin V flow cytometry assay. Phenylglyoxal induced cellular DNA damage and formation of high levels of topoisomerase I- and topoisomerase II-DNA complexes in cells. These topoisomerase-DNA complexes were abolished by catalase pretreatment and correlated well with the induction of apoptosis. Phenylglyoxal-induced cell death was partially prevented by catalase pretreatment and was higher in lung cancer cells (A549) than in normal lung fibroblasts (MRC5). Mammalian cell lines defective in nucleotide excision repair (NER), homologous recombination (HR) and non-homologous end joining (NHEJ) were more sensitive to phenylglyoxal than parental cells; this suggests that phenylglyoxal may induce bulky distortions in the shape of the DNA double helix (which are repaired by the NER pathway) and DNA double-strand breaks (which are repaired by HR and NHEJ). This report shows that phenylglyoxal is a new DNA-damaging agent with anticancer activity, and suggests that tumor cells with defects in NER, HR and NHEJ may be

  4. Antituberculosis Activity of a Naturally Occurring Flavonoid, Isorhamnetin.

    PubMed

    Jnawali, Hum Nath; Jeon, Dasom; Jeong, Min-Cheol; Lee, Eunjung; Jin, Bongwhan; Ryoo, Sungweon; Yoo, Jungheon; Jung, In Duk; Lee, Seung Jun; Park, Yeong-Min; Kim, Yangmee

    2016-04-22

    Isorhamnetin (1) is a naturally occurring flavonoid having anticancer and anti-inflammatory properties. The present study demonstrated that 1 had antimycobacterial effects on Mycobacterium tuberculosis H37Rv, multi-drug- and extensively drug-resistant clinical isolates with minimum inhibitory concentrations of 158 and 316 μM, respectively. Mycobacteria mainly affect the lungs, causing an intense local inflammatory response that is critical to the pathogenesis of tuberculosis. We investigated the effects of 1 on interferon (IFN)-γ-stimulated human lung fibroblast MRC-5 cells. Isorhamnetin suppressed the release of tumor necrosis factor (TNF)-α and interleukin (IL)-12. A nontoxic dose of 1 reduced mRNA expression of TNF-α, IL-1β, IL-6, IL-12, and matrix metalloproteinase-1 in IFN-γ-stimulated cells. Isorhamnetin inhibited IFN-γ-mediated stimulation of extracellular signal-regulated kinase and p38 mitogen-activated protein kinase and showed high-affinity binding to these kinases (binding constants: 4.46 × 10(6) M(-1) and 7.6 × 10(6) M(-1), respectively). The 4'-hydroxy group and the 3'-methoxy group of the B-ring and the 5-hydroxy group of the A-ring of 1 play key roles in these binding interactions. A mouse in vivo study of lipopolysaccharide-induced lung inflammation revealed that a nontoxic dose of 1 reduced the levels of IL-1β, IL-6, IL-12, and INF-γ in lung tissue. These data provide the first evidence that 1 could be developed as a potent antituberculosis drug.

  5. The G-quadruplex-stabilising agent RHPS4 induces telomeric dysfunction and enhances radiosensitivity in glioblastoma cells.

    PubMed

    Berardinelli, F; Siteni, S; Tanzarella, C; Stevens, M F; Sgura, A; Antoccia, A

    2015-01-01

    G-quadruplex (G4) interacting agents are a class of ligands that can bind to and stabilise secondary structures located in genomic G-rich regions such as telomeres. Stabilisation of G4 leads to telomere architecture disruption with a consequent detrimental effect on cell proliferation, which makes these agents good candidates for chemotherapeutic purposes. RHPS4 is one of the most effective and well-studied G4 ligands with a very high specificity for telomeric G4. In this work, we tested the in vitro efficacy of RHPS4 in astrocytoma cell lines, and we evaluated whether RHPS4 can act as a radiosensitising agent by destabilising telomeres. In the first part of the study, the response to RHPS4 was investigated in four human astrocytoma cell lines (U251MG, U87MG, T67 and T70) and in two normal primary fibroblast strains (AG01522 and MRC5). Cell growth reduction, histone H2AX phosphorylation and telomere-induced dysfunctional foci (TIF) formation were markedly higher in astrocytoma cells than in normal fibroblasts, despite the absence of telomere shortening. In the second part of the study, the combined effect of submicromolar concentrations of RHPS4 and X-rays was assessed in the U251MG glioblastoma radioresistant cell line. Long-term growth curves, cell cycle analysis and cell survival experiments, clearly showed the synergistic effect of the combined treatment. Interestingly the effect was greater in cells bearing a higher number of dysfunctional telomeres. DNA double-strand breaks rejoining after irradiation revealed delayed repair kinetics in cells pre-treated with the drug and a synergistic increase in chromosome-type exchanges and telomeric fusions. These findings provide the first evidence that exposure to RHPS4 radiosensitizes astrocytoma cells, suggesting the potential for future therapeutic applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. NaDC3 Induces Premature Cellular Senescence by Promoting Transport of Krebs Cycle Intermediates, Increasing NADH, and Exacerbating Oxidative Damage.

    PubMed

    Ma, Yuxiang; Bai, Xue-Yuan; Du, Xuan; Fu, Bo; Chen, Xiangmei

    2016-01-01

    High-affinity sodium-dependent dicarboxylate cotransporter 3 (NaDC3) is a key metabolism-regulating membrane protein responsible for transport of Krebs cycle intermediates. NaDC3 is upregulated as organs age, but knowledge regarding the underlying mechanisms by which NaDC3 modulates mammalian aging is limited. In this study, we showed that NaDC3 overexpression accelerated cellular senescence in young human diploid cells (MRC-5 and WI-38) and primary renal tubular cells, leading to cell cycle arrest in G1 phase and increased expression of senescent biomarkers, senescence-associated β-galactosidase and p16. Intracellular levels of reactive oxygen species, 8-hydroxy-2'-deoxyguanosine, malondialdehyde, and carbonyl were significantly enhanced, and activities of respiratory complexes I and III and ATP level were significantly decreased in NaDC3-infected cells. Stressful premature senescent phenotypes induced by NaDC3 were markedly ameliorated via treatment with the antioxidants Tiron and Tempol. High expression of NaDC3 caused a prominent increase in intracellular levels of Krebs cycle intermediates and NADH. Exogenous NADH and NAD(+) may aggravate and attenuate the aging phenotypes induced by NaDC3, respectively. These results suggest that NaDC3 can induce premature cellular senescence by promoting the transport of Krebs cycle intermediates, increasing generation of NADH and reactive oxygen species and leading to oxidative damage. Our results clarify the aging signaling pathway regulated by NaDC3. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Microfluidic platform for photodynamic therapy cytotoxicity analysis of nanoencapsulated indocyanine-type photosensitizers

    PubMed Central

    Jastrzębska, Elżbieta; Bazylińska, Urszula; Bułka, Magdalena; Tokarska, Katarzyna; Chudy, Michał; Dybko, Artur; Wilk, Kazimiera Anna; Brzózka, Zbigniew

    2016-01-01

    The application of nanotechnology is important to improve research and development of alternative anticancer therapies. In order to accelerate research related to cancer diagnosis and to improve the effectiveness of cancer treatment, various nanomaterials are being tested. The main objective of this work was basic research focused on examination of the mechanism and effectiveness of the introduction of nanoencapsulated photosensitizers to human carcinoma (A549) and normal cells (MRC-5). Newly encapsulated hydrophobic indocyanine-type photosensitizer (i.e., IR-780) was subjected to in vitro studies to determine its release characteristics on a molecular level. The photosensitizers were delivered to carcinoma and normal cells cultured under model conditions using multiwell plates and with the use of the specially designed hybrid (poly(dimethylsiloxane) (PDMS)/glass) microfluidic system. The specific geometry of our microsystem allows for the examination of intercellular interactions between cells cultured in the microchambers connected with microchannels of precisely defined length. Our microsystem allows investigating various therapeutic procedures (e.g., photodynamic therapy) on monoculture, coculture, and mixed culture, simultaneously, which is very difficult to perform using standard multiwell plates. In addition, we tested the cellular internalization of nanoparticles (differing in size, surface properties) in carcinoma and normal lung cells. We proved that cellular uptake of nanocapsules loaded with cyanine IR-780 in carcinoma cells was more significant than in normal cells. We demonstrated non cytotoxic effect of newly synthesized nanocapsules built with polyelectrolytes (PEs) of opposite surface charges: polyanion—polysodium-4-styrenesulphonate and polycation—poly(diallyldimethyl-ammonium) chloride loaded with cyanine IR-780 on human lung carcinoma and normal cell lines. However, the differences observed in the photocytotoxic effect between two types of

  8. Cytotoxicity and genotoxicity induced in vitro by solvent-extractable organic matter of size-segregated urban particulate matter.

    PubMed

    Velali, Ekaterini; Papachristou, Eleni; Pantazaki, Anastasia; Choli-Papadopoulou, Theodora; Argyrou, Nikoleta; Tsourouktsoglou, Theodora; Lialiaris, Stergios; Constantinidis, Alexandros; Lykidis, Dimitrios; Lialiaris, Thedore S; Besis, Athanasios; Voutsa, Dimitra; Samara, Constantini

    2016-11-01

    Three organic fractions of different polarity, including a non polar organic fraction (NPOF), a moderately polar organic fraction (MPOF), and a polar organic fraction (POF) were obtained from size-segregated (<0.49, 0.49-0.97, 0.97-3 and >3 μm) urban particulate matter (PM) samples, and tested for cytotoxicity and genotoxicity using a battery of in vitro assays. The cytotoxicity induced by the organic PM fractions was measured by the mitochondrial dehydrogenase (MTT) cell viability assay applied on MRC-5 human lung epithelial cells. DNA damages were evaluated through the comet assay, determination of the poly(ADP-Ribose) polymerase (PARP) activity, and the oxidative DNA adduct 8-hydroxy-deoxyguanosine (8-OHdG) formation, while pro-inflammatory effects were assessed by determination of the tumor necrosis factor-alpha (TNF-α) mediator release. In addition, the Sister Chromatid Exchange (SCE) inducibility of the solvent-extractable organic matter was measured on human peripheral lymphocyte. Variations of responses were assessed in relation to the polarity (hence the expected composition) of the organic PM fractions, particle size, locality, and season. Organic PM fractions were found to induce rather comparable Cytotoxicity and genotoxicity of PM appeared to be rather independent from the polarity of the extractable organic PM matter (EOM) with POF often being relatively more toxic than NPOF or MPOF. All assays indicated stronger mass-normalized bioactivity for fine than coarse particles peaking in the 0.97-3 and/or the 0.49-0.97 μm size ranges. Nevertheless, the air volume-normalized bioactivity in all assays was highest for the <0.49 μm size range highlighting the important human health risk posed by the inhalation of these quasi-ultrafine particles.

  9. Chemical Composition of Four Essential Oils of Eugenia from the Brazilian Amazon and Their Cytotoxic and Antioxidant Activity.

    PubMed

    da Silva, Joyce Kelly R; Andrade, Eloisa Helena A; Barreto, Leilane H; da Silva, Nádia Carolina F; Ribeiro, Alcy F; Montenegro, Raquel C; Maia, José Guilherme S

    2017-07-08

    Background:Eugenia species are appreciated for their edible fruits and are known as having anticonvulsant, antimicrobial and insecticidal actions. Methods: The plant material was collected in the southeastern Pará state of Brazil and submitted to hydrodistillation. GC-MS analyzed the oils, and their antioxidant and cytotoxic activities were evaluated by the DPPH and MTT assays. Results: The main components identified in the Eugenia oils were 5-hydroxy-cis-calemene, (2E,6E)-farnesol, (2E,6Z)-farnesol, caryophylla-4(12),8(13)-dien-5α-ol-5β-ol, E-γ-bisabolene, β-bisabolene, germacrene D, and ishwarane. The oil of E. egensis showed the most significant antioxidant activity (216.5 ± 11.6 mg TE/mL), followed by the oils of E. flavescens (122.6 ± 6.8 mg TE/mL) and E. patrisii (111.2 ± 12.4 mg TE/mL). Eugenia oils were cytotoxic to HCT-116 (colon cancer) cells by the MTT assay, where the most active was the oil of E. polystachya (10.3 µg/mL), followed by the oils of E. flavescens (13.9 µg/mL) and E. patrisii (16.4 µg/mL). The oils of E. flavescens and E. patrisii showed the highest toxicity for MRC5 (human fibroblast) cells, with values of 14.0 µg/mL and 18.1 µg/mL, respectively. Conclusions: These results suggest that Eugenia oils could be tested in future studies for the treatment of colon cancer and oxidative stress management.

  10. Chemical Composition of Four Essential Oils of Eugenia from the Brazilian Amazon and Their Cytotoxic and Antioxidant Activity

    PubMed Central

    da Silva, Joyce Kelly R.; Andrade, Eloisa Helena A.; Barreto, Leilane H.; da Silva, Nádia Carolina F.; Ribeiro, Alcy F.; Montenegro, Raquel C.; Maia, José Guilherme S.

    2017-01-01

    Background: Eugenia species are appreciated for their edible fruits and are known as having anticonvulsant, antimicrobial and insecticidal actions. Methods: The plant material was collected in the southeastern Pará state of Brazil and submitted to hydrodistillation. GC-MS analyzed the oils, and their antioxidant and cytotoxic activities were evaluated by the DPPH and MTT assays. Results: The main components identified in the Eugenia oils were 5-hydroxy-cis-calemene, (2E,6E)-farnesol, (2E,6Z)-farnesol, caryophylla-4(12),8(13)-dien-5α-ol-5β-ol, E-γ-bisabolene, β-bisabolene, germacrene D, and ishwarane. The oil of E. egensis showed the most significant antioxidant activity (216.5 ± 11.6 mg TE/mL), followed by the oils of E. flavescens (122.6 ± 6.8 mg TE/mL) and E. patrisii (111.2 ± 12.4 mg TE/mL). Eugenia oils were cytotoxic to HCT-116 (colon cancer) cells by the MTT assay, where the most active was the oil of E. polystachya (10.3 µg/mL), followed by the oils of E. flavescens (13.9 µg/mL) and E. patrisii (16.4 µg/mL). The oils of E. flavescens and E. patrisii showed the highest toxicity for MRC5 (human fibroblast) cells, with values of 14.0 µg/mL and 18.1 µg/mL, respectively. Conclusions: These results suggest that Eugenia oils could be tested in future studies for the treatment of colon cancer and oxidative stress management. PMID:28930266

  11. Loss of ARID1A expression sensitizes cancer cells to PI3K- and AKT-inhibition

    PubMed Central

    Samartzis, Eleftherios P; Gutsche, Katrin; Dedes, Konstantin J; Fink, Daniel; Stucki, Manuel; Imesch, Patrick

    2014-01-01

    ARID1A mutations are observed in various tumors, including ovarian clear cell (OCCC) and endometrioid carcinomas, endometrial, and breast carcinomas. They commonly result in loss of ARID1A-protein expression and frequently co-occur with PI3K/AKT-pathway activating mechanisms. The aim of this study was to test the hypothesis as to whether PI3K/AKT-pathway activation is a critical mechanism in ARID1A-mutated tumors and if consequently ARID1A-deficient tumors show increased sensitivity to treatment with PI3K- and AKT-inhibitors. Upon ARID1A knockdown, MCF7 breast cancer cells and primary MRC5 cells exhibited a significantly increased sensitivity towards the AKT-inhibitors MK-2206 and perifosine, as well as the PI3K-inhibitor buparlisib. Knockdown of ARID1A in MCF7 led to an increase of pAKT-Ser473. AKT-inhibition with MK-2206 led to increased apoptosis and to a decrease of pS6K in ARID1A-depleted MCF7 cells but not in the controls. In five OCCC cell lines ARID1A-deficiency correlated with increased pAKT-Ser473 levels and with sensitivity towards treatment with the AKT-inhibitor MK-2206. In conclusion, ARID1A-deficient cancer cells demonstrate an increased sensitivity to treatment with small molecule inhibitors of the PI3K/AKT-pathway. These findings suggest a specific requirement of the PI3K/AKT pathway in ARID1A-deficient tumors and reveal a synthetic lethal interaction between loss of ARID1A expression and inhibition of the PI3K/AKT pathway. PMID:24979463

  12. Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube exposure mediates a profibrotic response in lung fibroblasts

    PubMed Central

    2014-01-01

    Background In vivo studies have demonstrated the ability of multi-walled carbon nanotubes (MWCNT) to induce airway remodeling, a key feature of chronic respiratory diseases like asthma and chronic obstructive pulmonary disease. However, the mechanism leading to remodeling is poorly understood. Particularly, there is limited insight about the role of airway epithelial injury in these changes. Objectives We investigated the mechanism of MWCNT-induced primary human bronchial epithelial (HBE) cell injury and its contribution in inducing a profibrotic response. Methods Primary HBE cells were exposed to thoroughly characterized MWCNTs (1.5-24 μg/mL equivalent to 0.37-6.0 μg/cm2) and MRC-5 human lung fibroblasts were exposed to 1:4 diluted conditioned medium from these cells. Flow cytometry, ELISA, immunostainings/immunoblots and PCR analyses were employed to study cellular mechanisms. Results MWCNT induced NLRP3 inflammasome dependent pyroptosis in HBE cells in a time- and dose-dependent manner. Cell death and cytokine production were significantly reduced by antioxidants, siRNA to NLRP3, a caspase-1 inhibitor (z-WEHD-FMK) or a cathepsin B inhibitor (CA-074Me). Conditioned medium from MWCNT-treated HBE cells induced significant increase in mRNA expression of pro-fibrotic markers (TIMP-1, Tenascin-C, Procollagen 1, and Osteopontin) in human lung fibroblasts, without a concomitant change in expression of TGF-beta. Induction of pro-fibrotic markers was significantly reduced when IL-1β, IL-18 and IL-8 neutralizing antibodies were added to the conditioned medium or when conditioned medium from NLRP3 siRNA transfected HBE cells was used. Conclusions Taken together these results demonstrate induction of a NLRP3 inflammasome dependent but TGF-beta independent pro-fibrotic response after MWCNT exposure. PMID:24915862

  13. Reciprocal Paracrine Interactions Between Normal Human Epithelial and Mesenchymal Cells Protect Cellular DNA from Radiation-Induced Damage

    SciTech Connect

    Nakazawa, Yuka; Saenko, Vladimir Rogounovitch, Tatiana; Suzuki, Keiji; Mitsutake, Norisato; Matsuse, Michiko; Yamashita, Shunichi

    2008-06-01

    Purpose: To explore whether interactions between normal epithelial and mesenchymal cells can modulate the extent of radiation-induced DNA damage in one or both types of cells. Methods and Materials: Human primary thyrocytes (PT), diploid fibroblasts BJ, MRC-5, and WI-38, normal human mammary epithelial cells (HMEC), and endothelial human umbilical cord vein endothelial cells (HUV-EC-C), cultured either individually or in co-cultures or after conditioned medium transfer, were irradiated with 0.25 to 5 Gy of {gamma}-rays and assayed for the extent of DNA damage. Results: The number of {gamma}-H2AX foci in co-cultures of PT and BJ fibroblasts was approximately 25% lower than in individual cultures at 1 Gy in both types of cells. Reciprocal conditioned medium transfer to individual cultures before irradiation resulted in approximately a 35% reduction of the number {gamma}-H2AX foci at 1 Gy in both types of cells, demonstrating the role of paracrine soluble factors. The DNA-protected state of cells was achieved within 15 min after conditioned medium transfer; it was reproducible and reciprocal in several lines of epithelial cells and fibroblasts, fibroblasts, and endothelial cells but not in epithelial and endothelial cells. Unlike normal cells, human epithelial cancer cells failed to establish DNA-protected states in fibroblasts and vice versa. Conclusions: The results imply the existence of a network of reciprocal interactions between normal epithelial and some types of mesenchymal cells mediated by soluble factors that act in a paracrine manner to protect DNA from genotoxic stress.

  14. Wound healing activity and mechanisms of action of an antibacterial protein from the venom of the eastern diamondback rattlesnake (Crotalus adamanteus).

    PubMed

    Samy, Ramar Perumal; Kandasamy, Matheswaran; Gopalakrishnakone, Ponnampalam; Stiles, Bradley G; Rowan, Edward G; Becker, David; Shanmugam, Muthu K; Sethi, Gautam; Chow, Vincent T K

    2014-01-01

    Basic phospholipase A2 was identified from the venom of the eastern diamondback rattlesnake. The Crotalus adamanteus toxin-II (CaTx-II) induced bactericidal effects (7.8 µg/ml) on Staphylococcus aureus, while on Burkholderia pseudomallei (KHW), and Enterobacter aerogenes were killed at 15.6 µg/ml. CaTx-II caused pore formation and membrane damaging effects on the bacterial cell wall. CaTx-II was not cytotoxic on lung (MRC-5), skin fibroblast (HEPK) cells and in mice. CaTx-II-treated mice showed significant wound closure and complete healing by 16 days as compared to untreated controls (**P<0.01). Histological examination revealed enhanced collagen synthesis and neovascularization after treatment with CaTx-II versus 2% Fusidic Acid ointment (FAO) treated controls. Measurement of tissue cytokines revealed that interleukin-1 beta (IL-1β) expression in CaTx-II treated mice was significantly suppressed versus untreated controls. In contrast, cytokines involved in wound healing and cell migration i.e., monocyte chemotactic protein-1 (MCP-1), fibroblast growth factor-basic (FGF-b), chemokine (KC), granulocyte-macrophage colony-stimulating factor (GM-CSF) were significantly enhanced in CaTx-II treated mice, but not in the controls. CaTx-II also modulated nuclear factor-kappa B (NF-κB) activation during skin wound healing. The CaTx-II protein highlights distinct snake proteins as a potential source of novel antimicrobial agents with significant therapeutic application for bacterial skin infections.

  15. Comparative effects of SNX-7081 and SNX-2112 on cell cycle, apoptosis and Hsp90 client proteins in human cancer cells.

    PubMed

    Wang, Xiao; Wang, Shaoxiang; Liu, Yuting; Huang, Dane; Zheng, Kai; Zhang, Yi; Wang, Xiaoyan; Liu, Qiuying; Yang, Depo; Wang, Yifei

    2015-01-01

    SNX-2112, a novel 2-aminobenzamide inhibitor of Hsp90, previously showed a broad spectrum of anticancer activity. However, subsequent development has been discontinued due to ocular toxicity as identified in a phase I study. SNX-7081, another closely related Hsp90 inhibitor with a side chain of indole instead of indazole, has recently attracted attention. The aim of the present study was to investigate the anticancer effects of SNX-7081 in eleven cell lines, as well as the mechanisms involved, with SNX-2112 serving as a reference. The cytotoxic effects were determined using an MTT assay and apoptosis was measured using flow cytometry. The results showed that SNX-7081 exerted better inhibitory effects than SNX-2112 in six eighths of the human cancer cell lines, with an average IC50 of 1 µM. The two inhibitors exerted low cytotoxicity in L-02, HDF and MRC5 normal human cells (IC50 >50 µM), and arrested cancer cells at the G2/M phase in a similar manner to normal cells. Compared with SNX-2112, SNX-7081 exhibited more potent effects on cell apoptosis in four sixths of the human cancer cell lines, and was more active in the downregulation of Hsp90 client proteins. In addition, SNX-7081 exhibited a stronger binding affinity to Hsp90 than SNX-2112 in molecular docking experiments. Considering the superior effects against Hsp90 affinity, cell growth, apoptosis, and Hsp90 client proteins in a majority of human cancer cells, the novel SNX-7081 may be a promising alternative to SNX-2112, which merits further evaluation.

  16. Synthesis of N-substituted 2-[(1E)-alkenyl]-4-(1H)-quinolone derivatives as antimycobacterial agents against non-tubercular mycobacteria

    PubMed Central

    Wube, Abraham A.; Bucar, Franz; Hochfellner, Christina; Blunder, Martina; Bauer, Rudolf; Hüfner, Antje

    2011-01-01

    In an effort to improve biological activities and to examine antimycobacterial-lipophilicity relationships of 2-[(1E)-alkenyl)]-4-(1H)-quinolones, we have synthesized a series of 30 quinolones by introducing several alkyl groups, an alkenyl and an alkynyl group at N-1. All synthetic compounds were first tested in vitro against Mycobacterium smegmatis and the most active compounds (MIC values ∼3.0–7.0 μM) were further examined against three other rapidly growing strains of mycobacteria using a microtiter broth dilution assay. The Clog P values of the synthetic compounds were calculated to provide an estimate of their lipophilicity. Compounds 18e, 19a and 19b displayed the most potent inhibitory effect against M. smegmatis mc2155 with an MIC value of ∼1.5 μM, which was twenty fold and thirteen fold more potent than isoniazid and ethambutol, respectively. On the other hand, compounds 17e, 18e and 19a were most active against Mycobacterium fortuitum and Mycobacterium phlei with an MIC value of ∼3.0 μM. In the human diploid embryonic lung cell line MRC-5 cytotoxicity assay, the derivatives showed moderate to strong cytotoxic activity. Although the antimycobacterial activity of our synthetic compounds could not be correlated with the calculated log P values, an increase in lipophilicity enhances the antimycobacterial activity and C13–C15 total chain length at positions 1 and 2 is required to achieve optimal inhibitory effect against the test strains. PMID:21429630

  17. Gastroprotective effect and cytotoxicity of labdeneamides with amino acids.

    PubMed

    Schmeda-Hirschmann, Guillermo; Rodríguez, Jaime A; Theoduloz, Cristina; Valderrama, Jaime A

    2011-03-01

    Semisynthetic aromatic amides from ARAUCARIA ARAUCANA diterpene acids have been shown to display a relevant gastroprotective effect with low cytotoxicity. The aim of this work was to assess the gastroprotective effect of amino acid amides from imbricatolic acid and its 8(9)-en isomer in the ethanol/HCl-induced gastric lesions model in mice as well as to determine the cytotoxicity of the obtained compounds on the following human cell lines: normal lung fibroblasts (MRC-5), gastric adenocarcinoma (AGS), and liver hepatocellular carcinoma (Hep G2). The diterpenes 15-acetoxyimbricatolic acid, its 8(9)-en isomer, 15-hydroxyimbricatolic acid, and the 8(9)-en derivative, bearing a COOH function at C-19, were used as starting compounds. New amides with C-protected amino acids were prepared. The study reports the effect of a single oral administration of either compound 50 min before the induction of gastric lesions by ethanol/HCl. Some 20 amino acid monoamides were obtained. Dose-response experiments on the glycyl derivatives showed that at a single oral dose of 100 mg/kg, the compounds presented an effect comparable to the reference drug lansoprazole at 20 mg/kg and at 50 mg/kg reduced gastric lesions by about 50%. All derivatives obtained in amounts > 30 mg were compared at a single oral dose of 50 mg/kg. The best gastroprotective effect was observed for the exomethylene derivatives bearing a valine residue at C-19 either with an acetoxy or free hydroxy group at C-15. The tryptophanyl derivative from the acetate belonging to the 8,9-en series presented selective cytotoxicity against hepatocytes. The glycyl amide of 15-acetoxyimbricatolic acid was the most cytotoxic and less selective compound with IC₅₀ values between 47 and 103 µM for the studied cell lines. This is the first report on the obtention of semisynthetic amino acid amides from labdane diterpenes. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Minor Withanolides of Physalis longifolia: Structure and Cytotoxicity

    PubMed Central

    Zhang, Huaping; Motiwala, Hashim; Samadi, Abbas; Day, Victor; Aubé, Jeffrey; Cohen, Mark; Kindscher, Kelly; Gollapudi, Rao; Timmermann, Barbara

    2013-01-01

    In our recent publication on bioactive guided isolation of compounds from Physalis longifolia (Solanaceae) novel anti-proliferative agents withalongolides A (4) and B (5), and their highly cytotoxic analogues, withalongolide A 4,19,27-triacetate (4a) and withalongolide B 4,19-diacetate (5a) were elucidated. In this study, the two lead compounds (4, 5) were re-isolated in gram quantities for the purpose of further analogue preparation and in vivo testing that would continue to probe structure–activity relationships. During this process, two additional withanolides, named withalongolides O (1) and P (2), were elucidated. Their structures were determined by spectroscopic techniques with 1 being subsequently confirmed by X-ray crystallographic analysis. Utilizing a MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] viability assay, withalongolide O (1) and its 4,7-diaceatate (1a), both containing the functionalities of Δ2-1-oxo- in A ring, a 5β,6β-epoxy in B ring, and a lactone ring in the nine-carbon side chain, exhibited potent cytotoxicity against human head and neck squamous cell carcinoma (JMAR and MDA-1986), melanoma (B16F10 and SKMEL-28), and normal fetal lung fibroblast (MRC-5) cells with IC50 values in the range between 0.15 and 2.95 μM. In addition, the previously reported α orientation of 7-acetate group in acnistins C and D should be revised to the β orientation on the basis of NMR data comparison. PMID:23036966

  19. The antifibrotic effects and mechanisms of microRNA-26a action in idiopathic pulmonary fibrosis.

    PubMed

    Liang, Haihai; Xu, Chaoqian; Pan, Zhenwei; Zhang, Ying; Xu, Zhidan; Chen, Yingzhun; Li, Tianyu; Li, Xuelian; Liu, Ying; Huangfu, Longtao; Lu, Ying; Zhang, Zhihua; Yang, Baofeng; Gitau, Samuel; Lu, Yanjie; Shan, Hongli; Du, Zhimin

    2014-06-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and high-lethality fibrotic lung disease characterized by excessive fibroblast proliferation, extracellular matrix accumulation, and, ultimately, loss of lung function. Although dysregulation of some microRNAs (miRs) has been shown to play important roles in the pathophysiological processes of IPF, the role of miRs in fibrotic lung diseases is not well understood. In this study, we found downregulation of miR-26a in the lungs of mice with experimental pulmonary fibrosis and in IPF, which resulted in posttranscriptional derepression of connective tissue growth factor (CTGF), and induced collagen production. More importantly, inhibition of miR-26a in the lungs caused pulmonary fibrosis in vivo, whereas overexpression of miR-26a repressed transforming growth factor (TGF)-β1-induced fibrogenesis in MRC-5 cells and attenuated experimental pulmonary fibrosis in mice. Our study showed that miR-26a was downregulated by TGF-β1-mediated phosphorylation of Smad3. Moreover, miR-26a inhibited the nuclear translocation of p-Smad3 through directly targeting Smad4, which determines the nuclear translocation of p-Smad2/Smad3. Taken together, our experiments demonstrated the antifibrotic effects of miR-26a in fibrotic lung diseases and suggested a new strategy for the prevention and treatment of IPF using miR-26a. The current study also uncovered a novel positive feedback loop between miR-26a and p-Smad3, which is involved in pulmonary fibrosis.

  20. Infection of nonlymphoid cells by human immunodeficiency virus type 1 or type 2.

    PubMed Central

    Ikeuchi, K; Kim, S; Byrn, R A; Goldring, S R; Groopman, J E

    1990-01-01

    Human epithelial cells (L132) derived from embryonic lung and human lung fibroblasts (MRC5) were infected by human immunodeficiency virus type 1 (HIV-1) or type 2 (HIV-2). Surface CD4 protein was detected on these cells, and recombinant soluble CD4 (sCD4) blocked infection, indicating that HIV infection was mediated by the cell surface CD4 protein. In contrast, infection of human primary chondrocyte cells (C23), synovial cells (HSA), and foreskin fibroblasts (F13) was apparently independent of cell CD4-mediated mechanisms. Surface CD4 protein could not be detected on these cells, and sCD4 did not block the infection. F13 cells could be infected only by HIV-2, not by HIV-1, under our experimental conditions. In cells of mesenchymal orgin, viral production could be detected only after cocultivation with the human T-lymphoid H9 cells but not by conventional viral assays, including reverse transcriptase and p24 antigen assays in cell culture supernatant and immunofluorescence of host cells. Our DNA transfection studies indicated that this lack of detectable viral production was not due to the inefficient use of the HIV long terminal repeat or the Tat protein in these cells. These mesenchymal and epithelial cells were susceptible to HIV infection but differed in mechanism of virus entry compared with hematopoietic cells such as T lymphocytes. These observations may provide insights into clinical syndromes such as lung dysfunction in HIV-infected newborns and connective tissue disorders in HIV-infected adults. Images PMID:2384919

  1. Synthesis and biological evaluation of novel acyclic and cyclic glyoxamide based derivatives as bacterial quorum sensing and biofilm inhibitors.

    PubMed

    Nizalapur, Shashidhar; Kimyon, Onder; Yee, Eugene; Bhadbhade, Mohan M; Manefield, Mike; Willcox, Mark; Black, David StC; Kumar, Naresh

    2017-07-21

    Bacteria regulate the expression of various virulence factors and processes such as biofilm formation through a chemically-mediated communication mechanism called quorum sensing. Bacterial biofilms contribute to antimicrobial resistance as they can protect bacteria embedded in their matrix from the effects of antibiotics. Thus, developing novel quorum sensing inhibitors, which can inhibit biofilm formation, is a viable strategy to combat antimicrobial resistance. We report herein the synthesis of novel acyclic and cyclic glyoxamide derivatives via ring-opening reactions of N-acylisatins. These compounds were evaluated for their quorum sensing inhibition activity against P. aeruginosa MH602 and E. coli MT102. Compounds 20, 21 and 30 displayed the greatest quorum sensing inhibition activity against P. aeruginosa MH602, with 71.5%, 71.5%, and 74% inhibition, respectively, at 250 μM. Compounds 18, 20 and 21 exhibited the greatest QSI activity against E. coli MT102, with 71.5%, 72.1% and 73.5% quorum sensing inhibition activity, respectively. In addition, the biofilm inhibition activity was also investigated against P. aeruginosa and E. coli at 250 μM. The glyoxamide compounds 16, 18 and 19 exhibited 71.2%, 66.9%, and 66.5% inhibition of P. aeruginosa biofilms, respectively; whereas compounds 12, 20, and 22 showed the greatest inhibitory activity against E. coli biofilms with 87.9%, 90.8% and 89.5%, respectively. Finally, the determination of the in vitro toxicity against human MRC-5 lung fibroblast cells revealed that these novel glyoxamide compounds are non-toxic to human cells.

  2. A Click Approach to Novel D-Ring-Substituted 16α-Triazolylestrone Derivatives and Characterization of Their Antiproliferative Properties

    PubMed Central

    Molnár, Judit; Frank, Éva; Minorics, Renáta; Kádár, Zalán; Ocsovszki, Imre; Schönecker, Bruno; Wölfling, János; Zupkó, István

    2015-01-01

    A simple and efficient synthesis of novel, D-ring substituted estrone derivatives containing a 16α-triazolyl moiety is described. Two epimeric azido alcohols (16α-azido-17α-hydroxy and 16α-azido-17β-hydroxy) of estra-1,3,5(10)-triene-3-methyl ether were prepared, followed by copper(I)-catalyzed azide-alkyne cycloaddition with various terminal alkynes. The steroidal triazoles were obtained in high yields and their activities against three human cancer cell lines (HeLa, MCF7 and A431) were screened. The most effective analogs were submitted to additional experiments in order to characterize their antiproliferative properties. As evidenced by flow cytometry, the selected steroids induced a disturbance in the HeLa cell cycle in a concentration- and exposure-dependent manner, through an increase of the hypodiploid population (subG1) and a cell cycle arrest in the G2/M phase. A noncancerous human fibroblast cell line (MRC5) was used to determine the selectivities of these compounds. Fluorescent microscopy after Hoechst 33258 - propidium iodide (HOPI) double staining revealed nuclear condensation and disturbed cell membrane integrity. The enhanced activities of caspase-3 and caspase-9 without activation of caspase-8 in the treated cells indicated the activation of the intrinsic pathway of apoptosis. The levels of cell cycle regulators (CDK1, cyclin B1/B2 and cdc25B) were decreased and the ratio Bax/Bcl-2 was increased 24 h after the treatment of HeLa cells (determined at an mRNA level by means of an RT-PCR technique). Under the same conditions, two agents elicited substantially increased degrees of phosphorylation of stathmin, as evidenced by Western blotting. The presented results demonstrate that these steroids can be regarded as appropriate structural scaffolds for the design and synthesis of further steroid analogs as innovative drug candidates with good efficacy. PMID:25692552

  3. In Vitro Susceptibility of Various Genotypic Strains of Toxoplasma gondii to Pyrimethamine, Sulfadiazine, and Atovaquone▿

    PubMed Central

    Meneceur, Pascale; Bouldouyre, Marie-Anne; Aubert, Dominique; Villena, Isabelle; Menotti, Jean; Sauvage, Virginie; Garin, Jean-François; Derouin, Francis

    2008-01-01

    Sulfadiazine, pyrimethamine, and atovaquone are widely used for the treatment of severe toxoplasmosis. Their in vitro activities have been almost exclusively demonstrated on laboratory strains belonging to genotype I. We determined the in vitro activities of these drugs against 17 strains of Toxoplasma gondii belonging to various genotypes and examined the correlations among 50% inhibitory concentrations (IC50s), growth kinetics, strain genotypes, and mutations on drug target genes. Growth kinetics were determined in THP-1 cell cultures using real-time PCR. IC50s were determined in MRC-5 cell cultures using a T. gondii-specific enzyme-linked immunosorbent assay performed on cultures. Mutations in dihydrofolate reductase (DHFR), dihydropteroate synthase (DHPS), and cytochrome b genes were determined by sequencing. Pyrimethamine IC50s ranged between 0.07 and 0.39 mg/liter, with no correlation with the strain genotype but a significant correlation with growth kinetics. Several mutations found on the DHFR gene were not linked to lower susceptibility. Atovaquone IC50s were in a narrow range of concentrations (mean, 0.06 ± 0.02 mg/liter); no mutation was found on the cytochrome b gene. IC50s for sulfadiazine ranged between 3 and 18.9 mg/liter for 13 strains and were >50 mg/liter for three strains. High IC50s were not correlated to strain genotypes or growth kinetics. A new mutation of the DHPS gene was demonstrated in one of these strains. In conclusion, we found variability in the susceptibilities of T. gondii strains to pyrimethamine and atovaquone, with no evidence of drug resistance. A higher variability was found for sulfadiazine, with a possible resistance of three strains. No relationship was found between drug susceptibility and strain genotype. PMID:18212105

  4. MicroRNA-7 inhibits cell proliferation, migration and invasion in human non-small cell lung cancer cells by targeting FAK through ERK/MAPK signaling pathway

    PubMed Central

    Shi, Yu-Jia; Chen, Yi; Sun, Yun; Zhang, Qian; Song, Lei; Peng, Li-Ping

    2016-01-01

    Objective To investigate the effects of microRNA-7 (miR-7) on the proliferation, migration and invasion of non-small cell lung cancer NSCLC) cells by targeting FAK through ERK/MAPK signaling pathway. Methods NSCLC tissues and adjacent normal tissues were obtained from 160 NSCLC patients after operation. NSCLC cell lines (A549, H1299 and H1355) and a normal human fetal lung fibroblast cell line (MRC-5) were obtained. NSCLC cells were assigned into miR-7 inhibitors, miR-7 mimics, blank, miR-7 mimics control, miR-7 inhibitors control, FAK siRNA and miR-7 inhibitors + FAK siRNA groups. The expressions of miR-7 and FAK mRNA in tissues and cell lines were detected by qRT-PCR and Western-Blotting. Cell proliferation, migration and invasion were detected by MTT assay, wound scratch assay and Transwell assay. Results Compared with adjacent normal tissues, miR-7 expression was down-regulated, but the mRNA and protein expressions of FAK, ERK and MAPK were up-regulated. Compared with the blank and mimics control groups, miR-7 significantly increased but FAK, ERK and MAPK expressions decreased in miR-7 mimics and FAK siRNA groups. Cell proliferation, migration and invasion were inhibited in the miR-7 mimics and FAK siRNA groups, while opposite regarding miR-7 inhibitors group. Conclusion The miR-7 can inhibit the activation of ERK/MAPK signaling pathway by down-regulating FAK expression, thereby suppressing the proliferation, migration and invasion of NSCLC cells. The miR-7 and its target gene FAK may be novel targets for the diagnosis and treatment of NSCLC. PMID:27764812

  5. A flow cytometry-based screen of nuclear envelope transmembrane proteins identifies NET4/Tmem53 as involved in stress-dependent cell cycle withdrawal.

    PubMed

    Korfali, Nadia; Srsen, Vlastimil; Waterfall, Martin; Batrakou, Dzmitry G; Pekovic, Vanja; Hutchison, Christopher J; Schirmer, Eric C

    2011-04-14

    Disruption of cell cycle regulation is one mechanism proposed for how nuclear envelope protein mutation can cause disease. Thus far only a few nuclear envelope proteins have been tested/found to affect cell cycle progression: to identify others, 39 novel nuclear envelope transmembrane proteins were screened for their ability to alter flow cytometry cell cycle/DNA content profiles when exogenously expressed. Eight had notable effects with seven increasing and one decreasing the 4N:2N ratio. We subsequently focused on NET4/Tmem53 that lost its effects in p53(-/-) cells and retinoblastoma protein-deficient cells. NET4/TMEM53 knockdown by siRNA altered flow cytometry cell cycle/DNA content profiles in a similar way as overexpression. NET4/TMEM53 knockdown did not affect total retinoblastoma protein levels, unlike nuclear envelope-associated proteins Lamin A and LAP2α. However, a decrease in phosphorylated retinoblastoma protein was observed along with a doubling of p53 levels and a 7-fold increase in p21. Consequently cells withdrew from the cell cycle, which was confirmed in MRC5 cells by a drop in the percentage of cells expressing Ki-67 antigen and an increase in the number of cells stained for ß-galactosidase. The ß-galactosidase upregulation suggests that cells become prematurely senescent. Finally, the changes in retinoblastoma protein, p53, and p21 resulting from loss of NET4/Tmem53 were dependent upon active p38 MAP kinase. The finding that roughly a fifth of nuclear envelope transmembrane proteins screened yielded alterations in flow cytometry cell cycle/DNA content profiles suggests a much greater influence of the nuclear envelope on the cell cycle than is widely held.

  6. Dual Anti-Metastatic and Anti-Proliferative Activity Assessment of Two Probiotics on HeLa and HT-29 Cell Lines

    PubMed Central

    Nouri, Zahra; Karami, Fatemeh; Neyazi, Nadia; Modarressi, Mohammad Hossein; Karimi, Roya; Khorramizadeh, Mohammad Reza; Taheri, Behrooz; Motevaseli, Elahe

    2016-01-01

    Objective Lactobacilli are a group of probiotics with beneficial effects on prevention of cancer. However, there is scant data in relation with the impacts of probiotics in late-stage cancer progration, especially metastasis. The present original work was aimed to evaluate the anti-metastatic and anti-proliferative activity of lactobacillus rhamnosus supernatant (LRS) and lactobacillus crispatus supernatant (LCS) on the human cervical and colon adenocarcinoma cell lines (HeLa and HT-29, respectively). Materials and Methods In this experimental study, the anti-proliferative activities of LRS and LCS were determined through MTT assay. MRC-5 was used as a normal cell line. Expression analysis of CASP3, MMP2, MMP9, TIMP1 and TIMP2 genes was performed by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), following the cell synchronization. Results Supernatants of these two lactobacilli had cytotoxic effect on HeLa, however LRS treatment was only effective on HT-29 cell line. In addition, LRS had no side-effect on normal cells. It was shown that CASP3 gene expression has been reduced after treatment with supernatants of two studied lactobacilli. According to our study, LRS and LCS are efficacious in the prevention of metastasis potency in HeLa cells with decreased expression of MMP2, MMP9 and increased expression of their inhibitors. In the case of HT-29 cells, only LRS showed this effect. Conclusion Herein, we have demonstrated two probiotics which have anti-metastatic effects on malignant cells and they can be administrated to postpone late-stage of cancer disease. LRS and LCS are effective on HeLa cell lines while only the effect of LRS is significant on HT-29, through cytotoxic and anti-metastatic mechanisms. Further assessments are required to evaluate our results on the other cancer cell lines, in advance to use these probiotics in other extensive trial studies. PMID:27551673

  7. Antrodia camphorata attenuates cigarette smoke-induced ROS production, DNA damage, apoptosis, and inflammation in vascular smooth muscle cells, and atherosclerosis in ApoE-deficient mice.

    PubMed

    Yang, Hsin-Ling; Korivi, Mallikarjuna; Chen, Cheng-Hsien; Peng, Wei-Jung; Chen, Chee-Shan; Li, Mei-Ling; Hsu, Li-Sung; Liao, Jiunn-Wang; Hseu, You-Cheng

    2017-04-03

    Cigarette smoke exposure activates several cellular mechanisms predisposing to atherosclerosis, including oxidative stress, dyslipidemia, and vascular inflammation. Antrodia camphorata, a renowned medicinal mushroom in Taiwan, has been investigated for its antioxidant, anti-inflammatory, and antiatherosclerotic properties in cigarette smoke extracts (CSE)-treated vascular smooth muscle cells (SMCs), and ApoE-deficient mice. Fermented culture broth of Antrodia camphorata (AC, 200-800 µg/mL) possesses effective antioxidant activity against CSE-induced ROS production. Treatment of SMCs (A7r5) with AC (30-120 µg/mL) remarkably ameliorated CSE-induced morphological aberrations and cell death. Suppressed ROS levels by AC corroborate with substantial inhibition of CSE-induced DNA damage in AC-treated A7r5 cells. We found CSE-induced apoptosis through increased Bax/Bcl-2 ratio, was substantially inhibited by AC in A7r5 cells. Notably, upregulated SOD and catalase expressions in AC-treated A7r5 cells perhaps contributed to eradicate the CSE-induced ROS generation, and prevents DNA damage and apoptosis. Besides, AC suppressed AP-1 activity by inhibiting the c-Fos/c-Jun expressions, and NF-κB activation through inhibition of I-κBα degradation against CSE-stimulation. This anti-inflammatory property of AC was accompanied by suppressed CSE-induced VEGF, PDGF, and EGR-1 overexpressions in A7r5 cells. Furthermore, AC protects lung fibroblast (MRC-5) cells from CSE-induced cell death. In vivo data showed that AC oral administration (0.6 mg/d/8-wk) prevents CSE-accelerated atherosclerosis in ApoE-deficient mice. This antiatherosclerotic property was associated with increased serum total antioxidant status, and decreased total cholesterol and triacylglycerol levels. Thus, Antrodia camphorata may be useful for prevention of CSE-induced oxidative stress and diseases.

  8. Alkyl Protocatechuate-Loaded Nanostructured Lipid Systems as a Treatment Strategy for Paracoccidioides brasiliensis and Paracoccidioides lutzii In Vitro

    PubMed Central

    Medina-Alarcón, Kaila P.; Singulani, Junya L.; Voltan, Aline R.; Sardi, Janaina C. O.; Petrônio, Maicon S.; Santos, Mariana B.; Polaquini, Carlos R.; Regasini, Luis O.; Bolzani, Vanderlan S.; da Silva, Dulce H. S.; Chorilli, Marlus; Mendes-Giannini, Maria J. S.; Fusco-Almeida, Ana M.

    2017-01-01

    Dodecyl protocatechuate (dodecyl) is a derivative of protocatechuic acid (3,4-dihydroxybenzoic acid) that possesses anti-oxidant and antifungal properties. Nanostructured lipid systems (NLS) can potentiate the action of many antifungal agents, reducing the required dose and side effects by improving their activity. This work aimed to evaluate dodecyl protocatechuate loaded into a NLS (NLS+dodecyl) as a strategy for the treatment of Paracoccidioides brasiliensis and P. lutzii in vitro. Antifungal activity against P. brasiliensis and P. lutzii was evaluated using the microdilution technique. NLS+dodecyl showed high antifungal activity with a minimum inhibitory concentration ranging from 0.06 to 0.03 μg/mL; 4- to 16-fold higher than that of free dodecyl. NLS+dodecyl was able to inhibit fungal adhesion of the extracellular artificial matrix proteins (laminin and fibronectin), resulting in 82.4 and 81% inhibition, respectively, an increase of 8–17% compared with free dodecyl. These findings corroborate previous results demonstrating 65 and 74% inhibition of fungal adhesion in pulmonary fibroblast cells by dodecyl and NLS+dodecyl, respectively, representing a 9% increase in inhibition for NLS+dodecyl. Subsequently, cytotoxicity was evaluated using the 0.4% sulforhodamine B assay. NLS+dodecyl did not exhibit cytotoxicity in MRC5 (human pneumocyte) and HepG2 (human hepatic carcinoma) cells, thus increasing the selectivity index for NLS+dodecyl. In addition, cytotoxicity was evaluated in vivo using the Caenorhabditis elegans model; neither dodecyl nor NLS+dodecyl exhibited any toxic effects. Taken together, these results suggest that NLS can be used as a strategy to improve the activity of dodecyl against P. brasiliensis and P. lutzii because it improves antifungal activity, increases the inhibition of fungal adhesion in lung cells and the extracellular matrix in vitro, and does not exhibit any toxicity both in vitro and in vivo. PMID:28659880

  9. Selective Modification of Adenovirus Replication Can Be Achieved through Rational Mutagenesis of the Adenovirus Type 5 DNA Polymerase

    PubMed Central

    Capella, Cristina; Beltejar, Michael-John; Brown, Caitlin; Fong, Vincent; Daddacha, Waaqo; Kim, Baek

    2012-01-01

    Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates. PMID:22811532

  10. Detection of Precytopathic Effect of Enteroviruses in Clinical Specimens by Centrifugation-Enhanced Antigen Detection

    PubMed Central

    Lipson, Steven M.; David, Kathryn; Shaikh, Fatima; Qian, Lian

    2001-01-01

    Rapid enterovirus detection is important for decisions about antibiotic administration and length of hospital stay. The efficacy of rapid antigen detection-cell culture amplification (Ag-CCA) was evaluated with monoclonal antibodies (MAbs) 5-D8/1 (DAKO) and Pan-Enterovirus clone 2E11 (Chemicon) with 10 poliovirus, echovirus, and coxsackievirus type A and B stock isolates and College of American Pathologists check samples. By using Ag-CCA technology, MAb 2E11 was more sensitive than 5-D8/1 at detecting a greater number of stock isolates at or past tube (cytopathic effect [CPE]) culture (TC) end points. The efficacy of Ag-CCA in the clinical setting was subsequently confirmed with 273 consecutively freshly collected nasopharyngeal aspirate or swab specimens, rectal swab, and cerebrospinal fluid specimens during the 1999 enterovirus season. All specimens were tested by Ag-CCA in parallel with rhesus monkey kidney (RhMk), MRC-5, and A549 conventional TCs. Approximately 60% of field specimens were additionally tested with Hep-2 and HNK conventional TCs. Sixty-two percent of the clinical specimens tested were Ag-CCA positive after 48 h. Among 51 isolates, the mean time to CPE or culture confirmation was 5.5 days (range, 2 to 18 days). After 48 h, Ag-CCA achieved sensitivity, specificity, and positive and negative predictive values of 62, 100, 100, and 93%, respectively. During the same period, TC-CPE displayed test parameters of 12, 100, 100, and 85%, respectively. After 5 days, the sensitivity and specificity of Ag-CCA increased to 92 and 98%, respectively. Within the same period, isolation attained sensitivity and specificity of 52 and 100%, respectively. Although Ag-CCA displayed slightly reduced sensitivity and reduced specificity compared with conventional cell culture after 14 days, the markedly superior 48-h enterovirus Ag-CCA detection rate supports incorporation of this assay into the routine clinical setting. PMID:11473988

  11. Oxidative Stress Induces Persistent Telomeric DNA Damage Responsible for Nuclear Morphology Change in Mammalian Cells

    PubMed Central

    Coluzzi, Elisa; Colamartino, Monica; Cozzi, Renata; Leone, Stefano; Meneghini, Carlo; O’Callaghan, Nathan; Sgura, Antonella

    2014-01-01

    One main function of telomeres is to maintain chromosome and genome stability. The rate of telomere shortening can be accelerated significantly by chemical and physical environmental agents. Reactive oxygen species are a source of oxidative stress and can produce modified bases (mainly 8-oxoG) and single strand breaks anywhere in the genome. The high incidence of guanine residues in telomeric DNA sequences makes the telomere a preferred target for oxidative damage. Our aim in this work is to evaluate whether chromosome instability induced by oxidative stress is related specifically to telomeric damage. We treated human primary fibroblasts (MRC-5) in vitro with hydrogen peroxide (100 and 200 µM) for 1 hr and collected data at several time points. To evaluate the persistence of oxidative stress-induced DNA damage up to 24 hrs after treatment, we analysed telomeric and genomic oxidative damage by qPCR and a modified comet assay, respectively. The results demonstrate that the genomic damage is completely repaired, while the telomeric oxidative damage persists. The analysis of telomere length reveals a significant telomere shortening 48 hrs after treatment, leading us to hypothesise that residual telomere damage could be responsible for the telomere shortening observed. Considering the influence of telomere length modulation on genomic stability, we quantified abnormal nuclear morphologies (Nucleoplasmic Bridges, Nuclear Buds and Micronuclei) and observed an increase of chromosome instability in the same time frame as telomere shortening. At subsequent times (72 and 96 hrs), we observed a restoration of telomere length and a reduction of chromosome instability, leaving us to conjecture a correlation between telomere shortening/dysfunction and chromosome instability. We can conclude that oxidative base damage leads to abnormal nuclear morphologies and that telomere dysfunction is an important contributor to this effect. PMID:25354277

  12. Activation of G-Protein-Coupled Estrogen Receptor Inhibits the Migration of Human Nonsmall Cell Lung Cancer Cells via IKK-β/NF-κB Signals.

    PubMed

    Zhu, Guangfa; Huang, Yan; Wu, Chunting; Wei, Dong; Shi, Yingxin

    2016-08-01

    Estrogen signals have been suggested to modulate the progression and metastasis of nonsmall cell lung cancer (NSCLC), which is one of the leading causes of cancer deaths worldwide. While there are limited data concerning the roles and effects of G-protein-coupled estrogen receptor (GPER) on the progression of NSCLC, our present study reveals that the expression of GPER in NSCLC cells is obviously greater than that in lung fibroblast cell line MRC-5. Activation of GPER via its specific agonist G-1 decreases the in vitro motility of A549 and H358 cells and the expression of matrix metalloproteinase 2 (MMP-2) and MMP-9. Further, G-1 treatment can rapidly decrease the phosphorylation, nuclear translocation, and promoter activities of NF-κB in NSCLC cells. BAY 11-7082, the inhibitor of NF-κB, also inhibits the expression of MMP-2/9, while overexpression of p65 significantly attenuates G-1-induced downregulation of MMP-2/9. It suggests that inhibition of NF-κB mediates G-1-induced MMP-2/9 downregulation. G-1 treatment significantly down regulates the phosphorylation of IκB kinase β (IKK-β) and IκBα, while not IKK-α, in both 549 and H358 cells. ACHP, the specific inhibitor of IKK-β, can reinforce G-1-induced MMP-2/9 downregulation and invasion suppression of A549 cells. Collectively, our results suggest that activation of GPER can inhibit the migration of human NSCLC cells via suppression of IKK-β/NF-κB signals. These findings will help to better understand the roles and mechanisms of GPER as a potential therapy target for NSCLC patients.

  13. Gastroprotective and cytotoxic effect of dehydroabietic acid derivatives.

    PubMed

    Sepúlveda, Beatriz; Astudillo, Luis; Rodríguez, Jaime A; Yáñez, Tania; Theoduloz, Cristina; Schmeda-Hirschmann, Guillermo

    2005-11-01

    Dehydroabietic acid derivatives have been reported to display antisecretory and antipepsin effect in animal models. Some 19 dehydroabietic acid diterpenes were prepared and assessed for gastroprotective activity in the HCl/EtOH-induced gastric lesions in mice as well as for cytotoxicity in human lung fibroblasts (MRC-5) and human epithelial gastric (AGS) cells. At a single oral dose of 100 mg kg(-1), highest gastroprotective effect was provided by dehydroabietanol, its corresponding aldehyde, dehydroabietic acid (DHA) and its methyl ester, N-(m-nitrophenyl)-, N-(o-chlorophenyl)- and N-(p-iodophenyl)abieta-8,11,13-trien-18-amide (compounds 12-14), N-2-aminothiazolyl- and N-benzylabieta-8,11,13-trien-18-amide (compounds 18-19) being as active as lansoprazole at 20 mg kg(-1) and reducing the lesion index by at least 75%. In the compound series including the alcohol, ester, aldehyde, acid and methyl ester at C-18 (compounds 1-9), highest activity was related with the presence of an alcohol, aldehyde, acid or methyl ester at C-18, the activity being strongly reduced after esterification. The cytotoxicity of the compounds 1-9 towards AGS cells and fibroblasts was higher than the values for the amides 10-19. In the compounds 10-19, the best gastroprotective effect was observed for the aromatic amides 12-14 (75-85% inhibition of gastric lesions) bearing a nitro or halogen function in the N-benzoyl moiety. Lowest cytotoxicity was found for the amides, with IC(50) values >1000 microM for fibroblasts and from 200 up to >1000 microM for AGS cells, respectively. The N-2-aminothiazolyl- and N-benzylamide derivatives were also very active as gastroprotectors with higher cytotoxicity against AGS cells.

  14. Novel mixed metal Ag(I)-Sb(III)-metallotherapeutics of the NSAIDs, aspirin and salicylic acid: Enhancement of their solubility and bioactivity by using the surfactant CTAB.

    PubMed

    Gkaniatsou, E I; Banti, C N; Kourkoumelis, N; Skoulika, S; Manoli, M; Tasiopoulos, A J; Hadjikakou, S K

    2015-09-01

    The already known Ag(I)-Sb(III) compound of the formula {Ag(Ph3Sb)3(NO3)} (1) and two novel mixed metal Ag(I)-Sb(III) metallotherapeutics of the formulae {Ag(Ph3Sb)3(SalH)}(2) and {Ag(Ph3Sb)3(Asp)}(3) (SalH2=salicylic acid, AspH=aspirin or 2-acetylsalicylic acid and Ph3Sb=triphenyl antimony(III)) have been synthesised and characterised by m.p., vibrational spectroscopy (mid-FT-IR), (13)C-,(1)H-NMR, UV-visible (UV-vis) spectroscopic techniques, high resolution mass spectroscopy (HRMS) and X-ray crystallography. Compounds 1,-3 were treated with the surfactant cetyltrimethylammonium bromide (CTAB) in order to enhance their solubility and as a consequence their bioactivity. The resulting micelles a-c were characterised with X-ray powder diffraction (XRPD) analysis, X-ray fluorescence (XRF) spectroscopy, Energy-dispersive X-ray spectroscopy (EDX), conductivity, Thermal gravimetry-differential thermal analysis (TG-DTA), and atomic absorption. Compounds 1-3 and the relevant micelles a-c were evaluated for their in vitro cytotoxic activity against human cancer cell lines: MCF-7 (breast, estrogen receptor (ER) positive), MDA-MB-231 (breast, ER negative) and MRC-5 (normal human fetal lung fibroblast cells) with sulforhodamine B (SRB) colorimetric assay. The results show significant increase in the activity of micelles compared to that of the initial compounds. Moreover, micelles exhibited lower activity against normal cells than tumor cells. The binding affinity of a-c towards the calf thymus (CT)-DNA, lipoxygenase (LOX) and glutathione (GSH) was studied by the fluorescent emission light and UV-vis spectroscopy.

  15. The PD-L1/PD-1 pathway promotes dysfunction, but not "exhaustion", in tumor-responding T cells from pleural effusions in lung cancer patients.

    PubMed

    Prado-Garcia, Heriberto; Romero-Garcia, Susana; Puerto-Aquino, Alejandra; Rumbo-Nava, Uriel

    2017-03-13

    Malignant pleural effusions are frequent in patients with advanced stages of lung cancer and are commonly infiltrated by lymphocytes and tumor cells. CD8+ T cells from these effusions have reduced effector functions. The programmed death receptor 1(PD-1)/programmed death ligand 1 (PD-L1) pathway is involved in T-cell exhaustion, and it might be responsible for T-cell dysfunction in lung cancer patients. Here, we show that PD-L1 is expressed on tumor cell samples from malignant effusions, on lung cancer cell lines, and, interestingly, on MRC-5 lung fibroblasts. PD-L1 was up-regulated in lung cancer cell lines upon treatment with IFN-gamma, but not under hypoxic conditions, as detected by RT-qPCR and flow cytometry. Blockade of PD-L1 on tumor cells restored granzyme-B expression in allogenic CD8+ T cells in vitro. Remarkably, pleural effusion CD8+ T cells that responded to the tumor antigens MAGE-3A and WT-1 (identified as CD137+ cells) were lower in frequency than CMV pp65-responding CD8+ T cells and did not have an exhausted phenotype (PD-1+ TIM-3+). Nonetheless, tumor-responding CD8+ T cells had a memory phenotype and expressed higher levels of PD-1. A PD-L1 blocking antibody increased the expression of granzyme-B and perforin on polyclonal- and tumor-stimulated CD8+ T cells. Taken together, our data show that rather than being exhausted, tumor-responding CD8+ T cells are not completely differentiated into effector cells and are prone to negative regulation by PD-L1. Hence, our study provides evidence that lung cancer patients respond to immunotherapy due to blockade of the PD-L1/PD-1 pathway.

  16. Selective modification of adenovirus replication can be achieved through rational mutagenesis of the adenovirus type 5 DNA polymerase.

    PubMed

    Capella, Cristina; Beltejar, Michael-John; Brown, Caitlin; Fong, Vincent; Daddacha, Waaqo; Kim, Baek; Dewhurst, Stephen

    2012-10-01

    Mutations that reduce the efficiency of deoxynucleoside (dN) triphosphate (dNTP) substrate utilization by the HIV-1 DNA polymerase prevent viral replication in resting cells, which contain low dNTP concentrations, but not in rapidly dividing cells such as cancer cells, which contain high levels of dNTPs. We therefore tested whether mutations in regions of the adenovirus type 5 (Ad5) DNA polymerase that interact with the dNTP substrate or DNA template could alter virus replication. The majority of the mutations created, including conservative substitutions, were incompatible with virus replication. Five replication-competent mutants were recovered from 293 cells, but four of these mutants failed to replicate in A549 lung carcinoma cells and Wi38 normal lung cells. Purified polymerase proteins from these viruses exhibited only a 2- to 4-fold reduction in their dNTP utilization efficiency but nonetheless could not be rescued, even when intracellular dNTP concentrations were artificially raised by the addition of exogenous dNs to virus-infected A549 cells. The fifth mutation (I664V) reduced biochemical dNTP utilization by the viral polymerase by 2.5-fold. The corresponding virus replicated to wild-type levels in three different cancer cell lines but was significantly impaired in all normal cell lines in which it was tested. Efficient replication and virus-mediated cell killing were rescued by the addition of exogenous dNs to normal lung fibroblasts (MRC5 cells), confirming the dNTP-dependent nature of the polymerase defect. Collectively, these data provide proof-of-concept support for the notion that conditionally replicating, tumor-selective adenovirus vectors can be created by modifying the efficiency with which the viral DNA polymerase utilizes dNTP substrates.

  17. Evaluation of antibacterial potential and toxicity of plant volatile compounds using new broth microdilution volatilization method and modified MTT assay.

    PubMed

    Houdkova, Marketa; Rondevaldova, Johana; Doskocil, Ivo; Kokoska, Ladislav

    2017-04-01

    With aim to develop effective proof-of-concept approach which can be used in a development of new preparations for the inhalation therapy, we designed a new screening method for simple and rapid simultaneous determination of antibacterial potential of plant volatiles in the liquid and the vapour phase at different concentrations. In addition, EVA (ethylene vinyl acetate) capmat™ as vapour barrier cover was used as reliable modification of thiazolyl blue tetrazolium bromide (MTT) assay for cytotoxicity testing of volatiles on microtiter plates. Antibacterial activity of carvacrol, cinnamaldehyde, eugenol, 8-hydroxyquinoline, thymol and thymoquinone was determined against Haemophilus influenzae, Staphylococcus aureus, and Streptococcus pneumoniae using new broth microdilution volatilization method. The cytotoxicity of these compounds was evaluated using MTT test in lung fibroblast cells MRC-5. The most effective antibacterial agents were 8-hydroxyquinoline and thymoquinone with the lowest minimum inhibitory concentrations (MICs) ranging from 2 to 128μg/mL, but they also possessed the highest toxicity in lung cell lines with half maximal inhibitory concentration (IC50) values 0.86-2.95μg/mL. The lowest cytotoxicity effect was identified for eugenol with IC50 295.71μg/mL, however this compound produced only weak antibacterial potency with MICs 512-1024μg/mL. The results demonstrate validity of our novel broth microdilution volatilization method, which allows cost and labour effective high-throughput antimicrobial screening of volatile agents without need of special apparatus. In our opinion, this assay can also potentially be used for development of various medicinal, agricultural, and food applications that are based on volatile antimicrobials. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. [Diarrhea associated with Clostridium difficile: one-year experience in a general hospital].

    PubMed

    Bouza, E; Padilla, B; Catalán, P; Sánchez-Carrillo, C; Blázquez, R; Peláez, T

    1996-07-01

    Clostridium difficile is considered the most common cause of nosocomial acquired diarrhoea, with frequencies differing widely from one institution to another. So far, it is a scarcely reported condition in Spain. In the present study 129 episodes of Clostridium difficile associated diarrhoea (CDAD) occurred in 120 patients in a 2,000-bed hospital in 1994 is reported. All cases were diagnosed by demonstrating cytotoxicity on cellular lines (MRC-5) from feces or from the strain isolated from a culture medium (CCFA). The overall incidence was 2.4 episodes every 1,000 admissions. Twenty-eight out of the 120 patients (23%) were HIV-positive patients, that is, an incidence of 30 episodes every 1,000 admissions. No significant differences were observed regarding the presentation and clinical course between HIV-positive and HIV-negative patients, with the exception of the antimicrobial agents used previously. Forty-two percent of patients had undergone surgery and 97% had received antimicrobials in the 8 weeks before the CDAD episode, with an average of 3.3 antibiotics per patient. Out of the 129 episodes, 72.8% were treated correctly. A total of 11.7% of patients responded exclusively to the discontinuation of the antimicrobials that were being administered. Eighty-three patients were treated with specific antibiotics, 59 with oral vancomycin, and 24 with metronidazole. Seventy-six patients (91.5%) responded to the initial therapy, 5 relapsed (6%), and 2 (2.5%) failed. The associated mortality rate was 0.7%. C. difficile can be a relevant cause of nosocomial diarrhoea in our setting, particularly in HIV-positive patients, but also in other patients. Its early diagnosis and appropriate therapy can contribute to decrease a relevant cause of morbidity in inpatients.

  19. Regulation of LOXL2 and SERPINH1 by antitumor microRNA-29a in lung cancer with idiopathic pulmonary fibrosis.

    PubMed

    Kamikawaji, Kazuto; Seki, Naohiko; Watanabe, Masaki; Mataki, Hiroko; Kumamoto, Tomohiro; Takagi, Koichiro; Mizuno, Keiko; Inoue, Hiromasa

    2016-12-01

    Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease that is refractory to treatment and carries a high mortality rate. IPF is frequently associated with lung cancer. Identification of molecular targets involved in both diseases may elucidate novel molecular mechanisms contributing to their pathology. Recent studies of microRNA (miRNA) expression signatures showed that microRNA-29a (miR-29a) was downregulated in IPF and lung cancer. The aim of this study was to investigate the functional significance of miR-29a in lung cancer cells (A549 and EBC-1) and lung fibroblasts (MRC-5) and to identify molecular targets modulated by miR-29a in these cells. We confirmed the downregulation of miR-29a in clinical specimens of IPF and lung cancer. Restoration of miR-29a suppressed cancer cell aggressiveness and fibroblast migration. A combination of gene expression data and in silico analysis showed that a total of 24 genes were putative targets of miR-29a. Among them, lysyl oxidase-like 2 (LOXL2) and serpin peptidase inhibitor clade H, member 1 (SERPINH1) were direct targets of miR-29a by luciferase reporter assays. The functions of LOXL2 and SERPINH1 contribute significantly to collagen biosynthesis. Overexpression of LOXL2 and SERPINH1 was observed in clinical specimens of lung cancer and fibrotic lesions. Downregulation of miR-29a caused overexpression of LOXL2 and SERPINH1 in lung cancer and IPF, suggesting that these genes are involved in the pathogenesis of these two diseases.

  20. Down-regulation of USP13 mediates phenotype transformation of fibroblasts in idiopathic pulmonary fibrosis.

    PubMed

    Geng, Jing; Huang, Xiaoxi; Li, Ying; Xu, Xuefeng; Li, Shuhong; Jiang, Dingyuan; Liang, Jiurong; Jiang, Dianhua; Wang, Chen; Dai, Huaping

    2015-10-09

    Idiopathic pulmonary fibrosis (IPF) is a fatal disease characterized by fibroblastic foci and progressive scarring of the pulmonary parenchyma. IPF fibroblasts display increased proliferation and enhanced migration and invasion, analogous to cancer cells. This transformation-like phenotype of fibroblasts plays an important role in the development of pulmonary fibrosis, but the mechanism for this is not well understood. In this study, we compared gene expression profiles in fibrotic lung tissues from IPF patients and normal lung tissues from patients with primary spontaneous pneumothorax using a cDNA microarray to examine the mechanisms involved in the pathogenesis of IPF. In a cDNA microarray, we found that USP13 was decreased in lung tissues from patients with IPF, which was further confirmed by results from immunohistochemistry and western blot assays. Then, we used RNA interference in MRC-5 cells to inhibit USP13 and evaluated its effects by western blot, real-time RT-PCR, bromodeoxyuridine incorporation, and transwell assays. We also used co-immunoprecipitation and immunofluorescence staining to identify the correlation between USP13 and PTEN in IPF. USP13 expression levels were markedly reduced in fibroblastic foci and primary IPF fibroblast lines. The depletion of USP13 resulted in the transformation of fibroblasts into an aggressive phenotype with enhanced proliferative, migratory, and invasive capacities. Additionally, USP13 interacted with PTEN and mediated PTEN ubiquitination and degradation in lung fibroblasts. Down-regulation of USP13 mediates PTEN protein loss and fibroblast phenotypic change, and thereby plays a crucial role in IPF pathogenesis.

  1. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor

    PubMed Central

    Schrage, R; Seemann, WK; Klöckner, J; Dallanoce, C; Racké, K; Kostenis, E; De Amici, M; Holzgrabe, U; Mohr, K

    2013-01-01

    Background and Purpose Artificial agonists may have higher efficacy for receptor activation than the physiological agonist. Until now, such ‘superagonism’ has rarely been reported for GPCRs. Iperoxo is an extremely potent muscarinic receptor agonist. We hypothesized that iperoxo is a ‘superagonist’. Experimental Approach Signalling of iperoxo and newly synthesized structural analogues was compared with that of ACh at label-free M2 muscarinic receptors applying whole cell dynamic mass redistribution, measurement of G-protein activation, evaluation of cell surface agonist binding and computation of operational efficacies. Key Results In CHO-hM2 cells, iperoxo significantly exceeds ACh in Gi/Gs signalling competence. In the orthosteric loss-of-function mutant M2-Y1043.33A, the maximum effect of iperoxo is hardly compromised in contrast to ACh. ‘Superagonism’ is preserved in the physiological cellular context of MRC-5 human lung fibroblasts. Structure–signalling relationships including iperoxo derivatives with either modified positively charged head group or altered tail suggest that ‘superagonism’ of iperoxo is mechanistically based on parallel activation of the receptor protein via two orthosteric interaction points. Conclusion and Implications Supraphysiological agonist efficacy at muscarinic M2 ACh receptors is demonstrated for the first time. In addition, a possible underlying molecular mechanism of GPCR ‘superagonism’ is provided. We suggest that iperoxo-like orthosteric GPCR activation is a new avenue towards a novel class of receptor activators. Linked Article This article is commented on by Langmead and Christopoulos, pp. 353–356 of this issue. To view this commentary visit http://dx.doi.org/10.1111/bph.12142 PMID:23062057

  2. DNA fragmentation and apoptosis induced by safranal in human prostate cancer cell line

    PubMed Central

    Samarghandian, Saeed; Shabestari, Mahmoud M

    2013-01-01

    Objectives: Apoptosis, an important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus (Saffron) in different cancer types. However, limited effort has been made to correlate these effects to the active ingredients of saffron. The present study was designed to elucidate cytotoxic and apoptosis induction by safranal, the major coloring compound in saffron, in a human prostate cancer cell line (PC-3). Materials and Methods: PC-3 and human fetal lung fibroblast (MRC-5) cells were cultured and exposed to safranal (5, 10, 15, and 20 μg/ml). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was performed to assess cytotoxicity. DNA fragmentation was assessed by gel electrophoresis. Cells were incubated with different concentrations of safranal, and cell morphologic changes and apoptosis were determined by the normal inverted microscope, Annexin V, and propidium iodide, followed by flow cytometric analysis, respectively. Results: MTT assay revealed a remarkable and concentration-dependent cytotoxic effect of safranal on PC-3 cells in comparison with non-malignant cell line. The morphologic alterations of the cells confirmed the MTT results. The IC50 values against PC-3 cells were found to be 13.0 ΁ 0.07 and 6.4 ΁ 0.09 μg/ml at 48 and 72 h, respectively. Safranal induced an early and late apoptosis in the flow cytometry histogram of treated cells, indicating apoptosis is involved in this toxicity. DNA analysis revealed typical ladders as early as 48 and 72 h after treatment, indicative of apoptosis. Conclusions: Our preclinical study demonstrated a prostate cancer cell line to be highly sensitive to safranal-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of safranal action are not clearly understood, it appears to have potential as a therapeutic agent. PMID:24082436

  3. In vitro anticancer effect of venom from Cuban scorpion Rhopalurus junceus against a panel of human cancer cell lines

    PubMed Central

    Díaz-García, Alexis; Morier-Díaz, Luis; Frión-Herrera, Yahima; Rodríguez-Sánchez, Hermis; Caballero-Lorenzo, Yamira; Mendoza-Llanes, Dianeya; Riquenes-Garlobo, Yanelis; Fraga-Castro, José A

    2013-01-01

    In Cuba the endemic species of scorpion Rhopalurus junceus has been used in traditional medicine for cancer treatment. However, there is little scientific evidence about its potential in cancer therapy. The effect of a range of scorpion venom concentrations (0.1, 0.25, 0.5, 0.75 and 1mg/ml) against a panel of human tumor cell lines from epithelial (Hela, SiHa, Hep-2, NCI-H292, A549, MDA-MB-231, MDA-MB-468, HT-29), hematopoietic origins (U937, K562, Raji) and normal cells (MRC-5, MDCK, Vero) was determined by the MTT assay. Additionally, the effect of venom on tumor cell death was assayed by Fluorescence microscopy, RT-PCR and western blot. Only the epithelial cancer cells showed significant cell viability reduction, with medium cytotoxic concentration (IC50) ranging from 0.6-1mg/ml, in a concentration-dependent manner. There was no effect on either normal or hematopoietic tumor cells. Scorpion venom demonstrated to induce apoptosis in less sensitive tumor cells (Hela) as evidenced by chromatin condensation, over expression of p53 and bax mRNA, down expression of bcl-2 mRNA and increase of activated caspases 3, 8, 9. In most sensitive tumor cells (A549), scorpion venom induced necrosis evidenced by acridine orange/ethidium bromide fluorescent dyes and down-expression of apoptosis-related genes. We concluded the scorpion venom from R. junceus possessed a selective and differential toxicity against epithelial cancer cells. This is the first report related to biological effect of R. junceus venom against a panel of tumor cells lines. All these results make R. junceus venom as a promise natural product for cancer treatment. PMID:23946884

  4. Characterization of Herpes Simplex Viruses Selected in Culture for Resistance to Penciclovir or Acyclovir

    PubMed Central

    Sarisky, Robert T.; Quail, Matthew R.; Clark, Philip E.; Nguyen, Tammy T.; Halsey, Wendy S.; Wittrock, Robert J.; Bartus, Joan O'Leary; Van Horn, Marion M.; Sathe, Ganesh M.; Van Horn, Stephanie; Kelly, Michael D.; Bacon, Teresa H.; Leary, Jeffry J.

    2001-01-01

    Penciclovir (PCV), an antiherpesvirus agent in the same class as acyclovir (ACV), is phosphorylated in herpes simplex virus (HSV)-infected cells by the viral thymidine kinase (TK). Resistance to ACV has been mapped to mutations within either the TK or the DNA polymerase gene. An identical activation pathway, the similarity in mode of action, and the invariant cross-resistance of TK-negative mutants argue that the mechanisms of resistance to PCV and ACV are likely to be analogous. A total of 48 HSV type 1 (HSV-1) and HSV-2 isolates were selected after passage in the presence of increasing concentrations of PCV or ACV in MRC-5 cells. Phenotypic analysis suggested these isolates were deficient in TK activity. Moreover, sequencing of the TK genes from ACV-selected mutants identified two homopolymeric G-C nucleotide stretches as putative hot spots, thereby confirming previous reports examining Acvr clinical isolates. Surprisingly, mutations identified in PCV-selected mutants were generally not in these regions but distributed throughout the TK gene and at similar frequencies of occurrence within A-T or G-C nucleotides, regardless of virus type. Furthermore, HSV-1 isolates selected in the presence of ACV commonly included frameshift mutations, while PCV-selected HSV-1 mutants contained mostly nonconservative amino acid changes. Data from this panel of laboratory isolates show that Pcvr mutants share cross-resistance and only limited sequence similarity with HSV mutants identified following ACV selection. Subtle differences between PCV and ACV in the interaction with viral TK or polymerase may account for the different spectra of genotypes observed for the two sets of mutants. PMID:11160674

  5. Selection and Characterization of Varicella-Zoster Virus Variants Resistant to (R)-9-[4-Hydroxy-2-(Hydroxymethy)Butyl]Guanine

    PubMed Central

    Ng, Teresa I.; Shi, Yan; Huffaker, H. Janette; Kati, Warren; Liu, Yaya; Chen, Chih-Ming; Lin, Zhen; Maring, Clarence; Kohlbrenner, William E.; Molla, Akhteruzzaman

    2001-01-01

    (R)-9-[4-Hydroxy-2-(hydroxymethy)butyl]guanine (H2G) is a potent and selective inhibitor of herpesvirus replication. It is a nucleoside analog, and its triphosphate derivative (H2G-TP) is a competitive inhibitor of herpesvirus DNA polymerases. In this study, the antiviral activities of H2G and acyclovir (ACV) and the development of viral resistance to these agents were compared in varicella-zoster virus (VZV)-infected cells. In plaque reduction assays, the 50% effective concentration of H2G for VZV was 60- to 400-fold lower than that of ACV, depending on the virus strain and the cell line tested. The enhanced efficacy of H2G against VZV can be accounted for in part by the fact that the intaracellular H2G-TP level (>170 pmol/106 cells) is higher than the intracellular ACV-TP level (<1 pmol/106 cells). In addition, H2G-TP has extended half-lives of 3.9 and 8.6 h in VZV-infected MRC-5 and MeWo cells, respectively. To assess the emergence of H2G-resistant VZV in vitro, VZV was passaged in the presence of increasing concentrations of H2G. Earlier in the passage, when the concentration of H2G was relatively low, the predominant variant had the (A)76 deletion in the viral thymidine kinase (TK) gene. This mutant was identical to an ACV-resistant mutant generated in parallel experiments. However, higher concentrations of H2G appeared to favor a novel mutant, which had deletions of two consecutive nucleotides at positions 805 and 806 of the TK gene. All of these changes introduced frameshift mutations in the TK gene resulting in the expression of truncated polypeptides. H2G-resistant viruses were cross-resistant to ACV, and vice versa. PMID:11353604

  6. In vitro antiprotozoal activity and cytotoxicity of extracts and isolated constituents from Greenwayodendron suaveolens.

    PubMed

    Muganza, D Musuyu; Fruth, B; Nzunzu, J Lami; Tuenter, E; Foubert, K; Cos, P; Maes, L; Kanyanga, R Cimanga; Exarchou, V; Apers, S; Pieters, L

    2016-12-04

    The Nkundo people (Nkundo area of Bolongo, Mai-Ndombe district, Bandundu Province, DR Congo) use various plant parts of the tree Greenwayodendron suaveolens (Engl. & Diels) Verdc. (syn. Polyalthia suaveolens Engl. & Diels) (Annonaceae) against malaria, but its antiprotozoal constituents are not known. The crude 80% ethanol extract from the fruits, leaves, root bark and stem bark and 16 fractions were assessed in vitro for their antiprotozoal activity against Trypanosoma brucei brucei, T. cruzi, Leishmania infantum and the chloroquine and pyrimethamine-resistant K1 strain of Plasmodium falciparum (Pf-K1). Their cytotoxic effects were evaluated against MRC-5 cells. Active constituents were isolated by chromatographic means, identified using spectroscopic methods, and evaluated in the same assays. The root bark extract showed the highest activity against P. falciparum K1 (IC50 0.26µg/mL) along with the stem bark alkaloid fraction (IC50 0.27µg/mL). The root bark alkaloid fraction had a pronounced activity against all selected protozoa with IC50 values <1µg/mL. The 90% methanol fractions of the different plant parts showed a pronounced activity against P. falciparum K1, with IC50 values ranging between 0.36µg/mL and 0.69µg/mL. Four constituents were isolated: the triterpenes polycarpol, and dihydropolycarpol, the latter one being reported for the first time from nature, and the alkaloids polyalthenol and N-acetyl-polyveoline. They were active to a various degree against one or more protozoa, mostly accompanied by cytotoxicity. The highest selectivity was observed for N-acetyl-polyveoline against P. falciparum K1 (IC50 2.8µM, selectivity index 10.9). These results may explain at least in part the traditional use of this plant species against parasitic diseases such as malaria in DR Congo. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation.

    PubMed

    Jaguin, Marie; Fardel, Olivier; Lecureur, Valérie

    2015-06-15

    Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants.

  8. Evaluation of royal jelly as an alternative to fetal bovine serum in cell culture using cell proliferation assays and live cell imaging.

    PubMed

    Musa, Marahaini; Nasir, Nurul Fatihah Mohamad; Thirumulu, Kannan Ponnuraj

    2014-01-01

    Royal jelly is a nutritious substance produced by the young nurse bees and contains significant amounts of proteins which are important for cell growth and proliferation. The aim of this study was to evaluate the effect of royal jelly as an alternative to fetal bovine serum (FBS) in cell culture using cell proliferation assays and live cell imaging. MRC-5 cells were treated with various concentrations of royal jelly extract in MTT assay. The control groups were comprised of Alpha-Minimal Essential Medium (α-MEM) alone and α-MEM with 10% FBS. Subsequently, the cell proliferation was studied for 10 days using Alamar Blue assay and live cell imaging from 48 to 72 h. The population doubling time (PDT) was determined using trypan blue assay after live cell imaging. In MTT assay, 0.156 and 0.078 mg/ml of royal jelly produced higher cell viability compared to positive control group but were not significantly different (P > 0.05). In the Alamar Blue assay, 0.156 and 0.078 mg/ml of royal jelly produced greater percentage of reduction at day 3 even though no significant difference was found (P > 0.05). Based on live cell imaging, the PDT for positive, negative, 0.156 and 0.078 mg/ml of royal jelly groups were 29.09, 62.50, 41.67 and 41.67 h respectively. No significant difference was found in the PDT between all the groups (P > 0.05). Royal jelly does not exhibit similar ability like FBS to facilitate cell growth under the present test conditions.

  9. A New Cell-Selective Three-Dimensional Microincubator Based on Silicon Photonic Crystals

    PubMed Central

    Carpignano, Francesca; Silva, Gloria; Surdo, Salvatore; Leva, Valentina; Montecucco, Alessandra; Aredia, Francesca; Scovassi, Anna Ivana; Merlo, Sabina; Barillaro, Giuseppe; Mazzini, Giuliano

    2012-01-01

    In this work, we show that vertical, high aspect-ratio (HAR) photonic crystals (PhCs), consisting of periodic arrays of 5 µm wide gaps with depth of 50 µm separated by 3 µm thick silicon walls, fabricated by electrochemical micromachining, can be used as three-dimensional microincubators, allowing cell lines to be selectively grown into the gaps. Silicon micromachined dice incorporating regions with different surface profiles, namely flat silicon and deeply etched PhC, were used as microincubators for culturing adherent cell lines with different morphology and adhesion properties. We extensively investigated and compared the proliferative behavior on HAR PhCs of eight human cell models, with different origins, such as the epithelial (SW613-B3; HeLa; SW480; HCT116; HT29) and the mesenchymal (MRC-5V1; CF; HT1080). We also verified the contribution of cell sedimentation into the silicon gaps. Fluorescence microscopy analysis highlights that only cell lines that exhibit, in the tested culture condition, the behavior typical of the mesenchymal phenotype are able to penetrate into the gaps of the PhC, extending their body deeply in the narrow gaps between adjacent silicon walls, and to grow adherent to the vertical surfaces of silicon. Results reported in this work, confirmed in various experiments, strongly support our statement that such three-dimensional microstructures have selection capabilities with regard to the cell lines that can actively populate the narrow gaps. Cells with a mesenchymal phenotype could be exploited in the next future as bioreceptors, in combination with HAR PhC optical transducers, e.g., for label-free optical detection of cellular activities involving changes in cell adhesion and/or morphology (e.g., apoptosis) in a three-dimensional microenvironment. PMID:23139792

  10. Chemical Composition, Antimicrobial and Cytotoxic Activity of Heracleum verticillatum Pančić and H. ternatum Velen. (Apiaceae) Essential Oils.

    PubMed

    Ušjak, Ljuboš J; Petrović, Silvana D; Drobac, Milica M; Soković, Marina D; Stanojković, Tatjana P; Ćirić, Ana D; Grozdanić, Nađa Ð; Niketić, Marjan S

    2016-04-01

    In this work, the chemical composition, antimicrobial and cytotoxic activity of Heracleum verticillatum Pančić and H. ternatum Velen. root, leaf, and fruit essential oils were investigated. The composition was analyzed by GC and GC/MS. Heracleum verticillatum and H. ternatum root oils were dominated by monoterpenes, mostly β-pinene (23.5% and 47.3%, respectively). Heracleum verticillatum leaf oil was characterized by monoterpenes, mainly limonene (20.3%), and sesquiterpenes, mostly (E)-caryophyllene (19.1%), while H. ternatum leaf oil by the high percentage of phenylpropanoids, with (Z)-isoelemicin (35.1%) being dominant constituent. Both fruit oils contained the majority of aliphatic esters, mostly octyl acetate (42.3% in H. verticillatum oil and 49.0% in H. ternatum oil). The antimicrobial activity of the oils was determined by microdilution method against eight bacterial and eight fungal strains. The strongest effect was exhibited by H. verticillatum root oil, particularly against Staphylococcus aureus, Salmonella typhimurium (MICs = 0.14 mg/ml, MBCs = 0.28 mg/ml), and Trichoderma viride (MIC = 0.05 mg/ml, MFC = 0.11 mg/ml). Cytotoxic effect was determined by MTT test against malignant HeLa, LS174, and A549 cells (IC50 = 5.9 - 146.0 μg/ml), and against normal MRC-5 cells (IC50 > 120.1 μg/ml). The best effect was exhibited by H. verticillatum root oil on A549 cells (IC50 = 5.9 μg/ml), and H. ternatum root oil against LS174 cells (IC50 = 6.7 μg/ml).

  11. Minor withanolides of Physalis longifolia: structure and cytotoxicity.

    PubMed

    Zhang, Huaping; Motiwala, Hashim; Samadi, Abbas; Day, Victor; Aubé, Jeffrey; Cohen, Mark; Kindscher, Kelly; Gollapudi, Rao; Timmermann, Barbara

    2012-01-01

    In our recent publication on bioactive guided isolation of compounds from Physalis longifolia (Solanaceae) novel anti-proliferative agents withalongolides A (4) and B (5), and their highly cytotoxic analogues, withalongolide A 4,19,27-triacetate (4a) and withalongolide B 4,19-diacetate (5a) were elucidated. In this study, the two lead compounds (4, 5) were re-isolated in gram quantities for the purpose of further analogue preparation and in vivo testing that would continue to probe structure-activity relationships. During this process, two additional withanolides, named withalongolides O (1) and P (2), were elucidated. Their structures were determined by spectroscopic techniques with 1 being subsequently confirmed by X-ray crystallographic analysis. Utilizing a MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] viability assay, withalongolide O (1) and its 4,7-diaceatate (1a), both containing the functionalities of Δ(2)-1-oxo- in A ring, a 5β,6β-epoxy in B ring, and a lactone ring in the nine-carbon side chain, exhibited potent cytotoxicity against human head and neck squamous cell carcinoma (JMAR and MDA-1986), melanoma (B16F10 and SKMEL-28), and normal fetal lung fibroblast (MRC-5) cells with IC(50) values in the range between 0.15 and 2.95 µM. In addition, the previously reported α orientation of 7-acetate group in acnistins C and D should be revised to the β orientation on the basis of NMR data comparison.

  12. DNA intercalating Ru(II) polypyridyl complexes as effective photosensitizers in photodynamic therapy.

    PubMed

    Mari, Cristina; Pierroz, Vanessa; Rubbiani, Riccardo; Patra, Malay; Hess, Jeannine; Spingler, Bernhard; Oehninger, Luciano; Schur, Julia; Ott, Ingo; Salassa, Luca; Ferrari, Stefano; Gasser, Gilles

    2014-10-27

    Six substitutionally inert [Ru(II) (bipy)2 dppz](2+) derivatives (bipy=2,2'-bipyridine, dppz=dipyrido[3,2-a:2',3'-c]phenazine) bearing different functional groups on the dppz ligand [NH2 (1), OMe (2), OAc (3), OH (4), CH2 OH (5), CH2 Cl (6)] were synthesized and studied as potential photosensitizers (PSs) in photodynamic therapy (PDT). As also confirmed by DFT calculations, all complexes showed promising (1) O2 production quantum yields, well comparable with PSs available on the market. They can also efficiently intercalate into the DNA double helix, which is of high interest in view of DNA targeting. The cellular localization and uptake quantification of 1-6 were assessed by confocal microscopy and high-resolution continuum source atomic absorption spectrometry. Compound 1, and especially 2, showed very good uptake in cervical cancer cells (HeLa) with preferential nuclear accumulation. None of the compounds studied was found to be cytotoxic in the dark on both HeLa cells and, interestingly, on noncancerous MRC-5 cells (IC50 >100 μM). However, 1 and 2 showed very promising behavior with an increment of about 150 and 42 times, respectively, in their cytotoxicities upon light illumination at 420 nm in addition to a very good human plasma stability. As anticipated, the preferential nuclear accumulation of 1 and 2 and their very high DNA binding affinity resulted in very efficient DNA photocleavage, suggesting a DNA-based mode of phototoxic action. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Antimicrobial potency and selectivity of simplified symmetric-end peptides.

    PubMed

    Dong, Na; Zhu, Xin; Chou, Shuli; Shan, Anshan; Li, Weizhong; Jiang, Junguang

    2014-09-01

    Because antimicrobial peptides (AMPs) are potentially useful for the treatment of multidrug-resistant infections, more attention is being paid to the structural modification and structure-function relationship of both naturally occurring and synthetic AMPs. Previous studies indicated that Protegrin-1 (PG-1), isolated from porcine leukocytes, exhibited considerable antimicrobial activity and cytotoxicity. The β-turn of PG-1 floated on the surface of bacterial membrane, while its β-strand inserted into the bacterial membrane and formed pores that were dedicated to producing cytotoxicity. For reducing cytotoxicity and improving cells selectivity, we designed a series of simplified symmetric-end peptides by combining the β-turn of PG-1 with simple amino acid repeat sequences. The sequence of designed symmetric-end peptides is (XR)nH(RX)n, (n = 1,2; X represents I, F, W and P; H represents CRRRFC). The symmetric-end peptides displayed antimicrobial activity against both gram-positive and gram-negative bacteria. In particular, (XR)2H(RX)2 (X here is I, F and W) showed greater antimicrobial potency than PG-1. Hemolysis activity and cytotoxicity, detected by using human red blood cells (RBCs) and human embryonic lung fibroblasts MRC-5 cells, were observably lower than the native peptide PG-1. (IR)2H(RI)2 (IR2), folded into β-sheet structures, displayed the highest therapeutic index, suggesting its great cell selectivity. The fluorescence spectroscopy, flow cytometry, and electron microscopy observation indicated that IR2 exhibited great membrane penetration potential by inducing membrane blebbing, disruption and lysis. Collectively, generating symmetric-end β-sheet peptides is a promising strategy for designing effective AMPs with great antimicrobial activities and cell selectivity.

  14. Osmium(III) analogues of KP1019: electrochemical and chemical synthesis, spectroscopic characterization, X-ray crystallography, hydrolytic stability, and antiproliferative activity.

    PubMed

    Kuhn, Paul-Steffen; Büchel, Gabriel E; Jovanović, Katarina K; Filipović, Lana; Radulović, Siniša; Rapta, Peter; Arion, Vladimir B

    2014-10-20

    A one-electron reduction of osmium(IV) complexes trans-[Os(IV)Cl4(Hazole)2], where Hazole = 1H-pyrazole ([1](0)), 2H-indazole ([2](0)), 1H-imidazole ([3](0)), and 1H-benzimidazole ([4](0)), afforded a series of eight new complexes as osmium analogues of KP1019, a lead anticancer drug in clinical trials, with the general formula (cation)[trans-Os(III)Cl4(Hazole)2], where cation = H2pz(+) (H2pz[1]), H2ind(+) (H2ind[2]), H2im(+) (H2im[3]), Ph4P(+) (Ph4P[3]), nBu4N(+) (nBu4N[3]), H2bzim(+) (H2bzim[4]), Ph4P(+) (Ph4P[4]), and nBu4N(+) (nBu4N[4]). All complexes were characterized by elemental analysis, (1)H NMR spectroscopy, electrospray ionization mass spectrometry, UV-vis spectroscopy, cyclic voltammetry, while H2pz[1], H2ind[2], and nBu4[3], in addition, by X-ray diffraction. The reduced species [1](-) and [4](-) are stable in aqueous media in the absence of air oxygen and do not react with small biomolecules such as amino acids and the nucleotide 5'-dGMP. Cell culture experiments in five different human cancer cell lines (HeLa, A549, FemX, MDA-MB-453, and LS-174) and one noncancerous cell line (MRC-5) were performed, and the results were discussed and compared to those for KP1019 and cisplatin. Benzannulation in complexes with similar structure enhances antitumor activity by several orders of magnitude, implicating different mechanisms of action of the tested compounds. In particular, complexes H2ind[2] and H2bzim[4] exhibited significant antiproliferative activity in vitro when compared to H2pz[1] and H2im[3].

  15. Chemically treated carbon black waste and its potential applications.

    PubMed

    Dong, Pengwei; Maneerung, Thawatchai; Ng, Wei Cheng; Zhen, Xu; Dai, Yanjun; Tong, Yen Wah; Ting, Yen-Peng; Koh, Shin Nuo; Wang, Chi-Hwa; Neoh, Koon Gee

    2017-01-05

    In this work, carbon black waste - a hazardous solid residue generated from gasification of crude oil bottom in refineries - was successfully used for making an absorbent material. However, since the carbon black waste also contains significant amounts of heavy metals (especially nickel and vanadium), chemical leaching was first used to remove these hazardous impurities from the carbon black waste. Acid leaching with nitric acid was found to be a very effective method for removal of both nickel and vanadium from the carbon black waste (i.e. up to 95% nickel and 98% vanadium were removed via treatment with 2M nitric acid for 1h at 20°C), whereas alkali leaching by using NaOH under the same condition was not effective for removal of nickel (less than 10% nickel was removed). Human lung cells (MRC-5) were then used to investigate the toxicity of the carbon black waste before and after leaching. Cell viability analysis showed that the leachate from the original carbon black waste has very high toxicity, whereas the leachate from the treated samples has no significant toxicity. Finally, the efficacy of the carbon black waste treated with HNO3 as an absorbent for dye removal was investigated. This treated carbon black waste has high adsorption capacity (∼361.2mg dye/g carbonblack), which can be attributed to its high specific surface area (∼559m(2)/g). The treated carbon black waste with its high adsorption capacity and lack of cytotoxicity is a promising adsorbent material. Moreover, the carbon black waste was found to show high electrical conductivity (ca. 10S/cm), making it a potentially valuable source of conductive material.

  16. Oleylamine as a beneficial agent for the synthesis of CoFe₂O₄ nanoparticles with potential biomedical uses.

    PubMed

    Georgiadou, Violetta; Kokotidou, Chrysoula; Le Droumaguet, Benjamin; Carbonnier, Benjamin; Choli-Papadopoulou, Theodora; Dendrinou-Samara, Catherine

    2014-05-07

    The multifunctional role of oleylamine (OAm) as a versatile and flexible reagent in synthesis as well as a desired surface ligand for the synthesis of CoFe2O4 nanoparticles (NPs) is described. CoFe2O4 NPs were prepared by a facile, reproducible and scalable solvothermal approach in the presence of pure OAm. By monitoring the volume of OAm, different shapes of NPs, spherical and truncated, were formed. The syntheses led to high yields of monodispersed and considerably small (9-11 nm) CoFe2O4 NPs with enhanced magnetization (M(s) = 84.7-87.5 emu g(-1)). The resulting hydrophobic CoFe2O4 NPs were easily transferred to an aqueous phase through the formation of reverse micelles between the hydrophobic chains of OAm and cetyltrimethylammonium bromide (CTAB) and transverse relaxivities (r2) were measured. The spherical NPs had a greater effect on water proton relaxivity (r2 = 553 mM(-1) s(-1)) at an applied magnetic field of 11.7 T. The NPs became fluorescent probes by exploiting the presence of the double bond of OAm in the middle of the molecule; a thiol-ene "click" reaction with the fluorophore bovine serum albumin (FITC-BSA) was achieved. The labeled/biofunctionalized CoFe2O4 NPs interacted with cancer (HeLa and A549) and non-cancer cell lines (MRC5 and dental MSCS) and cell viability was estimated. A clear difference of toxicity between the cancer and non-cancer cells was observed while low cytotoxicity in living cells was supported. Confocal laser microscopy showed that NPs entered the cell membranes and were firstly localized close to them provoking a membrane expansion and were further accumulated perinuclearly without entering the nuclei.

  17. Proenkephalin is a nuclear protein responsive to growth arrest and differentiation signals

    PubMed Central

    1995-01-01

    Neuropeptide precursors are traditionally viewed as molecules destined to be cleaved into bioactive peptides, which are then released from the cell to act on target cell surface receptors. In this report we demonstrate nuclear localization of the enkephalin precursor, proenkephalin, in rodent and human embryonic fibroblasts (Swiss 3T3 and MRC-5 cells) and in rodent myoblasts (C2C12 cells). Nuclear proenkephalin, detected by immunofluorescence with a panel of antiproenkephalin monoclonal antibodies, is distributed predominantly in three patterns. Selective abolition of these patterns with salt, nuclease, or methanol is associated with liberation of immunoprecipitable proenkephalin into the extraction supernatant. Proenkephalin antigenic domains, mapped using phage display libraries and synthetic peptides, are differentially revealed in the three distribution patterns. Selective epitope revelation may reflect different conformational forms of proenkephalin or its existence in complexes with other nuclear proteins, forms which therefore have different biochemical associations with the nuclear substructure. In fibroblast cell populations in transition to growth arrest, nuclear proenkephalin responds promptly to mitogen withdrawal and cell-cell contact by transient, virtually synchronous unmasking of multiple antigenic domains in a fine punctate distribution. A similar phenomenon is observed in myoblasts undergoing differentiation. The acknowledgment of growth arrest and differentiation signals by nuclear proenkephalin suggests its integration with transduction pathways mediating these signals. To begin to address the mechanism of nuclear targeting, we have transfected mutated and nonmutated proenkephalin into COS (African green monkey kidney) cells. Nonmutated proenkephalin is localized exclusively in the cytoplasm; however, proenkephalin mutated at the first ATG codon, or devoid of its signal peptide sequence, is targeted to the nucleus as well as to the cytoplasm

  18. Efficient inactivation of viruses and mycoplasma in animal sera using UVC irradiation.

    PubMed

    Kurth, J; Waldmann, R; Heith, J; Mausbach, K; Burian, R

    1999-01-01

    Transmission of viruses by animal sera represents a considerable risk for humans and animals particularly when the serum is used for the production of pharmaceutical products such as vaccines. Procedures applicable for inactivating large numbers of different viruses, both enveloped and non-enveloped, are therefore mandatory. For this purpose we have developed and validated UVC irradiation as the virus-inactivation procedure of choice for serum to be used in an industrial setting. Spiking experiments in foetal calf serum (FCS) were performed by independent contract laboratories and revealed constantly high clearance rates for various viruses such as bovine parvovirus, parainfluenza type III virus, bovine diarrhoea virus, foot-and-mouth disease virus and different forms of mycoplasmas. UVC-treated sera maintained their growth-promoting activities for various cell types (MRC-5, Vero, CHO). Conventional growth curves generated in the presence of 10% and 1% UVC-treated FCS differed only slightly from controls, indicating the lack of significant damage during UVC exposure. Experiments using a sensitive photometric-based acid phosphatase assay (APA), which correlates well with the more tedious cell counting procedure, confirmed these findings even in the presence of minimal serum requirements. UVC treatment of animal sera appears advantageous compared to currently recommended inactivation procedures, such as Gamma irradiation, for at least three reasons: (i) it possesses a high inactivation capacity for parvoviruses, a pathogen that cannot be destroyed easily by conventional methods; (ii) it causes no noticeable impairment in cell growth and (iii) it can be performed in a controlled manner at the production site.

  19. A role for human mitochondrial complex II in the production of reactive oxygen species in human skin

    PubMed Central

    Anderson, Alasdair; Bowman, Amy; Boulton, Sarah Jayne; Manning, Philip; Birch-Machin, Mark A.

    2014-01-01

    The mitochondrial respiratory chain is a major generator of cellular oxidative stress, thought to be an underlying cause of the carcinogenic and ageing process in many tissues including skin. Previous studies of the relative contributions of the respiratory chain (RC) complexes I, II and III towards production of reactive oxygen species (ROS) have focussed on rat tissues and certainly not on human skin which is surprising as this tissue is regularly exposed to UVA in sunlight, a potent generator of cellular oxidative stress. In a novel approach we have used an array of established specific metabolic inhibitors and DHR123 fluorescence to study the relative roles of the mitochondrial RC complexes in cellular ROS production in 2 types of human skin cells. These include additional enhancement of ROS production by exposure to physiological levels of UVA. The effects within epidermal and dermal derived skin cells are compared to other tissue cell types as well as those harbouring a compromised mitochondrial status (Rho-zero A549). The results show that the complex II inhibitor, TTFA, was the only RC inhibitor to significantly increase UVA-induced ROS production in both skin cell types (P<0.05) suggesting that the role of human skin complex II in terms of influencing ROS production is more important than previously thought particularly in comparison to liver cells. Interestingly, two-fold greater maximal activity of complex II enzyme was observed in both skin cell types compared to liver (P<0.001). The activities of RC enzymes appear to decrease with increasing age and telomere length is correlated with ageing. Our study showed that the level of maximal complex II activity was higher in the MRC5/hTERT (human lung fibroblasts transfected with telomerase) cells than the corresponding wild type cells (P=0.0012) which can be considered (in terms of telomerase activity) as models of younger and older cells respectively. PMID:25460738

  20. Design, synthesis and biological studies of a library of NK1-Receptor Ligands Based on a 5-arylthiosubstituted 2-amino-4,6-diaryl-3-cyano-4H-pyran core: Switch from antagonist to agonist effect by chemical modification.

    PubMed

    Recio, Rocío; Vengut-Climent, Empar; Mouillac, Bernard; Orcel, Hélène; López-Lázaro, Miguel; Calderón-Montaño, José Manuel; Álvarez, Eleuterio; Khiar, Noureddine; Fernández, Inmaculada

    2017-09-29

    A library of 5-arylthiosubstituted 2-amino-4,6-diaryl-3-cyano-4H-pyrans has been synthesized as a new family of non-peptide NK1 receptor ligands by a one-pot cascade process. Their biological effects via interaction with the NK1 receptor were experimentally determined as percentage of inhibition (for antagonists) and percentage of activation (for agonists), compared to the substance P (SP) effect, in IPone assay. A set of these amino compounds was found to inhibit the action of SP, and therefore can be considered as a new family of SP-antagonists. Interestingly, the acylation of the 2-amino position causes a switch from antagonist to agonist activity. The 5-phenylsulfonyl-2-amino derivative 17 showed the highest antagonist activity, while the 5-p-tolylsulfenyl-2-trifluoroacetamide derivative 20R showed the highest agonist effect. As expected, in the case of the 5-sulfinylderivatives, there was an enantiomeric discrimination in favor of one of the two enantiomers, specifically those with (SS,RC) configuration. The anticancer activity studies assessed by using human A-549 lung cancer cells and MRC-5 non-malignant lung fibroblasts, revealed a statistically significant selective cytotoxic effect of some of these 2-amino-4H-pyran derivatives toward the lung cancer cells. These studies demonstrated that the newly synthesized 4H-pyran derivatives can be used as a starting point for the synthesis of novel SP-antagonists with higher anticancer activity in the future. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. New Ru(II) pincer complexes: synthesis, characterization and biological evaluation for photodynamic therapy.

    PubMed

    Tabrizi, Leila; Chiniforoshan, Hossein

    2016-11-15

    Three new ruthenium(ii) complexes of NCN pincer and phenylcyanamide derivative ligands of the formula [Ru(L)(Ph2phen)(3,5-(NO2)2pcyd)], 1, [Ru(L)(Me2phen)(3,5-(NO2)2pcyd)], 2, and [Ru(L)(Cl2phen)(3,5-(NO2)2pcyd)], 3 (HL: 5-methoxy-1,3-bis(1-methyl-1H-benzo[d]imidazol-2-yl)benzene, 3,5-(NO2)2pcyd: 3,5-(NO2)2pcyd, Ph2phen: 4,7-diphenyl-1,10-phenanthroline, Me2phen: 4,7-dimethyl-1,10-phenanthroline, Cl2phen: 4,7-dichloro-1,10-phenanthroline) have been synthesized and studied as potential photosensitizers (PSs) in photodynamic therapy (PDT). The complexes exhibited promising (1)O2 production quantum yields comparable with PSs available on the market. The DNA-binding interactions of the complexes with calf thymus DNA have been studied by absorption, emission, and viscosity measurements. All complexes cleave SC-DNA efficiently on photoactivation at 350 nm with the formation of singlet oxygen ((1)O2) and hydroxyl radicals (˙OH) in type-II and photoredox pathways. Complexes 1-3 showed very good uptake in cervical cancer cells (HeLa). The compounds studied were found to exhibit low toxicity against HeLa cells (IC50 > 300 μM) and, remarkably, on non-cancerous MRC-5 cells (IC50 > 100 μM) in the dark. However, 1 showed very promising behavior with an increment of about 90 times, in its cytotoxicity upon light illumination at 420 nm in addition to very good human plasma stability.

  2. EW-7197 inhibits hepatic, renal, and pulmonary fibrosis by blocking TGF-β/Smad and ROS signaling.

    PubMed

    Park, Sang-A; Kim, Min-Jin; Park, So-Yeon; Kim, Jung-Shin; Lee, Seon-Joo; Woo, Hyun Ae; Kim, Dae-Kee; Nam, Jeong-Seok; Sheen, Yhun Yhong

    2015-05-01

    Fibrosis is an inherent response to chronic damage upon immense apoptosis or necrosis. Transforming growth factor-beta1 (TGF-β1) signaling plays a key role in the fibrotic response to chronic liver injury. To develop anti-fibrotic therapeutics, we synthesized a novel small-molecule inhibitor of the TGF-β type I receptor kinase (ALK5), EW-7197, and evaluated its therapeutic potential in carbon tetrachloride (CCl4) mouse, bile duct ligation (BDL) rat, bleomycin (BLM) mouse, and unilateral ureteral obstruction (UUO) mouse models. Western blot, immunofluorescence, siRNA, and ChIP analysis were carried out to characterize EW-7197 as a TGF-β/Smad signaling inhibitor in LX-2, Hepa1c1c7, NRK52E, and MRC5 cells. In vivo anti-fibrotic activities of EW-7197 were examined by microarray, immunohistochemistry, western blotting, and a survival study in the animal models. EW-7197 decreased the expression of collagen, α-smooth muscle actin (α-SMA), fibronectin, 4-hydroxy-2, 3-nonenal, and integrins in the livers of CCl4 mice and BDL rats, in the lungs of BLM mice, and in the kidneys of UUO mice. Furthermore, EW-7197 extended the lifespan of CCl4 mice, BDL rats, and BLM mice. EW-7197 blocked the TGF-β1-stimulated production of reactive oxygen species (ROS), collagen, and α-SMA in LX-2 cells and hepatic stellate cells (HSCs) isolated from mice. Moreover, EW-7197 attenuated TGF-β- and ROS-induced HSCs activation to myofibroblasts as well as extracellular matrix accumulation. The mechanism of EW-7197 appeared to be blockade of both TGF-β1/Smad2/3 and ROS signaling to exert an anti-fibrotic activity. This study shows that EW-7197 has a strong potential as an anti-fibrosis therapeutic agent via inhibition of TGF-β-/Smad2/3 and ROS signaling.

  3. Inhibition of Plasminogen Activator Inhibitor-1 Attenuates Transforming Growth Factor-β-Dependent Epithelial Mesenchymal Transition and Differentiation of Fibroblasts to Myofibroblasts

    PubMed Central

    Omori, Keitaro; Hattori, Noboru; Senoo, Tadashi; Takayama, Yusuke; Masuda, Takeshi; Nakashima, Taku; Iwamoto, Hiroshi; Fujitaka, Kazunori; Hamada, Hironobu; Kohno, Nobuoki

    2016-01-01

    Transforming growth factor-β (TGF-β) is central during the pathogenesis of pulmonary fibrosis, in which the plasminogen activator inhibitor-1 (PAI-1) also has an established role. TGF-β is also known to be the strongest inducer of PAI-1. To investigate the link between PAI-1 and TGF-β in fibrotic processes, we evaluated the effect of SK-216, a PAI-1-specific inhibitor, in TGF-β-dependent epithelial-mesenchymal transition (EMT) and fibroblast to myofibroblast differentiation. In human alveolar epithelial A549 cells, treatment with TGF-β induced EMT, whereas co-treatment with SK-216 attenuated the occurrence of EMT. The inhibition of TGF-β-induced EMT by SK-216 was also confirmed in the experiment using murine epithelial LA-4 cells. Blocking EMT by SK-216 inhibited TGF-β-induced endogenous production of PAI-1 and TGF-β in A549 cells as well. These effects of SK-216 were not likely mediated by suppressing either Smad or ERK pathways. Using human lung fibroblast MRC-5 cells, we demonstrated that SK-216 inhibited TGF-β-dependent differentiation of fibroblasts to myofibroblasts. We also observed this inhibition by SK-216 in human primary lung fibroblasts. Following these in vitro results, we tested oral administration of SK-216 into mice injected intratracheally with bleomycin. We found that SK-216 reduced the degree of bleomycin-induced pulmonary fibrosis in mice. Although the precise mechanisms underlying the link between TGF-β and PAI-1 regarding fibrotic process were not determined, PAI-1 seems to act as a potent downstream effector on the pro-fibrotic property of TGF-β. In addition, inhibition of PAI-1 activity by a PAI-1 inhibitor exerts an antifibrotic effect even in vivo. These data suggest that targeting PAI-1 as a downstream effector of TGF-β could be a promising therapeutic strategy for pulmonary fibrosis. PMID:26859294

  4. Antiproliferative activity and chemical composition of the venom from the Amazonian toad Rhinella marina (Anura: Bufonidae).

    PubMed

    Schmeda-Hirschmann, Guillermo; Quispe, Cristina; Arana, Gabriel Vargas; Theoduloz, Cristina; Urra, Félix A; Cárdenas, César

    2016-10-01

    Little is known on the composition of Peruvian Amazon toad venoms. The large toad Rhinella marina is common in the cleared tropical forests of the Iquitos region and is regarded as poisonous. The venom from two different populations of R. marina was collected in the Departamento de Loreto, Perú. The samples were assessed for antiproliferative effect and composition. Some 29 compounds were identified or tentatively identified from the venom by spectroscopic and spectrometric means. The main free bufadienolide was marinobufagin 7 while marinobufotoxin 15 and bufalitoxin 9 were the main bufadienolide argininyl diacid derivatives. The alkaloids dehydrobufotenin 28 and bufotenidin 29 were present in both venoms. The main difference in the venoms was the relative ratio of argininyl diacids from bufadienolides to free bufadienolides. The argininyl diacids included derivatives from bufalin, marinobufagin, telocinobufagin, hellebrigenin, resibufogenin and bufotalinin. Four compounds, including undecadienoyl aginine 6 and three argininyl diacids from bufadienolides were tentatively identified for the first time in the samples. The venom showed a strong antiproliferative effect towards MRC-5 normal human lung fibroblasts (0.063-0.247 μg/mL), AGS human gastric adenocarcinoma cells (0.076-0.272 μg/mL), SK-MES-1 human lung cancer cells (0.154-0.296 μg/mL), J82 human bladder carcinoma cells (0.169-0.212 μg/mL), and HL-60 human promyelocytic leukemia (0.071-0.283 μg/mL). The antiproliferative effect is mediated by ROS production and cell cycle arrest in human breast cancer cells (MCF7 and MDA-MB-231). This is the first report on the composition of R. marina venom from the Peruvian Amazon pointing out the need to include different venom samples to get a better picture from the activity and composition of South American toad defense substances. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Cell cycle, apoptosis, cellular uptake and whole-transcriptome microarray gene expression analysis of HeLa cells treated with a ruthenium(II)-arene complex with an isoquinoline-3-carboxylic acid ligand.

    PubMed

    Jovanović, Katarina K; Tanić, Miljana; Ivanović, Ivanka; Gligorijević, Nevenka; Dojčinović, Biljana P; Radulović, Siniša

    2016-10-01

    Ruthenium(II)-arene complexes are promising drug candidates for the therapy of solid tumors. In previous work, seven new compounds of the general formula [Ru(η(6)-p-cymene)(L(1-7))Cl] were synthesized and characterized, of which the complex with L=isoquinoline-3-carboxylic acid (RuT7) was two times as active on HeLa cells compared to normal cell line MRC-5, as indicated by IC50 values determined after 48h of incubation (45.4±3.0 vs. 84.2±5.7μM, respectively). In the present study, cell cycle analysis of HeLa cells treated with RuT7 showed S phase arrest and an increase in sub-G1 population. The apoptotic potential of the title compound was confirmed with the Annexin V-FITC/PI assay together with a morphological evaluation of cells using fluorescent microscopy. Analysis of the intracellular accumulation of ruthenium showed 8.9ng Ru/10(6) cells after 6h of incubation. To gain further insight in the molecular mechanism of action of RuT7 on HeLa cells, a whole-transcriptome microarray gene expression analysis was performed. Analysis of functional categories and signaling and biochemical pathways associated with the response of HeLa cells to treatment with RuT7 showed that it leads the cells through the intrinsic (mitochondrial) apoptotic pathway, via indirect DNA damage due to the action of reactive oxygen species, and through direct DNA binding of RuT7. Statistical analysis for enrichment of gene sets associated with known drug-induced toxicities identified fewer associated toxicity profiles in RuT7-treated cells compared to cisplatin treatment. Altogether these results provide the basis for further development of RuT7 in animal and pre-clinical studies as a potential drug candidate.

  6. Applying the Fe(III) binding property of a chemical transferrin mimetic to Ti(IV) anticancer drug design.

    PubMed

    Parks, Timothy B; Cruz, Yahaira M; Tinoco, Arthur D

    2014-02-03

    As an endogenous serum protein binder of Ti(IV), transferrin (Tf) serves as an excellent vehicle to stabilize the hydrolysis prone metal ion and successfully transport it into cells. This transporting role is thought to be central to Ti(IV)'s anticancer function, but efforts to synthesize Ti(IV) compounds targeting transferrin have not produced a drug. Nonetheless, the Ti(IV) transferrin complex (Ti2Tf) greatly informs on a new Ti(IV)-based anticancer drug design strategy. Ti2Tf interferes with cellular uptake of Fe(III), which is particularly detrimental to cancer cells because of their higher requirement for iron. Ti(IV) compounds of chemical transferrin mimetic (cTfm) ligands were designed to facilitate Ti(IV) activity by attenuating Fe(III) intracellular levels. In having a higher affinity for Fe(III) than Ti(IV), these ligands feature the appropriate balance between stability and lability to effectively transport Ti(IV) into cancer cells, release Ti(IV) via displacement by Fe(III), and deplete the intracellular Fe(III) levels. The cTfm ligand N,N'-di(o-hydroxybenzyl)ethylenediamine-N,N'-diacetic acid (HBED) was selected to explore the feasibility of the design strategy. Kinetic studies on the Fe(III) displacement process revealed that Ti(IV) can be transported and released into cells by HBED on a physiologically relevant time scale. Cell viability studies using A549 cancerous and MRC5 normal human lung cells and testing the cytotoxicity of HBED and its Ti(IV), Fe(III), and Ga(III) compounds demonstrate the importance of Fe(III) depletion in the proposed drug design strategy and the specificity of the strategy for Ti(IV) activity. The readily derivatized cTfm ligands demonstrate great promise for improved Ti(IV) anticancer drugs.

  7. Autophagosome Proteins LC3A, LC3B and LC3C Have Distinct Subcellular Distribution Kinetics and Expression in Cancer Cell Lines

    PubMed Central

    Koukourakis, Michael I.; Kalamida, Dimitra; Giatromanolaki, Alexandra; Zois, Christos E.; Sivridis, Efthimios; Pouliliou, Stamatia; Mitrakas, Achilleas; Gatter, Kevin C.; Harris, Adrian L.

    2015-01-01

    LC3s (MAP1-LC3A, B and C) are structural proteins of autophagosomal membranes, widely used as biomarkers of autophagy. Whether these three LC3 proteins have a similar biological role in autophagy remains obscure. We examine in parallel the subcellular expression patterns of the three LC3 proteins in a panel of human cancer cell lines, as well as in normal MRC5 fibroblasts and HUVEC, using confocal microscopy and western blot analysis of cell fractions. In the cytoplasm, there was a minimal co-localization between LC3A, B and C staining, suggesting that the relevant autophagosomes are formed by only one out of the three LC3 proteins. LC3A showed a perinuclear and nuclear localization, while LC3B was equally distributed throughout the cytoplasm and localized in the nucleolar regions. LC3C was located in the cytoplasm and strongly in the nuclei (excluding nucleoli), where it extensively co-localized with the LC3A and the Beclin-1 autophagy initiating protein. Beclin 1 is known to contain a nuclear trafficking signal. Blocking nuclear export function by Leptomycin B resulted in nuclear accumulation of all LC3 and Beclin-1 proteins, while Ivermectin that blocks nuclear import showed reduction of accumulation, but not in all cell lines. Since endogenous LC3 proteins are used as major markers of autophagy in clinical studies and cell lines, it is essential to check the specificity of the antibodies used, as the kinetics of these molecules are not identical and may have distinct biological roles. The distinct subcellular expression patterns of LC3s provide a basis for further studies. PMID:26378792

  8. Production of Cytomegalovirus Dense Bodies by Scalable Bioprocess Methods Maintains Immunogenicity and Improves Neutralizing Antibody Titers.

    PubMed

    Schneider-Ohrum, Kirsten; Cayatte, Corinne; Liu, Yi; Wang, Zhaoti; Irrinki, Alivelu; Cataniag, Floro; Nguyen, Nga; Lambert, Stacie; Liu, Hui; Aslam, Shahin; Duke, Greg; McCarthy, Michael P; McCormick, Louise

    2016-11-15

    With the goal of developing a virus-like particle-based vaccine based on dense bodies (DB) produced by human cytomegalovirus (HCMV) infections, we evaluated scalable culture, isolation, and inactivation methods and applied technically advanced assays to determine the relative purity, composition, and immunogenicity of DB particles. Our results increase our understanding of the benefits and disadvantages of methods to recover immunogenic DB and inactivate contaminating viral particles. Our results indicate that (i) HCMV strain Towne replicates in MRC-5 fibroblasts grown on microcarriers, (ii) DB particles recovered from 2-bromo-5,6-dichloro-1-beta-d-ribofuranosyl benzimidazole riboside (BDCRB)-treated cultures and purified by tangential flow filtration (TFF-DB) or glycerol tartrate gradient sedimentation (GT-DB) constitute 92% or 98%, respectively, of all particles in the final product, (iii) epithelial cell-tropic DB particles are recovered from a single round of coinfection by AD169 and Towne strain viruses, consistent with complementation between the UL130 and UL131A expressed by these strains and restoration of gH/gL/UL128-UL131A (gH pentamer), (iv) equivalent neutralizing antibody titers are induced in mice following immunization with epithelial cell-tropic DB or gH pentamer-deficient DB preparations, (v) UV-inactivated residual virus in GT-DB or TFF-DB preparations retained immunogenicity and induced neutralizing antibody, preventing viral entry into epithelial cells, and (vi) GT-DB and TFF-DB induced cellular immune responses to multiple HCMV peptides. Collectively, this work provides a foundation for future development of DB as an HCMV-based particle vaccine.

  9. Development of a novel recombinant adenovirus containing gfp-zeocin fusion expression cassette for conditional replication in p53-deficient human tumor cells.

    PubMed

    Hu, Baoli; Joshua, Mallam Nock; Dong, Changyuan; Qi, Yipeng

    2004-05-01

    Two obstacles limiting the efficacy of nearly all cancer gene therapy trails are low gene transduction efficiency and the lack of tumor specificity. Fortunately, a replication-competent, E1B-deficient adenovirus (dl1520) was developed that could overcome these limitations, because it was capable of efficiently and selectively destroying tumor cells lacking functional p53. In an attempt to appraise the efficiency and safety of this approach, a novel recombinant adenovirus, r3/Ad, containing a gfp-zeocin expression cassette was constructed in this work. The study in vitro demonstrated that r3/Ad has the ability to replicate in and lyse only the p53-deficient human tumor cells such as the human glioblastoma cells (U251) and human bladder cells (EJ) but not in the human fibroblast cells (MRC-5) with functional p53. Importantly, this gfp-zeocin fusion gene driven by the bipromoter (CMV and EM-7) could be used as an effective selective marker and reporter in prokaryotic and eukaryotic cells; and also zeocin as a selective marker could minimize contamination of the recombinant virus by the wt-Ad5. Additionally, it was found that the r3/Ad could be useful for studying the selective replication of E1B-deficient adenovirus in vivo, it could be used as a "guide" to study the ability of the recombinant adenovirus to spread and to infect distant tumor cells in any tumor bearing animal model by GFP as a reporter. This may help determine the safety of using any E1B-deficient adenovirus in cancer gene therapy.

  10. A High-Sensitivity and Low-Power Theranostic Nanosystem for Cell SERS Imaging and Selectively Photothermal Therapy Using Anti-EGFR-Conjugated Reduced Graphene Oxide/Mesoporous Silica/AuNPs Nanosheets.

    PubMed

    Chen, Yu-Wei; Liu, Ting-Yu; Chen, Po-Jung; Chang, Po-Hsueh; Chen, San-Yuan

    2016-03-01

    A high-sensitivity and low-power theranostic nanosystem that combines with synergistic photothermal therapy and surface-enhanced Raman scattering (SERS) mapping is constructed by mesoporous silica self-assembly on the reduced graphene oxide (rGO) nanosheets with nanogap-aligned gold nanoparticles (AuNPs) encapsulated and arranged inside the nanochannels of the mesoporous silica layer. Rhodamine 6G (R6G) as a Raman reporter is then encapsulated into the nanochannels and anti-epidermal growth factor receptor (EGFR) is conjugated on the nanocomposite surface, defined as anti-EGFR-PEG-rGO@CPSS-Au-R6G, where PEG is polyethylene glycol and CPSS is carbon porous silica nanosheets. SERS spectra results show that rGO@CPSS-Au-R6G enhances 5 × 10(6) magnification of the Raman signals and thus can be applied in the noninvasive cell tracking. Furthermore, it displays high sensitivity (detection limits: 10(-8) m R6G solution) due to the "hot spots" effects by the arrangements of AuNPs in the nanochannels of mesoporous silica. The highly selective targeting of overexpressing EGFR lung cancer cells (A549) is observed in the anti-EGFR-PEG-rGO@CPSS-Au-R6G, in contrast to normal cells (MRC-5). High photothermal therapy efficiency with a low power density (0.5 W cm(-2) ) of near-infrared laser can be achieved because of the synergistic effect by conjugated AuNPs and rGO nanosheets. These results demonstrate that the anti-EGFR-PEG-rGO@CPSS-Au-R6G is an excellent new theranostic nanosystem with cell targeting, cell tracking, and photothermal therapy capabilities.

  11. Levels of synthesis of primate-specific nuclear proteins differ between growth-arrested and proliferating cells.

    PubMed

    Celis, J E; Madsen, P; Nielsen, S; Petersen Ratz, G; Lauridsen, J B; Celis, A

    1987-02-01

    A monoclonal antibody that reacts specifically with the proliferation-sensitive nuclear proteins, isoelectric focusing (IEF) 8Z30 and 8Z31 (molecular weight (MW), 76,000 charge variants, HeLa protein catalogue number) has been characterized. As determined by indirect immunofluorescence, the antibody stains the nucleolus and nucleoplasm of interphase-cultured cells of primate origin, but does not react with cells of other species. Proteins having similar MWs and isoelectric points as the human or monkey (primates) proteins were not observed in cultured cells of the following species: aves, bat, dog, dolphin, goat, hamster, mink, mouse, pisces, potoroo, rabbit and rat. Quantitative two-dimensional (2D) gel electrophoretic analysis of [35S]methionine-labeled proteins synthesized by normal (quiescent, proliferating) and SV40-transformed human MRC-5 fibroblasts revealed significant differences in the levels of synthesis of both IEF 8Z30 and 8Z31. In quiescent cells the main labelled product corresponded to IEF 8Z31 (ratio IEF 8Z31/8Z30, 2.3), while in the transformed cells the major product was IEF 8Z30 (ratio, 0.62). Normal proliferating fibroblasts exhibited similar levels of both proteins (ratio, 1.21). Combined levels of synthesis of both proteins were 1.50 and 1.20 times as high in the transformed cells as in the quiescent and proliferating cells, respectively. Similar results were observed in other pairs of normal and transformed human cells, such as WI38/WI38 SV40 and amnion/AMA. Modulation of the levels of synthesis of these proteins may play a role in cell proliferation.

  12. A Flow Cytometry-Based Screen of Nuclear Envelope Transmembrane Proteins Identifies NET4/Tmem53 as Involved in Stress-Dependent Cell Cycle Withdrawal

    PubMed Central

    Waterfall, Martin; Batrakou, Dzmitry G.; Pekovic, Vanja; Hutchison, Christopher J.; Schirmer, Eric C.

    2011-01-01

    Disruption of cell cycle regulation is one mechanism proposed for how nuclear envelope protein mutation can cause disease. Thus far only a few nuclear envelope proteins have been tested/found to affect cell cycle progression: to identify others, 39 novel nuclear envelope transmembrane proteins were screened for their ability to alter flow cytometry cell cycle/DNA content profiles when exogenously expressed. Eight had notable effects with seven increasing and one decreasing the 4N∶2N ratio. We subsequently focused on NET4/Tmem53 that lost its effects in p53−/− cells and retinoblastoma protein-deficient cells. NET4/TMEM53 knockdown by siRNA altered flow cytometry cell cycle/DNA content profiles in a similar way as overexpression. NET4/TMEM53 knockdown did not affect total retinoblastoma protein levels, unlike nuclear envelope-associated proteins Lamin A and LAP2α. However, a decrease in phosphorylated retinoblastoma protein was observed along with a doubling of p53 levels and a 7-fold increase in p21. Consequently cells withdrew from the cell cycle, which was confirmed in MRC5 cells by a drop in the percentage of cells expressing Ki-67 antigen and an increase in the number of cells stained for ß-galactosidase. The ß-galactosidase upregulation suggests that cells become prematurely senescent. Finally, the changes in retinoblastoma protein, p53, and p21 resulting from loss of NET4/Tmem53 were dependent upon active p38 MAP kinase. The finding that roughly a fifth of nuclear envelope transmembrane proteins screened yielded alterations in flow cytometry cell cycle/DNA content profiles suggests a much greater influence of the nuclear envelope on the cell cycle than is widely held. PMID:21533191

  13. Acoustic cavitation induced generation of stabilizer-free, extremely stable reduced graphene oxide nanodispersion for efficient delivery of paclitaxel in cancer cells.

    PubMed

    Geetha Bai, Renu; Muthoosamy, Kasturi; Shipton, Fiona Natalia; Manickam, Sivakumar

    2017-05-01

    Graphene is one of the highly explored nanomaterials due to its unique and extraordinary properties. In this study, by utilizing a hydrothermal reduction method, graphene oxide (GO) was successfully converted to reduced graphene oxide (RGO) without using any toxic reducing agents. Following this, with the use of ultrasonic cavitation, profoundly stable few layer thick RGO nanodispersion was generated without employing any stabilizers or surfactants. During ultrasonication, shockwaves from the collapse of bubbles cause a higher dispersing energy to the graphene nanosheets which surpass the forces of Van der Waal's and π-π stacking and thus pave the way to form a stable aqueous nanodispersion of graphene. Ultrasonication systems with different power intensity have been employed to determine the optimum conditions for obtaining the most stable RGO dispersion. The optimised conditions of ultrasonic treatments led to the development of a very stable reduced graphene oxide (RGO) aqueous dispersion. The stability was observed for two years and was analyzed by using Zetasizer by measuring the particle size and zeta potential at regular intervals and found to have exceptional stability. The excellent stability at physiological pH promotes its utilization in nano drug delivery application as a carrier for Paclitaxel (Ptx), an anticancer drug. The in vitro cytotoxicity analysis of Ptx loaded RGO nanodispersion by MTT assay performed on the cell lines revealed the potential of the nanodispersion as a suitable drug carrier. Studies on normal lung cells, MRC-5 and nasopharyngeal cancer cells, HK-1 supported the biocompatibility of RGO-Ptx towards normal cell line. This investigation shows the potential of exceptionally stable RGO-Ptx nanodispersion in nano drug delivery applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. "Ziziphus oxyphylla": Ethnobotanical, ethnopharmacological and phytochemical review.

    PubMed

    Ahmad, Rizwan; Ahmad, Niyaz; Naqvi, Atta Abbas

    2017-07-01

    Ziziphus oxyphylla (ZO) is distributed mainly in tropic and warm temperate regions in the world. Pakistan owns six (06) indigenous species of genus Ziziphus out of which ZO is widely used for traditional treatment of different ailments such as diabetes, jaundice and liver diseases. The present review aims to provide in-depth and comprehensive literature overview, regarding botanical, chemical and biological characteristics of the plant alongwith phytochemical isolation and mechanistic studies to support its folklore and traditional uses. The literature search and relevant information were collected through authentic resources using data bases such as Google Scholar, PubMed, Web of Science, Scopus and Science Direct, peer reviewed articles, books and thesis. The phytochemical characterization as well as color tests confirmed the presence of diverse chemical groups presents in the plant such as alkaloids, flavonoids, phenolic compounds and tannins. In-vivo and in-vitro pharmacological activities for the crude extracts and its fractions revealed potent antinociceptive, anti-inflammatory, antipyretic, antioxidant, antibacterial as well as acetyl choline esterase and lipoxygenase inhibitory activity. Majority of the isolated compounds belonged to class of Cyclopeptide alkaloids for which the genus is already very famous. Compounds from alkaloids and flavonoids chemical class were isolated and evaluated with a role as antioxidant, antidiabetic, anti-glycation and advanced glycation end products inhibitors. No toxicity was observed during cytotoxicity (MRC-5 cell lines), insecticidal and brine shrimp lethality studies. The review article supports the folklore uses of this plant in the aforementioned diseases. The plant due to its diverse biological nature may be further studied for mechanistic studies, its anticancer effects as well as its potency and toxicity studies for safe use in human beings. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  15. 244 Nasal Poliposis and Allergic Disease. Dr. Salvador Allende Hospital

    PubMed Central

    Méndez, Ada Castillo

    2012-01-01

    Background The edematous irritation of the corium of the pituitary mucosa wakes it suffers a degeneration that causes what is known as nasal polyposis, hypertrophy of the nasal mucosa as a result of a chronic inflamatory process. It is said that its formation is due to infectious processes, vascular changes as local disorders of the immunity of the nasal mucosa. However many concide in including the allergic factors as the cause of the nasal polypos and they give a special interest to the constitutional factor inside the genesis of them. The investigation had as objectives to know the relationship that there is between the nasal polyposis and the allergic diseases, as well as to study some parameters of the humoral and celular immunity in our patients. Methods 15 patients diagnosed wiht nasal polyposis were taken from the otorhinolaryngologists and they were sent to the allergic department to be evaluated. Patient's charts of all of thems were made and they were indicated some studies such as eosinophil global count, nasal exudate,sample radiographic study of paranasal sinus, serology, hemogram, glycemia and minimal clotting test, study of the humoral immunity and making determination of IgE, IgA, IgG, IgM. The celular immunity was also studied by making a determination of active and expontaneous Roseta test. And a life evaluation was made too by means of the hypersensitivity retard tests. Results High figures of elevated IgE were obtained in a 67 % of the patients studied. A control group was made for the Igs determination and the Roseta test. No significant difference was found in the Roseta test. Conclusions The elevation of the IgE in the patients studied makes us infer that there is an evident relation ship between these 2 pathologies. There is no evidence. That shows that there is an alteration of the celular immunity in the sample of the patients with nasal polyposis that were studied.

  16. Riego y fertirriego

    Treesearch

    R. Kasten Dumroese; Thomas D. Landis; Kim M. Wilkinson

    2012-01-01

    El agua es el factor que más puede afectar el crecimiento y la sanidad de las plantas por sí solo. Es esencial para casi todos los procesos vegetales: la fotosíntesis, el transporte de nutrientes, el crecimiento y el desarrollo celular. De hecho, del 80 al 90% del peso de un plantín es agua, por lo cual el manejo del riego es una de las tareas más trascendentes dentro...

  17. [Post-partum thyroiditis].

    PubMed

    Neves, Celestino; Alves, Marta; Delgado, Luís; Medina, J Luís

    2009-01-01

    In the post-partum period the immune alterations are associated with the multiple autoimmune diseases relapse. After birth, immune-tolerance variation slowly disappear, and is observed a return to a normal state - after an exacerbation period - of autoimmune reactivity, during which a great increase in T cells and autoantibodies is observed. In this period - 3 to 9 months after birth - the thyroid autoimmune disease relapses or reappears. The reactivation of the immune system in the post-partum period unchains an acute phase of celular destruction which characterizes the post-partum thyroiditis.

  18. [Familial retinoblastoma: cytogenetic study of the tumor].

    PubMed

    Robledo Batanero, M; Manzanal Martínez, A; Ayuso García, C; Benítez Ortiz, J

    1990-05-01

    We report a case of familiar retinoblastoma, in which both mother and daughter show bilateral retinoblastoma. The cytogenetic study, in both peripheral blood lymphocytes and tumoral tissue did not show alterations on the 13 chromosome, although we found a complex kariotype in tumoral tissue defined by three celular lines. In all of them appears a marker in which the 6 chromosome is involved (der 6). The derivated of 6 chromosome are markers highly characteristic of the retinoblastoma cases, and can be related with the aggressivity of tumor and the appearance of the second tumors.

  19. [Effect of indolylacetic acid on formation of bacteroid forms of Rhizobium leguminosarum].

    PubMed

    Lobanok, E V; Bakanchikova, T I

    1979-01-01

    The purpose of this work was to study the effect of indolylacetic acid (IAA) on the strains of Rhizobium leguminosarum, effective and noneffective with respect to symbiotic nitrogen fixation (L4 and 245a, and 14--73, respectively). IAA at a concentration of 50 mcg/ml and higher inhibited the growth of the bacterium, temporarily delayed celular division, and induced intensive formation of elongated bacteroid-like cells, predominantly Y-shaped or having a clavate shape. Many bacteroid-like cells were capable of division after a certain delay.

  20. [Immunological status of patients with amebic hepatic abscess].

    PubMed

    Canto Solís, A; Miranda Feria, A J; Medina Martinez, J; Teran Ortíz, L A; Suárez Sánchez, F

    1975-01-01

    The authors studied 10 cases of amoebic hepatic abscess documented by clinical evidence and confirmed by laboratory tests, liver scan and a good response to treatment. The immunological state of the patients was determined by protein electrophoresis, immunoelectrophoresis, counter-immunoelectrophoresis, radial immunodiffusion and roset formation for T and B lymphocytes. It is concluded that the alterations of cellular and humoral immunity is evident in cases of amoebic hepatic abscess; this alterations are more clear in the acute form of the illness and the immunological deficiency is more significant in the celular immunity.

  1. [Combination drug therapy in leprosy].

    PubMed

    Terencio de las Aguas, J

    1983-01-01

    The importance of polichemotherapy in multibacilar leprosy (LL and LD) in patients without any previous therapy as in those diagnosticated and under monotherapy most of all in the resistance patients is presented. Sulphones, clofazimine and rifampicine are selected as first rate drugs and protionamide-etionamide as second rate drugs. The therapy plans with the association of two and three drugs and the convenience of continuing indefinitely with at least one of the drugs are presented insisting on the advantages of the clofazimine-sulphones and rifampicine-sulphones associations. The necessity of immunotherapy for recover of celular immunity against the bacilus, is the only form of preventing relapses and drug resistance.

  2. [Ultrastructure of the gastric mucosa in chronic renal failure].

    PubMed

    Matos-Villalobos, D; Rosa-Arevalo, M

    1975-01-01

    Electromicroscopy (EM) findings of gastric mucosa from four patients with renal failure are reported. In these patients, the renal insufficiency appeared from different etiologies and ligth microscopy showed only corion edema. It was only through the EM studies that we could show great autophagic vacuoles in almost all surface epithelial cells; some of them, containing citoplasmic structure residues. In the four patients we found a remarkable activity of autophagocitosis. The autodestructive celular changes suggest two possibilities: a) the mucosal edema could obstruct a poorer nutrition of the tissues and/or b) It could represent a high flucagon activity.

  3. [Pathogenesis of spinal cord injuries and mechanisms of repair induced by olfactory ensheathing cells].

    PubMed

    Botero, Lucía; Gomez, Rosa Margarita; Chaparro, Orlando

    2013-05-16

    Introduccion. La lesion medular es un evento catastrofico, cuyas consecuencias persisten durante toda la vida del paciente. La investigacion en tratamiento se ha basado principalmente en el desarrollo de terapias que reduzcan la discapacidad, pero desde los anos noventa hay un avance significativo y se han probado varios trasplantes celulares en modelos animales de lesion medular, celulas de Schwann, astrocitos y celulas de la glia envolvente olfatoria (CGEO). Objetivo. Hacer un recuento detallado de la patogenia de la lesion medular primaria y secundaria y de los mecanismos por los cuales las CGEO inducirian sus posibles efectos regenerativos descritos en la bibliografia. Desarrollo. Despues del traumatismo, la lesion se desarrolla en dos fases, la primaria se caracteriza por las lesiones de compresion y la secundaria se produce por una serie de factores que se dan en paralelo y que incluyen factores vasculares, celulares, moleculares y formacion de cicatriz glial. La mayoria de los modelos de lesion medular y trasplante con CGEO han comunicado recuperacion funcional, remielinizacion y regeneracion axonal. Estas celulas ejercen su accion de manera indirecta a traves de la produccion de factores de crecimiento y de manera directa induciendo regeneracion neuronal, axonal y remielinizacion. Conclusiones. Las CGEO son una opcion terapeutica en pacientes con lesion medular debido a que inducen de modo directo o indirecto regeneracion neuronal, axonal, remielinizacion de axones, disminucion de cicatriz glial y otros efectos que conducen a la recuperacion funcional.

  4. Effect of the inclusion of mobile phone interviews to Vigitel.

    PubMed

    Bernal, Regina Tomie Ivata; Malta, Deborah Carvalho; Claro, Rafael Moreira; Monteiro, Carlos Augusto

    2017-06-01

    To evaluate the impact on the prevalence changes of risk factors for chronic diseases, published in the Surveillance System of Risk and Protection Factors for Chronic Diseases by Telephone Survey (Vigitel), after the inclusion of data from the population only with mobile phone. Our study used data from the 26 State capitals and Federal District of Brazil obtained by the National Survey on Health (PNS) and Vigitel, both held in 2013. In each capital, we added a subsample of 200 adults living in households with only mobile phones, extracted from PNS, to the Vigitel 2013 database, with approximately 1,900 households, named Vigitel dual frame. Vigitel results showed absolute relative biases between 0.18% and 14.85%. The system underestimated the frequency of adult smokers (10.77%), whole milk consumption (52.82%), and soft drink consumption (22.22%). Additionally, it overestimated the prevalence of hypertension (25.46%). In the simulations using Vigitel dual frame, with inclusion of the sample of adults living in households with only mobile phones, the bias of estimates was reduced in five out of eight analyzed indicators, with greater effects in regions with lower rates of landline coverage. In comparing regions, we observed negative correlation (ρ = -0.91) between the percentage of indicators with presence of bias and the percentage of households with only mobile phone. The results of this study indicate the benefits of including a subsample of 200 adults with only mobile phone on the Vigitel sample, especially in the capitals of the North and Northeast regions. Avaliar o impacto nas mudanças das prevalências de fatores de risco de doenças crônicas, divulgadas no Vigitel, após a inclusão de dados provenientes da população com somente telefone celular. O estudo utilizou os dados das capitais obtidos da Pesquisa Nacional de Saúde e do Vigitel, que foram realizados em 2013. Em cada capital, acrescentou-se uma subamostra de 200 adultos residentes em domic

  5. Toxicity assessment of carbon black waste: A by-product from oil refineries.

    PubMed

    Zhen, Xu; Ng, Wei Cheng; Fendy; Tong, Yen Wah; Dai, Yanjun; Neoh, Koon Gee; Wang, Chi-Hwa

    2017-01-05

    In Singapore, approximately 30t/day of carbon-based solid waste are produced from petrochemical processes. This carbon black waste has been shown to possess physical properties that are characteristic of a good adsorbent such as high external surface area. Therefore, there is a growing interest to reutilize and process this carbon black waste into secondary materials such as adsorbents. However, the carbon black waste obtained from petrochemical industries may contain heavy metals that are hazardous to human health and the environment, hence restricting its full potential for re-utilization. Therefore, it is important to examine the possible toxicity effects and toxicity mechanism of carbon black waste on human health. In this study, inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis showed that the heavy metals, vanadium (V), molybdenum (Mo) and nickel (Ni), were present in the carbon black waste in high concentrations. Three human cell lines (HepG2 cells, MRC-5 cells and MDA-MB-231 cells) were used to investigate the toxicity of carbon black waste extract in a variety of in vitro assays. Results from MTS assays indicated that carbon black waste extract decreased the viability of all three cell lines in a dose and time-dependent manner. Observations from confocal microscopy further confirmed this phenomenon. Flow cytometry assay also showed that carbon black waste extract induced apoptosis of human cell lines, and the level of apoptosis increased with increasing waste concentration. Results from reactive oxygen species (ROS) assay indicated that carbon black waste extract induced oxidative stress by increasing intracellular ROS generation in these three human cell lines. Moreover, induction of oxidative damage in these cells was also observed through the alteration of glutathione (GSH) and superoxide dismutase (SOD) activities. Last but not least, by treating the cells with V-spiked solution of concentration equivalent to that found in the

  6. The L, M, and S Segments of Rift Valley Fever Virus MP-12 Vaccine Independently Contribute to a Temperature-Sensitive Phenotype

    PubMed Central

    Nishiyama, Shoko; Lokugamage, Nandadeva

    2016-01-01

    ABSTRACT Rift Valley fever (RVF) is endemic to Africa, and the mosquito-borne disease is characterized by “abortion storms” in ruminants and by hemorrhagic fever, encephalitis, and blindness in humans. Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) has a tripartite negative-stranded RNA genome (L, M, and S segments). A live-attenuated vaccine for RVF, the MP-12 vaccine, is conditionally licensed for veterinary use in the United States. MP-12 is fully attenuated by the combination of the partially attenuated L, M, and S segments. Temperature sensitivity (ts) limits viral replication at a restrictive temperature and may be involved with viral attenuation. In this study, we aimed to characterize the ts mutations for MP-12. The MP-12 vaccine showed restricted replication at 38°C and replication shutoff (100-fold or greater reduction in virus titer compared to that at 37°C) at 39°C in Vero and MRC-5 cells. Using rZH501 reassortants with either the MP-12 L, M, or S segment, we found that all three segments encode a temperature-sensitive phenotype. However, the ts phenotype of the S segment was weaker than that of the M or L segment. We identified Gn-Y259H, Gc-R1182G, L-V172A, and L-M1244I as major ts mutations for MP-12. The ts mutations in the L segment decreased viral RNA synthesis, while those in the M segment delayed progeny production from infected cells. We also found that a lack of NSs and/or 78kD/NSm protein expression minimally affected the ts phenotype. Our study revealed that MP-12 is a unique vaccine carrying ts mutations in the L, M, and S segments. IMPORTANCE Rift Valley fever (RVF) is a mosquito-borne viral disease endemic to Africa, characterized by high rates of abortion in ruminants and severe diseases in humans. Vaccination is important to prevent the spread of disease, and a live-attenuated MP-12 vaccine is currently the only vaccine with a conditional license in the United States. This study determined the temperature

  7. Activation of p38 and JNK MAPK pathways abrogates requirement for new protein synthesis for phorbol ester mediated induction of select MMP and TIMP genes.

    PubMed

    Sampieri, Clara L; Nuttall, Robert K; Young, David A; Goldspink, Deborah; Clark, Ian M; Edwards, Dylan R

    2008-03-01

    The human matrix metalloproteinase (MMP) gene family includes 24 genes whose regulated expression, together with that of four tissue inhibitors of metalloproteinases (TIMPs), is essential in tissue remodelling and cell signalling. Quantitative real-time-PCR (qPCR) analysis was used to evaluate the shared and unique patterns of control of these two gene families in human MRC-5 and WI-38 fibroblasts in response to the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (PMA). The requirement for ongoing translation was analysed using three protein synthesis inhibitors, anisomycin, cycloheximide and emetine. PMA induced MMP1, 3, 8, 9, 10, 12, 13, 14 and TIMP1 and TIMP3 RNAs after 4-8 h, and induction of all except MMP9 and TIMP3 was blocked by all protein synthesis inhibitors. However, even though all inhibitors effectively blocked translation, PMA-induction of MMP9 and TIMP3 was blocked by emetine but was insensitive to cycloheximide and anisomycin. Anisomycin alone induced MMP9 and TIMP3, along with MMP25 and MMP19. The extracellular signal-regulated kinases (ERKs)-1/2 were strongly activated by PMA, while anisomycin activated the c-Jun N-terminal kinase (JNK) and p38 pathways, and cycloheximide activated p38, but emetine had no effect on the stress-activated mitogen-activated protein kinase (MAPK) pathways. The involvement of the p38 and JNK pathways in the selective effects of anisomycin and cycloheximide on MMP/TIMP expression was supported by use of pharmacological inhibitors. These data confirm that most inducible MMPs and TIMP1 behave as "late" activated, protein synthesis-dependent genes in fibroblasts. However, the requirement of protein synthesis for PMA-induction of MMPs and TIMPs is not universal, since it is abrogated for MMP9 and TIMP3 by stimulation of the stress-activated MAPK pathways. The definition of clusters of co-regulated genes among the two gene families will aid in bioinformatic dissection of control mechanisms.

  8. Antioxidant potential, cytotoxic activity and total phenolic content of Alpinia pahangensis rhizomes.

    PubMed

    Phang, Chung-Weng; Malek, Sri Nurestri Abd; Ibrahim, Halijah

    2013-10-01

    Alpinia pahangensis, a wild ginger distributed in the lowlands of Pahang, Malaysia, is used by the locals to treat flatulence. In this study, the antioxidant and cytotoxic activities of the crude aqueous methanol and fractionated extracts of Alpinia pahangensis against five different cancer and one normal cell lines were investigated. The total phenolic content of each extract and its fractions were also quantified. This is the first report on the antioxidant and cytotoxic activities of Alpinia pahangensis extract. In the current study, the crude methanol and fractionated extract of the rhizomes of Alpinia pahangensis were investigated for their antioxidant activity using four different assays namely, the DPPH scavenging activity, superoxide anion scavenging, β-carotene bleaching and reducing power assays whilst their phenolic contents were measured by the Folin-Ciocalteu's method.In vitro neutral red cytotoxicity assay was employed to evaluate the cytotoxic activity against five different cancer cell lines, colon cancer (HCT 116 and HT-29), cervical cancer (Ca Ski), breast cancer (MCF7) and lung cancer (A549) cell lines, and one normal cell line (MRC-5). The extract that showed high cytotoxic activity was further investigated for its chemical constituents by GC-MS (gas chromatography-mass spectrometry) analysis. The ethyl acetate fraction showed the strongest DPPH radical scavenging (0.35 ± 0.094 mg/ml) and SOD activities (51.77 ± 4.9%) whilst the methanol extract showed the highest reducing power and also the strongest antioxidant activity in the β-carotene bleaching assays in comparison to other fractions. The highest phenolic content was found in the ethyl acetate fraction, followed by the crude methanol extract, hexane and water fractions. The results showed a positive correlation between total phenolic content with DPPH radical scavenging capacities and SOD activities. The hexane fraction showed potent cytotoxic effect against KB, Ca Ski and HCT 116 cell

  9. Biocompatibility of new nanostructural materials based on active silicate systems and hydroxyapatite: in vitro and in vivo study.

    PubMed

    Petrović, V; Opačić-Galić, V; Živković, S; Nikolić, B; Danilović, V; Miletić, V; Jokanović, V; Mitić-Ćulafić, D

    2015-10-01

    To evaluate in vitro cytotoxicity and in vivo inflammatory response to new nanostructural materials based on active calcium silicate systems (CS) and hydroxyapatite (HA-CS). Cytotoxicity of eluates of new nanostructural noncommercial materials CS and HA-CS, and MTA (White MTA, Angelus(®) Soluções Odontológicas, Londrina, Brazil) as a control, were tested using the MTT assay on MRC-5 cells. Eluates of set materials were tested in 100% and 50% concentrations, 24 h, 7 days and 21 days post-elution. The pH values were determined for undiluted eluates of set materials. Polyethylene tubes containing the test materials (CS, HA-CS, MTA) were implanted in subcutaneous tissue of Wistar rats. Histopathological examinations were conducted at 7, 15, 30 and 60 days after the implantation. Data were statistically analyzed using three-way and one-way anova Tukey's post hoc test as well as Kruskall-Wallis test with Dunn's post hoc test at α = 0.05. All materials significantly reduced cell viability; especially when undiluted eluates were used (P < 0.001). After 24 h elution, cell viability was 10 ± 1.8%, 49.5 ± 4.2% and 61 ± 7.4%, for MTA, and HA-CS, respectively. However, CS and HA-CS were significantly less toxic than the control material MTA (P < 0.05). Cytotoxicity could be at least partially attributed to pH kinetics over time. Dilution of eluates of all tested materials resulted in better cell survival. Histopathological examination indicated similar inflammatory reaction, vascular congestion and connective tissue integrity associated with CS, HA-CS and MTA at each observation period (P > 0.05). The only significant difference was found for capsule thickness, that is thicker capsule was associated with HA-CS compared to MTA at 60 days (P = 0.0039). HA-CS induced moderately thick capsules (median score 3, score range 2-3), whereas MTA resulted in thin capsule formation (median score 2, score range 1-3). Evaluation of cytotoxicity and inflammatory response indicated

  10. Phytochemical constituents, nutritional values, phenolics, flavonols, flavonoids, antioxidant and cytotoxicity studies on Phaleria macrocarpa (Scheff.) Boerl fruits

    PubMed Central

    2014-01-01

    Background The edible fruits of Phaleria macrocarpa (Scheff.) Boerl are widely used in traditional medicine in Indonesia. It is used to treat a variety of medical conditions such as - cancer, diabetes mellitus, allergies, liver and heart diseases, kidney failure, blood diseases, high blood pressure, stroke, various skin diseases, itching, aches, and flu. Therefore, it is of great interest to determine the biochemical and cytotoxic properties of the fruit extracts. Methods The methanol, hexane, chloroform, ethyl acetate, and water extracts of P. macrocarpa fruits were examined for phytochemicals, physicochemicals, flavonols, flavonoids and phenol content. Its nutritional value (A.O.A.C method), antioxidant properties (DPPH assay) and cytotoxicity (MTT cell proliferation assay) were also determined. Results A preliminary phyotochemical screening of the different crude extracts from the fruits of P. macrocarpa showed the presence secondary metabolites such as of flavonoids, phenols, saponin glycosides and tannins. The ethyl acetate and methanol extracts displayed high antioxidant acitivity (IC50 value of 8.15±0.02 ug/mL) in the DPPH assay comparable to that of the standard gallic acid (IC50 value of 10.8±0.02 ug/mL). Evaluation of cytotoxic activity showed that the crude methanol extract possessed excellent anti-proliferative activity against SKOV-3 (IC50 7.75±2.56 μg/mL) after 72 hours of treatment whilst the hexane and ethyl acetate extracts displayed good cytotoxic effect against both SKOV-3 and MDA-MB231 cell lines. The chloroform extract however, showed selective inhibitory activity in the breast cancer cell line MDA-MB231 (IC50 7.80±1.57 μg/mL) after 48 hours of treatment. There was no cytotoxic effect observed in the Ca Ski cell line and the two normal cell lines (MRC-5 and WRL-68). Conclusion The methanol extract and the ethyl acetate fraction of P. macrocarpa fruits exhibited good nutritional values, good antioxidant and cytotoxic activities, and merits

  11. Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein.

    PubMed Central

    Stevenson, S C; Rollence, M; Marshall-Neff, J; McClelland, A

    1997-01-01

    The adenovirus fiber protein is responsible for attachment of the virion to unidentified cell surface receptors. There are at least two distinct adenovirus fiber receptors which interact with the group B (Ad3) and group C (Ad5) adenoviruses. We have previously shown by using expressed adenovirus fiber proteins that it is possible to change the specificity of the fiber protein by exchanging the head domain with another serotype which recognizes a different receptor (S. C. Stevenson et al., J. Virol. 69:2850-2857, 1995). A chimeric fiber cDNA containing the Ad3 fiber head domain fused to the Ad5 fiber tail and shaft was incorporated into the genome of an adenovirus vector with E1 and E3 deleted encoding beta-galactosidase to generate Av9LacZ4, an adenovirus particle which contains a chimeric fiber protein. Western blot analysis of the chimeric fiber vector confirmed expression of the chimeric fiber protein and its association with the adenovirus capsid. Transduction experiments with fiber protein competitors demonstrated the altered receptor tropism of the chimeric fiber vector compared to that of the parental Av1LacZ4 vector. Transduction of a panel of human cell lines with the chimeric and parental vectors provided evidence for a different cellular distribution of the Ad5 and Ad3 receptors. Three cell lines (THP-1, MRC-5, and FaDu) were more efficiently transduced by the vector containing the Ad3 fiber head than by the Ad5 fiber vector. In contrast, human coronary artery endothelial cells were transduced more readily with the vector containing the Ad5 fiber than with the chimeric fiber vector. HeLa and human umbilical vein endothelial cells were transduced at equivalent levels compared with human diploid fibroblasts, which were refractory to transduction with both vectors. These results provide evidence for the differential expression of the Ad5 and Ad3 receptors on human cell lines derived from clinically relevant target tissues. Furthermore, we show that exchange

  12. Cytotoxic effect of Reseda lutea L.: A case of forgotten remedy.

    PubMed

    Radulović, Niko S; Zlatković, Dragan B; Ilić-Tomić, Tatjana; Senerović, Lidija; Nikodinovic-Runic, Jasmina

    2014-04-11

    Reseda lutea L. (Resedaceae) or Wild Mignonette is a widely distributed plant species. Pliny the Elder (AD 23-AD 79), a Roman scholar and naturalist, reported the use of R. lutea for reducing tumors in his Historia naturalis. Accounts of the beneficial effects of R. lutea in tumor treatment could also be found in the works of later authors, such as Étienne François Geoffroy (1672-1731) and Samuel Frederick Gray (1766-1828). However, to date no in vivo or in vitro evidence exists in support of the alleged tumor healing properties of R. lutea. The composition of autolysates obtained from different organs (root, flower and fruit) of R. lutea was investigated by GC and GC-MS analyses and IR, 1D and 2D NMR spectroscopy. These analyses led to the discovery of a new compound isolated in pure form from the flower autolysate. Autolysates and their major constituents were submitted to MTT-dye reduction cytotoxic assay on human A375 (melanoma) and MRC5 (fibroblast) cell lines. Mechanism of the cytotoxic effects was studied by cell cycle analysis and Annexin V assay. Benzyl isothiocyanate and 2-(α-l-rhamnopyranosyloxy)benzyl isothiocyanate were identified as the major constituents of the root and flower autolysates, respectively (the later represents a new natural product). These compounds showed significant antiproliferative effects against both cell lines, which could also explain the observed high cytotoxic activity of the tested autolysates. Cell cycle analysis revealed apoptosis as the probable mechanism of cell death. Tumor healing properties attributed to R. lutea in the pre-modern texts were substantiated by the herein obtained results. Two isothiocyanates were found to be the major carriers of the observed activity. Although there was a relatively low differential effect of the plant metabolites on transformed and non-transformed cell lines, one can argue that the noted strong cytotoxicity provides first evidence that could explain the long forgotten use of this

  13. In vitro biological responses to nanofibrillated cellulose by human dermal, lung and immune cells: surface chemistry aspect.

    PubMed

    Lopes, Viviana R; Sanchez-Martinez, Carla; Strømme, Maria; Ferraz, Natalia

    2017-01-10

    Nanocellulose, and particularly nanofibrillated cellulose (NFC), has been proposed for a diversity of applications in industry and in the biomedical field. Its unique physicochemical and structural features distinguish nanocellulose from traditional materials and enable its use as an advance nanomaterial. However, its nanoscale features may induce unknown biological responses. Limited studies with NFC are available and the biological impacts of its use have not been thoroughly explored. This study assesses the in vitro biological responses elicited by wood-derived NFC gels, when human dermal fibroblasts, lung MRC-5 cells and THP-1 macrophage cells are exposed to the nanomaterial. Furthermore, whether the presence of surface charged groups (i.e. carboxymethyl and hydroxypropyltrimethylammonium groups) on NFC can induce distinct biological responses is investigated. The introduction of surface charged groups resulted in individual nanofibrils, while fibril aggregates predominated in the unmodified NFC gel suspensions as observed by transmission electron microscopy. In the presence of proteins, the surface modified NFCs formed compact agglomerates while the agglomeration pattern of the unmodified NFC was similar in the presence of proteins and in physiological buffer. Unmodified and modified NFC gels did not induce cytotoxicity in human dermal fibroblasts, lung and macrophage cells. No significant ROS production by THP-1 macrophages was found and no cellular uptake was observed. However, an inflammatory response was detected when THP-1 macrophages were treated with unmodified NFC as assessed by an increase in TNF-α and IL1-β levels, an effect that was absent when surface charged groups were introduced into NFC. Taken together, the data presented here show the absence of cytotoxic effects associated with the exposure to unmodified, carboxymethylated and hydroxypropyltrimethylammonium-modified NFCs. Unmodified NFC presented a pro-inflammatory effect which can be

  14. In Vitro Activity of Copper(II) Complexes, Loaded or Unloaded into a Nanostructured Lipid System, against Mycobacterium tuberculosis

    PubMed Central

    da Silva, Patricia B.; de Souza, Paula C.; Calixto, Giovana Maria Fioramonti; Lopes, Erica de O.; Frem, Regina C. G.; Netto, Adelino V. G.; Mauro, Antonio E.; Pavan, Fernando R.; Chorilli, Marlus

    2016-01-01

    Tuberculosis (TB) is an infectious disease caused mainly by the bacillus Mycobacterium tuberculosis (Mtb), presenting 9.5 million new cases and 1.5 million deaths in 2014. The aim of this study was to evaluate a nanostructured lipid system (NLS) composed of 10% phase oil (cholesterol), 10% surfactant (soy phosphatidylcholine, sodium oleate), and Eumulgin® HRE 40 ([castor oil polyoxyl-40-hydrogenated] in a proportion of 3:6:8), and an 80% aqueous phase (phosphate buffer pH = 7.4) as a tactic to enhance the in vitro anti-Mtb activity of the copper(II) complexes [CuCl2(INH)2]·H2O (1), [Cu(NCS)2(INH)2]·5H2O (2) and [Cu(NCO)2(INH)2]·4H2O (3). The Cu(II) complex-loaded NLS displayed sizes ranging from 169.5 ± 0.7095 to 211.1 ± 0.8963 nm, polydispersity index (PDI) varying from 0.135 ± 0.0130 to 0.236 ± 0.00100, and zeta potential ranging from −0.00690 ± 0.0896 to −8.43 ± 1.63 mV. Rheological analysis showed that the formulations behave as non-Newtonian fluids of the pseudoplastic and viscoelastic type. Antimycobacterial activities of the free complexes and NLS-loaded complexes against Mtb H37Rv ATCC 27294 were evaluated by the REMA methodology, and the selectivity index (SI) was calculated using the cytotoxicity index (IC50) against Vero (ATCC® CCL-81), J774A.1 (ATCC® TIB-67), and MRC-5 (ATCC® CCL-171) cell lines. The data suggest that the incorporation of the complexes into NLS improved the inhibitory action against Mtb by 52-, 27-, and 4.7-fold and the SI values by 173-, 43-, and 7-fold for the compounds 1, 2 and 3, respectively. The incorporation of the complexes 1, 2 and 3 into the NLS also resulted in a significant decrease of toxicity towards an alternative model (Artemia salina L.). These findings suggest that the NLS may be considered as a platform for incorporation of metallic complexes aimed at the treatment of TB. PMID:27196901

  15. Mechanism of antiproliferative action of a new d-secoestrone-triazole derivative in cervical cancer cells and its effect on cancer cell motility.

    PubMed

    Bózsity, Noémi; Minorics, Renáta; Szabó, Johanna; Mernyák, Erzsébet; Schneider, Gyula; Wölfling, János; Wang, Hui-Chun; Wu, Chin-Chung; Ocsovszki, Imre; Zupkó, István

    2017-01-01

    Cervical cancer is the fourth most frequently diagnosed tumor and the fourth leading cause of cancer death in females worldwide. Cervical cancer is predominantly related with human papilloma virus (HPV) infection, with the most oncogenic types being HPV-18 and -16. Our previous studies demonstrated that some d-secoestrone derivatives exert pronounced antiproliferative activity. The aim of the current investigation was to characterize the mechanism of action of d-secoestrone-triazole (D-SET) on three cervical cancer cell lines with different pathological backgrounds. The growth-inhibitory effects of D-SET were determined by a standard MTT assay. We have found that D-SET exerts a pronounced growth-inhibitory effect on HPV 18-positive HeLa and HPV-negative C-33 A cells, but it has no substantial inhibitory activity on HPV 16-positive SiHa or on intact fibroblast MRC-5 cell lines. After 24h incubation, cells showed the morphological and biochemical signs of apoptosis determined by fluorescent double staining, flow cytometry and caspase-3 activity assay. Besides the elevation of the ratio of cells in the subG1 phase, flow cytometric analysis revealed a cell cycle arrest at G2/M in both HeLa and C-33 A cell lines. To distinguish the G2/M cell population immunocytochemical flow cytometric analysis was performed on HeLa cells. The results show that D-SET significantly increases the ratio of phosphorylated histone H3, indicating cell accumulation in the M phase. Additionally, D-SET significantly increased the maximum rate of microtube formation measured by an in vitro tubulin polymerization assay. Besides its direct antiproliferative activity, the antimigratory property of D-SET has been investigated. Our results demonstrate that D-SET significantly inhibits the migration and invasion of HeLa cells after 24h incubation. These results suggests that D-SET is a potent antiproliferative agent against HPV 16+ and HPV-negative cervical cancer cell lines, with an efficacious

  16. Biological activities and chemical content of Sung Yod rice bran oil extracted by expression and soxhlet extraction methods.

    PubMed

    Uttama, Sakuntala; Itharat, Arunpomrn; Rattarom, Rujiluk; Makchuchit, Sunita; Panthong, Sumalee; Sakpakdeejaroen, Intouch

    2014-08-01

    Sung Yod rice is a red-violet pigmented rice and grown in the southern part of Thailand. Its rice bran oil has attracted the attention ofscientists who have described anti-oxidant properties ofsome ingredients in Sung Yod rice bran oil. Normally, extraction methods ofcommercial product from rice bran oil are by expression or soxhlet extraction with hexane. Thus, biological activities of Sung Yod rice bran oil related to health and chemical content ofrice bran oilfrom the two methods should be studied. The objectives of this research were to investigate for biological activities and chemical content ofSung Yod rice bran oil obtainedfrom expression or soxhlet extraction method. Biological activities such as cytotoxic, anti-inflammatory and antioxidant activities were investigated. Sulphorhodamine (SRB) assay was used to test cytotoxic activity against four human cancer cell lines: lung (COR-L23), cervical (HeLa), prostate (PC-3) and breast (MCF-7) and normal human lung cells (MRC-5). The inhibitory effect on lipopolysaccharide (LPS) induced nitric oxide (NO) production in RA W264. 7 cell lines was usedfor the determination of anti-inflammatory effect. DPPH, TEAC and FRAP assay were carried outfor antioxidant activity. Total phenolic compound was determined by Folin-Ciocalteu reagent. y-oryzanol and vitamin E content were determined by HPLC. Sung Yod rice bran oil was produced by expression method (EX) or by soxhlet extraction method using hexane (SXH-I). The percentage ofyield ofSung Yod rice bran oil by EX and SXH were 2.16 and 15.23 %w/w, respectively. Only EX showed the selective cytotoxicity against prostate cancer cells (PC-3), (IC50 = 52.06±1.60 μg/ml). It also exhibited high inhibitory effects on NO production (IC50 = 30.09 μg/ml). In contrast, SXH had no anti-inflammatory effect and cytotoxic activity against any of the cancer cells. EXshowed higher antioxidant activity determined using DPPH compared to SXH. It also showed higher amount of yoryzanol and

  17. Gastroprotective effect and cytotoxicity of abietane diterpenes from the Chilean Lamiaceae Sphacele chamaedryoides (Balbis) Briq.

    PubMed

    Areche, Carlos; Schmeda-Hirschmann, Guillermo; Theoduloz, Cristina; Rodríguez, Jaime A

    2009-12-01

    The aim of this report was to isolate, identify and assess the gastroprotective effect and cytotoxicity of abietane diterpenes from the Chilean medicinal plant Sphacele chamaedryoides (Balbis) Briq. (Lamiaceae). The isolated compounds were identified by spectroscopic means. The gastroprotective effect of the compounds was studied on the HCl/EtOH-induced gastric lesions model in mice. The cytotoxicity of the compounds was assessed on human normal lung fibroblasts (MRC-5) and gastric adenocarcinoma cells (AGS). From the aerial parts of the plant, five phenolic and five p-quinone abietanes, the sesquiterpene spathulenol and two flavonoids were obtained. The main diterpene from the plant was carnosol (7:). Lansoprazole at 20 mg/kg reduced gastric lesions by 64.7% (P < 0.01), being statistically similar to carnosol at doses of 10 and 20 mg/kg; the percent lesion reduction with 7: at 5 mg/kg was 49.3%. At a single oral dose of 5 mg/kg, the diterpenes bearing a p-quinone moiety - 6,7-dehydroroyleanone (1), royleanone (2), 7,20-epoxyroyleanone (3), taxoquinone (5) and horminone (6) - presented a gastroprotective effect of 54.4, 70.8, 65.0, 35.8 and 52.7%, respectively. Of the C-7 hydroxy derivatives, the activity was much lower for the 7beta-OH isomer. The phenolic diterpenes 7 and 7-oxo-11,12,14-trihydroxy-8,11,13-abietatrien-20-al (8) inhibited gastric lesions by 49.3 and 53.0%, respectively. Royleanone (2), 7,20-epoxyroyleanone (3), horminone (6), 8 and spathulenol proved to be cytotoxic with IC50 values in the range of 11-67 microm. The selective cytotoxicity of compounds 1 (IC50: 61 and 366 microm) and 5 (IC50: 310 and 27 microm) against AGS cells and fibroblasts, respectively, merit additional studies. All the abietanes obtained from S. chamaedryoides present either one or two phenolic OH groups, a quinone system, or both. Several compounds present in the plant showed higher gastroprotective effect than lansoprazole. The cytotoxic effect of most compounds was found

  18. Co-gasification of sewage sludge and woody biomass in a fixed-bed downdraft gasifier: toxicity assessment of solid residues.

    PubMed

    Rong, Le; Maneerung, Thawatchai; Ng, Jingwen Charmaine; Neoh, Koon Gee; Bay, Boon Huat; Tong, Yen Wah; Dai, Yanjun; Wang, Chi-Hwa

    2015-02-01

    As the demand for fossil fuels and biofuels increases, the volume of ash generated will correspondingly increase. Even though ash disposal is now strictly regulated in many countries, the increasing volume of ash puts pressure on landfill sites with regard to cost, capacity and maintenance. In addition, the probability of environmental pollution from leakage of bottom ash leachate also increases. The main aim of this research is to investigate the toxicity of bottom ash, which is an unavoidable solid residue arising from biomass gasification, on human cells in vitro. Two human cell lines i.e. HepG2 (liver cell) and MRC-5 (lung fibroblast) were used to study the toxicity of the bottom ash as the toxins in the bottom ash may enter blood circulation by drinking the contaminated water or eating the food grown in bottom ash-contaminated water/soil and the toxic compounds may be carried all over the human body including to important organs such as lung, liver, kidney, and heart. It was found that the bottom ash extract has a high basicity (pH = 9.8-12.2) and a high ionic strength, due to the presence of alkali and alkaline earth metals e.g. K, Na, Ca and Mg. Moreover, it also contains concentrations of heavy metals (e.g. Zn, Co, Cu, Fe, Mn, Ni and Mo) and non-toxic organic compounds. Although human beings require these trace elements, excessive levels can be damaging to the body. From the analyses of cell viability (using MTS assay) and morphology (using fluorescence microscope), the high toxicity of the gasification bottom ash extract could be related to effects of high ionic strength, heavy metals or a combination of these two effects. Therefore, our results suggest that the improper disposal of the bottom ash wastes arising from gasification can create potential risks to human health and, thus, it has become a matter of urgency to find alternative options for the disposal of bottom ash wastes. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Binding of hnRNP H and U2AF65 to Respective G-codes and a Poly-Uridine Tract Collaborate in the N50-5'ss Selection of the REST N Exon in H69 Cells

    PubMed Central

    Ortuño-Pineda, Carlos; Galindo-Rosales, José Manuel; Calderón-Salinas, José Victor; Villegas-Sepúlveda, Nicolás; Saucedo-Cárdenas, Odila; De Nova-Ocampo, Mónica; Valdés, Jesús

    2012-01-01

    The splicing of the N exon in the pre-mRNA coding for the RE1-silencing transcription factor (REST) results in a truncated protein that modifies the expression pattern of some of its target genes. A weak 3'ss, three alternative 5'ss (N4-, N50-, and N62-5'ss) and a variety of putative target sites for splicing regulatory proteins are found around the N exon; two GGGG codes (G2-G3) and a poly-Uridine tract (N-PU) are found in front of the N50-5'ss. In this work we analyzed some of the regulatory factors and elements involved in the preferred selection of the N50-5'ss (N50 activation) in the small cell lung cancer cell line H69. Wild type and mutant N exon/β-globin minigenes recapitulated N50 exon splicing in H69 cells, and showed that the N-PU and the G2-G3 elements are required for N50 exon splicing. Biochemical and knockdown experiments identified these elements as U2AF65 and hnRNP H targets, respectively, and that they are also required for N50 exon activation. Compared to normal MRC5 cells, and in keeping with N50 exon activation, U2AF65, hnRNP H and other splicing factors were highly expressed in H69 cells. CLIP experiments revealed that hnRNP H RNA-binding occurs first and is a prerequisite for U2AF65 RNA binding, and EMSA and CLIP experiments suggest that U2AF65-RNA recognition displaces hnRNP H and helps to recruit other splicing factors (at least U1 70K) to the N50-5'ss. Our results evidenced novel hnRNP H and U2AF65 functions: respectively, U2AF65-recruiting to a 5'ss in humans and the hnRNP H-displacing function from two juxtaposed GGGG codes. PMID:22792276

  20. Binding of hnRNP H and U2AF65 to respective G-codes and a poly-uridine tract collaborate in the N50-5'ss selection of the REST N exon in H69 cells.

    PubMed

    Ortuño-Pineda, Carlos; Galindo-Rosales, José Manuel; Calderón-Salinas, José Victor; Villegas-Sepúlveda, Nicolás; Saucedo-Cárdenas, Odila; De Nova-Ocampo, Mónica; Valdés, Jesús

    2012-01-01

    The splicing of the N exon in the pre-mRNA coding for the RE1-silencing transcription factor (REST) results in a truncated protein that modifies the expression pattern of some of its target genes. A weak 3'ss, three alternative 5'ss (N4-, N50-, and N62-5'ss) and a variety of putative target sites for splicing regulatory proteins are found around the N exon; two GGGG codes (G2-G3) and a poly-Uridine tract (N-PU) are found in front of the N50-5'ss. In this work we analyzed some of the regulatory factors and elements involved in the preferred selection of the N50-5'ss (N50 activation) in the small cell lung cancer cell line H69. Wild type and mutant N exon/β-globin minigenes recapitulated N50 exon splicing in H69 cells, and showed that the N-PU and the G2-G3 elements are required for N50 exon splicing. Biochemical and knockdown experiments identified these elements as U2AF65 and hnRNP H targets, respectively, and that they are also required for N50 exon activation. Compared to normal MRC5 cells, and in keeping with N50 exon activation, U2AF65, hnRNP H and other splicing factors were highly expressed in H69 cells. CLIP experiments revealed that hnRNP H RNA-binding occurs first and is a prerequisite for U2AF65 RNA binding, and EMSA and CLIP experiments suggest that U2AF65-RNA recognition displaces hnRNP H and helps to recruit other splicing factors (at least U1 70K) to the N50-5'ss. Our results evidenced novel hnRNP H and U2AF65 functions: respectively, U2AF65-recruiting to a 5'ss in humans and the hnRNP H-displacing function from two juxtaposed GGGG codes.

  1. AhR-dependent secretion of PDGF-BB by human classically activated macrophages exposed to DEP extracts stimulates lung fibroblast proliferation

    SciTech Connect

    Jaguin, Marie; Fardel, Olivier; Lecureur, Valérie

    2015-06-15

    Lung diseases are aggravated by exposure to diesel exhaust particles (DEPs) found in air pollution. Macrophages are thought to play a crucial role in lung immune response to these pollutants, even if the mechanisms involved remain incompletely characterized. In the present study, we demonstrated that classically and alternative human macrophages (MΦ) exhibited increased secretion of PDGF-B in response to DEP extract (DEPe). This occurred via aryl hydrocarbon receptor (AhR)-activation because DEPe-induced PDGF-B overexpression was abrogated after AhR expression knock-down by RNA interference, in both M1 and M2 polarizing MΦ. In addition, TCDD and benzo(a)pyrene, two potent AhR ligands, also significantly increased mRNA expression of PDGF-B in M1 MΦ, whereas some weak ligands of AhR did not. We next evaluated the impact of conditioned media (CM) from MΦ culture exposed to DEPe or of recombinant PDGF-B onto lung fibroblast proliferation. The tyrosine kinase inhibitor, AG-1295, prevents phosphorylations of PDGF-Rβ, AKT and ERK1/2 and the proliferation of MRC-5 fibroblasts induced by recombinant PDGF-B and by CM from M1 polarizing MΦ, strongly suggesting that the PDGF-BB secreted by DEPe-exposed MΦ is sufficient to activate the PDGF-Rβ pathway of human lung fibroblasts. In conclusion, we demonstrated that human MΦ, whatever their polarization status, secrete PDGF-B in response to DEPe and that PDGF-B is a target gene of AhR. Therefore, induction of PDGF-B by DEP may participate in the deleterious effects towards human health triggered by such environmental urban contaminants. - Highlights: • PDGF-B expression and secretion are increased by DEPe exposure in human M1 and M2 MΦ. • DEPe-induced PDGF-B expression is aryl-hydrocarbon-dependent. • DEPe-exposed M1 MΦ secrete sufficient PDGF-B to increase lung fibroblast proliferation.

  2. Baculovirus Vector-Mediated Transfer of Sodium Iodide Symporter and Plasminogen Kringle 5 Genes for Tumor Radioiodide Therapy

    PubMed Central

    Zhang, Min; Guo, Rui; Shi, Shuo; Miao, Yin; Zhang, Yifan; Li, Biao

    2014-01-01

    Background Both tumor cells and their supporting endothelial cells should be considered for targeted cell killing when designing cancer treatments. Here we investigated the feasibility of combining radioiodide and antiangiogenic therapies after baculovirus-mediated transfer of genes encoding the sodium iodide symporter (NIS) and plasminogen kringle 5 (K5). Methods A recombinant baculovirus containing the NIS gene under control of the human telomerase reverse transcriptase (hTERT) promoter and the K5 gene driven by the early growth response 1 (Egr1) promoter was developed. Dual-luciferase reporter assay was performed to confirm the activation of hTERT transcription. NIS and K5 gene expression were identified by Western blot and Real-Time PCR. Functional NIS activity in baculovirus-infected Hela cells was confirmed by the uptake of 125I and cytotoxicity of 131I. The apoptotic effect of 131I-induced K5 on baculovirus-infected human umbilical vein endothelial cells (HUVECs) was analyzed by a flow cytometry-based assay. In vivo, NIS reporter gene imaging and therapeutic experiments with 131I were performed. Finally, the microvessel density (MVD) in tumors after treatment was determined by CD31 immunostaining. Results The activation of hTERT transcription was specifically up-regulated in tumor cells. NIS gene expression markedly increased in baculovirus-infected HeLa cells, but not in MRC5 cells. The Hela cells showed a significant increase of 125I uptake, which was inhibited by NaClO4, and a notably decreased cell survival rate by 131I treatment. Expression of the K5 gene induced by 131I was elevated in a dose- and time-dependent manner and resulted in the apoptosis of HUVECs. Furthermore, 131I SPECT imaging clearly showed cervical tumor xenografts infected with recombinant baculovirus. Following therapy, tumor growth was significantly retarded. CD31 immunostaining confirmed a significant decrease of MVD. Conclusion The recombinant baculovirus supports a promising

  3. The potential of aqueous extracts of Bellucia dichotoma Cogn. (Melastomataceae) to inhibit the biological activities of Bothrops atrox venom: A comparison of specimens collected in the states of Pará and Amazonas, Brazil.

    PubMed

    de Moura, Valéria Mourão; de Souza, Luana Yamille Andrade; da Costa Guimarães, Noranathan; Dos Santos, Ilia Gilmara Carvalho; de Almeida, Patrícia Danielle Oliveira; de Oliveira, Ricardo Bezerra; Mourão, Rosa Helena Veras; Dos-Santos, Maria Cristina

    2017-01-20

    The effectiveness of aqueous extract of Bellucia dichotoma Cogn. (Melastomataceae) specimems collected in Santarém, PA, against some biological activities of Bothrops atrox venom (BaV) has been scientifically proven. Here, we analyzed the components and assessed the anti-snakebite potential of aqueous extracts of bark of B. dichotoma collected in Manaus, AM, (AEBd-MAO) and Santarém, PA, (AEBd-STM), both in Brazil. The phytochemical profiles of the aqueous extracts were identified using thin layer chromatography (TLC), and the concentrations of phenolics were determined by colorimetric assay. The inhibitory potential of the extracts was tested against the phospholipase A2, coagulant and gelatinolytic activities of BaV in vitro and its defibrinating and edema-inducing activities in vivo. Interaction between BaV and the extracts was investigated using SDS-Page electrophoresis and Western blotting. Extract cytotoxicity and antioxidant potential were assessed using the human fibroblast cell line MRC-5 and the DPPH assay in cell culture, respectively. While there was no difference between the phytochemical profiles of the extracts, AEBd-MAO had higher concentrations of total phenolics, total tannins and hydrolysable tannins. The extracts inhibited 100% of the phospholipase and coagulant activity of BaV when pre-incubated. Without pre-incubation, however, there was no reduction in phospholipase activity, although significant inhibition of coagulant activity was observed. In the doses used in folk medicine, without pre-incubation, both extracts inhibited 100% of the coagulant activity of BaV. In vivo, the extracts were unable to inhibit the defibrinating activity of the venom but were effective in inhibiting its edema-inducing activity. In the profiles of the extracts pre-incubated with BaV, not all the protein bands revealed by SDS-PAGE and Western blot were observed. Both extracts had a high antioxidant potential and neither had a cytotoxic effect. Although the

  4. New antimony(III) halide complexes with dithiocarbamate ligands derived from thiuram degradation: The effect of the molecule's close contacts on in vitro cytotoxic activity.

    PubMed

    Urgut, O S; Ozturk, I I; Banti, C N; Kourkoumelis, N; Manoli, M; Tasiopoulos, A J; Hadjikakou, S K

    2016-01-01

    Antimony(III) halide complexes of the formulae {[SbBr(Me2DTC)2]n} (1), {[SbI(Me2DTC)2]n} (2) and {[(Me2DTC)2Sb(μ2-I)Sb(Me2DTC)2](+).I3(-)} (3) (Me2DTC = dimethyldithiocarbomate) were synthesized from SbX3, (X = Br or I) and tetramethylthiuram monosulfide (Me4tms) or tetramethylthiuram disulfide (Me4tds). The complexes were characterized by melting point (m.p.), elemental analysis (e.a.), Fourier-transform Infra-Red (FT-IR), Fourier-transform Raman (FT-Raman), Nuclear Magnetic Resonance ((1)H,(13)C-NMR) spectroscopy and Thermogravimetric-Differential Thermal Analysis (TG-DTA). Crystal structures of complexes 1-3 were determined with single crystal X-ray diffraction analysis. Complexes 1 and 2 are polymers with distorted square pyramidal (SP) geometry in each monomeric unit, whereas complex 3 is ionic, containing an iodonium linkage Sb-I(+)-Sb and an I3(-) counter anion; to the best of our knowledge, this is the first ionic antimony(III) iodide complex. The in vitro cytotoxic activity of 1-3 against human adenocarcinoma cells: breast (MCF-7) and cervix (HeLa) cells and non-cancerous cells: MRC-5 (normal human fetal lung fibroblast cells) was evaluated with trypan blue (TB) and sulforhodamine B (SRB) assays. Among antimony(III) compounds with sulfur containing ligand, those of dithiocarbamates exhibit significant cytotoxic activity. Hirshfeld surface volumes were analyzed to clarify the nature of the intermolecular interactions by the 2D fingerprint plot. Molecules with lower H-all atoms inter-molecular interactions exhibit the higher activity against MCF-7 cells. The in vivo genotoxicity of 1-3 was evaluated by the mean of Allium cepa test. Alterations in the mitotic index values due to the chromosomal aberrations were observed in the case of complexes 2 and 3. Since, no such alteration is caused by 1, it makes this compound candidate for further study as potential drug.

  5. Molecular cloning of a new secreted sulfated mucin-like protein with a C-type lectin domain that is expressed in lymphoblastic cells.

    PubMed

    Bannwarth, S; Giordanengo, V; Lesimple, J; Lefebvre, J C

    1998-01-23

    We have previously demonstrated hyposialylation of the two major CD45 and leukosialin (CD43) molecules at the surface of latently human immunodeficiency virus type 1-infected CEM T cells (CEMLAI/NP), (Lefebvre, J. C., Giordanengo, V., Doglio, A., Cagnon, L., Breittmayer, J. P., Peyron, J. F., and Lesimple, J. (1994) Virology 199, 265-274; Lefebvre, J. C., Giordanengo, V., Limouse, M., Doglio, A., Cucchiarini, M., Monpoux, F., Mariani, R., and Peyron, J. F. (1994) J. Exp. Med. 180, 1609-1617). Searching to clarify mechanism(s) of hyposialylation, we observed two sulfated secreted glycoproteins (molecular mass approximately 47 and approximately 40 kDa) (P47 and P40), which were differentially sulfated and/or differentially secreted in the culture supernatants of CEMLAI/NP cells when compared with parental CEM cells. A hybridoma clone (7H1) resulting from the fusion between CEMLAI/NP and human embryonic fibroblasts MRC5 cells produced very large amounts of P47 that was purified using Jacalin lectin (specific for O-glycans) and microsequenced. Cloning of P47 was achieved using a CEMLAI/NP cDNA library screened with a degenerate oligonucleotide probe based on its NH2-terminal amino acid sequence. A single open reading frame encoding a protein of 323 amino acids was deduced from the longest isolated recombinant (1.4 kilobase). P47 is a secreted sulfated protein. It carries an NH2-terminal RGD (Arg-Gly-Asp) triplet, a striking alpha-helical leucine zipper composed of six heptads, and a C-terminal C-type lectin domain. The NH2-terminal portion is rich in glutamic acids with a predicted pI of 3.9. In addition, a hinge region with numerous condensed potential sites for O-glycan side chains, which are also the most likely sulfation sites, is located between the RGD and leucine zipper domains. Transcripts were detected in lymphoid tissues (notably bone marrow) and abundantly in T and B lymphoblastoid but very faintly in monocytoid cell lines.

  6. Virological, serological and epidemiological study of 255 consecutive cases of genital herpes in a sexually transmitted disease clinic of Paris (France): a prospective study.

    PubMed

    Janier, M; Scieux, C; Méouchi, R; Tournoux, C; Porcher, R; Maillard, A; Fouéré, S; Taquin, Y; Lassau, F; Morel, P

    2006-01-01

    Some studies (mostly retrospective) have pointed to an increasing frequency (up to 60%) of herpes simplex virus type 1 (HSV-1) in genital herpes (GH), but they were biased towards severe or atypical cases. We wished to evaluate the frequency of HSV-1 in patients attending our clinic for both first and recurrent episodes of GH. All patients (men and women) with genital lesions compatible with GH were included in a prospective study between May 1999 and April 2002. For all patients a standardized questionnaire, clinical examination, MRC5 culture (Dade Behring), polymerase chain reaction (PCR)-herpes consensus (Argène Biosoft) in case of negative culture and type-specific herpes serology HSV-1 and HSV-2 (Elisa Eurobio) were obtained. Predictive factors associated with HSV-1 and HSV-2 GH were studied by uni- and multivariable analyses. In all, 255 patients had a positive culture (n = 216) or PCR (n = 39). A total of 248 patients had typable herpes (148 men and 100 women). Median age was 33 (27-43); 20% had anal herpes; 48% had clinically recurrent lesions; 21% were HIV +; 20% of men were homosexual; 77% practised oral sex. In all, 36 were HSV-1 (14.5%): more in women, 25/100 (25%), than in men, 11/148 (7.5%) (odds ratio [OR]: 4 [1.8-9.1], P = 0.008). HSV-1 accounted for 23% of cases of first clinical episodes (women: 31.5%; men: 14.7%) (P = 0.02) and 6% of clinically recurrent episodes (women: 15%; men: 1.2%) (OR: 3.8 [1.6-9.1], P = 0.0033). Serological study was done in 239: primary infection was disclosed in 33 (HSV-1: 61%), HSV-2 non-primary first episode in 22 and recurrence in 184 (HSV-1: 8%). In all, 37% of recurrent episodes presented as a first clinical episode. HSV-1 was linked in men with homosexuality (P<0.01) and anilingus (P<0.01), in women with younger age (P<0.01), more sexual intercourses (P<0.0001) and more oral sex (P<0.001). Although HSV-1 is frequent in first clinical (23%) and primary (61%) episodes of GH, recurrent GH remains mostly due to HSV-2

  7. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite

    PubMed Central

    Namvar, Farideh; Azizi, Susan; Rahman, Heshu Sulaiman; Mohamad, Rosfarizan; Rasedee, Abdullah; Soltani, Mozhgan; Rahim, Raha Abdul

    2016-01-01

    The study describes an in situ green biosynthesis of zinc oxide nanocomposite using the seaweed Sargassum muticum water extract and hyaluronan biopolymer. The morphology and optical properties of the hyaluronan/zinc oxide (HA/ZnO) nanocomposite were determined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and ultraviolet–vis analysis. Electron microscopy and X-ray diffraction analysis showed that the zinc oxide nanoparticles were polydispersed with a mean size of 10.2±1.5 nm. The nanoparticles were mostly hexagonal in crystalline form. The HA/ZnO nanocomposite showed the absorption properties in the ultraviolet zone that is ascribed to the band gap of zinc oxide nanocomposite. In the cytotoxicity study, cancer cells, pancreatic adenocarcinoma (PANC-1), ovarian adenocarcinoma (CaOV-3), colonic adenocarcinoma (COLO205), and acute promyelocytic leukemia (HL-60) cells were treated with HA/ZnO nanocomposite. At 72 hours of treatment, the half maximal inhibitory concentration (IC50) value via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 10.8±0.3 μg/mL, 15.4±1.2 μg/mL, 12.1±0.9 μg/mL, and 6.25±0.5 μg/mL for the PANC-1, CaOV-3, COLO-205, and HL-60 cells, respectively, showing that the composite is most toxic to the HL-60 cells. On the other hand, HA/ZnO nanocomposite treatment for 72 hours did not cause toxicity to the normal human lung fibroblast (MRC-5) cell line. Using fluorescent dyes and flow cytometry analysis, HA/ZnO nanocomposite caused G2/M cell cycle arrest and stimulated apoptosis-related increase in caspase-3 and -7 activities of the HL-60 cells. Thus, the study shows that the HA/ZnO nanocomposite produced through green synthesis has great potential to be developed into an efficacious therapeutic agent for cancers. PMID:27555781

  8. Assessment of cholesterol-derived ionic copolymers as potential vectors for gene delivery.

    PubMed

    Sevimli, Sema; Sagnella, Sharon; Kavallaris, Maria; Bulmus, Volga; Davis, Thomas P

    2013-11-11

    A library of cholesterol-derived ionic copolymers were previously synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization as 'smart' gene delivery vehicles that hold diverse surface charges. Polyplex systems formed with anionic poly(methacrylic acid-co-cholesteryl methacrylate) (P(MAA-co-CMA)) and cationic poly(dimethylamino ethyl methacrylate-co-cholesteryl methacrylate) (Q-P(DMAEMA-co-CMA)) copolymer series were evaluated for their therapeutic efficiency. Cell viability assays, conducted on SHEP, HepG2, H460, and MRC5 cell lines, revealed that alterations in the copolymer composition (CMA mol %) affected the cytotoxicity profile. Increasing the number of cholesterol moieties in Q-P(DMAEMA-co-CMA) copolymers reduced the overall toxicity (in H460 and HepG2 cells) while P(MAA-co-CMA) series displayed no significant toxicity regardless of the CMA content. Agarose gel electrophoresis was employed to investigate the formation of stable polyplexes and determine their complete conjugation ratios. P(MAA-co-CMA) copolymer series were conjugated to DNA through a cationic linker, oligolysine, while Q-P(DMAEMA-co-CMA)-siRNA complexes were readily formed via electrostatic interactions at conjugation ratios beginning from 6:1:1 (oligolysine-P(MAA-co-CMA)-DNA) and 20:1 (Q-P(DMAEMA-co-CMA)-siRNA), respectively. The hydrodynamic diameter, ζ potential and complex stability of the polyplexes were evaluated in accordance to complexation ratios and copolymer composition by dynamic light scattering (DLS). The therapeutic efficiency of the conjugates was assessed in SHEP cells via transfection and imaging assays using RT-qPCR, Western blotting, flow cytometry, and confocal microscopy. DNA transfection studies revealed P(MAA-co-CMA)-oligolysine-DNA ternary complexes to be ineffective transfection vehicles that mostly adhere to the cell surface as opposed to internalizing and partaking in endosomal disrupting activity. The transfection efficiency of Q

  9. ATM protein is indispensable to repair complex-type DNA double strand breaks induced by high LET heavy ion irradiation.

    NASA Astrophysics Data System (ADS)

    Sekine, Emiko; Yu, Dong; Fujimori, Akira; Anzai, Kazunori; Okayasu, Ryuichi

    ATM (ataxia telangiectasia-mutated) protein responsible for a rare genetic disease with hyperradiosensitivity, is the one of the earliest repair proteins sensing DNA double-strand breaks (DSB). ATM is known to phosphorylate DNA repair proteins such as MRN complex (Mre11, Rad50 and NBS1), 53BP1, Artemis, Brca1, gamma-H2AX, and MDC. We studied the interactions between ATM and DNA-PKcs, a crucial NHEJ repair protein, after cells exposure to high and low LET irradiation. Normal human (HFL III, MRC5VA) and AT homozygote (AT2KY, AT5BIVA, AT3BIVA) cells were irradiated with X-rays and high LET radiation (carbon ions: 290MeV/n initial energy at 70 keV/um, and iron ions: 500MeV/n initial energy at 200KeV/um), and several critical end points were examined. AT cells with high LET irradiation showed a significantly higher radiosensitivity when compared with normal cells. The behavior of DNA DSB repair was monitored by immuno-fluorescence techniques using DNA-PKcs (pThr2609, pSer2056) and ATM (pSer1981) antibodies. In normal cells, the phosphorylation of DNA-PKcs was clearly detected after high LET irradiation, though the peak of phosphorylation was delayed when compared to X-irradiation. In contrast, almost no DNA-PKcs phosphorylation foci were detected in AT cells irradiated with high LET radiation. A similar result was also observed in normal cells treated with 10 uM ATM kinase specific inhibitor (KU55933) one hour before irradiation. These data suggest that the phosphorylation of DNA-PKcs with low LET X-rays is mostly ATM-independent, and the phosphorylation of DNA-PKcs with high LET radiation seems to require ATM probably due to its complex nature of DSB induced. Our study indicates that high LET heavy ion irradiation which we can observe in the space environment would provide a useful tool to study the fundamental mechanism associated with DNA DSB repair.

  10. Green synthesis, characterization, and anticancer activity of hyaluronan/zinc oxide nanocomposite.

    PubMed

    Namvar, Farideh; Azizi, Susan; Rahman, Heshu Sulaiman; Mohamad, Rosfarizan; Rasedee, Abdullah; Soltani, Mozhgan; Rahim, Raha Abdul

    2016-01-01

    The study describes an in situ green biosynthesis of zinc oxide nanocomposite using the seaweed Sargassum muticum water extract and hyaluronan biopolymer. The morphology and optical properties of the hyaluronan/zinc oxide (HA/ZnO) nanocomposite were determined by Fourier transform infrared spectroscopy, X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and ultraviolet-vis analysis. Electron microscopy and X-ray diffraction analysis showed that the zinc oxide nanoparticles were polydispersed with a mean size of 10.2±1.5 nm. The nanoparticles were mostly hexagonal in crystalline form. The HA/ZnO nanocomposite showed the absorption properties in the ultraviolet zone that is ascribed to the band gap of zinc oxide nanocomposite. In the cytotoxicity study, cancer cells, pancreatic adenocarcinoma (PANC-1), ovarian adenocarcinoma (CaOV-3), colonic adenocarcinoma (COLO205), and acute promyelocytic leukemia (HL-60) cells were treated with HA/ZnO nanocomposite. At 72 hours of treatment, the half maximal inhibitory concentration (IC50) value via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was 10.8±0.3 μg/mL, 15.4±1.2 μg/mL, 12.1±0.9 μg/mL, and 6.25±0.5 μg/mL for the PANC-1, CaOV-3, COLO-205, and HL-60 cells, respectively, showing that the composite is most toxic to the HL-60 cells. On the other hand, HA/ZnO nanocomposite treatment for 72 hours did not cause toxicity to the normal human lung fibroblast (MRC-5) cell line. Using fluorescent dyes and flow cytometry analysis, HA/ZnO nanocomposite caused G2/M cell cycle arrest and stimulated apoptosis-related increase in caspase-3 and -7 activities of the HL-60 cells. Thus, the study shows that the HA/ZnO nanocomposite produced through green synthesis has great potential to be developed into an efficacious therapeutic agent for cancers.

  11. Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands.

    PubMed

    Nikolić, Stefan; Rangasamy, Loganathan; Gligorijević, Nevenka; Aranđelović, Sandra; Radulović, Siniša; Gasser, Gilles; Grgurić-Šipka, Sanja

    2016-07-01

    Three new ruthenium(II)-arene complexes, namely [(η(6)-p-cymene)Ru(Me2dppz)Cl]PF6 (1), [(η(6)-benzene)Ru(Me2dppz)Cl]PF6 (2) and [(η(6)-p-cymene)Ru(aip)Cl]PF6 (3) (Me2dppz=11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine; aip=2-(9-anthryl)-1H-imidazo[4,5-f] [1,10] phenanthroline) have been synthesized and characterized using different spectroscopic techniques including elemental analysis. The complexes were found to be well soluble and stable in DMSO. The biological activity of the three complexes was tested in three different human cancer cell lines (A549, MDA-MB-231 and HeLa) and in one human non-cancerous cell line (MRC-5). Complexes 1 and 3, carrying η(6)-p-cymene as the arene ligand, were shown to be toxic in all cell lines in the low micromolar/subnanomolar range, with complex 1 being the most cytotoxic complex of the series. Flow cytometry analysis revealed that complex 1 caused concentration- and time-dependent arrest of the cell cycle in G2-M and S phases in HeLa cells. This event is followed by the accumulation of the sub-G1 DNA content after 48h, in levels higher than cisplatin and in the absence of phosphatidylserine externalization. Fluorescent microscopy and acridine orange/ethidium bromide staining revealed that complex 1 induced both apoptotic and necrotic cell morphology characteristics. Drug-accumulation and DNA-binding studies performed by inductively coupled plasma mass spectrometry in HeLa cells showed that the total ruthenium uptake increased in a time- and concentration-dependent manner, and that complex 1 accumulated more efficiently than cisplatin at equimolar concentrations. The introduction of a Me2dppz ligand into the ruthenium(II)-p-cymene scaffold was found to allow the discovery of a strongly cytotoxic complex with significantly higher cellular uptake and DNA-binding properties than cisplatin. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Prediction of Chemical Respiratory and Contact Sensitizers by OX40L Expression in Dendritic Cells Using a Novel 3D Coculture System.

    PubMed

    Mizoguchi, Izuru; Ohashi, Mio; Chiba, Yukino; Hasegawa, Hideaki; Xu, Mingli; Owaki, Toshiyuki; Yoshimoto, Takayuki

    2017-01-01

    The use of animal models in chemical safety testing will be significantly limited due to the recent introduction of the 3Rs principle of animal experimentation in research. Although several in vitro assays to predict the sensitizing potential of chemicals have been developed, these methods cannot distinguish chemical respiratory sensitizers and skin sensitizers. In the present study, we describe a novel in vitro assay that can discriminate respiratory sensitizers from chemical skin sensitizers by taking advantage of the fundamental difference between their modes of action, namely the development of the T helper 2 immune response, which is critically important for respiratory sensitization. First, we established a novel three-dimensional (3D) coculture system of human upper airway epithelium using a commercially available scaffold. It consists of human airway epithelial cell line BEAS-2B, immature dendritic cells (DCs) derived from human peripheral blood CD14(+) monocytes, and human lung fibroblast cell line MRC-5. Respective cells were first cultured in individual scaffolds and subsequently assembled into a 3D multi-cell tissue model to more closely mimic the in vivo situation. Then, three typical chemicals that are known respiratory sensitizers (ortho-phthaldialdehyde, hexamethylene diisocyanate, and trimellitic anhydride) and skin sensitizers (oxazolone, formaldehyde, and dinitrochlorobenzene) were added individually to the 3D coculture system. Immunohistochemical analysis revealed that DCs do not migrate into other scaffolds under the experimental conditions. Therefore, the 3D structure was disassembled and real-time reverse transcriptase-PCR analysis was performed in individual scaffolds to analyze the expression levels of molecules critical for Th2 differentiation such as OX40 ligand (OX40L), interleukin (IL)-4, IL-10, IL-33, and thymic stromal lymphopoietin. Both sensitizers showed similarly augmented expression of DC maturation markers (e.g., CD86), but

  13. Curcumin Suppresses Crosstalk between Colon Cancer Stem Cells and Stromal Fibroblasts in the Tumor Microenvironment: Potential Role of EMT

    PubMed Central

    Buhrmann, Constanze; Kraehe, Patricia; Lueders, Cora; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi

    2014-01-01

    Objective Interaction of stromal and tumor cells plays a dynamic role in initiating and enhancing carcinogenesis. In this study, we investigated the crosstalk between colorectal cancer (CRC) cells with stromal fibroblasts and the anti-cancer effects of curcumin and 5-Fluorouracil (5-FU), especially on cancer stem cell (CSC) survival in a 3D-co-culture model that mimics in vivo tumor microenvironment. Methods Colon carcinoma cells HCT116 and MRC-5 fibroblasts were co-cultured in a monolayer or high density tumor microenvironment model in vitro with/without curcumin and/or 5-FU. Results Monolayer tumor microenvironment co-cultures supported intensive crosstalk between cancer cells and fibroblasts and enhanced up-regulation of metastatic active adhesion molecules (β1-integrin, ICAM-1), transforming growth factor-β signaling molecules (TGF-β3, p-Smad2), proliferation associated proteins (cyclin D1, Ki-67) and epithelial-to-mesenchymal transition (EMT) factor (vimentin) in HCT116 compared with tumor mono-cultures. High density tumor microenvironment co-cultures synergistically increased tumor-promoting factors (NF-κB, MMP-13), TGF-β3, favored CSC survival (characterized by up-regulation of CD133, CD44, ALDH1) and EMT-factors (increased vimentin and Slug, decreased E-cadherin) in HCT116 compared with high density HCT116 mono-cultures. Interestingly, this synergistic crosstalk was even more pronounced in the presence of 5-FU, but dramatically decreased in the presence of curcumin, inducing biochemical changes to mesenchymal-epithelial transition (MET), thereby sensitizing CSCs to 5-FU treatment. Conclusion Enrichment of CSCs, remarkable activation of tumor-promoting factors and EMT in high density co-culture highlights that the crosstalk in the tumor microenvironment plays an essential role in tumor development and progression, and this interaction appears to be mediated at least in part by TGF-β and EMT. Modulation of this synergistic crosstalk by curcumin might be

  14. Anti-cancer effects of cerium oxide nanoparticles and its intracellular redox activity.

    PubMed

    Pešić, Milica; Podolski-Renić, Ana; Stojković, Sonja; Matović, Branko; Zmejkoski, Danica; Kojić, Vesna; Bogdanović, Gordana; Pavićević, Aleksandra; Mojović, Miloš; Savić, Aleksandar; Milenković, Ivana; Kalauzi, Aleksandar; Radotić, Ksenija

    2015-05-05

    Data on medical applications of cerium oxide nanoparticles CeO2 (CONP) are promising, yet information regarding their action in cells is incomplete and there are conflicting reports about in vitro toxicity. Herein, we have studied cytotoxic effect of CONP in several cancer and normal cell lines and their potential to change intracellular redox status. The IC50 was achieved only in two of eight tested cell lines, melanoma 518A2 and colorectal adenocarcinoma HT-29. Self-propagating room temperature method was applied to produce CONP with an average crystalline size of 4 nm. The results confirmed presence of Ce(3+) and O(2-) vacancies. The induction of cell death by CONP and the production of reactive oxygen species (ROS) were analyzed by flow-cytometry. Free radicals related antioxidant capacity of the cells was studied by the reduction of stable free radical TEMPONE using electron spin resonance spectroscopy. CONP showed low or moderate cytotoxicity in cancer cell lines: adenocarcinoma DLD1 and multi-drug resistant DLD1-TxR, non-small cell lung carcinoma NCI-H460 and multi-drug resistant NCI-H460/R, while normal cell lines (keratinocytes HaCaT, lung fetal fibroblasts MRC-5) were insensitive. The most sensitive were 518A2 melanoma and HT-29 colorectal adenocarcinoma cell lines, with the IC50 values being between 100 and 200 μM. Decreased rate of TEMPONE reduction and increased production of certain ROS species (peroxynitrite and hydrogen peroxide anion) indicates that free radical metabolism, thus redox status was changed, and antioxidant capacity damaged in the CONP treated 518A2 and HT-29 cells. In conclusion, changes in intracellular redox status induced by CONP are partly attributed to the prooxidant activity of the nanoparticles. Further, ROS induced cell damages might eventually lead to the cell death. However, low inhibitory potential of CONP in the other human cell lines tested indicates that CONP may be safe for human usage in industry and medicine.

  15. Human Cytomegalovirus Infection Enhances NK Cell Activity In Vitro

    PubMed Central

    Tschan-Plessl, Astrid; Stern, Martin; Schmied, Laurent; Retière, Christelle; Hirsch, Hans H.; Garzoni, Christian; van Delden, Christian; Boggian, Katia; Mueller, Nicolas J.; Berger, Christoph; Villard, Jean; Manuel, Oriol; Meylan, Pascal; Terszowski, Grzegorz

    2016-01-01

    Background Occurring frequently after solid organ and hematopoietic stem cell transplantation, cytomegalovirus (CMV) replication remains a relevant cause of mortality and morbidity in affected patients. Despite these adverse effects, an increased alloreactivity of natural killer (NK) cells after CMV infection has been assumed, but the underlying physiopathological mechanisms have remained elusive. Methods We used serial analyses of NK cells before and after CMV infection in kidney transplant recipients as an in vivo model for CMV primary infection to explore the imprint of CMV infection using every patient as their own control: We analyzed NK cell phenotype and function in 47 CMV seronegative recipients of CMV seropositive kidney grafts, who developed CMV primary infection posttransplant. Seronegative recipients of seronegative kidney grafts served as controls. Results We observed a significant increase of NKG2C expressing NK cells after CMV infection (mean increase, 17.5%; 95% confidence interval [95% CI], 10.2-24.9, P < 0.001), whereas cluster of differentiation (CD)57 expressing cells decreased (mean decrease, 14.1%; 95% CI, 8.0-20.2; P < 0.001). Analysis of killer immunoglobulin-like receptor (KIR) expression showed an increase of cells expressing KIR2DL1 as their only inhibitory KIR in patients carrying the cognate ligand HLA-C2 (mean increase, 10.0%; 95% CI, 1.7-18.3; P = 0.018). In C2-negative individuals, KIR2DL1 expression decreased (mean decrease, 3.9%; 95% CI, 1.6-6.2; P = 0.001). As for activating KIR, there was no conclusive change pattern. Most importantly, we observed a significantly higher NK cell degranulation and IFNγ production in response to different target cells (target K562, CD107a: mean increase, 9.9%; 95% CI, 4.8-15.0; P < 0.001; IFNγ: mean increase, 6.6%; 95% CI, 1.6-11.1; P < 0.001; target MRC-5, CD107a: mean increase, 6.9%; 95% CI, 0.7-13.1; P = 0.03; IFNγ: mean increase, 4.8%; 95% CI, 1.7-7.8; P = 0.002). Conclusions We report

  16. Heteropentanuclear Oxalato-Bridged nd–4f (n=4, 5) Metal Complexes with NO Ligand: Synthesis, Crystal Structures, Aqueous Stability and Antiproliferative Activity

    PubMed Central

    Kuhn, Paul-Steffen; Cremer, Laura; Gavriluta, Anatolie; Jovanović, Katarina K; Filipović, Lana; Hummer, Alfred A; Büchel, Gabriel E; Dojčinović, Biljana P; Meier, Samuel M; Rompel, Annette; Radulović, Siniša; Tommasino, Jean Bernard; Luneau, Dominique; Arion, Vladimir B

    2015-01-01

    A series of heteropentanuclear oxalate-bridged Ru(NO)-Ln (4d–4f) metal complexes of the general formula (nBu4N)5[Ln{RuCl3(μ-ox)(NO)}4], where Ln=Y (2), Gd (3), Tb (4), Dy (5) and ox=oxalate anion, were obtained by treatment of (nBu4N)2[RuCl3(ox)(NO)] (1) with the respective lanthanide salt in 4:1 molar ratio. The compounds were characterized by elemental analysis, IR spectroscopy, electrospray ionization (ESI) mass spectrometry, while 1, 2, and 5 were in addition analyzed by X-ray crystallography, 1 by Ru K-edge XAS and 1 and 2 by 13C NMR spectroscopy. X-ray diffraction showed that in 2 and 5 four complex anions [RuCl3(ox)(NO)]2− are coordinated to YIII and DyIII, respectively, with formation of [Ln{RuCl3(μ-ox)(NO)}4]5− (Ln=Y, Dy). While YIII is eight-coordinate in 2, DyIII is nine-coordinate in 5, with an additional coordination of an EtOH molecule. The negative charge is counterbalanced by five nBu4N+ ions present in the crystal structure. The stability of complexes 2 and 5 in aqueous medium was monitored by UV/Vis spectroscopy. The antiproliferative activity of ruthenium-lanthanide complexes 2–5 were assayed in two human cancer cell lines (HeLa and A549) and in a noncancerous cell line (MRC-5) and compared with those obtained for the previously reported Os(NO)-Ln (5d–4f) analogues (nBu4N)5[Ln{OsCl3(ox)(NO)}4] (Ln=Y (6), Gd (7), Tb (8), Dy (9)). Complexes 2–5 were found to be slightly more active than 1 in inhibiting the proliferation of HeLa and A549 cells, and significantly more cytotoxic than 5d–4f metal complexes 6–9 in terms of IC50 values. The highest antiproliferative activity with IC50 values of 20.0 and 22.4 μM was found for 4 in HeLa and A549 cell lines, respectively. These cytotoxicity results are in accord with the presented ICP-MS data, indicating five- to eightfold greater accumulation of ruthenium versus osmium in human A549 cancer cells. PMID:26260662